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Abstract

This research began with the goal of designing and building an electric motorcycle to

compete in the Isle of Man TT Zero race. A set of parametric physics-based models was derived
to size the batteries and motors, predict vehicle speeds and predict the time required to finish the
race. In June 2011 the motorcycle design and simulations were tested in three races on the Isle of

Man. Post-race analysis showed that the predictions had less than 10% error.
The energy estimation methods that were developed for the motorcycle were

subsequently modified and applied to non-racing electric vehicles. Instead of predicting the
energy required to travel a known route, it is more useful for non-racing applications to consider

the reverse scenario, which is the distance the vehicle can travel before charging is required. This

is referred to as the Distance to Empty (DTE). Recent studies have shown that current DTE

algorithms are inadequate and cause "range anxiety" among users. This is because conventional

approaches only use past driving data to estimate DTE and thus are unable to accurately predict

changes in driving conditions. However, the algorithm developed in this thesis uses
measurements from the past along with knowledge of the future route. A multivariate linear

regression model is used to adjust a historical average of energy consumption based on estimated
changes in speed, traffic and temperature.

Finally, the new DTE algorithm was compared to conventional methods by simulating a
large number of full battery discharges under realistic driving conditions. A Markov-based
stochastic speed profile generator was used as input to the models. Example simulations show

that including future driving conditions in the DTE algorithm can significantly reduce error.

Thesis Supervisor: Daniel D. Frey
Title: Professor of Mechanical Engineering
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1. Introduction to Part I
Part I describes the process of designing, building, testing and racing a high performance

electric motorcycle for the 2011 Isle of Man Tourist Trophy (TT) Zero race. Systems

engineering was used to size the batteries and motors, predict vehicle speeds and predict the time

required to finish the race. Forward- and backward-looking vehicle simulations were used to

predict the motorcycle performance under full-throttle conditions and estimate the total battery

energy required to traverse the entire course. The mechanical and electrical designs are described

along with the critical process of incremental testing. In June 2011 the motorcycle design and

simulations were tested in three races on the Isle of Man. Post-race analysis showed that the

predictions had less than 10% error.

1.1 Motivation
The Isle of Man Tourist Trophy (TT) race is the oldest existing motorcycle race and for

over 100 years has served as a proving ground for both riders and engineers to advance

motorcycle technology. Soichiro Honda, founder and then president of Honda Motor

Corporation, once declared that the innovation required to win the Isle of Man race would "rank

at the world's highest levels of engineering" [1]. The desire to create innovation through racing

continues today and in 2009 an electric class was added to the TT with the aim of advancing zero

emission vehicle technology. The Isle of Man TT Zero is an example of a new breed of "zero

emission" races, which aim to spur innovation that will reduce the environmental impact of

consumer vehicles. Racing has historically been a catalyst for innovation, particularly in the

early years of motorcycles and automobiles [2]. New concepts were tested on the track and the

desire to win drove companies to produce superior technology. Consumer demand for better

performance motivated companies to transfer the technology from the racetrack to the mass

market.

1.2 Overview
Systems engineering is used to ensure feasibility early in the design process, select the

proper motor and battery size, and predict the motorcycle performance in Chapter 2. Both the
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electrical and mechanical subsystem designs and testing methods are described in Chapter 3.

Finally, the race data is used to evaluate the motorcycle performance and validate the integrated

models in Chapter 4. The final chapter also outlines a set of guidelines for designing zero

emission races with the aim of promoting innovation.

1.3 Related Work

The Isle of Man TT Zero race in 2009 served as the first ever large-scale electric

motorcycle race. Since the field is still in infancy, there is very little engineering literature on the

topic of designing electric motorcycles for racing. There is no literature on predicting energy

requirements for the Isle of Man race since the gasoline motorcycles have never been energy

limited. A university in Germany built an electric motorcycle for the TTXGP in 2012 and

published a paper on their design, but they did not describe the methods used to size the motor

and battery [3]. Two recent studies describe a motor controller [4] and motor [5] specifically

designed for electric motorcycle racing.

Though there are few publications related to electric motorcycle racing, there is an

extensive amount of literature for solar vehicle racing. Solar vehicle racing started in the mid

1980s and includes teams from international corporations and universities. Similar to electric

motorcycle racing on the Isle of Man, one of the central challenges in solar racing is to predict

the required battery energy and maximize vehicle performance. The problem of optimally

controlling the vehicle to minimize energy has been studied for solar cars [6][7] and more

generally for electric vehicles [8][9]. These methods could be applied to the TT Zero race,

though extensions would be required to include coming (braking). Also, it is questionable that

optimal control would yield large energy savings. More recent work describes designs for the

hybrid-electric and all-electric Formula Society of Automotive Engineers (FSAE) competitions

[10]. The most common approach is to simulate the vehicle using commercially available

software along with custom models as needed. For example, commercially available software

has been used to optimize a hybrid vehicle drivetrain [11] [12]. Finally, there has been a large

amount of work on general vehicle and subsystem (motors, etc.) modeling [13][14].

14



2. Motorcycle Systems Engineering
This section describes how system-level engineering was used in designing the electric

motorcycle. More specifically it explains the methods used to explore how changes in the design

parameters affect performance metrics (Table 2.1). Systems engineering was used to size the

batteries and motors, predict vehicle speeds and predict the time required to finish the race. The

process involved deriving a set of subsystem models (Section 2.1) and then simulating various

scenarios based on specific inputs. Two types of simulations were considered. The first estimated

the motor and battery power, and vehicle speed of the motorcycle when full-throttle is applied

(Section 2.2). The second simulation estimated the battery energy required to traverse the entire

course. The conventional approach to estimating a vehicle's energy consumption is to simulate

the vehicle using an estimated speed profile as input (e.g. EPA "driving cycle" [15]). But the

speed profiles are difficult to predict in this case because the TT course is complex with over 200

turns, varying elevation and is traversed at fluctuating high speeds. Thus a new approach was

derived, which assumed that the required battery energy was in between estimates of lower and

upper bounds. The lower bound, or best case, was determined by assuming the motorcycle

maintained a constant vehicle speed throughout the course, which was shown to be the most

energy efficient way to drive. The upper bound, or worst case, was determined by assuming the

motorcycle maintained a constant motor power throughout the course, which would yield large

speed fluctuations and is thus inefficient. The lower and upper bounds are derived in Sections 2.3

and 2.4, respectively. Section 2.5 adds braking to the speed, time and energy estimates. Finally,

Section 2.6 explains how the methods described were used in practice to estimate the required

motor power and battery energy.
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Table 2.1: Design parameters and performance metrics.

Design Parameters Performance Metrics
* Mass * Acceleration
e Aerodynamics * Maximum and average speed
e Rolling resistance e Battery energy consumed
e Sprocket ratio e Power (vehicle, batteries, motors)
e Finishing time
eBattery specifications
eMotor specifications
eMotor controller

specifications and settings
e Drivetrain efficiencies

2.1 Subsystem Models

The subsystem models derived here are used in later subsections to explore the

motorcycle performance based on design parameters (Table 2.1). When the speed profile is

specified as input, the simulation is referred to as backward-looking and when the throttle profile

is specified the simulation is referred to as a forward-looking. The following subsections

describe each of these approaches.

2.1.1 Backward-looking Simulations

A backward-looking simulation is shown in Figure 2.1. The speed is specified as a

function of time, i(t), and is the input to the vehicle model. Environmental Protection Agency

(EPA) "Driving Cycles" are commonly used to specify the speed [15], though this approach is

not applicable to racing since the speeds and general driving conditions are different from those

represented by the standard EPA specifications. A vehicle model determines the wheel force, F,

required to follow the prescribed speed profile based on a set of design parameters. Similarly, the

transmission and motor models determine how much electric power is needed by the motor, Pb.

The battery model translates the total electrical need to an estimated amount of battery energy

(Eb), which includes internal losses. These models are derived in the following subsections.
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Vehicle Wheel Force Motor Torque Power from
Speed Vehicle Speed Motor Speed Battery

xi Vehicle Fw,; xi Transmission Tm,h m,i Motor Pb,i
I- Model Model 10Model

Start
Battery Model

Losses

Battery Losses

Loop Eb,i At
Battery Energy

Consumed during the
ith increment

Figure 2.1: A backward-looking vehicle simulation.

Vehicle Model

The electric motorcycle can be modeled as a mass on an incline with externally applied

forces (Figure 2.2). It is propelled forward by an electric motor acting through the rear wheel

with a force, F,, but slowed down by the aerodynamic drag, Faero, the rolling resistance from the

two wheels, Froiing, and the horizontal component of weight, Fgrainy. Newton's second law states:

F = mz = F, - Faero - Froing - Fgravity 2.1

Which can be written as [30]:

mx = F, - 1/2 pCdA i + w) 2 - mgCrrCosfl - mgSinfl 2.2

Where m is the total mass of the vehicle and rider, w is the wind speed, Crr is the rolling

resistance coefficient, p is the density of air, CdA is the aerodynamic coefficient, g is gravity, and

fl is the angle of the road. Solving for F,,:

F, = mx + 1/2 pCdA(i + w) 2 + mgCrrCos3 + mgSin3 2.3

The unknown parameters CdA and Crr can be found experimentally through wind tunnel and

road testing. The acceleration, Y, is determined by differentiating the known (specified) speed

profile.
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Figure 2.2: The motorcycle can be modeled as a mass on an incline with externally applied forces.

Transmission Model

The force on the rear wheel, F., originates from a motor acting through a chain and two

sprockets. Summing the torques around the wheel yields (Figure 2.3):

T = Iww = Tw - FwGr 2.4

Where -r,, is the torque on the rear wheel, I,, is the mass moment of inertia and #w is the

rotational acceleration of the wheel(s). Assuming the wheel is the only rotating mass and is a

uniformly distributed cylinder of radius r,:

I = 2 2.5

Where m, is the total mass of all the wheels. The following relationship can be determined

through geometry:

6=- 2.6

Taking the derivative of Equation 2.6 yields:

Ow = - 2.7

Combining Equations 2.4, 2.7 and 2.8:

w 2 + Fw 2.8

18
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Conservation of energy can be used to relate the wheel torque to the motor torque (Figure 2.3):

TWOw =1?dTmam 2.9

Where r7d is the transmission efficiency, which can be estimated or determined experimentally.

Solving for the motor torque:

$w1
Tm = Tw 6 m ?d.1

Defining the "sprocket ratio", z, as:

2.11

Combining Equations 2.8, 2.10 and 2.11:

Tm =(y+ Fw w
2 )zr7d

And the motor speed can be determined by combining Equations 2.6 and 2.11:

.zx
6m =--

2.12

2.13

Figure 2.3: A free body diagram of the rear wheel (left) and the entire drivetrain (right). The

torque on the motor results in a force on the wheel.

Motor Model

Conservation of power yields a relationship for the power going to the motor from the battery, Pb

(Figure 2.4):

TmOm
Pb = 77mc17m

19
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Where 1 mc is the efficiency of the motor controller, which is typically assumed to be constant

and ~90 to 95%. The efficiency of the motor, ?7m, can vary greatly based on the motor torque and

speed. A motor efficiency map relates the motor efficiency to torque and speed and is typically

obtained experimentally using a dynamometer [17]. Combining Equations 2.12, 2.13 and 2.14:

"M +F .c
Pb= 2.15

77mclmd

ilmc Mechanical
Pb Power Out

Battery ]Motor Controll~er Motor

m ,0m

Figure 2.4: Energy flows from the Battery -> Motor Controller -> Motor -> Motor Torque.

Battery Model

A battery cell can be modeled as a resistor in series with a voltage source. The cells are

connected in parallel and series to form a battery module or pack (Figure 2.5). The battery losses

can be modeled as Ohmic:

Eb,boss = I Rb 2.16

Where Ib is the current through the battery pack and Rb is the total internal resistance, which can

be determined using:

k
Rb = -Rc 2.17

Where Re is the internal resistance of a single cell and k and I are the number of cells in series

and parallel, respectively (Figure 2.5). The power from the battery can be written as:

Vbnlb - Ib R = Pb 2.18

Where Vbfl is the voltage on the battery pack when no current is being drawn. The only

remaining unknown is Ib, which can be determined by solving Equation 2.18 using the quadratic

equation:

V E2 4Ro~
Vb n Pb 2.19

b - 2 Rb 2 Rb

20



The total power (including losses) from the battery can be written as:

V2 V 2 z 4 R Pb
Pbn = V n l= V Vb 2 Rb

T a gl f 2 Rb 2 Rb

The total energy (including losses) from the battery can now be determined using:

Eb = f Pbn dt

Single Cell Module or Pack

T- 1T-

1= number of cells in parallel
Figure 2.5: A battery cell was modeled as a resistor in series with a voltage source.

2.1.2 Forward-looking Simulations

The motor torque, Tm, for a DC permanent magnet motor is proportional to the current

passing through the motor:

Tm = KiIm 2.22

where K, is the torque constant, and I, is the motor current. Rearranging Equation 2.12 and

combining the result with Equation 2.22:

Z7dK
F, = r KIm

rwTM

My ..

2 x

Now the acceleration of the vehicle can be determined by combining Equations 2.2 and 2.23:

z = Im ('IdKi,m - 'I2 pCdA(i + w) 2 - mgCrrCosfl - mgSin )
M + W rw

2.24

The only unknown in Equation 2.24 is the motor current, In, which is based on the throttle input.

Once Im is known, the speed and position for the next increment can be determined using

numerical integration:

xi+1 = *i + zi(ti+1 - ti)

Xi+ 1 = Xi + !i+ 1 (ti+1 - ti)

2.25

2.26

21
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Determining I, based on the throttle input is the focus for the remainder of this subsection.

A DC permanent magnet motor can be modeled as a voltage-generating source (Vemf) in

series with a resistor (Rm) (Figure 2.6). By summing the voltages around the motor model circuit,

the following relationship can be derived:

Im = (Vm - Vemf)/Rm 2.27

Veinf is proportional to the rotational speed of the motor, 6 m, which can be related to the linear

speed of the rear wheel, i, since they are connected. Rewriting Equation 2.27:

Vm - K8m Vm zKo
Im R R R X 2.28

Rm Rm Rmrw

M Mcotor

Mechanical
Power Out

VM Vemf
Tm A6 m

Figure 2.6: It was assumed that a Direct Current (DC) Permanent Magnet (PM) can be modeled as
a resistor in series with a back-EMF generating device.

As shown in Equation 2.28, the motor controller continually increases Vm as * increases

in order to maintain a constant I.. This is done until (1) the motor current reaches a maximum

value, IS"*, which is a value specified by the engineer based on performance and/or motor

thermal considerations, or (2) the motor controller reaches "all-on" conditions (100% duty

cycle). When (2) occurs, the batteries are essentially directly connected to the motor and thus In

= Ib, Vm V ' and I, decreases with increasing speed as shown in Figure 2.7 as a solid line. In

other words, the motor current is equal to the minimum value of these two scenarios:

Im = minimum{s -Immi, Ib 2.29

Scenarios (1) and (2) are referred to as current-limited" and voltage-limited, respectively.

' When the motor controller is at 100% duty cycle ("all on") there is still a small voltage drop across the transistors.
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Vb zKO

Rm Rmnr,

Increasing Vr,.
sI limit Vb

Sm\

X (Speed)

Figure 2.7: This curve shows the relationship between vehicle speed (i) and motor current (Im). The
motor controller continually increases the motor voltage (Vm) as i increases in order to maintain a
constant Im. Eventually the back-EMF becomes large enough that the motor is voltage limited and

thus the current decreases with vehicle speed.

The exact values of Vb, I, V,, Im can be determined by simultaneously solving four

equations obtained from the models shown in Figure 2.8. First, conservation of power through

the motor controller yields:

lmcVblbb = VmIm 2.30

Second, summing the voltage drops through the motor model yields:

Vm - ImRm = K 0em 2.31

Combing this result with Equation 2.13:

zi
Vm - ImRm = K6 - 2.32

Third, summing the voltage drops within the battery model yields:

Vbn - IbRb = Vb 2.33

Thus the four equations are Equations 2.30, 2.32 and 2.33 and:

I = s -Itmi 2.34

Where s is the throttle signal and varies from 0 to 1. Equations 2.30, 2.32 and 2.33 can be solved

simultaneously again, but instead of using 2.34 for the forth equation, the following is assumed

(100% duty cycle of motor controller):

Im = Ib 2.35

The solutions for Vb, Ib, Vm associated with the minimum motor current are used (Equation 2.29).

The total energy consumed from the battery can now be determined:

Eb = f Vbnlb dt 2.36
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Battery

+ |
V - Motor Controller em!

*- Im

Figure 2.8: Power electronics model consisting of the battery, motor controller and motor.

2.2 Full-throttle Simulations

It is common when studying dynamic systems to excite the system with a "step input" to

simulate how it will respond to a maximum input signal. In the case of motorcycle design, a

synonymous concept is referred to as a full-throttle simulation. It is assumed that the rider starts

at zero speed and applies full-throttle. The motorcycle's speed is then simulated all the way until

acceleration is zero, which is the point of maximum speed. It is assumed that the motorcycle is

on a straight road and does not experience braking. The forward-looking simulation described in

Section 2.1.2 can be used to simulate the motorcycle based on a throttle profile (a step input was

used here, though a saw-tooth, ramp, etc. could also be used):

1. Specify the throttle profile (e.g. si = 1 for full-throttle), calculate Im,i by

simultaneously solving Equations 2.29, 2.30, 2.32 and 2.33. Then calculate the motor

torque using Equation 2.22.

2. Calculate the wheel force (Fj,) using Equation 2.23, obtain a road angle (fli) from

the GPS data, and use Equation 2.24 to calculate the vehicle acceleration (xi).

3. Calculate the battery energy using Equation 2.36.

4. Use Equations 2.25 and 2.26 to step forward in time (i+]). Repeat the algorithm for

the next increment.

Full-throttle simulations show how maximum acceleration and speed largely depend on

the drag forces (e.g. sum of the gravity, rolling, and aero forces) and the motor output power.

The motor power that is in excess of the drag power causes the vehicle to accelerate. As the

motorcycle increases in speed, the drag forces increase as shown in Figure 2.9a. The motor has a

constant torque until the back-EMF from the motor becomes limiting, which is when the
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available power from the motor starts to decrease. Once the motor and drag power are equal, the

vehicle no longer accelerates and this represents the maximum speed. Thus the intersection of

the motor and drag power curves is the maximum speed of the motorcycle and where the

vehicle's acceleration is zero.

The behavior of the motor power curve is heavily influenced by both the sprocket ratio

and the maximum current from the motor controller (Iimi,). A larger sprocket ratio and/or 'limit

will yield higher motor power at a given speed, and thus greater acceleration (Figure 2.9b and c).

However, increasing the sprocket ratio decreases the maximum speed. As shown in Figure 2.9d,

more current is needed during vehicle acceleration than at steady state/cruise conditions.

Simulations like these were used to estimate the appropriate current limit and sprocket ratio.

35 35

30- 30 Constant
30 3imit

25 25

Increasing
20 20 Sprocket

a 5 5Ratio -~15 15I

10 1 10
Max
Seed 5

0 0
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Speed (m/s) Speed (m/s)
(a) (b)

45 450

40
35 w 400

E
- 30 *
E 350

25 C

20 *20 ~300
15 Increasing Sprocket Ratio U

10 W 250- Increasing Iit
with constant gear

5 ratio
0 _______________ _ 200L---- - --

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
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Figure 2.9: Simulations like the ones shown here were used to investigate design tradeoffs.
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The main limitation of the algorithm described above is the difficulty in knowing the

throttle input, si, as a function of distance or time. It is typically infeasible to know the throttle

profile for the entire course, since the rider adjusts the throttle in real-time based on personal

judgment. Thus this algorithm was not used to estimate the battery energy required to traverse

the entire course. However, it is useful in exploring maximum power, acceleration and speed

during short full-throttle simulations.

2.3 Constant Vehicle Speed Simulations

The backward-looking simulation described in Section 2.1.1 can be used to simulate the

motorcycle when it is assumed that a constant speed is maintained throughout the course:

1. Obtain a road angle (#3i) from the GPS data and calculate the wheel force (F",i) using

Equation 2.3 with 2 = 0 and i= constant.

2. Calculate the power from the battery to the motor controller using Equation 2.15 and

the power and energy consumed from the battery using Equations 2.20 and 2.21.

The following subsection proves that it is most energy efficient for a vehicle to maintain a

constant speed.

2.3.1 Proof that Constant Speed Minimizes Energy Consumption

The objective of an electric race is to minimize the time it takes to cross the finish line for

a fixed amount of battery energy and a specified course. Once the race begins, the only variable

the driver can control is the speed of the vehicle, and this section will show that it is most energy

efficient to maintain a constant speed. In practice it is impossible to maintain a constant speed

since braking is required to safely traverse the corners of the course. But if the braking losses are

thought of as a fixed loss that only depend on the average speed, then this derivation is valid.

Battery and motor losses are not included in this proof, and it is assumed that the vehicle is

traveling at speeds above the terminal velocity (Figure 2.10).

The time it takes to traverse the entire course can be written as:

tf = /7 2.37
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Where xfis the distance of the course, and 7 is the average speed. The minimum time, tfrnin, can

be written as:

tf,min = min f/ 2.38

Since x1 is fixed, t1 is minimized by maximizing the average speed. Thus we want to minimize the

energy use, E, but maximize the average speed, 7. The energy required by the vehicle to travel

between positions xO and xf can be written as:

Xf

E = fXf - dx 2.39

Combining Equations 2.3 and 2.39 yields:

E = f(mz + mgSin8 + mg pCosO + C(i + w) 2 )dx

And expanding the integration:

2.40

E = fmidx + J mgSinOdx + J mgpCosOdx +
X O f 0XOxoxO 0

The first term can be rewritten as:

xdk Xd Xf
midx = m - dx = m idt = M idi =

XO XO XO X0

Which is the kinetic energy of the vehicle. The second term can be rewritten as:

XfI mgSinOdx =
xo f Y =mgdy =mg(y - yo)

.YO

Which is the potential energy of the vehicle. The third term of Equation 2.41 can be rewritten as:

f~f 
Xff mgIpCosedx = mgyi Cosdx

Substituting Equations 2.42, 2.43 and 2.44 into Equation 2.41 yields:

E =* _;2)+ M~Xf Xf

E = 1/2 m(*j - 0) + mg(yf - Yo) + mgy fXfCosodx + fXfC(' + w) 2 dx
xo XO

2.44

2.45

Assuming that ±k = 20 and yy = yo,, the only remaining term to be minimized based on the driver

control is:

X

Emin = min If C(i + w)2 dx}
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Defining a new variable (Figure 2.11):

*x - X

Where ** is the speed above the average speed. Thus:

i = X +**

Now combining Equations 2.46 and 2.48 and expanding the terms:

Emin = mi C j *2 + 72 + w2 + 21** + 2 w + 2**w)dx}
0

2.47

2.48

2.49

Since w cannot be controlled and 7 is a constant, they can be ignored in the minimization. The

remaining terms are:

min C J(V* + 2**I + 2i*w)dx}

Which is minimum when:

Combining Equations 2.48 and 2.51:

*= 0

2.50

2.51

2.52

This shows that the vehicle should maintain a constant speed in order to minimize the energy it

takes to complete the course.
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Figure 2.10: The terminal velocity for different hill decline angles. For example, on a hill of 10
degrees, the vehicle could accelerate (without power) all the way until reaching the terminal

velocity of 100 km/h. At the terminal velocity, the drag forces will equally balance the gravity hill
force and so the vehicle will no longer accelerate. If the vehicle is powered to speeds above the
terminal velocity, the vehicle will decelerate down to the terminal velocity when the power is

removed. The motorcycle is always above the terminal velocity so it can never accelerate down a
hill without motor torque.
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U0

x (Distance) Xf.t
Figure 2.11: The variable i* is defined as the difference between the instantaneous (x) and average

(k) speed.

2.4 Constant Power Simulations

The following equations were used for the assumption that the motor maintains a

constant power output throughout the course. Combining Equations 2.6, 2.8 and 2.9 yields:

PmUld m ..
F, = .M7 xw 2.53

2

And defining the motor output power, Pm as:

Pm = T m m 2.54

Combining Equations 2.14 and 2.54 yields:

b = 2.55
flmcflm

The following steps were used:

1. Calculate the wheel force (Fw,1 ) for a specified constant motor power, Pm, using

Equation 2.53. Assume an initial vehicle speed.

2. Obtain a road angle (fli) from the GPS data, and use Equation 2.2 to calculate the

vehicle acceleration (1j).

3. Calculate the battery energy by integrating Equation 2.55 or 2.20 depending on if

battery losses are included.

4. Use Equations 2.25 and 2.26 to step forward in time (i+1). Repeat the algorithm for

the next increment.
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2.5 Braking Losses
The calculations so far have not included the energy lost from braking, which will

increase the estimates for the battery energy required and decrease the average speed. Thus a

braking efficiency, 4, is defined as:

avg. speed with braking
4' = 2.56avg. speed without braking

For example, it can be assumed that the braking reduces the average speed by 15%, thus 4
=0.85. The average speed when braking is included can now be written as:

7B=
1x =4 2.57

where 7 is the average speed without braking and the superscript "B" denotes values after

braking estimates are included. Also by definition:

7 B _ Xf
X-B 2.58

Where x1 is the distance of the course and tB is the time to finish the course when braking is

included. Also:

7-Xf
t - 2.59tf

Where tj is the time required to finish the course when braking is not included. Combining

Equations 2.57, 2.58 and 2.59 yields:

4't 2.60

Thus this higher speed would be used in the constant speed simulations.

An alternative approach is to estimate the amount of energy lost because of changes in

kinetic energy while braking through the turns. For example, let us assume that the motorcycle

enters n turns at 150 km/h and exits after braking at 100 km/h. The change in kinetic energy from

braking is:

1
AKE = n m(v 2 - v 2

2 ) 2.612

Substituting in values for this course and motorcycle (assuming n = 50 turns):

1
AKE = 50 300(1502 _ 1002) ~ 2.6 kWh 2.622

Thus -2.6 kWh of energy could be attributed to braking losses.
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2.6 Estimating the Required Motor Power and Battery
Capacity

The following algorithm uses the methods described in Sections 2.2 through 2.5 to

estimate the required motor power and battery capacity:

1. Choose a desired average finishing time, tfj and then use Equation 2.60 to determine the

corresponding average speed without braking, x.

2. Use the value of 7 with the algorithm described in Section 2.3 to estimate the battery

energy, Eb. This serves as a lower-bound (best-case) estimate for the actual battery

energy.

3. Put the equations described in Section 2.4 into a spreadsheet, and iterate (or numerically

solve for) the value of P,, until the average speed equals 7 (the same value used above).

This serves as an upper-bound (worst-case) estimate for the actual battery energy.

4. Perform the full-throttle simulations in Section 2.2 to ensure that the maximum

acceleration, speeds and power are adequate.

For the final estimates it was assumed that an average speed of 137 km/h (27 minutes)

would be competitive. Based on the simulations described above, this would required 25 to 30

kW of average power from the motors and -10 to 11 kWh of battery energy (Figure 2.12). The

braking constant, y, was assumed to be 0.8 for the constant power driving cycle and 0.82 for the

constant speed driving cycle2.

Table 2.2: Parameter specifications used for the vehicle simulations.

Description Variable Value Unit
Total Mass m 311 kg
Drag Area CdA 0.41 m

Rolling Resistance Cr 0.025
Motor Speed Constant Ko 42 RPM/V

Motor Torque Constant K 0.207 Nm/A

2 It was assumed that the constant power simulation would require more braking since there are more speed
fluctuations.
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Figure 2.12: Simulation of the battery energy consumed during the race assuming a 137 km/h

average speed.
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3. Motorcycle Design and Testing
A 2010 BMW SI OOORR motorcycle was used as the base chassis. The CAD of the final

design is shown in Figure 3.1, and the component specifications are listed in Table 3.1. Two

motors were combined with a rigid shaft to provide a maximum of 32 kWh of continuous power.

The energy storage consisted of 106 kg of lithium-ion batteries totaling 11.9 kWh. This chapter

describes the electrical (Section 3.1) and mechanical designs (Section 3.2) including the

justification for critical design decisions.

Figure 3.1: CAD of the final motorcycle design.

Table 3.1: Final component specifications.

Masses
Rolling Battery Motors Other
Chassis Modules

77kg 106kg 25kg 23kg
Mass Distribution w/out Rider

Front Wheel -Rear Wheel Total Mass
122kg 109kg 231kg

Mass Distribution w/ 80kg Rider
157kg | 154kg | 311kg

Battery Specifications
Paral./series Voltage Capacity

6/30 99V 11.9 kWh
Motor Specifications (2 motors combined)

Cont. Power Cont. Current Model Number
32 kW 400A D135RAG

Motor Controller Specifications
Voltage Cont. Current Model Number
18-136V 540A KDH12121E

Drivetrain Specifications
Sprocket Ratio Chain Size O-Rings

53/16T 428 No
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3.1 Electrical Design

The systems engineering described in Section 2.6 estimated that 25 to 30 kW of average

power would be required from the motors and ~10 to 11 kWh of battery energy would be

consumed over the entire course. Due to cost, availability, volume, and mass constraints, it was

decided to use two DC, permanent magnet, air-cooled motors from the Lynch Motor Company.

The motor selection set the maximum voltage on the battery pack to ~100V. The battery pack

was designed with help from A123 Systems; a custom version of their prismatic lithium-ion

Nanophosphate@ modules was used (Figure 3.2). The corresponding volumes of the batteries

and motors were modeled in CAD to ensure adequate space on the motorcycle chassis (Figure

3.3). Note that the lean angle and ground clearance surfaces were added to the CAD. The battery

and motor masses were also calculated and included within an overall mass budget. A single

motor controller from Kelly Controls was used to regulate the energy to both motors.

The motorcycle was instrumented with sensors to measure acceleration, speed, location,

current, voltage, and temperature (Table 3.2). A battery management system (BMS) was used to

measure the voltage of each cell and perform cell balancing. A safety monitoring system from

A123 Systems checked for vitals such as ground faults, the condition of the fuse, and over

current. All of the sensing was integrated via a CAN-bus and an open-source microcontroller

made by Arduino. The data was transmitted to a laptop via xBee wireless transmitters/receivers.

The data was displayed off-board in real-time via a Graphical User Interface written in an open-

source environment by Processing.org, and logged on-board. The rider display consisted of a

series of simple LEDs to indicate the state of the motorcycle and a single LCD screen displayed

digital real-time values for battery power, battery energy consumed and vehicle speed.

Interconnect Cover

Laser Welded ~cmrsinBn
Bus Bar CmrsinBn

Heatsink Plates

Lthium Ion Prismatic Cell

Figure 3.2: Battery module assembly (left) and exploded view (right). Images from A123 Systems.
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Figure 3.3: CAD was used to ensure sufficient volume for the batteries and motors.

400A Fuse

Manual Disconnect
Battery Pack

Figure 3.4: Wiring diagram of the motorcycle's power electronics.

Table 3.2: Sensors used on the motorcycle.

Subsystem Measurement Specific Location

Batteries Temperature Between battery cells

Temperature Cell interconnections

Current Around battery cable

Continuity Across main fuse to sense if fuse has blown

Continuity Attached to frame chassis to check for ground fault

Voltage Each cell group and entire pack

Motors Temperature Back side of brush holder (1 per motor)

Current Main power cable from motor controller (1 per motor)

System Accelerometer Mounted in motorcycle tail

GPS Mounted in motorcycle tail

Magnet mounted on the front disk brake, sensor on front

suspension fork to count wheel rotations
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3.2 Mechanical Design

The entire motorcycle was designed in CAD, which enabled the various subsystems to fit

inside the motorcycle with ~0.5 millimeter accuracy.3 A structural frame was needed to support

the batteries, motor, and supporting electronics; the removal of the engine needed to be

considered in the mechanical design, since the engine was originally a structural element (Figure

3.5). Instead of a more common space-frame weldment, it was decided to design a frame that

could be made purely on the waterjet using aluminum plates. The waterjet was chosen because it

is rapid, economical, and provides significant design flexibility. The final frame design is shown

in Figure 3.6. Designing a set of 2D plates also made prototyping easy; a laser cutter was used to

cut wood and cardboard into quick prototypes (Figure 3.7). The frame was assembled like puzzle

pieces with small tabs connecting the various 2D plates together (Figure 3.8a). The frame,

including the tab-slots, was welded while bolted in place on the motorcycle chassis. A rigid steel

jig was made to preserve the proper spacing and parallelism for the motors during welding

(Figure 3.8b). It should also be noted that an integrated design was used to house both the motors

and batteries in one weldment assembly.

The motors were connected via a custom designed drive shaft (Figure 3.9). Finite

Element Analysis (FEA) was used to ensure that the shaft could handle the maximum torque

loads of the motors and chain. Typically there is a flexible element in the drive shaft to provide

compliance for misalignment, though in this case it was assumed that the flexture in the frame

mounting was sufficient.4

3 CAD of the SIOOORR chassis was provided by BMW.
4 Based on a discussion with the motor designer (Cedric Lynch).
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(a)

(c)
Figure 3.5: The structural loop needed to be preserved when the gasoline engine was replaced by

batteries and electric motors.

Figure 3.6: The final design of the battery and motor structural frame (shown with motors and
batteries). An integrated design was used to house both the motors and batteries.

Figure 3.7: The frame and battery assemblies were prototyped using cardboard and wood cut on a
laser-cutter according to the CAD files.
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Welded
Tabs

Motorcycle
Frame

(a) (b)

Figure 3.8: The frame was designed to be fabricated using a waterjet. The tab-slots of the frame
were welded while bolted to the actual motorcycle chassis (a). A rigid steel jig was used to set the

proper motor spacing during welding (b).

Plug Welds *fD

16T Sprocket

(a) (b)
Figure 3.9: A rigid shaft was designed to connect the two motors together (a). FEA was used to

ensure that the designs were adequate under maximum motor loading (b).

3.3 Testing

A series of incremental tests was performed to ensure that each subsystem operated as

predicted. This included the following tests: bench-top, wind tunnel, chassis dynamometer, track,

and finally road. The methods, results and usefulness of these tests are discussed in this

subsection.

Bench-top tests were performed to ensure that each subsystem was functioning as

expected before it was integrated into the rest of the motorcycle. The motorcycle chassis, main

fairings, and cardboard mock-ups of the batteries and motors were assembled and tested in the

MIT wind tunnel to estimate the aerodynamic coefficient (Figure 3.10).
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The fully assembled motorcycle was then tested extensively on a chassis dynamometer

(Figure 3.11). The main function of a dynamometer is to measure the power output as the

motorcycle is strapped on a stationary stand. The front wheel is held rigidly, while the rear wheel

is free to spin on a drum that provides resistance. A sensor and computer measures and records

the torque and speed of the drum, which can be translated to power, torque, and speed curves.

The dynamometer was used to do the following:

1. Ensure that the drivetrain, and other components were able to withstand full load

and speed: Since safety was a main consideration, it was important to ensure that the

motorcycle would not have failures - especially under heavy load and high speeds. The

heavy loading and high speeds were tested on the dynamometer while there was easy

visual and physical access.

2. Match the current going to each motor: A single motor controller was used and the

motors were wired in parallel. Thus the motors needed to be adjusted (timed) so that a

nearly equal amount of current was going to each motor. The brushes were advanced or

retarded by a very small amount depending on the conditions (Figure 3.12c).

3. Understand the thermal characteristics of the batteries and motor: Initially it was

uncertain how the temperature of the motors and batteries would change with time. The

dynamometer represented a worst-case scenario, since the actual airflow at 140+ km/h

would provide much more cooling than the dynamometer fans (Figure 3.12a and b).

4. Use the data obtained from the dynamometer to validate and tune the analytical

models: The dynamometer generated the curve shown in Figure 3.12d, which was used

to validate and tune the models discussed in Section 2.1.

5. Measure the drive-train efficiency: The dynamometer is able to measure power output

at the rear wheel (Pdyno). The current (I) and voltage (V) can be measured at the motor

leads (power terminals/connections) to determine the power going into the motor. The

drivetrain efficiency (motor shaft to rear wheel) can then be estimated as:

Pdyno
k7drivetrain n 3.1IJmotor

It should be noted that this method also includes the rolling resistance of the rear wheel

since the wheel is rolling on the dynamometer drum.
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6. Test the microelectronics and software: The motorcycle had multiple microprocessors

and sensors that were wirelessly streaming data to on- and off-board data loggers and

computers. The dyno enabled testing of the full microelectronic system and software.

(a) (b)
Figure 3.10: The motorcycle was put in a wind tunnel. A manikin was used to simulate the rider (a).

A custom mount secured the motorcycle to the wind tunnel test stand (b).

After multiple dynamometer tests, upgrades, and fixes, the motorcycle was tested on a track at

New Hampshire Motor Speedway where it performed as previously predicted (Table 3.3 and

Figure 3.13). The motorcycle was then sent by air from Boston to the Isle of Man inside a

wooden crate. Partial disassembly was required since import/export regulation required the

batteries to be shipped separately by the manufacturer (A123 Systems). The motorcycle was

reassembled on the Isle of Man and a locally available dynamometer was used to run the

motorcycle under full load and speed. Finally, the motorcycle was road-tested on the Isle of Man

before the races (Figure 3.14).

Cooling
fa ns

Rolling
d rum

Figure 3.11: The motorcycle on a dynamometer.
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Figure 3.12: Example set of data collected on the dynamometer: battery (a) and motor (b)
temperature, and motor current (c) data taken while the motorcycle was under load. The

dynamometer can also be used to validate and tune models; plot (d) shows a full-throttle run, and
thus the maximum power available at the given speed.

Table 3.3: Motorcycle performance specifications obtained from testing and simulation.

o to 90 MPH (sprocket ratio = 3.3) 25 sec
Maximum Speed (sprocket ratio = 3.3) 44 m/s
0 to 60 MPH time (sprocket ratio = 5.3)* 8 sec
0 to 60 MPH time (sprocket ratio = 5.3, max motor 43 sec
output)* 4.3_sec

*Simulation only
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Figure 3.13: Track testing at New Hampshire Motor Speedway.

Figure 3.14: Road testing on the Isle of Man.
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4. Motorcycle Race Results and Analysis
The motorcycle and rider competed in two qualifying races and one final race (Figure

4.1). The following subsections analyze the race data to understand the motorcycle performance

(Section 4.1) and validate the models and assumptions made during the design process (Section

4.2). The final section reflects on the racing experience to outline a set of guidelines for

designing zero emission races with the aim of promoting innovation (Section 4.3).

Figure 4.1: The motorcycle during the TT race.

4.1 Analyzing the Motorcycle Performance

The average vehicle speed and energy consumption increased with each race (Table 4.1),

which was likely caused by: (1) adjustments in the motor controller settings (2) changes in the

sprocket ratio between each race, and (3) the rider learning to better control the motorcycle with

each additional race. The speed versus distance over the entire course is shown in Figure 4.2 and

each dip in the curve represents a point in the course where the rider slowed down to enter a turn.

The speed data is shown with the corresponding altitude, which highlights the speed reduction

while traversing up the mountain. The motors were closely matched as measured by current

during the final race (Figure 4.4), though the left motor was nearly 20"C warmer than the right
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(Table 4.1). The temperature differences likely resulted from one motor having a different gap

between the commutator and magnets. The gap differed because the motors were rebuilt between

each race and the reassembly process was modified each time. The motors were operated within

their current limits (Table 3.1) and the battery power fluctuated about a safe nominal value of

-22 kW (Figure 4.3). Finally, the battery cells, interconnects and terminals stayed at ambient

temperatures throughout the race, which indicates that sufficient cooling was achieved.

Table 4.1: Comparing the qualifying and final race results.

Parameter Units Qual. Qual. Race
1 2 _ _

Average Speed [km/hr] 122 126 127

Finishing Time [mins] 29:54 28:50 28:58

Battery Energy [kWh] 9.4 9.7 9.8

Average Battery [kW] 19 20 20
Power

Average Battery [A] 198 215 220
Current

Battery [Wh/km] 147 155 161
Energy/Distance

Left Motor Temp* ["C] 72 63 52

Right Motor Temp* [*C] 68 87 35

Average Current to [A] - - 149
Left Motor

Average Current to [A] - - 142
Right Motor

*Temperature taken at the end of the race using infrared temperature gun
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Figure 4.2: The motorcycle averaged 127 km/h during the race.
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Figure 4.4: The race data shows that the motors were equally matched.

4.2 Model Validation

The speed versus distance plot in Figure 4.5 shows that the models derived in Section 2.2

closely match the real world data when full-throttle was applied during the race. The parameters

shown in Table 2.2 were used in the simulations. Additionally, Figure 4.6 shows that the racing

data supports the hypothesis described in Section 2.6 that the actual battery energy required to

traverse the course is in between best and worst cases of constant speed and power, respectively.

Interestingly, an arithmetic mean of the constant speed and power curves matches the actual race

data at the finish with <5% error (Figure 4.7). It should be noted that the battery energy was
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measured by a shunt and voltage measurement at the output of the battery and thus internal

battery losses were not included. Table 4.2 lists the comparisons between the models and racing

data. The conclusive result is that the models and assumptions were able to sufficiently predict

motorcycle performance.
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Figure 4.5: The models
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closely match the actual full-throttle conditions.
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Figure 4.6: The race data supports the hypothesis described in Section 2.6 that the actual battery
energy required to traverse the course is in between best and worst cases of constant speed and

power, respectively.
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arithmetic mean of the constant speed and power curves matches the actual race
data at the finish to within 5% error.

4.2: A comparison between the model predictions and final race results.

Parameter Units Model Race Error

Battery Energy [kWh] 9.6 9.8 2%

Battery [Wh/km] 158 161 2%
Energy/Distance

Average Speed [km/h] 127* 127 N/A *

Maximum [km/h] 148 155 5%
Speed I I

0 to 144 km/hr [sec] 24 25 4%
(z = 3.3) _ 1 '

*the average speed used in the simulation was set equal to the actual race speed

4.3 Framework for Spurring Innovation Through Racing

The Isle of Man TT Zero is an example of a new breed of "zero emission" races. The aim

of these races is to spur innovation that will reduce the environmental impact of consumer

vehicles. Racing has historically been a catalyst for innovation, particularly in the early years of

motorcycles and automobiles [15]. New concepts were tested on the track and the desire to win

drove companies to produce superior technology. Consumer demand for better performance

motivated companies to transfer the technology from the racetrack to the mass market.

The fundamental question is whether or not zero emission racing will yield the desired

outcome. With the goal of contributing to the success of zero emission racing, this subsection

outlines a set of guidelines for designing zero emission races that will yield relevant innovation.
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Innovation in this context is defined as the act of generating a product or service that (1) reduces

the environmental impact of vehicles and (2) consumers want to purchase.

4.3.1 Consider the Historical Context

Gasoline vehicle racing has evolved dramatically over the past 100 years. Because of

this, caution should be used when copying a modem gasoline race with a zero emission

equivalent. Zero emission racing might require a different approach and lessons may be learned

from looking back into the beginnings of gasoline racing.

Patience will also be required when directly comparing modem gasoline and zero

emission racing. It is easy to forget that it took decades for gasoline engines to make dramatic

improvements. For example, it took 50 years for the first gasoline motorcycle to reach a 100 mph

average lap at the TT. The electric motorcycles reached this same milestone within 4 years from

the start of electric motorcycle racing at the TT.

4.3.2 Utilize the Power of Regulation

Regulations should be used as the fundamental tool to engineer a race for a desired

outcome. For example, assume that consumers want to refuel their vehicle quickly; if winning a

zero emission race is dependent on fast refueling, then the regulations are successfully guiding

development. A successful racing innovation platform must focus on technology relevant to the

consumer market.

4.3.3 Drive Technology

Many diverse participants, including inventors, academia, and corporate research labs

contribute to generating and developing innovative ideas. Consumer-focused companies choose

relevant developments, refine them, and promote them to the consumer market. Identifying

which ideas will succeed is a challenge facing all vehicle companies. Resources are often not

available to invest in multiple emerging technologies. For example, it is costly for an automobile

company to invest in batteries, fuel cells, and super capacitors simultaneously. Racing

competitions should be structured to accelerate the transition from ideas to mass production and

simultaneously facilitate the development of multiple technologies.

4.3.4 Provide Valued Entertainment

Any repeated event that the public finds entertaining will draw a large number of

spectators both in person and through the media (e.g. internet, TV, etc.). Spectators and media
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drive advertising, which creates an influx of funds through team, rider and event sponsorship.

These funds help finance the teams who in turn develop the technology. Thus valued

entertainment is drawing in extra research and development funds that would otherwise not be

available for that purpose (Figure 4.8). For example, an energy drink manufacturer might be

indirectly funding battery research. This could translate into significant funds spent on zero

emission innovation [16].

The influx of available sponsorship also reduces the risk that the team with the most

personal wealth will win. In other words, sponsorships are typically chosen based on which team

is likely to win; if the teams generating the most innovative vehicles are more likely to win, these

teams would be rewarded through sponsorship funds to develop even better technology.

Product Companies
Goods or / / Sponsorship
Services $

Entertainment
Consumers - Zero Emission Race

Innovative $ Sponsorship $7 Technology
Vehicles / Development

Vehicle Companies
Figure 4.8: This diagram illustrates how the entertainment from racing can indirectly generate

research and development funds and drive Technology Development. A Zero Emission Race
provides entertainment to Consumers and the associated advertising at the race motivates

consumers to purchase vehicles and products from race sponsors. This money eventually flows
back into the Zero Emission Race through sponsorship. The race generates Technology

Development that goes back into Vehicle Companies, which in the long run will provide consumers
with more advanced vehicles.

4.3.5 Inspire Consumer Demand

It is critical that the races inspire consumers to purchase the technology that is found

superior on the racetrack. Otherwise, true innovation will not be achieved through racing and the

objective of reducing the environmental impact of vehicles will not be achieved. One way this

can be accomplished is through styling, and ensuring that the race vehicle has brand identity. For

example, a motorcycle company should use styling that is distinct and that connects their race

vehicle to their commercially available vehicles.

Secondly, inspiration can be found through education. The race should strive to inform

the consumer of the environmental effects and implications of the various technologies.
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Finally, races can inspire consumer demand by building confidence in new technologies.

For example, racing could prove that rapid charging is feasible, which might convince the

skeptical consumer that the technology will satisfy their needs.
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Part II: Estimating an Electric Vehicle's
Distance to Empty
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5. Introduction to Part II
An electric vehicle's Distance to Empty (DTE) is defined as the distance the vehicle can

be driven before recharging is required. A real-time estimate of DTE is commonly displayed on

the vehicle's dashboard and is used by the driver for route planning (Figure 5.1). The objective

of Part II of this thesis is to introduce a new DTE algorithm that uses measurements from the past

along with knowledge of the future route. For example, if the driver provides their destination(s)

beforehand, a navigation system could obtain route, traffic and weather information via the

internet and this information could be used to improve the DTE estimate. Instead of physics-based

models, a multivariate linear regression model is used that adjusts a historical average of energy

consumption based on estimated changes in speeds, traffic and temperature. This approach could

be implemented as a cloud-based mobile phone application since it is computationally light and

fitted using historical driving data.

The new DTE algorithm was quantitatively compared to conventional methods. To

perform this comparison using real driving data, a large set of driving data would be needed that

contains speed, energy, traffic and temperature information. Since this dataset is not currently

available, a large variety of driving conditions were simulated using a set of physics-based

models. The models were based on the motorcycle work (Part I) and data from a fleet of electric

vehicles. The input to the models is a Markov-based stochastic speed profile generator, which

attempts to capture the stochastic nature of driving. Example simulations show that including

future driving conditions in the DTE algorithm can significantly reduce error.

Figure 5.1: The dashboard of the Nissan Leaf displays the DTE and the SOC.
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5.1 Motivation

The maximum DTE for electric vehicles (EV), also referred to as range, is typically 100 to

400 km less than gasoline vehicles and a full recharge usually takes hours instead of minutes

(Table 5.1). Also, the energy consumption of EVs is more influenced by auxiliary loads (e.g.

heating) [17]. An undesirable scenario is one where the driver is left stranded on the side of the

road without the ability to quickly recharge. For these reasons it is important to provide an

accurate DTE estimate. Studies have shown that current DTE algorithms are insufficient and often

cause "range anxiety" among drivers [18][19]. Estimating DTE is difficult because of the

stochastic nature of driver behavior and the environment, the lack of a quantitative understanding

for how these factors affect energy use, and the fairly basic algorithms currently being used.

Recent studies have shown that the maximum DTE can vary by as much as 55% depending on the

driving conditions [20]. The usefulness and importance of the DTE estimate was confirmed by a

study of EV users, which concluded that "providing drivers with a reliable usable range

[estimate] may be more important than enhancing maximal range in an electric mobility system"

[18]. In other words, a more accurate DTE estimate may be more useful than increasing the size

of the battery pack.

Table 5.1: Comparing the energy storage, recharging times, fuel economy and range of various
vehicles. The approximate values were obtained from the manufacturer's websites.

Fuel
Energy RechargeVehicle Type Make/Model (km per hour of Economy Range (kn)Storage charging) (L/100km

or EV-equivalent)

Gasoline Honda Civic 50 Liters N/A 7.4 680 (gas)
Plug-in Hybrid Toyota Prius 4.4 kWh 2.5 (EV) 18 (EV)

(PHEV) Plug-in 40 Liters 4.7 (hybrid) 870 (total)
Plug-in Hybrid GM Volt 16 kWh 2.5 (EV) 56 (EV)

(PHEV) 35 Liters 6.4 (gas) 655 (total)
Battery Electric Nissan Leaf 24 kWh 23 2.4 160 (EV)(BEV)
Battery Electric Tesla Model S 40-85 kWh 50-480 2.6 258-483

(BEV) (EV)

5.2 Overview

Chapter 6 develops a stochastic vehicle simulation environment that was used to compare

DTE algorithms. This approach captures the random nature of driving and can be used to simulate

an unlimited number of full battery discharges. Chapter 7 introduces key concepts and equations
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that aid in developing and evaluating DTE algorithms. Chapter 8 proposes a new approach that

uses estimates of future driving conditions to more accurately predict DTE. Instead of using

physics-based models, a multivariate linear regression-based model is derived, which adjusts a

historical average of energy consumption up or down based on estimated changes in route, traffic

and traffic. Both the conventional and new algorithms are compared in Chapter 9 using the

stochastic vehicle simulation environment.

5.3 Related Work

A previous study used a basic vehicle model combined with static assumptions about

auxiliary use to estimate the maximum DTE [21]. Though their simulations and experimentation

closely matched the expected values published by the manufacturers, they did not take into

account the true stochastic nature of the driving conditions nor did they investigate the accuracy

of DTE with distance. Some have approached the more general topic of estimating the energy

consumed between two points [22][23]; they used commercially available simulation software

with historical traffic and road data. There are similar approaches that require physics-based

models to estimate energy use and/or DTE [24]. Others describe a method where historical data is

used to predict the energy required for future trips [25][26]. Many of the techniques related to

energy estimation were applied to power-split control algorithms for plug-in hybrids or gasoline

vehicles [27]. Finally, there are many patents issued by automobile companies that describe

various averaging techniques used to estimate DTE [32][33][34].

None of the research described above shows results of a DTE simulation or

experimentation, nor do they explain how their approaches would be implemented. They also all

stop short of measuring the quality of the DTE estimates and making comparisons to other

methods. Finally, there has been little effort to understand the fundamental relationship between

energy estimation and DTE error. This chapter aims to contribute in these areas and start a more

open and in-depth discussion of DTE algorithms.
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6. Stochastic Vehicle Simulations for
Evaluating DTE Algorithms
This chapter derives a parametric physics-based electric vehicle simulation, which was

used to simulate an unlimited number of full battery discharges under realistic driving

conditions. The overall simulation architecture is discussed in Section 6.1. The simulation uses a

stochastic speed profile (speed versus time) as input, which is discussed in Section 6.2. The

subsystem models (e.g. vehicle, motor, etc.) are discussed in Section 6.3. Finally, Section 6.4

summarizes how the models were used together to generate a stochastic vehicle simulation.

6.1 Simulation Architecture

The models derived in this section form a backward-looking simulation similar to the

methods described for the motorcycle in Section 2.1.1. The main differences are the (1)

stochastic speed profile generator and (2) auxiliary model (Figure 6.1). The speed profile

generator produced a speed versus time dataset, x(t), that was used as input to the vehicle model.

The vehicle model then determined the wheel force (F,,) required to follow the prescribed profile

based on a set of design parameters. Similarly, the transmission and motor models determined

the amount of electric power needed by the motor (P,,) in order to generate the desired wheel

force. Next, the motor power combined with the Auxiliary Power (Pa) was the net electrical

energy needed from the battery (Pb). The battery model translated the total electrical need (Pm +

Pa) to battery energy (Eb) and included internal losses. The battery losses depended on the

battery current (Ib). The following subsections derive each of these models.

Start Vehicle Wheel Force Motor Torque Electrical Power
Speed Vehicle Speed Motor Speed to Motor

Speed kk Vehicle Fwkkk Transmission T Mkdmk motor Pmk
Profile0

Genera tor Model Model Model

Current from
Battery Model Battery

Battery Ib,k

Losses Battery Losses Power from
FI-- Battery

Figure 6.1: The backward-looking vehicle simulation.
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6.2 Stochastic Speed Profile Generator

Backward-looking simulations require a speed profile (speed versus time) as input. It is

most common to use standardized Environmental Protection Agency (EPA) driving cycles as

inputs, which specify the speed profile and auxiliary use (e.g. A/C and heater use). The following

are the most commonly used EPA driving cycles:

* City driving (FTP-75)

* Highway driving (HWFET) See Figure 6.2

* Aggressive driving (SFTP US06)

* Air conditioning test (SFTP SC03)

The following are key limitations to using EPA driving cycles for DTE simulations:

* Short Length: The EPA driving cycles are short in length (~10 km) and thus would have

to be repeated multiple times in order to simulate a full battery discharge (100 to 300

km).

e Lack of Randomness: A DTE algorithm could be tuned to work well with EPA driving

cycle(s), but it might not work well under broader (more realistic) conditions.

For these reasons, it is undesirable to use standard EPA driving cycles as the input to the DTE

simulations. Instead, this section derives a method for generating stochastic speed profiles that

can be of any length with specified conditions (e.g. city or highway).

Various methods for generating stochastic speed profiles have been described in literature

[36][37][38][39][40][41]. The general approach used in this thesis is to view any time-series

speed profile as a Markov process, which is a stochastic process with no memory [42]. The

selection of the next state only depends on the current state and not on prior states. In this case

the states are sequential sets of data that represent deceleration, cruise, acceleration or idle events

- or states. These states are referred to as modes (Figure 6.3a) since they represent particular

operating modes of the vehicle. Since there are different intensities of acceleration and

deceleration at difference speeds (e.g. low acceleration at high speeds and high acceleration at

low speeds), the acceleration and deceleration modes were more finely divided for a total of 10

states in the Markov model: 4 deceleration, 1 cruise, 4 acceleration and 1 idle state.

A large set of driving data (speed versus time) was parsed, and the Markov Transition

Probability Matrix (TPM) was determined by observing the transitions between states (e.g.
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counting the number of times the state transitioned from the cruise to deceleration mode). The

TPM along with a random number generator was used to string together a stochastic speed

profile of any length. To simulate a variety of conditions, the TPM matrix was modified to give

preference to certain modes (e.g. less aggressive driving was simulated by putting zeros in the

columns of the TPM associated with the largest acceleration and deceleration modes). This

section will describe the details of this approach.
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Figure 6.2: The above plot is a speed profile published by the EPA. The EPA speed profiles are too

short and lack variety in conditions and thus are not adequate for DTE simulations.

6.2.1 Raw Driving Data

The speed profiles are derived from a large set of driving data collected by the EPA in

Kansas City in 2004 [43]. The data contains over 400 hours of GPS-based speed data logged at 1

Hz for 480 randomly selected light duty vehicles in the Kansas City metropolitan area. An EPA

subcontractor performed extensive statistical analysis to ensure that a variety of ages, genders,

races and vehicle types were considered. However, the method derived in this section is

independent of the data collected, so any large set of speed traces could be used.

6.2.2 Categorizing and Grouping Data

A speed trace is defined as the raw speed data collected by GPS. The large database of

speed traces was converted to a readable format for Matlab, and an extensive set of checks were

performed to remove erroneous data (e.g. loss of GPS signals or general errors). Next, the speed

traces were divided into "micro-trips," which are defined as the speed data collected in between

moments when the speed was zero (Figure 6.4). Each micro-trip was further categorized as either

highway or city based on maximum speed.
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Each micro-trip is composed of a series of deceleration, cruise, acceleration and/or idle

"modes." It is necessary to develop an algorithm that determines the sequence of modes for each

micro trip as shown in Figure 6.3a. To this end, Lin [36] derived a method based on Maximum

Likelihood Estimation (MLE). However, the MLE method was implemented and tested as part

of this research and found to yield inconsistent and unreliable results. Thus the following

approach was developed that used the fractional increase in speed between each 1 Hz speed data

point was calculated:

A = . 6.1

Where ii is the speed of data point i. Then the mode was selected based on the values outlined in

Table 6.1.

"modes" Calculate average speed and acceleration
25 25

- Decel - Decel

20 . -Cruise 20 +Cruise

Accel * * Accel
Idle / IdleE115- E15

401006 100
a. . o.I.!

(f)()

0 20 40 60 80 0 20 40 60 80
Time (sec) Time (sec)

(a) (b)
Figure 6.3: A speed profile can be thought of a series of deceleration, cruise, acceleration and/or

idle "modes." Each set of points that compose a mode is called a "snippet" (a). The average speed
and acceleration were calculated for each snippet (b).

Each sequential string of mode data is referred to as a "snippet" (Figure 6.3a). A snippet

is discarded if it contains fewer than 3 data points. The average speed and acceleration are

calculated for each snippet and the speed-acceleration pairs for each snippet are grouped by

mode (Figure 6.3b). The snippets that are acceleration or deceleration modes are further

subdivided to form a total of ten modes: Deceleration (1 through 4), Cruise (5), Acceleration (6-

9) and Idle (10). The subdivision is done with a k-means clustering algorithm (Figure 6.5) [44].

Thus each snippet is assigned to one of the ten possible modes based on the snippet's average
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acceleration and speed. The entire categorizing and grouping method is summarized in Figure

6.6.

Co

"micro trips"
25

20

15 -
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Time (sec)
Figure 6.4: The speed traces were divided into micro-trips.

Table 6.1: Criteria for assigning the driving "mode" to each data point.

Ait Mode

=<-0.01 Deceleration
>-0.01

& <0.01
>=0.01 Acceleration

0 Idle

Decel
- Cruise

Accel
Idle

5 10 15 20 25

Average Speed (mis)
(a)

E

a)

5 10 15

Average Speed (m
(b)

Decel 1
Decel 2

- Decel 3
Decel 4
Cruise 5
Accel 6
Accel 7
Accel 8
Accel9
Idle 10

20 25
/s)

Figure 6.5: The speed-acceleration pairs for all of the snippets were grouped by mode (a). The
deceleration and acceleration groups were further subdivided using a k-means clustering technique

(b). The result is 10 distinct modes that were used in the Markov model.
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Raw driving data: Raw Driving Data
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Figure 6.6: A summary of the method used to categorize data into snippets, and then assign each
snippet to one of ten modes.

6.2.3 Markov Model

It was assumed that speed profiles can be modeled as a Markov process, which is a

stochastic process with no memory [42]. The selection of the next state only depends on the

current state and not on prior states. In this case the states are synonymous with modes and thus

there are ten possible states.

The approach involved sequentially stepping through each snippet in the order that they

occurred and counting the mode transitions. For example, the micro trip shown in Figure 6.3a

transitions from Mode 10 (idle) to Mode 9 (accel), Mode 5 (cruise), Mode 7 (accel), Mode 5

(cruise), Mode 2 (decel) etc. The goal was to determine the probability of transitioning from one

mode to another. These are referred to as transition probabilities and were calculated using:

11 = 11j6.2
ni
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Where ri; is the number of times a snippet transitioned from Mode i to Mode j and ni is the total

number of snippets in the Mode i group. H1 is the transition probability matrix and by definition

the following is true for all values of i:

10

I li; = 1 6.3
j=1

An example transition probability matrix (TPM) is shown in Figure 6.7.

0

r 0092 An 0xa 0l 0a000 probability 0.25ix.

0.240Sm0ati0.0ghay 0.073 0and Aggrssiv 0rivin 0Conditions7000

I.200.0 00.0004.000305.403529

0.02 0.00S 0.002 0.00 0.002 0.332 0,229 0.0006 001 00007
-- U0.010 0.20 0.175 0.031 0.359 0.000 00089 0.000 0.001 0.000

maxmumsped ssownnFigure 6.. Ale triotinprobiity marxmsedgeae.hno

6.2.4 Simuatin Highway City4 and0 Aggrssiv Drivin Conditions.22

equal to 65 km/h were considered highway driving and all of the slower traces were considered

city driving. Separate TPMs were made for both the city and highway data.

Next, to create a TPM representing less aggressive driving, the values in column 4 and 8

were replaced by zeros, which effectively removed the largest deceleration and acceleration

modes, respectively. In general the TPM can be modified to yield various outcomes. Thus four

TPMs were generated: city, less aggressive city, highway and less aggressive highway. All four

matrices were used to generate a variety of mixed combinations as discussed in the next section.
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6.2.5 Creating a Stochastic Speed Profile

The TPMs were used to join snippets together to form a speed profile of a specified

length. Below is a summary of the algorithm:

1. One of four TPMs was chosen: city, less aggressive city, highway and less aggressive

highway (see Section 6.2.4).

2. A snippet was chosen at random with an initial speed equal to zero and an average speed

greater than zero. The random initial snippet selection shown in Figure 6.8 was from

Mode 6 through 9 (accel).

3. The subsequent mode was chosen based on a distribution formed from the corresponding

row of the TPM (Figure 6.7 and Figure 6.10). In this example, Mode 9 has the transition

probabilities listed in row 9 of the TPM. A snippet of this mode type was then chosen

randomly (using a random number generator) - though it must satisfy the requirement

that the initial speed was within a specified percentage of the final speed from the

previous snippet.

4. Step 3 was repeated until the desired speed profile length was obtained (Figure 6.9).

Switching between highway and city TPMs can generate speed profiles with varying conditions.

For example, half of a speed profile could be city and the highway. The proportion of highway

versus city driving for a given speed profile was set using a random number generator. The same

concept was applied to varying aggressiveness. Thus each speed profile was unique, stochastic

and simulated a mix of highway and city driving conditions.

isY

t 2[
Mode 9E
Snippet r 1
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Decel 2
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Figure 6.8: An initial snippet was chosen at random that has an initial speed equal to zero and an
average speed greater than zero.

64



201

15

E
l10

(D5
5

0

Figure 6.9:

0DO

7T2ol

C 25

20

(D15

W1) 10
Mode 9 Snippet
Mode 5 Snippet

5 10 15 20 25 30 00 100 2000 3000 4000 5000 6000

Time (sec) Time (sec)
(a) (b)

The TPM was used to select subsequent snippets (a). The process was repeated until a
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Figure 6.10: The transition histogram (non-normalized) of all modes (a) and only Mode 9 (b).

6.3 Subsystem Models

6.3.1 Vehicle Model

An electric vehicle can be modeled as a mass on an incline with externally applied forces

(Figure 6.11). It is propelled forward by an electric motor acting through the front and/or rear

wheel with a force, F., but slowed down by the aerodynamic drag, Faero, the rolling resistance

from all four wheels, Froiing, and the horizontal component of weight, Fgry. Rewriting Equation

2.3, which was derived in Section 2.1.1:

Fw = mxz + 1/2 p CdA(i + w) 2 + mgCrrCosf3 + mgSinfl
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Figure 6.11: A vehicle can be modeled as a mass on an incline with externally applied forces.

6.3.2 Transmission Model

The force on the wheel(s), F., originates from a motor acting through a transmission. The

transmission generates a torque on the wheels, 'Tw. Summing the torques around the wheel yields

(Figure 6.12) the same as Equation 2.12:

Tm = + F, ---- 2.12

rr,

Figure 6.12: Torques and forces on the wheel.

6.3.3 Motor Model

The same motor model derived in Section 2.1.1 was used. Rewriting Equation 2.15 with

P,c defined as the power going to the motor controller:

MC (2w F6.4
PmmccIM'ld
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6.3.4 Battery Model

The battery model derived in Section 2.1.1 was used, though auxiliary loads must be

considered for non-racing consumer applications. The total power from the battery is the sum of

the power to the motor and the power to the accessories (Power In - Losses = Power Out):

b- IRb = Pm + Pa 6.5

Where Pa is the power going to the auxiliary loads. The power from the battery can be written as:

Pb = VbnIb 6.6

Where Vbn is the voltage on the battery pack when no current is being drawn. Combining

Equations 6.5 and 6.6 yields:

Vbnlb - Ib R = Pm + Pa 6.7

The only remaining unknown is 1b, which can be determined using the quadratic equation. Thus:

Vb= l n n - 4 Rb(Pm + Pa) 6.8

b b 2 Rb

Combining Equation 6.6 and 2.44:

V z Vbfn Vn - 4Rb(Pm + Pa)
p _F 6.9

Pbn 2 Rb 2 Rb

The energy consumed from the battery can now be determined by integrating Equation 6.9:

Eb - Pbn dt 6.10

6.3.5 Auxiliary Model

The auxiliary model was meant to simulate the energy used to run the heating, air-

conditioner, radio, headlights, etc. [17]. The model is shown in Figure 6.13 and is based on

measurements taken with an electric sedan similar but not identical to the Nissan Leaf This

simple model assumes that the auxiliary energy use only depends on the outside (ambient) air

temperature. It also assumes that heating and cooling take the same amount of energy for a given

change in ambient air temperature. This increase is meant to simulate the energy use required to

keep the inside air (cabin) at a comfortable temperature. Other factors (e.g. defrosting) are

lumped into this model.
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Figure 6.13: Auxiliary power model used for the vehicle simulations.

6.4 Generating Stochastic Vehicle Simulations

This section summarizes the process of simulating an unlimited number of full battery

discharges (see Figure 6.1). The inputs to the simulation are the speed profile, ambient air

temperature, and vehicle parameters (drag coefficient, mass, battery voltage, etc.). The speed

profile, i(t), is generated using the algorithm described in Section 6.2.5. The following

equations can be used to numerically solve for the force, torque, power and energy values for

each increment in time. The force on the wheel is:

F, = mx + 1/2 pCdA(i + w) 2 + mgCrrCosfl + mgSin 2.3

Then the corresponding torque from the motor:

(CM r Fw 2.12
k2 zrlM

And the power going to the motor from the batteries:

(tXw + F.) ic
Pm = 2 6.4

?lmcTmild

Where the efficiencies are obtained from experimental data. The battery power, which includes

the internal losses, can be determined using:

V2 Vbn Vb2n- 4Rb(Pm + Pa)
pb =_n 2 R 6.9

b 2Rb 2R

68



The auxiliary energy, Pa, is determined using the model shown in Figure 6.13. And the total

battery energy consumed is:

Eb - Pbn dt 6.10

The vehicle parameters (e.g. CdA) are fixed and the ambient air temperature is selected

based on the specific scenario. The simulations used in this thesis assumed a generic sedan EV -

similar but not identical to the Nissan Leaf and BMW ActiveE. The output is the simulated

battery energy, speed and distance with time for a full battery discharge.

69



70



7. Fundamental DTE Concepts
This chapter first derives key equations that quantify DTE error and aid in formulating DTE

algorithms (7.1). It is shown that these equations take on an analytical form that is similar to

other applications such as predicting the time remaining until a vehicle reaches a destination

(7.2). Next, conventional DTE algorithms are derived to serve as examples of algorithms being

used in practice today (7.4). Conventional algorithms blend together a long-term and short-term

average of past energy use. It is shown that this approach works well except in cases when

significant changes in driving conditions occur for sustained periods of time (e.g. changes in

traffic or auxiliary energy use). These conventional algorithms are compared to a new algorithm

in Chapter 9.

7.1 Key DTE Equations
The energy stored in the battery, Eb, is consumed as the vehicle is driven a distance x

(Figure 7.1 a). An important metric used frequently in this discussion is the average energy use,

A, which is defined as the quantity of energy AEb consumed over a distance Ax and has units of

Wh/km:

_ AEb
P A 7.1Ax

Thefuture average energy use, pf(t), can be determined by evaluating Equation 7.1 between the

current time, t, and final time, ty:

f(t) E (t 7.2
x(tf) - x(t)

Where t -* R E {to, tf }, to is the time when the battery is fully charged and tj is the time when

the battery is fully discharged. Eb(t) is the battery energy remaining at time t. By definition, DTE

can be written as (Figure 7.1a):

DTE M = X(tf X (t) 7.3

Combining Equations 7.2 and 7.3 yields:

DTE() -M 7.4
pf(t)
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Figure 7.1: A schematic of the vehicle's battery energy (a) and DTE (b) with distance. The actual DTE
is a straight line with distance traveled.

Evaluating Equation 7.2 at to yields:

_t Eb(to) Eb (to)
pto DTE(to) X(t

Now solving for x(t):

x(t) = Eb (to) 7.6ijj (to)

Combining Equations 7.3 and 7.6 yields a different form of DTE:

Ebato)
DTE(t) = -f (to) x(t) 7.7

pf (to)

Conceptually, both Equations 7.4 and 7.7 show that DTE can be determined if the current

battery energy and the future energy consumption are known. An onboard Battery Management

System (BMS) measures Eb (t) and was assumed to be known perfectly. Thus the task of a DTE

algorithm is to estimate the future energy consumption, Pf. Also, Equation 7.7 reveals that a

perfect algorithm would predict a linear relationship for DTE with distance (Figure 7.1 b).

Errors in DTE are caused by the algorithm's inability to perfectly predict p. Thus it is

desirable to quantify how errors in estimating 15 relate to errors in DTE. Assume that a DTE

algorithm estimates Pf(t) and the associated error is defined as:

e5 (t) = p(t) - 5f(t) 7.8

Where A designates an estimate of the actual value.
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The corresponding error in the DTE estimate is then (Figure 7.1b):

eDTE (t) E (t) - DTE ( 7.9

Substituting Equations 7.4 and 7.8 into Equation 7.9 yields:

eDTE (t) = Eb ( t) + ef (t) f 7.10

Rearranging:

eDTE W Ef(t) ef(t)1 ] 7.11

pf (t)

Combining with Equation 7.4 results in:

eDTE t) = -DTE (t) ef(tff t) 7.12

.f (t)

Equation 7.12 shows that when Equation 7.4 is used the error in estimating DTE will attenuate to

zero towards the end of the discharge. Equation 7.12 can be rearranged as:

eDTE(0 ef t).1)

DTE M eflf(t) 
7Pf +1

Now defining the fractional error, E, as:

_eDTE (t) _p M__

EDTE t - DTE(t) and E,(t) - eif(t) 7.14

Combining Equations 7.13 and 7.14:

[Eg,(t) )
EDTE (t) + 1 ) 7.15

_5f()+ 11

Equation 7.15 is plotted in Figure 7.2. The plot quantifies the relationship between errors in

estimating p and the resulting DTE errors. It can be seen that the relationship is linear for small

errors (~10%) but becomes increasingly non-linear for larger errors. The plot also shows that DTE

error is greater when f is underestimated versus when it is overestimated (e.g. when pf is

underestimated by 30% the corresponding DTE error is ~43% while when Pf is overestimated by

30% the corresponding DTE error is ~23%).
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Figure 7.2: A plot of Equation 7.15 shows quantitatively how errors in estimating Pi result in DTE

errors. DTE error is larger when Pf is overestimated.

7.2 Measuring the Remaining Battery Energy

As mentioned in the previous section, it was assumed that the BMS is able to perfectly

measure the remaining battery energy, Eb(t), which has units of Watt-hrs (Wh). The value of Eb

is analogous to the battery's State of Charge (SOC), which is defined as the percentage of

battery energy remaining. There is a large amount of literature related to SOC estimation, which

describes both model- and empirical-based methods [45]. An alternative approach is to use SOC

(%) instead of Wh and thus Eb would have units of percentage and 15 would have units of SOC

(%) per kilometer. A subtle but very important distinction assumed in this thesis is that Eb and

SOC includes the energy that will be consumed by internal battery losses. For example, if 12

kWh of battery energy is remaining, some fraction of this energy will be lost as heat within the

battery.

Another common measurement of battery capacity is Amp-hours (Ah). Both Ah and Wh,

as measured at the output of the battery, depend on the rate of discharge (e.g. fast discharge

results in fewer Ah and Wh). So neither are fixed quantities in this case. However, if the control

volume is drawn around the entire battery to include internal losses then both Ah and Wh are

fixed quantities. Wh are used in this thesis because they can be directly converted to Joules (J)

which is more useful in the mechanical domain. Also, the battery losses are modeled as a resistor

and the losses have units of J (or Watts) and not Ah.
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7.3 Other Applications with a Similar Formulation

It should be noted that there are other applications that attempt to solve a problem similar

to Distance to Empty. For example, estimating the time remaining on a battery for mobile phones

or computers takes on a similar form as Equation 7.4:

Eb ()
TTE (0) - 7.16bf (t)

Where TTE is the time (minutes) remaining until the battery is empty, Eb is the remaining battery

energy and bf is the future average energy use (Wh/min). Similar to conventional approaches for

estimating DTE, the past work in this area has used historical averages to estimate the future [45].

Another example is the time required to reach a destination, TTD, which is estimated by

navigation and mapping software:

D(t)
TTD - 7.17

Where D is the distance (km) remaining until the destination is reached and Vf is the future

average speed (km/hour). Past work in this area uses posted speed limits and crowd-sourced

information to estimate Vf [47]. Even though each vehicle will accelerate slightly differently, the

average speed is approximately the same and thus it is possible to estimate if based on crowd-

sourced information. Crowd-sourcing p, for Distance to Empty, however, is more difficult

because each vehicle will consume energy differently over an identical path based on the vehicle

type and driver. Crowd-sourced data has been used for predicting fuel consumption in gasoline

vehicles by adjusting the crowd-sourced values based on vehicle and driver type [27]. A similar

approach might be possible for electric vehicles, though further research is required.

7.4 Conventional DTE Algorithms

Conventional DTE algorithms assume that the future energy use will be similar to the past.

In other words, the following is assumed:

Pf ~ Pp 7.18

Where p, is the average energy use of past driving, which can be determined using past

(historical) driving energy data (e.g. 1 km, running, or blended averages as defined below). The

DTE can then be estimated by combining Equations 7.4 and 7.18:
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Eb()
DTE(t = 7.19

The values of DTE will deviate from DTE according to Equation 7.12 and the amount depends on

the validity of Equation 7.18 (Figure 7.1 b). This is considered a conventional approach since it is

likely very similar to the methods being used in EVs today based on the limited amount of

related literature [32][33][34]. The average energy use over the past 1 km is defined as:

_ Eb (tlkm) - Eb (t)
PikmNt = ,( 8k)7.20X(t) - X(tlkm)

where t is the current time and tik, is the time 1 km in the past. And the running average is

defined as:

Eb to) - Eb ()
Prunning (t) = - x(to) 7.21X(0) - X (to)

A "blended" average uses a long-term average energy use, fliong, during the beginning of

discharge but blends to a more recent short-term average energy use measurement, Tshort, as the

battery is discharged. This can be written as:

Pblend (t) = flong ( - (Along (W - Pshort (0) 7.22

Where b is a "blending factor," b - R E fO,1}. The value of b is typically chosen based on a

linear function that changes with State of Charge (SOC):

b(t) = 1 - SOC(t)/100 7.23
SOC is defined as the percentage of battery energy remaining:

SOC(t) = 100 7.24Eb (to)

These historical averages work well as long as the future conditions are similar to the

past. However, there are cases when changes in energy use will cause significant errors. For

example, Figure 7.3a shows that switching on auxiliary loads could have significant impacts on

energy use. Each curve represents a constant auxiliary load and was obtained by simulating a

sedan-sized vehicle at constant driving speeds. For example, a 2 kW constant auxiliary load will

cause a 30% increase in energy consumption when driving at a constant speed of 45 km/h.

Figure 7.3b-d are meant to show how a 30% change in energy consumption would impact DTE

error. To this end, assume that a vehicle has been consuming energy at a constant rate of 210

Wh/km for the long and short-term past. When the vehicle is ~50 km into a full discharge, a

heater load is turned on, which causes a 30% increase in energy consumption (Figure 7.3a and

76



b). Figure 7.3c shows the actual and estimated DTE when the running average or blend algorithms

were used. Figure 7.3d shows that the corresponding DTE error for the blended algorithm ranges

from 0 to 30% depending on the distance traveled.

Figure 7.4a and b show a similar situation, where the energy consumption is increased

due to auxiliary loads part way through the discharge, though this time a stochastic vehicle

simulation is used instead. The stochastic vehicle simulation is described in a Chapter 6, and uses

stochastic speed profiles and physics-based models to more accurately represent a vehicle's

energy consumption. The simulation runs multiple discharges in order to generate a long-term

average energy use, Plong, which in this case is the Wh/km averaged over the past 300 km. A

final example is shown in Figure 7.4c and d, and for this case there is no change in auxiliary use

or traffic.

400 300
Constant Loads: E

I350 -kW Aux c 250
E 300 -2 kw Aux

250 -5 kW Aux W 200

200 >% 150

150 I"M C 100
2J W - Prun.c 1001

50 4 50 Pblenc

05
0 0

10 35 60 85 110 135 160 0 40 80 120 160
Constant Speed (km/hr) Distance Traveled (km)

(a) (b)
160 35

-Actual

E -Running Ave I-30
1*..Blend 25

E %%E 20
w 80 21

--\0 15

40 510

5

0 0
0 40 80 120 160 0 40 80 120 160

Distance Traveled (kin) Distance Traveled (kin)
(c) (d)

Figure 7.3: A simple example showing how auxiliary use can cause errors in the DTE estimate when
the running average or blended algorithms are used.
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Figure 7.4: Example output from a stochastic vehicle simulation. The plots show the corresponding

DTE using Equation 7.19 with P, equal to Pikm, Prunning and Plong. For these examples iprong is

defined as the energy use averaged over the previous 300 km. Figures a and b simulate an increase
in auxiliary load part way through the discharge while c and d have a constant auxiliary load. The

above simulations show that using past data and assuming jir i P, works well as long as there are

no sustained changes in driving conditions.

All three of these examples support the following conclusion: using averages and blends

of past data and assuming that 15 ~ p works well as long as there are no sustained changes in

driving conditions between the past average and the future average (e.g. sudden use of heater for

a sustained period of time). It is interesting to note that in Figure 7.4c the assumption that

P ~: plang is especially true at the beginning to middle of discharge since f5prog is a measure of

average energy use over a similar length scale as Pf (to). In other words, both )long and pf(to)

are aggregates of a large amount of varying and stochastic conditions (temperature, traffic, etc.)

over a similar distance.
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The examples above reveal that DTE algorithms could be improved if future changes in

driving conditions were anticipated, which is a concept described in the next section.

7.5 Using Estimates of Future Conditions and Models to
Improve DTE Predictions

The previous section showed that DTE errors occur when the average energy use changes

significantly from the past. This section describes the concept of detecting these changes

beforehand and using this information, along with a model, to improve the DTE estimate. For

example, assume that the driver provides their destination(s) to an on-board navigation system

before departure. The navigation system could then obtain navigation, traffic and weather

information via the internet. Thus changes in driving conditions could be detected before they

occur and fed into a model that estimates pf. The physics-based modeling methods described in

Chapter 2 could be used, though there are differences between racing and consumer driving that

make that approach less feasible. For example, there are more factors that significantly influence

energy consumption of consumer vehicles and thus additional models would be required (Table

7.1).

Figure 7.5 shows that auxiliary energy has a much larger impact on the total energy use

(Wh/km) at lower speeds. Since the motorcycle race is at high speeds (~150 km/hr), the total

energy use is less impacted by auxiliary energy consumption. Consumer vehicles, on the other

hand, are driven at lower speeds and thus more impacted by auxiliary use. The conclusion is that

a fluctuation in auxiliary power has a larger impact on energy use, which causes larger errors in

DTE estimates.

Figure 7.6 attempts to capture all of the factors that affect energy use in consumer EVs.

Modeling each of these factors using physics-based models would be complex, require vehicle-

specific parameters and can be computational intensive for real-time applications. To avoid these

shortcomings, the following section will derive a method that uses a model that can be "learned"

as the vehicle is driven.
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Table 7.1: Comparing factors that influence energy use for motorcycle racing and consumer vehicle
applications.

Route
A single trip in a single

battery discharge
Multiple trips in a single

battery discharge
Average Speed Steady -150 km/hr Variable <110 km/hr

Auxiliary Loads Insignificant Variable and significant
Traffic None Variable and significant

Driver Behavior Steady and repeatable Variable and significant

Cargo Mass Constant Variable and significant

500

400

300

200 Drive Energy

-Auxiliary Energy (1 kW)

-Total (1 kW Aux)100 -Total (2 kW Aux)

-Total (5 kW Aux)

0
10 35 60 85 110 135 160

Constant Speed (km/hr)
Figure 7.5: A simulation of the motorcycle showing how the total energy use (Wh/km) changes with
speed and auxiliary load. Constant speed driving on a flat road and a constant auxiliary load were

assumed. The exact shape of the curve depends on many factors specific to the vehicle's loss
parameters (e.g. drag coefficient, rolling resistance)
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Figure 7.6: This diagram attempts to show all of the factors that influence a consumer vehicle's
energy consumption and specifically how various driver decisions and options (purple) lead to

energy losses (red) and storage (green).
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8. A Regression-based DTE Algorithm
This chapter derives an algorithm that uses estimates of future driving conditions to more

accurately predict DTE. As discussed in Chapter 7.2, the past energy use, Plong, is often a good

estimate for future energy consumption as long as there are no significant changes in driving

conditions. An improved algorithm is one that adjusts the value oflpiong, based on estimated

changes in future driving conditions, to yield a better estimate of Pf . The approach is to multiply

5iong by an adjustment factor, y, that makes the following true:

Pf(t) = y(t) iong(t) 8.1

Combing Equations 7.4 and 8.1 yields:

DTE -t 8.2
y(t) piong(t)

Since y cannot be determined perfectly beforehand, an estimate 9 can be made when an

unknown residual error, E, is included:

y(t) = f(t) + E (t) 8.3

Rearranging:

f(t) = y(t) - e(t) 8.4

Then an estimate for DTE can be written as:

Eb(t)
DTE W = 9(t) - ng() 8.5

Section 8.1 proposes a multivariate linear regression model for determining 9. The regression

model uses a training set to learn (fit) the relationship between explanatory variables and 9.
Section 8.2 defines the explanatory variables as changes in ambient temperature, traffic and

average speed. Section 8.3 describes how the training set is obtained using historical driving data

and Section 8.4 checks the validity of the regression model.

The advantage to this new approach is that there is no need for physics-based models. In

other words, instead of precisely predicting the future energy consumption using physics-based

models, a past measurement is simply adjusted up or down based on estimates of future

conditions and a regression model.
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8.1 Multivariate Linear Regression Model
A regression model uses a training dataset to learn the relationship between explanatory

variables, X, and the response variable, f. Assuming a linear model of the form [29]:

f(ti) = #h + #1iXi1 + fl2Xi2 + + f#mXnm 8.6

Where /3 is a set of m unknown coefficients that are determined from historical data (training

set). The variables X must be measurable and predictable factors that cause differences in energy

use between the past and future. For the sake of this derivation, the values of X are assumed to be

known. Equation 8.6 can be written in matrix form:

y ='X# 8.7
Once f is known, Equation 8.5 can be used to determine UTE- Rewriting Equation 8.3 in matrix

form:

y = y + e8.8

Combining Equations 8.7 and 8.8:

Y =,X# + 8.9
Solving for the residual error:

E = Y - X# 8.10

The residual error can be minimized through a least squares estimator, which can be written as a

function S(c):

S(C) = T= (y -XI) T(Y - XP) 8.11

Expanding the right side of the equation:

S(c) = yly - yTXP - BTXTy + PTXTXP 8.12

Setting the derivative of S(c) to zero solves for the minimum residual error:

a= -2Xy + 2X TX = 0 8.13ac

Rearranging Equation 8.13 yields the Normal Equation:

X Y =X TX# 8.14

Solving for fl:

# = (XTX) lXTy 8.15

The strategy is to "learn" values of f using known historical values ofy and X and Equation 8.15

(training set). Then the learned values of j8 and the real-time values of Xj can be used to calculate
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f(ti) using Equation 8.6. The following subsection will explain how the explanatory variables X

are defined and calculated.

8.2 Explanatory Variables

The explanatory variables X must be (1) measurable and predictable factors that (2) cause

differences in energy use between the past and future. The past is defined by plong For example,

if Thong is the energy use over the past 300 miles, then the past is defined as the past 300 miles

worth of driving. The value of fliong compresses a large amount of microstructure driving data

into a single measurement that quantifies how energy has been used historically. When using

5iong to estimate the future, the value needs to be adjusted up or down if the future is different

from the past. The future is the data contained between x(t,) and x(t). (1) The Explanatory

Variables must be factors that indicate a difference in average energy use between the past

(lpiong) and future (f). For example, assume that the energy and distance values used to

determine Plong were collected while the average ambient temperature was 15'C, while it is

predicted that the future will contain a average ambient temperature of 5*C. Since auxiliary

heater use at 15'C ambient will be less than that at 5'C, it can be assumed that the change in

ambient temperature may cause a change in future energy use. Thus the change in the ambient

temperature's arithmetic mean can be one of the explanatory variables. (2) The Explanatory

Variables should be measured from past data and estimated (predicted) into the future: The

ambient temperature serves as a good example of a factor that can be easily measured using a

temperature sensor. The future temperature can be predicted using weather forecasts and/or by

assuming that the temperature at to will be equal to the arithmetic mean of the future temperature.

There are other factors that might cause a difference in energy use but few can be directly

measured and predicted. For example, the driver's mood might cause an increase in future

energy use though it cannot be easily measured and predicted. Given these constraints, the

following explanatory variables were used:

(1) Change in Ambient Temperature: As described previously, the change in the arithmetic mean

of the ambient temperature is defined as:

ALTa(ti) Ia,f (ti) - 201 - |Ta,p(ti) - 20| 8.16
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Where Ta,p(ti) is the arithmetic mean of the past ambient temperature and Taf (ti) is the

estimated arithmetic mean of the future ambient temperature. The difference from 20*C is taken

since it is assumed that temperatures above and below 20*C cause an increase auxiliary energy.

(2) Change in Traffic Conditions: Traffic conditions have a significant influence on energy use

and recent advances in traffic sensing techniques make traffic measurements and predictions

possible. For example, Google Maps is able to provide a quantitative measure of the upcoming

(future) traffic delay and corresponding estimates of average speeds over distance segments [35].

This information is accessible in real time via their internet-based Application Programming

Interface (API). If the future route is specified, an estimate for future traffic conditions can be

made. However, to reduce the scope of this project, it was assumed that the traffic conditions can

be captured through the percentage of time spent at idle conditions (i.e. zero speed):

Atile(ti) i) - tdle,p(ti) 8.17

Where Fidl,,(ti) is the arithmetic mean of the percentage of time spent at idle in the past and

tidle,f (ti) is the estimated arithmetic mean of the percentage of time spent at idle in the future.

(3) Change in Average Speed: It is well known that high speeds require more energy [30]. It was

assumed that the arithmetic mean of the future speed can be estimated using route information

from Google Maps (or equivalent). Thus a difference in mean speed was used as an explanatory

variable:

Avave(ti) Vf (ti) - i ,(ti) 8.18

Where iU, (ti) is the arithmetic mean of the past speed and if (ti) is the estimated arithmetic

mean of the future speed.

8.3 Creating a Training Dataset

Assume that multiple historical discharges are being analyzed with each discharge

starting at 100% SOC and data is available to calculate both iong and pYf. The actual values of

y(ti) can be determined by rewriting Equation 8.1:

y(ti) = Pf(ti) piang (ti) 8.19
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Since there are n discrete values of ti, the values of y(ti) can be written as a nx] vector:

Y 8.20

The values of ATa, At ide and AVave for each time ti form the explanatory matrix:

[1 ATa(ti) Atidle(ti) Avave(ti)1

[ 8.21
1 ATattn) Atidge (tn) Avave(tn)-

The following section describes how this process is repeated for multiple discharges to build a

training set with a sufficient regression fit and to avoid extrapolation [29].

8.4 Algorithm Simulation

It was necessary to first train the multivariate regression model by simulating -300 km of

vehicle driving (Chapter 6) to generate an initial historical dataset (e.g. plong, Ta,p, aidle,p, and

y1 ,) based on the specified vehicle and environmental conditions. A constant ambient temperature

of 200C was assumed though other scenarios could be easily used.

Next, multiple full-discharge simulations with varying conditions were used as a

"training dataset." For example, a random speed profile was generated with an ambient

temperature of 10 C. This process was repeated for different temperatures (e.g. 15'C, 20'C, etc.)

to generate a training dataset large enough that extrapolation does not occur when the regression

is used. The temperatures were held constant for each discharge though the speed profile was

generated stochastically with a variety of city, highway and aggressiveness conditions. The

values of ATa, Atidle and Avave and y were determined for each 1% SOC increment in the

discharge. The full training dataset was used with Equation 8.15 to determine the values of/pi.

Once values of Pl3 ong and p, were calculated, an actual discharge dataset was obtained

and used to simulate DTE algorithms. A new stochastic speed profile and a random constant

ambient temperature were used to simulate the actual discharge dataset. The DTE algorithm then

used all of the collected datasets. This process can be repeated multiple times using different

parameters and conditions.

In summary, there were three datasets used:

Historical Dataset: Multiple full battery discharges used to determine the past driving energy

consumption data.

87



Training Dataset: Multiple full battery discharges with varying conditions used to train the

regression model and thus determine pi values.

Actual Discharge Dataset: A single discharge that is meant to be the observed discharge for

simulating DTE algorithms.

In practice, the values of Taf (t1), tidle,f (t1), and ir(ti) will need to be estimated using Google

Maps, weather information, etc. However, the simulations shown in this thesis had perfect

knowledge of the future.

Finally, it is best to discretize the problem based on State of Charge (SOC), since the

range of values is constant {0,100} between the various training sets (unlike time and distance,

which have a range of values that change based on driving conditions). In discretized form: SOC

-> Z E {0, 100}:

SOC(tj) = SOCi 8.22
For example, tso is the time when SOC = 50%.

8.5 Validating the Assumptions and Fit of the Regression
Model

The assumptions and fit of the regression model were tested using the output from the

simulations described in Section 8.4. The assumptions of the multivariate linear regression model

can be summarized as follows [29]:

" Assumption 1: The linear model adequately describes the behavior of the data.

" Assumption 2: The residual error, , (Equation 8.3), is an independent and normally

distributed random variable, with a zero mean and variance < .

There are various checks commonly used to evaluate these underlying assumptions for a given

training dataset. An observation with Cook's distance larger than three times the mean Cook's

distance might be an outlier [31] and the fit might be improved if the outliers are removed.

Figure 8.1a shows that < 3% of the data points for this training dataset are considered outliers.

The second is to perform a significance test on each of the coefficients, p, (Equation 8.6), to

ensure that the model is not over-specified. This is done by testing the null hypothesis that each

coefficient is zero, which yields a pValue (Table 8.2). The small pValues (<< 0.05) and large R2

indicates that the model is valid (Table 8.3). To verify the conditions in Assumption 2, a
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frequency distribution of the residual error was used to verify normality. It can be seen from

Figure 8.1b that the distribution has a normal shape.

Given the results from the above analysis, there is sufficient evidence to support the

assumptions made in the multivariate linear regression model. The following sections will

investigate whether or not the regression model improves DTE estimates over the conventional

blend approach.

Table 8.2: Metrics used to determine significance of coefficients.

Estimate of fi Standard
Error

tStat pValue

Intercept 1.08 0.00381 283 0
ATa 0.00868 0.000161 53.9 3.82E-296

Atidle 0.0306 0.000746 41.1 1.24E-215
Avave 0.0291 0.000629 46.34 9.05E-250

Table 8.3: Metrics used to determine significance of coefficients and fit of regression.

Metric Value
Root Mean Squared 0.035

Error
R 2 0.86

F-Statistic (v. constant 2.0e+03
model)
pValue 0
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Figure 8.1: The Cook Distance (a) and a histogram of residuals (b) are used to evaluate the
assumptions of the regression analysis.
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9. Comparing DTE Algorithms
This chapter uses the stochastic vehicle simulation (Chapter 6) to quantitatively compare

the conventional (Section 7.2) and new regression-based DTE algorithms (Chapter 8). Section 9.1

describes the metrics used for comparing the quality of DTE algorithms and the results are shown

in Section 9.2.

9.1 Measuring the Performance of DTE Algorithms

The error in estimating DTE was defined in Section 7.1 as:

eDTE ( - TE (0 - DTE (t 7.9

Figure 7.1 illustrates this same concept schematically. The performance of the DTE algorithm can

be determined by visually inspecting plots such as Figure 7.1 or more quantitatively by

determining the arithmetic mean (average) error over sections of the discharge. It is useful to

discretize the problem so that each ith value of error is written as eDTEj. The algorithm can both

over-estimate (eDTE,i > 0) and under-estimate (eDTE, <0). Thus the average over-estimation

error is:
i 1

eDTE,i eDTE, > 0 9.1
nj =1

Where n is the number of increments that have eDTE,i > 0. And the average under-estimation

error is:
n2

IeDT eDTE,i <0 9.2
n2 =1

Where n2 is the number of increments that have eDTEj < 0.

The accuracy of the DTE algorithm changes as the battery is discharged. For example, the

DTE estimate may be less accurate at the beginning of the trip but more accurate as the battery

pack is drained. Thus the discharge was divided into three sections: start, middle and end, and

the average error was calculated within these sections (Figure 9.1 b).
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Figure 9.1: The over- and under-estimation error is shown for the entire interval (a) or averaged by

the start, middle and end sections of the full discharge (b).

9.2 Results

The stochastic vehicle simulation (Chapter 6) was used to quantitatively compare the

conventional (Section 7.2) and new regression-based DTE algorithms (Chapter 8). The training

set was first obtained as described in Section 8.3. Figure 9.2 shows one example full discharge,

though more scenarios are simulated later in this section. The speed and battery energy profiles

are shown in Figure 9.2a and b and the resulting DTE plots are shown in Figure 9.2c and d. This

particular simulation assumed that the discharge dataset occurred with an ambient temperature of

100C as to simulate a drop in temperature from the past (which had an ambient temperature of

200C as described in Section 7.2). The graphical representation of DTE error, as discussed in

Section 9.1, provides a quantitative comparison of the algorithms. Figure 9.2c shows that, for

this example simulation, the regression-based approach reduced the error at the beginning of

discharge by -15%. It is important to note that the ability to accurately estimate DTE at the start

of a full charge (key-on) is likely the most critical task of an algorithm since the driver uses this

estimate to plan their route.

To better understand how the algorithms perform for a wider variety of conditions, 1000

full battery discharges were simulated using stochastic speed profiles and randomly generated

ambient temperatures (0 to 220C) for the actual discharge dataset. For each case the same

historical and training datasets described in Section 8.3 were used. To simplify the analysis,

only the DTE error at the beginning of the discharge (key-on) was used for comparison (Figure

9.3). Figure 9.4a shows that the error for the regression-based approach has a smaller arithmetic

92



mean. A t-test showed that there is statistical significance between the two means [29]. The

probability density plots were estimated using the simulation data and built-in Matlab functions

[45][49].

Another approach to comparing the two algorithms is to measure the reduction in DTE

error at the beginning of discharge, which is defined as:

Reduction in DTE Error (key - on) = IDTE,rt ~~DTE,b 9.3
|eDT E,b (t0

Where eDTE,r(t0 ) and eDTE,b(to) are the DTE error at key-on for the regression and blended

algorithm, respectively. This measures the percentage reduction that the regression algorithm has

over the blended algorithm. For example, a -100% reduction in error corresponds to a situation

where the regression-based algorithm eliminated all of the error. The error reduction was

calculated for the 1000 full battery discharges and a frequency distribution of the results is

shown in Figure 9.4b. The regression-based algorithm performed better than the blend algorithm

for cases when the error reduction is in between -100% and zero, and worse when the reduction

is greater or equal to zero. Overall it can be seen that the regression-based algorithm reduced the

error, and thus improved the DTE estimate ~90% of the time.

Next, it was of interest to plot eDTE(tO) versus the explanatory variables (ATa, Atidle and

Avave) to explore how changes in the explanatory variables affect errors at the very beginning of

a full discharge (i.e. eDTE(tO)). For example, assume the vehicle was driven for 300 km in low

traffic with an ambient temperature of 200C. Now imagine that the vehicle is being driven,

starting with a full battery, in higher traffic conditions with a hotter ambient temperature of 27 C.

This would result in a ATa = 7'C. It is expected that eDTE(tO) would increase for the blended

algorithm since it is not able to anticipate these changes. The results from the 1000 simulations

are shown in Figure 9.5. Analysis of Covariance (ANCOVA) was performed for each dataset,

which showed statistical significance between the least-squares slopes [50]. In other words, the

DTE error for the regression-based algorithm is less impacted by changes in driving conditions.
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Figure 9.2: Example output from a DTE simulation. The regression-based approach reduced the

error at the beginning of discharge by -15%.
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Figure 9.4: The arithmetic mean error is significantly less for the regression-based algorithm (a). A
frequency plot of the reduction in error, as defined in Equation 9.3, shows that the regression-based

algorithm reduced the error -90% of the time (b).
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Part III: Summary and Contributions
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10. Conclusions
This chapter contains a summary of the entire thesis, a list of the original contributions

made to the field of electric vehicles and a description of ongoing and future work.

10.1 Summary of Thesis

Part I described the process of designing, building, testing and racing a high performance

electric motorcycle for the 2011 Isle of Man Tourist Trophy (TT) Zero race. Systems

engineering was used to size the batteries and motors, predict vehicle speeds and predict the time

required to finish the race. Two types of simulations were considered. The first estimated the

motor and battery power and vehicle speed when full-throttle is applied. The second simulation

type estimated upper and lower bounds for the battery energy required to traverse the entire

course. The lower bound, or best case, was determined by assuming the motorcycle maintained a

constant vehicle speed throughout the course, which was shown to be the most energy efficient

way to drive. The upper bound, or worst case, was determined by assuming the motorcycle

maintained a constant motor power throughout the course, which would yield large speed

fluctuations.

Two motors were combined with a rigid shaft to provide a maximum of 32 kWh of

continuous power. The energy storage consisted of 106 kg of lithium-ion batteries totaling 11.9

kWh. A structural frame was needed to support the batteries, motor, and supporting electronics.

The removal of the engine needed to be considered in the mechanical design, since it was

originally a structural element. Instead of a more common space-frame weldment, it was decided

to design a frame that could be made on the waterjet using aluminum plates. The waterjet was

chosen because it is rapid, economical, and provides significant design flexibility. Designing a

set of 2D plates also made prototyping easy; prototypes were made quickly with a laser cutter

using wood and cardboard. The frame was assembled like a puzzle with small tabs connecting

the various 2D plates. The final aluminum frame, including the tab-slots, was welded while

bolted in place on the motorcycle chassis.

The motorcycle was instrumented with sensors to measure acceleration, speed, distance,

current, voltage, and temperature. A battery management system (BMS) was used to measure the
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voltage of each cell and perform cell balancing. A safety monitoring system from A123 Systems

checked for ground faults, the condition of the fuse, and over current. The data was transmitted

wirelessly to an off-board real-time display and logged on-board. The rider display consisted of

LEDs to indicate the state of the motorcycle and a single LCD screen. The screen displayed

digital real-time values for battery power, battery energy consumption and vehicle speed.

A series of incremental tests were performed to ensure that each subsystem operated as

predicted. This included the following tests: bench-top, wind tunnel, chassis dynamometer, track,

and finally road. In June 2011 the motorcycle design and simulations were tested in three races

on the Isle of Man. Post-race analysis showed that the predictions had less than 10% error.

The energy estimation methods that were developed for the motorcycle were

subsequently modified and applied to non-racing electric vehicles (EV). Instead of predicting the

energy required to traverse a known route (or race course), it is more useful for non-racing

applications to consider the reverse scenario, which is the distance the vehicle can travel before

charging is required. This is referred to as the Distance to Empty (DTE) and an estimate is

displayed in real-time in the vehicle's dashboard. It was shown that a DTE algorithm must predict

the future energy consumption of a vehicle. Future energy can be predicted reliably if either (i)

future energy consumption is sufficiently similar to the past or (ii) applicable information about

the future is known beforehand. A conventional DTE algorithm assumes (i) by "blending" both a

long-term and short-term average of past energy use. However, significant changes in driving

conditions (e.g. traffic or auxiliary energy use) for sustained periods of time can cause large

errors in DTE estimates. This thesis showed that DTE error can be reduced if future changes are

detected beforehand and used by the algorithm. Instead of using a complex parametric physics-

based model, a multivariate linear regression-based model was derived that adjusts the value of

P,ng up or down based on estimated changes in driving conditions (temperature, traffic and

speeds). In practice the driver would specify their destination(s) and a service such as Google

Maps would provide an estimate of the future driving conditions to the algorithm. When

compared to the conventional blend algorithm, it was shown that the DTE error for the new

regression-based algorithm is less sensitive to changes in driving conditions.

There are two additional advantages to the proposed regression-based algorithm. The first

is that it is computational light and thus can be run in real-time with a variety of processor

speeds. The second is that it does not require vehicle-specific calibration and validation. In other
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words, the algorithm can be learned (fitted) over time by simply capturing data that is already

available on the CAN-bus of most EVs. These unique advantages make the approach conducive

to mobile phone and cloud-based computing services currently being developed [49].

The DTE algorithms were compared using a stochastic, parametric and physics-based

electric vehicle simulation. Though real driving data could be used, the simulation approach

yields an unlimited number of full battery discharges under a wide variety of realistic driving

conditions. Instead of using EPA speed profiles as input, a method for generating stochastic

speed profiles using a mode-based Markov model was derived. A large set of driving data (speed

versus time) was parsed into sequential Markov states, which were defined by deceleration,

cruise, acceleration or idle events. The Transition Probability Matrix (TPM) was determined by

observing the transitions between states (e.g. counting the number of times the state transitioned

from cruise to deceleration). The TPM along with a random number generator was used to string

together a stochastic speed profile of any length. To simulate a variety of conditions, the TPM

matrix was modified to give preference to certain modes (e.g. less aggressive driving was

simulated by putting zeros in the columns of the TPM associated with the largest acceleration

and deceleration modes). The algorithm is capable of providing speed versus time profiles that

are stochastic, variable in length (e.g. full discharge), and based on actual driving data.

10.2 Summary of Contributions

Below is a summary of the original research and contributions presented in this thesis.

(1) Derived and validated a method for estimating the battery energy required for electric

vehicle racing.

Predicting the exact amount of energy required to traverse the Isle of Man course is

difficult since the speed profile is unknown beforehand. So lower- and upper-bound scenarios

were estimated with the hypothesis that the actual required energy lay somewhere in between

these values. The lower bound, or best case, was determined by assuming the motorcycle

maintained a constant vehicle speed throughout the course, which was proven to be the most

energy efficient way to drive. The upper bound, or worst case, was determined by assuming the

motorcycle maintained a constant motor power throughout the course, which would yield large

speed fluctuations and is thus inefficient. These scenarios were simulated using first-order
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physics-based models of the motorcycle system. It was shown that the racing data supports this

hypothesis.

(2) Developed fundamental concepts critical to understanding DTE algorithms.

Equations were derived to aid in the understanding of Distance to Empty (DTE)

algorithms. It was shown that the main objective of a DTE algorithm is to predict the future

average energy use of the vehicle (f). Future energy can be predicted reliably if either (i) future

energy consumption is sufficiently similar to the past or (ii) applicable information about the

future is known beforehand. Equations were derived to show that DTE error is larger when fif is

underestimated versus when it is overestimated by the same percentage amount.

(3) Formulated an improved DTE algorithm that uses a past energy consumption

measurement and future route information.

It was shown that DTE error can be reduced if the future route is known beforehand and

thus changes in temperature, traffic and speed are used by the algorithm. Specifically, a

multivariate linear regression-based model was derived that adjusts the past average energy use

based on estimated changes in driving conditions (temperature, traffic and speed).

(4) Created a stochastic vehicle simulation environment that was used to compare DTE

algorithms.

In order to compare DTE algorithms it was necessary to develop a stochastic, parametric

and physics-based electric vehicle simulation. The simulation approach provided an unlimited

number of full battery discharges under a wide variety of realistic driving conditions. Instead of

using EPA speed profiles as input, a method for generating stochastic speed profiles using a

mode-based Markov model was derived.

10.3 Ongoing Work

Below is a summary of the ongoing work related to the research presented in this thesis.
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10.3.1 Increasing Average Speeds at the Isle of Man TT Zero

The speeds of the Isle of Man TT Zero race are limited by the energy density of currently

available batteries. In other words, the race is a battery energy-limited design problem where the

motors are able to output larger amounts of energy and power than the batteries can actually

store given the volumetric limitations of the motorcycle. Given this situation, it is useful for

teams to (i) increase vehicle efficiency and (ii) ensure that all of the available battery energy is

consumed during the race (i.e. no battery energy remains when the motorcycle crosses the finish

line). The best approach to improving efficiency is to reduce aerodynamic and rolling drag. But

it is also possible to increase efficiency by following the most efficient speed profile given the

terrain. For example, the overall energy efficiency might be improved by driving more quickly

during certain portions of the course than others. This has been discussed in the literature for

other applications and could be applied and tested in the Isle of Man race [8][9].

The second (ii) could be accomplished by performing real-time estimates of DTE, which is

currently not being done with any level of sophistication. It was shown in this thesis that the fast

and consistent speeds and low auxiliary loads of the motorcycle yield fairly constant energy use.

This means that a fairly simple past-averaging DTE algorithm would likely yield accurate results.

This is supported by the race data shown in Figure 10.1, which shows the energy use averaged

over 1 km (P1) and 10 km (510). It can be seen that the average energy use does a fairly good

job at predicting the future energy use, 1f, especially at the beginning of the race. Thus a basic

algorithm could use the past 10 km average of energy use to predict the future energy use and

thus DTE (see Equation 7.4).
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Figure 10.1: Average energy use of the motorcycle during the Isle of Man race. This figures shows
that the fast and consistent speeds and low auxiliary loads of the motorcycle yielded fairly constant

energy use. A basic algorithm could use a past 10 km average of energy use to predict the future
energy use and thus DTE.
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10.3.2 Advancing DTE Algorithms

When simulating the regression-based algorithm, it was assumed that the future driving

conditions (temperature, traffic and speed) were known perfectly. It would be useful to add noise

(errors) to these values to more accurately simulate the uncertainty that will exist in real-world

applications. It is also important to better understand the accuracy and utility of real traffic and

route data (e.g. provided by Google Maps). For example, traffic was quantified in this thesis by

measuring the average time at idle, fidle. In practice there are other metrics used to measure

traffic (e.g. a number ranging from 0 to 10 depending on the amount of traffic).

There are other regression methods that could be used to adjust pong based on estimates

of future conditions. For example, historical data could be used to track energy use of repeated

routes and/or conditions. Trip types could be categorized and phong could be adjusted

accordingly.

10.3.3 Comparing DTE Algorithms

The Distance to Empty algorithms were compared in this thesis using a stochastic vehicle

simulation, though it is desirable to begin testing the algorithms using real driving data. This

would require an integrated cloud-based approach that simultaneously measures vehicle speed,

energy use, ambient temperature and traffic. This information could be obtained by recording

data from the vehicle's CAN-bus while also obtaining real-time information from Google Maps

(traffic). Though it would be a significant research effort, recent advances in cloud-based

automotive hardware make this task feasible [51] [52].
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