
Predictive Parameter Estimation for Bayesian A
MACHET NiUES

Filtering

by

William Vega-Brown

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author
Department of Mechanical Engineering

,~ I

Certified by..

June 2, 2013

Nicholas Roy
A

Certified by...................
r

Associate Professor
Thesis Supervisor

. ... John Leonard
Professor

Thesis Spervisor

Accepted by
David E. Hardt

Chairman, Committee on Graduate Students

MAS5A6HUSETTS IN57fin E,
OF TECHNOLOGY

JUN 2 5 2013

LIBRARIES

2

Predictive Parameter Estimation for Bayesian Filtering

by

William Vega-Brown

Submitted to the Department of Mechanical Engineering
on June 2, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

In this thesis, I develop CELLO, an algorithm for predicting the covariances of any
Gaussian model used to account for uncertainty in a complex system. The primary
motivation for this work is state estimation; often, complex raw sensor measurements
are processed into low dimensional observations of a vehicle state. I argue that the
covariance of these observations can be well-modelled as a function of the raw sensor
measurement, and provide a method to learn this function from data. This method
is computationally cheap, asymptotically correct, easy to extend to new sensors, and
noninvasive, in the sense that it augments, rather than disrupts, existing filtering
algorithms. I additionally present two important variants; first, I extend CELLO to
learn even when ground truth vehicle states are unavailable; and second, I present
an equivalent Bayesian algorithm. I then use CELLO to learn covariance models for
several systems, including a laser scan-matcher, an optical flow system, and a visual
odometry system. I show that filtering using covariances predicted by CELLO can
quantitatively improve estimator accuracy and consistency, both relative to a fixed
covariance model and relative to carefully tuned domain-specific covariance models.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor

Thesis Supervisor: John Leonard
Title: Professor

3

4

Acknowledgments

This work would not have been possible without the help of many people.

I thank my advisor, Nick Roy. His insight has been invaluable; his guidance helped

shape both the ideas in this thesis, and the way I approach research.

I thank John Leonard, for his willingness to guide me through the hidden paths

of my department, as well as for his help and support in all my years at MIT.

I thank my colleagues and fellow students: Abe Bachrach, who first directed me to

the problem of covariance prediction; Adam Bry, who pointed me towards a solution;

Jonathan Kelly, who helped shape my early design decisions; Charlie Richter, who

consistently provided a late-night sounding board for ideas; and Javier Velez and Josh

Joseph, who tolerated my obscure measure-theory questions when I needed help or

distraction.

I thank my grandmother, for her many years as an inspiration to me, and for her

quiet help in making my education possible.

Finally, I thank my parents, without whom I could be neither where I am nor who

I am. I am eternally grateful for all you have done for me.

5

6

Contents

List of Figures 9

List of Tables 11

List of Algorithms 13

Nomenclature 15

1 Introduction 17

1.1 A motivating example 19

1.2 Covariance prediction 21

2 Recursive Bayesian estimation 23

2.1 Hidden Markov models . 24

2.1.1 Finite State Space filter . 28

2.1.2 Particle filtering . 29

2.1.3 Kalman filtering . 29

2.1.4 Non-linear Kalman Filters . 32

2.2 Preprocessing measurements . 32

2.3 Covariance models . 33

2.3.1 Optimal fixed-parameter models 35

2.3.2 Adaptive parameter models 36

2.3.3 State-dependent covariance models 38

2.3.4 Measurement-dependent covariance models 40

7

3 Covariance Prediction 43

3.1 Estimating a fixed covariance . 44

3.2 Kernel Estimation. 45

3.3 Asymptotic Properties .. 49

3.4 CELLO 51

3.5 Learning without ground truth . 54

3.6 Bayesian Formulation . 58

4 Simulation Results 65

4.1 Dark Room . 65

4.2 Random Walk . 67

4.3 Scan-Matching . 70

5 Experimental Results 77

5.1 Optical Flow . 77

5.2 Odometry in a Corridor . 85

6 Conclusion 93

A Software Implementation 97

A. 1 Ensuring positive-definiteness . 97

A.2 Guiding the search . 98

A.3 Optimizations . 100

A.4 Parallelization . 100

B Derivations 103

B.1 Proof of convergence of kernel density estimates 103

B.2 Derivation of asymptotic estimator properties 105

B.3 Derivation of Bayesian measurement model 109

8

List of Figures

Mobile robots .

Laser scan image .

Ambiguous environmental structure

18

19

20

25

66

2-1 Graphical measurement models

4-1 Two-dimensional covariance learning

4-2 The mean squared error between the predict

decreases as the number of samples available

4-3 Random walk error comparison

ed and true

dec

Error magnitude comparison over time

Trajectory comparison

Laser scan image

Learned scanmatcher measurement covariances .

Simulated scanmatcher filter comparison

covariances

reases. 67

. 69

. 70

. 7 1

. 72

. 74

. 75

5-1 Comparison of camera images

5-2 Comparison of predicted covariances

5-3 State estimation performance

5-4 Predicted covariances for hallway

5-5 Comparison of predicted covariances by various algorithms

5-6 Estimated velocity using various covariance schemes

9

1-1

1-2

1-3

4-4

4-5

4-6

4-7

4-8

. . . 82

. . . 84

. . . 86

. . . 89

. . . 90

. . . 90

10

List of Tables

5.1 Image feature descriptions . 83

5.2 Filter performance comparison . 91

11

12

List of Algorithms

1 Covariance prediction . 49

2 Covariance estimation through log likelihood optimization (CELLO) . 55

3 Covariance prediction without ground truth 58

4 Covariance estimation using Expectation Maximization (CELLO-EM) 59

13

14

Nomenclature

0 An unobserved random variable representing the state of the environment, and

more generally, all unknown quantities we are not interested in.

Xt Vehicle state at time t, or, more generally, latent variables to be estimated.

K The Kalman gain at time t. For a linear Gaussian process model and a linear

Gaussian observation model, the Kalman gain allows for the calculation of the

optimal posterior state distribution.

Ct Raw sensor measurement at time t, or, more generally, any observed variables

used for estimation. This may be very high-dimensional; if the sensor is a

camera, C would be the set of pixel values.

z1 Observation at time t, computed deterministically from the corresponding mea-

surement C(. This will typically be low-dimensional, and ideally will be chosen

such that x is conditionally independent of C given z . For instance, the trans-

form between sequential images is a low-dimensional function of the state and

is independent of scene.

Rt Covariance of the observation noise at time t

R(.) A function mapping raw measurements C to symmetric positive definite obser-

vation covariances R.

h (x) A deterministic function defining a nominal observation as a function of the

filter state; we represent an observation as z = h (x) + v, with v a vector

of observation noise. Commonly this function will be linear, or a projection;

15

however, it may be arbitrarily nonlinear or nonsmooth. This function maps a

state in RN, to an observation in RN,.

Ht In the case where h (x) is linear, or can be approximated as linear, we represent

the h (x) as a possibly time-variant matrix H: h (xt) = Htxt

Vt Observation noise at time t, defined as the difference between the observation

and the nominal observation, v = h (x) - z

<t A vector of predictor features used to predict covariances. This vector is com-

posed of functions of the measurements C

Qt Covariance of the process noise at time t

f (x) A deterministic process function which maps the state at time t to the nominal

state at time t + 1: xt+l = f (xt) + wt, with wt a vector of process noise. This

implies discrete time; for the case of continuous time, we may integrate contin-

uous differential dynamics between discrete steps and represent this integral

as the function f (x).

Ft In the case where f (x) is linear, or can be approximated as linear, we represent

the f (x) as a possibly time-variant matrix F: f (xt) = Ftxt

Wt Process noise at time t, defined as the difference between the predicted state

f (xt) and the true state xt + 1, wt = f (xt) - xt + 1

Lt The Rauch-Tung-Striebel gain at time t. The RTS gain is used in smoothing,

much the way the Kalman gain is used in filtering.

Et Covariance of the state distribution at time t

pt Mean of the state distribution at time t

16

Chapter 1

Introduction

After years of research, autonomous mobile robots are coming of age. Vehicles are

increasingly being trusted to navigate and make decisions on their own; this has

allowed robots to perform increasingly complex tasks, from automatically cleaning

rooms (figure 1-la), to surveillance and reconnaissance (figure 1-1b), to exploration

of other planets (figure 1-1c). These mobile robots are often constrained to have lim-

ited sensor and computational payloads, and therefore must operate without perfect

information about their state and about the surrounding environment. In order to

perform robustly, a robot must be able to reason and plan without perfect infor-

mation. This is particularly important for small aerial vehicles, like the quadrotor

helicopter in figure 1-1d; these vehicles often fly indoors and in cluttered areas, where

poor control decisions can lead to catastrophic consequences like collision.

Probabilistic methods have emerged as the dominant way to make decisions in

the presence of uncertainty. By explicitly reasoning about distributions over multiple

hypotheses, robots are better equipped to make intelligent planning and control deci-

sions in the face of limited information; Thrun et al. [41] argue this point persuasively.

Unfortunately, reasoning about uncertainty can carry a considerable computational

cost. Care must be taken to ensure that inference is tractable using the computational

resources available.

17

(a) iRobot Roomba

(c) Mars Exploration Rover (d) Ascending Technologies Pelican

Figure 1-1: Micro air vehicles like this one require accurate state estimates to fly
safely, but are limited in the sensing and computational resources they can carry.

18

(b) Aeryon Scout

OD
5

12D 0

-.. 2..-.-.

1 15- --0 3 0

210 - -- 330

(a) Corner

12D

-.. 2...-.

180 - - -- 0

210 - - 3

(b) Hallway

Figure 1-2: The measurements returned by a planar laser scanner depend both on

the environment and on the location of the vehicle within that environment.

1.1 A motivating example

Much research has been done into possible choices of model and representation, and

many methods for inference have been presented. However, there exist domains for

which all existing solutions are unsatisfying. Consider an aerial vehicle flying indoors,

and constrained to use on-board sensing. Such a vehicle cannot directly measure its

position using information from GPS, but must instead indirectly measure position

using sensors like cameras or LIDAR units, sensors which return measurements that

are strongly coupled to both the vehicle state and the surrounding environment. The

sample scans from a planar laser scanner presented in figure 1-2 illustrate this cou-

pling; the ranges detected depend on the structure of the surrounding environment.

Because the sensor measurements depend on the structure of the environment,

ambiguous structure can lead to uncertainty in the vehicle state, .even for a known

map and accurate sensors. This is a common phenomenon; consider a human driver

travelling on a highway. It is easy for a human to identify in which lane a vehicle is

driving, but in the absence of street signs it can be very difficult to determine how far

19

soD
5

12D Go0

(a 4onr

go
5

12D Wo

(b 4ala

Figure 1-3: Ambiguity in the environment can lead to uncertainty. Each image over-
lays the measurement of a planar laser scanner before and after a small translation.
Near a corner, the motion is unambiguous; in a corridor, the sensor information can

detect a rotation and a motion across the hallway, but cannot detect motion parallel

to the hallway walls.

along a road the vehicle has driven. Without access to GPS or a similar system, the

driver will gradually become more and more uncertain about the absolute position of

the vehicle. Similarly, in a corridor, a laser can give information about the location

relative to the walls, but if the ends of the corridor are out of range a laser scan

gives no information about position along the axis of the hallway. This ambiguity is

demonstrated in figure 1-3.

If the environment is known, simple sensor models can capture this uncertainty;

the probability p(slx, f) of a scan s given a vehicle pose x and a map 0 can be

easily computed. Inverting this relation to infer a distribution of a pose given a scan

is a well-studied problem. However, if the environment is unknown, the problem is

more difficult. One option is to infer a distribution over maps; this is the problem

of simultaneous localization and mapping, or SLAM. Solving this problem can be

computationally expensive, and if the robot does not require a map to achieve its

objectives, SLAM processes are often an undue computational burden.

An alternative approach is to process the measurements in an attempt to decouple

20

the sensor measurements from the unknown environment. For example, aligning se-

quential laser scans gives a displacement between frames which is largely independent

of the structure of the environment; this displacement is an indirect observation of

the vehicle velocity. Often we can model the distribution over such a processed mea-

surement as multivariate Gaussian random variable-that is, as a single hypothesis

with an associated uncertainty.

p(zlx) =Kr(zjHx,R) (1.1)

Here, the matrix H is a projection from the state space to the observation space,

while R is a covariance matrix parameterizing the uncertainty associated with the

observation.

This model is convenient; it enables exact, efficient inference using the Kalman

filter [25]; I review this algorithm, and several important variants, in chapter 2. How-

ever, choosing this model introduces a new problem: identifying the covariance R.

Choosing a single fixed covariance cannot model variations in uncertainty due to en-

vironmental ambiguity. Fixed covariance models can be, and have been, employed

successfully, but choosing the parameters appropriately is a matter of touch and

tuning, and requires trading off the cost of uncertainty associated with an inflated

covariance against the risk of inconsistency or incorrectness if the covariance is set

too small. Predicting observation covariances, and explicitly allowing that covariance

to vary, will lead to strictly superior performance.

1.2 Covariance prediction

This thesis is concerned with the task of predicting the uncertainty of a observation

computed from a raw measurement. The problem of covariance prediction is not

limited to state estimation; predictive covariance schemes can be useful any time a

variable is computationally abstracted from raw sensor data and treated as a Gaus-

sian. This occurs in constraint based SLAM systems [30], in speech recognition

21

[16, 38], in financial time series forecasting [19], and elsewhere. However, I focus on

state estimation as a concrete example of the utility of predicting covariances.

Covariance prediction is not a new problem, but there is no consensus on how

predictions ought to be made, nor even on what the covariance should depend. Com-

monly, the covariance is assumed to be time-varying, or state-dependent; I argue that

the covariance instead should be predicted based on the sensor measurement from

which the observation was computed. This has the advantage of flexibility, while still

promising generality: it is reasonable to assume, for example, that any corridor-like

environment will provide information about just one direction, regardless of whether

that corridor is in an office in Cambridge or a cave on Mars. By formulating the

prediction problem so that the covariance depends on the sensor measurement, the

predictions are shown to generalize to new environments without access to training

data in those environments.

Having formulated the prediction problem, I then develop an algorithm for learn-

ing a covariance model by maximizing the likelihood of the observation model. The

learning objective gives the algorithm its name: Covariance estimation through learned

likelihood optimization, or CELLO. This algorithm is shown to be computationally

efficient and asymptotically correct, both under a frequentist and a Bayesian inter-

pretation of statistics. In addition, I employ expectation maximization to generalize

CELLO to the unsupervised case, where ground truth estimates of state are unavail-

able; the modified algorithm, called CELLO-EM, retains the asymptotic correctness

of the supervised variation.

Finally, I describe the details of my implementation of CELLO, and provide a

guide for usage. Using this implementation, I validate the algorithm, both in simu-

lation and on real data taken from several sensors, including a planar laser scanner,

a monochrome camera, and an RGB-D sensors. I show that using a dynamic covari-

ance model can lead to dramatic improvements over a fixed covariance model, and

additionally show that CELLO outperforms competing state-of-the-art algorithms,

even in the domains for which those algorithms are designed and tuned.

22

Chapter 2

Recursive Bayesian estimation

Recall the motivating example of from the previous chapter. A robot navigates an

unknown environment, and at discrete intervals receives raw sensor measurements

C(E RNC, where t E Z is the index of the interval in which a measurement is received.

Throughout this thesis, the dimensionality of any vector v will be denoted as Nv; NC

is then the dimensionality of the measurement vector C. Based on the information

those sensor measurements provide about the state of the vehicle and the state of the

world, the robot can generate actuator commands to accomplish whatever task has

been assigned to it.

It is often simpler to first calculate an estimate of the vehicle state, and then make

decisions based on that estimated state'. Decoupling the planning and control prob-

lem from the sensor processing problem can lead to more efficient, more interpretable,

and better-performing planners and controllers. In particular, the decoupling enables

planning at a higher level: it is difficult to express a command like "Move forwards

ten meters" in terms of a camera image, but it is trivial to express in terms of a

position estimate.

I represent the environment by the random vector Q, and denote the vehicle state

at time2 t as xt, drawn from a state space X. For a rigid body in three dimensions,

1 It is possible to make control decisions without a state estimate, or indeed without a model of
the state at all. An example of this approach is the predictive state representation introduced by
Littman et al. [29]. I restrict my discussion to problems with a clear state to be estimated, and do
not further consider such approaches.

2 The representation of time as discrete is necessary for implementation on a digital computer,

23

the state would include a three-dimensional position vector and three orientation

parameters, as well as the first derivatives of these parameters, for a total of twelve

elements; therefore, for a rigid body X = R12. The state at any time step is assumed

to have the Markov properly: it is conditionally dependent only upon the state at

the previous time step.

p(xtxt_-1, xt-2, - - - ,xo) = p(xtlxt-1) (2.1)

The distribution3 p(xt xt_1) I refer to as the process model. This distribution encap-

sulates both how the state will evolve, and how uncertainty will accumulate as our

predictions extend into the future. Formally, the state sequence {xt Vt E Z > 0}

constitutes a discrete-time Markov process.

Given an initial distribution p(xo) it is straightforward to compute the distribution

at any future time by marginalizing the intervening states. There are a number of

approaches to inferring a state sequence X1:N = {Xi,.. . , XN}, based on a sequence

of available measurements C1:N = 1, - - - , CN}. In this chapter, I present a review

of common techniques and approximations employed to solve the state estimation

problem. I attempt to illustrate that, for some domains, all existing methods are

unsatisfying, and I argue for an alternate model to be employed instead.

2.1 Hidden Markov models

Sensors generate data by interacting with the environment; as such, our sensor mea-

surements depend both on the vehicle state x and on the environment Q. The de-

but does not represent a significant loss of generality; the state of a continuous-time system at any
countable collection of times may be represented without approximation as a discrete-time system.

3 As a mathematical aside, when I refer to a distribution p(x) over a space X, I mean a marginal
density with respect to a dominating measure. I abuse notation and refer to this measure as dx;
therefore, the expression

J dxp(x) f(x)
(2.2)

should be interpreted as a Lebesgue integral, and give the expectation E [f) regardless of whether X
is discrete or continuous. In the case where X C R", the integral of equation (2.2) may be evaluated
as a multidimensional Riemann integral; if X C Z", the integral should be evaluated as a sum.

24

(a) Measurement model

(b) Hidden Markov model

Figure 2-1: The true measurement model in figure 2-1a reduces to the hidden Markov
model of figure 2-1b if the environment is observed or if the measurements are inde-
pendent of the environment. The hidden Markov model has the important property
that the state Xt as time t depends only on the previous state xt- 1 and the current
measurement Ct.

pendency structure is depicted graphically in figure 2-la. If the environment is ob-

servable, or if the measurements are independent of the environment, this structure

can be reduced to the familiar form of a hidden Markov model, as in figure 2-1b.

When all relevant environmental parameters are known, or if our sensor is such

that measurements are independent of the environment, the system has the depen-

dency structure of a hidden Markov model. For example, a ground vehicle using wheel

odometry to estimate position takes measurements which depend on vehicle velocity

but are nominally independent of its environment. In the case of the quadrotor heli-

copter described in chapter 1, if the vehicle is navigating in a known map, sequential

scans taken by a laser range finder are independent, and depend only on the vehicle

25

pose.

I refer to an observation zt E Z of the state xt at time step t as distinct from a

measurement Ct. A measurement refers specifically to raw data collected by a sensor;

by construction, an observation is statistically independent of all other observations

as well as the vehicle state at all other time steps.

p(ztjxt, Zt, zt_1, . . ., zO) = p(ztjxt) (2.3)

It follows that a measurement C may or may not constitute an observation of the

vehicle state x, depending on whether it depends on the environment n. The set Z

denotes a space of possible observations, and may be continuous or discrete. I refer

to the distribution p(ztlxt) as the observation distribution, though it is referred to in

some works as the emission distribution or measurement distribution.

There are several queries to make of the model defined by the process and obser-

vation distributions. First, we may seek to infer a distribution over the state xt from

the available sequence of past observations zo:t = {Zo,... , Zt}. This is the filtering

problem, and has an exact, recursive solution, comprised of two subroutines are called

in sequence at each time step. The prediction step evaluates the distribution over the

state xt, given all previous observations-that is, it predicts the current state given

the state estimate at the previous time step.

p(xtjzo:t_1) = dxt_1p(xt ixt_1) p(xt_1 |zo:t_1) (2.4)

Next, the update step evaluates

p(xtlzo t) oc p(ztlxt) p(xtlzo:t_1) (2.5)

By virtue of the Markov condition and the independence of the observations, we only

ever need to keep track of a single time-varying distribution, p(xtIzo:t), in order to

infer the current state given the entire history of observations.

We may also be interested in obtaining the distribution over past states xo:t,

26

given all measurements up to the present; that is, evaluating p(xo:tlzo:t). This is

the smoothing problem. The Markov condition implies the independence of past and

future measurements at any time t:

p(Xt fZo:T) = p(xt IZo:t) p(Xt Zt+1:T) (2.6)

= p(xt Izo:t) p(xt 1 xt+i)P(X 1 |ZO:T) (2.7)

By first running the forward algorithm, we may evaluate the first term of equa-

tion (2.7) for each t. The second term is simply the time-reversed dynamics of the

system; for many classes of models, this is trivial to obtain. The third term may be

evaluated recursively; the last state in the sequence, xT, has p(XTIZO:T) given by the

forward algorithm. The preceding state p(xT_1|ZO:T) may be evaluated recursively

from equation (2.7), and so on. We may obtain p(xo:tIzo:t) by first running the for-

ward algorithm, and then running a similar procedure backwards; accordingly, the

full procedure is known as the forward-backward algorithm.

For simplicity, I have assumed the process and observation distributions do not

vary with time. It is easy to extend to the time-varying case; in fact, the forward and

forward-backward algorithms are completely general, provided we know the initial

state distribution p(xo), the process model p(xtxt_1) at each time step t, and the

observation model p(ztlxt) at each time step t.

Implementing the forward or the forward-backward algorithm requires evaluating

the integrals and products in equations (2.4), (2.5) and (2.7). Unfortunately, exact

evaluation is possible only for a very limited set of models. For other models, we

must approximate; such approximations are well studied, and represent the state of

the art of estimation.

Note that we may always induce the structure of a hidden Markov model given the

augmented Markov model that describes the state estimation problem. Informally, if

we infer both the vehicle state x and the environmental parameters Q, the measure-

ments satisfy the requisite conditions. This is equivalent to running the junction-tree

algorithm on the augmented model, and leads to the simultaneous localization and

27

mapping (SLAM) problem. Substantial work has been done on generating tractable

and efficient algorithms for solving this problem; I will not discuss such algorithms in

this thesis.

2.1.1 Finite State Space filter

Suppose the state space X and the observation space Z are both discrete and finite.

This is useful for resolving classification queries; for instance, a robot may behave

differently outdoors than indoors, and could represent that state by a binary random

variable. I denote X = {1, ... , M} and Z = {1, ... , N}, and represent the probability

of a state i at time t as pl:

p(xt = i) = pi (2.8)

The process and observation models can be represented as Markov matrices F E

RMxM and H E RNxM, so that p(xt+1 = ilxt = j) = Fig and p(zt = ilxt = j) = Hij.

In that case, the prediction, update, and smoothing processes can be expressed in

closed form.

M

Prediction: pt+11:t = Fij (2.9)
j=1

tl:t-1
Uipdte HZipI (2.10)

E_' 1 H.,jpj
M

SmohngJ~1:T P tJl:TZ (F-1)ijpt1l:T (2.11)Smoothing: p (F1;gt Pi
j=1

It is more standard for discrete hidden Markov models to evaluate the backward step

independently of the forward step. The resulting distribution is identical, however.

The finite state space model is of limited utility in state estimation; typically, the

vehicle state is continuous. If we bound the state space and discretize, we obtain a fi-

nite space representation; however, the size of this representation scales exponentially

with the state dimension, and so this is rarely tractable. Moreover for many vehicles

a discretized representation is wasteful: the majority of the probabilistic weight is

28

concentrated among comparatively few discretized states, yet the algorithm devotes

equal resources to the likely and unlikely states.

2.1.2 Particle filtering

An alternative to discretizing the state space is the particle filter, first presented by

Gordon et al. [18]. The particle filter is a recursive, natively continuous solution

to hidden Markov model inference, which can be used with arbitrary process and

observation distributions. This method approximates the distribution over the state

xt E RNX at time t by a weighted sum of a finite number of samples:

p(xt) oc w i6(xt - x) (2.12)
i=1

where proportionality becomes equality if the weights sum to one. There are many

particle filtering algorithms; one of the simplest is sequential importance sampling.

Prediction: xi '~ p(xt+1 lxt) (2.13)

Update: = w.ip(ztlxt) (2.14)

There is no simple smoothing procedure for particle filters.

Implementations of the particle filter typically will resample to concentrate parti-

cles in the most likely regions of probability space. Particle filters require only that the

process and observation models are known; they can tolerate any kind of distribution,

including non-stationary models. They are computationally expensive, however; to

ensure good performance for high-dimensional state spaces, the filter requires a large

numbers of particles be stored and propagated at each time step.

2.1.3 Kalman filtering

If insufficient computational resources are available to run a particle filter, it may be

sufficient to restrict the class of state distributions to some parametric family. When

the process and observation models are uncertain but unimodal, they are often well

29

modelled as a deterministic function of the state, corrupted by white noise.

xt+1 = f (xt) + Wt (2.15)

Zt = h (xt) + vt (2.16)

The process noise wt and observation noise vt are additive zero-mean Gaussian ran-

dom variables with covariance Qt and Rt, respectively.

wt ~' (0, Qt) (2.17)

Vt ~ N (0, Rt) (2.18)

The Gaussian distribution has several properties that make it mathematically attrac-

tive; it is the maximum entropy distribution over the real numbers given a fixed first

and second moment; it is closed under conditioning and marginalization; and it is a

stable distribution. If a variable x is normally distributed,

x . (t, E) (2.19)

then it will remain normally distributed after any linear transformation.

Ax + b K M (Ap + b, AEAT) (2.20)

These properties imply that if the initial state is distributed as a multivariate Gaus-

sian:

p(xo) = K (pos, Eo) (2.21)

and if the process and observation models are linear and Gaussian:

p(xtxt_1) = K (Ftxt_1, Qt) (2.22)

p(ztIxt) = A (Htxt, Rt) (2.23)

30

then the state distribution will remain Gaussian at all future time steps. This is

called the linear Gaussian model, and for this model the prediction, update, and

smoothing steps may be evaluated exactly and in closed form, resulting in the well-

known Kalman filter [25].

Prediction:

Update:

Smoothing:

pXxt Izo:t_1) = NV (prio:t_1, Etio:t_1)

tto:t-1 = F t yt_jjO.t_1

EtIO:t-1 = Ft tiio:_1FT + Qt

p(xt Izo:t) = AN (ptio:t, Etio:t)

AtIo:t = plo:t-1 + Kt(zt - HtippO~t_1)

Etio:t = ~~L KtHt)Etio:t_1

Kt = Etio:t_1HT(HiEtio:t_1HT + Rt)-1

P(XtIZo:T) = NV (PtIO:T, EtIO:T)

ItIO:T = Itlo:t + Lt(t+110:T - /It+1io:t)

EtIO:T = Etjo:t + Lt(Et+110:T - Et+1lo:t)L

Lt = Etio:tF E-1

These results follow naturally from the definitions of each step and properties of the

Gaussian distribution, although the derivations entail substantial algebraic manip-

ulation. The Kalman filter is an exact solution to the filtering problem on hidden

Markov models, provided all distributions are Gaussian, all mean functions are linear,

and all parameters are known. Moreover, compared to the particle filter or the finite

state space filter, the Kalman filter is highly efficient. The most expensive step is the

inversion of symmetric covariance matrices; the complexity of this operation scales

with a polynomial, rather than an exponential, function of the state space dimension

N, and the observation space dimension N2. Because of this polynomial complexity,

the Kalman filter is tractable even for very large state spaces.

31

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

2.1.4 Non-linear Kalman Filters

The restriction to linear observation and process functions can limit the utility of the

Kalman filter. Often, sensors are fixed to a moving robot; to estimate the state in a

fixed frame, we must rotate the sensor measurements, which is a non-linear transform.

There are many variants on the Kalman filter designed to handle nonlinearities. The

oldest and most well-known is the extended Kalman filter, first presented by Gelb

[15]. The extended Kalman filter makes a locally linear approximation to nonlinear

transition and observation functions. In particular, it approximates

h (xt) ; h (pt) + Vh (t) xt (2.32)

f (xt) ~ f (pt) + Vf (p't) xt (2.33)

This implies the observation matrix Ht = Vh (it) and the transition matrix Ft =

Vf (pt). Provided the covariance is small enough that higher derivatives of the

observation and process functions can be ignored, this approximation performs quite

well. Other variants, like the unscented Kalman filter [24] or the cubature Kalman

filter [3], approximate the posterior differently, and extract different advantages from

doing so. It is possible to derive closed form recursive filters for skewed [371 or

platykurtic [1] noise distributions. The underlying mathematics is fundamentally

similar but mechanically complex, and I do not discuss such variants here.

2.2 Preprocessing measurements

The Kalman filter provides an efficient framework for inference, provided the observa-

tion function is smooth and continous. For complex measurements like those returned

by a camera or planar laser, measurements which are discontinuous functions of both

the state and the environment, the Kalman filter is not immediately applicable. Of-

ten, it is possible to process the raw measurements C, and generate observations z

that are smooth, low dimensional functions of the vehicle state.

Given a planar laser scan in a known environment, for example, it is possible

32

to localize by particle filtering in the six dimensional space of positions and ori-

entations, rather than the full twelve dimensional state space of the vehicle. This

low-dimensional localization can then be incorporated into a Kalman filter as a noisy,

but smoothly varying, observation of the vehicle state. This is the approach taken by

Bry et al. [12], and results in a significant computational win.

If a map is not available, it is possible to compute a transformation between

sequential laser scans, and treat these transformations as observations of the vehicle

velocity. This process is known as odometry, and can be done with a variety of

sensors. If the transformations are computed from laser scans, the process is called

scan-matching; if they are computed from a sequence of images, the process is visual

odometry. This provides an efficient way of estimating the full state of a vehicle, even

for complex sensors with strong dependency on an unknown environment. In effect,

the computation of an odometry observation acts as a high-pass filter, removing the

low frequency signal that is the unknown but fixed map and leaving behind just the

vehicle state.

2.3 Covariance models

Although processing raw measurements into observations permits the use of efficient

hidden Markov model inference without the need to infer a description of the environ-

ment, it induces a new problem. The uncertainty of an observation, parameterized by

the covariance, must be carefully chosen in order to ensure good performance. If the

covariance is chosen poorly, the inferred state distributions may become inconsistent

or even divergent.

The problem of choosing the noise parameters in a Kalman filter is not new; it

has attracted attention for many years. The most common solution is to simply

choose parameters which yield good performance; this is the approach taken in the

seminal work of Kalman [25]. Kalman demonstrated his eponymous filter was the

least-squares optimal solution to the filtering problem; it solved the same problem as

a linear-quadratic regulator, with the noise covariances R and Q filling the roles of

33

the positive definite gain matrices defining the quadratic cost function. 4

In that sense, the noise covariances are simply gain matrices representing the cost

of filter error, with a cost function defined as

T

C(XO:T, ZO:T) Z (zt - h (xt))TRt(zt - h (xt))
t=o

T

+ Z(xt - f (xt-1)) T Qt(xt - f (xt_1)) (2.34)
t=1

These gains may be tuned by hand or chosen heuristically. Using the filter in this

way is valid, and often results in satisfactory performance. This interpretation also

illustrates the phenomena that scaling both R and Q by an identical constant factor

will not affect the estimated trajectory po:T, although it will affect the estimated

state covariances. If the covariances are simply being discarded, as is often the case,

this overall scale factor may be safely ignored.

However, if we wish to explicitly reason about uncertainty, we require that the

state estimate covariance be equal to, or at least an approximation of, the true co-

variance of the estimate. Reasoning about uncertainty can be crucial for insuring

robustness. If, for instance, the standard deviation of the position error is much

smaller than the distance to the nearest obstacle, commanding an aerial vehicle to

make aggressive maneuvers is sensible. If there are obstacles inside the 2- covariance

ellipse, then with high probability aggressive maneuvers will result in a high-speed

collision.

For such situations, the Bayesian interpretation 5 of the filtering problem is es-

sential, as is choosing the noise parameters to accurately reflect the process and

observation distributions. Moreover, in the general setting of recursive Bayesian es-

timation, the distribution parameters may not have a clear interpretation within a

' Note that I explained the Kalman filter in the context of recursive Bayesian inference on a
linear Gaussian model, while Kalman derived it as the least-squares optimal linear filter regardless
of noise distribution. Both interpretations yield the same filter.

5 Here, Bayesian refers to Bayes' theorem, and not to the Bayesian interpretation of statistics. It
is used to contrast the least-squares interpretation; both the frequentist and Bayesian interpretation
of statistics agree on the form of a recursive Bayesian estimator, although they would disagree on
how to interpret the resulting distributions.

34

cost function, and so it may not be clear how to make reasonable, let alone optimal,

choices. We require a principled, and ideally algorithmic, approach.

2.3.1 Optimal fixed-parameter models

Rather than tune the process and measurement covariances by hand, they may be

inferred via the Baum-Welch algorithm [8], which is a special case of the Expectation-

Maximization algorithm [14], applied to hidden Markov models. Formally, given ND

observations {Z 1, ... ,ZND}, along with an initial guess at the parameters 00, the

Baum-Welch algorithm evaluates

N

0* = argrmax flp(ilo) (2.35)
0 i_1

N

= arg max Idxl... xND Np(Xi i)p(Zi 0) (2.36)
0 J i=1

This algorithm evaluates this optimization efficiently by iteratively improving the

estimated parameters, in two alternating steps. First, we evaluate the latent variables

conditioned on the current parameter estimate:

j,(n) .. (n) =E(.7

l . . . (N = E [x 1 . .xN IZi, 0n] (2.3

This expectation may be found using the forward-backward algorithm. Then, we

evaluate the maximum likelihood parameters given the distribution over the latent

states found during the expectation step.

N

0* = arg max JJ p(Zilx"), o) pQn)) (2.38)
i=1

Iterating between these steps will always converge to a local maxima.

If the parameters to be estimated are the covariances of a fixed-covariance linear

Gaussian model, then the expectation step of equation (2.37) reduces to running a

Kalman filter forward and smoothing the data after, according to equations equa-

35

tions (2.24), (2.26) and (2.29). The maximization step has a closed form solution:

ND

(n) =N + 1 (i - H)(- Hit ")T (2.39)

ND± 1 (s F_ 1 2)(ks - Fi_1(2.40)

It can be shown that for a fixed-covariance linear Gaussian model this optimization is

convex and thus will converge in finite time to the unique global maximum-likelihood

parameters.

Unfortunately, the best fixed noise parameters may still give suboptimal results.

Recall the example of scan-matching in a hallway; when the laser cannot see the far

ends of a straight-walled corridor, the observation computed from the measurements

provides no information about motion parallel to the walls. A fixed covariance model

cannot capture this behavior.

2.3.2 Adaptive parameter models

Adaptive parameter models assume the parameters are a function of time.

Rt = R(t) (2.41)

These models extend the inference procedure to estimate the noise parameters in

tandem with the state vector. In the context of the recursive Bayesian framework,

they infer

p(xo:T, RO:T, QO:TIZo:T) (2.42)

Alternatively, some adaptive methods choose to minimize some cost function of the

sequences of x, R, and Q, such as the weighted squared error of equation (2.34). The

earliest example of this approach was given by Mehra [33], called the adaptive Kalman

filter. The adaptive Kalman filter conducts a statistical optimality test at each time

step, and if the test determines the covariances are suboptimal, the covariances are

updated. These updates guarantee asymptotically unbiased and consistent estimates

36

of the covariance matrices. That is, if there exist fixed R and Q, and if the system

is linear Gaussian, then in the limit of infinite samples the state estimate x will be

unbiased and the covariances R and Q will converge to their true values.

This filter is most useful if the covariances are known to be fixed, but no data is

available before run time for training. Without prior data, expectation-maximization

cannot be applied. However, the trifecta of linearity, Gaussianity, and stationarity is

rarely achievable in the domains of interest. Even approximate stationarity implies

the time scale over which the noise parameters vary is much greater than the time

scale over which the state varies. As such, the adaptive Kalman filter can make no

performance guarantees in the face of rapid changes in the noise parameters, even if

it were possible to guarantee linearity and Gaussianity.

Others have used the same basic strategy, with differing update criteria and meth-

ods. For instance, the adaptive fading extended Kalman filter of Kim et al. [26]

computes the measurement and process covariances from a sliding window of recent

measurements. Hu et al. [22] use a similar strategy, recursively updating the noise

parameters as if they were constant but utilizing a forgetting factor to place more

emphasis on more recent innovation covariances.

Any adaptive strategy is faced with a fundamental limitation; in order for adaption

to function, the noise parameters must be tightly correlated in time. This is certainly

the case for fixed or slowly varying parameters, but there is no reason to assume

a priori that this is the case. In fact, for sufficiently complex sensor processing

algorithms, it is often not the case; consider the example of laser scan-matching

odometry given previously. If a robot in a hallway yaws rapidly back and forth, in

the frame of reference of the robot the observation covariance should rotate equally

and in the opposite direction. This will induce rapid changes in the observation

covariance-changes which ought to be predictable, but which will not be detected

by an adaptive system.

37

2.3.3 State-dependent covariance models

Although the observation uncertainty may vary rapidly in time, it is reasonable to

assume the uncertainty to vary slowly in space. This naturally induces a covariance

model which is state-dependent.

Rt = R(xt) (2.43)

Stakkeland et al. [40] take this approach, formulating the noise parameters as explicit

parametric functions of the state. This approach requires detailed domain knowledge

in order to choose a reasonable model, as well as extensive tuning; for many domains

it is not clear what form a reasonable noise model should take, or if one even exists.

Aravkin and Burke [4] avoid the need for an explicit model through the use of arbitrary

state-dependent noise functions for smoothing; by reformulating smoothing as an

optimization problem, they show improvements in some limited contexts. However,

the loss of the recursive structure makes this approach unsuitable for online use.

Ko and Fox [27] employ Gaussian processes in a filtering context to learn both the

mean and covariance of the observation and process models directly from data. Like

the adaptive models discussed in the previous section, they assume the observation

and process distributions are stationary and Gaussian. The parameters of those

distributions-the means and covariances-are permitted to vary with the state:

p(xt+l|xt) = K (tx.(xt), Ex(xt)) (2.44)

p(ztIxt) = K (p. (xt), Ez (xt)) (2.45)

These mean and covariance functions are then learned using Gaussian processes.

Provided the stationarity condition holds, in the limit of infinite samples the GP

Bayes filter algorithm will obtain the true observation and process distributions. This

method is of particular utility if the observation or process function is unknown or

expressible only in terms of a large number of parameters; rather than choose a crude

approximation, the non-parametric allows the function to be learned online.

38

The GP Bayes filter is fundamentally limited; it supports only diagonal covari-

ances, rather than the more general positive definite cone. This limitation would

seriously degrade performance in places where observation noise is expected to be

correlated. For example, the uncertainty of observations from a scan matcher in a

hallway is large in the direction parallel to the walls, regardless of which way the

sensor is facing. The diagonal approximation is lacks the flexibility to describe this

uncertainty, regardless of how slow the covariance changes or how much data is avail-

able.

An approach proposed by Melkumyan and Ramos [34] could mitigate this issue;

they describe multiple-output Gaussian process kernels which generate symmetric

positive definite covariance matrices. The approach is known as the multi-kernel

Gaussian process. The work proposes a general method for constructing both the

diagonal and cross-covariance terms from a restricted set of kernel functions. The set

of valid covariance functions proposed includes sparse functions; this sparsity makes

tractable the large matrix inversions necessary for Gaussian process inference.

Wilson and Ghahramani [43] present a non-parametric Bayesian method for esti-

mating arbitrary distributions over positive definite matrices. The target application

was volatility estimation, for use in quantitative finance; however, the method could

be applied to sampling the covariances of the process and observation models, thus

avoiding the need to learn the mean function while permitting the prediction of a full

dense covariance matrix. However, because the method lacks a closed form solution,

it is necessary to use sampling techniques to make predictions. This is prohibitively

expensive for real-time use.

Although Ko and Fox make no provision for non-stationary distributions, adapta-

tion to slowly-varying distribution parameters may be achieved by allowing the mean

and covariance functions to depend on time.

p(xt+1 xt) = A (t. (xt, t), E.(xt, t)) (2.46)

p(ztlxt) = K (pZ(xt, t), E2(xt, t)) (2.47)

39

The Gaussian process would then favor more recent data over older data. The precise

form of the Gaussian process kernel would determine the time scale over which the

parameters could be permitted to vary.

Although this weakens the stationarity requirement, it does not remove the more

fundamental limitation: the covariance of the observation or process models may not

depend solely on the state, but also on the environment. This method lacks the

flexibility to generalize to new environments; exploring new areas implies entering

a region of new state space, where the GP filter has no information about noise

characteristics.

2.3.4 Measurement-dependent covariance models

A time-dependent or state-dependent model cannot capture the dependence of obser-

vation uncertainty on the environment. However, the observations zt are computed

from sensor measurements (t; it is natural to compute the observation covariance R

based upon the same measurement.

Et = R(Ct) (2.48)

Many authors have presented such measurement-dependent covariance models, often

tailored to specific algorithms. Bengtsson and Baerveldt [10] approximate the covari-

ance of observations derived from minimizing cost functions C(z, C) which are well

approximated as quadratic:

C(z,() = (C - Mz) T (- Mz) (2.49)

Cost function such as this as are common in scan-matching odometry. The iterative

closest point algorithm (ICP) computes a transform between two scans C and C', both

represented in Cartesian coordinates, by choosing corresponding points in each scan

40

and minimizes the squared error between corresponding points:

z = argmin||C - T(z)C'| (2.50)

Here, T(z) is a rigid transform, incorporating a rotation and translation. Linearizing

about some z yields a cost function of the form of equation (2.49), where M reflects

the linearized transform. Under this approximation, the estimated covariance is

_ (TM)-1 2 1I82C ~2
cov (z) ~ (MTM) 2 2 2 2 (2.51)

with o a measure of the measurement noise. This estimate is valid only when the

cost function C(z, C) has sufficiently small curvature for a linear approximation to be

valid. As a corollary, equation (2.51) requires a smooth cost function; this precludes

the use of the L" norm, for example.

Andrea Censi [2] points out that this method and others like it do not consider

the way the measurement affects the cost function C. He presents a method for

estimating the covariance of any minimization algorithm, incorporating effects of

both the measurement C and the observation z. In particular, he shows that for a

cost function C(C, z), the covariance can be approximated as

(2C -1 02C &2C T 2C -I
cov (z) ~- - cov (C)) (2.52)

o5z_2 5-zo- Izg~a (z2)

provided the map from measurements C to observations z can be approximated by a

first-order expansion. Applying this method to the iterative closest point algorithm

for laser scan-matching odometry, he obtains a simple closed form estimate of the

observation covariance.

Bachrach et al. [5] use a related cost function which first locates contours in

the environment, then minimizes the distance to those contours. The shape of this

error function induces a covariance matrix in much the same way as in the work of

Bengtsson. However, the method of Bachrach implicitly incorporates measurement

information through the contours, in contrast to the work of Censi, which incorporates

41

that information explicitly.

Brenna [11] provides a useful survey, and a performance comparison of different

approaches. All methods described here share an inherent weakness: they rely on

the ability to obtain an accurate approximation of the cost function. If a linear or

quadratic approximation is not accurate, the approximate predictive approach will

generate inaccurate predictions. Moreover, there is little opportunity for learning

or feedback; therefore if the predictions are initially suboptimal, they will remain

suboptimal regardless of the amount of data collected.

Methods relying on the Jacobian or Hessian also require substantial programmer

intervention to extend to new sensors-if such extension is even possible. For instance,

one may desire to use an RGB-D camera instead of a laser range finder for odometry.

In order to use the method of Censi, a programmer would need to derive the Hessian

of the visual odometry system. It would be difficult to recycle code between sensors,

despite the similarity of the problems. Any algorithmic tuning made for one sensor

would likely need to be discarded.

A more general approach is to formulate the development of the covariance model

as a learning problem. This is what Ko and Fox did for the state-dependent model,

and their method could be extended to predict covariances based upon the raw mea-

surement C.

p(xt+1|xt) = A (p.(xt, Ce), E.(xt, Ct)) (2.53)

p(ztlxt) = (i.(xt, Ct), Ez(xt, Ct)) (2.54)

Because the mean function is known for many domains, I restrict the learning to

just the noise parameters; moreover, for simplicity I focus on learning the observa-

tion covariance, noting that the same general procedure could be used to learn the

process covariance. Under this model, the covariance will be predicted, rather than

adapted; this allows for rapid changes, while still permitting generalization to new

environments. In the next chapter, I explore a method for learning models of this

form.

42

Chapter 3

Covariance Prediction

Recall the motivating example of a robot with state xt E RNX at time t, with Nx the

dimensionality of the state vector. It is equipped with a sensor providing noisy raw

measurements (t E RNC at each time step; these measurements could be the pixel

values of a camera, for instance, or the ranges returned by a planar LIDAR unit,

and as such the measurement dimensionality NC may be quite large. The raw sensor

measurements are dependent on both the (unobserved) robot state xt and on the

environment Q. Given this probabilistic model of the sensor data, shown in figure 2-

la, as well as a model of the state dynamics, the history of measurements can be used

to infer the state of the robot.

To avoid reasoning about the environment, we compute an observation zt = z(Ct)

from the high-dimensional signal available from sensors. We model the observation as

a multivariate Gaussian, with a mean defined by a known deterministic observation

function, h (x), and a covariance function R(Ct). This covariance function R : C - R

maps a measurement C E RNC to a symmetric positive definite matrix R E RN-xN- >.

0. Our observation distribution is then given by equation (3.1).

z K ~ M (h (xt) , R((t)) . (3.1)

Our goal is to learn R(C) given a set of sample data, in order to predict a covariance

R for a given observation. To facilitate the learning process, we assume that the

43

covariance function depends on the measurement C only through a set of deterministic

predictor features q. This assumption results in no loss of generality; if we choose the

predictor features to be the elements of the measurement vector C we exactly recover

the formulation of equation (3.1). However, because there is often a set of features

such that No < NC, we may learn a function from RN0 - R_ NxNz >- 0, which

is a far easier learning problem. This implies the observation distribution given in

equation (3.2).

z K ~ N (h (xt) , R(#t)). (3.2)

We assume, for the moment, that we are given both the measurements C and the

corresponding states x. From these measurements, we compute observations z and

predictors #. Our problem, formally stated, is then to learn an estimate R(q5) of the

covariance function R(#k) given a set D of ND triplets (xi, zi, #;) Vi E [1, ND].

3.1 Estimating a fixed covariance

Recall that if v - N (0, R), then

E [vvT] = R (3.3)

If we have a set of N independent samples {vi, ... , VN from a multivariate Gaussian,

so that vi K N(0, R) Vi E [1, N], then both the maximum likelihood estimate

and the minimum variance unbiased estimate of the distribution covariance is the

empirical covariance.

NN vZ v (3.4)

For a linear Gaussian measurement model, h (x) = Hx+v with v K M (0, R), we may

compute samples v = z - Hx if we have access to a sequence of both measurements

z and states x. Therefore, if we have {(x 1 , z 1),..., (XN, ZN)}, the minimum variance

44

estimate R for the observation covariance R is the outer product.

I N)T
N : (Zi - Hxi) (Zi - HXi)T (3.5)= IZ TR(Xi, Zi)

i=1

We introduce the notation TR(xi, zi) = (zi - Hxi)(zi - HX,)T for brevity in future

derivations. Importantly, if the covariance is fixed, this estimator is unbiased.

E [] = E [TR(X, Z)] = R (3.6)

3.2 Kernel Estimation

If the covariance R is free to vary with the predictor, equation (3.6) is true only when

conditioned on the predictor vector #.

R(#,) = E [TRI~tI = I dz dx TR(X, Z)p(X, ZI4#)

We may rewrite equation (3.7) in terms of the joint distribution p(X, Z, #):

E [TR10
fdz f dx TR(X, Z)p(X, Z10) p(#)

f dz f dxp(x, z1#) p(#)

fdz f dx TR (X, Z)p(X, Z,
f dz f dxp(x, z, #)

This is beneficial, because given a set D of observations,

D = {(xi, zi, #i) Vi E [1, ND I

we may approximate that joint distribution using kernel regression techniques.

A function k : X x X -+ R+ is an admissible kernel if it has the following

45

(3.7)

(3.8)

(3.9)

(3.10)

properties.

Non-negative:

Normalized:

Asymptotically identical:

Exponentially bounded:

k(x,x') > 0

Jdx'k(x, x') = 1

Vx, x'

Vx

lim k(x, x') = 6(x - x') Vx, x'
ND-+00

lim exp(AI|x-x'|)k(x,x') <oo 3A>0,Vx,x'
IlX-X11-+o

It can be shown that the kernel density estimate

ND

f(x) Y k(x, xi).
i=1

(3.11)

is a consistent estimate of the distribution p(x); see appendix B for a proof. It follows

that we may approximate the distribution p(x z, #) by a sum of kernel functions.

p(x, z, #) ~ (x, z, #) = k(x, xi)k(z, zi)k(#, #;) (3.12)

I restrict attention to isotropic, symmetric kernels:

k(xi, xj) = k(Ijxj - x11, ax) (3.13)

and likewise for the observation and predictor kernels. The kernel scale a is a scalar

defining the size of the kernel, defined such that k(I|x||, -) = -k(o-|x|, 1). The norm

|Ixi - xj|| will often be a scaled Euclidean norm:

Ixim = VxTMx (3.14)

This form is not essential, but simplifies analysis, and experimentally the use of other

norms has little effect on performance. Note that this choice is minimally restrictive;

provided the space of predictors can be embedded in the space of real numbers, the

analysis presented here is valid.

46

Common kernels include the linear kernel,

k(||Ax||, 1) oc (1 - ||Ax||)1||1Axii<1, (3.15)

the quadratic kernel,

k(IIAxII, 1) oc (1 - IIAxII2)1|AxilI<1, (3.16)

and the squared exponential, or Gaussian, kernel,

k(IIAxII, 1) oc exp(-||Ax||2). (3.17)

Kernels with finite support, such as the linear or quadratic kernels, offer an important

computational advantage: the distribution near a point x will only be influenced by

a subset of the available samples. There exist data structures designed for efficiently

finding all points within a fixed distance of a specified query point; for instance,

the k-D tree can find nearby points in time logarithmic in the number of available

samples. For large datasets, this speedup can enormous.

Using our isotropic kernel, we may approximate the joint distribution of equa-

tion (3.9) as

P (x, z, #) = k(j|x - xiii, o-x)k(I|z - zill, o-2)k(I|| - Gill, o4) (3.18)

This approximation allows us to evaluate the integral in equation (3.9). Substituting

the approximation of equation (3.18) for the true distribution, we find

f dz f dx TR (X, z)p(x, z, #)
E [TRI] - fdZ dX p(x, z,)

f dz f dx TR(X, Z) N 1 k(iix - xill, ox)k(iiz - Zi , o-)k(2 - 0i1, o)

f dz f dx - EN 1 k(iix - xill, o-x)k(I|z - zill, o-2)k(||#0 - #ill, o)

(3.19)

47

The constant factors of cancel; properties of the integral allow us to reverse the

order of summation and integration.

Ei= fdz fdxTR(X,z)k(I x - xilj, o)k(Ilz - ziI, o-z)k(1 - O o4)E [TRIO
EZl fdz f dxk(IIx - xill, o-x)k(I|z - zill, o,)k(|# - 4i, o)

(3.20)

Because the kernel functions are required to be normalized, we may immediately

simplify the expression in the denominator.

E_1 fdz f dx TR(X,z)k(Ilx - xi1, ox)k(Iiz - zilj, z)k(jjo - Oii, o)E [TRIO Nk(1- ilco
(3.21)

Finally, note that we are free to choose the state kernel function k(||x-xil, o-x) and the

observation kernel function k(||z - zi||, o,,) as we see fit. In order to recover the fixed

covariance estimator in the special case when the covariance is independent from the

predictor vector, the unique choice for the state and observation kernel functions is the

Dirac delta function, k(|x - xill, o-x) = 6(||x - xll), and k(liz - zill, o-) = 6(Iz - zill)

Evaluating the integrals for this choice of kernels, we arrive at a closed-form estimator.

E N TR(Xi ,zi) k(II - O 41, ou)
E i=1 k(ii| - #Oi|, o4)

This is a Nadaraya-Watson estimator [36, 42], extended to estimate the unobservable

quantity R in terms of the observable statistic E [TRI. The kernel function allows

us to compute an expected covariance by averaging over a set of nearby, but not

identical, measurements in the data set. This is crucial; it is almost certain1 we will

not measure the exact same predictor # twice, since our predictors are continuous

functions.

Note that the final estimate depends only on the predictor #; we have elimi-

nated the dependence on the state x and the observation z. This independence from

the state is encoded in the model structure that underlies the algorithm, and its

emergence here was inevitable. hnportantly, the estimate is now independent of the

1 In the probabilistic sense: the set of predictors with # = #0 has measure zero.

48

environment given the predictor vector, and thus can trivially generalize to new en-

vironments provided the predictor encodes the relevant information contained in the

raw measurement.

This defines a procedure, described in detail in algorithm 1, for predicting the

covariance of a new observation at run time, given a dataset D and a prescribed

kernel function. First, compute the observation z and predictor vector # for the new

raw measurement. Then, evaluate the kernel function k(#, 4#;) for each sample in the

available data set. The prediction is then given by equation (3.22) as a sum of outer

products of error vectors weighted by the kernel function.

Algorithm 1 Covariance prediction

Input: Query point #
Input: Dataset E = {(v;, #;) Vi E [1, ND]}

Input: Parameters a of kernel function k(.,-)
Output: Estimate A of the covariance R at point #

function PREDICTCOVARIANCE(q5, E), a)

A <- 0, n +- 0
S <-NEIGHBORS(q5) > Returns S

for i E S do

A <- A + k(#, #;)vivT
n <- n + k(, #)

end for
ft -ift1

n

return R
end function

CED: #-- #||m<- ViES

3.3 Asymptotic Properties

I first present several asymptotic properties of the kernel estimator, and demonstrate

that there exist kernel parameters for which performance is guaranteed. A derivation

of these properties is available in appendix B. Let the vector 0 represent the indepen-

dent elements of the matrix R, and the elements of the vector estimator To represent

the corresponding elements of the above matrix estimator TR. Using this notation,

49

the estimator in equation (3.22) can be written

EN k(1|# - illj)To(vi)
O(# = =1(3.23)

Z=_ k(jjq# - #il|)

I denote the kernel scale as o and assume the kernel metric to be of generalized

Euclidean form, with a metric tensor M:

11 - #;ll = (# - - (3.24)

This permits the definition of a local coordinate system p = L(q - q), where M =

LTL; in this local coordinate system, the kernel function is spherically symmetric.

k(||# - 4|lm, o-) = o-k(IW||) (3.25)

With these assumptions, it can be shown that, in the limit of many samples and small

scale, the estimator is unbiased to first order.

lim E N- 0(#) = v 0(#) + 2V logp(#) T M-jV(#) + V2p(4)))2 o'cK

Ncr-+oo

(3.26)

Here, V2 0,4) = tr (VVT0,(#)M~1) is the Laplacian under the metric M, and

Ck = f <pk(p)dp is the second moment of any element under the kernel, since each

element is treated identically. In the special case of the Euclidean metric, where

M = 1, and uniform sampling density, this can be reduced further.

lim E [0(() = V2.(4)J2cK (3-27)

In addition, the same assumptions give an asymptotic variance.

lim V (b) = dK V (A) (3.28)
u-o/O p(#) NDo-

50

Here, dk = f k(cp)2 dcp. If we define the kernel scale o- as a function of ND, we

may express equations (3.26) and (3.28) in terms of just a single condition. Suppose

- oc NL'. The bias and variance may then be expressed as

lim E [O-O0() c 1 (V2o(#) + V logp(#)T M-IVO(#) N2acK (3.29)
ND -+oo L 2

and

lim V (b) oc dK N -'V (Bi (3.30)
ND-+ooV0)

Provided 0 < a < 1, in the limit as ND goes to infinity both the bias and variance

become zero; we have obtained a consistent estimator for the covariance R.

3.4 CELLO

In practice, data sets will be finite. For a fixed amount of available data, the choice of

kernel and metric scale parameters will influence both the bias and the variance of the

estimator. Under a scaled Euclidean metric and an isometric kernel, these parameters

are a metric tensor M E RN0xN0 >- 0 and a kernel scale o- E R.2 The metric tensor

M determines the relative importance of the elements of the predictor vector # in

determining the distance between samples, and the kernel scale o- determines how

close together samples must be for their expected error to be strongly correlated. If

these parameters of the kernel function dictate that two sample predictors # and 0'

are far apart, the predicted covariance at the query point # will not depend strongly

on the observed error at #'. On the other hand, if the parameters determine that #

and #' are very close, then the measured error at #' will contribute strongly to the

predicted error at 0.

By choosing M to make V2Oi(#) as small as possible, we may mitigate estimator

bias; this permits a smaller u and hence a smaller estimator variance. Without

2Neither the prediction process nor the learning process require a scaled Euclidean metric or an

isometric single-parameter kernel; future work includes investigating the potential of non-Euclidean

metrics. Assuming a Euclidean metric parameterized by a symmetric tensor facilitates understanding

what the learning process is accomplishing.

51

knowing the curvature of the expected parameter manifold-as is always the case, in

practice-we cannot choose {o-, M} analytically. Even minimizing equations (3.26)

and (3.28) numerically would necessarily be a complex, iterative process, involving

third derivatives of non-parametric terms.

We avoid this problem by noting that minimizing bias and variance is not our the

ultimate goal; our objective is to identify a sensor observation model. The metric

and scale can be treated as the parameters of a model; the best model parameters

are the parameters that maximize the likelihood of the observations z1:ND, given the

corresponding state vectors x1:ND. To simplify notation, we represent the elements of

the metric and scale parameters by a single vector of hyperparameters a E RN

Equation (3.22) provides a simple form for making predictions given a hyperpa-

rameter vector a.

ENi k(|# -4#;1|, at)vivT
R(#, a) = = (. (3.31)

EZD k(II# - #I|, a)

where as before, vi = zi - Hxi is a vector of observation noise. The likelihood of the

parameters of a Gaussian observation is equal to the probability of the observation

given the parameters.

1 1
l(Rifvi) = M (vgiO, Ri) = exp(--v R -lv) (3.32)

(2ir)N-detRi 2

Given ND independent observations and an observation covariance parameterized by

the hyperparameters as in equation (3.31), the likelihood of a hyperparameter vector

a may be expressed analogously.

ND1

l(aI'D) = exp(- vi R(#, a)-vi) (3.33)
i=1 (27)Ndet A , a)

It is more convenient to work with the logarithm of this likelihood; the monotonicity of

the logarithm implies the maximum likelihood hyperparameters and the maximum log

likelihood hyperparameters are identical. Ignoring constant factors, the log likelihood

52

L may be written as a simple sum.

IND
L(a|D) = - (log det ft(i, a) + v'7N(#i, a)-'vi) (3.34)

The best observation model is the one that maximizes the likelihood of the observa-

tions; we therefore choose the hyperparameters that maximize this likelihood function.

*= arg max L(a) (3.35)
a

This is a straightforward optimization problem, and may be solved numerically using

well-known techniques.

Note the objective function has a closed form Jacobian, which may be use to

accelerate the optimization:

ND

VL(a) = - tr (rlVN) - v7R-1 VNNR'v; (3.36)
i=1
ND ND

= - VkgvTf(# , a) 1(N(# , a) - vivT)R(#i, a)-vy (3.37)
i=1 j=1

where

Vki. = V-k10-Olcf (3.38)

Examining the Jacobian reveals an interesting property. First, there is one closed-

form solution:

R(# , a) = vivT Vi (3.39)

This is achieved for a- = 0, as

lim k(||# - #il|, -) = 6(# - #) (3.40)
0--+0

for any of the isotropic decreasing kernels described. However, this solution will

generate a valid prediction only for predictors that have been previously observed,

and even for those samples will yield a high-variance estimate. Avoiding this zero

53

solution ensures better generalization, and may be done by employing 'leave one out'

validation; that is, by computing the covariance estimate R(#;), using all samples

but sample i:

REj k(||# - |11, a)vvT (3.41)

Our algorithm for learning the kernel parameters to maximize the modified objec-

tive of equation (3.41) is called Covariance Estimation through Learned Likelihood

Optimization, or CELLO, and is summarized in algorithm 2. This algorithm makes

use of the covariance prediction subroutine of algorithm 1; the kernel function used

in that subroutine should be evaluated using the current hyperparameter estimate a.

As presented, the algorithm employs naive gradient descent for optimization, using

random restarts to avoid suboptimal local maxima. The number of restarts and the

learning rate 7 both must be tuned for performance; nominally, the learning rate 77

should be as small as possible, and the number of restarts as large as feasible. In

practice it is often helpful to make the learning rate initially very small and slowly in-

crease it until optimizer performance degrades. Although the gradient descent variant

is simple to explain and implement, more complex optimization techniques may also

be employed; the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method outperformed

simple gradient descent in many of the applications considered.

3.5 Learning without ground truth

The learning process described, CELLO, assumes that for each predictor #4 in our

data set we have a corresponding observation noise vi = zi - h (xi.). By construction,

the expected observation is a function of the vehicle state; if we know the state at the

time an observation was taken, we may compute the observation noise, defined as the

difference between the actual observation and its expectation. The true vehicle state

can be acquired using a variety of techniques, including external measurement systems

such as motion capture; often, however, these approaches are difficult to implement.

If the state is unavailable, the noise vector vi cannot be computed and the machinery

of CELLO cannot be applied. In this section, we extend CELLO to function without

54

Algorithm 2 Covariance estimation through log likelihood optimization (CELLO)

Input: Dataset D {(vi, #;) Vi E [1, ND]}
Output: Kernel parameters a* = arg maxL(aID)

function MAXIMIZELIKELIHOOD(D)

Set learning rate 7
Set number of restarts m
for i = [1, m] do

Randomly initialize a
repeat

for j E [1, ND] do
R -PREDICTCOVARIANCE(oj, 1, a)

end for
a <- a - 7VL (N1:ND, D)

until convergence
if C(aJED) > L(a*|D) then

a*

end if
end for
return a*

end function

knowledge of state, by using sensor observations and a process model to infer the

unobserved state.

Recall the joint distribution over states and observations may be written

ND

P(X1:ND, Z1:ND) = p(XO) fp(ZiXi) p(Xi Xi-1) (3.42)

ND

= AF (xoIo, Eo) N (zilh (xi) , 11)N (xilf (xi-1), Qi) (3.43)

If we know the covariances R1:ND and Q1:ND, we can infer a distribution over each

latent state using the Kalman filter framework, as described in chapter 2.

p(Xi Z1:ND) = NA (xiIpi, IE) Vi E [1, ND] (3.44)

Recall from equation (3.6) that in the case of known vehicle states and fixed observa-

tion covariance, the outer product of the observation noise vi = Zi - h (xi) was found

55

to be an unbiased estimator of the observation covariance.. Taking the expectation of

the same estimate for a normally distributed vehicle state yields a biased estimate.

E [(z - Hx)(z - Hx)T] = Jdx Jdz (z - Hx)(z - Hx)TK (zIHx, R)NA(xIp, E)

= R + HEHT (3.45)

Consequentially, an unbiased estimate for R given an observation zi and a distribution

over the state x is given by

E [(zi - Hy;)(zi - Hyi)T - HEiH T] = R (3.46)

The asymptotic results of equations (3.26) and (3.28) relied only on the availability

of an unbiased estimator To for the elements of the covariance matrix; as such, we

immediately obtain a consistent estimate of the observation covariance R at some

predictor # given just observations Z1:ND and a multivariate Gaussian distribution

over the states X1:ND-

D Zffk(||# - q5i|| o-4) [(zi - Hpi)(zi - Hi)T - HEiHT]N(#) = NkIq5-O11u.)(3.47)

The additional term in the numerator accounts for uncertainty added by the lack of

perfect knowledge of state.

Because this estimate is consistent, for a sufficiently large data set, the estimate

N(#) will almost surely equal the true covariance R(#). However, in order to predict

observation covariances, we require a distribution over the latent states corresponding

to the observations in the data set; in order to evaluate a distribution over the latent

states, we require the observation covariances. This circular dependency breaks the

tree structure which enables the efficient exact inference of the Kalman filter.

However, we can approximately infer the latent states efficiently using the Expectation-

Maximization algorithm [14]. Although inferring the states x1:ND given just the

observations Z1:ND is difficult, the inference reduces to the Kalman filter given the

56

observation covariances R1:ND. We also know how to estimate the covariances R1:ND

given the observations Z1:ND, states X1:ND, and predictors #1:ND . By iterating between

these two inference procedures, we may infer both the covariance sequence R1:ND and

a distribution over the state sequence X1:ND. This iterative process is guaranteed to

converge to a locally maximum likelihood estimate.

To additionally select the maximum likelihood metric and kernel parameters, we

augment this two-step iterative process with an optimization step. As before, we

express the parameters as a single vector a, and note that the best sensor model will

maximize the likelihood of the observation sequence.

N

a* = arg max p(zi j(#i, a)) (3.48)

We evaluate this optimization just as in the known-state case, using the current

estimate of the state sequence distribution to estimate the covariance sequence.

This procedure, dubbed CELLO-EM, can be summarized in three steps. We

choose an initial guess for the hyperparameters, and an initial observation covariance

sequence. Often, the initial hyperparameters will be chosen randomly, and the initial

covariance sequence will be a constant matrix chosen heuristically for the problem at

hand. We then repeatedly cycle through two steps. First, we compute a distribution

over the latent state sequence, conditioned on the current estimate of the covariance

sequence:

P(Xi Z1:ND, 7 1D) = g (p4n), En)) Vi E [1, ND (3.49)

Then, we compute an observation covariance sequence as a function of the hyperpa-

rameter vector a,given the current distribution over the latent state sequence.

EZo# k(II4 - #J||, a) [(zj - HLS"))(zj - Hp n))T - HEn)HT (
R,(et) - Zjs k(II# - #j||, a)

Finally, we choose the hyperparameters which maximize the likelihood of the obser-

57

vation sequence,

N

a*+1 = arg max J7Jp(z;i i(a),) p (x) (3.51)

We then use the observation covariance sequence inferred using the maximum likeli-

hood hyperparameters to infer an improved distribution over the state sequence, and

continue the cycle until convergence. Once convergence has occurred, we store the

maximum likelihood hyperparameters ac* and the parameters of the inferred distri-

bution over the state sequence, (and D. This information is sufficient toI
1
1ND N

predict the covariances of new samples, using equation (3.47). Algorithm 3 describes

the procedure for predicting observation covariance without ground truth; algorithm 4

lists the steps required to learn the hyperparameters a and build the data set, us-

ing an external Kalman filter for state inference and gradient descent with random

restarts for optimization.

Algorithm 3 Covariance prediction without ground truth

Input: Query point #
Input: Dataset D = {(zi, pi, Ej, #;) Vi E [1, ND]}
Input: Parameters a of the kernel function k(-, -)
Output: Estimate R of the covariance R at point q5

function PREDICTCOVARIANCE(4, D, a)
t +- 0, n - 0

S +-NEIGHBORS(q) > Returns S C D: |- # o||I <o Vi E S
for i E S do

t +- f + k(#, 4) ((z; - h (ki))(zi - h (ki))T - H EH T)
n <-n + k(#, #4)

end for

n

return R
end function

3.6 Bayesian Formulation

Thus far we have tacitly taken the frequentist interpretation of statistics. That is, we

have asserted the observation distribution p(zjx, #) is a multivariate Gaussian with a

58

Algorithm 4 Covariance estimation using Expectation Maximization (CELLO-EM)

Input: Dataset D = {(zi, #j) Vi E [1, ND]}
Output: Dataset D* = {(zi, Mi, Ei, #j) Vi E [1, ND]}

Output: Kernel parameters a* = arg max L(a'ID)

function LEARNMODEL(D)

Initialize observation covariance sequence R1:ND
repeat

{i:N,, 1:ND} <-KALMANFILTER(Z1:ND, R1:ND)
a <- MAXIMIZELIKELIHOOD(Z1:ND, 1

1:ND , 1:ND) ,1:ND)

for j E [1, NDI do
N% <-PREDICTCOVARIANCE(oj, D, a)

end for
until convergence
return a*, D* = {Z1:ND, I 1:ND , 1:ND, 'P1:ND

end function
function MAXIMIZELIKELIHOOD(Z1:ND, /1:ND , 1:ND, 01:ND)

Set learning rate q
Set number of restarts m

for i = [1, m] do
Randomly initialize a
repeat

for j E [1, ND] do

R <-PREDICTCOVARIANCE(oj, D, a)

end for
a +- a - 77VL (N1:ND D)

until convergence
if L (a|D) > L(a*ID) then

a * <-- a

end if
end for
return a*

end function

59

fixed covariance R(<p), and have attempted to estimate that covariance function given

a set of random independent samples. The resulting algorithm can also be developed

within a Bayesian framework. Somewhat surprisingly, the actual calculations are

virtually identical; it is purely the interpretation which differs.

We now present the corresponding method for Bayesian inference. Consider the

case of Bayesian inference for a fixed covariance. The conjugate prior for the covari-

ance matrix of a multivariate Gaussian distribution is the inverse Wishart distribu-

tion.

|W~Ji~2 v+Ng+1 1
p(R) = W-' = (I, v) I-R 2 exp -tr ("FR-1) (3.52)

2 2 r, (g) 2

The hyperparameters of this prior are a positive definite scale matrix ', and a scalar

number of degrees of freedom v E R > N, - 1. The scale matrix parameterizes the

expected size of the covariance; the expected value of the covariance matrix is

E[R]= (3.53)
v - N,, - 1

while the maximum likelihood covariance is

RML =(3-54)
v + N,+1I

The number of degrees of freedom parameterizes the certainty of the distribution.

Large values of v indicate a high degree of confidence. Commonly, we will choose our

prior degrees of freedom as v = N,; this is the minimum information non-degenerate

inverse Wishart distribution.

Applying Bayes' rule to our observation model, we obtain a recursive Bayesian

60

inference procedure.

p(Rlz) oc p(zlR) p(R) (3.55)

oc M (h (x) , R) W- 1 (%F, v) (3.56)

= W- 1 (xF + (z - h (x))(z - h (x))T, v + 1) (3.57)

Given ND independent samples from p(zIR), the posterior distribution p(RIZ1:ND, X1:ND)

is an inverse Wishart distribution with scale

ND

*post = x + (zi - h (xi))(zi - h (xi))T (3.58)

and degrees of freedom

vpst = v + ND (3.59)

Note that in the limit of many samples, this distribution converges a delta function

around the frequentist estimator.

If the observation covariance is not the same for every sample, the standard proce-

dure for covariance inference no longer applies. By construction, p(z q5) is multivariate

Gaussian with some covariance R, but the covariance is free to vary with the predic-

tor. Without imposing any additional conditions, a sample may provide information

about the covariance only at a single point in predictor space. In order to make

inferences about the covariance R at some point # in predictor space where we have

no previous sample, we require a distribution over the observation z' corresponding

to some other predictor #'.

p(z'IR, #, #') (3.60)

It is not immediately clear what this distribution should be.

In the frequentist algorithm proposed previously, we addressed this by the intro-

duction of the kernel function. These kernel functions restricted the rate at which the

covariance could vary. This rate restriction implicitly defines a Lipschitz continuity

condition; as the density of data increases, we are able to decrease the size of kernels,

61

increasing our Lipschitz constant and relaxing our continuity condition. We will take

a similar approach with the Bayesian derivation.

It is not sensible to describe a continuity condition on the covariance from a

Bayesian perspective; the parameters are described as distributions, not deterministic

functions. Instead, we restrict the rate at which these distributions may change as

the predictors vary. The natural language with which to compare distributions is the

Kullback-Leibler, or KL, divergence. The KL divergence of a distribution Q over a

random vector x from a distribution P is defined as

DKL (PIIQ) dxp(x) log I 1 (3.61)

We restrict the KL divergence of the distribution at # from the distribution at ' to be

a function of the distance between the predictors || - #'|. Because the distribution

at # is known, we may write

DKL (||# - #'|) = fdz'p(z'|R, #, #') log p(z'l R, 0 (3.62)
(Ar (0, R))

The only constraint on DKL (11# - #'II) is that it must be zero if the distance between

predictors is zero. Beyond that we are free to choose DKL (110 - 0'I1) as we see fit,

just as we were free to choose kernel functions in the frequentist interpretation.

Many distributions will satisfy this relation for a particular choice of DKL (J0- -

The principle of maximum entropy suggests that we should choose among this set of

distributions the one that maximizes its information-theoretic entropy. That is, we

should choose

p(z'IR, O, #') = arg max dz' -p(z') log p(z') (3.63)

subject to

0 = dz'p(z'IR, 0, O') (DKL (11k - OfIl) - log (p(zCIR'0)) (3.64)

We employ variational calculus to determine the distribution p(z'|R, #, #'); a deriva-

62

tion is available in appendix B. The maximum entropy distribution satisfying equa-

tion (3.62) is

p(z'IR, #, 0') oc K (0, R)k(I10*~II) (3.65)

The function k(110 - #'1|) is a transformation of DKL (11- ') with the property

that k(0) = 1 and limp.o k(p) = 0. Because we were free to choose the function

DKL (110 - #'1|) to suit our needs, we may instead directly choose k(p). We can then

freely identify k(p) with the kernel functions k(||#4 - q5'1|, a) used previously.

Using this new distribution for p(z'IR, #, #') and applying Bayes' rule yields a

remarkably simple posterior. We assume an inverse Wishart prior over the covariance

at predictor #, with scale matrix IV and degrees of freedom v.

p(Rjz', #, #') oc p(z'IR, #, #') p(R, #) (3.66)

oc K (z'lh (x), R) k(IO-*'ll'a) W- 1 (', v) (3.67)

= W- 1 (IF + k(||# - #'ll, a)(z' - h (x))(z' - h (x))T, v + k(II|# - #'I, a))

(3.68)

Given a data set D of ND independent samples (z, x, 4)), the posterior distribution

p(RID, 4)) is an inverse Wishart distribution with scale

ND

W1 post = T + k(II| - # |1, a)(zi - h (xi))(zi - h (x,))T (3.69)

and degrees of freedom

ND

VPOSt -/+ k 0 t (.0)

If the states x1:ND are unavailable, they may be inferred using an expectation-maximization

procedure identical to algorithm 4. Note that in the limit of many samples, both the

expected covariance matrix and the maximum likelihood covariance matrix converge

63

to the estimate provided generated by CELLO (equation (3.22)).

lim E [R] = lim RML - Z k(1k5 1I, a)vivi (3.71)
ND-+oo ND-40 0Nk(Iq5-0 1 1 ,a)

Note also that we exactly recover the frequentist estimator, even for finite data,

if our prior distribution is the degenerate inverse Wishart distribution with scale

matrix 41 = 0 and degrees of freedom v = 0. This prior asserts the belief that the

covariance is zero-that is, that our observations are perfectly accurate-but also

implies minimal certainty in that belief.

The Bayesian variation of CELLO is virtually identical to the frequentist algo-

rithm; in practice, the only difference is the initialization of the outer product and

kernel sums to a nonzero value. This has the practical advantage of increasing robust-

ness; the Bayesian algorithm produces a reasonable estimate even if the query point is

in a region with very low data density. Moreover, it has been shown by Agamennoni

et al. [11 that marginalizing the covariance of an inverse Wishart-Normal observation

model yields a filter which is more robust to outliers than the standard Kalman fil-

ter. This suggests a promising route towards making use of the information CELLO

provides about the uncertainty of its covariance estimates.

64

Chapter 4

Simulation Results

To evaluate CELLO and its derivatives, I developed several simulation environments.

This allowed the validation of performance with perfect access to ground truth, perfect

models, and perfect repeatability, three things which are difficult to attain in real data.

4.1 Dark Room

The first simulation experiment conducted considered a fictional robot taking posi-

tion measurements in a room of varying brightness. The fictional position sensor was

constructed to perform well in the light, but poorly in the darkness; the robot navi-

gated the room, and compared sensor measurements to ground truth values at many

locations. The difference between observed position and true position was recorded

as an error vector vi.

Although the observation covariance was a function of the brightness, I used the

true position as a predictor vector #i. This choice is atypical, but valid, as the

brightness was itself a function of the position. Since the function mapping position

to brightness was known, choosing the position as a predictor allowed assessment of

the optimality of the learned hyperparameters, thereby permitting validation of the

learning process.

Pairs of predictor vectors #/4 and noise vectors v provided the data set D required

by algorithm 2. I used the scaled Euclidean metric discussed in chapter 3, and learned

65

(a) 100 samples (b) 1000 samples

Figure 4-1: Two-dimensional covariance learning. The blue ellipses are true mea-

surement covariances drawn from the data set; the green ellipses are the optimized

estimated covariances, with results drawn from several independent data sets su-

perimposed. In figure 4-1a, 100 samples were provided to CELLO for learning and

prediction; in figure 4-1b, 1000 samples were provided. For both figures a random set

of query points was chosen for illustrative purposes; the points were selected so that

the covariances would not overlap, to improve visibility. In each case, the estimates

appear unbiased, but the variance of the predicted covariances is visibly smaller when

more data is available.

the hyperparameters as described in algorithm 2. I tested the learning process several

times, on independent data sets of varying sizes. The results of the learning process

are presented in figure 4-1, when (figure 4-1a) 100 and (figure 4-1b) 1000 samples were

used for training. Visually, the increased availability of samples dramatically reduces

the variance of the estimates; Figure 4-2 presents the mean squared error between the

predicted and true covariances, as a function of the number of samples provided to the

learning algorithm; the error rapidly decreases as the number of samples increases.

66

x 10

0

LU

0 52C/)

U)

0-
0 500 1000 1500 2000 2500 3000

Samples available

Figure 4-2: The mean squared error between the predicted and true covariances
decreases as the number of samples available decreases.

4.2 Random Walk

To evaluate CELLO-EM, I augmented the previous simulation with a process model,

viz.

xt+1 = Fxt + wt (4.1)

where the state transition matrix F was chosen to have ellipses, with eccentricity -),2'

for its nominal steady state trajectories:

F= [2 0]exp]s [f] (4.2)
0 N/2 -1 0 0 N2

L 2 -L J) L2 .J

The constant factor s defined the walking speed. For the experiments presented

here, I set s = 0.1. The process noise w was drawn from a multivariate Gaussian

distribution with zero mean and covariance Q = 5 x 10-41. The full process model

was a random walk, with a general clockwise motion.

This walk took the robot through areas of varying brightness. After each step,

the robot took a position measurement, which was corrupted by Gaussian noise.

67

As before, the fictional position sensor performed well in the light, but poorly in

the darkness; as the robot wandered around the room, it recorded both a noisy

measurement of position and a predictor vector consisting of the observed brightness,

and the direction of the nearest light source. An optimal filter for this system would

trust its process model in the dark areas, when measurements are very noisy; in

brighter areas, it would favor the measurements. A fixed measurement covariance

could not perform this trade-off, and must either place too much confidence in the

measurements when in the dark areas, or too little in the bright areas.

This system was, by construction, a linear Gaussian system, and therefore if the

measurement covariances were known it would be possible to exactly solve for the

least-squares optimal solution using a standard Kalman filter. I use this exact solution

as a baseline for comparison in all simulation experiments in this domain; it represents

the best possible estimate given the data available, and provides a lower bound on

the possible filter error.

I processed a simulated dataset as described in algorithm 4, initializing the co-

variance to a fixed estimate and iteratively improving that estimate through cycles

of Kalman filtering and CELLO maximization. I then processed the same data using

the fixed-covariance expectation maximization; this generated the maximum likeli-

hood estimate of the covariance and as such the best possible performance from a

fixed-covariance Gaussian measurement model. The resulting mean squared error for

each algorithm is compared in figure 4-3. Both the error resulting from filters using

CELLO and from filters using the fixed covariance rapidly converge to a minimum;

however, the fixed-covariance model remains suboptimal even after hundreds of iter-

ations. Using covariances estimated by CELLO reduced the mean squared error by

a factor of two, relative to an identical Kalman using the optimal fixed covariance

model.

The trajectories estimated using covariances generated by CELLO, by the fixed

covariance chosen by expectation maximization, and by the fixed covariance used for

initialization, are presented in figure 4-5, and compared to the optimal estimate. In

the dark, both CELLO and the fixed covariance estimate perform similarly, trusting

68

046

0.25 _

0
S 0.4

LU

0.2

% -4 t Q

0 .1

01
1 2 3 4 5

Iterations of EM
Figure 4-3: Root mean squared error between the estimated and true trajectories, using

covariances generated by CELLO and using a fixed covariance chosen by expectation maxi-

mization. Both algorithms converged after only a few iterations, but due to variations in the

true covariance, the fixed covariance model failed to achieve optimality. CELLO converged

to the optimum, and resulted in half the mean error.

69

x 0.2 - - --

01
500 520 540 580 580 600 620 840 80 880 700

Timestep

0 .4 - - -- - - -- -- - - - - - - - - - - - -

0 .2

500 520 540 560 580 600 620 640 660 680 700

Timestep

Figure 4-4: Comparison of estimation error magnitude using covariances predicted by
CELLO (blue) and fixed covariances chosen by expectation maximization (green) in each
dimension. Error is relative to the optimal estimate; note that when there is little infor-
mation available, all systems perform comparably. When information is available, however,
the fixed covariance model fails to incorporate it, leading to degraded performance relative
to the optimum. The estimator using covariances chosen by CELLO performs comparably
to the optimal estimator regardless of information quality.

the dynamics model more than the sensor measurements, resulting in very smooth

trajectories. In the light regions, however, CELLO is able to recover the random mo-

tions of the vehicle from the sensor data, while the fixed covariance estimator remains

smooth, placing too much confidence in the system dynamics model over the sensor

measurements. These trends are reflected in the absolute errors for each estimate,

presented in figure 4-4. In the dark areas, the estimator using CELLO, the estimator

using fixed covariances, and the optimal estimator using the true covariances all per-

formed comparably. However, the performance of the fixed covariance estimate fails

to improve in the regions of high information, resulting in large peaks in the error.

4.3 Scan-Matching

Consider the problem of laser scan-matching odometry: given two overlapping scans

{C1 , C2} from a laser range finder, compute a distribution over possible translations

A and rotations R, p(A, R[C1, C2). If the scans are sequential and separated by a

known time At, then A = vAt, where v is the vehicle velocity; the rotation between

frames can be likewise related to the angular velocity. If two scans can be aligned,

70

Figure 4-5: Estimated trajectory using covariances predicted by CELLO (blue), fixed
covariances chosen by expectation maximization (green), and the true measurement co-
variances (white). Trajectories are presented in front of the light field indicating sensor
quality: the sensor degrades in the dark. Note that using the true covariances gives an
upper bound on estimator performance; CELLO nearly achieves this upper bound, while
the fixed-covariance model fails to do so, especially in the dark areas.

71

9D

ISo

1202

150 3

(a 2onr

9D

12D 60

4...
....... ...

3...
150 30

2

IO D 0

...

..

210 33D
...

...

WD

VO

(b) Hallway

Figure 4-6: Sequential laser scans can be matched to estimate the velocity of a robot,
but environmental degeneracy can lead to less information in some directions. Near a

corner, the robot can accurately estimate changes in both heading and each position

axis; in a hallway, the robot can only estimate motion in the direction of the walls.

then it is possible to infer the vehicle velocity and rotation rate from the optimal

transform.

There are many ways of inferring, or approximating, this distribution. I computed

the transform between scans using the algorithm described by Bachrach et al. [5]. This

algorithm creates a local map by extracting contours from a recent history of scans,

and formulates the scan-matching problem as an optimization procedure, choosing

the transform which maximizes the likelihood of the observed scan given the recent

map. However, if the map is ambiguous, such as in a hallway, the likelihood function

will not be well-conditioned, and the maximum likelihood transform will be highly

sensitive to measurement noise. Consider the sample scans presented in figure 1-2,

and reproduced in figure 4-6. When there is structure in both directions, as in figure 4-

6a, matching scans reliably yields information about both the velocity and yaw rate

of a vehicle. However, when the structure is ambiguous, as in figure 4-6b, motion

cannot be detected in one direction. Depending on the method used to compute

the translation and rotation between scans, this can lead to spurious observations of

motion along the axis of the hallway.

72

D

In order to reject these spurious observations of motion and improve estimation

performance, I first simulated a sequence of two dimensional range scans in an ide-

alized infinite hallway. This simulated LIDAR unit had finite range; additionally,

the simulated range measurements were corrupted by a small amount of noise. For

each pair of scans, I used the scan-matching odometry system of Bachrach et al. to

generate an estimate of the translation and rotation between scans; dividing by the

time between scans gave an estimate of velocity. Using the same pair of scans, I

generated a predictor vector composed of two histograms: a count the number of

returned measurements in each of ten bins of angles, and a count of angles of the

line segment connecting each sequential scanned point. These were both chosen to

indicate the presence of walls.

Because this was done in simulation, the ground truth velocity at each time step

was available, allowing the computation of error between the predicted and measured

velocity observations. Together, those error vectors and the predictor vector composed

of histograms formed a dataset 'D, which was provided to CELLO. The 2- covariance

ellipse predicted by CELLO after learning hyperparameters are drawn in figure 4-7

at several locations in a hallway. Note that these are the covariances of observations,

but are drawn in the state space, to illustrate the alignment of the ellipses. The

predictions consistently aligned the covariance ellipse with the hallway, regardless of

the robot orientation.

I also simulated accelerometer data, and used the predicted covariances to incor-

porate the scan matching observations into an unscented Kalman filter, A comparison

of filter performance using (figure 4-8a) fixed covariances and (figure 4-8b) learned

covariances indicates the weaknesses of a fixed covariance scheme; the filter underesti-

mates its uncertainty in the longitudinal direction but grossly overestimates it in the

transverse direction. The result is reflected in the distribution of estimated trajecto-

ries (solid lines). The learned covariance scheme does a much better job restricting

its estimates to the interior of the hallway.

Because the noise properties and simulated environment were chosen arbitrarily,

these results cannot be used to draw conclusions about the impact of CELLO on

73

Figure 4-7: Learned measurement covariances (green) for a scan matching algorithm in a

hallway, compared to fixed measurement covariances (red) taken as the empirical covariance

of the available sample data. Measurements are displacements between successive scans,

consequently they have the same domain as the position variables; covariance ellipses are

presented at arbitrary scale, hence it is only the orientation and eccentricity of these ellipses

that is relevant. The learned covariances consistently indicate a large measurement variation

in the longitudinal direction, and a small variation in the transverse direction, reflecting the

availability of information in only one direction. Note the learning was done using predictor

features taken purely from the scan, and not including the position or orientation of the

robot-the rotation of the ellipse is an emergent behavior.

real-world performance. However, the desired properties emerged from the simulated

experiment. CELLO was able to learn that little information was available in one

direction, and able to consistently learn in which direction information was unavail-

able. This was done without any prior encoding of these properties, using just a

simple model of the desired domain.

74

(a) Fixed Sensor Covariances

------------------ ------------- --

(b) Learned Sensor Covariances

(c) Comparison of Simulated Covariances

Figure 4-8: Comparison of filter performance using learned and fixed measurement covari-
ances. Note that in contrast to figure 4-7, these covariances are state covariances. Covari-
ances are drawn as 95% confidence margin ellipses at fixed time intervals. Each estimated
covariance (dashed lines) is the mean filter covariances for a given time interval i, E [Ei|
over 250 simulated trials. Each simulated covariance (solid lines) is the covariance of the
estimated trajectories for the time interval i, cov (i), again over 250 simulations. Filtering
was done using an unscented Kalman filter with noisy accelerometer data and the scan-

matching output for measurements. Note the distortion of the ellipse in the learned case,
reflecting increased uncertainty in the longitudinal direction of the corridor. Note also that
the fixed covariance scheme underestimates its uncertainty in the longitudinal direction.

75

76

Chapter 5

Experimental Results

In this chapter, I present the results of several experiments with real sensors and

real data. I experimentally verify the impact of a predictive covariance scheme on

state estimation using indirect observations of state in ambiguous environments, and

I compare the results of filtering using covariances predicted by CELLO to filtering

using competing algorithms.

5.1 Optical Flow

Cameras and vision systems play a prominent role in modern robotics; machine vision

is an entire field unto itself. The subproblem of visual odometry-the problem of

estimating camera motion from a sequence of images-is a useful way to utilize visual

systems when computational resources are at a premium. Solutions which infer the

structure of the environment are computationally expensive, and if a detailed model

of the environment is not necessary for a robot to achieve its objectives, it is desirable

to avoid this expense. Given a static environment and an image stream where motion

between successive frames is small, it is possible to track just the apparent motion

of the image and neglect the structure of the environment. Two seminal approaches

are the work of Horn and Schunck [21], which calculates the apparent motion of each

pixel in an image, as well as that of Lucas and Kanade [31], which extracts a single

mean translation from sequential image pairs. Significant progress has since been

77

made; Beauchemin and Barron [9] present a survey.

The connection between apparent image motion and camera motion is complex. I

refer to the image returned by a camera at time t as an intensity field I(v, t), defined

in image coordinates v E R 2 . I denote the camera heading as a unit vector fn E R,

the camera location as a vector x E R 3 , and the camera focal length as f E R; I

define a projection matrix P E R2 x 3 which maps three-dimensional positions in a

frame fixed to the camera to image coordinates. Any point in space 6 E R3 , where

6 = 0 corresponds to the camera position x, can then be projected into the camera

frame.
(1 - nnjT)3 51

v= -fP (5.1)

If the scene is static, but the camera is permitted to move, fixed points in the inertial

frame will appear to move in the camera frame. Taking the derivative of equation (5.1)

parameterizes this motion in terms of the linear velocity x and angular velocity Q of

the camera.

± = fP (k + Q x 6) (5.2)
(6T 5)2

This equation is a standard result of image theory, and I omit a derivation. Equa-

tion (5.2) can be rewritten in terms of the point depth p = njT6 and the image

coordinate v.

Pk + ±Tkv + f(1 - vv T)P(O x nf) + (nTnj)Ov (5.3)

The matrix o, = (_1) is the unit-determinant basis for so(2), so that Orv is always

perpendicular to and of the same length as v. Note that the apparent motion of any

point in image space decomposes into four components, corresponding to translation

and rotation in the direction of and perpendicular to the axis of the camera.

Integrating equation (5.3) across the visible image gives

(= f P + f(I - (vv T))P(n x fn) (5.4)

where (-) denotes the average. This average flow velocity can be computed without

78

detecting features; if two sequential images I(v; t) and I(v; t + 6t) can be aligned

such that I(v; t) = I(v + A; t + it), then the average velocity is given by (sr) ot = A.

Similarly, if sequential images can be aligned by I(v; t) = I(Tv; t + 6t), where T is a

linear transform consisting of a rotation and a scale,

T = exp(s) cos(O) sin(0) (5.5)
- sin() cos(O)

then the average scale shift s can be computed as

s =6of vv-) =6tK±nTx (5.6)

and the average rotation 0 is

0 = Kt vTv x V = 6t(ATn). (5.7)

The four relations of equations (5.4), (5.6) and (5.7) may be aggregated into a single

affine transform relating successive images. The parameters of this affine transform

may be efficiently computed through the use of the Fourier-Mellin transform.1 This

procedure was first described by De Castro and Morandi [13], and was applied to the

problem of motion estimation by Goecke et al. [17]. For convenience, I briefly outline

the method here.

I assume sequential images can be exactly aligned by an affine transform: I(v; t) =

I(Tv + A; t + it). The Fourier transform of this equation yields

Y{I}(ir) = F{I'}(Tr) exp(jA T ;V) (5.8)

where I use the notation I' to refer to the image at time t + 6t. I have exploited the

1 Note that although it is possible to disambiguate between arbitrary rotation and translation
by additionally considering non-affine coordinate transforms, doing so precludes the use of the ef-
ficient Fourier-Mellin procedure outlined here. In addition, in addition, in the configuration used
in our experiments, the two unobservable parameters are the pitch and roll rate, which are directly
observable using a gyroscope. This renders disambiguation unnecessary.

79

linearity of the Fourier transform, as well as the fact that a translation in coordinate

space is a phase shift in frequency space, to write the transformed image in this form.

Equating the magnitudes of both Fourier transforms eliminates the dependency on

the translation A.

IIF{I}()|I = IIF{I'}(TV)1 (5.9)

Next, I change to log-polar coordinates,

V = exp((1) cos(2) (5.10)
sin(2)

and define the magnitude image M(Fi, 2) = I{I}(i)|. The new coordinate system

was chosen so that a rotation and scale in the original coordinates will be a translation

in the new coordinates.

Ti = exp(1 + s) cos(2 + 0) (5.11)
sin(2 +)

Taking the Fourier transform once more, the translation in log-polar space again

becomes a phase shift.

Yf{M}(1, 2) = .F{M'}(i, 2) exp(jsfi ± j9A2) (5.12)

The parameters s and 9 can now be uniquely identified as the parameters that max-

imize the cross-correlation between the magnitude images M and M'.

{s, O} = arg maxF~1{F{M}t F{M'}}(s, 9) (5.13)
8,0

Given the scale and rotation, we can compute the translation in much the same way;

we compute a rotated, scaled image IT and choose the translation that maximizes

cross correlation.

A = arg max F-{F{I}tY{IT}}(A) (5.14)
A

80

The full procedure requires five Fourier transforms, two changes of coordinates, and

two inverse Fourier transforms. However, two Fourier transforms and one coordinate

transform may be reused for successive images. Using fast Fourier transforms and

bilinear interpolation for the changes of coordinates makes this procedure highly

efficient; it is also highly robust to noise.

I implemented this procedure, and computed the transform between sequential

images from a downward facing camera on a quadrotor helicopter. In an indoor envi-

ronment, where the floor is very nearly flat, the quantity K is just the inverse of the

vehicle height; the rotation angle gives the vehicle yaw rate, while the scale shift gives

vertical velocity and the translation gives horizontal velocity. Although the raw sensor

measurement-the camera image-is high-dimensional and environment-dependent,

the Fourier-Mellin registration procedure gives a low-dimensional observation which

is a simple function of the vehicle state.

z = h (X) (5.15)

Here A is the velocity of the vehicle, z is its height above the floor, and Qz is the

yaw component of its angular velocity. By fusing these estimates with an IMU, the

full twelve-dimensional state of the vehicle can be estimated.

Naively fusing the data in an extended Kalman filter gives very poor results, how-

ever. The singularity at z = 0 implies that the observations will be highly inaccurate

near the ground; even small uncertainty in the estimated height will cause large vari-

ations in the inferred velocity. In addition, the algorithm relies on the presence of

structure in the images to perform its alignment. In low-texture environments, in

darkness, or when images are blurred by rapid motion, the image registration pro-

cess is impaired and motion estimates degrade. If there was structure only in one

direction-for instance, if the camera was looking at a field of parallel stripes-the

algorithm could only provide information about the direction with structure. Exam-

ples of these low quality measurements are given in figure 5-1, along with a sample

81

(a) Good quality (b) Poorly lit

(c) Ambiguous structure (d) Blurred by motion

Figure 5-1: The quality of images collected by a downward facing camera varies

dramatically depending on the vehicle state and on the environment.

high-quality image.

CELLO provides a way of predicting the covariance of the observations. Fourteen

predictor features were chosen to capture the presence and directionality of structure

in the image. These are summarized in section 5.1.

The vehicle was flown in a motion capture room; the motion capture system

provides extremely accurate observations of the vehicle state x. These observations

were treated as ground truth, and this state information was used to predict the

optical flow observations {h (x)}. The transforms obtained from each sequential image

pair and the predicted observations from the motion capture system were combined

to form error vectors {vi = zi - h (x2)}.

Pairs of such error vectors and the corresponding predictors <5 were processed using

algorithm 2, and used to predict the covariances of future observations. The result of

82

Mean pixel value
Indicates brightness

Pixel value variance
Measures contrast

Dynamic range
Alternate measure of contrast

Pixel value entropy
Indicates structure in image

X gradient covariance
Estimates accuracy of translation registration in the x direction

Y gradient covariance
Estimates accuracy of translation registration in the y direction

R variance
Estimates accuracy of rotation registration

RS covariance
Estimates correlation between estimates of rotation/scale registration

S variance
Estimates accuracy of scale registration

X variance
Estimates accuracy of translation registration in the x direction

XY covariance
Estimates accuracy of translation registration in the y direction

Y variance
Estimates correlation between estimates of translation registration

Mean squared error between images
Indicates goodness of image alignment

Maximum absolute error between registered images

Alternate measure of goodness of image alignment

Table 5.1: Summary of features used for covariance prediction, along with a descrip-

tion of their rationale

83

Labelled Covariance

2 --- -----..- Fixed Covariance
CELLO Prediction

Normal Flight Landing On Ground Normal: Flight

380 400 420 440 460 480 500

Time (s)

Figure 5-2: Comparison of marginal measurement covariances for the vertical (y)
component of flow. Blue dots are sample error vectors; covariances are drawn as

95% confidence margins. The labelled covariances are the empirical covariance of
each region; the fixed covariance is the empirical covariance of the entire data set;

the CELLO predictions are the predicted covariances for each sample. Note how

the learned covariances offer increased flexibility, even within a known region; the
regions of higher noise due to takeoff and landing are assigned an appropriately larger

covariance.

the learning is shown in figure 5-2. These results were attained in a few seconds

on a desktop machine, given a data set of approximately ten thousand samples,

corresponding to just under ten minutes of flight.

In regions where the images were of low quality, the image registration process

performed erratically; this is reflected by a covariance orders of magnitude larger than

during normal flight. Typically, such measurements would be rejected by heuristic

outlier detectors; such heuristics require careful tuning to avoid discarding useful

data while ensuring all invalid points are discarded. CELLO handles this rejection

natively, assigning those points a covariance large enough to mitigate any effect they

would have on a state estimate, with no tuning or other input from the user required.

Note that when the vehicle is stopped and the impact of motion blur is completely

eradicated, the image matching process becomes very accurate, and the predicted

covariance is correspondingly small.

To illustrate the benefits of a predicted covariance scheme, I compared the per-

formance of predicted and fixed covariances in online state estimation using an un-

84

scented Kalman filter. The filter incorporated both optical flow and accelerometer

data. These observations are in many ways complementary; an accelerometer operates

at a high frequency and with reasonable accuracy, but observes only the derivatives

of the system state, and so must be integrated twice, resulting in large accumulated

errors due to drift. An optical flow sensor operates at a much lower frequency, but

provides measurements of velocity and height, greatly reducing drift errors. However,

the covariance of the optical flow sensor is highly environment-dependent, as seen in

figure 5-2. Choosing a small fixed covariance for the measurement model leads to fil-

ter divergence due to singularities in the optical flow measurement function; choosing

a large covariance makes the filter slow to incorporate data. Adapting the covariance

using the predictions from CELLO allows for the use of smaller covariances only when

appropriate, and creates a more robust and accurate filter, as seen in figure 5-3.

5.2 Odometry in a Corridor

Recall from section 4.3 that if sequential planar laser scans are aligned, the resulting

transform can be used as an indirect measurement of the vehicle velocity. However,

environmental ambiguities lead such scan-matching systems to suffer from wide vari-

ations in accuracy. In a hallway-like environment, where the laser can see the walls

of the hallway but not the ends, there will be low uncertainty in the direction of the

walls, but high uncertainty along the length of the hallway, where information is miss-

ing. In the limiting case of parallel planar walls and no sensor noise, the transverse

position in the hallway can be obtained exactly, but no information is available about

the longitudinal position.

Several solutions have been developed to avoid estimator failure in hallway en-

vironments; the developers of the scan-matching algorithm I employed suggest in

another paper [6] that the computed transform should be modelled as a multivari-

ate Gaussian random variable, with a covariance chosen to match the shape of the

likelihood function. This is precisely the model CELLO is designed to learn.

As in the simulated scan matching experiments done in section 4.3, I chose pre-

85

Ste Edipumek.. CEILO
12 ---- Ste Edite W Fixe

C 0.0 - - - - - - - - - - -

0.2- -.- ...

-0.2
0 5 10 15 20 25 W0

t (s)

(a) x position estimate

a ~ ~~ --- -.---------- - --- -- --
. - --- - - - - .. -

..3
CA

N

0 5 10 15 20 25 30

t (s)

(c) z position estimate

D.8

X -. - - - - -

0.

0.
N0X

02.

$We Enm.e With CELLO
0.3 -S --- te Emae with Fed R

0 5 10 15 20 25 30

t (s)

(b) x position squared error

.2 - - - - - - - - - -

1 - +

05- .- - - --- - - -- - - - -

0 5 to 15 20 25 30

t (s)

(d) z position squared error

02 - -- - -

.0 4..

0 5 10 15 20 25 30 0 5 10 13 20 25 30

t (s)

(e) x velocity estimate

t (s)

(f) x velocity squared error

Figure 5-3: Online state estimation performance of an unscented Kalman filter using

fixed and learned covariances to integrate optical flow and accelerometer data. Only

three of twelve states are displayed: the x position, the height above ground z, and

the translational velocity in the x direction. Fixed covariances the empirical measure-

ment covariances of the manually annotated sensor regime. The adapted covariances

produced by CELLO allow for smaller covariances without introducing inconsistency,
precluding the need for outlier rejection and allowing the filter to safely place greater

confidence in new data.

86

0

0

dictors consisting of two histograms. The first histogram counted the number of

returned measurements in each of ten bins of angles; the second counted the angles

of the line segment connecting each sequential scanned point. Together, these his-

tograms indicated directions in which information was unavailable. The histograms

were augmented with the score generated by the scan matching algorithm; a low

score indicates a failed match. This additional predictor was necessary to ensure that

unambiguously poor matches could be handled separately from ambiguous matches.

I used the expectation-maximization procedure described in algorithm 4 to learn a

covariance model. Sample predicted covariances are drawn as 2o- ellipses in figure 5-4;

note that these are representative of the observation covariance, depite being drawn in

the measurement space. This presentation serves to illustrate the desired behavior;

the covariance is aligned with the walls of the hallway whenever the far walls are

out of range, so that observations are treated as highly uncertain in the direction

information is unavailable.

Figure 5-5 compares the predictions of CELLO-EM to those of Bachrach et al..

In addition, I processed the same data using the scan matching and covariance pre-

diction scheme developed by Andrea Censi [2], along with hand-tuned and empirical

fixed covariances. Although all methods for predicting covariances agree on the di-

rection of maximal uncertainty and on the location of the regions of high uncertainty,

they vary widely in the estimated magnitude of uncertainty. To evaluate which un-

certainty estimates most closely mirror the true uncertainty, I generated a proxy for

ground truth by using a longer-range laser, capable of seeing the ends of the hallways

traversed. These longer-ranged laser scans were processed by the SLAM algorithm

presented in M. Kaess et al. [32]. This allowed the direct computation of the filter

error.

I evaluated an identical filter using each covariance scheme. I additionally eval-

uated the performance of the filter when augmented with visual odometry observa-

tions, derived from an RGB-D camera using the method of Huang et al. [23]. Visual

odometry is in many ways analogous to scan-matching odometry: feature points in

successive images are aligned to compute a transform between images. This trans-

87

form serves as an indirect measure of the vehicle velocity and angular velocity. For

details on the methodology and implementation of this process, I refer the reader to

the original paper. The ease with which I was able to extend the filter to incorporate

visual odometry information showcases a key advantage of CELLO: its generality. In

conjunction with the modularity of the Kalman filter, the separation of covariance

prediction from state estimation makes it straightforward to improve performance by

augmenting the filter with an additional sensor.

Table 5.2 compares filter performance using several metrics. The availability of

an additional sensor reduced the mean error in each case, as expected. However,

this came at a cost of diminished filter consistency, as measured by the normalized

estimation error and the dataset likelihood. Using CELLO yields the smallest mean

error, as well as the highest consistency for either metric. This clear advantage

suggests that the covariances predicted by CELLO yield a superior model for the

observation distribution-superior even to methods designed and tuned to predict

the uncertainty of each algorithm.

88

Figure 5-4: Predicted covariances for laser scan-matching odometry in a hallway.
Note that environmental ambiguity creates large uncertainty along the axis of the

hallway

89

10w

0 50 100 150 200 250 300 350 400 450,,. .'-...,

10 -W -nu \-\- - VV n;~

t0 10 2

.-... ..

10

0 50 100 150 200 250 300 350 400 450

tS10

b10

0 50 100 150 200 250 300 350 400 450

t

Figure 5-5: Comparison of the marginal covariances predicted by Bachrach et a).

[5] (green), Andrea Censi [2] (blue), and CE LLO (red). Note the agreement across
methods on the locations of regions of uncertainty, but the wide disparity in their

magnitude. Using the smaller covariances results in the high variance velocity es-
timates seen in figure 5-6; in particular, note that the spikes in velocity variance

using the covariance scheme of Bachrach coincide with regions where the covariance
increases, suggesting that only CE LLO sufficiently increases the covariance.

-1
0 50 100 150 200 250 300 350 400 450

Time (s)

E 0

0 50 100 150 200 250 300 350 400 450

Time (s)

Figure 5-6: Estimated velocity using covariances predicted by CE LLO (red), Bachrach

(green), Censi (blue), and fixed to hand-tuned values (purple, nearly obscured). Note
the reduced variance when using CE LLO.

90

RMSE1 MAE2 NEES3 NMEE4 LL 5
Fixed 0.0303 9.1797 34.7087 1.5950 -11.0200
BSM 0.0595 18.3735 464.3963 5.1583 -356.8934
CSM 0.0407 11.9108 7025.3429 33.0318 3.1346

FOVIS 0.2397 63.0931 14431.6146 29.2197 -712.3076
BSM+FOVIS 0.0199 6.4020 1234.3538 5.3928 -620.1783
CSM+FOVIS 0.0323 9.6486 6739.2444 25.8061 -139.8690

CELLO

Table 5.2: Comparison of filter performance for a laser scan-matcher
and optical flow system. The filter was tested using fixed covariances,
using the scan matching systems of Bachrach and Censi by themselves,
using the FOVIS optical flow system alone, using FOVIS in conjunction
with each scan matching system, and using the scan matching system
of Bachrach and FOVIS with covariances predicted by CELLO. Using
CELLO results in modest gains in terms of absolute accuracy, but
enormous improvements in consistency and estimator bias. All metrics
are taken as specified in Bar-Shalom et al. [7]

i Root mean squared error, Z (* - xT - x). Low val-

ues indicate an accurate estimator; lower is better.
2 Mean absolute error, K n (ii - x)n|. Low values indicate

an accurate estimator; lower is better.
3 Normalized estimation error squared, 1 K (in-xn)TE-(kn-

xn). A lower value indicates a more consistent estimator.

4 Normalized mean estimation error, " . A value

of zero implies an unbiased estimator for all states; lower is better.
s Normalized log likelihood, _ K logp(zf Ri). High values indicate

a good measurement model; higher is better.

91

92

Chapter 6

Conclusion

I have presented a solution to a long-standing problem in recursive parametric esti-

mation. Sensor measurements are generally coupled to both the environment and to

the vehicle state. By reasoning about that coupling in an abstract way, I develop a

general algorithmic solution to the problem of identifying the noise parameters of a

time-varying model, while avoiding the need to infer a distribution over the environ-

ment.

The principle theoretical contribution of this thesis is the notion that introducing

auxiliary information, information which would have otherwise been discarded, can

improve the fidelity of graphical models in a very general way, and can have a signifi-

cant impact on real-world performance. I present an algorithm for tractable inference

on the models induced by the introduction of an auxiliary predictor vector <5. This

algorithm has four principle strengths. First, it is computationally cheap. At run-

time, the cost of a parameter prediction is essentially the cost of a nearest-neighbor

search: O(log ND). Even under a Bayesian interpretation, we do not require sampling

or other expensive procedures. A modern computer can handle searches like this in

real time even for data sets containing hundreds of thousands, or even millions, of

samples. In addition, carefully discarding samples that do not supply new informa-

tion allows the system to achieve dense coverage of the predictor space without an

excessively large data set.

Second, the algorithm may be easily adapted to new sensors. The entire process

93

required to use CELLO on a new sensor has just three steps.

1. Choose a parametric model for the sensor

2. Choose a vector of predictor features, computable from available sensor date

3. Collect a body of data and feed it to the CELLO learning subroutine

The predictor vector need not be minimal; a large set of parameters can be provided

to the learning subroutine, and any features which are insufficiently informative will

be automatically discarded. The only experimental step is the collection of routine

operating data; the computational step, assuming the designer uses an existing imple-

mentation of CELLO, is just a single command. This is much simpler than difficulty

involved in generating from first principles a covariance model for a new sensor.

Third, the algorithm is noninvasive, in the sense that it augments, rather than

disrupts, existing filtering algorithms. An implementation of the Kalman filter can

be adapted to use CELLO in just a few lines of code, simply replacing the call to a

static covariance matrix with a call to the CELLO prediction subroutine. This rep-

resents very little coder effort; the only remaining cost to the designer is the need to

collect data and run the CELLO training subroutine, which only need be done once.

Decisions about optimizations done within the filter may be made independently of

CELLO; for instance, the Kalman filter could be replaced with an extended, un-

scented, or cubature Kalman filter and use exactly the same calls to CELLO.

Fourth, if run on-line, the algorithm is globally asymptotically correct. That is,

given sufficient samples, the predictions will be consistent; the bias and variance of

the predicted parameters will collapse to zero. In contrast, parameter estimation

systems derived from a detailed model of the target sensor may perform arbitrarily

poorly if the model is inaccurate.

The algorithm is not without limitation. First, the method asserts a paramet-

ric form for the observation distribution which may or may not reflect reality. We

may prove consistency if the form is correct, but if the observation noise is non-

Gaussian-if, for instance, it is heavy-tailed, or multi-modal, or heavily skewed-the

94

algorithm may perform arbitrarily poorly. This is true for any parametric solution, of

course; the only way to avoid this pitfall is to use nonparametric models. In general,

nonparametric models are more computationally expensive than recursive parametric

algorithms; however, they can make stronger performance guarantees.

Second, by its nature the algorithm is excessively general. The user must provide

a space of predictors, a metric on the predictor space, and a scalar kernel function

which operates on that metric. It is difficult to provide principled guidance for how

these should be chosen. The learning procedure allows for the user to provide a

parametric form for the metric and kernel; in many cases, simple parametric forms

like the scaled Euclidean metric and the linear kernel perform well enough that more

complex forms need not be considered. If they fail to perform well, the procedure for

choosing a more complex form is not clear.

Ideally, the learning procedure would be extended to include learning predictor

features as well. In my work, I simply made educated guesses as to which features

would be informative; for many sensors, choosing an excessively large set and allowing

the metric learning process to discard uninformative features worked well. However,

I had domain knowledge to draw upon; I knew which failure modes I was attempt-

ing to identify, and what features could identify those modes. Given an arbitrary

sensor with a known observation function, it is not immediately apparent what good

features might be. Feature discovery is an active area of research in machine learn-

ing; augmenting CELLO with a system for feature discovery would extend its the

applicability.

Finally, the algorithm relies on nearest neighbor searches, which often perform

poorly in high-dimensional spaces. If the predictor feature dimensionality exceeds ten

or twelve, fast searches, like the k-D tree I use, will perform no better than a naive

linear search. If the algorithm is run in online mode, the dataset will grow with-

out bound, and this linear search can become prohibitively expensive; this problem is

common to many applications which rely on fast search, such as the rapidly-exploring

random tree algorithms used in planning. Although this cost may be mitigated by

only adding the most informative features, it remains significant, and dominates the

95

computational burden of the algorithm. Development of improved heuristics for struc-

turing the dataset, which increase the number of dimensions we may effectively search,

could dramatically improve the performance of the algorithm. Alternatively, it may

be possible to extract exemplars and dramatically decrease the size of the dataset,

without compromising performance; this would enable the algorithm to be employed

even on systems with very limited memory, such as microcontrollers.

To my knowledge, no other solution can claim the same mix of correctness, ease

of use, and tractability. I believe I have presented a method which can be used

as an 'off-the-shelf' tool for improving estimation with minimal overhead, either on

the part of the coder or on the part of the computer. The ability to bootstrap an

estimator with no tuning can dramatically reduce the effort required to get a system

up and running, while augmenting-rather than penalizing-the performance. The

flexibility of the observation model and the generality of my solution may be useful

in a variety of contexts beyond state estimation; the algorithm derived promises to

improve accuracy and consistency anywhere a Gaussian measurement model is used

to account for the uncertainty of a complex system.

96

Appendix A

Software Implementation

In order to evaluate CELLO and CELLO-EM, I implemented both algorithms in

C++. Several practical design and usage considerations emerged during the develop-

ment process. I record these concerns and how they were addressed, to guide anyone

who may implement CELLO, or use my implementation, in the future.

A.1 Ensuring positive-definiteness

Because CELLO fundamentally represents a covariance as a (weighted) sum of outer

products, the resulting prediction is guaranteed to be positive semidefinite. In par-

ticular, for an observation of size N., the prediction will be almost surely positive

definite if more than N, samples are incorporated into the estimate, and will always

be semidefinite if the number of samples is less than N.. This poses a problem: for

any valid distribution over the positive definite cone, the set of semidefinite matrices

has measure zero. For kernels with infinite support, this is an issue only if numerical

precision comes into play. However, for finite support kernels and finite data sets,

our system will, in some regions of predictor space, with probability one generate an

estimate with probability zero.

This is a practical problem, more than a theoretical one. In many cases, we require

the inverse of the covariance matrix, which is undefined for semidefinite matrices.

There is always a valid, simple solution: collect more data. However, in practice

97

this may not be feasible, especially if some region of the space of predictors has

very low, but nonzero, probability. One simple solution is to redefine our estimator

(equation (3.22)) as

61 + EN" k(Il#p - #i||)aivv T
R(#, ai) = ± i= k (A.1)

END k(JJ45 - Oijj)at

where E is a very small number. In the limit of infinite samples, this exactly recovers

the CELLO prediction. 1

The practical implication of this modification is to ensure a positive definite pre-

diction in all cases. In particular, it ensures the likelihood will always be finite; a

semidefinite covariance matrix will yield a sample likelihood of -oo if the projection

of the sample onto the null space of the covariance is not zero.

A.2 Guiding the search

Because the search space is large and non-convex, we can improve the optimization

process by adding additional terms to the cost function, with the intention of guiding

the search. The software implementation referred to does this in three ways.

First, for very large scale parameters, the kernel sum END k(110 - Oi)cx will

become very small for large segments of the predictor space. This can cause the

Jacobian (equation (3.36)) to become very small, leading the optimizer to 'get lost'.

Since numerical optimizers often use the magnitude of the Jacobian as a stopping

condition, this can lead to the optimizer returning hyperparameters which perform

extremely poorly. By adding an L2 regularization term to the cost function, we can

guide the optimizer away from these false solutions.

a* =arg max (a) + k2 ||a|| 2 (A.2)
a

Second, we observe that the estimator variance decreases in regions of high density

1 Actually, E may be any number, and in the limit of infinite samples we will recover our original
estimator. However, for finite sample sets, small c will have less of an effect in low-probability regions
of predictor space.

98

sample density. We may capitalize on this fact by explicitly rewarding the mean

sample density with reduced cost. This will tend to guide the hyperparameters in the

direction which most increases sample density without overly decreasing likelihood.

By implication, this sample density reward serves as a form of regularization, and

will help to combat overfitting.

a* = argmaxLl(a) + k2 ||a||2 + kz log (k(|#i-Oj#|)a") (A.3)

Note that the gradient of this particular form of a low density cost term also appears

in the gradient of the likelihood; we achieve this additional regularization with zero

computational overhead.

Finally, it is not always readily apparent which features will be informative. The

form of the estimator allows the rejection of uninformative features by simply making

the corresponding hyperparameter weight arbitrarily small. If that weight is not just

small, but zero, we may safely discard the feature. Because nearest neighbor searches

have much higher performance in lower dimensional spaces, the ability to discard

features can lead to large speedups. To encourage sparse feature weights, we add an

Li regularization term to the cost function. This will have minimal effect for large

feature weights, but will encourage small weights to become exactly zero.

a* = argmaxL (a) + killa|l| + k2||a|2 + k log (k(||#i -- i|)a"t (A.4)

The cost function gains {ki, k2 , kE} must be tuned during optimization to achieve

good performance. We found the values of ki = 10-5, k2 = 10-, and kE = 10-2

good general purpose initial values; as a rule of thumb, k2 should be made as small as

possible, and increased only if the optimization fails. ki and kE reflect performance

considerations-the preference for low dimension and high density, respectively-and

should be tuned accordingly.

99

A.3 Optimizations

In order to deal with very large datasets in real time, it is important to be able to

quickly evaluate the sums in our estimator. Using kernels with finite support causes

many terms in the sum to become zero. Running a fixed-radius nearest neighbor

search allows the rapid identification of the nonzero terms. If the hyperparameters

are fixed, or fixed up to an overall scale, this may be done on O(Nneighbor log ND) time

using a vantage point tree for arbitrary metrics. If the metric is a scaled Euclidean,

this may be accelerated further by using a k-D tree. Note that a naive implementa-

tion would take O(ND) time, regardless of the number of neighbors Neighbors. If the

dimension is high, approximate nearest neighbor searches often dramatically outper-

form exact nearest neighbor searches. I used the library FLANN [35], which provides

tools for both approximate and exact nearest neighbor search under arbitrary metrics

and automatically tunes for speed.

A.4 Parallelization

CELLO, and the maximization step of CELLO-EM, can be easily parallelized in two

ways. First, since the optimization is non-convex, there may be multiple maxima.

Gradient ascent and related methods will thus be sensitive to initial conditions. Using

random restarts improves the chance of finding the global maxima; each restart is

independent from the others, and so they may be done in parallel, with the maximum

likelihood hyperparameters a* taken as the supremum of the set of local maxima.

Additionally, the algorithm can take advantage of low-level parallelism. The eval-

uation of the objective function, or its gradient, requires the summation of a sequence

of independent terms. Each term requires access to the entire data set, but each term

may be evaluated independently. Because these terms are independent, we may ar-

bitrarily partition the dataset, and evaluate the objective function for each partition,

then sum the result. Note that the Li and L2 terms must be evaluated separately, if

present. However, this is a negligible computational cost compared to computing the

100

summed terms.

Both forms of parallelization require minimal interprocess communication; every

thread needs access to the full dataset, but needs no further communication beyond

that. I found that evaluating the sums serially but running optimizations in parallel

resulted in the greatest absolute increase in speed; however, my experiments were

done on a four core desktop machine. Conceivably, a computer with many cores-

such as a cluster or a GPU-could achieve a greater speed increase using both forms

of parallelization.

101

102

Appendix B

Derivations

B.1 Proof of convergence of kernel density esti-

mates

Let D be a set of ND independent, identically distributed random variables {Xl,. .. , XND

taking values in a measureable space X. Let the density of each xi be p(x). Then

the kernel density estimate of the distribution p(x) given the data set D and a kernel

k(., -) is defined in equation (B.1).

ND

p(x) = k(x, x).
Di=1

(B.1)

A function k : X x X - R+ is an admissible kernel if it has the following properties.

Non-negative:

Normalized:

Asymptotically identical:

Exponentially bounded:

k(x,x') > 0 Vx, x'

jdx'k(x, x') = 1 Vx

lim k(x, x') =6(x - x') Vx, x'
ND -+0

lim exp(A||x-x'|)k(x,x')<o0 3A > 0, Vx, x'
Ix-x'II-+oo

103

Here, the delta function 6(-) is the Dirac measure, equal to the Dirac delta function

if X is a Euclidean space. Note that it follows from these conditions that if ki(xi, x'1)

is a kernel on X1 and k2 (x 2, x'2) is a kernel on X2, the product ki(x 1,x')k2(x 2 , x'2)

is a kernel on the product space X1 x X 2. The first two condtions guarantee that

the kernel density estimate will be a valid distribution for any nonzero number of

samples; I will now show that the last two properties guarantee the estimate will be

consistent.

The mean and variance of the kernel density estimate follow from equation (B.1).

ND ND

E[p(x)] = JF dxjp(x) k(x,Ixi)
3=1

ND

E I- Jdxip(xi) k(x, xi)

= dx'p(x') k(x, x') (B.2)

Therefore, the kernel density estimate is unbiased if and only if the kernel function

k(x, x') approaches the delta function 6(x' - x) as the number of samples increases.

Vk(.,-): lim k(x, x') = 6(x' - x), lim E [fi(x)] = p(x) (B.3)
ND --+o ND- o

Taking the variance and simplifying:

ND IND)2 [iX

Vc(p(x)) =JF dxp(xi) (+ k(xxj) -E
1=1 Di=1

1 N2 (E Jdxip(xi) k(x, xi)2 + 2 dxip(xi) k(x, xi)) 2) - E [p(x)]2

4 (f dx'p(x') k(x, x')2 - dx'p(x') k(x, x') (B.4)

Because the kernel is exponentially bounded, the parenthetical term in equation (B.4)

104

is guaranteed to be finite; denoting it f(x),

f (x) = (Jdx'p(x') k(x, x') 2 - (Jdx'p(x') k(x, x')) 2) (B.5)

it is apparent the variance must become zero as the number of samples goes to infinity.

lim V (P(x)) = lim = 0
ND-+o ND-oo ND

(B.6)

Therefore, if a kernel is exponentially bounded and approaches a delta function, the

kernel density estimate is consistent.

B.2 Derivation of asymptotic estimator properties

Let the vector 0(#) E R 2 (N2+1) represent the independent elements of the observation

covariance matrix R = R(#) associated with a predictor vector q5.

0(#) = vec [R(#)] (B.7)

Additionally, let the function To (x, z) represent the corresponding elements of the

matrix estimator TR(X, Z) = (Z - Hx)(z - Hx)T so that

To (x, z) = vec [TR(x, z)] (B.8)

It follows from equation (3.6) that if z ~N (Hx, R(#))-that is, if the tuple {x, z, #}

is a sample from a CELLO dataset, as introduced in chapter 3-then To is an unbiased

estimator of the parameter vector 0.

E [To(x, z)] = 0(q5) (B.9)

105

Using this notation, the estimator presented in algorithm 1 can be written

E k(1 - #ill)Te(vi) (B.10)
ENk(||#5 - # l)

The expected value of this estimator, given ND sample triplets, is given explicitly in

equation (B.11).

jND
ENDk10-OJToxzj

.E [6(#)] = jp(xi) p() p(zil4 xi) dx dzidq- j=1 d-NDk(11 - 11)

(B.11)

ND N

p(#;) d#Oi = 1 (B.12)

E dj p(#j) k(N|# - # |)0(#) N(d (B.13)

The simplified form of equation (B.12) follows from equation (B.9): since To is an

unbiased estimate of 0, the expectation over the state x and the observations z can

be immediately simplified. Equation (B.13) follows from the independence of the

samples and properties of the integral.

Note that this integral is the standard mean function integral of a Nadaraya-

Watson estimator; at this stage, the stochastic nature of the regression target, 0, is

unimportant. Despite the fact that we cannot directly observe 0, it is possible to

apply standard regression techniques and results. I provide a derivation of the bias,

and just the result of the variance; a more complete derivation can be found in any

text on kernel regression.

Denote the kernel scale as o and assume the kernel metric to be of generalized

Euclidean form, with a metric tensor M:

IIq5 - = - #i)T (- #) (B.14)

This permits the definition of a local coordinate system <p = L(# - 4), where M =

106

LTL; in this local coordinate system, the kernel function is spherically symmetric.

k(I|| - kilIm, -) = uk(IIII) (B.15)

Taking the Taylor series about 0, the kth parameter of the parameter vector 0, Ok

can be approximated as

Ok(ki) = Ok(1) ± VT Ok (0) [0 - 4'i] ± -[0]T VV T Ok (0) [0 - Oil + ((114 _-iI31

(B.16)

= 0
k(4) -±- - T L-VVT ()L-iL ± ± (3 i 3)

(B.17)

where VT is the gradient operator and VVT the Hessian. The predictor distribution

can likewise be expressed as a Taylor series.

p(O;) = p(O) + UVTp(O)Lpig + T L-1VVTp L- - 0 (3 111 3) (B.18)

Because the kernel is exponentially bounded, it follows that the higher order terms

are finite when integrated with the kernel.

jdyk(||V||)O (||W||3) < oo (B.19)

Substituting these expansions into equation (B.13), changing variables to the local

coordinate system p, and rearranging to expose higher order terms,

ND

E [k(] = E d (p0k -- o-(OkVTp ±+ pVT0 k)L-j
j=1

a kVVTP + V TV p ±pvvTok
+ - TL-1 L-1

+ 0 (a3 IWjI13) k(IIWI) f N171 d4i (B.20)
Becus te kk(| |t - fi| |)

Because the kernel is isotropic, all first order terms vanish by symmetry. Define

107

V2 Oi(#) = tr [VVTO,(#)M~l] and Ck = f <pk(p)dyp for convenience.

NDor2k 21 T+ 2

E [$x(# = + ± -|- (V2p + 2VOkM-V Tp +PV Ok
j=1 (

f r p(#) d# + 0 (o) (B.21)

The denomenator in the fractional term is proportional to the kernel density estimate,

p(q5). Rewriting the expectation in terms of the inverse expectation of the kernel

density estimate:

E-($x(#) = E] ok + (O2kk 2 V~kM-1VTp + V2 _ 0 (o-)
.P(#))(k 2 p MP Vk k

(B.22)

The consistency of the kernel density estimate implies that for large samples sizes

the lead term is one. Therefore, in the limit of many samples and small scale, the

estimator is unbiased to first order.

lim E [- O(#) = (V2 0(#0) + 2V logp(#) T M-VO(#) + V2p().O(q5) a2CK

Nor-+oo
(B.23)

The procedure for evaluating the asymptotic variance is similar, and a full treat-

ment can be found in any standard text on kernel regression; the result is given in

equation (B.24).

lim V dK V (oil#) (B.24)
a-+o p(#) NDo

Here, dk = f k(p)2 dp. In the limit of large samples size and small kernel scale, both

the bias and variance become zero; we have obtained a consistent estimator for the

covariance R.

108

B.3 Derivation of Bayesian measurement model

We aim to choose the maximum entropy distribution subject to a constraint on the

Kullback-Liebler divergence. That is, we seek

p(zIR',#,#') =arg max W [p] = arg max
p p Idz -p(z) log p(z)

subject to

0 = Jdzp(zlR' 0, ##) (DKL (110 - 0'11) - log
(p(zIR', 4,0'M (0,R')))

in additon to a normalization condition.

1 = Jdzp(zIR', 0, ##') (B.27)

We use the method of Lagrange multipliers to transform this to an unconstrained

optimization.

(B.28)p(zIR',4') = arg max L[p](z)
p

L[p](z) = Jdzp(z) log p(z) + AKLp(z) (DKL (110 - q5'11) - log

= dz -

(p(z)Kr (0, R')J

(1 + AKL)(p(Z) log p(Z)) + p(z) (AKL (DKL (110 - 0'11)+ log(M (0, R'))) + A2)

(B.30)

In order to be a maxima, the variation in L[p] for any variation in p(z) must be zero.

dz (-(1+AKL)(logp±l)+(AKL (DKL (110 - '1') + log(NK(0, R'))) + A2))P

(B.31)

109

(B.25)

(B.26)

± A2p(Z)

(B.29)

o = J

The du Bois-Reymond lemma implies the bracketed term must be identically zero.

0 = -(1 + AKL)(lOg p ± 1) + (AKL (DKL (-) + log(K (0, R'))) + A2)

(B.32)

logp = AKL DKL
1+ AKL

AKL

p = C(AKL, A2)Nr (0, R')1+A\KL

log(N (0, R')) + 2
1 +AKL 1+AKL

The second Lagrange variable, A2 , will enforce normality; therefore, we may write

simply

p(z) oc K (0, R')' (B.35)

where a = - is introduced for brevity. This may be simplified if we consider the
f+taKL

form of the normal distribution.

p(z) oc K (0, R')"

z)oc exp

oc exp

- IzTR'~
2

1 T
2az

R'~1z)

oc exp (zT(I R')-lz)
(2 a

oc (
1

D, -R'0aR)
The Kullback-Liebler divergence between two zero-mean multivariate normal distri-

butions is

1 Klg(det R~
DKL (N (0, R) I| (0, R')) = 1 tr (R'-R) - d - log det R' (B.41)

110

(B.33)

(B.34)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

where d is the dimension of the distribution. Our constraint enforces that DKL (p(z) J| (0, R')) =

DKL (14) - 4'II)- Therefore,

DKL (||d - 'll) = DKL (N (, .R') || (0, R') (B.42)

1 // 1\ fdet -1R'
(tr (R' R!) - d - log (R (B.43)

S-(- - log-) (B.44)
2a

Rearranging, we have

-exp 2 DKL +1=-exp(-)(B.45)
d + a

This cannot be solved for a in terms of elementary functions. The solution can be

written in cloased form in terms of the Lambert W function.

a = - exp (2DKL (I+# - 'll) ± 1 (B.46)

This function has several interesting properties; it is normalizable, finite for # =

and decays monotonically as DKL (' - |'I) increases. Thus, by choosing DKL (II - I

carefully, we may recover any kernel we choose.

111

112

Bibliography

[1] Gabriel Agamennoni, Juan I. Nieto, and Eduardo M. Nebot. An outlier-robust
kalman filter. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, page 15511558, 2011. URL http://ieeexplore.ieee.org/

xpls/absall. jsp?arnumber=5979605.

[2] Andrea Censi. An accurate closed-form estimate of ICP's covariance. In Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
Rome, Italy, April 2007.

[3] Ienkaran Arasaratnam and Simon Haykin. Cubature kalman filters. Au-
tomatic Control, IEEE Transactions on, 54(6):12541269, 2009. URL http:
//ieeexplore. ieee. org/xpls/abs-all . jsp?arnumber=4982682.

[4] Aleksandr Y. Aravkin and James V. Burke. Smoothing dynamic systems with
state-dependent covariance matrices. arXiv preprint arXiv:1211.4601, 2012. URL
http: //arxiv. org/abs/1211.4601.

[5] A. Bachrach, S. Prentice, R. He, and N. Roy. RANGE - robust autonomous
navigation in GPS-denied environments. Journal of Field Robotics, 28(5):644-
666, September 2011.

[6] Abraham Bachrach, Ruijie He, and Nicholas Roy. Autonomous flight in
unknown indoor environments. International Journal of Micro Air Vehi-
cles, 1(4):217228, 2009. URL http: //multi-science.metapress.com/index/

80586KML376K2711.pdf.

[7] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan. Estimation
with Applications to Tracking and Navigation. John Wiley and Sons, Inc, 2001.

[8] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-
tion technique occurring in the statistical analysis of probabilistic functions of

markov chains. The annals of mathematical statistics, 41(1):164171, 1970. URL
http: //www. jstor .org/stable/10.2307/2239727.

[9] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM
Comput. Surv., 27(3):433466, September 1995. ISSN 0360-0300. doi: 10.1145/
212094.212141. URL http: //doi. acm. org/10. 1145/212094.212141.

113

[10] Ola Bengtsson and Albert-Jan Baerveldt. Robot localization based on scan-
matchingestimating the covariance matrix for the IDC algorithm. Robotics and
Autonomous Systems, 44(1):29-40, July 2003. ISSN 0921-8890. doi: 10.1016/
S0921-8890(03)00008-3. URL http://www.sciencedirect.com/science/
article/pii/SO921889003000083.

[11] Mauro Brenna. Scan matching covariance estimation and SLAM: models and
solutions for the scanSLAM algorithm. PhD thesis, Artificial Intelligence and
Robotics Laboratory Politecnico di Milano, 2009.

[12] Adam Bry, Abraham Bachrach, and Nicholas Roy. State estimation for aggres-
sive flight in gps-denied environments using onboard sensing. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, page 18, 2012.
URL http://ieeexplore.ieee. org/xpls/abs-all. jsp?arnumber=6225295.

[131 E. De Castro and C. Morandi. Registration of translated and rotated images
using finite fourier transforms. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (5):700703, 1987. URL http://ieeexplore.ieee.org/xpls/
abs_all. jsp?arnumber=4767966.

[14] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), page 138, 1977. URL http://www.jstor.
org/stable/10 .2307/2984875.

[15] Arthur Gelb. Applied optimal estimation. MIT Press, May 1974. ISBN
9780262570480.

[16] Jerry D. Gibson, Boneung Koo, and Steven D. Gray. Filtering of colored noise for
speech enhancement and coding. Signal Processing, IEEE Transactions on, 39
(8):17321742, 1991. URL http://ieeexplore.ieee.org/xpls/abs-all.jsp?
arnumber=91144.

[17] Roland Goecke, Akshay Asthana, Niklas Pettersson, and Lars Petersson. Visual
vehicle egomotion estimation using the fourier-mellin transform. In Intelligent
Vehicles Symposium, 2007 IEEE, page 450455, 2007. URL http: //ieeexplore.
ieee.org/xpls/abs-all.jsp?arnumber=4290156.

[18] Neil J. Gordon, David J. Salmond, and Adrian FM Smith. Novel ap-
proach to nonlinear/non-gaussian bayesian state estimation. In IEE Pro-
ceedings F (Radar and Signal Processing), volume 140, page 107113,
1993. URL http://digital-library.theiet.org/content/journals/10.
1049/ip-f-2.1993.0015.

[19] Andrew C. Harvey. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press, 1990. ISBN 0521405734.

114

[20] Huy Tho Ho and Roland Goecke. Optical flow estimation using fourier mellin

transform. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, page 18, 2008. URL http: //ieeexplore. ieee .org/xpls/

absall. jsp?arnumber=4587553.

[21] Berthold KP Horn and Brian G. Schunck. Determining optical flow. Artifi-

cial intelligence, 17(1):185203, 1981. URL http://www.sciencedirect.com/

science/article/pii/0004370281900242.

[22] Congwei Hu, Wu Chen, Yongqi Chen, and Dajie Liu. Adaptive kalman filtering
for vehicle navigation. Journal of Global Positioning Systems, 2(1):4247, 2003.

URL http://www.gmat.unsw.edu.au/wang/jgps/v2n1/v2n1pf.pdf.

[23] Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel

Maturana, Dieter Fox, and Nicholas Roy. Visual odometry and mapping for

autonomous flight using an RGB-D camera. In Proceedings of the International

Symposium of Robotics Research (ISRR), Flagstaff, AZ, 2011.

[24] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the kalman filter to

nonlinear systems. In The 11th International Symposium on Aerospace/Defence

Sensing, Simulation and Controls, 1997.

[25] R. E. Kalman. A new approach to linear filteringand prediction problems. Trans-

actions of the ASMEJournal of Basic Engineering, 82 (Series D):35-45, 1960.

[26] Kwang Hoon Kim, Jang-Gyu Lee, and Chan-Gook Park. Adaptive two-stage

extended kalman filter for a fault-tolerant INS-GPS loosely coupled system. IEEE

Transactions on Aerospace and Electronic Systems, 45(1):125-137, 2009. ISSN

0018-9251. doi: 10.1109/TAES.2009.4805268.

[27] Jonathan Ko and Dieter Fox. GP-BayesFilters: bayesian filtering using gaussian

process prediction and observation models. Auton. Robots, 27(1):7590, July 2009.

ISSN 0929-5593. doi: 10.1007/s10514-009-9119-x. URL http://dx.doi.org/
10.1007/s10514-009-9119-x.

[28] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Haehnel. GP-UKF: Un-
scented Kalman Filters with Gaussian Process Prediction and Observation Mod-

els.

[29] Michael L. Littman, Richard S. Sutton, and Satinder Singh. Predictive rep-

resentations of state. Advances in neural information processing systems, 14:

15551561, 2001. URL http://www-2.cs.cmu.edu/Groups/NIPS/NIPS2001/
papers/psgz/CN12.ps.gz.

[30] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for

environment mapping. Autonomous robots, 4(4):333349, 1997. URL http://

link.springer.com/article/10.1023/AX3A1008854305733.

115

[31] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In Proceedings of the 7th international joint
conference on Artificial intelligence, 1981. URL http: //www. ri. cmu. edu/pub_
files/pub3/lucas-bruce_d_1981_1/lucasbruce_d_1981_1.ps.gz.

[32] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: incremental smoothing and
mapping. IEEE Trans. on Robotics, TRO, 24(6):1365-1378, December 2008.

[33] Raman K. Mehra. On the identification of variances and adaptive kalman filter-
ing. IEEE Transactions on Automatic Control, AC-15:175-184, 1970.

[34] Arman Melkumyan and Fabio Ramos. Multi-kernel gaussian processes. Proceed-

ings of the Twenty-Second International Joint Conference on Artificial Intelli-
gence, pages 1408-1413, 2011.

[35] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on Computer
Vision Theory and Application VISSAPP'09), pages 331-340. INSTICC Press,
2009.

[36] E. A. Nadaraya. On estimating regression. Theory of Probability & Its Ap-
plications, 9(1):141-142, January 1964. ISSN 0040-585X, 1095-7219. doi:
10.1137/1109020. URL http://epubs.siam.org/doi/abs/10.1137/1109020.

[37] Philippe Naveau, Marc G. Genton, and Xilin Shen. A skewed kalman fil-
ter. Journal of Multivariate Analysis, 94(2):382400, 2005. URL http: //www.
sciencedirect . com/science/article/pii/S0047259X04001150.

[38] K. Paliwal and Anjan Basu. A speech enhancement method based on kalman fil-
tering. In Acoustics, Speech, and Signal Processing, IEEE International Confer-
ence on ICASSP'87., volume 12, page 177180, 1987. URL http: //ieeexplore.
ieee. org/xpls/abs_-all.jsp?arnumber=1169756.

[39] B. Srinivasa Reddy and B. N. Chatterji. An FFT-based technique for translation,
rotation, and scale-invariant image registration. Image Processing, IEEE Trans-
actions on, 5(8):12661271, 1996. URL http://ieeexplore.ieee.org/xpls/
absall. jsp?arnumber=506761.

[40] M. Stakkeland, 0. Overrein, E.F. Brekke, and 0. Hallingstad. Tracking of tar-
gets with state dependent measurement errors using recursive BLUE filters. In
12th International Conference on Information Fusion, 2009. FUSION '09, pages

2052-2061, 2009.

[41] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Mit

Press, 2005. ISBN 9780262201629.

[42] Geoffrey S. Watson. Smooth regression analysis. Sankhy: The Indian Journal of

Statistics, Series A, page 359372, 1964. URL http://www. jstor.org/stable/
10.2307/25049340.

116

[43] Andrew Gordon Wilson and Zoubin Ghahramani. Generalised wishart processes.
Uncertainty in Artificial Intelligence, 2011.

117

