THE POST-DISASTER SHRINKING CITY
VACANT LAND TYPES, PATTERNS, AND STRATEGIES IN POST-KATRINA NEW ORLEANS

By Colleen M. McHugh

THESIS ADVISOR THESIS READERS
Anne Whiston Spirn James Wescoat | Brent D. Ryan

Submitted to the Department of Urban Studies and Planning on May 23, 2013 in partial fulfillment of the requirements for the degree of Master in City Planning
There were approximately 17,000 vacant lots in New Orleans in 2012, amounting to over 11 percent of total parcels in the city. Many of these lots have become vacant since Hurricane Katrina hit the Gulf Coast in 2005, but many were already empty. The population in parts of the older core of the city significantly declined from World War II until 2000. The migration of people into the recently drained low-lying subdivisions both within and outside of the city limits led to disinvestment and high vacancy rates in central neighborhoods of the city.

This thesis seeks to define the current physical landscape of vacancy in New Orleans, within the context of these two historic narratives, Katrina and suburbanization before the storm, in order to appropriately target policy strategies for the reuse of vacant lots. This thesis uses images collected by the author of vacant lots throughout the city to define spatial types and conditions common to vacant land in New Orleans. A rigorous, data-driven mapping exercise explores patterns of vacancy in relation to physical and socioeconomic measures. This analysis supports the definition of three neighborhood types in which vacant land should be treated differently. These three types are based on pre-Katrina vacancy and post-Katrina flood depths, and consist of: 1) areas with significant pre-Katrina vacant land and little flooding, 2) areas with little pre-Katrina vacant land and high flood levels, and 3) areas with both significant pre-Katrina vacant land and high flood levels.

The findings of this research indicate the need to revisit the physical footprint of New Orleans, with an emphasis on how the city should target its limited resources in the future to maximize both social justice and environmental justice imperatives, as well as mitigate the negative impacts of future disasters.
I would first like to thank my advisor, Anne Spirn, whose decades of commitment to West Philadelphia and belief in the transformative potential of its vacant land inspired the work of this thesis on New Orleans. Anne has been a constant source of encouragement throughout this process, and I could not have done it without her guidance.

To my readers, Brent Ryan and Jim Wescoat, whose early conversations helped me develop this topic and whose thoughtful feedback challenged me to conclude with much bigger claims. My affinity for the “shrinking city” was born in Brent’s urban design studio and my interest in the “post-disaster city” further developed in Jim’s seminar. Thank you for teaching me to approach each with sensitivity and faith in the potentially positive role of design.

To David Lessinger, Kirsten Melberg, and Jeff Hebert at the New Orleans Redevelopment Authority, whose long conversations in January helped me translate this topic into an argument. Their generosity of time and interest in my work has been incredible. Their commitment to the hard work of building back a better New Orleans is an inspiration.

To my interviewees, Richard Campanella, David Waggonner, and Dan Etheridge for graciously sitting down with me when this project was still nascent. Their provocative conversations gave me food for thought and helped me frame my research.

To Anna Muessig, Jared Press, and Michael Kaplan for making the lot-by-lot collection of data used in this thesis the most fun it possibly could be in 98-degree weather. And to Christine Currella, for always challenging me to not only think about what could be done, but also the nuts and bolts of how to make it happen. Our summer together in New Orleans was one of the best I’ve ever had.

To Zach Youngerman, Kristen Zieber, Aron Chang, and Cristina Ungureanu for all the thoughtful conversations I’ve had with each of them about New Orleans and the Gulf Coast.

To Jocelyn Drummond and our thesis group of two. Her feedback throughout the semester was sharp and incredibly helpful, and it’s also been a joy to watch her research develop over that time. Sharing this process together has been a source of comfort. And to Kari Milchman for the late-night solidarity and copy editing in the homestretch.

To the DUSP MCP Class of 2013, for being some of the most generous, supportive, intelligent, and hilarious people I’ve ever met. These past two years have been a roller coaster, and I can’t imagine a better group of people to share the ride with.

To my family, for their unwavering love and support.

And to the city of New Orleans. I can only hope to do it justice.
TABLE OF CONTENTS

CHAPTER 1: Introduction

I. New Orleans As a Case Study .. p 13
II. Defining Vacancy ... p 15
III. Methodology ... p 19
IV. Thesis Structure ... p 21

CHAPTER 2: From Disinvestment to the Deluge: A History of Vacancy in New Orleans

I. Early Urbanization Patterns: Undeveloped Backswamps p 25
II. Suburbanization and Inner City Vacancy p 28
III. Katrina – Vacancy by Destruction p 35
IV. Two Narratives of Vacancy ... p 38

CHAPTER 3: Characteristics of Vacant Land in New Orleans

I. Spatial Typologies of Vacant Land In New Orleans p 43
II. Conditions of Vacant Lots in New Orleans p 61
III. Other Characteristics of Vacant Lots p 79
<table>
<thead>
<tr>
<th>CHAPTER 4:</th>
<th>CHAPTER 5:</th>
<th>CONCLUSION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citywide Physical Patterns of Vacant Land</td>
<td>Strategies for Vacant Lot Reuse in New Orleans</td>
<td>The Pre-Disaster Sinking City</td>
</tr>
<tr>
<td>I. Vacant Land, Citywide.......................... p 83</td>
<td>I. Vacant Lot Pilot Programs in Three Neighborhoods.......................... p 149</td>
<td></td>
</tr>
<tr>
<td>II. Neighborhood Types........................... p 101</td>
<td>II. Frameworks for Vacant Land Decision Making.......................... p 159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Lot-By-Lot Decision Making.................. p 167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV. Policy Programs.............................. p 170</td>
<td>I. The Footprint Debate Revisited................................ p 178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II. A Roadmap Forward................................ p 180</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION
I. NEW ORLEANS AS A CASE STUDY

New Orleans is at a critical intersection. Nearly eight years after Hurricane Katrina, the city is transitioning from a period of recovery and rebuilding to a long-term plan for redevelopment and resilience. Before and after Katrina, New Orleans was a city with a declining population and scattered vacancy and abandonment, much akin to conditions in American post-industrial shrinking cities, such as Detroit, Cleveland, and St. Louis. There are approximately 16,000 vacant lots in New Orleans today, and many existed prior to 2005. The failure of the levee system and the subsequent flooding following Katrina both revealed and exacerbated underlying issues of landscape, city development, and abandonment in the Greater New Orleans region. Today, a postdiluvial New Orleans faces a multiplicity of challenges: addressing issues of vacancy and abandonment, planning for a smaller population than existed at the city’s peak, implementing targeted strategies for redevelopment and growth, and improving the city’s resilience to future catastrophes.

RESEARCH MOTIVATIONS

My own experience with New Orleans is recent, though I have quickly developed a close affinity for the city. I spent the past summer of 2012 working for the New Orleans Redevelopment Authority (NORA) on a commercial corridor revitalization study with three classmates from the Masters in City Planning program at MIT. We focused our analysis and recommendations on three areas of the city: OC Haley Boulevard in the Central City neighborhood, a two-mile stretch of St. Claude Avenue from Esplanade to Poland, and an area of the Tulane Gravier neighborhood between Canal Street and the Lafitte Corridor. We did our own field work for the project, which consisted of a couple weeks of driving lot-by-lot, taking note of vacant parcels and their condition, unoccupied and structurally compromised buildings, façade qualities, and anchor institutions. In addition, we took photographs of every vacant lot and every building in poor structural condition. We also collected field data for other project areas NORA was working in, such as Pontchartrain Park, a traditionally African-American subdivision built in the 1950s near where the Industrial Canal meets Lake Pontchartrain and which experienced floods depths over ten feet after Katrina.

While doing this careful fieldwork in distinctive neighborhoods throughout New Orleans, and while otherwise exploring the city during my time living there, I couldn’t help but notice that vacant lots look different depending on the neighborhood context, and that certain patterns are common throughout the city. The lots NORA owns are meticulously mowed, often with an address number spray-painted orange on the sidewalk in front. Overgrown lots can be found throughout the city, but the differences in the kind of plant species that grow on them is striking. In the Lower Ninth Ward, you may find trees up to thirty feet in height that have grown since Katrina along with dozens of other species within a single lot. In Central City, grasses and weeds of a couple feet may encroach upon the adjacent sidewalk, forcing pedestrians into
the street. In Pontchartrain Park, grasses of ten feet are in stark contrast to adjacent mowed lots. Certain temporary uses are also common on vacant lots across the city, including the illegal dumping of tires and construction debris, the informal parking of cars, and community gardens and gathering spaces. However, the dispersion of these uses is not evenly distributed across the city. In some neighborhoods, vacant lots are highly activated with these positive and negative uses; whereas in others, vacant lots have a benign effect.

Over my summer in New Orleans I also became familiar with and excited by the various strategies that the City and NORA are exploring for alternative land uses on vacant lots as part of their overall redevelopment strategy, including stormwater management, alternative planting strategies, entrepreneurial projects, and the city's Lot Next Door program that gives adjacent property owners the first right to buy NORA-owned lots. It seemed to me that these strategies for vacant lot reuse ought to account for the nuances in vacant lot characteristics that I was beginning to identify.

Since Katrina, there have been countless plans and designs that seek to address the broad question of how to shrink the city's footprint or to reconfigure underutilized space within neighborhoods as a strategy for rebuilding. But the complexity of land ownership makes realizing any of these plans an incredibly difficult task. This thesis takes a longer-term view of redevelopment in New Orleans, from the perspective of the single lot. In her 1989 book on neighborhood architecture near Alamo Square in San Francisco, Anne Vernez Moudon finds single city lots to be the increment of neighborhood change. In this case, a trend towards consolidating smaller lots into much larger lots during the era of Urban Renewal made changes more difficult to implement and much more dramatic when they were implemented. In New Orleans, lots are also the primary unit of change. In many, if not most, respects the redevelopment of the city will happen lot-by-lot.

This thesis, in part, seeks to understand what makes the landscape of vacancy in New Orleans distinctive. However, it is possible to glean lessons from this research for other cities that have significant vacant land. And as I will explore towards the end of this investigation, New Orleans can learn from those cities that have already made efforts to reuse vacant lots.

RESEARCH FOCUS
The purpose of this research is to understand the nuanced physical characteristics and patterns of vacant lots in New Orleans in order to appropriately target policy strategies for their reuse.

Through a cataloguing of vacant land, I have defined both spatial types and conditions that are commonly found on vacant lots in New Orleans. An exploration of the various patterns
of where vacant lots exist in relation to elevation, Katrina flood depths, socio-economic demographics, open space, as well as patterns in the spatial types and types of conditions, supports my definition of three neighborhood types in which vacant land should be treated differently. These three types are based on pre-Katrina vacancy and post-Katrina flood depths, and consist of: 1) areas with significant pre-Katrina vacant land and little flooding, 2) areas with little pre-Katrina vacant land and high flood levels, and 3) areas with both significant pre-Katrina vacant land and high flood levels. The definition of both vacant land types and neighborhood types provides a direction for policy frameworks that differentiate programs and strategies for vacant lot reuse based on these types.

II. DEFINING VACANCY

The focus of this thesis is on vacant land and, more specifically, on vacant lots. While some of the literature on vacant land includes undeveloped areas and even open space in the definition of vacancy, my definition for the purpose of this thesis refers only to those plots of land where some structure, either a building or infrastructure, once stood and no longer does. The lot or the land parcel, as legally defined by property lines in city maps, is the main unit of measurement and analysis. While abandoned buildings are a related issue demanding a similar set of tools and considerations, the scope of this thesis is concerned primarily with those lots that have no buildings on them.

Several frameworks for analyzing and responding to vacant land influenced the approach of this thesis, and this section will discuss each of them.

VACANT LAND AS OPPORTUNITY

Vacant land is often thought of as a sign of decline, abandonment and neglect or, at best, as a void or nothingness. However, landscape architects, in particular, have suggested ways to see the value and opportunity provided by vacant spaces, and a number of cities have recently explored the potential for vacant land to provide services like stormwater management, increased access to open space, and urban agriculture. Carla Corbin, Assistant Professor of Landscape Architecture at the University of Illinois, argues for “alternative narratives of change that include getting smaller” and suggests designers, as a way of moving forward, “look at the context [in which vacant land exists] and ask: What needs are not being met, whether social or natural?”

While there has been a recent resurgence of interest in the potential positive reuses of vacant land, the concept of vacant land as providing an opportunity for cities and neighborhoods to reconfigure themselves is not new. For example, in the 1980s, the Boston city government granted the community around Dudley Street in South Boston the power of eminent domain over abandoned lots in the neighborhood. The Dudley Street Neighborhood Initiative transformed the lots that had previously been sites of neglect and illegal dumping into affordable housing, new schools, a community greenhouse, gardens, an orchard and other public spaces. Improving and activating vacant land became a method for deterring unwanted activities and illegal dumping in the neighborhood.

Since the mid 1980s, Anne Whiston Spirn, Professor of Landscape Architecture in the Department of Urban Studies and Planning at MIT, has highlighted the potential for vacant land to “integrate nature and city in new ways and to transform the city and the way people live within it.” Spirn’s six-volume *West Philadelphia Landscape Plan*, includes a 1991 report on “Vacant Land: A Resource for Reshaping Urban Neighborhoods” that suggests numerous design ideas for the reclaiming of vacant lots. Potential uses for vacant land include private and community gardens; meeting places; playlots, playgrounds and playfields; outdoor workshops and markets; parking lots; pathways connecting streets midblock; orchards, meadows and woodlands; and storm drainage and flood control. This report provides a model for much of the work in this thesis.

VACANT LAND PATTERNS AS HAVING A NATURAL, AS WELL AS SOCIOECONOMIC, LOGIC

Spirn’s work in both West Philadelphia and Boston found a striking correlation between vacant land and buried floodplains. She explains, “Although this is primarily a social and political phenomenon, an understanding of natural processes is essential to both the comprehension of where and why vacant land occur and to their wise reuse.”

In New Orleans, the natural logic of certain vacant land patterns post-Katrina is blatant. As geographer Pierce Lewis famously noted, New Orleans is “the inevitable city on an impossible site.” The Lower Ninth Ward is the most familiar and most severe case of post-Katrina vacancy, with a population decrease of 85% since 2000, when the Industrial Canal levee was breached and the area flooded. A March 2012 *New York Times Magazine* article, “Jungleland: The Lower

Ninth Ward in New Orleans Gives New Meaning to ‘Urban Growth’,” on vacancy and “wilds” in the Lower Ninth Ward declares, “Here, location is destiny; or, more precisely, elevation is destiny.” Wealthier and whiter neighborhoods are on higher ground closer to the Mississippi River, and poorer black neighborhoods are at or below sea level and sinking. Chapter Four of this thesis explores the relationship between vacant land and elevation as well as vacant land and flood depths post-Katrina, making note of both the expected correlations as well as the areas of the city where there are deviations from that pattern.

VACANT LAND AS A SITE FOR INFORMAL ACTIVITY AND “EVERYDAY URBANISM”
Vacant lots are not lifeless. They can be sites of exploration and delight, as Kevin Lynch describes in his posthumously-published *Wasting Away*: “Many waste places have ruinous attractions: release from control, free play for action and fantasy, rich and varied sensations. Thus, children are attracted to vacant lots, shrub woods, back alleys, and unused hillsides.” Vacant lots in cities offer sites for activities that might not otherwise have a place.

Often, there are informal activities, ranging from negative acts like illegal dumping to positive interventions like community gardens. But the majority of these positive and negative activities are ephemeral in nature, making them difficult to quantify or analyze. However, there are a few examples of research on informal uses of vacant land. A 1978 archaeological survey of 17 vacant lots in Tucson, Arizona by students at the University of Arizona found evidence of certain common, reoccurring activities: “travel from place to place, refuse disposal, storage, automobile-related uses, adult and children’s play, camping, and various removal processes.” The report of the survey, published in *American Antiquity*, acknowledges the wider issues in urban planning inadvertently addressed in the study and concludes with a provocative question:

Empty lots are perceived as a problem by city planners, who want them “filled in” before dispersed cities, like Tucson, continue to sprawl. Our study suggests that these lots are not empty behaviorally and that in fact they serve multiple purposes to many segments of the public. We might ask, then, what would be the consequences were these spaces to become usurped by high-density housing? Might not some of the destructive aspects of vacant lot behavior take place more frequently in public areas, such as parks, malls, schools, and plazas?

8 Kevin Lynch, *Wasting Away* (San Francisco: Sierra Club Books, 1990), 25
This question asks whether an approach to deterring unwanted activities like dumping and vandalism is best addressed through improving the quality of a vacant lot, or if the root of the problem lies in something less physical. If the waste collection system is poorly managed and unsatisfactory in New Orleans, or any other city, does putting a fence around a vacant lot to deter contractors from backing their pickup trucks and dumping scrap tires fix the problem or merely push it elsewhere? While this broader question may be outside the scope of this thesis, it is worth keeping in mind when arguing for the reuse of vacant land.

More recently, the design firm Interboro Partners investigated what they call “blotting,” or the practice of taking, borrowing, or buying adjacent vacant properties to create larger lots, in Detroit. The 2006 project, called “Improve Your Lot!” defines and catalogues through images, diagrams and interviews how residents in Detroit are doing this. New Orleans has formalized this practice through the Lot Next Door program, which has made it easy for adjacent property owners to acquire publicly-owned lots. However, there are also informal examples of property expansion into adjacent vacant lots throughout New Orleans.

Chapter Three of this thesis attempts to catalogue and categorize informal and ephemeral uses of vacant lots in New Orleans.

VACANT LAND IN THE POST-DISASTER CONTEXT

Vacant land plays two roles in a post-disaster context. Urban catastrophes like Katrina leave destroyed structures in their wake. Some residents may choose to never return. The number of vacant lots in New Orleans today is more than it was in 2004. Debates about what to do with that excess land can be contentious. Katrina significantly changed the meaning of vacancy in New Orleans, as well as the city’s capacity to address it. In the years immediately after the storm, the politics around possible resettlement and proposals and promises to “build back better” implicitly involved various definitions of vacancy in New Orleans.

However, there was much vacant land prior to Katrina in New Orleans, and those lots have often provided sites for redevelopment. A cursory investigation into the configuration of vacant lots in a single block before and after Katrina often shows a shift, or swapping, in where those lots exist. A lot that was vacant in 2004 may have been rebuilt with infill housing; whereas a building that existed in 2004 might have since been demolished. New Orleans geographer Richard Campanella proposed, in 2007, a strategy for filling those vacant parcels and underutilized spaces in areas of the city above sea level with new residential housing. He identified nearly 2,000 such parcels in his report “Above-Sea-Level New Orleans: The Residential Capacity of Orleans Parish’s Higher Ground,” finding that those parcels could house between 9,000 and 20,000 people if developed at population densities common at the city’s peak in 1960.¹⁰

A disaster often leads to more vacant land in a city, as was the case of post-Katrina New Orleans. However, land that was vacant prior to a disaster becomes an asset when planning for rebuilding, providing space for new construction.

VACANT LAND POLICY

Cities are strategic in their decision-making about vacant land and have at their disposal several tools for managing and reusing vacant lots, including code enforcement, acquisition and disposition, property maintenance and land banking, and redevelopment. In their book *Terra Incognita: Vacant Land and Urban Strategies*, Ann Bowman and Michael Pagano argue that “without adequate knowledge of vacant land, a city cannot design policies and programs effectively.”¹¹ In order to understand how cities make decisions about their vacant land, Bowman and Pagano conducted a survey in 1997 of 70 US cities on vacant land, causes of vacancy, and vacant-land related policies. They argue that three imperatives drive the strategic thinking of city officials with regard to vacant land: 1) fiscal imperatives that maximize revenues or minimize costs through property and sales taxes; 2) social imperatives that minimize disruption through natural barriers and protect adjacent property values; and 3) development imperatives that maintain or enhance economic vitality by reusing vacant land to its highest potential use.¹² Strategic decision making with regard to vacant land will be explored further in Chapter 5.

As an overall framework for urban design strategies in the context of a shrinking city, Brent Ryan, Assistant Professor of Urban Design and Public Policy at MIT, argues in his 2012 book, *Design After Decline*, for a revival of modernist visionary thinking tempered with lessons from post-1960s community planning. Ryan proposes five principals for shrinking city urban design: palliative planning, interventionist policy, democratic decision-making, projective design, and patchwork urbanism. This thesis, and particularly its conclusion, will adapt such strategies of a projective yet flexible framework for the context of vacant land reuse in post-Katrina New Orleans.

III. METHODOLOGY

The bulk of research undertaken for this thesis consists of fieldwork, photography, and mapping.

As previously mentioned, I spent the past summer of 2012 in New Orleans working on a commercial corridor revitalization study. Much of that data, in the form of spreadsheets, lot-by-lot images, and maps, has been re-analyzed and reframed for this thesis project. I

¹¹ Bowman and Pagano, *Terra Incognita*, 177
¹² Bowman and Pagano, *Terra Incognita*, 38
credit the team, which also included Michael Kaplan, Anna Muessig, and Jared Press, for the production of data.

I returned to New Orleans for two weeks in January 2013, to work on both this thesis project and relevant projects at NORA. I continued a photographic exploration of vacant lots, both from the ground and from the air. I drove through a range of different neighborhoods in the city, seeking to capture my impression of the distinctive landscape of vacancy in each. I also rented a helicopter to get an aerial perspective of vacant lots, primarily covering the three neighborhoods I explore in depth in Chapter 4.

My images of vacant lots from the summer and from January amount to approximately 1,500 in total. I printed each of these images and categorized each by type. I used the aerial images to identify certain spatial types of vacant land and used the street-level images to categorize certain conditions of use and maintenance.

For the three case-study neighborhoods explored in Chapter 4, I matched the condition types identified in each image with its respective address and parcel ID in the spreadsheets that our team at NORA created and mapped the incidences of each condition for each neighborhood. While our summer work only covered two of the three case study areas that I focus on (OC Haley and Pontchartrain Park), I approximated the process for the Lower Ninth Ward using Google Street view and the city's oblique aerial imagery provided by Pictometry, overlaid with a map of the city's parcel boundaries.

New Orleans has little citywide data on its vacant land. NORA provided me with digital data files of all the lots they currently own or have sold since Katrina. The Greater New Orleans Data Center has approximated vacant or abandoned properties citywide by Census Tract using US Postal Service data. WhoData is an online project that collects and maps data from multiple neighborhood groups and nonprofit organizations that have done lot-by-lot surveys. While the map covers many neighborhoods, it does not provide a comprehensive citywide view of vacant land, nor are the times of each survey consistent. John Adams, a GIS analyst at New Orleans 9-1-1 (the Orleans Parish Communications District), maps multiple observational data points by street address relevant to New Orleans’ emergency services using the city's oblique aerial imagery. Adams decided to include categories for vacant as well as “blighted” addresses in his data collection. While Adams' data is not widely used by other city agencies, his map of vacant parcels is the only existing such map that I have found from any time in New Orleans and is the base I use in this thesis. Through a method similar to Adams', I have used the city's oblique aerial imagery from 2004 to map citywide vacant lots prior to Katrina to compare with the map of 2012 vacant lots.

This thesis also draws from literature and newspaper articles on New Orleans; policies, pilot
projects, and programs developed by the city; interviews with experts; plans in other cities; and historical maps and images as a method for contextualizing the data I have collected and analyzed to provide strategies for targeting vacant land policies.

IV. THESIS STRUCTURE

CHAPTER 2 explores the history of city building and vacancy in New Orleans through two distinct narratives of vacancy. The first involves population expansion and suburban development into newly-drained, low-lying marshland near Lake Pontchartrain paired with disinvestment and population loss in inner city neighborhoods. The second narrative is one of acute destruction from Katrina and the floods that followed the hurricane.

CHAPTER 3 explores the characteristics of vacant land in New Orleans. Using aerial photographs taken in January of 2013, I define spatial types of vacant land common to New Orleans. Through a cataloguing of lot-by-lot images at the street view, I define common types of conditions relating to maintenance and use found on vacant lots in the city.

CHAPTER 4 presents maps of patterns in vacant land at the citywide scale, focusing on the interrelationship between spatial typologies of size and location, conditions of use and maintenance, ownership, elevation, Katrina flood depth, and neighborhood context. The chapter then focuses on mapped characteristics more closely in three distinct neighborhoods (the high ground part of Central City around OC Haley Boulevard, Pontchartrain Park, and a section of the Lower Ninth Ward), each with different vacancy narratives.

CHAPTER 5 discusses pilot projects for vacant lot reuse in each of the three neighborhoods explored in the prior chapter, how strategies differ in each pilot project, and what lessons might be translated citywide. Next, the chapter explores policy frameworks for making decisions about vacant land, with an emphasis on how other cities with significant vacancy and abandonment make distinctions in their policies towards their vacant land based on neighborhood conditions. Finally, the chapter explores programs for alternative land reuse of vacant lots existing citywide in New Orleans.

The CONCLUSION takes a step back and explores the bigger pictures of long-term redevelopment, rebuilding, and planning for future disasters through the lens of the city's vacant land. Ultimately, it makes recommendations for how and where to target future investments.
CHAPTER 2
FROM DISINVESTMENT TO THE DELUGE: A HISTORY OF VACANCY IN NEW ORLEANS
FIGURE 2.1. The early city of New Orleans was built on the higher grounds of the River’s natural levee.

FIGURE 2.2. Elevation in New Orleans. Areas in blue are below sea-level and brown is above sea-level.

Map produced by the author
In order to understand the patterns of vacant land as they exist today in New Orleans, one must know the history of city building, decline, and destruction that led to vacancy. The history of vacant land in New Orleans can be thought of in two waves: one, as a result of a slow process of disinvestment and white flight to the newly drained suburbs in the 1960s through 1990s, and two, following an acute destruction of much of the city as a result of Katrina, the compromising of the city’s levee system, and the subsequent deluge in September of 2005. This chapter outlines this history of underutilized land in New Orleans, beginning with early city building and the undeveloped backswamps, followed by suburban expansion into those newly drained lowlands, which left hollowed out inner-city neighborhoods, and concluding with the events following Katrina and the decision to maintain the physical footprint of the city.

I. EARLY URBANIZATION PATTERNS: UNDEVELOPED BACKSWAMPS

The history of city building in New Orleans is inextricably tied to topography and landscape. New Orleans is a city built on swampland, susceptible to storms and flooding, and yet it provides an important and necessary port at the mouth of the Mississippi River. Geographer Pierce Lewis argues that if a city’s situation is good enough, its site will be altered to make do. And because New Orleans’ site was so troubling for city building, it “guaranteed that the form of the city’s physical growth would be shaped by local environment to a far greater degree than in most other American cities.”

At its inception, New Orleans was a city entirely at or above sea level. The natural sediment deposits of the Mississippi River create a landscape that is highest and most stable on land nearer to the River’s edge, where the river’s natural levee extends as a one to two mile band. As Craig Colten, geography professor at Louisiana State University, writes in his book, *An Unnatural Metropolis*, this natural levee “has had a defining impact on the city in two key ways: as a swath of high ground, it influenced selection of the city’s site, and through its effect on drainage it influenced urbanization patterns.”

The Metarie Ridge and Gentilly Ridge together cut across the middle of modern day New Orleans, creating a second high ground, and a lower elevation “bowl” between the natural levee and the ridge that constituted the backswamps in early city history. This area continues to be susceptible to flooding today. City building started in the Vieux Carré, currently the French Quarter, at the highest and most stable ground. Until the early twentieth century, the

marshlands on the other side of the ridge remained undrained and unbuilt.

In early New Orleans, undeveloped land existed at the “rear” of the city – or land away from the Mississippi River and closer to Lake Pontchartrain. As the city began growing away from the river, many platted lots still had no structures on them. These lots, generally at lower elevations, along with the undrained backswamp, were unofficial receptacles for municipal waste of all sorts, despite an 1870 health ordinance, which prohibited public dumping of any substance in public places:

All persons are forbidden and are prohibited from allowing, keeping, throwing, dropping or depositing any ordure, excrement, offal, filth, manure, foul and offensive matter, stagnant, corrupt or putrid water, or any shells, hay, straw, kitchen stuff, paper cloth or any substance of any kind which may be offensive to the smell or injurious to health in any yard, lot, room or building, or any banquette, street, alley, wharf, levee, or any public place.³

Still, illegal dumping in backswamps, low lots, and the batture (or sandbar) of the river remained a problem up until the turn of the century.

Much-awaited drainage technology, in the form of highly-efficient pumps installed in 1917, allowed for the draining of the backswamps, which was as much if not more of a public health solution than a city-building triumph. However, this draining also allowed for rapid suburbanization towards the lakefront marshland.

Craig Colten explains two ways that this new drainage technology acted to accelerate racial segregation in New Orleans: the expansion of blacks into low-lying areas to the rear of the city, and city ordinances and racially-restrictive deeds that kept African Americans out of the newly built suburban lakefront neighborhoods in the former marshlands.⁴ As Pierce Lewis explains, in the city’s early history, “the poorest blacks simply lived where they could,” often the edges of the backswamps and along the batture of the river. As the city expanded into the drained backswamps, whites largely occupied the new suburban neighborhoods towards the lakefront, and established black neighborhoods grew to occupy the newly drained lowlands at their margins.

In addition to the new pump technology, the city’s distinctive street grid also directed geographic segregation. The linear shape of the city’s early wards and the peculiar radial street pattern

³ Leovy, General Ordinances of the City of New Orleans, articles 508 and 529, 175-76. Quoted in Colten, An Unnatural Metropolis, 58
⁴ Colten, An Unnatural Metropolis, 106
FIGURE 2.3. The pattern of plantation plot lines perpendicular to the bend of the river influenced the street grid in New Orleans, located at the bottom of this map.

created many small wedge-shaped lots in lakefront segments. In the early 1920s, many of these lots remained unoccupied. Colten further explains, “The street pattern and small lot sizes made such neighborhoods undesirable for the more mobile whites, leaving them to blacks with inadequate financial resources to make other choices.” These smaller lots, at lower elevations at the rear of the early city, with higher population densities, emerged as black neighborhoods, while the new lakefront subdivisions were restricted to white residents.

II. SUBURBANIZATION AND INNER CITY VACANCY

Even with the new drainage technology, suburbanization happened slowly at first, due, in part, to the money and time required to drain the swamps, the additional necessary canal infrastructure, and expensive extra building logistics given the sometimes rapid subsidence of the former swampland. In the early 1900s, expansion mostly occurred in the form of subdivisions within the city limits on newly drained land located towards the lake. The land of these lakeside subdivisions, including Lakeview, Fillmore, and Gentilly, originally stood at sea level. Once drained, the elevation of these areas dropped to five feet below sea level. Given its persistent subsidence, this land is as low as eight feet below sea level today in some areas. In addition to the difficulty of building on the subsiding former swampland, the Depression and World War II also put a halt on suburban expansion.

Through World War II, New Orleans followed a path of urban growth much different from most other American cities, largely due to the incidental confinement provided by the city’s natural environment. However, from 1945 onward, New Orleans faced many of the same challenges other US cities faced at the time: sudden suburban explosion, growth in racial segregation, and noticeable decay of inner city neighborhoods and public services. At the beginning of his book recounting the historic geography of New Orleans, Pierce Lewis contends that “In many important ways, New Orleans is not unique, and it does not serve the city well to perpetuate the myth that it is.” Particularly in the 1960s and 1970s, parts of New Orleans looked much like other American cities at the time. Writing in 1975, Lewis describes the increasing racial segregation of New Orleans:

As in most other big American cities, New Orleans’s main malady

5 The basic street layout in New Orleans derives from the geography of early sugar plantations, where property lines extended perpendicular to the river. Every landowner required river access and so the two-mile band of natural levee along the Mississippi was carved into narrow long lots. Because of the river’s curve, these lots were not parallel, and pinched at concave curves. Lewis, New Orleans, 47
6 Colten, An Unnatural Metropolis, 96
7 Lewis, New Orleans, 77
8 Lewis, New Orleans, 77-95
9 Lewis, New Orleans, 11
is racial. The facts are devastatingly simple, and in combination they portend no good for the city. In New Orleans, as elsewhere, blacks are relatively poor and ill-housed, and their neighborhoods are poorly attended by municipal services. Educational levels are low, crime rates high. Meanwhile, whites flee and the proportion of blacks continues to increase, as do the isolation and alienation of a population that sees itself abandoned and abused. It is a sorry tale, and no less sorry for being typical of city after city across the United States.¹⁰

The increased racial segregation during this period was coupled with a population explosion into the suburbs, both within and outside of the city limits, and a related population decline in the older established central parts of the city. The maps on the following pages, which show population density per Census tract from 1940 to 1990, depict this trend over time.

While expansion into the surrounding suburbs exploded from the 1960s on, the overall population decline from 627,525 in 1960 to 484,674 in 2000 does not give a full picture of the depopulation of the core parts of the city during that time. New Orleans continued to build on new land, most significantly in New Orleans East, even as its overall population declined during this period. According to estimates calculated by Richard Campanella in his article “Above-Sea-Level New Orleans,” 121,000 New Orleanians migrated internally from the older core of the city to the newly drained low-lying subdivisions during the same time period in which the overall population within the city limits declined by another 143,000.¹¹

FIGURE 2.4. Draining of Pontchartrain Park, 1954. The land elevation, previously at sea-level, dropped by five feet.
Photography by Leon Trice Photography. Photo courtesy of New Orleans Public Library, Louisiana Division, City Archives + Special Services.

¹⁰ Lewis, New Orleans, 95
¹¹ Campanella, Above-Sea-Level New Orleans.
Drainage technology allowed for some building in the low-lying former backswamps, as well as the marshland towards the lake in Lakeview, Fillmore, and Gentilly. But the majority of the population remained in the central core of the city.

As the population of New Orleans rose during this period, the central city remained dense, while the lakefront subdivisions continued to expand into Gentilly Woods and Pontchartrain Park.

Expansion into the suburbs of Jefferson Parish and the West Bank can be seen by 1960. The core inner city density of New Orleans remained relatively intact. Building also began into the reclaimed wetlands of New Orleans East.
Population within the city of New Orleans dropped from 1960 to 1970 while expansion into the surrounding suburbs exploded. Parts of the inner city lost population. Building on new land within the city limits continued in New Orleans East, even as overall population within the city declined.

1970
Total population: 593,471 (-5.4%)

Population within the city of New Orleans dropped from 1960 to 1970 while expansion into the surrounding suburbs exploded. Parts of the inner city lost population. Building on new land within the city limits continued in New Orleans East, even as overall population within the city declined.

1980
Total population: 557,515 (-6.1%)

Building continued in New Orleans East and the population continued to fall in parts of the inner city core.

1990
Total population: 496,938 (-10.9%)

By the end of the 1980s, the population redistribution from the central city to the surrounding suburbs was striking. With a population relatively the same as in 1940, the city of New Orleans occupied significantly more land and had a nearly evenly dispersed population.
1940 Total population: 494,537
New Orleans in 2000 was a much different city than New Orleans in 1940. It occupied a much greater land area, while containing 2% less residents. Much of the older, majority African-American neighborhoods had high rates of vacant lots and abandoned buildings in 2000. Many of these high vacancy areas were in low-lying parts of the city between the Metarie and Gentilly Ridges and the natural levee of the Mississippi River. This landscape set the stage for the catastrophe to follow in 2005, which disproportionately impacted areas with more existing vacancy and abandonment, as well as changed the overall pattern of vacant land in the city.
FIGURE 2.5. Katrina flood depths. Map produced by author.
III. KATRINA — VACANCY BY DESTRUCTION

On August 29, 2005, a Category 5 hurricane hit New Orleans, and the city’s flood protection buckled beneath it. Multiple breeches in the levee system and the overtopping of floodwalls along Lake Pontchartrain resulted in extensive flooding and catastrophic damage citywide. Eighty percent of the city was underwater, with flood depths as high as thirteen feet in some places. At least 1,833 people died as a result of the hurricane and subsequent flooding.

Damage, of course, was not evenly dispersed across the city of New Orleans, and much of the previously detailed geographic history delineated those areas that faced the highest risk. The floodwall collapsed along the Industrial Canal and released a violent force of water into the Lower Ninth Ward, carrying many homes off their foundations. On the other hand, much of the land closest to the river along the natural levee at the highest elevations — not coincidentally some of the oldest parts of the city — did not flood at all.

African-American residents were disproportionately affected by damage to their properties. Many of the neighborhoods most severely hit were the same neighborhoods facing disinvestment and abandonment before Katrina, those former backswamp neighborhood in the low lying “bowl” between Metarie and Gentilly Ridges and the natural levee of the Mississippi, such as Hoffman Triangle, the Seventh Ward, the Florida and Desire areas, and the Lower Ninth Ward. There are numerous exceptions to this, however. Notably, the subsiding middle-income lakeside subdivisions that were drained and developed beginning in the 1920s—namely Lakeview, Gentilly, Fillmore, and Pontchartrain Park—experienced high flood levels as a result of both the levee breaches along the London Avenue Canal and the 17th Street Canal as well as storm surges overtopping Lake Pontchartrain. New Orleans East, where subdivisions were being developed on new land into the 1970s, also experienced severe flooding and damage. In general, those later-urbanized neighborhoods experienced significantly more damage than the older parts of the city. Additionally, some areas of the city with high vacancy rates prior to Katrina (generally located near the border with older, wealthier, and whiter neighborhoods) were at high enough elevations to incur little flooding and less overall damage.

THE GREAT FOOTPRINT DEBATE OVER THE “SHRINKING” OF NEW ORLEANS

The Bring New Orleans Back (BNOB) Commission, formed by then-Mayor Ray Nagin in late September 2005, marked the first extensive planning effort post-Katrina. Among other important rebuilding concerns, the commission debated the future physical footprint of the city. In Bienville’s Dilemma: A Historical Geography of New Orleans, Richard Campanella neatly summarizes the differing opinions of the two popular sides of this debate. One side argued that “the city’s urban footprint, particularly its twentieth-century sprawl into low-lying areas adjacent to surge-prone water bodies, [should] be ‘shrunk’ to keep people out of harm’s way.” The other side, backed more strongly by the vocal public in New Orleans, advocated for “the
entire footprint [to] ‘come back’, in the understanding that federal levee failure, not nature, ultimately caused the deluge.”

Robert Olshansky and Laurie Johnson describe in meticulous detail the post-Katrina planning process – from the BNOB Commission and the infamous Urban Land Institute's “Green Dot” Plan to the Unified New Orleans Plan – in their 2010 book, *Clear as Mud: Planning for the Rebuilding of New Orleans*. In their critique of the BNOB planning process, they explain a general lack of public reception to a serious discussion around the idea of a “shrinking city.” The communications disaster around the Urban Land Institute's “Green Dot” map did not help garner support for a serious debate about the future footprint of New Orleans. The map, as part of ULI's detailed plan for New Orleans created for the BNOB Commission, depicted a “Parks and Open Space Plan” and used dashed green circles to symbolize “Areas for Future Parkland” in certain low-lying neighborhoods of New Orleans. When adapted in the Times-Picayune the next morning, the dashed circles became semi-opaque green dots labeled “approximate areas expected to become parks and greenspace.” Public uproar in the aftermath of the ULI plan unveiling made the BNOB Commission ineffective. The city’s politicians were in the middle of a mayoral campaign at the time, and it became a political necessity to join the vocal public in denouncing a serious footprint shrinkage debate. Richard Campanella summarizes Mayor Nagin's general laissez-faire rebuilding stance as saying “let the people return and rebuild as they can and as they wish, and we'll act on the patterns as they fall in place.” As Campanella terms it, “the Great Footprint Debate” was effectively killed.

Olshansky and Johnson conclude from their exploration of post-Katrina planning that leaders matter, and an absence of leadership at all levels of government impeded the process. With regard to the BNOB plan, they suggest that the proposal made planning look like punishment. As a result, the footprint debate largely disappeared from post-Katrina planning discourse, residents were championed for moving home, regardless of where, and vacancy in New Orleans today remains a patchwork of scattered lots.

THE ROAD HOME PROGRAM AND THE SELLING OF PROPERTIES TO THE STATE

The Louisiana Recovery Authority, as part of the statewide post-Katrina planning process, created the Road Home program to rehouse residents affected by Hurricane Katrina or Rita. The program was backed by $7.5 billion in federal Community Development Block Grant (CDBG) money. The Road Home: Homeowner Assistant Program compensates homeowners whose homes experienced moderate or severe damage up to $150,000. Homeowners were

12 Richard Campanella, *Bienville's Dilemma: a Historical Geography of New Orleans* (Lafayette: Center for Louisiana Studies, University of Louisiana at Lafayette, 2008), 344
13 Campanella, *Bienville's Dilemma*, 348
given three options for compensation:

- **OPTION 1: Stay.** These homeowners are granted money to rebuild their existing houses. As of September 2012, the State closed on 119,261 Option 1 agreements.

- **OPTION 2: Buyout and Relocate in Louisiana.** These applicants choose to sell their home to the State of Louisiana and becomes an owner-occupant in another Louisiana home. As of September 2012, the State closed on 8,300 Option 2 agreements.

- **OPTION 3: Sell.** These applicants chose to sell their home to the State and either move out of Louisiana or become a Louisiana renter. As of September 2012, the State closed on 2,349 Option 3 agreements.\(^\text{15}\)

The vast majority of homeowners chose to rebuild existing homes through Option 1. A challenge for the State has been insuring that these residents actually rebuild and reoccupy their homes. The cumulative total of properties sold back to the State of Louisiana through Option 2 and Option 3 is 10,649. The Louisiana Land Trust (LLT) is a publicly chartered nonprofit corporation created to take title to these properties purchased by the state through the Homeowner Assistance Program. In 2012, all remaining New Orleans LLT properties officially transferred to the New Orleans Redevelopment Authority, which oversees their maintenance and disposition. As part of New Orleans’ recent “Blight Stat” strategy under Mayor Mitch Landrieu, the majority of structures in poor condition on these properties were demolished, making most NORA-owned Road Home buyout properties currently vacant lots.

The New Orleans Redevelopment Authority (NORA), created in 1968, has legal authority to acquire properties through negotiation, gift, or expropriation and dispose of properties through sale, lease, or donation. However, NORA played a fairly minor role until late 2006, when the agency was tasked with the disposition of LLT properties and other HUD-funded disaster recovery programs. Today, NORA owns over 3,000 lots, largely Road Home buyout properties, and has disposed of over 2,000 properties in the past six years.

VACANCY AND ABANDONMENT POST-KATRINA

From 2000 to 2010, the overall population of New Orleans dropped by 29% from 484,674 to 343,829.\(^\text{16}\) Since 2006, when population estimates were as low as 223,388, overall population numbers have steadily risen. The percentage of African Americans living in New Orleans dropped from 67% in 2000 to 60% in 2010.

There were an estimated 65,428 abandoned addresses or empty lots in March 2008, and 35,700 estimated in March 2012, as measured by the Greater New Orleans Community Data

\(^{16}\) 2010 US Census
Center from “non-stat” USPS data. Data mapped by the GIS Analyst for the Orleans Parish Communications District (NOLA 9-1-1), which uses the city's aerial imagery database, counts over 16,000 vacant lots in 2012. Of those, approximately 20 percent are owned by NORA, leaving a majority of lots in private ownership.

IV. TWO NARRATIVES OF VACANCY

There are two different narratives of vacancy in New Orleans: a slow familiar tale of white flight to the suburbs and inner-city disinvestment, and a quick catastrophic devastation of the landscape. Though both resulted in a significant number of vacant lots scattered throughout the city, it is important to distinguish between the two narratives when exploring strategies for vacancy – particularly alternative land use strategies – in New Orleans neighborhoods.

Vacant lots in New Orleans look and impact their surrounding neighborhoods differently, and there are different sets of tools available for their reuse, depending on where they are in the city. There are identifiable patterns in their physical typologies, relative geographies, and formal and informal uses. One way to begin categorizing the landscape of vacancy in New Orleans is to identify the broad narratives of vacancy at the neighborhood or sub-neighborhood scale. Significant amounts of pre-Katrina abandonment and vacancy remain in some inner-city New Orleans neighborhoods. In certain middle-income subdivision neighborhoods on the lakeside of the city, the vacant lots are almost wholly a result of destruction by Katrina and the subsequent floods.

The next chapter explores the spatial types of vacant land and types of maintenance and use conditions commonly found on vacant lots in New Orleans in order to understand the complexity within the city's landscape of vacancy.

17 Allison Plyer and Elaine Ortiz, Benchmarks for Blight: How Much Blight Does New Orleans Have? (Greater New Orleans Community Data Center, August 21, 2012).
CHAPTER 3
CHARACTERISTICS OF VACANT LAND IN NEW ORLEANS
An analysis of vacant lots in New Orleans reveals both common patterns and variety in how lots look and how they influence their neighborhood contexts. As Anne Whiston Spirn observed in the West Philadelphia Landscape Plan publication *Vacant Land: A Resource for Reshaping Urban Neighborhoods*: “Vacant land too often is regarded as a monolithic problem requiring a monumental solution. Yet vacant lands are extraordinarily diverse in both their physical character and social context.” This 1991 report provides a model for defining vacant land typologies. In determining characteristics of vacant land that impact a vacant lot’s effect on the neighborhood and its potential future use, the plan identifies location, size and shape, physical conditions, and ownership as key factors. I would add to this list two elements of a lot’s current condition – use and maintenance.

The first part of this chapter identifies and describes eight spatial types of vacant lots commonly observed in New Orleans, using the author’s aerial imagery to illustrate each type. Next the chapter explores eight conditions of maintenance and use common on vacant lots in New Orleans, using street-level images of lots to communicate each condition.

I. SPATIAL TYPOLOGIES OF VACANT LAND IN NEW ORLEANS

The *West Philadelphia Landscape Plan* (WPLP) report defines six characteristic types of vacant land in West Philadelphia based on variations in size, shape, and location. The report describes how each type represents different opportunities and limitations for future use and development. The six types of vacant land – missing teeth; corner lots; connectors; vacant blocks; Swiss cheese; and multiple, contiguous blocks – have become terms commonly used to describe vacant land across other cities as well. These types, however, are based largely on row house block typologies common to cities like Philadelphia and Baltimore. Vacant land in New Orleans, where detached “shotgun” houses are the most common residential structure, has slightly different variations in size, shape, and location. In accordance with these differences, I have adapted the West Philadelphia vacant land types and identified eight typologies common citywide in New Orleans: missing teeth; corner lots; clustered lots; mostly vacant blocks; Swiss cheese blocks; oddly shaped or sized lots; large mega-sized lots; and vacant corridors. While some of the types remain the same as in the West Philadelphia context, they may present themselves differently in New Orleans. It is therefore worth exploring each of these types within their New Orleans context.

These “missing teeth” vacant lots exist within a block adjacent to existing structures. In row house blocks typical of older industrial cities like Baltimore and Philadelphia, these lots create a noticeable break in the block, which, from an elevation view, looks literally like a “missing tooth” in an otherwise full set of “teeth.” In New Orleans, a city of mostly freestanding residential and commercial structures, a single vacant lot in the interior of a block is less visually striking.

Single lots in the interior of blocks create the most noticeable break along New Orleans commercial corridors. This lot along St. Claude Avenue breaks the block of otherwise mostly occupied storefronts. The blockfront of facades becomes disrupted and the commercial character of the corridor compromised. In some instances, such commercial corridor lots get redeveloped as parking lots.
In many respects, the “missing tooth” lot is both one of the most difficult to reuse or redevelop and the least disruptive to a neighborhood fabric. Once multiple vacant lots scatter across a block, the nuisance becomes more prominent and the image of the area negatively impacted. In areas of the city on higher ground, these “missing teeth” provide an opportunity for infill housing on land at less risk of flooding.

One option for reuse of an interior vacant lot is as a public gathering place or community garden. However, such a location may receive less foot traffic and neighborhood notice than a corner lot.

While still relatively small in scale and intimate in feel, the larger footprint of a vacant lot in a New Orleans parcel provides a slightly different challenge to securing and stabilizing the lot. The Philadelphia Redevelopment Authority (RDA) uses a simple intervention of a short and permeable wooden fence to demonstrate a sense of ownership and to secure lots from illegally-dumped waste. A similar light stabilization strategy in New Orleans would require, at the very least, a longer fence. This, arguably, might draw more attention to the missing space.
Corner lots along curved roads in the lakeside subdivisions are generally less visible than those on corners of more trafficked streets used as routes between neighborhoods. These lots, however, may serve as important sites for stormwater management, as they can capture runoff from multiple streets. They are also more attractive sites for new housing development.
Corner lots are where many current neighborhood interventions – ranging from gardens to art installations to community gathering spaces – can be found in New Orleans neighborhoods.

Vacant corners on commercial corridors do not break the blockfront of continuous facades in the same manner as an interior “missing tooth” lot does. These lots, given their heavy traffic, are ideal locations for community activities or art installations. However, the design quality of that intervention is highly important. Community gardens on such lots should consider the pedestrian experience of walking by their garden.

Corner lots on commercial corridors that do not receive some sort of positive intervention can create a negative image for the block and businesses surrounding it.

Corner lots are where many current neighborhood interventions – ranging from gardens to art installations to community gathering spaces – can be found in New Orleans neighborhoods.
Clusters of lots occur where several vacant lots exist adjacent to each other in some pattern. They can be simply a row of several lots along the same side of the block and street, vacant lots across the street from each other, or lots that create a connection between two streets in the middle of a block. In New Orleans, adjacent lots appear mostly as clusters with potential for new block forms, community open spaces, or larger new development rather than as connector lots providing new pathways through neighborhoods.

These clustered lots in Pontchartrain Park might provide an opportunity to reconfigure this suburban block to allow for pedestrian access through the middle of it.
Clustered vacant lots provide an opportunity for larger scale production or activity. However, navigating the legal process of acquiring lots with usually scattered ownership takes many years. The complicated scattered ownership is obscured by the convenient spatial clustering. While this nursery might want to expand its business into the lots across the street, the legal process of doing so may be prohibitive.

Clustered vacant lots, especially in areas with less overall vacancy, may highlight a possible underlying issue or problematic past use on that block.

Clustered vacant lots along commercial corridors create an extreme break in the fabric of the block. If a new commercial structure is not feasible given the current market, it's important that these lots not create a significant nuisance on the block.
This image depicts the complications involved in redeveloping or reusing mostly vacant blocks, where multiple ownerships and multiple conditions exist within a single block. Some lots are publicly-owned and meticulously mowed. Overgrown privately-owned lots are scattered throughout the block, while some building foundation slabs remain as a reminder of the houses that once occupied the lots. The sidewalk on one end of this block is obscured from view due to an overgrowth from adjacent lots, whereas the cypress trees shade the sidewalk on the far end of the block.

In areas of New Orleans with severe levels of vacancy, namely those experiencing both pre-Katrina disinvestment and severe post-Katrina damage, blocks with more than three quarters of lots vacant are common. The Lower Ninth Ward has the highest frequency of mostly vacant blocks. However, few blocks exist as fully vacant. While they pose an extreme challenge to the redevelopment of single family homes, which remains the community’s preference for new housing in the Lower Ninth Ward, they also provide a possible reconfiguration of neighborhood design and land use that may more adequately address the challenges of vacancy and flooding.
Areas with mostly vacant blocks may be more likely grounds for illegal dumping. There are few neighbors to protest such an activity. However, the activities within a lot are more physically visible given the lack of buildings to hide between. Junkyards, for example, appear to have been more prevalent in the Lower Ninth Ward before Katrina when vacant lots were scattered and there was significantly less vacancy than there is now. Such junkyards typically occupied interior lots within a block.

Near-vacant blocks often have lots with overgrown plants and in some cases, second growth forests. However, these blocks often also include several publicly-owned vacant lots on which lawns are meticulously mowed 16 times a year. Such a disparate pattern of maintenance creates a sort of quilted patchwork pattern from above, and a visually jarring pattern from the street level, with abrupt lines between overgrown and heavily manicured vacant lots.

Near-vacant blocks provide land for larger-scale interventions like this urban farm in the Lower Ninth Ward. Given that it may take years to slowly acquire adjacent lots, a project that starts small and slowly expands to occupy more lots, much like this farm has done, are good options for reuse. Constructing new housing is difficult and less ideal, given both the lack of a market and the high risk of future flooding,
In this “Swiss cheese” pattern, these scattered vacant lots exist in little to no connected pattern within a neighborhood block. However, there may be as many or more vacant lots as there are buildings within a block. Scattered lots can include interior and corner lots as well as some smaller clusters of lots. This pattern is common in many New Orleans neighborhoods, including the lakeside subdivision communities and low-lying neighborhoods in the inner city. Whereas mostly vacant blocks create an almost rural neighborhood pattern, scattered lots leave less connectable opportunities for new open spaces, larger developments, or shifts in urban form.

Swiss cheese patterns of vacant lots in low-lying lakeside subdivisions, like here in Pontchartrain Park, may be good options for side-yard expansion given the difficulty of linking them together as a system.
These “Swiss cheese” blocks in Central City are in varying states of maintenance, suggesting multiple ownerships.

The scattering of vacant lots along Claiborne Avenue in the Lower Ninth Ward, in comparison to lower-lying blocks just north, signify a healthier state of post-Katrina rebuilding and redevelopment. This area is on slightly higher ground than other blocks of the Lower Ninth Ward.

The Make It Right houses in the Lower Ninth Wards are clustered in one section of several blocks. These houses are, for the most part, built on former Louisiana Land Trust lots through NORA’s disposition program. However, the building timeline of new homes and the availability of publicly-owned parcels leaves scattered, sometimes overgrown lots surrounding new homes. As the project moves forward, some of these lots are slowly infilled and the streetscape infrastructure paved and improved.
ODDLY SIZED/SHAPED LOTS

Given the distinctive street pattern in New Orleans, based on plantation lot lines perpendicular to a curving Mississippi River, oddly shaped and sized lots are commonly found near intersections where roads meet or curve. These lots, when vacant, may be more difficult to redevelop with a new structure, and often remain vacant.

In Pontchartrain Park and other New Orleans subdivisions, the curve of a cul-de-sac creates a wedge-shaped parcel. These lots are often bigger in area and more awkward in their shape than adjacent lots.
This vacant lot on a wedged block in Central City was redesigned as a community gathering and resting space. While the odd shape makes this lot difficult to build a new structure on, the access to the street from three sides makes it particularly suitable for a public use.

The triangular shape of this block creates an awkwardly shaped lot as well as excess undeveloped land, in this case planted with trees, within the interior core of the block.

The shape of this block leaves a singular lot facing the street perpendicular to the building facades on the rest of the block. The triangular shape of this single lot facing the street on the upper right corner of this image makes it that much more difficult to market for new construction.
Larger vacant properties, often formerly industrial or commercial in use, are most common in New Orleans East along Chef Menteur Highway. These lots are much larger in scale than former residential and commercial vacant lots, and often exist along heavily trafficked arterial roads and highways or along waterways like the Industrial Canal or Mississippi River.

While large-scale vacant properties that were commercial or industrial in use are most common, whole demolished housing developments are another example of this type. The building foundation slabs can still be seen on this property in New Orleans East.
MEGA-SIZED VACANT PROPERTIES

New Orleans East accounts for a significant portion of the land area of New Orleans but was only developed over the past 40 to 50 years. The abundance of vacant commercial and industrial lots along the highways have left city officials with a conundrum post-Katrina. These lots are large in scale, have little market demand, and are often at higher risk of future flooding.

Along major roadways and highways in New Orleans East, large vacant commercial lots sit next to active businesses. The scale of the blocks already discourages walking, but the long stretches of vacant properties on blocks only further degrades the pedestrian experience.

This large vacant lot along Chef Menteur in New Orleans East likely acts as a unintentional wetland. In certain parts of New Orleans East and other neighborhoods, these large-scale vacant properties abut residential communities near major roadways.

New Orleans East accounts for a significant portion of the land area of New Orleans but was only developed over the past 40 to 50 years. The abundance of vacant commercial and industrial lots along the highways have left city officials with a conundrum post-Katrina. These lots are large in scale, have little market demand, and are often at higher risk of future flooding.
Vacant land exists above, under, or adjacent to both active and former infrastructure corridors in New Orleans. Scattered vacant lots exist under and along highway interchanges, particularly along I-10 where it spans above Claiborne Avenue splitting through several neighborhoods. Former railroad corridors as well as rights-of-way for both open and buried canals also create linear vacant land in New Orleans. Vacant corridors can act as barriers bifurcating neighborhoods and as potential large-scale greenway connections through and between neighborhoods if redesigned for public access and recreation.

The Lafitte Corridor extends 3 miles from the French Quarter towards Lakeview along a former shipping canal and railway. While the city plans to convert this linear right-of-way into a greenway, it currently sits vacant.
VACANT CORRIDORS

In some parts of the city, the land around freeway interchanges is used more productively. This image of Hunter’s Field Park shows an amphitheatre that emerges from under the elevated highway.

The Dwyer canal bifurcates Gentilly Woods and Pontchartrain Park in the east lakeside part of the city. As it currently exists, it is little more than a mostly dry ditch between rows of single family homes. However, a neighborhood design plan for improving stormwater management and slowing subsidence, backed by FEMA disaster grants, seeks to make the canal and the right-of-way around it a linear public park, with adjacent lots providing access from the neighborhoods.

In some parts of the city, the land under the freeways creates underutilized vacant swaths of land. In some areas, the land under the elevated I-10 freeway provides parkings spaces. Often these underpasses also serve as routes for Second Line parades and other city festivals.
II. CONDITIONS OF VACANT LOTS IN NEW ORLEANS

In addition to common spatial typologies of vacant land in the context of the city block, common patterns can be found at the street level in how vacant lots look and are used. Existing within these types of conditions are elements of both maintenance and use. By defining the look and role of vacant lots within the street experience, one can begin to identify certain possibilities and key needs to address when making policy decisions for long-term vacant land.

I have identified eight common conditions of vacant lots: four measures of maintenance (overgrown lots, mowed lots, lots with foundation slabs or other building remnants, and fenced lots) and four measures of interim use (dumping, parking, adjacent property expansion, and community activity). While many of these conditions exist citywide, the particular combination of types and the prevalence of each differ widely by neighborhood. Additionally, while one condition may be problematic or desirable in one neighborhood, it may be less so in another. These qualities may also be ephemeral. A pile of tires that exists one day may be cleared the next; a neighbor may move a picnic table into an adjacent vacant lot at a moment’s notice. However, it is possible to take a “snapshot” of these conditions as they exist at one time in a neighborhood. This section illustrates each condition and the various ways it presents itself on vacant lots citywide. The particular neighborhood patterns of these eight types will be explored further in Chapter 4.
Overgrown vacant land varies from lots with un-mowed lawns to those with dozens of different plant species and second-growth forests. There are a range of grass types growing on lots in New Orleans – some growing several feet high and some sprouting flowers. In neighborhoods with severe Katrina damage, there has been rampant overgrowth in the seven years since the storm.

In its early history, the Lower Ninth Ward was divided into three ecosystems with distinct natural vegetation: reeds and brambles along the riverfront, a dense hardwood forest behind that, and a cypress swamp with sands and palmettos further towards the lake. Since Katrina, many invasive and exotic species have taken hold. Tulane ecologist Michael Blum defines it as a “Frankenstein community...you wouldn’t otherwise see in nature”.

1 quoted in Rich, “Jungleland.”
Overgrown corner lots are particularly disruptive and often receptacles for waste. The overgrowth sometimes takes over sidewalk paths, forcing pedestrians into the street, and gives a negative image to the surrounding neighborhood. If the edges were neatly clipped, these overgrown lots might be perceived more positively.

Across New Orleans and in the general urban lexicon, overgrown lots are often thought to be a neighborhood nuisance – a sign of neglect and a magnet for illegal dumping. Throughout the city, overgrowth from vacant lots has taken over sidewalks and in some places has grown onto streets and interrupted city infrastructure. However, some ecologists think the mix of vegetation is a positive phenomenon worth preserving.

Since Mayor Mitch Landrieu took office, the city’s approach to overgrowth, as part of a larger redevelopment initiative, has been one of clearance in neighborhoods like the Lower Ninth Ward where the Nuisance Lot Maintenance pilot program hired neighborhood residents and ex-offenders to cut grasses and weeds and sweep sidewalks clean of debris. All city-owned lots, meanwhile, are meticulously mowed 18 times a year.
Many vacant lots throughout New Orleans, particularly those former Louisiana Land Trust properties that are now NORA-owned, are seeded with grass after being backfilled following a demolition and regularly mowed thereafter. Two common markers exist on some of the more meticulously mowed lawns: an address number spray-painted in orange or “For Sale” signs. The former delineates a publicly-owned lot, while the latter generally signifies a privately-owned lot. In the higher-income neighborhood of Lakeview, these lots often have signs for professional lot cutting services.

In the Lower Ninth Ward and even in more middle-income lakeside subdivisions, city-owned mowed lots abut overgrown lots with second growth forests or five-foot tall weeds. The property line is delineated by the sharp contrast between the two conditions.
In Lakeview, a low-lying, flood-prone subdivision with high property values, nearly all vacant lots are planted as lawns and meticulously mowed, creating a pattern of informal open greens. For sale signs or signs promising to build you a house to your dream specifications dot many of these lots which, as the many new constructions in the neighborhood would suggest, will soon become new market rate housing.

Some larger mowed lots in New Orleans East along Chef Menteur Highway have “For Sale” signs on them. These somewhat picturesque lots sit in contrast to vast areas of impervious vacant lots, active parking lots, and large commercial and industrial buildings.

NORA currently spends $400 per lot per year on maintenance. Each lot is cut twice per month in the summertime and once per month in the winter for a total of 18 cuts per year. While all publicly owned lots are treated with this same maintenance strategy regardless of the neighborhood context, NORA is exploring more innovative ways to manage their vacant lots long term, ranging from planting lower maintenance native grass seed mixes to using goats as lot clearers.
Often when a building is demolished, the foundation remains. In New Orleans, these foundations are sometimes raised a few feet above the rest of the lot and stairs might be left behind as well. Less frequently, part of the front façade of the original structure may remain while the rest of the lot has been cleared.

These remnants provide an additional challenge to new development, as it takes considerable effort to clear them. However, in some cases that will be explored later in this chapter, neighbors have found ways to adapt these slabs as makeshift basketball courts, parking surfaces, or mosaicked entries to gardens.
In some cases, part of a house’s facade is left after the rest of a building is cleared. This creates a surreal block front, but also potentially provides a playful site for creative reuse.

Some building foundations are raised several feet. When left behind on an otherwise vacant lot, these structures can symbolize neglect and decline. While demolishing a building that may be dangerously beyond repair can be positive for the image and safety of a neighborhood or block, leaving behind significant structural remains is a strong reminder of what once stood there.

While building foundations are the most common structural remains that can be found on vacant lots in New Orleans, sometimes other parts of a building or its materials may be left behind after the rest of the structure is cleared.
FENCED LOTS

A vacant lot with a fence around it is a common sight in New Orleans. Yet the fence and the lot it contains vary widely. Fences may be tall or short; chain linked, metal, or wooden; well maintained or collapsing. They may be transparent so that the lot is visible through them or they create an effective wall hiding completely the activity behind it. The fences may suggest a greater sense that the lot is owned and cared for, or it may function as a “caution tape” to warn passersby to keep out.

The treatment of a fence surrounding a vacant lot is key to its positive or negative impact on the surrounding block and neighborhood. This vacant lot spans an entire city block and is completely surrounded by an unwelcoming barbed wire fence. A simple intervention by neighbors, these colorful signs make the image much more positive.
NORA has an official program where adjacent homeowners have a first right to buy the city-owned lot next door. The program, fittingly called the Lot Next Door, has itself created a common typology of a large fenced yard within a residential block.

Often lots are fenced to keep trespassers from dumping waste on a lot. While this lot itself is overgrown, the fence serves as a sign of someone’s ownership.

A short permeable fence may be enough to delineate some care or ownership of the space and to deter pickup trucks from backing up and dumping large difficult-to-dispose-of waste illegally on the lot.
In the Lower Ninth Ward, the scale of dumped waste can be extreme. Entire abandoned boats and cars are commonly found at the edge of lots, as are rows of tires and piles of construction debris.
Illegal Dumping

Informal junkyards appear to exist more in neighborhoods with high levels of pre-Katrina vacancy and little Katrina flooding. While in 2004 the Lower Ninth Ward had many informal junkyards scattered between housing, that neighborhood has significantly less today.

The city spends significant money on removing illegal waste from city-owned lots. There is a tire disposal fee of $2 per tire in New Orleans. Given the propensity of tires dumped by auto shops looking to evade this fee, the city is considering changing this law. On a lot design basis, a short sturdy fence of about four feet (just higher than the bed of a pick-up truck) would significantly deter illegal dumping.

Informal junkyards appear to exist more in neighborhoods with high levels of pre-Katrina vacancy and little Katrina flooding. While in 2004 the Lower Ninth Ward had many informal junkyards scattered between housing, that neighborhood has significantly less today.
Vacant lots in New Orleans, typically those with foundation slabs or mowed grass, are often used informally by nearby residents and businesses for parking cars, boats, truck trailers, and Mardi Gras floats. In some cases, vacant lots that formerly held a structure become a more formal parking lot, particularly along the city's commercial corridors.

While neighborhood vacant lots are often used by adjacent property owners as parking for personal automobiles, residential lots within a neighborhood block are sometimes used to park larger commercial vehicles like trucks.
PARKING

Mowed corner lots in neighborhoods sometimes act as parking for more than just the adjacent property. These lots become informal overflow parking spots for large truck beds and Mardi Gras floats like these.

The large industrial and commercial vacant lots in New Orleans East are often used as parking spots for large truck beds and Mardi Gras floats like these.

A mortuary formally uses a large vacant lot in Central City as parking for their Hearsts. While the lot appears vacant or a public park, the mortuary owns the land and uses the mowed lawn as a place to park their vehicles.

Mowed corner lots in neighborhoods sometimes act as parking for more than just the adjacent property. These lots become informal overflow parking spots for many cars. This is particularly true during events and festivals, when the wide medians, or “neutral grounds,” of the city’s main boulevards become informal parking lots as well.
The design firm Interboro Partners defined this often informal practice common in Detroit neighborhoods, whereby residents expand into adjacent vacant lots, as “blotting.” In New Orleans, this practice has been formalized on formerly city-owned lots through NORA’s Lot Next Door program. Approximately 1,000 vacant lots have been purchased from the City through the Lot Next Door. While the program effectively promotes de-densification, and therefore may make more sense as a solution in some areas than in others where new housing and density should be promoted, it also successfully transfers ownership and maintenance from NORA to private homeowners.

Where adjacent lots remain under private ownership, neighbors sometimes still use the lot informally. However, they generally occupy that space with more mobile elements like picnic benches or basketball hoops rather than permanent fences and planters that mark formal ownership.
Official Lot Next Door properties often can be easily identified by the type of fencing used, the treatment of the lot, and entrances to the lot from the street and from the adjacent house. In Lakeview, an upper middle class suburban development, Lot Next Door properties are popular and often meticulously maintained to provide extra outdoor space for residents.

Neighbors sometimes get creative in the ways they use adjacent vacant lots. This lot in Pontchartrain Park has a building foundation slab remaining on it. A neighbor has put a basketball hoop on the slab, creating an informal half-court.

This adjacent lot in Central City is planted with fruit trees and vegetable boxes, a common reuse of side lots. NORA's Growing Home Program offers residents the opportunity to receive $10,000 off of the purchase price of Lot Next Door properties if the buyer agrees to make basic landscape improvements, from building a fence to planting trees to installing rain gardens.
On a fenced-off corner of a large lot in the Seventh Ward near Claiborn Avenue and the elevated I-10 freeway, this informal tree house is host to underground parties. While structurally unsafe, it has become somewhat infamous with young adults in New Orleans.

In some cases, Community Development Corporations or neighborhood nonprofits may acquire vacant lots for wider community use. Community gardens, neighborhood gathering spaces, or art sculptures may be built in those space. Often, this is done on more visible corner lots. In less formalized ways, artists, activists, or neighbors may transform a vacant lot into a soccer field, tree house, vegetable garden, or place to sit and rest for neighbors to enjoy.
On a vacant lot on the commercial corridor of St. Claude Avenue, artists have constructed this wooden sculpture. The lot adds street character to a burgeoning arts district filled with new gallery spaces.

As part of their rebuilding effort in the Lower Ninth Ward, the Make It Right Foundation planted this community garden on a corner lot adjacent to new homes designed by internationally renowned architects.

On a corner lot in the Seventh Ward, the bleacher seating and nearby picnic tables offer a community performance and gathering space.
III. OTHER CHARACTERISTICS OF VACANT LOTS

Ownership is also an important characteristic to note when proposing new uses for vacant land. Approximately 20% of vacant land in New Orleans is city-owned. Other lots may be owned by a CDC or neighborhood nonprofit. Private lots may have for-sale signs or overgrown weeds and may or may not have back taxes or code enforcement liens to be paid off. Researching a lot’s (or group of lots) ownership and unpaid taxes and liens is an important step in creating neighborhood strategies for that space. If NORA owns a lot, they have a range of options for leasing or selling that lot for the purpose of new development. If the lot is owned by a neighborhood nonprofit, the city may be able to provide that group with tools to redevelop the land. If a lot has back taxes and liens, the city can acquire the lot through a sheriff’s sale or eminent domain.

Other less immediately visible elements of a lot’s physical condition are also important when considering the future use of a vacant lot. These includes the soil character and quality, slope and elevation, historic uses of the land, how long a lot has been vacant, and its relationship to floodplains and natural systems. These characteristics both suggest what future uses might be most viable as well as point to possible reasons why the lot may be vacant in the first place.

Chapter 4 maps patterns in vacant lot types and characteristics citywide. In order to understand how the types of lots and conditions defined in this chapter are expressed in different areas of the city, the next chapter looks at three case studies representing three distinct neighborhood contexts.

The patterns found among these characteristics of vacant land differ in each case, suggesting a need for strategies that cater to specific neighborhoods or types of neighborhood.
CHAPTER 4

CITYWIDE PHYSICAL PATTERNS OF VACANT LAND
Mapping the vacant land characteristics defined in Chapter 3 reveals patterns that suggest different sets of concerns and opportunities for vacancy in different parts of the city. This chapter explores each of the following characteristics of vacant land and their interrelationships: spatial typologies of size and location, characteristics of use and maintenance, ownership, elevation, Katrina flood depth, and neighborhood context. I will first describe citywide vacancy patterns and then focus in on three distinct neighborhoods, each with different narratives to their vacant land.

I. VACANT LAND, CITYWIDE

In 2012, there were approximately 16,000 vacant lots in the city of New Orleans. The majority of these lots are small scattered residential parcels, mostly privately-owned. However, the distribution of vacant lots is not evenly distributed across the city. Uptown and the French Quarter and areas along the Metarie and Gentilly Ridges, which resemble a horizontal band through the middle of the city, have almost no vacant lots. On the other hand, the Lower Ninth Ward, Hoffman Triangle, lakeside parts of the Seventh Ward and St. Roch, and the area around the Florida and Desire developments have extensive vacancy. A gradient of vacant lot density follows the bend of the River with gradually more vacant lots in areas further away from the River.

Larger commercial and industrial lots are clustered along Chef Menteur Highway in New Orleans East. The most identifiable infrastructural corridor, in terms of large-scale vacancy, is the long thin triangular Lafitte Corridor extending from the French Quarter lakeward towards Mid City.

The following set of maps explores correlations between vacant land and other characteristics. In general, there are higher rates of vacant land in neighborhoods with comparatively less public open space, with higher percentages of nonwhite residents and with lower incomes, in areas at lower, sub-sea level elevations, and with deeper flood depths after Katrina. However, there are notable exceptions. A final map shows vacant land in New Orleans in 2004 to be compared with that of 2012.

These patterns, deviations from the norm within them, and their changes over time matter when considering strategies for vacant lot reuse. From this series of maps, it is possible to begin to identify certain neighborhood types based on them.
VACANT LOTS, 2012
VACANT LOTS + OWNERSHIP
The New Orleans Redevelopment Authority owns approximately 3,300 vacant lots, or around 20% of citywide vacant lots. The majority of city-owned lots in New Orleans are Louisiana Land Trust properties transferred through the Road Home program. Rather than accumulating these lots slowly over time, NORA took over ownership of many of them all at once. Though most NORA-owned lots are scattered single residential lots, publicly-owned lots are not evenly distributed across the city. Higher concentrations can be found in areas where post-Katrina damage was greatest, where there is little to no market, and where there is the most vulnerability to future flooding.
OPEN SPACE + VACANT LOTS
New Orleans has two large major parks: City Park extending from Lake Pontchartrain south towards Mid City, and Audobon Park in the Uptown neighborhood in the southwest of the city. A recreational pathway providing public access extends along the lake. Pontchartrain Park in the lakeside area just west of the Industrial Canal is a golf course at the center of a traditionally middle-income African-American subdivision. Smaller neighborhood parks are scattered throughout the city. These parks might in the future extend into adjacent vacant lots. And in areas with less access to parks, there may be an opportunity to convert some vacant lots into public open space.
With the notable exception of Lakeview in the northwest, there are significantly more vacant lots in neighborhoods with higher percentages of nonwhite residents. Those areas of the city with the most white residents, such as Uptown, the French Quarter, the Marigny, and the Bywater, have the least amount of vacant land. These neighborhoods with more white residents largely exist along the higher elevation natural levee of the Mississippi River. According to the 2010 Census, the overall racial makeup of the city is 60% African American, 33% White, 2.9% Asian, and 1.7% mixed races, with 5.3% of the population of Hispanic descent. However, the majority of the city’s vacant land is in areas with over 80% nonwhite residents.
Overall, income distribution is less segregated in New Orleans than racial distribution. Areas with the highest income like Uptown and the French Quarter and Marigny have less vacant land than the rest of the city. But some areas with higher incomes, especially Lakeview and other neighborhoods along Lake Pontchartrain, have significant vacancy, largely due to post-Katrina damage.
ELEVATION + VACANT LOTS
A strong correlation exists between elevation and vacant lots in 2012 in New Orleans, just as there is a strong correlation between slight shifts in elevation and Katrina flood depths. Approximately 50% of the city lies below sea level, and that land is subsiding at often rapid rates. These areas below sea level, along Lake Pontchartrain and in the bowl between the Gentilly and Metarie Ridges and the Mississippi River, have notably higher rates of vacant lots than the areas of the city above sea level. Areas at lower elevation are also most vulnerable to future flooding.
KATRINA FLOOD DEPTHS + VACANT LOTS
Areas at lower elevation experienced higher flood depths and, in general, had higher rates of vacant lots in 2012. The gradient of both flood depths and rates of vacant lots mirror the bend of the River. However, flood depths alone are not the only predictor of where vacant lots exist in New Orleans. The lakeside subdivisions experienced the greatest flood depths. However, they have approximately the same distribution of vacant lots as areas with little to no flooding just north of St. Charles and St. Claude Avenues. In the Lower Ninth Ward, where 80% parcels are vacant as of 2012, the breeching of the Industrial Canal produced a violent rush of water that carried whole structures off of their foundation.
VACANT LOTS, 2004
In 2004, there were approximately 9,000 vacant lots in New Orleans, compared to 17,000 in 2012. There was little vacant land in the subdivisions near Lake Pontchartrain, and most vacant lots were concentrated in areas of the city on the river side of the Metarie and Gentilly Ridges. There are some noticeable correlations between vacancy and elevation (the oldest parts of the city nearest the river on the high ground of the natural levee are least vacant). However, there are some areas above sea-level where high vacancy rates are consistent in 2004 with areas at lower elevations more susceptible to flooding. The higher ground of Central City, for example, appears as vacant as the Lower Ninth Ward. The gradient of vacancy in relation to elevation is not apparent in the way it is in 2012.
II. NEIGHBORHOOD TYPES

Three neighborhood types emerged from the preceding mapping exercise, based on the amount of vacancy pre-Katrina and the flood depth of the area immediately post-Katrina. The matrix to the left shows the combinations of qualities that make up each neighborhood type.

TYPE 1 neighborhoods have low flood levels and many pre-Katrina vacant lots. These neighborhoods had a similar vacant lot distribution in 2004 and 2012 and in some cases less vacant land today than before Katrina. These neighborhoods follow a familiar narrative of disinvestment and population loss in the 1960s and 1970s. However, it is false to assume that these neighborhoods have been relatively static. Significant redevelopment is happening in many of them, and some residential structures were damaged beyond repair during Katrina. But those two factors have perhaps balanced each other out, thus far, resulting in similar numbers of vacant lots today and in 2004. These neighborhoods exist on safer, higher ground, making them good sites to target for new housing development. Examples of this neighborhood type include the riverside part of Central City surrounding OC Haley, the blocks just north of St. Claude Avenue through the Seventh Ward, St. Roch, and St. Claude neighborhoods.

TYPE 2 neighborhoods have high flood levels and few pre-Katrina vacant lots. These areas had almost no vacant lots in 2004 but have many today. These neighborhoods exist largely near Lake Pontchartrain in low-lying areas with mostly middle- and high-income levels. The extreme example of this neighborhood type is Lakeview, an upper class, mostly white neighborhood on the west end of the lake, which sustained high flood levels and significant damage post-Katrina. Other examples include Pontchartrain Park, Fillmore, and Gentilly. Vacancy in these neighborhoods looks and is acted upon differently than in the first neighborhood type. Many of the vacant lots in these communities are for sale, and new construction is happening throughout these areas, often partially driven by the private market.

TYPE 3 neighborhoods have both high flood levels and many pre-Katrina vacant lots, and today many of these areas have extensive vacancy and abandonment. These areas exist at the lowest point of the “bowl” between the Metarie and Gentilly Ridges and the Mississippi River, and include neighborhoods like Hoffman Triangle, the Florida Area, and most infamously, the Lower Ninth Ward. Challenges related to vacant land in these neighborhoods, where on some blocks more than 50% of parcels may be vacant lots, are different than in the other two neighborhood types.

Important to note is the gradient between the first and third types of neighborhoods. While 80% of the city flooded after Katrina, there is a significant difference between two feet of water and ten feet of water, both in terms of damage and in terms of future risk. The graph to the right suggests a depth of approximately four feet as the defining point between the two neighborhood types. However, there is no definitive break, but rather a range, of difference.

The next few pages explore the qualities of each of these neighborhood types through images.
NEIGHBORHOOD TYPES
In order to roughly define three neighborhood types based on the condition of their vacant land, this map identifies those vacant parcels where flood depths were more than four feet. Those lots in yellow near lake Pontchartrain fit into the second neighborhood type, where there were few vacant lots prior to Katrina. Those lots in pink highlight the third neighborhood type, where there were flood depths of greater than four feet and significant vacancy prior to Katrina. Lots in grey show where flood depths were at or below four feet. The first neighborhood type can be found where there are higher densities of grey vacant lots. This is intended as a rough sketch, and the gradient between the third and first neighborhood types could be explored more.
NEIGHBORHOOD TYPE 1: LOW FLOOD LEVELS, HIGH PRE-KATRINA VACANT LOTS

Some of the structures in Type 1 areas have been vacant for years before Katrina and remain standing. While some of the structural damage apparent in the building fabric of these neighborhoods is a partial result of damage sustained during the storm, it can sometimes be difficult to determine at first glance what abandonment might be much longer-term.

Missing teeth lots in the interior of a block are common in neighborhoods of this type.

While the overall number and general distribution of vacant lots may remain relatively unchanged in this neighborhood type from 2004 to 2012, there has still been quite a bit of neighborhood change and redevelopment. A close examination on a block scale often finds a swapping of vacant lots and buildings. Where a building stood in 2004, there may now be a vacant lot. And those pre-existing vacant lots were prime sites for the rebuilding of infill housing after Katrina. The higher, safer ground of these neighborhoods makes them good sites to target for future housing development as well.
While various uses of vacant lots are temporary and ephemeral, those lots in neighborhoods with little Katrina flooding that remain vacant today often retain their use over time. Informal junkyards, for example, have remained in place in many lots in this first neighborhood type. Whereas in neighborhoods with significant flooding, like the Lower Ninth Ward, many of those uses have been removed.

Industrial areas often exist at the edges of these neighborhoods. Prior to the draining of the backswamps, industrial and nuisance land uses were pushed to the edges of the old city. While the city expanded beyond those early borders, many of these uses still exist in those areas today.

Corner vacant lots are important sites for intervention in neighborhoods of this type. Many of the community gardens, gathering spaces, art installations, and other community uses on vacant lots happen on vacant corners. Lots on corners attract the most traffic and attention, making them sites that impact the character of a much larger area. Dumping on a corner lot impacts the overall image of a neighborhood. But corners are also prime spots for community gathering.
Water management, and a related concern over flood insurance, are major concerns in this second type of neighborhood. During summer storms, water pools in areas of the street or on vacant lots. These vacant lots could be designed as part of a holistic water management infrastructure, and certain neighborhoods of this type are looking to do just that. However, these neighborhoods are also more susceptible to future catastrophic floods.

There is significant new construction currently happening in many of these neighborhoods, often of larger and more modern single family houses than existed before. In Lakeview, where this picture was taken, vacant lots that remain are meticulously maintained.

Whole housing developments have been abandoned since Katrina. Some have been thoroughly demolished, while some structures remain. This housing development in New Orleans East is a magnet for both local water ponding and the dumping of illegal waste.
Chapter 4 | 107

Neighborhood Type 2: High Flood Levels, Few Pre-Katrina Vacant Lots

Subsidence is often dramatic in neighborhoods of this type and is visible in the cracked poor condition of many of the streets. Parts of roads have even become un-driveable. This is partially a result of the city’s excessive pumping of the groundwater. These low-lying areas are not merely at greater risk of flooding, but they are also at a greater risk of slow property damage from the sinking of the soil.

The Lot Next Door program has been popular in this second neighborhood type. Residents typically put a fence around these lots and use them as extended yard space. This home in Lakeview used the setback of the lot next door to create a dramatic driveway entrance.

In some of the higher-income and higher-demand neighborhoods of this type, Lakeview being a cardinal example, signs advertise privately-owned lots for sale and construction firms willing to build new homes to residents’ specification. In some of the older subdivision neighborhoods, where lot sizes do not meet the current demand of homeowners looking for a suburban neighborhood fabric, lots are sometimes consolidated to allow for a larger new property. There is market demand to rebuild on this lower ground.
NEIGHBORHOOD TYPE 3: HIGH FLOOD LEVELS, HIGH PRE-KATRINA VACANT LOTS

Lots in the third neighborhood type are often receptacles for larger waste: boats, cars, tires, construction debris, furniture, and appliances. In general these items are more difficult or costly to dispose of properly. Vacant lots in neighborhoods with abundant vacancy are easy targets for this unwanted debris.

Abandoned houses in poor structural condition are also common in this neighborhood type and sometimes become receptacles for unwanted debris. This house in Hoffman Triangle appears to be literally bursting from the debris that has been dumped in it.

Large clusters of vacant lots are common patterns in this neighborhood type. While it may be tempting to propose larger reuse programs for these larger sites, complicated legal rights and ownership structures make those difficult to implement.
NEIGHBORHOOD TYPE 3: HIGH FLOOD LEVELS, HIGH PRE-KATRINA VACANT LOTS

Rebuilding in neighborhoods of this type is a challenge. Even on blocks with less vacancy, there lacks enough of a market demand for new housing.

Most houses in neighborhoods of this type, including the pictured Lower Ninth Ward, have been demolished, leaving many vacant lots behind. However, there are still some abandoned structures in poor shape that have yet to be demolished.

In addition to larger waste that may be difficult to dispose of properly, many vacant lots in these neighborhoods tend to collect other basic household waste as well.

Rebuilding in neighborhoods of this type is a challenge. Even on blocks with less vacancy, there lacks enough of a market demand for new housing.
To further explore the patterns of how vacant land in each neighborhood type looks and impacts its surroundings, I have chosen 3 areas, consisting of approximately 1,000 total parcels each, within 3 different neighborhood types to survey through a lot-by-lot analysis. These survey areas are: the river-side part of Central City surrounding OC Haley Blvd, an example of a Type 1 neighborhood with low flood depths and high pre-Katrina vacancy; Pontchartrain Park, a historically African-American subdivision surrounding a golf course near the lakeside entrance to the Industrial Canal, an example of a Type 2 neighborhood with little pre-Katrina vacancy and high flood depths; and a subsection of the Lower Ninth Ward, an example of a Type 3 neighborhood with both high flood depths and high rates of vacancy before Katrina.
OC HALEY, CENTRAL CITY
OC Haley Boulevard, formerly Dryades, is an historically Jewish and African-American area. A streetcar once ran along the corridor. Other neighborhoods that fall into Type 1 also often extend from a major commercial corridor, such as St. Claude Avenue. OC Haley is at the end of Central City closest to the River. Central City extends towards the Lake with an increasing gradient of vacant land, lower elevations and higher flood depth.

Today, OC Haley is undergoing significant investments in redevelopment and rebuilding. While there were actually a few more vacant lots in 2004 as there are today in 2012, there is a great deal of change that has happened over that time. This particular lot housed a warehouse in 2004. In the distance, it’s possible to see the large Muse housing complex that was built on a cluster of pre-Katrina vacant lots.

OC Haley is separated from downtown by the Pontchartrain Expressway, limiting pedestrian access between otherwise close areas.
ELEVATION AND VACANCY

The survey area is above sea level, with other areas of Central City below sea level.

FLOOD DEPTH AND VACANCY

The survey area has low to no flood depths ranging from around 0-2 feet. Flood depths were much higher towards the lake in Central City.
The survey area is of mixed income with lower income areas extending towards the lake and higher extending towards the river.

OC Haley marks a divide between neighborhoods that are primarily white versus primarily non-white.
OC HALEY SURVEYED VACANT LOTS

1,069 TOTAL PARCELS
203 VACANT LOTS
19% PARCELS VACANT
Chapter 4 | 117

OC HALEY SURVEYED VACANT LOTS
OC HALEY SPATIAL TYPOLOGIES

MISSING TEETH

CORNER LOTS

CLUSTERED LOTS
There is a significant number of corner vacant lots in the survey area around OC Haley. Another common spatial typology is clustered lots.
OC HALEY CONDITION TYPES

OVERGROWN

18 | 9%

MOWED

41 | 20%

SLAB

7 | 3%

FENCE

58 | 29%
Pontchartrain Park was developed in the mid-1950s on the recently drained wet terrain of the lakeside lowlands. Developing the area required the construction of massive drainage infrastructure. The Dwyer Canal runs along the southern edge of Pontchartrain Park and is part of a larger catchment area of 4,800 acres. Water from the canal flows west to the London Avenue Canal pumping station. Currently, the canal is little more than a sometimes-wet ditch, but there are plans to raise the water levels and redesign it as a public amenity.

Pontchartrain Park was originally developed by and for middle-class African American families and centers around a golf course. Much of the housing was damaged in the flood after Katrina, and some abandoned buildings remain. These contrast with both the maintained 1950s-style suburban homes as well as the larger modern suburban housing that has been built since Katrina.

Many residents in Pontchartrain Park have purchased the adjacent lot through NORAs Lot Next Door program. Large fences around these lots are common, but often little else is placed in those extended properties and they appear somewhat barren.
All of the survey area is below sea level, with adjacent areas closest to the lake on higher ground.

The survey area experienced flood depths of around six feet or above. The golf course appears to have experienced lower flood levels.
Most of the area in and around Pontchartrain Park is middle class or lower-middle class.

Pontchartrain Park is historically African American and middle class, and the neighborhood remains mostly non-white.
1,085 TOTAL PARCELS
266 VACANT LOTS
25% PARCELS VACANT
PONTCHARTRAIN PARK SPATIAL TYPOLOGIES

MISSING TEETH

CORNER LOTS

CLUSTERED LOTS

[Images of spatial typologies]
Clustered lots are common in Pontchartrain Park and provide an opportunity for new connections through the neighborhood for both pedestrians and water management.
PONTCHARTRAIN PARK CONDITION TYPES

OVERGROWN

96 | 36%

MOWED

116 | 44%

BUILDING SLAB

36 | 14%
PONTCHARTRAIN PARK CONDITION TYPES

- **PARKING**
 - 1 | 0.5%

- **DUMPING**
 - 5 | 2%

- **ADJACENT USE**
 - 3 | 1%
LOWER NINTH WARD
The Make It Right Foundation houses stand out in contrast to the rest of the neighborhood. The houses are clustered together near the Industrial Canal and Claiborne Avenue, which is outside of the surveyed area. Various world-renowned architecture firms designed these houses, which differ from the housing typologies of the rest of the city, but also from each other. Ninety energy-efficient homes have been built as of April 2013, with another sixty planned.

The dredging of the Industrial Canal in the 1920s isolated the Lower Ninth Ward from its Upper Ninth Ward counterpart and much of the rest of the city of New Orleans. The neighborhood was one of the poorest before Katrina and already had many vacant lots. Much like the lakefront subdivisions, the Lower Ninth Ward is on low land and sinking. This subsidence is visible in the several-inch difference between the elevation of the street and drain covers. This phenomenon is also visible in low-lying subdivisions.

Many vacant lots in the Lower Ninth Ward are NORA-owned former Louisiana Land Trust properties that were sold back to the state through the Road Home program. These lots are mowed, in contrast to adjacent lots with high weeds and second-growth forests.
ELEVATION AND VACANCY

Elevation, much like vacancy exists on a gradient in the Lower Ninth Ward. The survey area appears to be almost entirely below sea level.

FLOOD DEPTH AND VACANCY

Flood depths were mostly above 6 feet, compounded even more by the violent breaching of the Industrial Canal.
Chapter 4 | 135

RACE AND VACANCY

The Lower Ninth Ward has a population of more than 80% nonwhite residents.

INCOME AND VACANCY

There is insufficient data on income in the Lower Ninth Ward, which is historically lower-income.
LOWER NINTH WARD SURVEYED VACANT LOTS

1,127 TOTAL PARCELS
691 VACANT LOTS
61% PARCELS VACANT
LOWER NINTH WARD SPATIAL TYPOLOGIES

MISSING TEETH

CLUSTERED LOTS

MOSTLY VACANT BLOCKS
There are approximately 15 mostly vacant blocks in the survey area and many more clusters of vacant lots. These areas may be suitable for larger-scale uses. Less-vacant blocks, with scattered “missing teeth,” exist mostly towards Claiborne Avenue.
LOWER NINTH WARD CONDITION TYPES

OVERGROWN

293 | 42%

MOWED

244 | 35%

SLAB

115 | 17%

FENCE

15 | 2%
Chapter 4 | 141

Lower Ninth Ward Condition Types

- Parking: 31 | 4%
- Dumping: 92 | 13%
- Adjacent Use: 1 | 0.1%
- Community Activity: 7 | 1%
THREE NEIGHBORHOODS IN COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>2012 VACANT LOTS</th>
<th>2004 VACANT LOTS</th>
<th>KATRINA FLOOD DEPTHS</th>
<th>OVERGROWN</th>
<th>MOWED</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC HALEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC HALEY</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>203</td>
<td>19%</td>
<td>239</td>
<td>22%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 KATRINA FLOOD DEPTHS</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>266</td>
<td>25%</td>
<td>18</td>
<td>2%</td>
<td>9%</td>
<td>20%</td>
</tr>
<tr>
<td>LOWER NINTH WARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWER NINTH WARD</td>
<td></td>
<td></td>
<td></td>
<td>293</td>
<td>244</td>
</tr>
<tr>
<td>691</td>
<td>61%</td>
<td>374</td>
<td>33%</td>
<td>42%</td>
<td>35%</td>
</tr>
<tr>
<td>293</td>
<td>42%</td>
<td>244</td>
<td>35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slab</td>
<td>Fenced</td>
<td>Parking</td>
<td>Dumping</td>
<td>Adjacent Expansion</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>OC Haley</td>
<td>7</td>
<td>58</td>
<td>23</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>29%</td>
<td>11%</td>
<td>10%</td>
<td>2%</td>
</tr>
<tr>
<td>Pontchartrain Park</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td>0%</td>
<td>0.5%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Lower Ninth Ward</td>
<td>115</td>
<td>15</td>
<td>31</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17%</td>
<td>2%</td>
<td>4%</td>
<td>13%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
III. Lessons from Mapping

The citywide mapping that began this chapter illustrates the strong correlations between vacant land and physical and demographic measurements that one would expect given the city’s history. In general, there is more vacant land in areas of less wealth and higher percentages of African American residents; and there is more vacancy in areas at lower elevations that experienced higher flood depths after Katrina than in areas above sea-level. These patterns help explain why some neighborhoods have more vacant lots than others. The exceptions to each of these correlations (i.e., areas of wealth and a primarily white population with high rates of vacancy, or areas with significant vacant lots but little to no flooding after Katrina) give clues as to what makes the conditions of that vacant land different across different neighborhood contexts.

The second part of this chapter defines three neighborhood types based on a combination of two main factors: whether the neighborhood had significant vacancy prior to Katrina, and whether the neighborhood experienced significant flooding after Katrina. A lot-by-lot survey of approximately 1,000 parcels in three case neighborhoods explores differences in the conditions of vacant lots in each. The results from that survey, described in the graphic on the previous pages, illustrate the differences in how vacant lots in each neighborhood look and how they are used.

At first glance, the area around OC Haley and Pontchartrain Park have similar rates of scattered residential vacant lots in 2012 – 19% of parcels in the OC Haley survey area and 25% of parcels in Pontchartrain Park were vacant. However, the narrative of that vacancy, as well as the patterns of vacant lot conditions, differ between the two cases. Pontchartrain Park had little vacant land in 2004, whereas vacant lots in the survey areas of both OC Haley and the Lower Ninth Ward accounted for over 20% of parcels prior to Katrina. Pontchartrain Park and the Lower Ninth Ward both experienced extreme flooding and damage after the storm, whereas parts of the OC Haley survey area did not flood at all.

Vacant lots in the OC Haley survey area are the most “activated”, in manners that could be perceived as having a positive, negative, or neutral impact on the neighborhood. This is perhaps, in part, because of the long-term nature of vacancy in the neighborhood and lesser impact from Katrina. Whereas little to no lots in Pontchartrain Park and the Lower Ninth Ward survey areas have fences around them, 29% of vacant lots surveyed near OC Haley were found to be fenced. Similarly, significantly more vacant lots are used for parking cars in the OC Haley survey area than in the survey areas in Pontchartrain Park and the Lower Ninth Ward. The lower Ninth Ward area experienced the most dumping, mostly of larger waste that is difficult to dispose of properly. But significantly more dumping was found in the OC Haley survey area than in Pontchartrain Park, even though both areas have similar rates of vacant land. OC Haley also had the highest percentage of lots used for community activities or adjacent property expansion.
When considering interventions on vacant lots in neighborhoods comparable to OC Haley, it is crucial for a community to consider what activities it wants to attract versus those it wants to deter. Considering only questions of maintenance will not address the varying conditions and uses found on vacant lots. In the long-term, areas like OC Haley that have significant rates of vacancy but are on higher ground provide prime locations to target new housing development. Interim uses that improve the image of the neighborhood and leave room for future building are best to consider.

Vacant lots in Pontchartrain Park, in contrast to the highly active vacant lots in the OC Haley area, might be considered relatively benign. Less than 4% of those lots surveyed are used in any way. Most lots are simply mowed or overgrown, and a few have building foundation slabs that remain. Strategies for reusing vacant lots in neighborhoods of this type may be less concerned with what activities to attract or deter and more with how that vacant land might be strategically designed, configured, and maintained to enhance the quality and natural functions of a neighborhood at high flood risk and on sinking ground.

The Lower Ninth Ward, where 66% of lots in the area surveyed were vacant in 2012, is the extreme case. The survey results illustrate the challenges to reusing vacant land in such neighborhoods with very high vacancy rates and high flood risks. More lots surveyed were found to be overgrown than mowed, and 17% had building foundation slabs remaining in the lot. These varying conditions, coupled with a high rate of dumping in the neighborhood, make consolidating lots on mostly vacant blocks a difficult task. While larger-scale reuses of vacant land that take over multiple lots might be appropriate interventions in the Lower Ninth Ward and other neighborhoods of this third type, such interventions should respect the complicated landscape and the risk inherent in it.

The three case neighborhoods explored in this chapter exhibit different vacant land patterns and conditions. However, observations of vacant land in other parts of the city, though less rigorously quantified, suggest that these patterns and conditions are similar across the three neighborhood types defined here. The next chapter explores policy strategies for the reuse of vacant lots that cater to these differences in neighborhood conditions.
CHAPTER 5

STRATEGIES FOR VACANT LOT REUSE IN NEW ORLEANS
The exploration of vacant lot types and patterns described in the previous two chapters provide a foundation for formulating certain policies, programs, and priorities for New Orleans to pursue in promoting the productive reuse of its vacant lots. Not only do single lots look and act differently, but a similar difference in character can be seen at the neighborhood scale as well. I have identified three neighborhood types that each display a different spatial and conditional pattern of vacancy and for which different sets of opportunities and challenges exist. Citywide policy frameworks and programs should reflect these differences. However, New Orleans currently lacks a formal differentiation of strategies by either the characteristics of a single lot or the characteristics of the neighborhood in which a lot is contained.

In this chapter, I will first discuss pilot projects for vacant lot reuse in each of the three neighborhoods explored in the previous chapter (Central City, Pontchartrain Park / Gentilly Woods, and the Lower Ninth Ward), how strategies differ in each pilot project, what lessons might be translated citywide, and how effectively each project addresses contextual challenges. I will then discuss policy frameworks for making decisions about vacant land, with an emphasis on how other cities with significant vacancy and abandonment make clear distinctions in their policies towards their vacant land based on neighborhood conditions. Finally, I will explore programs for alternative land reuse of vacant lots that already exist citywide in New Orleans.

I. VACANT LOT PILOT PROGRAMS IN THREE NEIGHBORHOODS

In the past few years, New Orleans has experimented with reuse options for its long-term vacant land. Much of this experimentation has happened in the form of pilot projects on the neighborhood scale, with the notion that such techniques might be implemented later across larger parts of the city. The three neighborhoods explored in the previous chapter are each the site of at least one such vacant lot pilot project. An examination of pilot projects in each of these three neighborhoods exemplifies how strategies across three neighborhood types should, and in many respects already do, differ.

CENTRAL CITY: Incremental interventions to stabilize lots and create community spaces

As explained in the previous chapter, the neighborhood of Central City contained significant vacant land prior to Katrina. While lakeside parts of the neighborhood to the north towards Hoffman Triangle experienced high flood depths and severe damage after Katrina, areas towards the riverside end of the neighborhood closer to St. Charles Avenue barely flooded at

1 One notable exception is the New Orleans Redevelopment Authority's (NORA's) Lot Next Door program, which I will discuss further later in this chapter.
all. Vacant lots in Central City are scattered and many have been vacant for decades.

In collaboration with the Tulane City Center, the Central City community non-profit housing developer Jericho Road developed a pilot project in 2010 to test various alternative greening strategies on some of the vacant lots it owns in the neighborhood. As part of this pilot project, Jericho Road and the Tulane City Center published the vacant lot landscape design pattern book, *Vacant Land: Site Strategies for New Orleans*, which describes six possible designs and their costs to implement and maintain over time. While the *Vacant Land* report identifies specific Jericho Road-owned lots in Central City as sites for intervention, the pattern book is meant to apply to vacant lots across the city. Similarly, many of the pilot interventions were chosen specifically to be scalable across the neighborhood and city at large.

The six site strategies designed in the *Vacant Land* pattern book include three scalable proposals: strategic planting of trees at the edges of a lot, environmental enhancement through wetland planting for stormwater management and/or planting a seed mixture of indigenous grasses and wildflowers, and planting a running groundcover that requires little maintenance and no mowing as an alternative to sod. While these interventions are intended to be appropriate for almost any vacant lot “regardless of location, size, or neighborhood condition,” the report also includes three site-specific strategies: a tree nursery, a community garden or orchard, and a pocket park.\(^2\) While each of these strategies requires certain lot conditions and neighborhood involvement, the report suggests that they too could be appropriate interventions in New Orleans neighborhoods beyond Central City. In addition to the report, Jericho Road and Tulane City Center collaborated on pilot interventions on a couple Jericho Road-owned lots in Central City.

Jericho Road’s *Vacant Land* report recognizes the broader policy framework in which the proposals might be implemented on a larger scale: “While the primary focus of this investigation is improving Jericho Road’s vacant land management strategies, it is critical to also consider how these proposals could interact with and be supported by city government policies and programs.”\(^3\) The report identifies and critiques three possible neighborhood and city government partnership models, recognizing that the first, a comprehensive city-wide policy, might be less effective in some neighborhoods than others given the drastic variation in vacant land dynamics across the city. In a “neighborhood-by-neighborhood” model, the city government would create policy strategies specific to each neighborhood in collaboration with neighborhood groups. The report identifies this model as both more time consuming and intensive in human resources, but likely to lead to more effective solutions. A final “organizational leadership” model would give the strategic decision making over to the communities, with funding streams from the city government to be distributed to

\(^2\) Jericho Road Episcopal Housing Initiative and The Tulane City Center, *Vacant Land: Site Strategies for New Orleans*, 2010, 24

\(^3\) Jericho Road. p 14
FIGURE 5.1 One of the Jericho Road Pilot Lot to test new groundcover and short fencing.
Image by author.
neighborhoods on a competitive basis.

While Jericho Road's report identifies both the scalability of its proposals as well as the complex variation in vacant land conditions across the city that might make such strategies more effective in some places than others, the report falls short of defining Central City as a neighborhood type comparable to other parts of the city. The report does not fully describe what about the area in Central City in which Jericho works makes such an incremental strategy with a strong focus on interim uses, lot stabilization, neighborhood beautification, and community gathering a particularly appropriate approach to vacant lot reuse. Such a strategy, however, makes a great deal of sense in a neighborhood with scattered, often long-term, vacant lots and concerns over abandonment and dumping, all issues the report and pilot projects seek to address. Neighborhoods on higher ground with a lot of vacant land, like the area around OC Haley in Central City, are prime locations for targeting new, safer housing development in the city. The Jericho Road report recognizes these new designs as mostly interim solutions aimed at improving the safety and appearance of the neighborhood and increasing nearby property values before a residential structure is built on the lots.

While this strategy may be less effective in other parts of the city, it would be effective in other neighborhoods of this type with a similar condition. Rather than customizable strategies on a neighborhood-by-neighborhood basis or a single citywide strategy, each of which have significant limitations, citywide policies could be catered to neighborhood types.

PONTCHARTRAIN PARK / GENTILLY WOODS: Stormwater management neighborhood redesign

While Jericho Road's strategy for vacant lot reuse in Central City is incremental and focused on improving neighborhood quality, safety, and property values, the approach taken in Pontchartrain Park and Gentilly Woods (together, Pontilly) is a singular project-based approach to redesigning the stormwater capture and drainage network in the neighborhood.

New Orleans' extensive drainage system includes 22 pumping stations and over 180 miles of both open and subsurface canals. However, both the volume and rate of storm water flow during heavy summer rains overwhelm the city's drainage system, resulting in occasional localized flooding. Additionally, both the amount of impervious surface in the city as well as the active over pumping of groundwater out of the system have accelerated the rate of subsidence. As a result, some areas of the city have sunken more than 8 feet in the past 100 years. While all parts of the original city sat at or above sea level, approximately half of the city is below sea level today. Those areas at lower elevations are at greater risk of catastrophic floods, but also more susceptible to flooding of a foot or two during heavy rains and to structural damage from the subsidence of the land.
FIGURE 5.2 Pontilly Project design. View of Dwyer Canal, stormwater lots, and stormwater parks.
Image Courtesy of the New Orleans Redevelopment Authority and Waggoner and Ball Architects.

FIGURE 5.3 Pontilly Project design. Corner stormwater lot.
Image Courtesy of the New Orleans Redevelopment Authority and Dana Brown & Associates
Using vacant lots for stormwater capture has become popular recently in post-industrial cities looking to green infrastructure as a cost-effective approach to mitigating sewer overflows in older combined stormwater/wastewater systems. In New Orleans, the main impetus for such intervention is mitigating flooding and recharging the groundwater to halt subsidence. While the financial “stick” for cities like Philadelphia and Cleveland to implement green infrastructure strategies is EPA fines for the overflow of sewage into the cities’ water bodies, the financial incentive for the Pontilly Project is the reduction of future Federal Emergency Management Agency (FEMA) flood insurance claims for neighborhood properties, many of which are currently in construction.

In order to reduce these post-disaster FEMA insurance claims through green infrastructure techniques, the Pontilly Project, coordinated by NORA, received a $15 million FEMA Hazard Mitigation Grant to implement a holistic stormwater mitigation design in Pontilly. While the project is still in the design and planning phase, it is conceived as a neighborhood-wide implementation of a connected water management system. For the project to receive its awarded $13.5 million for implementation ($1.5 million is for project planning), the design must meet certain FEMA requirements for a cost benefit analysis by proving that the interventions would lower insurance claims by at least the cost of construction.

In order to do so, the project lead engineering firm CDM Smith modeled the performance of various possible green infrastructure interventions (specifically, stormwater lots and stormwater parks, porous parking and alleys, street basins, bioswales, and widening the Dwyer Canal) in mitigating floods during a 10-year storm event. The Pontilly Project used certain criteria for prioritizing lots to include in the project design: the modeled hydrological impact on reducing stormwater flows; NORA-owned sites; sites for which there is not already an agreement with a developer to construct housing; lots which might otherwise be difficult to develop due to their size, shape, or location; opportunities for improved neighborhood design and open space through pedestrian passageways midblock, visual gateways on corner lots, or public access to the Dwyer Canal.⁴

Vacant land is ranked on a lot-by-lot basis through both stormwater modeling and visual evaluations during field visits. Highest priority lots are to be included in the model to confirm insurance claim cost savings for the FEMA grant. While the criteria for FEMA funding is tied only to stormwater management performance, the project seeks to improve neighborhood livability and provide a showcase design for green infrastructure, particularly through the centerpiece of the Dwyer Canal which creates the border between Pontchartrain Park and Gentilly Woods.

⁴ Robert Crauderueff, Greening Vacant Lots: Planning and Implementation Strategies (The Nature Conservancy, December 2012), 86-87
While the project is still in the design and planning phase, the FEMA grant requires a plan for long-term ownership and maintenance of the project design, including stormwater lots and stormwater parks on current vacant lots. The project itself is contained within the Pontchartrain Park and Gentilly Woods neighborhoods; however, it may provide a model for other New Orleans neighborhoods to follow. Creating a maintenance and ownership structure at a citywide scale, as opposed to the neighborhood scale, could incorporate the Pontilly pilot project as well as future green infrastructure designs in other New Orleans neighborhoods.

It is reasonable to question whether a neighborhood redesign project for stormwater management in an area so far below sea level is merely a bandaid on a much bigger problem. If the levees fail in the wake of another catastrophic storm, this will do nothing to limit that risk. But, while the city and NORA have invested in redevelopment in Pontilly, the market is partially driving that rebuilding there and in other lakefront communities of New Orleans. Many residents remain, and much of what was damaged in the food has already been rebuilt. Given that people are returning to these areas, the city might as well improve water infrastructure to address the less severe but more frequent concerns of subsidence and light flooding.

The Pontilly Project, while including plans for greening underutilized vacant lots, differs greatly from the Jericho Road vacant land approach. The goals are different. In Central City, concerns over the impact of abandonment and dumping on adjacent properties and the neighborhood at large drive the plan for vacant lot stabilization and reuse. In Pontilly, while the project includes neighborhood livability goals, the driving factor is improved stormwater management. The implementation plan is also different. In Central City, the approach is incremental and evolving. In Pontilly, the design requires a relatively singular implementation that links the entire new system together. The Jericho Road project is nonspecific as to which lots in the neighborhood might be redesigned; whereas the Pontilly project must identify the vacant lots to include in the design as part of the planning process. The funding source for the Pontilly Project is a large FEMA disaster mitigation grant, whereas the Jericho Road vacant land report imagines a relatively consistent stream of modest city government funds for lot greening projects. And yet, both projects are very much tests of strategies that might find applicability in other parts of the city.

LOWER NINTH WARD: Taming the wilds and seeking creative solutions

Currently, the city’s approach to vacant lots in the Lower Ninth Ward is one of maintenance, or perhaps more accurately, one of taming the wild plant species that have grown rapidly since Katrina, as well as clearing large, illegally-dumped debris like tires, cars, boats, concrete, mattresses, and televisions. As Nathaniel Rich articulates in a March 2012 New York Times article on overgrowth in the New Orleans neighborhood, “It is misleading to talk about
abandoned lots in the context of the Lower Ninth Ward. Vast sections of the neighborhood have been abandoned, so it’s often unclear where one property ends and the next begins. However, as explored in the previous two chapters, those property lines and varying ownership further complicate the largely vacant landscape.

Today, many of those traces of ownership in the Lower Ninth Ward are legible in the landscape. City-owned lots sit perfectly mowed next to unruly grasses and surprisingly tall second-growth forests in some privately-owned vacant lots. Foundation slabs remain in many lots as reminders of the footprint of a now demolished structure. While it might make sense to imagine a future for the Lower Ninth Ward that creates larger green space in a neighborhood that traditionally had little or includes the production of agriculture or energy on larger plots of vacant land, consolidating these adjacent lots is no easy task.

The city’s prevailing policy towards vacant land in the Lower Ninth Ward thus far has been one of clearance. In 2011, Mayor Mitch Landrieu announced a pilot program for clearing overgrown lots in the Lower Ninth Ward called the Nuisance Lot Maintenance Program. The $200,000 project hired New Orleans residents, giving preference to Lower Ninth Ward residents and ex-offenders looking for work. Before the program, many privately owned lots in the Lower Ninth Ward had gone uncut and unmaintained for the six years since Katrina. Besides wild vegetation overgrowth, sightings of stray cats and dogs, possums, and raccoons were common, even the occasional sighting of armadillos, coyotes, owls, hawks, falcons, and alligators. While today the neighborhood remains largely vacant with many overgrown lots, that overgrowth was significantly greater before the Nuisance Lot Maintenance Program cleared both publicly- and privately-owned lots in the neighborhood. As Rich describes, “no longer are there full blocks of uninterrupted jungle.”

While images and descriptions of the Lower Ninth Ward are jarring, many residents have moved back and continue to do so. New houses continue to be built on some blocks. The Brad Pitt-backed Make It Right homes in the southwest part of the neighborhood nearest the Claiborne Avenue bridge are the exception to the rest of the neighborhood. The Make it Right project, up until this point, has garnered incredibly polarized responses, ranging from lauding Pitt as a recovery hero to condemning the project as overpriced, underperforming, and steering the city’s infrastructure funding away from neighborhoods with greater potential to rebound. The project’s stated goals were to build 150 houses designed by 20 renowned architects. As of early

5 Rich, “Jungleland.”
7 Rich, “Jungleland.”
2013, 76 houses have been built and $40 million raised. The Make It Right houses stand out from the rest of the Lower Ninth as a colorful concentration of raised houses beginning to take the shape of a neighborhood with paved roads and street trees, neighborhood gardens, and significantly fewer vacant lots per block. While many have argued that the Lower Ninth Ward should not be rebuilt, the Footprint Debate recounted in Chapter 2 and the promise the city made to residents to rebuild everywhere, make such a proposition politically impossible for the foreseeable future. Parts of the Lower Ninth Ward have been rebuilt, and some rebuilding will slowly continue into the future. The question is how and where within the neighborhood that rebuilding will happen, and what will be done with the many vacant lots that inevitably remain.

The focus for the City of New Orleans, regardless of the end use, is returning its vacant lots in the Lower Ninth Ward back to private property owners. In an interview with the New York Times, Mayor Mitch Landrieu said, “We don't know what the end looks like. We think we know what the process looks like. We want to get those lots back in the hands of private-property owners so that they can take responsibility for them. Anything we can do to make them attractive to private investors, we want to do”. As Jeff Hebert, Executive Director of NORA, added in the same article, “It is not the goal of the City to maintain in perpetuity.” While the goal is to return lots to the private market, the City is aware that housing redevelopment is not the only possible way to do this, and the research of this thesis would suggest it is also not a safe way to do this. The City, and NORA specifically, are beginning to look to a range of creative alternative uses for those vacant lots – both community managed open spaces like gardens and parks and profit-generating enterprises that city residents might pitch.

As a way to generate creative thinking around the reuse of vacant lots, NORA teamed with Propeller, a social innovation incubator, to hold an ideas competition in the fall of 2012 to generate new strategies for vacant lots. As the challenge puts it, “PitchNOLA: Lots of Progress is a social innovation ‘elevator pitch’ competition open to individuals and teams with an idea that transforms vacant lots for community and environmental benefit.” Entrants were instructed to select an available lot from the selection of 32 NORA-owned properties, 10 of which were in the Lower Ninth Ward and most of the rest notably in neighborhoods with similar vacancy conditions, such as the Florida Area and Hoffman Triangle. While the competition was open to all for-profit and not-for-profit proposals that included no habitable facilities, entrants were required to include an implementation plan and prove financial sustainability through a business plan. The 10 selected finalists presented their proposals to a panel of 3 prominent

10 Landrieu, quoted in Rich, “Jungleland.”
11 Hebert, quoted in Rich, “Jungleland.”
judges and a public audience. The final proposals represented a range of ideas: a lot filled with bromeliads; an orchard; a recreation facility; two proposals for a business start-up using goats for clearing overgrown lots; two proposals for a form of soil-less and symbiotic production of agriculture and aquaculture called aquaponics; and a lot filled with solar panels. The winning proposal for a fruit orchard in the Lower Ninth Ward won the proposed lot and $5,000 for implementation.

In many respects, the competition was merely a fun event to involve the greater New Orleans community in generating new ideas for the city’s underutilized spaces. However, it also gives some insight into how the City is hoping to generate an entrepreneurial spirit to revitalize long-term vacant lots in those neighborhoods like the Lower Ninth Ward with no market, at high risk for future catastrophes, and with high rates of vacancy as a result of both pre-Katrina disinvestment and post-Katrina damage. There are a couple current examples of larger scale production across multiple formerly vacant lots in the Lower Ninth Ward, mainly in the form of urban farms, but they do not appear to be enterprises looking to scale up much further. While the City may not know what the solutions are, they are looking for ones that are bold and financially sustainable. The City should also seek solutions that mitigate risk and do not amplify vulnerability for residents of those areas.

While the three different approaches would suggest that solutions for vacant lots should be tailored on a neighborhood-by-neighborhood basis, each project could be scalable to provide a solution for similar areas of the cities beyond the pilot neighborhood. While what works in Pontchartrain Park may not apply to Central City, it may be a valuable tactic for some other lakeside subdivision areas of New Orleans. And while a lot-by-lot incremental approach may go a long way in Central City but fall short of having any impact in the Lower Ninth Ward, the Jericho Road report might provide helpful tools for areas of the city with long-term vacancy and concerns over dumping and abandonment but at higher elevations ripe for housing redevelopment, such as the immediate blocks lakeside of St. Claude Avenue in the Seventh Ward, St. Roch and St. Claude neighborhoods. It is important to note the differences between neighborhood types, but equally as important to note the similarities between them, particularly when devising a policy framework to address vacancy. The differences among neighborhood types also suggest where and how the city should focus housing redevelopment. This will be explored further in the concluding chapter.
II. FRAMEWORKS FOR VACANT LAND DECISION-MAKING

New Orleans could benefit from a clear mapping of neighborhood types on which to base decisions about redevelopment and alternative land uses on the city’s vacant land. Other cities with significant vacancy and abandonment make clear distinctions in their policies towards their vacant land based on neighborhood conditions. This section will explore three slightly different models – Baltimore, Detroit, and Cleveland – and lessons for New Orleans from each. While New Orleans differs in its context as a post-disaster city and in its risk of future major floods, it is still possible to glean policy lessons from other cities with vast amounts of vacant land.

Baltimore: Market Driven Approach

Baltimore’s Vacants to Value program makes it clear and explicit that those areas of the city with emerging market potential are prioritized for redevelopment strategies. Launched in 2010 by Mayor Stephanie Rawlings Blake, Vacants to Value seeks to drive growth and reinvestment in targeted Baltimore neighborhoods, focusing on six strategies that target different neighborhood market conditions:

1) streamline the disposition of city-owned properties,
2) streamline code enforcement in stronger markets,
3) facilitate investment in emerging markets near areas of strength,
4) target homebuying incentives,
5) support large-scale redevelopment in distressed areas,
6) demolish and maintain severely distressed blocks and identify non-housing uses.

Baltimore defines an area’s market strength based on the city’s Market Value Analysis (MVA) conducted by The Reinvestment Fund in 2010. Using this analysis, which factors the city’s housing prices, foreclosure rates, vacancy rates, and owner occupancy rates, among other statistics, Baltimore has made a clear policy decision to focus its redevelopment strategies on those “middle market” and “middle market stressed” areas where such efforts can build off existing assets to strengthen transitional neighborhoods. This is a departure from redevelopment that primarily targets a city’s most distressed neighborhoods. Where the city’s “distressed” areas enter the Vacants to Value approach is in strategies five and six: large-scale redevelopment and “non-housing” uses. While the City prioritizes redevelopment in transitional neighborhoods, 65% of the city’s 16,000 vacant or abandoned buildings are located in areas without development demand. The majority of these parcels fall under the sixth strategy of non-housing alternative uses, for which the city has a diversity of programs to promote productive and other community uses and for which they are looking to integrate

vacancy strategies with other policy imperatives, including streetscape improvements and stormwater management.

Baltimore’s strategy, like in many other cities where such an approach may be less clearly defined, is explicitly market-driven. In general, those lots where alternative “non-housing” uses are explored are those with no development demand or potential for larger site assembly.

LESSONS FOR NEW ORLEANS
While a purely market-based approach to defining neighborhood conditions on which to base vacant land strategies may fall short of recognizing the nuances in vacant land conditions and physical patterns of risk in New Orleans, a lesson to learn from Baltimore is one of policy clarity and consistency. Baltimore is upfront about the city’s vacancy. While it may be possible to critique the City’s decision to focus redevelopment in transitional neighborhoods, as opposed to the most distressed neighborhoods, the City derives this policy from data on neighborhood market values and is consistent in following that policy throughout various agencies and programs. There is no mystery to Baltimore’s current approach to redevelopment.

Additionally, Baltimore’s experimentation with alternative land use programs for vacant lots is worth learning from. Clear, publicly-accessible data, a streamlined process, and a strong public promotion of their programs are central to the approach. Baltimore’s recently revamped adopt-a-lot program maps all available city-owned lots for residents and community groups to choose from on the adopt-a-lot Power in Dirt website. The streamlined application process includes an online form and a flat $200 rate for water connection. The city has teamed with the Baltimore Green Space land trust to make easier the process of transferring long-term community-managed open spaces to permanent green space. And the City has explored the use of a Request for Proposal (RFP) to attract for-profit and non-profit urban farmers to specific large-scale lots the City would like to convert to agriculture. Additionally, as with many other older cities with combined sewer systems, Baltimore is beginning to look at incorporating vacant lots into a green stormwater infrastructure design. Baltimore provides a range of programs to accommodate many possible short- and long-term reuses of vacant lots, and they do so in a way that makes it easy for residents and community groups to participate.

DETROIT: Neighborhood Typologies based on Physical Condition and Amount of Vacancy

Another approach, slightly different from a purely market-based analysis, is one that defines neighborhood typologies, and their respective vacant land redevelopment and reuse strategies, by the percentage of vacant parcels. The December 2012 Detroit Future City strategic framework plan, the product of the two-year Detroit Works planning program
initiated by Mayor Dave Bing, which involved 30,000 conversations with residents, ambitiously envisions a future, less dense Detroit with new categories of productive land uses. While early public reaction to the Detroit Works planning process was one of outrage at the possible forced shrinkage of the physical footprint of the city, the final language of the plan, a more cautious proposal, incentivized relocation to achieve concentrated density in certain areas, while leaving others for alternative productive land uses.

The *Detroit Future City* strategic framework plan, as its lead creators have noted, has no financing or plans for implementation. It is a long-term 50-year vision for the city’s future. And while relatively conservative in its population estimates (dropping from current figures of 717,000 to an eventual stabilization as low as 600,000), it’s ambitious and bold in its vision for the future fabric of the city. Baltimore’s Vacants to Values program, on the other hand, is a much shorter-term action plan with specific steps for city agencies to take in following the policy direction it outlines. Its goals are quantifiable and achievable. However, it is still possible to compare how the two cities address the question of where to focus redevelopment strategies and densification policies, where to focus on alternative land use strategies, and ultimately where to glean lessons for New Orleans from each approach.

The *Detroit Future City* plan emphasizes the potential for “landscapes as infrastructure”, articulating both “blue” water-based infrastructures, like retention ponds and stormwater catchment lakes, and “green” forest infrastructures that improve air quality and provide buffers from industrial uses. The future open space network envisioned by the plan includes “Innovation Productive” and “Innovative Ecological” areas. The 50-year land use vision for Detroit maps these new land-use types as well as new categories for “Green Mixed-Rise,” “Live + Make,” “Green Residential,” and “Green Buffers”.

In creating their Land Use framework zones, the planning team integrated three analyses: an evaluation of residential physical conditions, including vacant land, vacant housing, housing conditions, and household changes since 2000; a market value analysis like that of Baltimore created by the Reinvestment Fund in partnership with city, state, and federal agencies; and the city government’s short-term actions analysis for immediate intervention that integrates both physical conditions and market value characteristics. These combined analyses of current conditions resulted in the map of “Framework Zones” in Figure 5.5. The plan proposes that future land use decision be based on the “fundamental physical and market conditions of the city: low-vacancy, moderate-vacancy, high-vacancy, and Greater Downtown areas.”

FIGURE 5.4 *Detroit Future City* strategic framework plan Future Open Space Network

Image Courtesy of Detroit Works Project Long-Term Planning Steering Committee, *Detroit Future City*.

FIGURE 5.5 *Detroit Future City* strategic framework plan Framework Zones

Image Courtesy of Detroit Works Project Long-Term Planning Steering Committee, *Detroit Future City*.

FIGURE 5.6 *Detroit Future City* strategic framework plan 30-Year Land Use Scenario

Image Courtesy of Detroit Works Project Long-Term Planning Steering Committee, *Detroit Future City*.
low vacancy.

While the *Detroit Future City* strategic framework plan approaches vacant land reuse and redevelopment at the neighborhood scale rather than parcel scale (conveniently, none of their contextual maps depict vacant lots as scattered parcels), the plan argues for a future land use decision-making process driven by the physical condition of a neighborhood, as well as its market value.

LESSONS FOR NEW ORLEANS

The *Detroit Future City* plan is ambitious in its vision and scope. In response to the outrage of citizens, the shrinking of Detroit’s footprint is incentivized but not mandated under the plan’s guidelines. In New Orleans, the footprint debate may not re-appear in public discourse until there is another disaster. However, Detroit’s multivariable approach to characterizing neighborhood conditions is a lesson for New Orleans to follow when being deliberate in where to target their own vacant land reuse strategies. A strictly market-based analysis is insufficient in understanding the differences in neighborhood vacant land conditions in New Orleans or the patterns of environmental risk. A framework for policy making should include physical analyses in addition to market ones. In particular, both a market value analysis and a current count of vacant land are important measurements in New Orleans that may not align as consistently as one might expect in other post-industrial American cities where the narrative of that vacant land is more singular.

Additionally, Detroit is creative in its vision of new land uses in a de-densified metropolis. There are areas of Detroit where the market may never return and entirely vacant or mostly vacant blocks are the norm. Promoting alternative uses on a lot-by-lot basis insufficiently addresses the nature of that condition. Suggesting large areas simply be turned into parkland may not be a sustainable financial alternative for the City to maintain and may not be appropriate for the city’s needs. *Detroit Future City*’s new land uses of “Innovation Productive” and “Innovation Ecological” while not fully resolved in their possible programs, ownership, or long-term maintenance structures, point to Detroit’s desire to experiment with larger scale uses for vacant land that add value to the city. In New Orleans, particularly in areas like the Lowe Ninth Ward with high instances of vacancy and significant ecological concerns, a similar new category of land use might be appropriate.

CLEVELAND: Environmental Analysis as Decision-Making Framework

While market-related considerations dominate how cities prioritize lots for redevelopment, some cities integrate environmental analysis of the physical condition of a vacant lot or the area in which a vacant lot exists into their decision-making framework. Anne Spirn has
been advocating for this consideration of natural systems and physical conditions in West Philadelphia since the 1980s. Through mapping vacancy and natural systems, Spirn found a correlation between the location of the buried floodplain of Mill Creek and a higher rate of vacant lots and abandoned structures. In the *West Philadelphia Landscape Plan*, Spirn advocates for alternative reuses of vacant lots along the buried floodplain rather than rebuilding housing.

The city of Cleveland released in 2008 the plan *Re-Imagining a More Sustainable Cleveland: Citywide Strategies for the Reuse of Vacant Land*. Like Detroit, Cleveland's plan works from the premise that the city's population loss will not be reversed in the short-term and the reuse of vacant land is imperative for the city's healthy, less-dense future. The plan specifically focuses on those areas with a lack of strong market demand and an abundance of vacant land outside of the city's “Core Development Areas” identified by the Connecting *Cleveland 2020 Citywide Plan* as priorities for redevelopment strategies. The initial decision in Cleveland's vacant land framework is one based on market demand. However, the *Re-Imagining a More Sustainable Cleveland* plan gives various alternative land use possibilities the same close attention. The decision matrix in the *Re-Imagining a More Sustainable Cleveland* report provides factors for whether a site should follow a “preservation strategy” or a “holding strategy” and includes a menu of treatments for each option. Also included in the report is a series of maps that layer environmental conditions and natural systems in relation to the city's vacant land. Figure 5.7 shows one such map of riparian systems, including water bodies, culverted creeks, headwaters, “riparian buffers” and “riparian” areas, mapped with the city's vacant lots. The plan promotes using vacant land to “recreate the functions of healthy ecosystems” as well as to generate economic development through productive landscapes of agriculture and energy.

LESSONS FOR NEW ORLEANS

Re-Imagining a More Sustainable Cleveland is a detailed effort by the city of Cleveland to be proactive in where and how alternative land uses are promoted in the city. New Orleans could learn a lot from this report, its approach, and its concluding recommendations. Central to the plan is a careful and thorough mapping of natural systems and open space networks, with the assumption that the reuse of the city's vacant land should respond to these conditions and build on their positive functions. The report details numerous reuse strategies: simple stabilization interventions, the expansion of green space networks, bio-remediation, landscape buffers, constructed wetlands, solar fields, agriculture, stormwater management.

17 Cleveland (Ohio). City Planning Commission, Neighborhood Progress Inc, and Cleveland Urban Design Collaborative, *Re-imaging a More Sustainable Cleveland: Citywide Strategies for Reuse of Vacant Land*. (Cleveland, Ohio: Neighborhood Progress, Inc. : Cleveland City Planning Commission : Cleveland Land Lab at the Cleveland Urban Design Collaborative, Kent State University, 2008), 11
FIGURE 5.7 The Reimagining a More Sustainable Cleveland Plan includes maps of vacant land and various natural systems.
Image Courtesy of Cleveland (Ohio). City Planning Commission, Neighborhood Progress Inc, and Cleveland Urban Design Collaborative, Re-imagining a More Sustainable Cleveland.
Moreover, it details where each of these strategies should be explored given current physical and environmental conditions.

The report’s policy recommendations echo this lesson of determining where to focus both redevelopment and specific alternative reuses of vacant land. Specifically, New Orleans could apply verbatim these two recommendations from Cleveland’s report:

- Encourage the use of hydrological data and soil characteristics as guiding factors for determining future land uses and stormwater management strategies at the city-wide level and in neighborhood master plans.

- Develop new ways to classify and geo-code vacant land in the city’s GIS system to identify sites that have the strongest potential for real estate development, green space expansion, and the provision of specific ecosystem services, as well as sites that have environmental contaminants.

The open space and ecosystem needs of New Orleans differ from one neighborhood to the next, as does the risk of future flooding. Vacant land provides a possible tool for addressing those needs, but strategies for doing so cannot be applied universally throughout the city with successful results. The Cleveland report recognizes a similar need for a careful and sensitive data-based approach to promoting the reuse of its vacant land. New Orleans should learn for its proactive recommendations of where to focus certain alternative land use strategies.

A MARKET VALUE ANALYSIS FOR NEW ORLEANS

The Reinvestment Fund released in March of 2013 a Market Value Analysis (MVA) report for New Orleans, similar to that of Baltimore and a number of other cities, using data compiled by the Greater New Orleans Community Data Center. Components of the MVA include median residential sales prices, subsidized rental stock, foreclosure filings, owner-occupied housing units, dormant residential parcels, residential properties with a substandard structure, and unoccupied housing units. The question for New Orleans now is how to use the MVA to set policy priorities.

Such an analysis is an important first step in targeting vacant land reuse policies and programs. However, there should be another layer of analysis in addition to a market evaluation that takes into account the narrative(s) of vacant land in an area of the city, including amount change in vacant land from before Katrina to today; elevation and flood risk; natural systems and water management; existing open and undeveloped spaces; and location, size, spatial...
III. LOT-BY-LOT DECISION-MAKING

While Baltimore, Detroit, and Cleveland establish certain principles for distinguishing vacant land policies based on neighborhood conditions, it is also possible to distinguish strategies based on the conditions of a given lot itself – its size, location within a block, previous use and current interim use, maintenance, elevation, soil condition, and other physical characteristics.

In order to understand how cities make decisions about their vacant land, Ann Bowman and Michael Pagano conducted a survey in 1997 of 70 US cities on their amount of vacant land, their vacant-land related policies, and the causal factors related to their vacant land and detail their findings in their book *Terra Incognita: Vacant Land and Urban Strategies*. They argue that three imperatives drive the strategic thinking of city officials with regard to their vacant land: 1) fiscal imperatives that maximize revenues or minimize costs through property and sales taxes; 2) social imperatives that minimize disruption through natural barriers and protect adjacent property values; and 3) development imperatives that maintain or enhance economic vitality by reusing vacant land to its highest potential use. Each singular vacant lot in a city has some combination of social, development, and revenue value as perceived by city officials. Different vacant lots, given their location, size, and other characteristics, might rank high or low on each of these three value scales, and where a lot rank dictates how city officials, as well as neighborhoods, might act upon that lot. For example, a vacant lot on the corner of a lower income residential neighborhood with low revenue-generating potential and low economic development potential, but high social, value might be converted into a community garden or gathering space.

Cities have certain methods and tools for impacting and reusing vacant land and abandoned buildings, including code enforcement, acquisition and disposition, property maintenance and land banking, and redevelopment planning and financing. Whereas Bowman and Pagano attempt to explain why city officials might take certain actions towards their vacant land, Alan Mallach’s *Bringing Buildings Back: From Abandoned Properties to Community Assets* is a detailed guidebook for city officials on how to use each of the tools at their disposal in revitalizing abandoned properties. According to Mallach, “A comprehensive abandoned property strategy must not only be grounded in a thorough understanding of the complex legal issues involved but also take into account local economic constraints and market opportunities, address the difficult social issues associated with neighborhood change, and, in considering alternative uses, confront the multifaceted questions of site layout and physical

19 Bowman and Pagano, *Terra Incognita*, 38
FIGURE 5.8 NORA’s proposed decision tree for the disposition strategy of individual lots.

Image courtesy of the New Orleans Redevelopment Authority.
Bowman and Pagano explain decision-making at the lot scale from the perspective of three value measurements. At the individual lot scale, Mallach offers city officials a matrix for step-by-step decisions on what disposition option best addresses the site criteria of an individual lot and contextual location/neighborhood criteria. Mallach’s “Decision Tree for the Disposition of Individual Vacant Lots” begins first with the potential for the lot to be included as part of a larger site assembly with greater reuse potential and with the ability for the lot to be built upon under current standards given its size and configuration. Then various neighborhood criteria come into play: the lot’s adjacency to responsible owners, the appropriateness of additional density in the neighborhood, and the relative market demand in the area. This matrix leads the decision-maker to one of eight options for property disposition:

- land bank for future reuse or redevelopment
- initiate acquisition activities to create site assembly
- sell to CDC or developer for market-rate infill
- land bank for future reuse
- sell to CDC or other nonprofit entity for open space (mini-park or community garden)
- sell to adjacent property owner (side yard sale)
- explore other options

While Mallach’s decision tree gives city officials a clear and consistent way to prioritize certain vacant lots for certain disposition strategies, it lacks an opportunity for environmental criteria to be incorporated into the decision-making process and leaves no room for addressing the sometimes competing objectives that might exist over a single lot. Bowman and Pagano are less specific in their analysis of a city’s decisions over a vacant lot, but they do recognize that their three values might lead to multiple potential futures for a single lot.

LESSONS FOR NEW ORLEANS
NORA recently adapted for their own use Mallach’s “Decision Tree for the Disposition of Individual Vacant Lots” in order to be deliberate and consistent in their decision-making and to include environmental analysis and New Orleans-specific conditions and disposition programs as criteria. Figure 5.8 shows the modified decision matrix. This lot-specific decision framework should be coupled with a neighborhood framework for redevelopment and reuse strategies for vacant land.

21 Mallach, Bringing Buildings Back, 109
22 Under the direction of NORA’s Director of Planning and Strategy, I personally worked on adapting this decision tree to be consistent with NORA’s current and future policy directions. I also created the graphic for NORA’s adoption and use.
V. POLICY PROGRAMS

In addition to a framework for vacant land decision-making based on both neighborhood and lot conditions, it’s important that cities have in place different policy programs to promote the redevelopment and reuse of vacant land, and New Orleans has a number of these. While several cities have developed design “pattern books” proposing various vacant lot interventions, much like the vacant land report developed for Central City by Jericho Road and Tulane City Center, policy programs are often focused less on the specific use or design of the vacant lot and more on the category of user or general category of use it is looking to attract, such as various types of green infrastructure, large-scale productive uses, community activity, side yard expansion, or a basic state of lot stabilization. This section will discuss each of these categories, what programs New Orleans currently has in place for them, and recommendations for future expansion of these programs.

GREEN INFRASTRUCTURE

As mentioned when describing the Pontilly Pilot Project, New Orleans, like many other post-industrial cities, is looking to the potential for vacant lots to provide water catchment to better manage stormwater. The Greater New Orleans Water Management Strategy looks to rethink water management in the Greater New Orleans region on a much larger systems scale. The project, an 18-month planning endeavor headed by New Orleans-based design firm Waggonner & Ball Architects and funded through a disaster grant from the state Office of Community Development, seeks to address two main related issues: seasonal nuisance flash flooding and subsidence as a result of the over-drainage of stormwater and groundwater out of the system. The plan also seeks to transform the city’s water infrastructure into more open public landscapes, as part of a vision for celebrating “living with water.”

In collaboration with the Water Management Strategy, NORA has explored opportunities for incorporating stormwater mitigation into their management of vacant land. The Pontilly Project is one such example of these efforts. Other cities looking to use vacant lots as part of a bigger green stormwater infrastructure have done so to reduce combined sewer overflows and therefore reduce their EPA fines for polluting fresh water bodies. New Orleans has slightly different incentives, namely reducing localized flooding during heavy rains and slowing subsidence, and require a different cost-benefit analysis framing. Additionally, the use of vacant lots for stormwater capture is made more difficult due to the uncertainty over who is responsible for long-term ownership and maintenance of those lots. New Orleans is still exploring possible models for this. Green infrastructure is not a replacement for the extensive levee and pump system. However, it can work to reduce the stress on those larger systems with a result of less localized flooding for more common 1-year to 5-year storms.
SIDE YARD EXPANSION

NORA’s most successful program with regards to returning vacant land to productive reuse is their popular Lot Next Door program. Since the program was conceived in 2007, nearly 1,200 properties, out of approximately 5,000 available, have been purchased. In February of 2013, the City Council expanded the eligibility rules to allow for the purchase of any NORA-owned property sharing a common boundary with an applicant’s property and additionally to allow for renters and businesses to purchase an adjacent vacant residential lot. The program has been highly publicized and promoted and has much public support.

Part of the Lot Next Door’s success stems from its public promotion and clear definition of rules. While the program is slated to end in January of 2014, it provides a clear model for New Orleans to build upon with future programs for vacant lot reuse.

COMMUNITY USE AND LARGE-SCALE PRODUCTION

New Orleans lacks many programs for larger-scale public reuse or productive reuse of its vacant land. NORA has a relatively unknown community-use application, called an “Alternative Land Use Application,” for its vacant lots, and only a handful of successful projects have emerged from that little-known program. Additionally, while the “Lots of Progress” competition sparked interest in entrepreneurial projects on vacant lots, those same ideas have yet to materialized at a larger scale. New Orleans could learn from Baltimore’s multiple and streamlined programs for community uses, as I mentioned previously in this chapter.

STABILIZATION STRATEGIES

NORA treats all of the vacant lots it owns with the same basic maintenance strategy. The grass on those lots is cut 18 times per year at $25 a cut, or $450 per lot per year. Given this somewhat significant expense, NORA has explored other stabilization strategies, including slightly more intensive ones that may improve the surrounding neighborhood.

Various other cities take further measures to stabilize their vacant lots, including planting trees or putting up a short fence. Some New Orleans neighborhood development groups have their own policy with respect to stabilizing vacant lots in their communities. Jericho Road, for example, puts a short fence around all of the vacant properties it owns in Central City and is looking to strategically plant trees on their vacant lots. Given that New Orleans vacant lots look and act differently depending on their block and neighborhood context, it’s worth exploring whether stabilization strategies should be kept consistent across the city, or be tailored to these neighborhood types.

It is imperative that New Orleans be clear and deliberate in how the city makes decisions about its vacant land. Both a mapping of distinct neighborhood types with regards to vacant land conditions and a distinction among strategies based on a lot’s spatial and conditional characteristics is an important first step in building such a consistent and deliberate policy framework. While the recent Market Value Analysis that distinguishes neighborhoods based on their current and potential housing market is an important tool for identifying appropriate redevelopment and vacant lot reuse strategies, additional analysis of neighborhood vacant land conditions is important for decision-making as well. This careful analysis at both the lot and neighborhood scale may suggest how the city’s policies and programs for vacant lot reuse could better target the opportunities and concerns posed by vacant lots.

The concluding chapter takes a step back and looks at the bigger pictures of long-term public investment in redevelopment, rebuilding, and planning for future disasters through the lens of the city’s vacant land.
CONCLUSION
THE PRE-DISASTER SINKING CITY
Vacant land is a systemic challenge in New Orleans, affecting many disparate areas of the city. This thesis works from the assumption that identifying, cataloguing, and mapping the distinct qualities of that vacant land make it possible to appropriately target strategies for its reuse. An important overall lesson from this research is one echoed in both Spirn’s *Vacant Land* of 1991 and Bowman and Pagano’s 2004 *Terra Incognita*: “Know your vacant land.” The analysis of this thesis begins at the scale of the individual lot and builds to define patterns at the scale of the city. Findings confirm that vacant land in New Orleans has both a socioeconomic and a devastatingly clear natural logic. Given this context, planning for the reuse of the city’s vacant lots must include analysis of both market and physical conditions. This thesis has explored in depth the latter. Layering this physical analysis with an analysis of market conditions like the one conducted by the Reinvestment Fund would provide the city with a clear direction forward for targeting redevelopment strategies.

The previous chapter looks to other cities for lessons in defining neighborhood types and redevelopment strategies tailored to each according to the qualities and conditions of their vacant land. In many respects, New Orleans is comparable to more commonly defined shrinking cities of America’s Rust Belt, like Cleveland and Detroit. As geographer Pierce Lewis identified in his 1975 book *New Orleans: The Making of an Urban Landscape*, “In many important ways, New Orleans is not unique, and it does not serve the city well to perpetuate the myth that it is.”

Like these other cities, New Orleans faces challenges of scattered vacancy and abandonment as well as tough decisions about the city’s physical footprint amidst severely insufficient city funds and a history of inadequate political leadership.

Where New Orleans differs from most other shrinking American cities is in the risk inherent in its landscape. While this thesis primarily frames New Orleans as a post-disaster city, it could just as easily be contextualized as a pre-disaster city. The Army Corps of Engineers completed construction in 2012 on $14.5 billion and 133 miles worth of levees, floodwalls, gates, and pumps meant to fortify New Orleans against future major storms. But given climate change, the rapid erosion of the Southern Louisiana coast, and the continued subsidence in areas of the city, the future of the landscape remains uncertain. New Orleans is not just a shrinking city, but also a sinking city. Eventually, there will be another catastrophic event, and only time will tell how New Orleans will hold up in its wake. But it is clear which parts of the city are most vulnerable to that risk. The conversation about what to do with low-lying flood prone vacant lots is what sets the research of this thesis, and the context of New Orleans, apart from similar investigations in other shrinking cities.

1 Lewis, *New Orleans*, 11
I. THE FOOTPRINT DEBATE REVISITED

This thesis project began with the assumption that the “Great Footprint Debate” in New Orleans was over. It took as a given the seeming political reality that New Orleans would remain for the foreseeable near future a city of approximately 180 square miles of land, half of which is below sea level. Within this context, this thesis sought to identify a road map forward for the inevitable scattered vacant lots that would remain in a city of 370,000 whose peak population of 628,000 happened when central neighborhoods of the city were already experiencing declines due to new building and white flight into the lowlands at the city’s edge. While this political reality remains true, the findings of this thesis only reemphasize the failed opportunity New Orleans leaders had to make difficult but necessary decisions of where to focus rebuilding efforts and where to promote relocation.

New Orleans is a city where the moral imperatives of social justice and environmental justice collide. Many of the city’s residents have a strong allegiance and cultural ties not just to the city but also to the neighborhoods from which they hail. The city and the nation rightfully championed those residents who returned to their homes to rebuild. Theirs is a story of cultural resilience and of defending a right to the city in the face of extreme obstacles. A serious concern after Katrina was not just whether New Orleans would come back, but whose New Orleans would come back.3

In their 2005 book *The Resilient City: How Modern Cities Recover from Disaster*, released just prior to Katrina, Lawrence J. Vale and Thomas Campanella contend that narratives of resilience in the wake of an urban catastrophe are a political necessity but that those narratives are always contested. They explain, “The rhetoric of resilience is never free from politics, self-interest, or contention ... There is never a single, monolithic vox populi that uniformly affirms the adopted resilience narrative in the wake of disaster. Instead, key figures in the dominant culture claim (or are accorded) authorship, while marginalized groups or people are generally ignored in the narrative construction process.”4 In New Orleans, the “Green Dot” became a rally cry for communities who, up until that point, were largely ignored from the narrative of rebuilding. The right to return to any part of the city of New Orleans became an issue of social justice. And that particular narrative of resilience informed the political decision-making in the context of a mayoral election.

But there is another moral imperative of greater long-term concern in New Orleans around the issue of environmental justice. The “Green Dot,” using crude broad strokes, recognized

this imperative. The maps produced in this thesis, which represent a much finer resolution of analysis down to the scale of the individual vacant lot, reveal the relationships among vacancy, elevation, race, and income in New Orleans seven years after Katrina, and suggest a serious environmental injustice perpetuated in the city’s lowlands. Chapter Four Identifies three neighborhood types based on the characteristics of their vacant land: 1) areas with high levels of pre-Katrina vacant lots and low flood levels, 2) areas with low levels of pre-Katrina vacancy and high flood levels, and 3) areas with high levels of pre-Katrina vacant lots and high flood levels. Those areas in the third neighborhood type have the highest vacancy rates and are at some of the greatest risk in the case of a future major storm. Rebuilding intelligently and safely in these areas, where flood depths after Katrina were as high as 10-15 feet would require architectural interventions that do not make financial sense as a scalable solution. Rebuilding housing more or less as it existed before Katrina in these areas merely perpetuates the vulnerability of those who live there. While the Footprint Debate may have ended in a decision to champion rebuilding in all areas of the city, the reality of modern-day New Orleans is that those areas with no market and high flood risk remain highly vacant.

In the foreseeable future, without another catastrophic event, it may remain politically untenable to shrink the physical footprint of New Orleans. The city made a promise, however ill-advised in hindsight, to residents that it would support them wherever they chose to move back. Where there remains an opportunity to make intelligent, environmentally just decisions is in the strategic investment in redevelopment, the creative reuse of vacant lots, and the future planning for mitigating the negative effects of another, almost certainly inevitable, catastrophic event.

PLANNING FOR A FUTURE CATASTROPHE

In the wake of a disaster, there is both a window of opportunity to build back better and a proclivity towards rebuilding the city as it was. Both Anne Spiriin in her 1984 book *The Granite Garden: Urban Nature and Human Design* and Lawrence Vale and Thomas Campanella in *The Resilient City* recognize the importance of prior plans and investments. Vale and Campanella note that “Resilience benefits from the inertia of prior investment,” and further recognize that “the power of property rights to stabilize the form of cities – or stymie their evolution – cannot be overemphasized.”\(^5\) Large changes to the urban fabric are difficult to make in the wake of a disaster, even if much of the city has been destroyed. However, Anne Sprin recognized in a number of case studies investigated in The Granite Garden the incredible importance of having a plan already in place for rebuilding better after a disaster. In the absence of such a plan, past mistakes are only repeated; but with a plan in place, improvements are often made.

The research in this thesis points to a strong need for the City to plan carefully for the next

\(^5\) Vale and Campanella, *The Resilient City*, 343
disaster, particularly with respect to a thoughtful strategy for equitable relocation and a way for reconfiguring property rights and boundaries in areas of highest risk. While it may no longer be possible to significantly reconfigure the New Orleans of today, there needs to be a plan in place for how to rebuild the city better should there be another catastrophe.

II. A ROADMAP FORWARD

This thesis defines three types of neighborhoods based on the condition of their vacant land. There is an implicit fourth neighborhood type, which includes areas like Uptown, the Garden District, the French Quarter and the Marigny, unexplored here, that include few vacant lots. The previous chapter focuses on strategies for the interim un-built reuse of vacant land in each of the three neighborhood types and lessons from other cities on how to target strategies for vacant land based on the neighborhood context in which it exists. The recommendations here take a bigger step back in defining overall approaches to redevelopment and public investment on vacant lots in New Orleans.

The following graph looks to adapt Chapter 4’s definition of neighborhood types with a new consideration for current market conditions, and takes a rough stab at locating neighborhoods on the graph. This is merely meant as a demonstration and does not reflect calculated figures. The horizontal axis is a measure of current market conditions and the vertical axis a measure of flood depths during Katrina. The size of the dots themselves represent how vacant the
neighborhood was in 2004. Using a similar set of calculations as a guide, the city could make informed strategic decisions about where and how to invest its resources in the future.

Those areas of New Orleans where there is little or no market but that are on higher safer ground should be the primary targets for new housing development.

This recommendation revisits a 2007 study by New Orleans geographer Richard Campanella that looked to 2,000 open and underutilized parcels above sea level in New Orleans as opportunities for new residential development that could house between 9,000 and 20,000 people. Campanella, recognizing the population shift during 1940-2000 from higher ground to lowlands within the city and in the outlying suburbs, recommends policies that would re-densify above-sea-level-New Orleans.\(^6\)

The recommendation of this thesis is to specifically focus new housing in those lower market areas at higher elevations, characteristic of the first neighborhood type defined in Chapter 4. While Campanella focuses specifically on those areas of the city above sea level, it is worth including areas just below sea level where flood depths after Katrina were four feet or less. Raising new housing developments a mere few feet would be a relatively simple way to address the risk of those parcels slightly below sea level.

This recommendation seeks to address both issues of social and environmental justice. Neighborhoods of this first type, where there were significant rates of vacancy prior to Katrina but low to no flood depths, are on safer land and less vulnerable to future catastrophes. However, they are also areas of the city that have experienced a long history of disinvestment and abandonment, most akin to more traditional shrinking cities elsewhere in the country. What limited funding the city has for redevelopment in the future should be heavily targeted here.

Improvements to neighborhood infrastructure that lessen flood risk should be targeted in those areas of New Orleans where there is some market demand but where elevations are low.

Many of the subdivision neighborhoods close to Lake Pontchartrain, which exist at low, and sinking, elevations will be partially rebuilt by the private market. Given the City’s limited resources for subsidizing new housing development, it is not recommended that the City invest heavily in new construction here. However, there is an opportunity for the City to seek different funding streams that would upgrade the street and water infrastructure systems in these neighborhoods to both lessen the risk of flooding and subsidence for local residents,

\(^6\) Campanella, “Above-Sea-Level New Orleans”
but also to lessen the overall stress on the city’s pump systems in a way that would benefit other areas of the city as well. The Pontilly Project described in Chapter 5 is a pilot project that could provide a model for future green infrastructure upgrades in which vacant lots can be incorporated into the overall system design.

While it is unlikely that these retrofits would do much to significantly mitigate a future 500-year storm like Katrina, they could help mitigate less severe but more common issues of nuisance flooding during summer rains and the continued subsidence of the lakefront lowlands. The greater risk to property in the case of another disaster remains, but a risk to life is less severe here than in neighborhoods of the third type, where the ability to evacuate may not exist for many residents.

Areas of the city at lower elevations with the highest rates of vacancy, the lowest market demand, and the greatest risk of future flooding should be radically reconfigured and targeted for creative, mainly un-built reuses.

The market is not going to rebuild the Lower Ninth Ward or other neighborhoods of this third type. And those residents that remain are at the greatest risk in the case of future catastrophic floods. However, these areas of the city are also most ripe for creative design intervention and entrepreneurial innovations.

The Make-It-Right Foundation houses in the Lower Ninth Ward are an example of this opportunity for design that exists in areas of high risk and high vacancy. In his 2012 book Design After Decline: How America Rebuilds Shrinking Cities, Brent Ryan argues for projective design – or design that conveys a sense that the city is moving towards a positive future better than the present. Ryan explains, “While a certain projective quality is arguably important for all architecture, projective design is particularly important for places like shrinking cities where most of the existing environment is filled with negatives.” As a rare example of projective design at the architectural scale in a shrinking city, Ryan cites the Make It Right Foundation homes in the Lower Ninth Ward. However, Ryan critiques the homes as failing to “project an image of a cohesive, coherent urban community” and not attempting to “extend their projective quality to the Ninth Ward neighborhood itself.” The Make It Right houses fail in the scale of their intervention, providing a creative design solution at the architectural scale, but nothing at the urban design scale. Given the vast amount of low-lying vacant lots in the city of New Orleans, an architectural scale of intervention is insufficient and a poor potential use of future civic funds, particularly given the large architectural moves required to limit flood risks in areas that experienced extreme flooding after Katrina and housed populations less able to

8 Ryan, Design After Decline, 211
evacuate before the storm. The Make It Right Foundation houses are not a scalable solution.

There has been no lack of design school studios, competitions, and professional plans aimed at intervening in low-lying highly vacant neighborhoods of New Orleans. Many of these designs have been projective in nature and at the scale of urban or landscape design. However, as this thesis illustrates, vacant land in these areas are not clean slates. Varying property ownerships, different physical conditions of vacant lots, and scattered housing act as barriers to consolidating or connecting vacant land for new uses. Solutions need to account for the patchwork nature of the landscape, as well as the legal and financial barriers to implementation. These solutions should be flexible and incremental. They might be led by prestigious design firms like with the Make It Right houses, or, more likely, they might be the work of community groups or entrepreneurs. The City’s role should be to promote these creative solutions that aim to incrementally reconfigure blocks and to strategically acquire vacant lots for this purpose.

As with other shrinking cities, the context in which these vacant land solutions are proposed is one of a poorly funded, racialized city with bureaucratic obstacles and a history of poor leadership. The challenges of landscape risk, vacancy, social and environmental injustice, and racial inequality will never be fully addressed in New Orleans. However, it’s possible and necessary to work towards a better, more resilient city. Vacant lots provide a systemic challenge but also an incredible opportunity for re-envisioning and reconfiguring the urban environment in New Orleans. Given the varying conditions and qualities of that vacant land and the neighborhood contexts in which it exists, the City should tailor its strategies for the reuse of vacant lots accordingly so as to maximize both social justice and environmental justice imperatives and to mitigate the negative impacts of future disasters.
BIBLIOGRAPHY

Cameron, Mark, Interview. December 5, 2012.

GEOGRAHIC MAPPING DATA

American Community Survey 2006-2010.

City of New Orleans GIS Department

Google Earth Aerial Imagery.

Mike Kaplan, Colleen McHugh, Anna Muessig, Jared Press. Field work, June 2012.

New Orleans Redevelopment Authority. Inventory.

Pictometry Online. 2004 Aerial Imagery Database. Access courtesy of the City of New Orleans.

US Census, 1940-2010.