
MIT Open Access Articles

Distributed chance-constrained task 
allocation for autonomous multi-agent teams

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ponda, Sameera S., Luke B. Johnson and Jonathan P. How. In 2012 American Control 
Conference, Fairmont Queen Elizabeth, Montréal, Canada, June 27-June 29, 2012. American 
Automatic Control Council.

As Published: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06315626

Publisher: American Automatic Control Council

Persistent URL: http://hdl.handle.net/1721.1/81757

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81757
http://creativecommons.org/licenses/by-nc-sa/3.0/


Distributed Chance-Constrained Task Allocation
for Autonomous Multi-Agent Teams

Sameera S. Ponda, Luke B. Johnson and Jonathan P. How

Abstract— This research presents a distributed chance-
constrained task allocation framework that can be used to plan
for multi-agent networked teams operating in stochastic and
dynamic environments. The algorithm employs an approxima-
tion strategy to convert centralized problem formulations into
distributable sub-problems that can be solved by individual
agents. A key component of the distributed approximation
is a risk adjustment method that allocates individual agent
risks based on a global risk threshold. The results show
large improvements in distributed stochastic environments by
explicitly accounting for uncertainty propagation during the
task allocation process.

I. INTRODUCTION

The use of autonomous robotic agents for complex mis-
sions, such as unmanned aerial vehicles (UAVs) and ground
rovers, has motivated the development of autonomous task
allocation and planning methods. The goal of such algo-
rithms is to distribute the mission tasks amongst the agents
to ensure spatial and temporal coordination of the team.
The basic problem can be formulated as a combinatorial
optimization mixed-integer program, involving nonlinear and
time-varying system dynamics. For most problems of inter-
est, optimal solution methods are computationally intractable
and approximation techniques are regularly employed [1].
Centralized planning approaches usually require high band-
width, are resource intensive, and react slowly to changes
in dynamic environments, motivating the development of
distributed algorithms where agents coordinate with each
other locally [2]. One class of distributed planning algorithms
involves using auction algorithms augmented with consensus
protocols, which are particularly well suited to developing
real-time conflict-free solutions [2]–[5].

An important issue associated with planning for heteroge-
neous networked teams is that planning algorithms rely on
underlying system models and parameters, which are usually
approximations of the real systems involving many limiting
assumptions and complex dynamics. Discrepancies between
these planner models and the actual system dynamics cause
degradations in mission performance. Furthermore, the im-
pact of these discrepancies on the overall quality of the
plan is typically hard to quantify in advance due to non-
linear effects, coupling between tasks and agents, and inter-
dependencies between system constraints (e.g. longer-than-
expected service times impact the arrival times of subsequent
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tasks). However, if uncertainty models of planning parame-
ters are available they can be leveraged to create robust plans
that explicitly hedge against the inherent uncertainty.

Such stochastic planning methods have been employed
for several types of optimization problems, ranging from
robust portfolio optimization strategies [6] to UAV planning
[3], to robust scheduling for airline operations [7]. While
these varied approaches provide valuable insights, they also
highlight several key challenges associated with robust plan-
ning, including coupling probability distributions through
scoring and constraint functions, evaluating stochastic met-
rics, and maintaining computational tractability and solution
scalability. Furthermore, inherent assumptions adopted in
most of the robust planning literature (e.g. linearity, specific
homogeneous i.i.d. distributions), limit the applicability of
these approaches when planning for more general realistic
mission scenarios. This paper addresses these challenges by
developing distributed stochastic planning strategies that can
effectively embed uncertainty models of planning parameters
into the score functions, transition dynamics, and constraints,
producing real-time approximate solutions to the task allo-
cation problem for networked multi-agent teams.

II. PROBLEM STATEMENT

A. Problem Formulation

Given a list of Na agents and Nt tasks, the goal of the
task allocation algorithm is to find a conflict-free matching
of tasks to agents that maximizes the global reward1. The
objective function for the mission is given by a sum over
local objective functions for each agent, which are in turn
functions of the tasks assigned to that agent, the times at
which those tasks will be executed, and the set of planning
parameters. This task assignment problem can be written as
the following mixed-integer (possibly nonlinear) program:

max
x,τ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij (1)

s.t. G(x, τ ,θ) ≤ b

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where x, is a set of binary decision variables, xij , which
are used to indicate whether or not task j is assigned to
agent i; τ is the set of real-positive decision variables τij
indicating when agent i will execute its assigned task j;
θ is the set of planning parameters that affect the score

1An assignment is said to be conflict-free if each task is assigned to no
more than one agent.



calculation; cij is the reward agent i receives for task j
given the overall assignment and parameters; and G =
[g1 . . .gNc ]T , with b = [b1 . . . bNc ]T , is a set of Nc possibly
nonlinear constraints of the form gk(x, τ ,θ) ≤ bk that
capture transition dynamics, resource limitations, etc. This
generalized problem formulation can accommodate several
different design objectives and constraints commonly used
in multi-agent decision making problems (e.g. search and
surveillance missions where cij represents the value of
acquired information and the constraints gk capture fuel
limitations, or rescue operations where cij is time-critical
favoring earlier τij execution times).

An important observation is that, in Eq. (1), the scoring
and constraint functions are explicitly dependent upon the
decision variables x and τ , which makes this general mixed-
integer programming problem very difficult to solve (NP-
hard) due to the inherent system inter-dependencies [1]. To
make matters worse, in realistic mission scenarios the plan-
ning parameters are typically a combination of deterministic
and stochastic variables, and the above optimization must
account for the uncertainty in θ, increasing the dimension-
ality of the problem and further exacerbating computational
intractability [8].

B. Stochastic Planning Framework

Assume that a model of the uncertainty is available, where
θ ∈ Θ and is distributed according to the probability density
function (PDF), f(θ). The goal of the stochastic planner
is to use the information provided in f(θ) to create plans
that account for the variability of θ. There are several
metrics that can be used to account for uncertainty in the
planning formulation. Perhaps the most common approach
is to maximize the expected mission performance [9], where
the objective function from Eq. (1) becomes

max
x,τ

Eθ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij

 (2)

Note that optimizing Eq. (2) is not the same as planning
using the mean values of θ. In fact, planning using mean
parameter values often leads to poor planning performance,
since the problem formulation fails to capture the non-trivial
coupling of uncertainty in scores, dynamics and constraints.
This is especially problematic when scores are coupled, and
can lead to biased predictions that drastically misrepresent
the actual expected performance.

While optimizing Eq. (2) provides a plan that maximizes
the expected performance of the system, an actual single
run execution of this best expected plan is still subject to
the uncertainty in the environment, and may result in a
relatively poor plan (worse than expected) with some non-
zero probability. If the current mission tolerance to failure is
very low, a more robust planning objective is to maximize
the worst case scenario,

max
x,τ

min
θ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij

 (3)

Optimizing Eq. (3) ensures that the plan execution will result
in a score no worse than that predicted by the algorithm.
However, these classical robust formulations that mitigate the
worst case system performance [8,10] are usually too con-
servative, motivating the development of stochastic planning
methods that find the best solution within some predefined
risk threshold [11,12].

The fields of Robust Optimization and Stochastic Op-
timization [12] have addressed this issue of conservatism
through several different methods. One such approach in-
volves optimizing a risk-adjusted expected performance,
where a risk function R(cij) biases the original cost function
cij towards more conservative solutions to account for the
acceptable level of risk. Another approach is to bound
the domain of the uncertainty set θ to be within certain
ranges, θ ∈ [Θmin,Θmax] ⊂ Θ, or to take on a set of
discrete representative values θ ∈ [θ1, . . . ,θk] ⊂ Θ, thus
limiting the support of the uncertain parameters. Classical
robust convex optimization techniques can then be used to
solve the resulting approximate problem (examples of these
approaches include bounding uncertainty using ellipsoids for
specified confidence intervals [13], constructing representa-
tive uncertainty sets [14,15], etc.). Although these methods
allow control over the planner risk, there are a few issues
which makes their practical implementation difficult. Firstly,
it is not usually obvious how to design the risk function
R(cij) or the bounded sets for θ, and the selection of these
is typically problem specific, time consuming and ad-hoc. A
more serious issue, however, is that the metric of interest is
the cumulative risk of the total solution, not the individual
parameter or task risks, and it is difficult to quantify how
these individual parameter bounds will affect the global
risk. Nonlinearities in the cost functions, complex variable
coupling and interdependencies, and discrete optimization
effects, often affect the solution in unpredictable ways, and
it is therefore hard to ensure that the total mission outcome
is within the desired risk threshold.

An alternative formulation that guarantees that the global
mission performance will be within a certain risk threshold
is the chance-constrained formulation [11,16,17],

max
x,τ

y (4)

s.t. Pθ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij

 > y

 ≥ 1− ε

The goal of Eq. (4) is to maximize the worst-case score
within the allowable risk threshold specified by ε (can be
interpreted as guaranteeing that solution will be at least as
good as y with probability greater than or equal to 1 − ε).
When ε = 0, the score is guaranteed to be at least y
with probability one (absolute worst-case), and the chance-
constrained formulation reduces to the robust formulation
of Eq. (3). The main drawback of the chance-constrained
formulation is that it is difficult to solve, especially given
the extensive coupling between agents and tasks (double
sum over distributions). Previous work has mainly considered



linear or quadratic optimization with continuous variables
[11,16,17], where, under special circumstances, optimal so-
lutions and bounds can be found analytically. However, task
allocation is a mixed-integer program, and these techniques
cannot be easily extended to discrete optimization, especially
given nonlinear and heterogeneous score functions with cou-
pled distributions. Furthermore, these solution strategies are
centralized and cannot be trivially extended to distributed en-
vironments. This work addresses these issues by developing
an efficient approximation algorithm that provides distributed
numerical solutions to the chance-constrained task allocation
problem.

III. CHANCE-CONSTRAINED TASK ALLOCATION

The chance-constrained task allocation problem can be
written as,

max
x,τ

y (5)

s.t. Pθ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij

 > y

 ≥ 1− ε

Na∑
i=1

xij ≤ 1, ∀j; x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

For simplicity, the only hard constraint assumed in this
problem formulation is that no task can be assigned to
more than one agent2. It is of interest to consider how the
parameter uncertainty impacts these task execution times
and how coupling between task arrival times affects the
performance of the mission. Consider a multi-agent multi-
task UAV mission, where agents must perform time-critical
target search and track tasks, but where task service times
and agent travel velocities are uncertain. The score functions
are specified by

cij(τij) =

{
Rje

−λj∆τij , (tjstart + t̄jduration
) ≤ τij ≤ tjend

0, otherwise.

where the task time-window [tjstart , tjend
] represents the

period of time in which the task must be completed, τij
is the time at which agent i finishes executing task j, and
∆τij = τij − (tjstart + t̄jduration

) represents the time in
excess of the expected task completion time. The exponential
decay represents the time-critical nature of the task, where
the discount factor λj is used to reduce the nominal reward
Rj . The arrival time at task j is a function of the agent’s
assignment, its other task arrival times, and the uncertain
task durations, τij(x, τ ,θ).

There are several issues that make this problem particu-
larly hard to solve. Firstly, the tasks are temporally coupled
(stochastic task durations and travel velocities for early
tasks affect arrival times and thus scores for later tasks).
Given a set of tasks, finding a PDF involves computing the
distribution of a sum of non-independent heterogeneous task

2Not addressed in this paper is uncertainty in constraints which is
typically much harder to deal with. This involves ensuring that constraints
are satisfied within a given probability, e.g. Pθ (G(x, τ ,θ) ≤ b) > α.

scores. This expression is analytically intractable, and even
for simple i.i.d. distributions involves computing the convo-
lution over all tasks in the bundle (only tractable for special
cases: Gaussian distributions, exponential-Erlang, etc.). In
general, numerical methods can be employed to approximate
the combined distribution via particle simulation. The second
issue involves developing algorithms to select the best task
sets. Even in a deterministic setting, this problem is NP-
hard and involves enumerating possible bundle combinations.
Furthermore, the problem formulation involves selecting the
optimal task times, as well as dealing with the uncertain
parameters. Since optimal solutions are intractable, good
approximate solutions can be developed that incrementally
build the task sets (such as sequential greedy). The main
challenge in this work is to ensure that the goal of optimizing
the percentile score given the total risk for the fleet is
appropriately represented in the sequential process. Finally,
when planning for multi-agent teams, distributed planning
strategies can offer advantages. The challenge with this
problem involves developing expressions that relate each
agent’s local risk to the global risk within a theoretically
sound framework. Given these individual risk allotments,
agents can perform distributed planning to optimize their
own plans. Expressions for choosing each agent’s risk are
analytically intractable and problem specific, so the challenge
lies in developing good approximations to relating the global
and local risk thresholds.

IV. DISTRIBUTED APPROXIMATION TO THE
CHANCE-CONSTRAINED TASK ALLOCATION PROBLEM

This section presents a distributed approximation to the
above problem formulation, and discusses algorithmic strate-
gies to solve this distributed problem..

A. Individual Agent Problem Statement

The problem presented in Eq. (5) can be decomposed into
distributable sub-problems by the approximation,

max
x,τ

Na∑
i=1

yi (6)

s.t. Pθ

 Nt∑
j=1

cij(x, τ ,θ) xij

 > yi

 ≥ 1− εi, ∀i

Na∑
i=1

xij ≤ 1, ∀j; x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where each agent i solves its own chance-constrained op-
timization to maximize yi subject to its individual risk
threshold εi, while ensuring, through communication with
other agents, that the joint constraint for a non-conflicting
solution remains satisfied. Note that εi is not the same as the
original mission risk ε (more details about this in the next
section).

This work employs the Consensus-Based Bundle Algo-
rithm (CBBA) to solve Eq. (6) (see [2,3,5] for further
details). Given a well synchronized distributed system, this



algorithm can be quite fast, and converges in polynomial
time with respect to tasks and agents. The greedy pro-
cess by which each agent builds its task bundle in CBBA
needs to ensure that for every bid, the task scores satisfy
the probabilistic constraints specified by Eq. (6). The first
challenge is to represent the actual score distribution of a
task that is being added to the bundle. This is done by
sampling all of the random variables that could possibly
affect the value added from this task (in this case the
random variables are the task durations and agent velocities).
Using these samples the marginal benefit of introducing this
task into the bundle is computed. Even though the process
involves placing the task in the ideal spot in continuous
time, given the decaying cost functions, there are only a
discrete number of continuous times that could maximize this
sample’s score for the task. This entire process is repeated N
times, where N is a sampling value large enough to create a
representative probability distribution of the scores obtained
from adding this task. Given this distribution, the bid for the
particular task becomes the Nεthi lowest score particle (worst
score within allowable risk). If the distribution is sufficiently
represented then this choice guarantees that the score of the
bid will be truly at least this large with probability 1 − εi.
The algorithm cycles through all possible tasks and picks
the one with the highest score to add to the bundle. This
process repeats until the agent cannot add any additional
tasks, then he is ready to communicate with others. Note that
this process of adding tasks to the bundle satisfies the true
εi for the agent each time a task is added, so the algorithm
remains consistent with the equations presented in Eq. (6).

Although this decomposition makes the problem easier
to solve in a distributed fashion, it also introduces the
additional complexity of picking the parameters εi such that
the goal of maximizing the chance-constrained score of the
mission distribution, y =

∑Na

i=1 yi, given the mission risk ε,
is adequately represented. For generic task allocations, the
relationship between the mission ε and each of the agents’
εi’s is non-trivial, however, given certain probability models,
the complexity of picking these values can be reduced (note
that doing this efficiently is still an open research question).
This work addresses these issues by employing an approxi-
mation strategy that attempts to model the individual agents’
risks as a function of the global mission risk. This risk
adjustment method invokes the Central Limit Theorem and
uses Gaussian approximations of the distributions to develop
an expression for agent risk as a function of mission risk. The
next section provides details on how this is accomplished.

B. Risk Adjustment for Distributed Approximation

Given a mission risk value ε, the constraint in the original
problem (Eq. (5)) becomes tight for y values which satisfy
the probability constraint with equality. Using the cumulative
distribution function (CDF) notation for any random variable
X , PX(X ≤ x) = FX(x), the tight constraint from Eq. (5)

can be written as,

Pθ

(
Na∑
i=1

yi > y

)
= 1− ε ⇒ F∑

yi(y) = ε

where yi =
∑Nt

j=1 cij(x, τ ,θ) xij . Similarly, when the indi-
vidual agent sub-problem constraints are tight, the constraint
equations become,

Pθ

 Nt∑
j=1

cij xij > yi

 = 1− εi ⇒ Fyi(yi) = εi ∀i

If the CDFs are assumed invertible (e.g. continuous differen-
tiable distributions), then combining the above expressions
establishes a relationship between ε = F∑

yi(y) and εi
expressed as

ε = F∑
yi

(
Na∑
i=1

yi

)
= F∑

yi

(
Na∑
i=1

F−1
yi (εi)

)
(7)

What Eq. (7) implies is that, if individual sub-problems are
solved that predict scores yi given risk values εi, and if these
predicted scores are added to obtain a global score y, this will
equate to a mission risk value ε, as specified by Eq. (7), given
CDF expressions for the individual and global distributions3.
This provides a metric to evaluate how closely the distributed
approximation accomplishes the original centralized problem
objective.

The risk adjustment method employed in this work uses
the expression provided by Eq. (7), along with a Gaussian
assumption for the distributions, to develop an expression
for the agent risk values εi in terms of the global mission
risk ε. Note that, for general problems, Eq. (7) will give
infinite possible combinations of εi given a specific value
of ε, as long as the equation is satisfied. To avoid this
issue, it is assumed that all agents are given identical risk
values εi (note that this does not imply that the agents
have identical distributions). If the agent distributions are
Gaussian, yi ∼ N

(
µi, σ

2
i

)
, then the mission distribution

will also be Gaussian with mean and variance given by,
y ∼ N

(∑Na

i=1 µi,
∑Na

i=1 σ
2
i

)
. As a reminder, the CDF and

inverse CDF expressions for a Gaussian distribution are given
by,

Fx(x) =
1

2

(
1 + erf

(
x− µ√

2σ2

))
F−1
x (x) = µ+

√
2σ2 erf−1(2x− 1)

Using these equations in combination with Eq. (7), and as-
suming identical agent risk values, the following expression
is obtained,

εi =
1

2

(
1 + erf

(
C erf−1(2ε− 1)

))
(8)

3Note that these CDF expressions are often intractable given that the PDF
of the mission distribution involves a convolution of individual agent distri-
butions, and likewise the individual agent distributions involve combinations
and couplings of task distributions.



C =

√∑Na

i=1 σ
2
i∑Na

i=1

√
σ2
i

(9)

This expression has several interesting properties. Firstly, the
agent risk values for the Gaussian case do not depend on
the means of the agent distributions or mission distribution,
they only depend on the variances. Also, if the agents are
homogeneous (identical distributions), then C = 1/

√
Na,

and if the entire mission distribution comes from only 1
agent’s contribution, then C = 1 and εi = ε as expected. This
implies that team heterogeneity can be represented via the
factor C, which is dependent on Na. Eq. (9) provides the risk
adjustment method used by the distributed algorithm given
the number of agents and a measure of team heterogeneity.

V. RESULTS AND DISCUSSION

The distributed chance-constrained task allocation algo-
rithm was implemented in simulation and tested on a UAV
mission as described in the previous section. The uncertainty
models for all random variables were represented by log-
normal distributions. There were two types of tasks: high-
reward high-uncertainty tasks, and lower reward tasks with
low variance. The UAV team was also composed of two types
of agents: fast but unpredictable agents (high mean and high
variance), and slower speed but more predictable (low mean
and low variance).

A Monte Carlo simulation was performed and the results
are presented in Figure 1. The left set of plots, Figures
1(a) and 1(d), show the results for a single agent mission
with 10 tasks. The top plot shows a comparison between
the deterministic planner, the robust planner (ε = 0) and the
chance-constrained planner for different levels of risk (with a
sequential greedy centralized planner shown for comparison
as the black dotted line). As a reminder, 5% allowable risk
means that with 95% probability the planner will get at least
the predicted score. Since the chance-constrained planner
is aware that this is the metric to optimize, it can achieve
higher guaranteed scores than the other two methods for any
level of risk. The robust planner also achieves higher scores
than the deterministic planner for low risk values, and is
equal to the chance-constrained planner at 0% risk, but as
the amount of allowable risk increases the robust solution is
too conservative and the benefit over deterministic planning
starts to diminish. The chance-constrained planner, however,
considers this additional risk margin and chooses less con-
servative (but higher performing) plans. The main intuition
as to why the chance-constrained planner outperforms the
deterministic approach is that the deterministic planner does
not account for the variances in the task service times and
travel velocities, and thus tries to squeeze tasks into the
current path based on expected values of these parameters.
The stochastic planner on the other hand accounts for this
variance and will not add tasks to the path if they impact high
value tasks (with significant probability). The overall result is
that chance-constrained task allocation reduces the variance
in performance. Figure 1(d), which shows a histogram of
the planner distributions, illustrates this effect. The particular

histograms are for a simulation run with a 5% risk threshold.
As shown in the figure, the robust and chance-constrained
distributions are much narrower than the deterministic one,
which is more spread out (larger tail on the distribution).
The 5% risk scores (shown as dotted lines) indicate that the
chance-constrained score is higher than the other two. An
interesting thing to note in Figure 1(d) is that the distributions
are mixed continuous and discrete4, which is one of the many
reasons that traditional robust optimization methods are not
amenable to these types of problems.

The second set of plots, Figures 1(b) and 1(e), show the
results for a 6 agent mission with 60 tasks, which look very
similar to the single agent case. Once again, the chance-
constrained planner outperforms the other two approaches
and the robust planner performs higher than deterministic at
low risk values. The main things to note in this multi-agent
scenario are that the distributed chance-constrained planner
achieves equivalent performance to the centralized sequential
greedy approach, thus validating the distributed approxima-
tion to the centralized chance-constrained problem; and that
the distributions for the multi-agent mission scores are nearly
Gaussian, justifying the use of the Gaussian approximation in
the risk adjustment method. In fact, as the number of agents
and tasks increases to infinity, the mission distributions tend
to Gaussian as predicted by the Central Limit Theorem.
The risk adjustment method used in this scenario assumed
a heterogeneous team with two types of agents (the team
heterogeneity factor was set to C =

√
2/Na in Equation

(9)).
The last set of plots, Figures 1(c) and 1(f), show the benefit

of adjusting the risk for individual agents given a global
mission risk. Figure 1(f) shows the achieved mission risk due
to the distributed approximation (as described in Equation
(7)) for the algorithm with and without using the risk
adjustment method. The dotted line on the plot represents
a perfect match between desired and actual mission risk.
As shown in the figure, without risk adjustment the team
performs conservatively, achieving a much lower mission
risk than allowed and thus sacrificing performance. With the
risk adjustment method, the team is able to more accurately
predict the mission risk, achieving higher performing plans
within the allowable threshold. This is illustrated in Figure
1(c), which shows that the distributed algorithm with risk
adjustment consistently achieves higher performance and is
on par with the centralized sequential greedy algorithm.

VI. CONCLUSION

This paper presents a distributed chance-constrained task
allocation framework that can be used to plan for multi-agent
networked teams operating in stochastic and dynamic envi-
ronments. The algorithm employs an approximation strategy
that decomposes the centralized problem into distributable
sub-problems which can be solved by individual agents.
A risk adjustment method is presented that enhances the

4The reason for this is that task execution times outside the task time-
windows of validity result in zero score, which produces discontinuities and
discrete jumps in the score distributions.
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(c) Zoom of (b): risk optimized scores for 6 agent
mission, illustrating benefit of risk adjustment
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Fig. 1. Monte Carlo simulation results for multi-agent multi-task stochastic missions illustrating the benefits of distributed chance-constrained planning
over deterministic and robust planning strategies.

distributed approximation by allocating individual agent risks
based on a global risk threshold. The results show that by
explicitly accounting for uncertainty propagation during the
task allocation process large improvements can be made
for distributed multi-agent teams operating in stochastic
environments.
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