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Multi-UAV Network Control through Dynamic Task Allocation: Ensuring
Data-Rate and Bit-Error-Rate Support

Andrew Kopeikin, Sameera S. Ponda, Luke B. Johnson, and Jonathan P. How

Abstract— A multi-UAV system relies on communications to
operate. Failure to communicate remotely sensed mission data
to the base may render the system ineffective, and the inability
to exchange command and control messages can lead to system
failures. This paper describes a unique method to control
communications through distributed task allocation to engage
under-utilized UAVs to serve as communication relays and to
ensure that the network supports mission tasks. The distributed
algorithm uses task assignment information, including task
location and proposed execution time, to predict the network
topology and plan support using relays. By explicitly coupling
task assignment and relay creation processes the team is
able to optimize the use of agents to address the needs of
dynamic complex missions. The framework is designed to con-
sider realistic network communication dynamics including path
loss, stochastic fading, and information routing. The planning
strategy is shown to ensure that agents support both data-
rate and interconnectivity bit-error-rate requirements during
task execution. System performance is characterized through
experiments both in simulation and in outdoor flight testing
with a team of three UAVs.

I. INTRODUCTION

As unmanned systems technology progresses, teams of
multiple unmanned air vehicles (UAV) will play an increas-
ingly important role in a broader range of applications. These
“real-world” scenarios involve executing complex missions
where the number, status, and types of tasks, as well as
the environment vary dynamically. As such, the multi-UAV
system must continuously assess its capabilities and prop-
erly allocate resources to overcome changes and maximize
performance. The objective of dynamic task allocation is to
ensure that tasks are performed effectively by the right UAV,
at the right place, at the right time.

A significant challenge in this process involves maintain-
ing proper communications to execute the mission. For multi-
UAV teams to cooperatively execute a set of objectives,
the communication network must exchange command and
control messages, and when necessary, remotely sensed data.
The inability to communicate sensed data, such as live video,
to the designated processing centers may render the multi-
UAV system ineffective for its mission [1]. Less intuitively,
failure to properly exchange command and control messages
can lead to dangerous system failures or unintended conse-
quences. This is particularly true in decentralized systems,
where these messages enable vehicle control and team deci-
sion making. Inadequate team control can lead to formation

A. Kopeikin, S.M student from the Aerospace Controls Lab, MIT
S. Ponda, Ph.D. candidate in the Aerospace Controls Lab, MIT
L. Johnson, Ph.D. candidate in the Aerospace Controls Lab, MIT
J. How, R.C. Maclaurin Professor of Aeronautics & Astronautics, MIT
{kopeikin,sponda,lbj16,jhow}@mit.edu

instability where one or multiple agents increasingly diverge
from the desired behavior, and risk colliding [2]. Poor deci-
sion making may prevent the team from reaching consensus
on a plan and remain idle without accomplishing anything,
or worse, take action on an undesirable plan leading to
unwanted consequences [3].

Because UAVs are highly mobile vehicles, information is
most commonly exchanged across the network using wireless
communication. Signals containing encoded messages travel
between transmitting and receiving radio modules over wire-
less channels. The quality of the channel is fundamentally
based on the strength of the signal at the receiver compared
to noise and interference in the environment, or Signal to
Noise Ratio (SNR) [4]. The quality of the link drives the
probability that information transmitted will successfully be
received, and affects the rate at which information can be
exchanged over that channel.

The network itself can be controlled through its topology,
which describes the set of interconnections between nodes,
and how strong those connections are. Since wireless chan-
nels generally degrade with increasing distance and obstacles
in the line of sight, a relevant control method in multi-
vehicle systems involves properly positioning agents to sup-
port the network. Common ways to do this include planning
the motion of agents using gradient ascent [5], potential
fields [6], reactive control [7], and adaptive strategies [8]
to steer vehicles to stay within communication range of
each other. Another method is to deploy agents designated
as mobile communication relays to support a network of
sensor nodes, using both graph theoretic [9] and network
optimization schemes [10].

This paper is unique in that the network is controlled
through task allocation. The team cooperates to (1) ensure
tasks undertaken are supported by the network, and (2) dy-
namically assign under-utilized agents to serve as communi-
cation relays. By explicitly coupling the task assignment and
relay planning processes, the team is able to better optimize
the use of agent resources to address current mission needs.
This leads to improved performance and added flexibility
in real-time dynamic mission scenarios. The framework is
formulated to consider realistic networking dynamics such
as path loss, fading, and information routing.

The paper proceeds as follows: the communication models
and task assignment formulation employed in the paper are
provided in Sect. II. Section III outlines the CBBA with
Relays algorithm designed to control the network considering
realistic communication constraints. In Sect. IV experiments
are conducted in both simulation and outdoor flight testing



to characterize the performance of the framework. Finally,
Sect. V describes ongoing and future work.

II. PROBLEM STATEMENT

A. Network Model
The objective in this paper is to enable a multi-UAV team

to cooperatively execute a mission and to ensure that its
wireless network supports the transmission of sensor data and
command and control (C2) messages. This section describes
the communication model employed in this process.

A fundamental factor in network wireless channel per-
formance is the Signal to Noise Ratio (SNR). In general,
channels degrade with increasing inter-node distance due to
path loss. Signal shadowing occurs due to obstacles in the
environment such as buildings, mountains, or even the plat-
form vehicle itself. Finally, multipath replicas of the signal
reflecting and scattering off these obstacles constructively or
destructively interfere with each other at the receiver [11].
A practical way to model SNR in uncertain environments is
to vary SNR (γ) according to a lognormal distribution with
variance σ2 which depends on the density of obstacles in the
environment to capture both shadowing and multipath fading
effects [4]. The SNR is conveniently expressed in decibels
by Eq. (1):
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where P is the transmission power, N0

2 is the power spectral
density of the environment noise, W is the bandwidth of the
signal, KdB is a gain based on equipment characteristics, d is
the Euclidean distance between the transmitter and receiver,
and α is the path loss exponent which equals 2 in free space,
and up to 6 in environments congested with obstacles [4,12].

A multi-UAV system network typically needs to support
two types of data. First, sensor data may need to be trans-
mitted to designated analysis centers [1]. Communication
requirements depend on the data type, but live-video, for
instance, requires minimal delay, high data-rates, and has
some fault tolerance [13]. As such, the Shannon Capacity
u = W log2(1 + γ) is used as a representative performance
indicator to determine whether a channel satisfies data-rate
requirements. The second data type consists of C2 mes-
sages including state information (telemetry), observations
of the world (e.g. estimated target location), and control
data (e.g. waypoints or task allocation). These messages
have low bandwidth requirements, but must be exchanged
with minimal delay and error for effective team coordination.
This study therefore employs the bit-error-rate (BER) as a
metric for C2 messaging success. BER is the probability an
information bit will be dropped, and is defined generally as
BER = Q(

√
2γ) [4]. To evaluate network performance, the

locations of UAVs are used to determine the expected SNR
of wireless channels between agents and predict the available
data-rate and BER for information transfer between them.

Information must be routed along links with sufficient
capacities, and arrive at its destination with acceptable error-
rates (BER), as dictated by data requirements. Information

routing protocols in ad-hoc wireless networks consistent with
a distributed multi-UAV architecture often use shortest path
routing mechanisms, such as AODV [14]. A node which
needs to transmit broadcasts a “request to send” message
which identifies the destination node. Neighbors receive
the message, compute a cost metric (see Sect. III), and
rebroadcast the message. The process continues, where cost
is computed at every hop, until the destination is reached.
Each node stores its lowest cost originator. Once a designated
amount of time has elapsed, the destination node sends a
unicast response to its lowest cost originator, which similarly
relays the response to backtrack the lowest cost route [14].
These protocols are implemented in practice because of their
rapid response to changes in wireless channel performance
and topology. A significant drawback to them, however,
is that information from different nodes is routed mostly
independently of other nodes, and tends to use the same high
performance routes leading to congestion and unfairness in
node usage [15].

B. Task Allocation

The complex missions envisioned to be executed by
autonomous teams of robotic agents will require different
agents to have different roles and responsibilities during
execution, much like modern day sports teams. The task
allocation problem involves planning the resource allocation
for a team of Na unmanned systems, to accomplish a set
of Nt tasks. In this work, it is formulated as the following
optimization problem:

argmax
x,τ

Na∑
i=1

 Nt∑
j=1

cij(pi(xi, τ i))xij

 (2)

s. t.
Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

where xij = 1 if agent i is assigned to task j, and xi is
its vector of assignments. Vector pi represents the path for
agent i, a sequence of tasks listed in the order to be executed
at times in τ i. The length of pi is limited by Li, the planning
horizon. The objective in Eq. (2) is to maximize the sum of
the reward for each agent. The score cij that agent i obtains
by performing task j is a function of the value of the task,
the cost of execution (e.g. fuel consumed), and the execution
time τij compared to the optimal task execution time [16].

Because of all inter-dependencies in number of possible
assignments, Eq. (2) is very difficult to solve if planning
for more than 1 task for each agent. A popular method
to solve the task assignment problem involves using auc-
tion algorithms which are efficient but sub-optimal [17].
The Consensus-Based Bundle Algorithm (CBBA) is one
such auction protocol that provides provably good solutions
for heterogeneous decentralized agent multi-task assignment



functions. Each CBBA iteration is composed of two phases.
First, in the bundle building phase each agent greedily bids
on an ordered bundle of tasks based on its capabilities and
its location with respect to the task. Second, in the consensus
phase, agent bid information is shared, and conflicts in task
assignment are identified and resolved. The algorithm iterates
until it converges on a conflict free plan [17]. The CBBA
algorithm runs in polynomial time, and has demonstrated
good scalability with increasing numbers of agents and tasks.
It has been demonstrated in numerous applications with
teams of heterogeneous unmanned systems [18].

III. TASK ALLOCATION FOR NETWORK CONTROL

A complicating factor not considered in the CBBA al-
gorithm is that the multi-UAV system needs to meet com-
munication requirements described in Sect. II to operate
effectively. Task assignments not supported by the network
should be avoided since they provide no reward but waste
energy in execution and can degrade the ability to cooperate
as a team. To prevent this, communication constraints can be
explicitly considered in the planning process. Task allocation
information, such as task locations and planned execution
times, can be leveraged by the agents to predict the network
topology at execution and identify communication constraint
violations. The CBBA with Relays algorithm described in
the previous installment of this work [19], was therefore
developed as an outer-loop to the CBBA algorithm to pre-
vent network disconnects. When potential disconnects are
identified in a CBBA task allocation, relay tasks are created
to repair the network. The CBBA algorithm then iterates,
with the relay tasks. If agents can accommodate relay tasks
into their plan they place appropriate bids. Following each
iteration of the algorithm, unassigned relays are deleted. The
tasks dependent on the deleted relays are then placed in
the bidding agent’s forbidden task list to ensure that the
CBBA with Relays algorithm eventually converges on a task
assignment solution. Interested readers are referred to [16]
for more information.

In this paper, the algorithm is further developed to handle
realistic networking dynamics including data-rate, bit-error-
rate, and information routing. The models listed in Sect. II
are used with agent positions to compute the network topol-
ogy of inter-agent channel data-rate capacities and BER.

A. Supporting Data-Rate

In order to transmit live sensor data back to the base, the
multi-UAV network must ensure information routes have suf-
ficient end-to-end channel capacity at the time of execution.
A model representative of shortest path routing protocols
(similar to AODV discussed in Sect. II) is implemented.
The cost metric to determine the shortest transmission route
is set to CAij

= 1
uij

between each node i and j, as a
generalized version of the airtime metric popular in ad-hoc
networking applications [20]. This identifies routes with high
data-rates, but also minimizes the number of hops to reach
the destination, which is a desirable behavior for live video
transfers [4].

The protocol is used in planning to predict how informa-
tion will be routed from each active agent to the base. Route
discovery is performed in simulation using the well known
Dijkstra’s shortest path algorithm [21]. Then, the data flow
from each task at rate ftask is summed over each generated
path to determine the channel capacity requirement between
each node. Predicted data-rate violations are identified when
ureqij > uij . This is then used by the planner to decide:
(1) which tasks are allowed to be executed given the present
configuration, and (2) how best to create relays to support
disconnected tasks.

Since the mission objective is to maximize team reward,
a selection process is required to find the combination of
proposed tasks which provides the highest reward without
violating data-rate requirements. To avoid an exhaustive
search over the set of all tasks and to reduce the number of
network recomputations when discarding tasks, the algorithm
leverages the Minimum Spanning Tree (MST) network graph
structure of the routing paths. The tree is rooted at the base
and each node sends its data to a single other node. The
algorithm greedily prunes lowest value leaves (or end node
tasks) that are up-link of edges with data-rate violations until
all remaining tasks are supported by the network.

Once the set of disconnected tasks is identified, the plan-
ning framework sequentially reconnects them in a greedy
value optimization scheme. In each step, the next most
valuable reconnection is determined as the sum of the
reconnected task values divided by the number of relays
required. The algorithm uses the known required link ca-
pacity ureqij to satisfy flow requirements on the lowest cost
route to solve for the maximum inter-node distance dmax

to meet the requirement. The number of required relays and
equally spaced positions is computed (Nr = d dij

dmax
e). Once

relays are created, information routing, which may now have
changed for other nodes, is recomputed to identify possible
new link violations. This process repeats until all tasks in the
configuration are connected or designated infeasible. Tasks
are infeasible if they require more relays than the number
of available agents, and are placed in the bidding agent’s
forbidden task list to ensure convergence of the algorithm.

B. Supporting Error-Rate Requirements

In addition to satisfying data-rate requirements, the multi-
UAV network must also ensure that agents meet BER re-
quirements to adequately exchange C2 messages. Routing
for these messages is assumed to be independent of routing
sensor data back to the base. As data travels over mul-
tiple hops to its destination, each hop has a probability
of error. Over n hops, the probability of error is pe =
1− ((1− pe1)(1− pe2)...(1− pen)) [13]. Since error prob-
abilities are multiplicative over multiple hops, the additive
cost metric of each hop is set to Cber = − ln(1−BERij) [8].
Dijkstra’s Algorithm is used again to generate the minimum
cost routes between all agents. BER violations occur if any
pair of agents i and j have BERij > BERthresh which is the
threshold maximum allowable error rate for the system to be
effective.



Once BER violations are identified, the framework greed-
ily prunes disconnected tasks. First, all tasks which violate
BER with the base are set as disconnected. Next, the al-
gorithm considers the data-rate routing Minimum Spanning
Tree, and prunes its low value end-nodes with BER violations
in an effort to avoid changes in satisfactory data-routing.
Finally, if violations are still present, the algorithm greedily
selects low value nodes to remove. Disconnected tasks are
then greedily repaired by sequentially adding relays along the
computed shortest BER path between the two neighboring
nodes with weakest link until the threshold is met. This
process is run in series with the one described in the previous
subsection to ensure data-rate and BER requirements are met
for all agents executing tasks at the time of execution. Relay
tasks are then inserted into the CBBA with Relays algorithm
to allow under-utilized agents to support the network.

This process does not ensure, however, that other agents
not busy executing tasks at the time of network prediction
are connected. In order to drive these other agents, which
are either idle or traveling to their next task, to an in-
terconnected state, a decentralized reactive motion control
policy is proposed. Its objectives are to minimize additional
fuel costs incurred from extra travel, but also ensure that
agents can satisfy their proposed plans. Each agent i uses its
current knowledge of other agent locations and communica-
tion environment parameters to locally estimate the network
topology and BER values with other agents. It determines
if it is at risk of violating BER with any other agent m
if BERim > BERplan, where BERplan is a tunable planning
threshold less than BERthresh. It then plans to reconnect
with the agent most at risk of being disconnected with,
above this threshold, through the estimated minimum BER
route. It computes its minimum distance dminij to the next
agent j in the route needed for BERim = BERplan and starts
traveling to meet that requirement. If that distance dminij

is
less than a safety threshold for collision avoidance, it skips
on toward the next agent k in the BER route. As agents
move about the environment, dminij

is dynamically updated
to steer i. Because agents plan for discrete task execution
times instead of for continuous time, it is not possible to
guarantee that all agents will be interconnected at all times
using this framework. However, results in Sect. IV show
good performance of this strategy both in simulation and
outdoor flight tests.

IV. EXPERIMENTS & RESULTS

A. Simulation

A simulation experiment was conducted to evaluate the
proposed framework planning for different communication
requirements. The mission scenario consisted of gathering
information in the environment using small UAVs. Tasks
were created at uniformly distributed random locations and
times. The task value was scaled linearly as a function of
its distance from the base (value = 0 at base vs. 100 at
furthest location). This relates well to real-world remote
sensing objectives which often consist of surveying out-
of-reach areas. Tasks further away offer more reward, but

require agents to cooperate to execute them successfully.
The expected SNR at a distance of Rcomm = 30% the
environment size was used to establish required task data-
rate and the single hop BER threshold. Reward was only
generated when data-rate requirements to the base were
supported at each time step. In other words, if a specific task
was only supported 50% of the time during its execution, it
received 50% of its reward.

Three planning strategies were evaluated in the mission.
First, the team planned to meet over-simplified connectivity
requirements only, where the network is supported so long
as all agents are within Rcomm of one another without
regard for more complex networking dynamics (as was done
in the original version of this work). Next, planning was
performed to meet data-rate requirements, while considering
information routing. Finally, planning was conducted to si-
multaneously meet data-rate and BER requirements through
relay placement and using the reactive motion control policy.
To compare the planning effectiveness in supporting the
network, these experiments assumed a deterministic com-
munication environment with no fading (σdB = 0). The
experiment varied the team size from 2 to 10 UAVs, and
30 scenario trials were executed per data point.

Figure 1 shows the performance results of the experi-
ments. All strategies performed similarly for small counts of
agents. However as the team size grows, teams considering
connectivity only, and not the more complex networking
dynamics, quickly overload the network with their plans. As
can be seen in Fig. 1 (b), agents planning for connectivity
only without stricter requirements attempt more and higher
value tasks. However Fig. 1 (c) shows these plans are too
ambitious and often lead to data-rates not supported by the
network (as low as 38.6% average supportability for teams of
10 UAVs) which results in significant mission performance
degradations compared to other strategies considering data-
rate.

Although data-rates are better supported when the plan-
ning algorithm specifically takes it into account, Fig. 1 (c)
reveals a limitation of this control framework. Since network
prediction is performed at discrete task execution times, as
opposed to continuous time, the network is vulnerable to
changes in routing caused by agents not active during this
prediction (such as agents traveling to tasks). While network
supportability and plans are still good, with 98.4% average
network support in the worst case, perfect performance
guarantees are not possible with this framework and real-
world protocols.

Finally, while not plotted here, the experiment showed the
performance of the system maintaining inter-agent connec-
tivity. Teams not considering inter-agent BER requirements
spend significant amounts of time disconnected from one
another during the mission. On the other hand, if BER
is considered as a requirement in addition to connectivity
or data-rate alone, and inactive or traveling agents plan
their motion properly, the team can maintain good inter-
connectivity performance (98.2% in the worst case for small
teams, and 99.95% with larger teams).



(a) Mission scores (b) Number and value of tasks (c) Data-rate support success rate

Fig. 1. Simulation experiment results

Fig. 2. CBBA with Relays flight test architecture

B. Outdoor Flight Testing

In order to demonstrate the algorithm in a more op-
erationally realistic environment a field experiment was
designed to show the capability of CBBA with Relays
in outdoor flight testing. There are several challenges and
ultimately benefits to implementing a distributed multi-
agent system in an outdoor uncontrolled environment: (1)
it demonstrates real-time functionality of the system, (2) the
system is subjected to non-linear dynamics not considered in
simulation due to imperfect modeling and environmental ef-
fects, and (3) it evaluates the robustness of the framework to
system degradations, uncertainties, and imperfects which can
significantly hinder the system from behaving as intended.

A similar scenario as used in the simulation experiments
was employed in this experiment with a team of three
Ascending Technologies Quadrotor UAVs. Three missions
were executed to evaluate the different planning strategies
described above: considering (1) connectivity only, (2) data-
rate requirements, and (3) joint data-rate and BER require-
ments. Flight testing was conducted at a military base to
take advantage of restricted airspace. Interested readers are
referred to the previous installment of this work for a
relevant description of the hardware implementation, which
is summarized in Fig. 2. The communication network in this
flight test is simulated using the model presented in Sect. II.

Results in Fig. 3 compare the planning strategies for
the three flights. All three strategies are also compared to
their respective performance predicted in simulation. Results

first show that the two strategies planning to meet data-
rate requirements outperform the original CBBA with Relays
algorithm considering connectivity only which results in fre-
quent link capacity overloads and missed reward. In addition,
the green line in Fig. 3(c) indicates that the framework suc-
cessfully maintains interconnectivity between nodes through
relay placement and using motion control, as opposed to the
two other strategies.

Interestingly though, results in Fig. 3(b) reveal three in-
stances of overloaded capacity using the two strategies which
specifically plan for this requirement (each step up in the
graph represents a separate event) which were not predicted
in simulation. In all three instances, an agent traveled slower
than predicted due to head wind and arrived at its task late.
In each case the task was still in its window of validity
and agents started late anyways. Shortly after, other agents
start other tasks which had not considered the late task still
being active during network prediction in planning. This
led to the three unpredicted overloads which were directly
responsible for reducing the mission score in data-rate and
joint BER/data-rate planning strategies compared to their
simulated runs. Different solutions are proposed to fix this
issue, but need further evaluation: (1) the planner could
use more conservative velocities in planning, (2) network
predictions could include time window buffers to account for
possible task delays, and (3) agents could be forced to stop
executing or not execute a task and stay put in the event of
a late arrival. Overall though, the results show the algorithm
generally works well and as intended, and improves the
performance of the multi-UAV team subject to more realistic
communication requirements.

V. CONCLUSION

The framework in this paper enables teams of multiple
UAVs to cooperatively execute complex scenarios using
dynamic mission planning to support communication re-
quirements. The distributed algorithm uses task assignment
information, including task location and proposed execution
time, to predict the network topology and plan support
using relays. By explicitly coupling task assignment and
relay creation processes the team is able to optimize the
use of agents to address the needs of dynamic complex
missions. This also ensures the resulting network topology



(a) Comparison of mission scores (b) Comparison of data-rate violations (c) Comparison of BER violations

Fig. 3. Outdoor flight network control performance comparison using three different planning strategies

and information routing support data-rate and bit-error-rates
required for the system to be effective.

On-going work is underway to enable the team to dynam-
ically estimate unknown or changing communication envi-
ronment parameters, such as the path loss exponent α, the
fading variance σ2, and the ambient noise density N0 using
network measurements. These values can then be dynami-
cally updated in Eq. (1) with a tunable level of conservatism
to formulate plans which account for uncertainty in network
performance due to shadowing and fading. Furthermore,
on-going work is investigating theoretical optimal routing
protocols based on centralized linear programing to study the
performance of the planning strategy without the limitations
specific to individual real world routing mechanisms.

Future work will include incorporating robust planning
strategies being investigated in [22] to plan for the uncer-
tainty in vehicle dynamics which led to network violations
in flight testing. In addition, a next step needed in this work
is to validate the performance of the system in flight test with
actual networking modules instead of a simulated network.
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