
MIT Open Access Articles

Optimal motion planning with the half-car dynamical
model for autonomous high-speed driving

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jeon, Jeong hwan et al. "Optimal motion planning with the half-car dynamical model
for autonomous high-speed driving." IEEE American Control Conference (ACC), 2013.

As Published: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=6579835&queryText%3DOptimal+Motion+Planning+with+the+Half-Car
+Dynamical+Model+for+Autonomous+High-Speed

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/81837

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81837
http://creativecommons.org/licenses/by-nc-sa/3.0/

Optimal Motion Planning with the Half-Car Dynamical Model
for Autonomous High-Speed Driving

Jeong hwan Jeon∗, Raghvendra V. Cowlagi∗†, Steven C. Peters∗∗, Sertac Karaman∗,
Emilio Frazzoli∗, Panagiotis Tsiotras††, and Karl Iagnemma∗∗

Abstract— We investigate the application of the RRT∗ optimal
motion planning algorithm to autonomous high-speed driving.
Specifically, we discuss the implementation of RRT∗ for the half-
car dynamical model. To enable fast solutions of the associated
local steering problem, we observe that the motion of a special
point (viz., the front center of oscillation) can be modeled as
a double integrator augmented with fictitious inputs. We first
map the constraints on tire friction forces to constraints on
these augmented inputs, which provides instantaneous, state-
dependent bounds on the curvature of geometric paths feasibly
traversable by the front center of oscillation. Next, we map
the vehicle’s actual inputs to the augmented inputs. The local
steering problem for the half-car dynamical model can then be
transformed to a simpler steering problem for the front center
of oscillation, which we solve efficiently by first constructing a
curvature-bounded geometric path and then imposing a suitable
speed profile on this geometric path. Finally, we demonstrate
the efficacy of the proposed motion planner via numerical
simulation results.

I. INTRODUCTION

Motion planning for autonomous mobile vehicles [1]
has traditionally focused on relatively simple unicycle-type
kinematic models, owing both to the sufficiency of the
resultant plans for low-speed vehicle motion in structured
environments, and to the computational efficiency afforded
by low-dimensional models, which enables real-time imple-
mentations. Typically, the resultant trajectories do not exploit
advantageously the vehicle’s maneuvering capabilities, and
motion planning based on such simple vehicle models may
thus be unsuitable for enabling autonomous high-speed driv-
ing in complex, dynamic, and unstructured environments.

However, motion planning for higher-dimensional, higher-
fidelity vehicle dynamical models is, in general, difficult.
Whereas computationally efficient motion planning in high-
dimensional configuration- and state spaces, is enabled by
randomized sampling-based algorithms [2], [3], these al-
gorithms ignore the quality of the resultant motion, and
often result in highly sub-optimal motion plans. Recent
developments in optimal randomized sampling-based plan-
ning [4], and in deterministic approaches that include vehicle
dynamical constraints [5] promise fast computation of near-
optimal paths with high-fidelity vehicle dynamical models.

∗Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA 02139. Email: jhjeon,
rcowlagi, sertac, frazzoli@mit.edu.
∗∗Department of Mechanical Engineering, Massachusetts Institute of

Technology, Cambridge, MA 02139. Email: scpeters, kdi@mit.edu.
††School of Aerospace Engineering, Georgia Institute of Technology,

Atlanta, GA 30332. Email: tsiotras@gatech.edu.
†Corresponding author.

Both of the aforementioned approaches, however, rely
strongly on a local steering algorithm that computes an
optimal (or near-optimal) control input to steer the vehicle
from a specified initial state to a specified final state, neither
of which is necessarily an equilibrium state. Whereas the
solution of this problem is difficult for nonlinear dynamical
systems in general, we may exploit, in some specific cases,
the structure of the dynamical system to solve the local
steering problem.

In particular, the property of differential flatness [6] may
be advantageously used. The states and inputs of differen-
tially flat dynamical systems can be fully recovered from the
so-called flat outputs of the system (and their derivatives).
Also, differentially flat systems can be linearized via feed-
back based on the flat outputs and their derivatives (called
endogenous feedback [6]). In the context of motion planning
for mobile robotic vehicles, differential flatness of the vehicle
dynamical model is particularly useful when the flat outputs
are workspace1 position coordinates of some point (possibly
fictitious) associated with the vehicle. In such cases, the
vehicle dynamical behavior may be inferred from trajecto-
ries in the workspace. Conversely, the problem of motion
planning subject to vehicle dynamical constraints may be
transformed to a workspace trajectory generation problem,
which is beneficial because of the low dimensionality of the
workspace and because of the ease of collision checking with
(workspace) obstacles.

In this paper, we consider the design of a computation-
ally efficient technique for optimal, planar motion planning
subject to the dynamical constraints imposed by the half-
car model: in particular, we are interested in finding time-
optimal trajectories for the vehicle. The half-car model [7] is
a model of wheeled vehicles that captures yaw dynamics and
includes acceleration constraints in the form of constraints
on the ground-tire friction forces. We investigate the imple-
mentation of the RRT∗ algorithm [4] for this motion planning
problem. This implementation entails a computationally effi-
cient solution of the so-called local steering problem, which
involves finding admissible control inputs that transfer the
vehicle state between two pre-specified boundary conditions.
To this end, we investigate the motion of a special point
associated with the vehicle, that is called its Huygens center
of oscillation (CO), and we transform the local steering
problem for the vehicle to a problem of workspace trajectory
generation for the CO.

1The workspace is the planar region in which the mobile vehicle operates.

The Huygens centers of oscillation at the front and rear
of the vehicle are associated with differential flatness of
models of front-steered vehicles that incorporate wheel slip2.
A crucial physical property of a CO is that its acceleration
is independent of one of the lateral tire friction forces. For
example, the acceleration of the front CO is independent of
the rear lateral tire force [9]. The coordinates in a body-fixed
frame of the velocity of the rear CO have been identified as
flat outputs of a half-car model that incorporates wheel slip
but does not consider load transfer [10]. More pertinent to
the context of motion planning, the coordinates in an inertial
frame of the position of the front CO have been identified
as “pseudo-flat” outputs for the half-car model [11]. The
mapping from these outputs (and their derivatives) to the
states and inputs of the vehicle involve not only algebraic
equations, but also differential equations (of a significantly
lower order than the vehicle’s equations of motion). Further-
more, the position coordinates of front and/or rear CO have
been considered as reference inputs for trajectory tracking
controllers in [12] (rear CO), in [13] (both front and rear CO
with four-wheel steering), and in [14] (front CO).

The problem of motion planning for the half-car model has
not been well-addressed in the literature. Numerical optimal
control techniques have been applied in [15] for reproducing
autonomously a standard rally-driving aggressive maneu-
ver (namely, the trail-braking maneuver), and in [16] for
generating a minimum-time double lane-change maneuver.
The generation of a minimum-time speed profile for a half-
car traversing a given geometric path has been addressed
in [17]. Preliminary results on the implementation of the
RRT∗ algorithm for the half-car model have appeared in [18],
where the local steering algorithm was implemented using
(computationally intensive) numerical optimal control.

The main contributions of this work are as follows. Firstly,
we drop the simplifications to the half-car model adopted
in [10], [11]: specifically, we allow normal load transfer
between the front and rear tires – a technique used commonly
by rally racing drivers to control the yaw dynamics [15]
– and we consider as inputs the longitudinal slips of the
front and rear tires instead of the longitudinal tire forces (as
considered in [10], [11]). Manipulating the longitudinal tire
slips (with thrust/brakes) is more realistic than manipulating
longitudinal forces because these forces depend on the total
tire slips, not the longitudinal slips alone. Secondly, we map
analytically the constraints on tire friction forces to equiv-
alent constraints on the flat output trajectory: friction force
constraints are ignored in similar earlier works [10], [11].
Thirdly, we provide a computationally efficient local steering
algorithm for the half-car dynamical model, which may be
applied independently in conjunction with motion planners
different from that considered in this paper (RRT∗). Finally,
we study an implementation of RRT∗ with the preceding local
steering algorithm, which is an important and fundamental
component in the development of an autonomous high-speed

2The position of the rear wheel is a flat output of a front-steered half-car
with no wheel slip [6], [8].

driving system that utilizes the full envelope of the vehicle’s
maneuvering capabilities.

The rest of this paper is organized as follows. In Section II,
we describe the half-car dynamics model and discuss its
differential flatness properties. In Section III, we summarize
the RRT∗ motion planner, and in Section IV, we discuss an
efficient local steering algorithm for the half-car model that
is invoked repeatedly by RRT∗. In Section V, we provide
simulation results of the said implementation of RRT∗. Fi-
nally, we conclude the paper in Section VI with remarks
about future extensions of this work.

II. THE HALF-CAR MODEL

The half-car dynamical model is used in applications
where the vehicle’s position, heading, and sideslip are of
primary interest (cf. [7], [10], [11], [15] and references
therein). We consider a half-car model, as shown in Fig. 1,
with mass m, and yaw moment of inertia Iz . We denote
by pcg the position vector of the center of gravity (CG)
with respect to a pre-specified inertial axis system; by ψ the
heading of the vehicle, and by vx and vy the components
in a body-fixed axis system (with positive x-axis along the
vehicle’s heading) of the velocity v of the CG. We denote
by `f and `r, respectively, the distances of the centers of the
front and rear wheel from the center of gravity; by h the
height of the CG; and by Fαβ , α ∈ {f, r}, β ∈ {x, y}, the
components in axes attached to the tires (with the x-axis in
the plane of the tire) of frictional forces of the front and rear
tires. The equations of motion for the half-car model are:

mv̇x = (Ffx cos δ − Ffy sin δ + Frx) +mvyψ̇, (1)

mv̇y = (Ffx sin δ + Ffy cos δ + Fry)−mvxψ̇, (2)

Izψ̈ = `f (Ffx sin δ + Ffy cos δ)− `rFry, (3)

where δ is the steering angle of the front wheel, which we
consider a control input. In what follows, we denote by ξ
the state of the vehicle, i.e., ξ = (pcg,x, pcg,y, ψ, vx, vy, ψ̇).
For simplicity, we do not consider suspension dynamics and
wheel dynamics in this paper, and we assume that only the
front wheel is steerable.

Next, the lateral slips sαy , α ∈ {f, r}, of the front and rear
tires are given by

sfy =
(vy + `f ψ̇) cos δ − vx sin δ
vx cos δ + (vy + `f ψ̇) sin δ

, sry =
vy − `rψ̇

vx
, (4)

We consider as control inputs the longitudinal slips sαx, α ∈
{f, r}, of the front and rear tires. The total tire slips sα,
α ∈ {f, r}, are given by sα =

√
s2αx + s2αy . The tire friction

forces Fαβ , α ∈ {f, r}, β ∈ {x, y}, may then be computed
from the tire slips sαβ as follows:

Fαβ = µαβFαz, α ∈ {f, r}, β ∈ {x, y}, (5)

where Fαz are the normal loads on the front and rear tires,
given by (cf. [15]):

Ffz =
mg (`r − µrxh)

`f + `r + h (µfx cos δ − µfy sin δ − µrx)
, (6)

Frz = mg − Ffz, (7)

x

y

pcg pco

Frx
Fry

Ffx

Ffy`f

`r

`co

v

vy

vx

ψ
βcg

δ
CO

Fig. 1. The bicycle dynamical model: position vectors are in blue, velocity
vectors are in green, and forces are in red color.

and µαβ are friction coefficients given by Pacejka’s magic
formula [19]:

µαβ := −(sαβ/sα)µα (8)
with µα = Dα sin

(
Cα tan

−1 (Bαsα)
)
, (9)

for α ∈ {f, r}, β ∈ {x, y}, where Bα, Cα, and Dα are
constants. Note that (6)-(7) capture the load transfer effect,
i.e., the normal tire loads depend upon the front and rear
longitudinal tire slips, which relate to thrust/brake inputs.

A. Differential Flatness of the Half-Car Model

Following the work of Peters et al [11], we consider as a
candidate flat output the position pco of the front CO, which
is a point at a distance `co := Iz/m`r from the CG along the
vehicle’s heading [9], i.e.,

pco =

[
pco,x
pco,y

]
:= pcg +R(ψ)

[
`co
0

]
, (10)

where R(ψ) is the rotation matrix

R(ψ) :=

[
cosψ − sinψ
sinψ cosψ

]
.

It may be shown (cf. [11]) that

p̈co = R(ψ)

[
v̇x − vyψ̇ − `coψ̇2

v̇y + vxψ̇ + `coψ̈

]
. (11)

We designate as an augmented input u := p̈co the inertial
acceleration p̈co of the CO, and we denote by (ut, un) the
body-axis coordinates of the augmented input. To map the
augmented input to the vehicle control inputs (sfx, srx, δ),
note that, by (1)-(3) and (11),[
ut
un

]
=

1

m

[
(Ffx cos δ − Ffy sin δ + Frx)− `coψ̇2

(Ffx sin δ + Ffy cos δ + Fry) + `coψ̈

]
=

1

m

[
(Ffx cos δ − Ffy sin δ + Frx)−m`coψ̇2(

`f+`r
`r

)
(Ffx sin δ + Ffy cos δ)

]
.

(12)

Firstly, observe that (12) is an under-determined system of
equations (i.e., two equations in three unknowns), which

implies that the three vehicle control inputs (sfx, srx, δ)
cannot be determined uniquely from the trajectory t 7→
pco(t) of CO. (Note that the forces Fαβ , α ∈ {f, r}, β ∈
{x, y} depend on sfx, srx via (4)-(9).) However, if one of
the three inputs is treated as an “exogenous” input that
may be manipulated independently of pco(t), then we may
subsequently determine the other two inputs.

Secondly, observe that, whereas ψ and ψ̇ appear in (12),
the computation of ψ and ψ̇ involves the solution of the
second-order differential equation (3). Consequently, the
mapping from the coordinates of pco and their derivatives
to the control inputs of the vehicle is a system of coupled
algebraic-differential equations. The position pco of the
CO may thus be considered a “pseudo-flat” output.

Finally, observe that (12) is a complicated system of
nonlinear equations. In what follows, we outline an analytic
solution, if one exists, of (12), without recourse to numerical
means of solution.

To this end, we first non-dimensionalize the physical quan-
tities involved by dividing all lengths by `f+`r, all velocities
by
√
g(`f + `r), all angular velocities by

√
g/(`f + `r), all

accelerations by g, and all forces by mg. In a minor abuse of
notation, all symbols in the remainder of the paper represent
non-dimensionalized quantities. For analytical simplicity, we
assume as an exogenous input the rear tire longitudinal
slip srx, which may be manipulated independently of pco(t).
To compute the other two control inputs – the steering angle
δ and the front tire longitudinal slip sfx – after selecting srx,
we perform the following computations.

Let (ut, un) denote the body-axis coordinates of the aug-
mented input. Then, we may rewrite (12) as

ut = Ffx cos δ − Ffy sin δ + Frx − `coψ̇2,

un = (`f + `r) (Ffx sin δ + Ffy cos δ) /`r.

Then, it follows after algebraic manipulations of (5)–(8) that

Ffz = −h
(
ut − (`r/h) + `coψ̇

2
)
/(`f + `r), (13)

and that

R(δ)

[
sfx
sfy

]
µf

sf
= −

[
σ1(ξ, srx)
σ2(ξ)

]
, (14)

where (ξ, srx) 7→ σ1(ξ, srx) and ξ 7→ σ2(ξ) are maps whose
detailed expressions are provided in the Appendix. We may
compute the friction coefficient µf of the front tire by (14) as

µf =
√
σ2
1(ξ, srx) + σ2

2(ξ), (15)

and the total slip sf of the front tire may then be computed
immediately from (9). After algebraic manipulations of (14)–
(15), we may arrive at the following equation in δ:

− vxsfσ2(ξ) cos2 δ + (vy + `f ψ̇)sfσ1(ξ, srx) sin
2 δ

+ (vxσ1(ξ, srx)− (vy + `f ψ̇)σ2(ξ))sf sin δ cos δ

− (vy + `f ψ̇)µf cos δ + vxµf sin δ = 0. (16)

Following an appropriate transformation of variables, (16)
may be transformed to a quartic polynomial equation, which

may be solved analytically for δ. Finally, the longitudinal
slip sfx of the front tire may be computed using (4).

Fact 1: There exists at least one real root to (16) when-
ever ut and un satisfy (21).

Proof: See the Appendix.
Informally, Fact 1 states that whenever the commanded
acceleration of the front CO satisfies the constraints (to be
discussed in Section IV) imposed by the ground-tire friction
force characteristics, there exists at least one solution to
the system of nonlinear equations in (12). We reiterate that
all computations involved in computing the vehicle control
inputs (sfx, srx, δ) from the acceleration u of the CO (i.e.,
the second derivatives of the flat output) are simple, and
that none of these computations involve any computationally
expensive numerical optimization or root-finding.

III. THE RRT∗ ALGORITHM

In this section, we describe a general optimal motion plan-
ning problem, and we describe briefly the RRT∗ algorithm for
the solution of this problem with probabilistic guarantees.
The reader interested is referred to [4] for further details.

Let X ⊂ Rn and U ⊂ Rm be compact sets, and consider
a nonlinear dynamical system described by

ξ̇(t) = f(ξ(t), u(t)), ξ(0) = ξ0, (17)

where ξ(t) ∈ X and u(t) ∈ U for all t > 0, f : X×U → Rn,
and ξ0 ∈ X is a pre-specified initial state. A trajectory ξ :
[0, T]→ X , where T > 0, is said to be dynamically feasible
if it satisfies (17) with a piecewise continuous function u that
takes values in U . We denote by X the set of all dynamically
feasible trajectories. Let Xobs, Xgoal ⊂ X be open sets,
called the obstacle set and the goal set, respectively. Define
the free space as Xfree := Rn\Xobs. Finally, let J : X → R+

be a cost functional that associates each dynamically feasible
trajectory with a non-negative real number.

The optimal motion planning problem is then defined as:
Find a feasible trajectory ξ∗ ∈ X such that (i) ξ∗(T) ∈
Xgoal, for some T > 0, i.e., the trajectory reaches the goal
set; (ii) ξ∗(t) /∈ Xobs for all t ∈ [0, T], i.e., the trajectory
avoids collisions with the obstacles; and (iii) J(ξ∗) 6 J(ξ)
for all ξ ∈ X , i.e., the trajectory has minimum cost.

The RRT∗ algorithm, described in Algorithm 1, constructs
a tree of dynamically feasible trajectories of the system. We
denote by V and E, respectively, the set of vertices and
edges of this tree, where each vertex in V is a state of the
dynamical system, and associated with each edge in E is a
dynamically feasible trajectory.

Algorithm 1: The RRT∗ Algorithm
1 V ← {zinit}; E ← ∅; i← 0;
2 while i < N do
3 G← (V,E);
4 zrand ← Sample(i); i← i+ 1;
5 (V,E)← Extend(G, zrand);

Initially V contains only the initial state ξ0 and E is empty
(Line 1). At each subsequent iteration, the algorithm samples

Algorithm 2: The Extend Procedure
1 V ′ ← V ; E′ ← E;
2 znearest ← Nearest(G, z);
3 (ξnew, unew, Tnew)← Steer(znearest, z);
4 znew ← ξnew(Tnew);
5 if ObstacleFree(ξnew) then
6 V ′ ← V ′ ∪ {znew};
7 zmin ← znearest; Jmin ← Cost(znew);
8 Znear ← NearVertices(G, znew, |V |);
9 for all znear ∈ Znear do

10 (ξnear, unear, Tnear)← Steer(znear, znew);
11 if ξnear(Tnear) = znew and

ObstacleFree(ξnear) and
Cost(znear) + J(ξnear) < Jmin then

12 Jmin ← Cost(znear) + J(ξnear);
13 zmin ← znear;

14 E′ ← E′ ∪ {(zmin, znew)};
15 for all znear ∈ Znear \ {zmin} do
16 (ξnear, unear, Tnear)← Steer(znew, znear);
17 if ξnear(Tnear) = znear and

ObstacleFree(ξnear) and
Cost(znew) + J(ξnear) < Cost(znear) then

18 zparent ← Parent(znear);
19 E′ ← E′ \ {(zparent, znear)};
20 E′ ← E′ ∪ {(znew, znear)};

21 return G′ = (V ′, E′)

a new state (Line 4), and extends the tree towards this state
(Line 5). The extension procedure of the RRT∗ algorithm
(Algorithm 2), first extends the state associated with the
nearest vertex in the tree towards the newly sampled state
(Lines 2-4) by constructing a dynamically feasible trajectory
between these two states. If this trajectory lies entirely in
the obstacle-free space (Line 5), then the algorithm adds a
new vertex to the tree associated with the newly sampled
state (Line 6). A set of vertices near-by to this new vertex
is computed in Line 8, and the vertex belonging to this set
from which the new vertex is reached with minimal cost is
assigned as the parent to the new vertex (Lines 9-14). The
cost of the given trajectory from the root to a vertex z is
denoted as Cost(z).

Whenever a new vertex is successfully added to the tree,
the algorithm attempts to “rewire” the near-by vertices as
follows. If there exists a dynamically feasible collision-free
trajectory that connects the new vertex znew and a near-by
vertex with a smaller accumulated cost, then the parent of
this vertex is re-assigned to znew (Lines 15-20).

The various primitive procedures that are invoked repeat-
edly by the RRT∗ algorithm are described as follows.

1) Sampling: The Sample procedure returns independent
and identically distributed samples from the state space.

2) Near and Nearest Neighbors: Given a finite set V ⊂ X
and a state z ∈ X , the Nearest(z, V) procedure returns the
element z′ ∈ V that is closest to z among all elements of V ,
i.e., Nearest(z, V) := argmin{‖z′ − z‖ : z′ ∈ V }, where
‖ · ‖ denotes the Euclidean norm.

The Near(z, V) procedure returns the set of all elements

of V that are close to z in the following sense:

Near(z, V) :=

{
z′ ∈ V : ‖z′ − z‖ ≤ γ log(|V |)

|V |

}
,

where |V | denotes the cardinality of V and γ is a constant.
3) Local steering: Given two states z, z′ ∈ X , the

Steer(z, z′) procedure returns a dynamically feasible tra-
jectory ξ ∈ X , a time of traversal T > 0, and a control input
u : [0, T] → U associated with ξ such that ξ(0) = z and
ξ(T) = z′.

4) Collision checking: Given a trajectory x : [0, T]→ X ,
the CollsiionFree(x) procedure returns true iff x avoids
collision with obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T].

The local steering problem (to be solved by the Steer
procedure) may be implemented using standard numerical
optimal control techniques. Such an implementation of the
Steer procedure for the half-car dynamical model de-
scribed in Section II was discussed in [18]. This approach,
however, was found to be computationally expensive, and
the overall motion planner, whereas promising, was found
to be impractically slow in its execution. To mitigate this
drawback, we describe, in the next section, a computationally
efficient solution of the local steering problem for the half-
car dynamical model.

IV. LOCAL STEERING FOR THE HALF-CAR MODEL

Our approach to the design of a fast local steering algo-
rithm is summarized as follows. We leverage the “pseudo-
flat” nature of the system to transform the steering problem
for the half-car model to a steering problem for the simpler
particle model p̈co = u that defines the motion of the CO. To
this end, we map the constraints on the tire friction forces
to equivalent constraints on the augmented input u. These
constraints on u impose bounds on the lateral acceleration
of the CO, which in turn correspond to speed-dependent
bounds on the curvatures of paths in the workspace that
the CO can feasibly traverse. Next, we approximate a time-
optimal local steering trajectory for the CO by first con-
structing a curvature-bounded geometric path and then by
imposing a minimum-time speed profile on this path. Finally,
we determine the acceleration u of the CO for tracking this
trajectory, and we map u to the vehicle inputs (sfx, srx, δ)
using the computational procedure outlined in Section II-A.

A. Constraints on Pseudo-Flat Output Trajectories

The magnitude Fα, α ∈ {f, r}, of the total friction force
at each tire depends on the friction coefficient and the
normal load on that tire: Fα = µαFαz . It follows that
Fα =

√
F 2
αx + F 2

αy 6 µ∗αFαz, where µ∗α is the maximum
value of the tire friction coefficient (recall from Section II
that µα depends on the total tire slip). The preceding circular
constraint on the lateral and longitudinal forces at each tire,
in turn, imposes constraints on the trajectory of the CO.

In what follows, we show that the acceleration u of the
CO is constrained to lie within an ellipse, the dimensions of
which depend on the vehicle state (in particular, the sideslip
βcg := tan−1 (vy/vx), and the yaw rate ψ̇), the maximum

-0.4 -0.2 0 0.2 0.4 0.6
-0.5

-0.3

-0.1

0.1

0.3

0.5

ut

u
n

(a) βcg = 0◦, ψ̇ = 0◦/s

-0.4 -0.2 0 0.2 0.4 0.6
-0.5

-0.3

-0.1

0.1

0.3

0.5

ut

u
n

(b) βcg = 30◦, ψ̇ = 5◦/s

Fig. 2. Constraints on augmented inputs for different states, with the same
rear longitudinal slip. Here srx = −1 for both cases. The vehicle speed is
10 m/s. The different ellipses correspond to different values of µf in (20),
with increasing values of µf from blue to red.

value µ∗f of the front tire friction coefficient, and the rear tire
longitudinal slip srx, which was chosen in Section II-A as
an exogenous input that may be chosen independent of the
trajectory of the CO.

To this end, define constants k1 := −h/(`f + `r) and
k2 := (`f + `r)/`r, and define the map ξ 7→ σ3(ξ) :=
k1(`coψ̇

2 − `r/h). Note that, by (13),

Ffz = k1ut + σ3(ξ), (18)

and that, by (12),

u2t +
u2n
k22

= (Ffx cos δ − Ffy sin δ + Frx − `coψ̇2)2

+ (Ffx sin δ + Ffy cos δ)
2. (19)

The R.H.S. of (19) involves the front and rear tire lateral
and longitudinal forces, and we may use (5), (8), and (18)
to express the R.H.S. of (19) in terms of ξ, srx, and µf to
arrive at the following equation:(

ut + σ4(ξ, srx, µf)

σ5(ξ, srx, µf)

)2

+

(
un

σ6(ξ, srx, µf)

)2

= 1, (20)

where (ξ, srx, µf) 7→ σ4(ξ, srx, µf), σ5(ξ, srx, µf),
σ6(ξ, srx, µf) are maps whose detailed expressions are
provided in the Appendix. Note that the values of these
maps define the location of the center and the dimensions
of an ellipse in the ut − un plane.

Figure 2 shows the ellipse defined by (20) for different
sample values of the vehicle sideslip and yaw rate over a
range of values of µf . It is straightforward to show that for
any µf1 , µf2 with µf1 6 µf2 , the ellipse defined by (20) with
µf = µf1 is completely contained within the ellipse defined
by (20) with µf = µf2 .

In light of the equation (20) and the preceding observation,
the original circular constraints of the front and rear tire
friction forces may be mapped to the following elliptical
constraint on the acceleration u of the CO:(

ut + σ4(ξ, srx, µ
∗
f)

σ5(ξ, srx, µ∗f)

)2

+

(
un

σ6(ξ, srx, µ∗f)

)2

6 1. (21)

Let βco denote the sideslip of the CO, i.e., the angle
between ṗco and the body x-axis. It can be shown that
βco = tan−1

(
(vy + `coψ̇)/vx

)
. Then, the intersections of

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

ut

u
n

βco

Fig. 3. Calculation of acceleration constraints on the CO from (21): The
filled squares indicate bounds on pure lateral acceleration, and the filled
circles indicate bounds on pure tangential acceleration.

the line of inclination βco passing through the origin of the
ut − un plane with the boundary of the elliptical region
described by (21) provide the upper and lower bounds on
the pure tangential acceleration of the CO. Similarly, the
intersections of the line of inclination βco+π

2 passing through
the origin of the ut − un plane with the boundary of the
elliptical region described by (21) provide bounds on the
pure lateral acceleration of the CO (see Fig. 3).

Geometric paths traversed by a particle with bounded
lateral acceleration have bounded curvature. Specifically, the
curvature bounds for left and right turns, respectively, are
v2/umax

⊥ and v2/|umin
⊥ |, assuming3 umax

⊥ > 0 and umin
⊥ < 0.

As previously mentioned, we approximate time-optimal
trajectories for the CO by first constructing a shortest geo-
metric path and then imposing on this path a minimum-time
speed profile. The construction of the shortest curvature-
bounded path between the initial and terminal states with
asymmetric (about the origin) bounds on the curvature is
straightforward: it has been shown in [20] show that the
shortest path is contained within the Dubins family of paths.
The Dubins family of paths consists of continuously differen-
tiable paths that are obtained by concatenating at most three
sub-paths, each of which is either a straight line segment or
a circular arc of radius of equal to the minimum radius of
turn (which is the reciprocal of the curvature bound).

Similarly, the minimum-time speed profile on a prescribed
curve for a particle with an elliptical acceleration constraint
has been discussed in, for instance, [21]. Briefly, the ap-
proach in [21] involves determining switching points along
the prescribed curve, such that, between two consecutive
switches, the particle either travels with maximum possible
tangential acceleration, or travels with maximum possible
tangential deceleration, or travels at the critical speed. This
critical speed is defined, pointwise along the prescribed
curve, as the speed at which the centripetal acceleration
required for the particle to change its direction of travel
at the rate prescribed by the instantaneous curvature equals

3If both umax
⊥ and umin

⊥ are both positive (respectively, negative), then
the particle can make only left (respectively, right) turns.

(a) From [18] (b) Proposed

Fig. 4. Comparison of coverages achieved within a specified computation
time by different implementations of RRT∗ for the half-car model.

0

5

10

15

Trials
Tr

aj
ec

to
ry

co
st

(s
)

(a) Execution time: 1 s

0

5

10

15

Trials

Tr
aj

ec
to

ry
co

st
(s

)

(b) Execution time: 10 s

0

5

10

15

Trials

Tr
aj

ec
to

ry
co

st
(s

)

(c) Execution time: 100 s

0

5

10

15

Trials

Tr
aj

ec
to

ry
co

st
(s

)
(d) Execution time: 103 s

Fig. 5. Improvements in trajectory costs with increasing computation times,
for the 180-degree turn illustrated in Fig. 4. The blue-colored bars indicate
data for the motion planner in [18]; brown-colored bars indicate data for
the proposed planner. Empty spaces indicate that no feasible trajectory was
found within the stated execution time.

the maximum lateral acceleration of the particle. Here,
the “maximum possible tangential acceleration/deceleration”
refers to the tangential acceleration/deceleration that satisfies
– together with the centripetal acceleration that corresponds
to the change the particle’s direction at the rate prescribed
by the instantaneous curvature – the elliptical acceleration
constraint as an equality.

V. SIMULATION RESULTS AND DISCUSSION

The proposed motion planner is fast, and its speed of
execution makes it suitable for real-time implementations.
To corroborate this claim, we present sample numerical
simulation results for the proposed motion planner, including
simulations with hard upper bounds on the execution time.

As previously mentioned, a preliminary implementation of
RRT∗ for the half-car dynamical model was discussed in [18],
where a numerical optimal control technique was used to
implement the local steering algorithm. Figure 4 illustrates

a sample simulation result comparing the coverage of the
state space achieved by the RRT∗ algorithm implemented
using the local steering method of [18] against that using the
proposed method. Both of these algorithms were executed for
a fixed period of time (20 s on a Intelr CoreTM2 Extreme
Q9300, 2.53Ghz processor with 4GB RAM). As expected,
the proposed implementation of RRT∗ achieved significantly
better coverage than that discussed in [18].

Figure 5 shows comparisons of trajectory costs (i.e., the
time of traversal) achieved by these two implementations
within specified execution times. The data shown in Fig. 5
was obtained over 20 trials of each implementation for
the problem of planning the 180-degree turn illustrated in
Fig. 4. In particular, Fig. 5(a) shows that, within a specified
execution time of 1 s on the aforesaid computer, no feasible
trajectory was found in any of the trials of the implemen-
tation of [18], whereas feasible trajectories were found in
all but two trials of the proposed implementation. In these
simulations, the ratio of the average time required to find a
first feasible solution with the implementation of [18] to that
with the proposed implementation was 21.23. However, the
ratio of the maximum time required to find a first feasible
solution with the implementation of [18] to the minimum
time required with the proposed implementation was 226.3.

As discussed in Section II-A, the “pseudo-differentially-
flat” feature of the half-car model requires one of the three
vehicle inputs (sfx, srx, δ) to be chosen independently of
the flat output trajectory. For analytical simplicity, we chose
the rear tire longitudinal slip srx as this independent input,
and we set it to a constant value srx,0. Consequently, the
proposed implementation of RRT∗ converges asymptotically
to an optimal control input within the class of admissible
control inputs defined by srx = srx,0. On the other hand,
the implementation of RRT∗ discussed in [18] converges
asymptotically to a globally optimal control input, albeit at
the cost of slower execution.

The speed of execution of the proposed motion planner
enabled the solution of problems that were found to be
impractically slow with the approach discussed in [18]. For
example, Fig. 6 illustrates the application of the proposed
approach to motion planning with the half-car model on a
closed circuit, similar to a race track. Figure 6(a) illustrates
the geometric path corresponding to a sample resultant
trajectory, along with the vehicle’s orientation (to indicate
sideslip). Figure 6(b) shows the speed profile over the sample
resultant trajectory, and Fig. 6(c) shows the decreases in
resultant trajectory cost with the progress of the algorithm,
for three different trials.

To further leverage the speed of execution of the proposed
approach and to anticipate future real-time implementations
with hard bounds on the execution time, we implemented the
solution of the closed circuit motion planning problem using
a receding-horizon approach. In this approach, the motion
planner first computes, within a pre-specified computation
time tcomp, a trajectory over a pre-specified horizon of length
along the circuit. Next, the vehicle’s motion is simulated for
a pre-specified execution time and the process is repeated.

−50

−40

−30

−20

−10

0

10

20

80706050403020100−10−20

(a) Geometric path and vehicle orientation: the red-colored
segments indicate braking; the blue-colored segments indicate
acceleration.

0 50 100 150 200
6

8

10

12

14

16

Distance along path (m)

Sp
ee

d
(m

/s
)

(b) Speed profile

2 4 6 8

24

26

28

30

No. of iterations (×104)

C
os

t
of

tr
aj

ec
to

ry
(s

)

(c) Reductions in trajectory cost

Fig. 6. Motion planning with the half-car model over a closed circuit.

0 2 4 6 8 10
24

25

26

27

28

29

30

31

tcomp (s)

To
ta

l
tr

aj
ec

to
ry

co
st

(s
)

Fig. 7. Total trajectory costs using a receding-horizon approach to motion
planning over the closed circuit shown in Fig. 6(a).

Figure 7 shows the total trajectory cost obtained by the
aforesaid receding-horizon planner, over a range of values of
tcomp. The total trajectory costs thus obtained are comparable
to the trajectory costs shown in Fig. 6. A similar receding-
horizon planner using the implementation of [18] was unable
to find feasible trajectories for any of the values of tcomp

shown in Fig. 7.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a fast motion planner that
incorporates the half-car dynamical model for wheeled vehi-
cles. The proposed motion planner is based on the RRT∗ op-
timal motion planning algorithm, and the key to an efficient
implementation of RRT∗ for the half-car model is a fast local

steering algorithm that we introduced here. The constituent
algorithms involved in the proposed local steering method—
namely, algorithms for the computation of a curvature-
bounded geometric path, for the imposition of a minimum-
time speed profile, and for mapping u to (sfx, srx, δ)—are
all fast. Crucially, the proposed method for local steering,
by construction, results in trajectories that are dynamically
feasible. In particular, the mapping of the constraints on
the tire friction forces to constraints on u saves significant
computational effort in verifying a posteriori whether a
candidate trajectory can be feasibly traversed by the vehicle.
Finally, the proposed approach enables motion planning in
the four-dimensional space of the coordinates of pco and
ṗco, instead of the six-dimensional state space. Future work
includes appropriate selection of the exogenous control input
to better approximate the globally optimal control input.

Acknowledgements: This research was supported in part
by ARO MURI award W911NF-11-1-0046.

APPENDIX

The expressions for the maps σ1, . . . , σ6 in Sections II-A
and IV-A are as follows:

σ1(ξ, srx) :=
1

h

(
`r − hµrx

Ffz
− (`f + `r)

)
+ µrx,

σ2(ξ) := `run/(`f + `r)/Ffz,

σ3(ξ) := k1(`coψ̇
2 − `r/h),

σ4(ξ, srx, µf) :=(
(µrxk1 + 1)(`coψ̇

2 + µrx(σ3 − 1))− µ2
f k1σ3

)
/σ2

7 ,

σ6(ξ, srx, µf) :=

k2

√
µ2
f σ

2
3 − (`coψ̇2 + µrx(σ3 − 1))2 + (σ4σ7)2,

σ5(ξ, srx, µf) := σ6/(k2σ7),

where

(ξ, srx, µf) 7→ σ7(ξ, srx, µf) :=
√
(µrxk1 + 1)2 − µ2

f k
2
1.

Proof: [of Fact 1] The algebraic manipulations involved
in arriving at (16) from (14)-(15) include the equation

s2fx + s2fy(ξ, δ) =
1

B2
f

tan2
(
sin−1 (µf/Df)

Cf

)
,

and it follows that

(vy + `f ψ̇ ∓ σ8vx) cos δ + (∓σ8(vy + `f ψ̇)− vx) sin δ = 0,
(22)

where σ8 :=

√
1

B2
f

tan2
(
sin−1 (µf/Df)

Cf

)
− s2fx. Equa-

tion (16) is obtained from (22) by eliminating sfx from (22)
using (14), and, consequently, the existence of real roots
of (16) is equivalent to the existence of real roots of (22). It
easy to show that, following an appropriate transformation
of variables, that (22) is equivalent to a quadratic equation
that has real roots whenever

(vy + `f ψ̇ ∓ σ8vx)2 + (∓σ8(vy + `f ψ̇)− vx)2 > 0,

which holds true whenever σ8 is real, which in turn holds true
whenever |µf | 6 Df = µ∗f . By (15), and by the arguments
leading to the constraint (21), it follows that 0 6 µf 6 µ∗f
whenever ut and un satisfy (21), and the result follows.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

[2] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[3] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic
planning,” International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, May 2001.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
pp. 846–894, 2011.

[5] R. V. Cowlagi and P. Tsiotras, “Hierarchical motion planning with
dynamical feasibility guarantees for mobile robotic vehicles,” IEEE
Transactions on Robotics, 2011, to appear.

[6] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect of
nonlinear systems: Introductory theory and examples,” International
Journal of Control, vol. 71, no. 5, pp. 745–765, 1995.

[7] W. F. Milliken and D. L. Milliken, Race Car Vehicle Dynamics.
Warrendale, PA, USA: SAE International, 1995.

[8] M. Schorn, U. Stahlin, A. Khanafer, and R. Isermann, “Nonlinear
trajectory following control for automatic steering of a collision
avoiding vehicle,” in Proceedings of the 2006 American Control
Conference, 2006.

[9] J. Ackermann, “Robust decoupling, ideal steering dynamics and yaw
stabilization of 4WS cars,” Automatica, vol. 30, no. 11, pp. 1761–1768,
1994.

[10] S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle
dynamics and control – a flatness based approach,” in Proceedings of
the 44th IEEE Conference on Decision and Control, Seville, Spain,
December 12–15 2005, pp. 6492–6497.

[11] S. C. Peters, “Optimal planning and control for hazard avoidance
of front-steered ground vehicles,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2012.

[12] P. Setlur, J. Wagner, D. Dawson, and D. Braganza, “A trajectory
tracking steer-by-wire control system for ground vehicles,” IEEE
Transactions on Vehicular Technology, vol. 55, no. 1, pp. 76–85, 2006.

[13] T. Hiraoka, O. Nishihara, and H. Kumamoto, “Automatic path-tracking
controller of a four-wheel steering vehicle,” Vehicle System Dynamics,
vol. 47, no. 10, pp. 1205–1227, 2009.

[14] K. Kritayakirana and J. C. Gerdes, “Using the center of percussion
to generate feedforward steering for an autonomous race car,” in
Proceedings of the 2011 IAVSD Symposium. IAVSD, 2011.

[15] E. Velenis, P. Tsiotras, and J. Lu, “Optimality properties and driver
input parametrization for trail-braking cornering,” European Journal
of Control, vol. 4, pp. 308–320, 2008.

[16] D. Casanova, R. S. Sharp, and P. Symonds, “Minimum time manoeu-
vering: The significance of yaw inertia,” Vehicle System Dynamics,
vol. 34, no. 2, pp. 77–115, 2000.

[17] E. Velenis and P. Tsiotras, “Optimal velocity profile generation for
given acceleration limits: The half-car case,” in Proceedings of the
IEEE International Symposium on Industrial Electronics ISIE 2005,
Dubrovnik, Croatia, June 20–23 2005, pp. 361–366.

[18] J. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT∗,” in Proceedings
of the 50th IEEE Conference on Decision and Control and European
Control Conference, Orlando, FL, Dec. 12 – 15 2011.

[19] E. Bakker, L. Nyborg, and H. Pacejka, “Tyre modeling for use in
vehicle dynamics studies,” SAE Paper No. 870421, 1987.

[20] E. Bakolas and P. Tsiotras, “Optimal synthesis of the asymmetric
sinistral/dextral Markov-Dubins problem,” Journal of Optimization
Theory and Applications, vol. 150, no. 2, 2011.

[21] E. Velenis and P. Tsiotras, “Minimum-time travel for a vehicle
with acceleration limits: Theoretical analysis and receding horizon
implementation,” Journal of Optimization Theory and Applications,
vol. 138, no. 2, pp. 275–296, 2008.

