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Robust Distributed Routing in Dynamical Flow

Networks – Part I: Locally Responsive Policies

and Weak Resilience

Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh

Emilio Frazzoli

Abstract

Robustness of distributed routing policies is studied for dynamical flow networks, with respect to

adversarial disturbances that reduce the link flow capacities. A dynamical flow network is modeled as

a system of ordinary differential equations derived from mass conservation laws on a directed acyclic

graph with a single origin-destination pair and a constant inflow at the origin. Routing policies regulate

the way the inflow at a non-destination node gets split among its outgoing links as a function of the

current particle density, while the outflow of a link is modeled to depend on the current particle density

on that link through a flow function. The dynamical flow network is called partially transferring if the

total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is

measured as the minimum sum of the link-wise magnitude of all disturbances that make it not partially

transferring. The weak resilience of a dynamical flow network with arbitrary routing policy is shown

to be upper-bounded by the network’s min-cut capacity, independently of the initial flow conditions.

Moreover, a class of distributed routing policies that rely exclusively on local information on the particle

densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These

results imply that locality constraints on the information available to the routing policies do not cause
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loss of weak resilience. Some fundamental properties of dynamical flow networks driven by locally

responsive distributed policies are analyzed in detail, including global convergence to a unique limit

flow.

Index terms: dynamical flow networks, distributed routing policies, weak resilience, min-cut

capacity, cooperative dynamical systems.

I. INTRODUCTION

Flow networks provide a fruitful modeling framework for many applications of interest such

as transportation, data, and production networks. They entail a fluid-like description of the

macroscopic motion of particles, which are routed from their origins to their destinations via

intermediate nodes: we refer to standard textbooks, such as [2], for a thorough treatment.

The present and a companion paper [3] study dynamical flow networks, modeled as systems of

ordinary differential equations derived from mass conservation laws on directed acyclic graphs

with a single origin-destination pair and a constant inflow at the origin. The rate of change

of the particle density on each link of the network equals the difference between the inflow

and the outflow of that link. The latter is modeled to depend on the current particle density

on that link through a flow function. On the other hand, the way the inflow at an intermediate

node gets split among its outgoing links depends on the current particle density, possibly on

the whole network, through a routing policy. Such a routing policy is said to be distributed if

the proportion of inflow routed to the outgoing links of a node is allowed to depend only on

local information, consisting of the current particle densities on the outgoing links of the same

node. The inspiration for such a modeling paradigm comes from empirical findings from several

application domains: in transportation networks [4], the flow functions are typically referred to as

fundamental diagrams, while the routing policies model the emerging selfish behavior of drivers;

in data networks [5], flow functions model congestion-dependent throughput and average delays,

while routing policies are designed in order to optimize the total throughput or other performance

measures; in production networks [6], flow functions correspond to clearing functions.

Our objective is the design and analysis of distributed routing policies for dynamical flow

networks that are maximally robust with respect to adversarial disturbances that reduce the link

flow capacities. Two notions of transfer efficiency are introduced in order to capture the extremes

of the resilience of the network towards disturbances: The dynamical flow network is fully
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transferring if the total inflow at the destination node asymptotically approaches the inflow at the

origin node, and partially transferring if the total inflow at the destination node is asymptotically

bounded away from zero. The robustness of distributed routing policies is evaluated in terms of

the network’s strong and weak resilience, which are defined as the minimum sum of link-wise

magnitude of disturbances making the perturbed dynamical flow network not fully transferring,

and, respectively, not partially transferring. In this paper, we prove that the maximum possible

weak resilience is yielded by a class of locally responsive distributed routing policies, which rely

only on local information on the current particle densities on the network, and are characterized

by the property that the portion of its inflow that a node routes towards an outgoing link does not

decrease as the particle density on any other outgoing link increases. Moreover, we show that the

maximum weak resilience of dynamical flow networks with arbitrary, not necessarily distributed,

routing policies equals the min-cut capacity of the network and hence is independent of the initial

equilibrium flow. We also prove some fundamental properties of dynamical flow networks driven

by locally responsive distributed policies, including global convergence to a unique limit flow.

Such properties are mainly a consequence of the particular cooperative structure (in the sense

of [7], [8]) that the dynamical flow network inherits from locally responsive routing policies.

Stability analysis of network flow control policies under non-persistent disturbances, especially

in the context of internet, has attracted a lot of attention, e.g., see [9], [10], [11], [12]. Recent

work on robustness analysis of static flow networks under adversarial and probabilistic persistent

disturbances in the spirit of this paper include [13], [14], [15]. It is worth comparing the

distributed routing policies studied in this paper with the back-pressure policy [16], which is

one of the most well-known robust distributed routing policy for queueing networks. While

relying on local information in the same way as the distributed routing policies studied here,

back-pressure policies require the nodes to have, possibly unlimited, buffer capacity. In contrast,

in our framework, the nodes have no buffer capacity. In fact, the distributed routing policies

considered in this paper are closely related to the well-known hot-potato or deflection routing

policies [17] [5, Sect. 5.1], where the nodes route incoming packets immediately to one of the

outgoing links. However, to the best of our knowledge, the robustness properties of dynamical

flow networks, where the outflow from a link is not necessarily equal to its inflow have not been

studied before.

The contributions of this paper are as follows: (i) we formulate a novel dynamical system
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framework for robustness analysis of dynamical flow networks under feedback routing policies,

possibly constrained in the available information; (ii) we characterize a general class of locally

responsive distributed routing policies that yield the maximum weak resilience; (iii) we provide a

simple characterization of the resilience in terms of the topology and capacity of the flow network.

In particular, the class of locally responsive distributed routing policies can be interpreted as

approximate Nash equilibria in an appropriate zero-sum game setting where the objective of

the adversary inflicting the disturbance is to make the network not partially transferring with

a disturbance of minimum possible magnitude, and the objective of the system planner is to

design distributed routing policies that yield the maximum possible resilience. The results of

this paper imply that locality constraints on the information available to routing policies do not

affect the maximally achievable weak resilience. In contrast, the companion paper [3] focuses on

the strong resilience properties of dynamical flow networks, and shows that locally responsive

distributed routing policies are maximally robust, but only within the class of distributed routing

policies which are constrained to use only local information on the network congestion status.

The rest of the paper is organized as follows. In Section II, we formulate the problem by

formally defining the notion of a dynamical flow network and its resilience, and we prove that the

weak resilience of a dynamical flow network driven by an arbitrary, not necessarily distributed,

routing policy is upper-bounded by the min-cut capacity of the network. In Section III, we

introduce the class of locally responsive distributed routing policies, and state the main results on

dynamical flow networks driven by such locally responsive distributed routing policies: Theorem

1, concerning global convergence towards a unique equilibrium flow; and Theorem 2 concerning

the maximal weak resilience property. In Sections IV, and V, we state proofs of Theorem 1, and

Theorem 2, respectively.

Before proceeding, we define some preliminary notation to be used throughout the paper. Let

R be the set of real numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real numbers.

Let A and B be finite sets. Then, |A| will denote the cardinality of A, RA (respectively, RA+)

the space of real-valued (nonnegative-real-valued) vectors whose components are indexed by

elements of A, and RA×B the space of matrices whose real entries indexed by pairs of elements

in A × B. The transpose of a matrix M ∈ RA×B, will be denoted by MT ∈ RB×A, while 1

the all-one vector, whose size will be clear from the context. Let cl(X ) be the closure of a set

X ⊆ RA. A directed multigraph is the pair (V , E) of a finite set V of nodes, and of a multiset
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E of links consisting of ordered pairs of nodes (i.e., we allow for parallel links). Given a a

multigraph (V , E), for every node v ∈ V , we shall denote by E+v ⊆ E , and E−v ⊆ E , the set

of its outgoing and incoming links, respectively. Moreover, we shall use the shorthand notation

Rv := RE
+
v

+ for the set of nonnegative-real-valued vectors whose entries are indexed by elements

of E+v , Sv := {p ∈ Rv :
∑

e∈E+v pe = 1} for the simplex of probability vectors over E+v , and

R := RE+ for the set of nonnegative-real-valued vectors whose entries are indexed by the links

in E .

II. DYNAMICAL FLOW NETWORKS AND THEIR RESILIENCE

In this section, we introduce our model of dynamical flow networks and define the notions of

transfer efficiency.

A. Dynamical flow networks

We start with the following definition of a flow network.

Definition 1 (Flow network): A flow network N = (T , µ) is the pair of a topology, described

by a finite directed multigraph T = (V , E), where V is the node set and E is the link multiset,

and a family of flow functions µ := {µe : R+ → R+}e∈E describing the functional dependence

fe = µe(ρe) of the flow on the density of particles on every link e ∈ E . The flow capacity of a

link e ∈ E is defined as

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notation Fv := ×e∈E+v [0, fmax
e ) for the set of admissible flow vectors on

outgoing links from node v, and F := ×e∈E [0, fmax
e ) for the set of admissible flow vectors for

the network. We shall write f := {fe : e ∈ E} ∈ F , and ρ := {ρe : e ∈ E} ∈ R, for the

vectors of flows and of densities, respectively, on the different links. The notation f v := {fe :

e ∈ E+v } ∈ Fv, and ρv := {ρe : e ∈ E+v } ∈ Rv will stand for the vectors of flows and densities,

respectively, on the outgoing links of a node v. We shall compactly denote by f = µ(ρ) and

f v = µv(ρv) the functional relationships between density and flow vectors.

Throughout this paper, we shall restrict ourselves to network topologies satisfying the follow-

ing:
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!0 !n(t)0
nv

e fe(t)

Fig. 1. A network topology satisfying Assumption 1: the nodes v are labeled by the integers between 0 (denoting the origin

node) and n (denoting the destination node), in such a way that the label of the head node of each edge is higher than the label

of its tail node. The inflow at the origin, λ0, maybe interpreted as the input to the dynamical flow network, and the total inflow at

the destination, λn(t), as the output. For α ∈ (0, 1], the dynamical flow network is α-transferring if lim inft→+∞ λn(t) ≥ αλ0,

i.e., if at least α-fraction of the inflow at the origin is transferred to the destination, asymptotically.

Assumption 1: The topology T contains no cycles, has a unique origin (i.e., a node v ∈ V

such that E−v is empty), and a unique destination (i.e., a node v ∈ V such that E+v is empty).

Moreover, there exists a path in T to the destination node from every other node in V .

Assumption 1 implies that one can find a (not necessarily unique) topological ordering of the

node set V (see, e.g., [18]). We shall assume to have fixed one such ordering, identifying V with

the integer set {0, 1, . . . , n}, where n := |V| − 1, in such a way that

E−v ⊆
⋃

0≤u<v
E+u , ∀v = 0, . . . , n . (2)

In particular, (2) implies that 0 is the origin node, and n the destination node in the network

topology T (see Fig. 1). An origin-destination cut (see, e.g., [2]) of T is a partition of V into

U and V \ U such that 0 ∈ U and n ∈ V \ U . Let

E+U := {(u, v) ∈ E : u ∈ U , v ∈ V \ U} (3)
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0 n

E+U
U V\U

0

Fig. 2. An origin/destination cut of the network: U is a subset of nodes including the origin 0 but not the destination n, and

E+U is the subset of those edges with tail node in U , and head node in V \ U .

be the set of all the links pointing from some node in U to some node in V \ U (see Fig. 2).

The min-cut capacity of a flow network N is defined as

C(N ) := min
U

∑
e∈E+U

fmax
e , (4)

where the minimization runs over all the origin-destination cuts of T . Throughout this paper,

we shall assume a constant inflow λ0 ≥ 0 at the origin node. Let us define the set of admissible

equilibrium flows associated to an inflow λ0 as

F∗(λ0) :=

{
f ∗ ∈ F :

∑
e∈E+0

f ∗e = λ0,
∑

e∈E+v
f ∗e =

∑
e∈E−v

f ∗e , ∀ 0 < v < n

}
.

Then, it follows from the max-flow min-cut theorem (see, e.g., [2]), that F∗(λ0) 6= ∅ whenever

λ0 < C(N ). That is, the min-cut capacity equals the maximum flow that can pass from the origin

to the destination node while satisfying capacity constraints on the links, and conservation of

mass at the intermediate nodes.

Throughout the paper, we shall make the following assumption on the flow functions (see also

Fig. 3):

Assumption 2: For every link e ∈ E , the map µe : R+ → R+ is continuously differentiable,

strictly increasing, has bounded derivative, and is such that µe(0) = 0, and fmax
e < +∞.
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fmaxe

0

fmaxe /2

!µe
!e

Fig. 3. Qualitative behavior of a flow function satisfying Assumption 2: µe(ρe) is differentiable, strictly increasing, has bounded

derivative and such that µe(0) = 0, and lim
ρe→+∞

µe(ρe) = fmax
e < +∞. The median density ρµe , as defined in (5) is plotted as

well.

Thanks to Assumption 2, one can define the median density on link e ∈ E as the unique value

ρµe ∈ R+ such that

µe(ρ
µ
e ) = fmax

e /2. (5)

Example 1 (Flow function): For every link e ∈ E , let ae and fmax
e be positive real constants.

Then, a simple example of flow function satisfying Assumption 2 is given by

µe(ρe) = fmax
e (1− exp(−aeρe)) .

It is easily verified that the flow capacity is fmax
e , while the median density for such a flow

function is ρµe = a−1e log 2.

We now introduce the notion of a distributed routing policy used in this paper.

Definition 2 ((Distributed) routing policy): A routing policy for a flow network N is a family

of differentiable functions G := {Gv : R → Sv}0≤v<n describing the ratio in which the particle

flow incoming in each non-destination node v gets split among its outgoing link set E+v , as a

function of the observed current particle density. A routing policy is said to be distributed if,

for all 0 ≤ v < n, there exists a differentiable function G : Rv → Sv such that Gv(ρ) = G
v
(ρv)

for all ρ ∈ R, where ρv is the projection of ρ on the outgoing link set E+v .
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The salient feature in Definition 2 is that a distributed routing policy depends only on the local

information on the particle density ρv on the set E+v of outgoing links of the non-destination node

v, instead of the full vector of current particle densities ρ on the whole link set E . Throughout

this paper, we shall make a slight abuse of notation and write Gv(ρv), instead of G
v
(ρv), for the

vector of the fractions in which the inflow of node v gets split into its outgoing links.

We are now ready to define a dynamical flow network.

Definition 3 (Dynamical flow network): A dynamical flow network associated to a flow net-

work N satisfying Assumption 1, a distributed routing policy G, and an inflow λ0 ≥ 0, is the

dynamical system

d

dt
ρe(t) = λv(t)G

v
e(ρ(t))− fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+v , (6)

where

fe(t) := µe(ρe(t)) , λv(t) :=

 λ0 if v = 0∑
e∈E−v fe(t) if 0 < v ≤ n.

(7)

Equation (6) states that the rate of variation of the particle density on a link e outgoing from

some non-destination node v is given by the difference between λv(t)Gv
e(ρ(t)), i.e., the portion

of the inflow at node v which is routed to link e, and fe(t), i.e., the particle flow on link e.

Observe that the (distributed) routing policy Gv(ρ) induces a (local) feedback which couples the

dynamics of the particle flow on the the different links.

We can now introduce the following notion of transfer efficiency of a dynamical flow network.

Definition 4 (Transfer efficiency of a dynamical flow network): Consider a dynamical flow net-

work N satisfying Assumptions 1 and 2. Given some flow vector f ◦ ∈ F , and α ∈ [0, 1], the

dynamical flow network (6) is said to be α-transferring with respect to f ◦ if the solution of (6)

with initial condition ρ(0) = µ−1(f ◦) satisfies

lim inf
t→+∞

λn(t) ≥ αλ0 . (8)

Definition 4 states that a dynamical flow network is α-transferring when the outflow is

asymptotically not smaller than α times the inflow. In particular, a fully transferring dynamical

flow network is characterized by the property of having outflow asymptotically equal to its

inflow, so that there is no throughput loss. On the other hand, a partially transferring dynamical
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flow network might allow for some throughput loss, provided that some fraction of the flow is

still guaranteed to be asymptotically transferred.

Remark 1: Standard definitions in the literature are typically limited to static flow networks

describing the particle flow at equilibrium via conservation of mass. In fact, they usually consist

(see e.g., [2]) in the specification of a topology T , a vector of flow capacities fmax ∈ R, and

an admissible equilibrium flow vector f ∗ ∈ F∗(λ0) for λ0 < C(N ) (or, often, f ∗ ∈ cl(F∗(λ0))

for λ0 ≤ C(N )). In contrast, in our model, we focus on the off-equilibrium particle dynamics

on a flow network N , induced by a (distributed) routing policy G.

B. Examples

We now present three illustrative applications of the dynamical flow network framework.

(i) Transportation networks: In transportation networks, particles represent drivers and dis-

tributed routing policies correspond to their local route choice behavior in response to

the locally observed link congestions. A desired route choice behavior from a social

optimization perspective may be achieved by appropriate incentive mechanisms. While

we do not address the issue of mechanism design in this paper, the companion paper [3]

discusses the use of tolls in influencing the long-term global route choice behavior of

drivers to get a desired initial equilibrium state for the network. The robust distributed

routing policies designed in this paper would correspond to the ideal node-wise route

choice behavior of the drivers. The flow function µe(ρe) presented in this paper is related

to the notion of fundamental diagram in traffic theory, e.g., see [4]. Note that in our

formulation, we assume that the density of drivers is homogeneous over a link. One can

refer to [4] for models that incorporate inhomogeneity, although such models are developed

under non-feedback routing policies.

(ii) Data networks: In data networks, the particles represent data packets that are to be routed

from sources to destinations by routers placed at the nodes (see, e.g., [5, Ch. 5]). Typically

the average packet delay from one router to the other increases with the increase in queue

length on the link between the two routers. Hence, one has that such average delay is given

by de(ρe), where de(ρe) is an increasing function. If one further assumes that the delay

function de(ρe) is concave and such that lim infρe→+∞ de(ρe)/ρe > 0, then the relationship

between the throughput and the queue length, fe ∝ ρe/de(ρe), can be easily shown to
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satisfy Assumption 2. Therefore, in analogy with the general framework, ρe and fe denote

the queue length and the throughput, respectively, and µe(ρe) represents the throughput

functions on the links of data networks.

(iii) Production networks: In production networks, the particles represent goods that need to be

processed by a series of production modules represented by nodes. It is known, e.g., see [6],

that the rate of doing work decreases with the amount of work in progress at a production

module. This relationship is formalized by the concept of clearing functions. In this context,

production networks have a clear analogy with our setup where ρe represents the work-in-

progress, fe represents the rate of doing work, and µe(ρe) represents the clearing function.

Remark 2: While there are many examples of congestion-dependent throughput functions and

clearing functions that satisfy Assumption 2, typical fundamental diagrams in transportation

systems have a ∩-shaped profile. While we do not study the implications of this analytically,

some simulations are provided in [3] illustrating how the results of this paper could be extended

to this case.

Remark 3: It is worth stressing that, while distributed routing policies depend only on local

information on the current congestion, their structural form may depend on some global infor-

mation on the flow network which might have been accumulated through a slower time-scale

evolutionary dynamics. A two time-scale process of this sort has been analyzed in our related

work [19] in the context of transportation networks. Multiple time-scale dynamical processes

have also been analyzed in [20] in the context of communication networks.

C. Perturbed dynamical flow networks and resilience

We shall consider persistent perturbations of the dynamical flow network (6) that reduce the

flow functions on the links, as per the following:

Definition 5 (Admissible perturbation): An admissible perturbation of a flow network N =

(T , µ), satisfying Assumptions 1 and 2, is a flow network Ñ = (T , µ̃), with the same topology

T , and a family of perturbed flow functions µ̃ := {µ̃e : R+ → R+}e∈E , such that, for every

e ∈ E , µ̃e satisfies Assumption 2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly let f̃max
e := sup{µ̃e(ρ̃e) : ρ̃e ≥ 0}. The magnitude of an admissible perturbation
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is defined as

δ :=
∑

e∈E
δe , δe := sup {µe(ρe)− µ̃e(ρe) : ρe ≥ 0} . (9)

The stretching coefficient of an admissible perturbation is defined as

θ := max{ρ̃µe/ρµe : e ∈ E} , (10)

where ρµe , and ρ̃µe are the median densities associated to the unperturbed and the perturbed flow

functions, respectively, on link e ∈ E , as defined in (5).

Given a dynamical flow network as in Definition 3, and an admissible perturbation as in

Definition 5, we shall consider the perturbed dynamical flow network

d

dt
ρ̃e(t) = λ̃v(t)G

v
e(ρ̃(t))− f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+v , (11)

where

f̃e(t) := µ̃e(ρ̃e(t)) , λ̃v(t) :=


∑

e∈E−v f̃e(t) if 0 < v < n

λ0 if v = 0 .
(12)

Observe that the perturbed dynamical flow network (11) has the same structure of the original

dynamical flow network (6), as it describes the rate of variation of the particle density on each

link e outgoing from some non-destination node v as the difference between λ̃v(t)Gv
e(ρ̃(t)), i.e.,

the portion of the perturbed inflow at node v which is routed to link e, minus the perturbed

flow on link e itself. Notice that the only difference with respect to the original dynamical

flow network (6) is in the perturbed flow function µ̃e(ρe) on each link e ∈ E , which replaces

the original one, µe(ρe). In particular, the (distributed) routing policy G is the same for the

unperturbed and the perturbed dynamical flow networks. In this way, we model a situation in

which the routers are not aware of the fact that the flow network has been perturbed, but react

to this change only indirectly, in response to variations of the local density vectors ρ̃v(t).

We are now ready to define the following notion of resilience of a dynamical flow network

as in Definition 3 with respect to an initial flow.

Definition 6 (Resilience of a dynamical flow network): Let N be a flow network satisfying

Assumptions 1 and 2, G be a distributed routing policy, and λ0 ≥ 0 be a constant inflow at

the origin node. Given α ∈ (0, 1], θ ≥ 1 and f ◦ ∈ F , let γα,θ(f ◦,G) be equal to the infimum

magnitude of all the admissible perturbations of stretching coefficient less than or equal to θ for
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which the perturbed dynamical flow network (11) is not α-transferring with respect to f ◦. Also,

define

γ0,θ(f
◦,G) := lim

α↓0
γα,θ(f

◦,G) .

For α ∈ [0, 1], the α-resilience with respect to f ◦ is defined as1

γα(f ◦,G) := lim
θ→+∞

γα,θ(f
◦,G) .

The 1-resilience will be referred to as the strong resilience, while the 0-resilience will be referred

to as the weak resilience.

Remark 4 (Zero-sum game interpretation): The notions of resilience are with respect to ad-

versarial perturbations. Therefore, one can provide a zero-sum game interpretation as follows.

Let the strategy space of the system planner be the class of distributed routing policies and the

strategy space of an adversary be the set of admissible perturbations. Let the utility function

of the adversary be MΘ − δ, where M is a large quantity, e.g.,
∑

e∈E f
max
e , and Θ takes the

value 1 if the network is not α-transferring under given strategies of the system planner and the

adversary, and zero otherwise. Let the utility function of the system planner be δ−MΘ. As stated

in Sectio n III, a certain class of locally responsive distributed routing policies characterized by

Definition 7, is maximally robust with respect to the notions of weak and strong resilience. This

will then show that the locally responsive distributed routing policies correspond to approximate

Nash equilibria in this zero-sum game setting.

In the remainder of the paper, we shall focus on the characterization of the weak resilience

of dynamical flow networks, while the strong resilience will be addressed in the companion

paper [3]. Before proceeding, let us elaborate a bit on Definition 6. Notice that, for every

α ∈ (0, 1], the α-resilience γα(f ◦,G) is simply the infimum magnitude of all the admissible

perturbations such that the perturbed dynamical network (11) is not α-transferring with respect

to the equilibrium flow f ◦. In fact, one might think of γα(f ◦,G) as the minimum effort required

by a hypothetical adversary in order to modify the dynamical flow network from (6) to (11), and

make it not α-transferring, provided that such an effort is measured in terms of the magnitude of

1It is easily seen that the limits involved in this definition always exist, as γα,θ(f◦,G) is clearly nonincreasing in α (the

higher α, the more stringent the requirement of α-transfer) and θ (the higher θ, the more admissible perturbations are considered

that may potentially make the dynamical flow network to be not α-transferring).
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the perturbation δ =
∑

e∈E ||µe( · ) − µ̃e( · )||∞. For α = 0, trivially the perturbed network flow

is always 0-transferring with respect to any initial flow. For this reason, the definition of the

weak resilience γ0(f ◦,G) involves the double limit limθ→+∞ limα↓0 γα,θ(f
◦,G): the introduction

of the bound on the stretching coefficient of the admissible perturbation is a mere technicality

whose necessity will become clear in Section V.

We conclude this section with the following result, providing an upper bound on the weak

resilience of a dynamical flow network driven by any, not necessarily distributed, routing policy

G, in terms of the min-cut capacity of the network. Tightness of this bound will follow from

Theorem 2 in Section III, which will show that, for a particular class of locally responsive

distributed routing policies, the dynamical flow network has weak resilience equal to the min-

cut capacity.

Proposition 1: Let N be a flow network satisfying Assumptions 1 and 2, λ0 > 0 a constant

inflow, and G an arbitrary routing policy. Then, for any initial flow f ◦, the weak resilience of

the associated dynamical flow network satisfies

γ0(f
◦,G) ≤ C(N ) .

Proof: We shall prove that, for every α ∈ (0, 1], and every θ ≥ 1,

γα,θ(f
◦,G) ≤ C(N )− α

2
λ0 . (13)

Observe that (13) immediately implies that

γ0(f
◦,G) = lim

θ→+∞
lim
α↓0

γα,θ(f
◦,G) ≤ lim

θ→+∞
lim
α↓0

(C(N )− αλ0/2) = C(N ) ,

thus proving the claim.

Consider a minimal origin-destination cut, i.e., some U ⊆ V such that 0 ∈ U , n /∈ U , and∑
e∈E+U

fmax
e = C(N ). Define ε := αλ0/(2C(N )), and consider an admissible perturbation such

that µ̃e(ρe) = εµe(ρe) for every e ∈ E+U , and µ̃e(ρe) = µe(ρe) for all e ∈ E \ E+U . It is readily

verified that the magnitude of such perturbation satisfies

δ = (1− ε)
∑

e∈E+U
fmax
e = (1− ε)C(N ) = C(N )− α

2
λ0 ,

while its stretching coefficient is 1.

Observe that

λ̃U(t) :=
∑
e∈E+U

f̃e(t) ≤
∑

e∈E+U
f̃max
e = ε

∑
e∈E+U

fmax
e = αλ0/2 , t ≥ 0 . (14)
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Now, let W := V \ U be the set of nodes on the destination side of the cut, and observe that

d

dt

(∑
e∈E+w

ρ̃e(t)
)

=
∑

e∈E+w

(∑
j∈E−w

f̃j(t)
)
Gv
e(ρ̃(t))−

∑
e∈E+w

f̃e(t)

=
∑

e∈E−w
f̃e(t)−

∑
e∈E+w

f̃e(t)

(15)

Define A := ∪w∈WE+w , B := ∪w∈WE−w , and let ζ(t) :=
∑

e∈A ρ̃e(t). From (15), the identity

A ∪ E+U = B, and (14), one gets

d

dt
ζ(t) =

∑
w∈W

∑
e∈E+w

d

dt
ρ̃e(t)

=
∑

e∈B
f̃e(t)−

∑
e∈E−n

f̃e(t)−
∑

e∈A
f̃e(t)

=
∑

e∈E+U
f̃e(t)−

∑
e∈E−n

f̃e(t)

< αλ0/2− λ̃n(t) .

(16)

Now assume, by contradiction, that

lim inf
t→+∞

λ̃n(t) ≥ αλ0 .

Then, there would exist some τ ≥ 0 such that λ̃n(t) ≥ 3αλ0/4 for all t ≥ τ . For all t ≥ τ , it

would then follow from (16) that dζ(t)/dt ≤ −αλ0/4 , so that

ζ(t) ≤ ζ(τ) + (t− τ)αλ0/4

by Gronwall’s inequality. Therefore, ζ(t) would converge to −∞ as t grows large, contradicting

the fact that ζ(t) ≥ 0 for all t ≥ 0. Then, necessarily

lim inf
t→+∞

λ̃n(t) < αλ0 ,

so that the perturbed dynamical network is not α-transferring. This implies (13), and therefore

the claim.

III. MAIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with a family of maximally robust distributed routing

policies. Such a family is characterized by the following:

Definition 7 (Locally responsive distributed routing policy): A locally responsive distributed

routing policy for a flow network topology T = (V , E) with node set V = {0, 1, . . . , n} is a
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family of continuously differentiable distributed routing functions G = {Gv : Rv → Sv}v∈V such

that, for every non-destination node 0 ≤ v < n:

(a)
∂

∂ρe
Gv
j (ρ

v) ≥ 0 , ∀j, e ∈ E+v , j 6= e , ρv ∈ Rv ;

(b) for every nonempty proper subset J ( E+v , there exists a continuously differentiable

map GJ : RJ → SJ , where RJ := RJ+ , and SJ := {p ∈ RJ :
∑

j∈J pj = 1} is the

simplex of probability vectors over J , such that, for every ρJ ∈ RJ , if

ρve → +∞ , ∀e ∈ E+v \ J , ρvj → ρJj , ∀j ∈ J ,

then

Gv
e(ρ

v)→ 0, ∀e ∈ E+v \ J , Gv
j (ρ

v)→ GJj (ρJ ), ∀j ∈ J .

Property (a) in Definition 7 states that, as the particle density on an outgoing link e ∈ E+v
increases while the particle density on all the other outgoing links remains constant, the fraction

of inflow at node v routed to any link j ∈ E+v \ {e} does not decrease, and hence the fraction of

inflow routed to link e itself does not increase. In fact, Property (a) in Definition 7 is reminiscent

of Hirsch’s notion of cooperative dynamical systems [7], [8]. On the other hand, Property (b)

implies that the fraction of incoming particle flow routed to a subset of outgoing links K ⊂ E+v
vanishes as the density on links in K grows unbounded while the density on the remaining

outgoing links remains bounded. It is worth observing that, when the routing policy models

some selfish behavior of the particles (e.g., in transportation networks), then Property (a) and

(b) are very natural assumptions on such behavior as they capture some sort of greedy local

minimization of the delay.

Example 2 (Locally responsive distributed routing policy): Let ηv, for 0 ≤ v < n, and ae, for

e ∈ E , be positive constants. Define the routing policy G by

Gv
e(ρ) =

ae exp(−ηvρe)∑
j∈E+v aj exp(−ηvρj)

, ∀e ∈ E+v , ∀0 ≤ v < n . (17)

Clearly, G is distributed, as it uses only information on the particle density on the links outgoing

from a node v in order to compute how the inflow at node v gets split among its outgoing links.

Moreover, for all 0 ≤ v < n, and e ∈ E+v , Gv
e(ρ) is clearly differentiable, and computing partial

derivatives one gets

∂

∂ρj
Gv
e(ρ) = ηv

aeaj exp(−ηvρe) exp(−ηvρj)(∑
i∈E+v αi exp(−ηvρi)

)2 ≥ 0 ∀j ∈ E+v , j 6= e , (18)
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and ∂
∂ρj
Ge(ρ) = 0 for all j ∈ E \ E+v . This implies that Property (a) of Definition 7 holds true.

Property (b) is also easily verified. Therefore, G is a locally responsive distributed routing policy.

In the context of transportation networks, the example in (17) is a variant of the logit function

from discrete choice theory emerging from utilization maximization perspective of drivers, where

the utility associated with link e is the sum of −ρe+log ae/ηv and a double exponential random

variable with parameter ηv (see, e.g., [21]).

We are now ready to state our main results. The first one shows that, when the distributed

routing policy G is locally responsive, the dynamical flow network (6) always admits a unique,

globally attractive limit flow vector.

Theorem 1 (Existence of a globally attractive limit flow under locally responsive routing policies):

Let N be a flow network satisfying Assumptions 1 and 2, λ0 ≥ 0 a constant inflow, and G a

locally responsive distributed routing policy. Then, there exists a unique limit flow f ∗ ∈ cl(F)

such that, for every initial condition ρ(0) ∈ R, the dynamical flow network (6) satisfies

lim
t→+∞

f(t) = f ∗ .

Moreover, the limit flow f ∗ is such that, if f ∗e = fmax
e for some link e ∈ E+v outgoing from a

nondestination node 0 ≤ v < n, then f ∗e = fmax
e for every outgoing link e ∈ E+v .

Proof: See Section IV.

Theorem 1 states that, when the routing policy is distributed and locally responsive, there is a

unique globally attractive limit flow f ∗. Such a limit flow may be in F , in which case it is not

hard to see that it is necessarily an equilibrium flow, i.e., f ∗ ∈ F∗(λ0); or belong to cl(F)\F , i.e.,

it satisfies the capacity constraint on one link with equality, in which case it is not an equilibrium

flow. In the latter case, it satisfies the additional property that, on all the links outgoing from

the same node, the capacity constraints are satisfied with equality. Such additional property will

prove particularly useful in our companion paper [3], when characterizing the strong resilience

of dynamical flow networks. As it will become clear in Section IV, the global convergence

result mainly relies on Assumption 2 on monotonicity of the flow function, and Property (a) of

Definition 7 of locally responsive distributed routing policies, from which the dynamical flow

network (6) inherits a cooperative property. It is worth mentioning that we shall not use general

results for cooperative dynamical systems [7], [8], [22], but rather exploit some other structural
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Fig. 4. Dependence of the limit flow f∗ on the inflow λ0 for the dynamical flow network of Example 3. In (a), the two

components of the limit flow, f∗e1 and f∗e2 , are plotted as functions of the inflow λ0. In (b), the curve of the limit flows is

plotted in the (f∗e1 , f
∗
e2)-plane. Observe as both components are increase from 0 to fmax

e , as λ0 ranges between 0 and λmax
0 ,

while they remain constant at fmax
e , as λ0 varies above λmax

v .
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Fig. 5. Flow vector fields and flow trajectories for the dynamical flow network of Example 3, for three values of the inflow.

In the first two cases λ0 < λmax
0 , and hence the limit flow f∗ is an equilibrium flow. In contrast, in the latter case, λ0 ≥ λmax

0 ,

and consequently f∗ is not an equilibrium flow and f∗e1 = fmax
e1 and fmax

e2 = f∗e2 , as predicted by Theorem 1.

properties of (6) which in fact allow us to prove stronger results. The additional property of the

limit flow follows instead mainly from Property (b) of Definition 7.

Example 3: Consider a simple topology containing just the origin and the destination node,

i.e., with V = {0, 1}, and two parallel links E = {e1, e2}. Assume that the flow functions on the

March 28, 2011 DRAFT



19

two links are identical µe1(ρ) = µe2(ρ) = 3(1− e−ρ)/4. Consider the routing policy

G0
e1

(ρ) =
3
5
e−ρe1

3
5
e−ρe1 + 6e−ρe2

, G0
e2

(ρ) =
6e−ρe2

3
5
e−ρe1 + 6e−ρe2

.

Then, the limit flow of the associated dynamical flow network can be explicitly computed for

every constant inflow λ0 ≥ 0, and is given by

f ∗1 (λ0) =


(

12λ0 − 11 +
√

(12λ0 − 11)2 + 28λ0

)
/24 if 0 ≤ λ0 < 3/2

3/4 if λ0 ≥ 3/2 ,

f ∗2 (λ0) =


(

12λ0 + 11−
√

(12λ0 − 11)2 + 28λ0

)
/24 if 0 ≤ λ0 < 3/2

3/4 if λ0 ≥ 3/2 .

Figure 4 shows the dependence of the limit flow f ∗ on the inflow λ0. The two components

f ∗e1 , and f ∗e2 , increase from 0 to fmax
e1

, and, respectively, from 0 to fmax
e2

, as λ0 ranges from 0 to

λmax
0 := fmax

e1
+ fmax

e2
, while they remain constant as λ0 varies above λmax

0 . Figure 5 reports the

vector fields and flow trajectories associated to the dynamical flow network for three different

values of the inflow, namely λ0 = 0, λ0 = 1, and λ0 = 2. In the first two cases, λ0 < λmax
0 ,

and f ∗ ∈ F∗(λ0) is an equilibrium flow; in the case (iii), f ∗ ∈ cl(F∗(λ0)) \ F∗(λ0) is not an

equilibrium flow.

Our second main result, stated below, shows that locally responsive distributed routing policies

are maximally robust, as the resilience of the induced dynamical flow network coincides with

the min-cut capacity of the network.

Theorem 2 (Weak resilience for locally responsive distributed routing policies): Let N be a

flow network satisfying Assumptions 1 and 2, λ0 > 0 a constant inflow, and G a locally responsive

distributed routing policy such that Gv
e(ρ

v) > 0 for all 0 ≤ v < n, e ∈ E+v , and ρv ∈ Rv. Then,

for every f ◦ ∈ F , the associated dynamical flow network is partially transferring with respect

to f ◦ and has weak resilience

γ0(f
◦,G) = C(N ) .

Proof: See Section V.

Theorem 2, combined with Proposition 1, shows that locally responsive distributed routing

policies achieve the maximal weak resilience possible on a given flow networkN . A consequence

of this result is that locality constraints on the feedback information available to routing policies
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do not reduce the achievable weak resilience. It is also worth observing that such maximal weak

resilience coincides with min-cut capacity of the network, and is therefore independent of the

initial flow f ◦. This is in sharp contrast with the results on the strong resilience of dynamical

flow networks presented in the companion paper [3]. There, it is shown that the strong resilience

depends on the initial flow, and local information constraints reduce the maximal strong resilience

achievable on a given flow network.

IV. PROOF OF THEOREM 1

Let N be a flow network satisfying Assumptions 1 and 2, G a locally responsive distributed

routing policy, and λ0 ≥ 0 a constant inflow. We shall prove that there exists a unique f ∗ ∈ cl(F)

such that the flow f(t) associated to the solution of the dynamical flow network (6) converges

to f ∗ as t grows large, for every initial condition ρ(0) ∈ R. Before proceeding, it is worth

observing that, thanks to Property (a) of Definition 7 of locally responsive distributed routing

policies, Assumption 2 on the monotonicity of the flow functions, and the structure of the

dynamical flow network (6), one may rewrite (6) as

d

dt
ρe = Fe(ρ) , ∀e ∈ E ,

where F : R → RE is differentiable and such that

∂

∂ρe
Fe(ρ) ≤ 0 ,

∂

∂ρj
Fe(ρ) ≥ 0 , ∀e 6= j ∈ E .

The above shows that, the dynamical flow network (6) driven by a locally responsive distributed

routing policy G is cooperative in the sense of Hirsch [7], [8]. Indeed, one may apply the standard

theory of cooperative dynamical systems and monotone flows [7], [8], [22] in order to prove

some properties of the solution of (6), e.g., convergence from almost every initial condition.

However, we shall not rely on this general theory and rather use a direct approach based on a

Lyapunov argument exploiting the particular structure of the dynamical system (6), and leading

us to stronger results, i.e., global convergence to a unique limit flow.

We shall proceed by proving a series of intermediate results some of which will prove useful

also in the companion paper [3]. First, given an arbitrary non-destination node 0 ≤ v < n, we

shall focus on the input-output properties of the local system

d

dt
ρe(t) = λ(t)Gv

e(ρ
v(t))− fe(t) , fe(t) = µe(ρe(t)) , ∀e ∈ E+v , (19)
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where λ(t) is a nonnegative-real-valued, Lipschitz continuous input, and f v(t) := {fe(t) : e ∈

E+v } is interpreted as the output. We shall first prove existence (and uniqueness) of a globally

attractive limit flow for the system (19) under constant input. We shall then extend this result to

show the existence and attractivity of a local equilibrium point under time-varying, convergent

local input. Finally, we shall exploit this local input-output property, and the assumption of

acyclicity of the network topology in order to establish the main result.

The following is a simple technical result, which will prove useful in order to apply Property

(a) of Definition 7.

Lemma 1: Let 0 ≤ v < n be a nondestination node, and Gv : Rv → Sv a continuously

differentiable function satisfying Property (a) of Definition 7. Then, for any σ, ς ∈ Rv,∑
e∈E+v

sgn(σe − ςe) (Gv
e(σ)−Gv

e(ς)) ≤ 0. (20)

Proof: Consider the sets K := {e ∈ E+v : σe > ςe}, J := {e ∈ E+v : σe ≤ ςe}, and

L := {e ∈ E+v : σe < ςe}. Define GK(ζ) :=
∑

k∈KG
v
k(ζ), GL(ζ) :=

∑
l∈LG

v
l (ζ), and GJ (ζ) :=∑

j∈J G
v
j (ζ). We shall show that, for any σ, ς ∈ Rv,

GK(σ) ≤ GK(ς), GL(σ) ≥ GL(ς) . (21)

Let ξ ∈ Rv be defined by ξk = σk for all k ∈ K, and ξe = ςe for all e ∈ E+v \K. We shall prove

that GK(σ)−GK(ς) ≤ 0 by writing it as a path integral of ∇GK(ζ) first along the segment SK

from ς to ξ, and then along the segment SL from ξ to σ. Proceeding in this way, one gets

GK(σ)−GK(ς) =

∫
SK

∇GK(ζ) ·dζ+

∫
SL

∇GK(ζ) ·dζ = −
∫
SK

∇GJ (ζ) ·dζ+

∫
SL

∇GK(ζ) ·dζ ,

(22)

where the second equality follows from the fact that GK(ζ) = 1−GJ (ζ) since Gv(ζ) ∈ Sv. Now,

Property (a) of Definition 7 implies that ∂GK(ζ)/∂ζl ≥ 0 for all l ∈ L, and ∂GJ (ζ)/∂ζk ≥ 0

for all k ∈ K. It follows that ∇GJ (ζ) · dζ ≥ 0 along SK, and ∇GK(ζ) · dζ ≤ 0 along SL.

Substituting in (22), one gets the first inequality in (21). The second inequality in (21) follows

by similar arguments. Then, one has∑
e∈E+v

sgn(σe − ςe) (Gv
e(σ)−Gv

e(ς)) = GK(σ)−GK(ς) +GL(ς)−GL(σ) ≤ 0 ,

which proves the claim.
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We can now exploit Lemma 1 in order to prove the following key result guaranteeing that

the solution of the local dynamical system (19) with constant input λ(t) ≡ λ converges to a

limit point which depends on the value of λ but not on the initial condition. (Cf. Example 3 and

Figure 5.)

Lemma 2: (Existence of a globally attractive limit flow for the local dynamical system under

constant input) Let 0 ≤ v < n be a non-destination node, and λ a nonnegative-real constant. As-

sume that Gv : Rv → Sv is continuously differentiable and satisfies Property (a) of Definition 7.

Then, there exists a unique f ∗(λ) ∈ cl(Fv) such that the solution of the dynamical system (19)

with constant input λ(t) ≡ λ satisfies

lim
t→+∞

fe(t) = f ∗e (λ) , ∀e ∈ E+v ,

for every initial condition ρv(0) ∈ Rv.

Proof: Let us fix some λ ∈ R+. For every initial condition σ ∈ Rv, and time t ≥ 0, let

Φt(σ) := ρv(t) be the value of the solution of (19) with constant input λ(t) ≡ λ and initial

condition ρ(0) = σ, at time t ≥ 0. Also, let Ψt(σ) ∈ Rv be defined by Ψt
e(σ) = µe(Φ

t
e(σ)), for

every e ∈ E+v . Now, fix two initial conditions σ, ς ∈ Rv, and define

χ(t) := ||Φt(σ)− Φt(ς)||1 , ξ(t) := ||Ψt(σ)−Ψt(ς)||1 .

Since µe(ρe) is increasing by Assumption 2, one has that

sgn(Φt
e(σ)− Φt

e(ς)) = sgn(Ψt
e(σ)−Ψt

e(ς)) . (23)

On the other hand, using Lemma 1, one gets∑
e∈E+v

sgn(Φt
e(σ)− Φt

e(ς))
(
Gv
e(Φ

t(σ))−Gv
e(Φ

t(ς))
)
≤ 0 , ∀ t ≥ 0 . (24)

From (23) and (24), it follows that, for all 0 ≤ s ≤ t,

χ(t) = ||Φt(ς)− Φt(σ)||1

= χ(s) +

∫ t

s

∑
e∈E+v

sgn(Φu
e (σ)− Φu

e (ς))
(
Gv
e(Φ

u(σ))−Gv
e(Φ

s(ς))−Ψu
e (σ) + Ψu

e (ς)
)
du

≤ χ(s)−
∫ t

s

||Ψu(σ)−Ψu(ς)||1du

= χ(s)−
∫ t

s

ξ(u)du .

(25)
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Since χ(t) ≥ 0, (25) implies that
∫ t
0
ξ(u)du ≤ χ(0) for all t ≥ 0. Since ξ(u) ≥ 0, it follows that

the limit ∫ +∞

0

ξ(u)du = lim
t→+∞

∫ t

0

ξ(u)du ≤ χ(0)

exists and is finite. Now, observe that ξ(t) = ||µv(Φt(σ))−µv(Φt(ς))||1 is a uniformly continuous

function of t on [0,+∞), as it is the composition of the uniformly continuous functions f v 7→

||f v||1, ρv 7→ µv(ρv) (whose uniform continuity follows from Assumption 2), and t 7→ Φt(σ) and

t 7→ Φt(ς) (whose uniform continuity follows from being the solutions of the local dynamical

system (19)). Hence, an application of Barbalat’s lemma [23, Lemma 4.2] implies that ξ(t)

converges to 0, as t grows large. That is,

lim
t→+∞

||Ψt(σ)−Ψt(ς)||1 = 0 , ∀σ, ς ∈ Rv . (26)

Now, for any σ ∈ Rv, one can apply (26) with ς := Φτ (σ), and get that

lim
t→+∞

||Ψt(σ)−Ψt+τ (σ)||1 = lim
t→+∞

||Ψt(σ)−Ψt(Φτ (σ))||1 = 0 , ∀τ ≥ 0 .

The above implies that, for any initial condition ρv(0) = σ ∈ Rv, the flow Ψt(σ) is Cauchy, and

hence convergent to some f ∗(λ, σ) ∈ cl(Fv). It follows from (26) again, that

||f ∗(λ, σ)− f ∗(λ, ς)||1 = lim
t→+∞

||Ψt(σ)−Ψt(ς)||1 = 0 , ∀σ, ς ∈ Rv ,

which shows that the limit flow does not depend on the initial condition.

Now, let us define

λmax
v :=

∑
e∈E+v

fmax
e .

The following result characterizes the way the local limit flow f ∗(λ) depends on the local input

λ. (Cf. Example 3 and Figure 4.)

Lemma 3 (Dependence of the local limit flow on the input): Let 0 ≤ v < n be a non-destination

node, and λ a nonnegative-real constant. Assume that Gv : Rv → Sv is continuously differen-

tiable and satisfies Properties (a) and (b) of Definition 7. Let f ∗(λ) ∈ cl(Fv) be the limit flow

of the local system (19) with constant input λ(t) ≡ λ, existence and uniqueness of which follow

from Lemma 2. Then,

(i) if λ < λmax
v , then

f ∗e (λ) < fmax
e , λGv

e(µ
−1(f ∗(λ))) = f ∗e , ∀e ∈ E+v ;
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(ii) if λ ≥ λmax
v , then f ∗e (λ) = fmax

e for every e ∈ E+v .

Moreover, f ∗(λ) is continuous as a map from R+ to cl(Fv).

Proof: Define ρ∗ ∈ Rv by

ρ∗e :=

 µ−1e (f ∗e (λ)) if f ∗e (λ) < fmax
e

+∞ if f ∗e (λ) = fmax
e .

Now, by contradiction, assume that there exists a nonempty proper subset J ⊂ E+v such that

ρ∗j < +∞ for every j ∈ J , and ρ∗e = +∞ for every k ∈ K := E+v \ J . Thanks to Property (b)

of Definition 7, one would have that, for any initial condition ρ(0) ∈ R, the solution of (19)

satisfies

lim
t→+∞

∑
k∈K

λGv
k(ρ

v(t))− fk(t) = −
∑
k∈K

fmax
k < 0 ,

so that there would exist some τ ≥ 0 such that∑
k∈K

(λGv
k(ρ

v(t))− fk(t)) ≤ 0 , ∀t ≥ τ .

Hence,∑
k∈K

ρk(t) =
∑
k∈K

ρk(τ) +

∫ t

τ

∑
k∈K

(λGv
k(ρ

v(s))− fk(s))) ds ≤
∑
k∈K

ρk(τ) < +∞ , ∀t ≥ τ,

which would contradict the assumption that ρ∗k = +∞ for every k ∈ K. Therefore, either ρ∗e is

finite for every e ∈ E+v , or ρ∗e is infinite for every e ∈ E+v .

In order to distinguish between the two cases, let

ζ(t) :=
∑
e∈E+v

ρe(t) , ϑ(t) :=
∑
e∈E+v

fe(t) .

Observe that, for all t ≥ τ ≥ 0,

ζ(t) = ζ(τ) +

∫ t

τ

(λ− ϑ(s)) ds . (27)

First, consider the case when λ < λmax
v , and assume by contradiction that ρ∗e = +∞, and hence

f ∗e = fmax
e , for every e ∈ E+v . This would imply that

lim
t→∞

ϑ(t) = λmax
v > λ ,

so that there would exist some τ ≥ 0 such that λ − ϑ(t) ≤ 0 for every t ≥ τ , and hence (27)

would imply that ζ(t) ≤ ζ(τ) < +∞ for all t ≥ τ , thus contradicting the assumption that
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ρe(t) converges to ρ∗e = +∞ as t grows large. Hence, necessarily ρ∗ ∈ Rv, and f ∗(λ) ∈ Fv.

Therefore, being a finite limit point of the autonomous dynamical system (19) with continuous

right hand side, ρ∗ is necessarily an equilibrium, and so f ∗(λ) is an equilibrium flow for the

local dynamical system (19).

On the other hand, when λ ≥ λmax
v , (27) shows that ζ(t) is non-decreasing, hence convergent

to some ζ(∞) ∈ [0,+∞] at t grows large. Assume, by contradiction, that ζ(∞) is finite. Then,

passing to the limit of large t in (27), one would get∫ +∞

τ

(λ− ϑ(s))ds = ζ(∞)− ζ(τ) ≤ ζ(∞) < +∞ .

This, and the fact that ϑ(t) < λmax
v ≤ λ for all t ≥ 0, would imply that

lim
t→+∞

ϑ(t) = λ . (28)

Since fe(t) < fmax
e , (28) is impossible if λ > λmax

v . On the other hand, if λ = λmax
v , then (28)

implies that, for every e ∈ E+v , fe(t) converges to fmax
e , and hence ρe(t) grows unbounded as t

grows large, so that ζ(∞) would be infinite. Hence, if λ ≥ λmax
v , then necessarily ζ(∞) is infinite,

and thanks to the previous arguments this implies that ρ∗e = +∞, and hence f ∗e (λ) = fmax
e for

all σ ∈ Rv, e ∈ E+v .

Finally, it remains to prove continuity of f ∗(λ) as a function of λ. For this, consider the

function H : (0,+∞)E
+
v × (0, λmax

v )→ RE+v defined by

He(ρ
v, λ) := λGv

e(ρ
v)− µe(ρe) , ∀e ∈ E+v .

Clearly, H is differentiable and such that

∂

∂ρe
He(ρ

v, λ) = λ
∂

∂ρe
Gv
e(ρ

v)− µ′e(ρe) = −
∑
j 6=e

λ
∂

∂ρe
Gv
j (ρ

v)− µ′e(ρe) < −
∑
j 6=e

∂

∂ρe
Hj(ρ

v, λ) ,

(29)

where the inequality follows from the strict monotonicity of the flow function (see Assumption

2). Property (a) in Definition 7 implies that ∂Hj(ρ
v, λ)/∂ρe ≥ 0 for all j 6= e ∈ E+v . Hence, from

(29), we also have that ∂He(ρ
v, λ)/∂ρe < 0 for all e ∈ E+v . Therefore, for all ρv ∈ (0,+∞)E

+
v ,

and λ ∈ (0, λmax
v ), the Jacobian matrix ∇ρvH(ρv, λ) is strictly diagonally dominant, and hence

invertible by a standard application of the Gershgorin Circle Theorem, e.g., see Theorem 6.1.10

in [24]. It then follows from the implicit function theorem that ρ∗(λ), which is the unique zero
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of H( · , λ), is continuous on the interval (0, λmax
v ). Hence, also f ∗(λ) = µ(ρ∗(λ)) is continuous

on (0, λmax
v ), since it is the composition of two continuous functions. Moreover, since∑
e∈E+v

f ∗e (λ) = λ , 0 ≤ f ∗e (λ) ≤ fmax
e , ∀e ∈ E+v , ∀λ ∈ (0, λmax

v ) ,

one gets that

lim
λ↓0

f ∗e (λ) = 0 , lim
λ↑λmax

v

f ∗e (λ) = fmax
e ,

for all e ∈ E+v . Now, one has that
∑

e∈E+v f
∗
e (0) = 0, so that

0 = f ∗e (0) = lim
λ↓0

f ∗e (λ) , ∀e ∈ E+v .

Moreover, as previously shown,

f ∗e (λ) = fmax
e = lim

λ↑λmax
v

f ∗e (λ) , ∀λ ≥ λmax
v .

This completes the proof of continuity of f ∗(λ) on [0,+∞).

While Lemma 2 ensures existence of a unique limit point for the local system (19) with

constant input λ(t) ≡ λ, the following lemma establishes a monotonicity property with respect

to a time-varying input λ(t).

Lemma 4 (Monotonicity of the local system): Let 0 ≤ v < n be a nondestination node, Gv :

Rv → Sv a continuously differentiable map, satisfying Properties (a) and (b) of Definition 7,

and λ−(t), and λ+(t) be two nonnegative-real valued Lipschitz-continuous functions such that

λ−(t) ≤ λ+(t) for all t ≥ 0. Let ρ−(t) and ρ+(t) be the solutions of the local dynamical system

(19) corresponding to the inputs λ−(t), and λ+(t), respectively, with the same initial condition

ρ−(0) = ρ+(0). Then

ρ−e (t) ≤ ρ+e (t) , ∀e ∈ E+v , ∀t ≥ 0 . (30)

Proof: For e ∈ E+v , define τe := inf{t ≥ 0 : ρ+e (t) > ρ−e (t)}, and let τ := min{τe : e ∈ E+v }.

Assume by contradiction that ρ−e (t) > ρ+e (t) for some t ≥ 0, and e ∈ E+v . Then, τ < +∞, and

I := argmin{τe : e ∈ E+v } is a well defined nonempty subset of E+v . Moreover, by continuity,

one has that there exists some ε > 0 such that, ρ−i (τ) = ρ+i (τ), ρ−i (t) > ρ+i (t), and ρ−j (t) < ρ+j (t)

for all i ∈ I, j ∈ J , and t ∈ (τ, τ + ε), where J := E+v \ I. Using Lemma 1, one gets, for
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every t ∈ (τ, τ + ε),

0 ≥ 1
2

∑
e sgn(ρ−e (t)− ρ+e (t)) (Gv

e(ρ
−(t))−Gv

e(ρ
+(t)))

= 1
2

(∑
iG

v
i (ρ
−(t))−

∑
iG

v
i (ρ

+(t))−
∑

j G
v
j (ρ
−(t)) +

∑
j G

v
j (ρ

+(t))
)

=
∑

iG
v
i (ρ
−(t))−

∑
iG

v
i (ρ

+(t)) ,

where the summation indices e, i, and j run over E+v , I, and J , respectively. On the other

hand, Assumption 2 implies that µi(ρ−i (t)) ≥ µi(ρ
+
i (t)) for all i ∈ I, t ∈ [τ, τ + ε). Now, let

χ(t) :=
∑

i∈I
(
ρ−i (t)− ρ+i (t)

)
. Then, for every t ∈ (τ, τ + ε), one has

0 < χ(t)− χ(τ)

=

∫ t

τ

λ−(s)
∑

i∈I

(
Gv
i (ρ
−(s))−Gv

i (ρ
−(s))

)
ds

−
∫ t

τ

(λ+(s)− λ−(s))
∑

i∈I
Gv
i (ρ

+(s))ds−
∫ t

τ

∑
i∈I

(
µi(ρ

−
i (s))− µi(ρ+i (s))

)
ds

≤ 0 ,

which is a contradiction. Then, necessarily (30) has to hold true.

The following lemma establishes that the output of the local system (19) is convergent,

provided that the input is convergent.

Lemma 5 (Attractivity of the local dynamical system): Let 0 ≤ v < n be a nondestination

node, Gv : Rv → Sv a continuously differentiable map, satisfying Properties (a) and (b) of

Definition 7, and λ(t) a nonnegative-real-valued Lipschitz continuous function such that

lim
t→+∞

λ(t) = λ . (31)

Then, for every initial condition ρ(0) ∈ R, the solution of the local dynamical system (19)

satisfies

lim
t→+∞

fe(t) = f ∗e (λ) , ∀e ∈ E+v , (32)

where f ∗(λ) is as defined in Lemma 2.

Proof: Fix some ε > 0, and let τ ≥ 0 be such that |λ(t)−λ| ≤ ε for all t ≥ τ . For t ≥ τ , let

f−(t) and f+(t) be the flow associated to the solutions of the local dynamical system (19) with

initial condition ρ−(τ) = ρ+(τ) = ρv(τ), and constant inputs λ−(t) ≡ λ− := max{λ − ε, 0},

and λ+(t) ≡ λ+ ε, respectively. From Lemma 4, one gets that

f−e (t) ≤ fe(t) ≤ f+
e (t) , ∀t ≥ τ , ∀e ∈ E+v . (33)
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On the other hand, Lemma 2 implies that f−(t) converges to f ∗(λ−), and f+(t) converges to

f ∗(λ+), as t grows large. Hence, passing to the limit of large t in (33) yields

f ∗e (λ−) ≤ lim inf
t→+∞

fe(t) ≤ lim sup
t→+∞

fe(t) ≤ f ∗e (λ+ ε) , ∀e ∈ E+v .

Form the arbitrariness of ε > 0, and the continuity of f ∗(λ) as a function of λ by Lemma 3, it

follows that f(t) converges to f ∗(λ), as t grows large, which proves the claim.

We are now ready to prove Theorem 1 by showing that, for any initial condition ρ(0) ∈ R,

the solution of the dynamical flow network (6) satisfies

lim
t→+∞

fe(t) = f ∗e , (34)

for all e ∈ E . We shall prove this by showing via induction on v = 0, 1, . . . , n− 1 that, for all

e ∈ E+v , there exists f ∗e ∈ [0, fmax
e ] such that (34) holds true. First, observe that, thanks to Lemma

2, this statement is true for v = 0, since the inflow at the origin is constant. Now, assume that

the statement is true for all 0 ≤ v < w, where w ∈ {1, . . . , n − 2} is some intermediate node.

Then, since E−w ⊆ ∪w−1v=0 E+v , one has that

lim
t→+∞

λ−w(t) = lim
t→+∞

∑
e∈E−w

fe(t) =
∑

e∈E−w
f ∗e = λ∗w .

Then, Lemma 5 implies that, for all e ∈ E+w , (34) holds true with f ∗e = f ∗e (λ∗w), thus proving the

statement for v = w. This proves the existence of a globally attractive limit flow f ∗. The proof

of Theorem 1 is completed by Lemma 3.

V. PROOF OF THEOREM 2

This section is devoted to the proof of Theorem 2 on the weak resilience of dynamical flow

networks with locally responsive distributed routing policies G.

To start with, let us recall that in this case Theorem 1 implies the existence of a globally

attractive limit flow f̃ ∗ ∈ cl(F) for the perturbed dynamical flow network associated to any

admissible perturbation Ñ . Define λ̃∗0 = λ0, and λ̃∗v =
∑

e∈E−v f̃
∗
e , for 0 < v ≤ n.

Lemma 6: Consider a dynamical flow network N satisfying Assumptions 1 and 2, with locally

responsive distributed routing policy G such that Gv
e(ρ

v) > 0 for all 0 ≤ v < n, e ∈ E+v , and

ρv ∈ Rv. Then, for every θ ≥ 1, there exists βθ ∈ (0, 1) such that, if Ñ is an admissible
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perturbation of N with stretching coefficient less than or equal to θ, and f̃ ∗ ∈ cl(F̃) is the limit

flow vector of the corresponding perturbed dynamical flow network (11), then

f̃ ∗e ≥ βθλ̃
∗
v ,

for every non-destination node 0 ≤ v < n, and every link e ∈ E+v for which f̃ ∗e ≤ f̃max
e /2.

Proof: First, observe that the claim is trivially true if f̃ ∗e > f̃max
e /2 for all e ∈ E . Therefore,

let us assume that there exists some link e ∈ E for which f̃ ∗e ≤ f̃max
e /2. Define ρθ ∈ Rv by

ρθj = 0 for all j ∈ E+v , j 6= e, and ρθe = θρµe , where recall that ρµe is the median density of the

flow function µe. Since the stretching coefficient of Ñ is less than or equal to θ, one has that the

median densities of the perturbed and the unperturbed flow functions satisfy ρ̃µe ≤ θρµe . This and

the fact that f̃ ∗e ≤ f̃max
e /2 imply that ρ̃∗e ≤ ρ̃µe ≤ ρθe, while clearly ρ̃∗j ≥ 0 = ρθj for all j ∈ E+v ,

j 6= e. Now, let βθ := Gv
e(ρ

θ), and observe that, thanks to the assumption on the strict positivity

of Gv
e(ρ

v), one has βθ > 0. Then, from Lemma 1 one gets that

Gv
e(ρ̃
∗) =

1

2

(
Gv
e(ρ̃
∗) + 1−

∑
j 6=e

Gv
j (ρ̃
∗)
)
≥ 1

2

(
Gv
e(ρ

θ) + 1−
∑

j 6=e
Gv
j (ρ

θ)
)

= Gv
e(ρ

θ) = βθ .

(35)

On the other hand, since f̃ ∗e ≤ f̃max
e /2 < f̃max

e , Lemma 2 implies that necessarily λ̃∗vG
v
e(ρ̃
∗) = f̃ ∗e .

The claim now follows by combining this and (35).

As a consequence of Lemma 6, we now prove the following result showing that the dynamical

flow network is partially transferring and providing a lower bound on its weak resilience:

Lemma 7: Let N be a flow network satisfying Assumptions 1 and 2, λ0 ≥ 0 a constant inflow,

and G a locally responsive distributed routing policy such that Gv
e(ρ

v) > 0 for all 0 ≤ v < n,

e ∈ E+v , and ρv ∈ Rv. Then, the associated dynamical flow network is partially transferring,

and, for every θ ≥ 1, and α ∈ (0, βnθ ], its resilience satisfies

γα,θ(f
*,G) ≥ C(N )− 2|E|λ0β1−n

θ α ,

where βθ ∈ (0, 1) is as in Lemma 6.

Proof: Consider an arbitrary admissible perturbation Ñ of magnitude

δ ≤ C(N )− 2|E|λ0β1−n
θ α , (36)

and stretching coefficient less than or equal to θ. We shall iteratively select a sequence of nodes

0 =: v0, v1, . . . , vk := n such that, for every 1 ≤ j ≤ k,

∃i ∈ {0, . . . , j − 1} such that (vi, vj) ∈ E , f̃ ∗(vi,vj) ≥ λ0αβ
j−n
θ . (37)
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Since vk = n, and βk−nθ ≥ 1, the above with j = k ≤ n will immediately imply that

lim
t→+∞

λ̃n(t) = λ̃∗n =
∑

e∈E−n
f̃ ∗e ≥ αλ0β

k−n
θ ≥ αλ0 , (38)

so that the perturbed dynamical flow network is α-transferring. For 0 < α ≤ βn−1θ /(2|E|λ0),

one could chose a trivial perturbation Ñ = N so that (38) would imply the partial transferring

property of the original dynamical flow network. Moreover, the rest of the claim will then readily

follow from the arbitrariness of the considered admissible perturbation.

First, let us consider the case j = 1. Assume by contradiction that f̃ ∗e < λ0αβ
1−n
θ , for every

link e ∈ E+0 . Since α ≤ βnθ , this would imply that f̃ ∗e < βθλ0 and hence, by Lemma 6, that

f̃max
e ≤ 2f̃ ∗e for all e ∈ E+0 , so that∑

e∈E+0
f̃max
e ≤ 2

∑
e∈E+0

f̃ ∗e < 2α|E+0 |β1−n
θ λ0 ≤ 2α|E|β1−n

θ λ0 .

Combining the above with the inequality C(N ) ≤
∑

e∈E+0
fmax
e , one would get

δ ≥
∑

e∈E+0

(
fmax
e − f̃max

e

)
> C(N )− 2α|E|β1−n

θ λ0 ,

thus contradicting the assumption (36). Hence, necessarily there exists e ∈ E+0 such that f̃ ∗e ≥

λ0αβ
1−n
θ , and choosing v1 to be the unique node in V such that e ∈ E−v1 , one sees that (37) holds

true with j = 1.

Now, fix some 1 < j∗ ≤ k, and assume that (37) holds true for every 1 ≤ j < j∗. Then, by

choosing i as in (37), one gets that

λ̃∗vj =
∑

e∈E+vj
f̃ ∗e ≥ f̃ ∗(vi,vj) ≥ λ0αβ

j−n
θ ≥ λ0αβ

j∗−1−n
θ , ∀1 ≤ j < j∗ . (39)

Moreover,

λ̃∗v0 = λ0 > λ0αβ
−n
θ ≥ λ0αβ

j∗−1−n
θ . (40)

Let U := {v0, v1, . . . , vj∗−1} and E+U ⊆ E be the set of links with tail node in U and head node

in V \ U . Assume by contradiction that

f̃ ∗e < λ0αβ
j∗−n
θ , ∀e ∈ E+U .

Thanks to (39) and (40), this would imply that, f̃ ∗e < βθλ̃
∗
j , for every 0 ≤ j < j∗ and e ∈ E+vj∩E

+
U .

Then, since E+U = ∪j
∗−1
j=0 (E+vj ∩ E

+
U ), Lemma 6 would imply that f̃max

e ≤ 2f̃ ∗e ,for every e ∈ E+U .

This would yield∑
e∈E+U

f̃max
e ≤

∑
e∈E+U

2f̃ ∗e < 2
∑

e∈E+U
λ0αβ

j∗−n
θ ≤ 2|E|λ0αβ1−n

θ .

March 28, 2011 DRAFT



31

From the above and the inequality C(N ) ≤
∑

e∈E+U
fmax
e , one would get

δ ≥
∑

e∈E+U

(
fmax
e − f̃max

e

)
> C(N )− 2α|E|β1−n

θ λ0 ,

thus contradicting the assumption (36). Hence, necessarily there exists e ∈ E+U such that f̃ ∗e ≥

λ0αβ
1−n
θ , and choosing vj∗ to be the unique node in V such that e ∈ E−vj∗ one sees that (37)

holds true with j = j∗. Iterating this argument until vj∗ = n proves the claim.

It is now easy to see that Lemma 7 implies that limα↓0 γα,θ ≥ C(N ) for every θ ≥ 1, thus

showing that γ0(f ◦,G) ≥ C(N ). Combined with Proposition 1, this shows that γ0(f ◦,G) =

C(N ), thus completing the proof of Theorem 2.

VI. CONCLUSION

In this paper, we studied robustness properties of dynamical flow networks, where the dy-

namics on every link is driven by the difference between the inflow, which depends on the

upstream routing decisions, and the outflow, which depends on the particle density, on that

link. We proposed a class of locally responsive distributed routing policies that rely only on

local information about the network’s current particle densities and yield the maximum weak

resilience with respect to adversarial disturbances that reduce the flow functions of the links of

the network. We also showed that the weak resilience of the network in that case is equal to

min-cut capacity of the network, and that it is independent of the local information constraint

and the initial flow. Strong resilience of dynamical flow networks is studied in the companion

paper [3].
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