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ABSTRACT

The purpose of this study was to determine a force-deflection relationship and a force-contact
area relationship between a flat planar solid and a spherical solid in terms of material and surface
properties of the two bodies. This relationship was determined and it was discovered that the
force was directly proportional to both the deflection and contact area. This information is useful
in the design and performance of RFID chips. The RFID chip-antenna interface is the area of
greatest power loss in the system, and by determining a relationship to increase the contact area
in that region, the power loss to the antenna can be reduced.

Moreover, an analysis including asperities on the micro scale geometry of the solids was
conducted. In the final approach to the problem, a random distribution of asperity types was
analyzed. An expression was derived for the total force applied in terms of a given deflection
and a range of asperity radii of curvature. A three-dimensional graph was created to show how
each of these variables depends on the each other when asperities exist. This relationship is very
significant, because it can be used to improve current RFID chip technology to achieve better
performance. This expression can also be used to determine specifications in the manufacturing
process to achieve a certain deflection or area of contact between the contacting bodies, thereby
improving the current manufacturing process.

Thesis Supervisor: Sanjay Sarma
Title: Professor of Mechanical Engineering
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1.0 Introduction

It is the goal of the Auto-ID Center at MIT to reduce the power loss through an RFID chip-
antenna interface due to the adhesive bond between the two surfaces. There is a direct
correlation between how much power the antenna receives and how well it recognizes a signal.
Therefore, it is desired to get as much power to the antenna as possible. Unfortunately, adhesive
bonds are inherently non-conductive, and therefore the area of greatest resistance is between the
RFID chip and the antenna. If the contact resistance can somehow be lowered, then the power
loss can be lowered also.

One way in which the contact resistance can be lowered is to increase the contact area between
the two surfaces, thereby allowing more current flow per unit area. The contact resistance is
indirectly proportional to the contact area between the surfaces in contact. For example, the
greater the contact area is between the chip and the antenna, the lower the electrical resistance is
between the two contacting bodies. The smaller is the contact area, the higher is the electrical
resistance. Since the goal is to decrease the power loss, it is desired to decrease the resistance,
and therefore increase the contact area.

In order to do so, one must first understand the relationship between the force applied between
the two solids, the deflection of the two solids, and the contact area that arises as a result of the
force applied between the two solids. This study will attempt to determine idealized
relationships relating these three parameters.

Finally, when dealing with micro scale geometry, asperities on the surface become an issue in
determining the force applied, deflection, and size of the contact area between the two solids.
This study will further investigate the effects of asperities on the relationships between the force,
deflection. and contact area of contacting bodies.
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2.0 Statement of Problem

There are two small spherical objects on the top of the RFID chip that come into contact with the
flat antenna. The antenna exerts a force on the spherical objects on the chip, and contact stresses
arise between the RFID chip-antenna interfaces. Figure 1 shows a sketch of the RFID chip-
antenna assembly, and shows the location of the contact stresses of interest in this study.

contact
stresses

small antenna
adhestive

large antenna

Figure 1: Sketch of RFID chip-antenna assembly and location of contact stresses (not drawn to scale).

It is possible to decrease the resistance through the chip-antenna interface by increasing the
contact area in the interface without plastic deformation of the solids. The objective of this study
is to determine relationships describing this phenomenon.

The geometry consists of a flat planar solid coming into contact with a spherically shaped solid.
It is desirable tc determine the relationship between the force applied on the chip-antenna
interface, the total deflection of the two solids that occurs as a result of this force, and the size of
the contact area between the two solids. This relationship can be determined using Hertz theory
of elastic contact between two smooth solids.

In addition, asperities are introduced to the small-scale geometry of the spherical solid to
determine the effect of small deviations of the surface profile on the force, deflection, and
contact area between the two solids. An analysis is conducted to determine the relationship
between the size of an asperity, and its force-deflection relationship.

Finally, it is assumed that there is a random distribution of asperity types. Therefore, an
expression is needed to determine the total force applied given in terms of the total deflection
and a range of asperity types on the surface of the spherical solid.




3.0 Theoretical Analysis
3.1 Geometry of Smooth Surfaces in Contact

When two solids are brought into contact, they initially touch at a single point or along a line. In
the case of the RFID chip-antenna interface, a flat planar body comes into contact with a
spherical body. In this case, the initial contact area is a single point. Under the smallest load,
both bodies begin to deform in the vicinity of the first point of contact, so that the two bodies
now touch over a finite area. A theory of normal contact of elastic solids (Hertz theory) is used
to determine the size and shape of the contact area and how it grows with increasing load.

Figure 2 shows two bodies coming into contact, a plane and a sphere, and how the shape of the
sphere changes with increasing load from the planar body, as well as how the contact area grows
with increasing load.

Hertrian Deflechien.
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Figure 2: A planar body coming into contact with a spherical body.

Figure 3 below shows two solids of general shape in cross-section afier deformation (adapted
from [2]). The first point of contact is the origin of a rectangular coordinate system, where the x-
y plane is the common tangent plane to the two surfaces and the z-axis lies along the common
normal to the two surfaces. The z-axis is positive into the lower solid. Each surface is smooth
on both the micro and macro scale. On the micro scale, this means the absence of small surface
asperities that may lead to discontinuous contacts or local variations in contact pressure.

Ty

sl

Figure 3: Two solids of general shape in cross-section after deformation (adapted from [2]).



Hertz theory was used here to determine a relationship between the total force, F, between the
two bodies, the total deflection, &, of the two bodies, and the radius of the contact area, a,
between the two bodies. Some assumptions that were made to idealize the properties of the
contacting bodies and the contact conditions are ([1]):

- the contacting bodies are elastic, homogeneous, and isotropic,
- the strains are small,

- the surfaces are smooth and non-conforming,

- the surface shape does not change in time, and

- the contact is frictionless.

The profile of each surface in the region around the origin can approximately be expressed by an
expression of the form,

7z, =Ax"+By*+Cxy+..., (3.1)

where higher order terms in x and y are neglected. Choosing the orientation of the x and y axes,
so that the term in xy vanishes, (3.1) can be written,

1 ., 1
Z,=——X +—y°, 3.2
1 IR, 2R1y (3.2)

where R, and R,” are the principal radii of curvature of the surface at the origin. They are the
maximum and minimum values of the radius of curvature of all possible cross-sections of the
profile. In the same way, an expression can be written for the second surface,

Z, = LN l..y"- : (3.3)
2R, 2R,

The separation between the two surfaces is the given by,

1 2 l 2 1 2 1 2 1 2 1 2
h=z -, =—x"+—=y +—x"+—=y =—x"+—=)", 34
TR, 2R, Y 2R, 2R, Y TR 2R B4

where R’ and R” are defined as the principal relative radii of curvature, given by,

1 1 1

— =+

R Rl R2 3.5)
I 1 1 '
— =+

R Rl R
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Consider now the deformation as a normal load, F, is applied. Before deformation, the
separation between two corresponding surface points Si(x, y, z1) and Sa2(x, y, z2) is given by (3.4).



From the symmetry of this expression about O, the contact region extends an equal distance on
either side of O. During the compression, distant points in the two bodies 7} and T; move
towards O, parallel to the z-axis, by displacements & and &, respectively. If the solids did not
deform, their profiles would overlap as shown by the dotted lines in Figure 3. Due to the contact
pressure applied, the surface of each body is displaced parallel to Oz by an amount u; and u,;
(measured positive into each body) relative to the distant points T3 and T». If, after deformation,
the points S, and S; are coincident within the contact surface, then,

u,tu,+h=96+6,. (3.6)

Writing d= & + & and using (3.4), an expression for the elastic displacement can be obtained,

1 - l 2
u,+u,=0———x"——— 3.7
zl 2 2 R 2 R Y ( )
3.2 Elastic Deformation of Solids of Revolution
If the two bodies are solids of revolution, or spherical, then:
R =R =R
, ; . (3.8)
R,=R, =R,

where R; and R; are the radii of curvature of body 1 and body 2 respectively. After loading, it is
clear from the spherical geometry of the solids that the contact area will be circular, having a
radius a. Therefore,

1

U, tiy, =§-5Er2s 3.9)
where,
1 1 1
—=—
R R R,. (3.10)
rr=x*+y?

The pressure distribution proposed by Hertz ([2]) that gives rise to displacements that satisfy
(3.9) is given by the following expression,

SN\}1/2
p= po(l—(i) ] , (3.11)
a



where pp is the maximum pressure. This pressure distribution gives normal displacements,

(3.12)

—_— 2,
. _! EV %(2{12 —rz).

Since the pressure acting on the second body is equal to the pressure acting on the first body,

2
L _lew 1mv, (3.13)
E E  E

Substituting the expressions for u,; and u,; into (3.9),

2o 2_ 2 1),
——@2a‘-r)=0-|—|r", 3.14
4aE" ( ) (ZR)r ( ),
from which the radius of the contact circle is given by,
R
a=202, (3.15)
2E
and the approach of distant points in the two solids is given by,
=T (3.16)
2E*
The total load compressing the solids is related to the pressure by,
F = [p(r)2mrdr = -§- poa®. (3.17)

0

The maximum pressure py is 3/2 times the mean pressure py,. In most cases, the total load is
usually specified, so that it is convenient to use (3.17) in combination with (3.15) and (3.16) to

obtain,
173
a =(3F’?) (3.18)
4E
az 9F2 173
5=% - __16RE,2] (3.19)
_3F  (6FE?)" (3.20)
Po = om® T\ R .
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These expressions provide values for the contact size, compression, and maximum pressure of
solids of revolution in elastic contact.

Equations (3.18) and (3.19) can be rewritten solving for the force F to obtain,

F= ‘;i & (3.22)
w2 A4
F= (16’;’; a’] (3.23)

Therefore, from (3.22) and (3.23), given E" and the radii of curvature of both solids, the force
needed to obtain a desired contact area (in terms of the radius of the contact area), or a desired
deflection can be determined.

3.3 Introducing Asperities to the Micro Scale Geometry

In the analysis above, it was assumed that small surface asperities on the micro scale that may
lead to discontinuous contacts or local variations in contact pressure did not exist. In this
section, small surface asperities will be introduced to the micro scale geometry. The goal of this
section is to determine new expressions relating force, deflection, and the radius of the contact
area of two elastic solids in contact.

Asperities have various shapes and sizes. Their heights vary from a fraction of a nanometer to
several millimeters. In the case of an RFID chip, the asperities of concem are on the order of 1
to 11 micrometers. Figure 4 shows a sketch of a spherical body now with asperities on it. It is
clear from the sketch that the contact area will change given a non-smooth surface geometry.

Body 2
Body1

Aspenties

Figure 4: A planar body in contact with a spherical body with asperities.

3.3.1 First Case: Three Different Types of Asperities

In this first case, the effects of three different types of asperities on the surface of the spherical
body will be examined. It will be assumed that each asperity is a cylinder of diameter and height
h, with a half-spherical top of radius of curvature . The radius of curvature is therefore given
by,

11



r=—. (3.24)

Therefore, the taller is the asperity, the larger is its radius of curvature. In the same way, the
shorter is the asperity, the smaller is its radius of curvature. This relationship is shown in Figure
5 below.

7N 7N

NS Y 2
0 0

Figure 5: Asperity height/radius of curvature relationship.

In order to determine the force on each of the tallest asperities as a function of deflection, we use
* (3.23). The expression is

2 \A
f1=(—16r‘9E é") ' (3.25)

If there are N, tallest asperities, the total force applied is
F=Nf. (3.26)

If the deflection due to the force applied is greater than the distance from line 1 to line 2 in
Figure 5, then it is desirable to determine the force applied on each of the mid-sized asperities as
a function of deflection. The distance from line 1 to line 2 is

b, = %(h, -h,). 3.27)

Therefore, the expression relating force to deflection for the mid-sized asperities is

f1=[16"E (ﬁ%(m—m)” - (3.28)

9

With this slight modification of the force-deflection relationship for the mid-sized asperities, any
value of the force f; in which there is an imaginary part implies that the flat surface has not yet
reached the level of the mid-sized asperities. For N, mid-sized asperities, the total force applied
is

F=N,f +N,f,. (3.29)

12



Finally, the expression relating force to deflection for the short asperities is

LL) 3 }é
lonE~ (o 3.,
f;—( 5 (5 z(ia h,))] : (3.30)

where the total force applied is
F=N,fi+N,f, +N,f,. (3.31)

Since the force fis a function of both the deflection 6 and the asperity radius of curvature r, a
three-dimensional graph can be created to see the relationship between these three parameters on
a per asperity basis. This graph is discussed in the Results section. The next section describes
how to deal with a random distribution of asperity types.

3.3.2 Second Case: Random Distribution of Asperity Types

For the case of a random distribution of asperity types (i.e., random radii of curvature and
corresponding heights), it is assumed that the surface profile y(x) is a random process that
possesses a probability density function ¢(y), where &(Y), for example, is the probability that
y<Y

AA
/ASIAW(NEVAVAR
V

Figure 6: Random process of surface profile.

It will be assumed that the surface height is normally distributed, and hence the asperity radii of
curvature on the surface are also normally distributed. Figure 7 on the next page gives an
example of a graph of the random distribution of asperity types on the surface of a spherical solid
body. Most of the asperities are within the range of 3 um to 9 pum, and there are fewer asperities
below 3 um and above 9 um.

13
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Figure 7: Random distribution of asperity types.

The distribution has a mean, u, of 6 jum, and a standard deviation, o, of 2 pm. The probability
density function of the number of asperities per unit area is defined as,

~(r-a)
e 207

N(r)= (3.32)

aZrc'

In the case of a random distribution of asperity heights, using (3.24) with (3.28), the force on one
asperity is,

f(5.r)=(16'9E (6 —3(rm—r))3J , (3.33)

where 7may is the radius of curvature of the largest asperity. Plugging in values for the
parameters and variables, any value of f with an imaginary part should be ignored. The
assumption is that if a value of f has an imaginary part, then the flat planar surface providing the
load on the spherical body with asperities has not yet reached the top of the asperity of radius of
curvature r used to determine f.

Using (3.32) and (3.33), an equation of the total force applied, F, in terms of a given deflection,
0, and a range of asperity radii of curvature, r, from g-3oto u+3 0 can be determined.
Integrating over the range of values u-3oto u+3o0,

14




~{r-u)

utloe T o7 »2 %
F= [ ¢ = .(‘6’9’5 (6 —(r,, - r))3) dr. (3.34)
u-3o ONZTt

This equation ultimately defines the load needed to achieve a certain deflection given a range of
asperities on the surface of an elastic solid in contact with another elastic solid. The equation can
be manipulated in MATLAB or Maple to derive a numerical value for F given the system
parameters.

15



4.0 Results
4.1 Elastic Deformation Analysis without Asperities

In the case of an RFID chip-antenna interface, the contact area needed to obtain a desired
resistance will be given, and the force needed to create this contact area will be determined.
Since we are dealing with a planar surface contacting a spherical surface, the radius of curvature
of the planar surface, R;, equals infinity, and 1/R; therefore equals zero. As a result, from (3.10),
R =R,. In the following analysis, the radius of curvature of the spherical surface will be given
on the order of R = 0.05 mm.

Moreover, in order to determine E , materials must be chosen for body 1 and body 2. Aluminum
will be used for the spherical body, and steel will be used for the planar body. Table 1 gives the
values of Young’s modulus and Poisson’s ratio for aluminum and steel.

| | ~ |[EGNm) [ v
[ Aluminum: Pure and Alloy | 68-78.6 | 0.32-0.34
[ Steel: Carbon and Low Alloy | 193-220 | 0.26-0.29

Table 1: Material properties of aluminum and steel.

Given these values, E” = 57.4 GN/m’. Now that these values are known, using (3.22), a graph
was created of the force desired versus the radius of the contact area for three different values of
the radius of curvature of the spherical body. The graph is shown in Figure 8 below.

Force vs. Radius of Contact Area given Radius of Curvature
T k] T

1000 —T — T
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Figure 8: Force vs. radius of contact area given radius of curvature.
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According to the graph, force increases as the radius of contact area increases, slowly at first, and more
rapidly later. Also, as the radius of curvature increases, the curves become shallower.

Figure 9 is a similar graph. It plots force vs. deflection for three different radii of curvature. Once again,
the force increases as the desired deflection increases. And as in the previous graph, the curves become
shallower as the radius of curvature of the spherical body increases.

Force vs. Deflection given Radius of Curvature

sw T r T T L T
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Figure 9: Force vs. deflection given radius of curvature.

4.2  Elastic Deformation Analysis with Asperities

In the following three graphs, the introduction of asperities into the situation is discussed. Figure
10 is a graph of the theoretical results from section 3.3.1. Figure 10 plots force vs. deflection on
one asperity given its height and corresponding radius of curvature. The figure analyzes three
different asperity types. One can deduce from the graph that the starting point of each curve
depends on the size of the asperity. For example, the smaller is the asperity, the later is its
starting point, because the planar surface contacts it later. And there is no force on the smaller
asperities until the deflection increases to a certain point. After the starting point, each curve
follows the basic force-deflection relationship, and the force increases with increasing deflection.

17



Force (N)

Figure 10: Force vs. deflection for one asperity given its height and corresponding radius of curvature.

Figure 11 plots the three curves in Figure 10, as well as a curve of the total force given one tall
asperity, two mid-sized asperities, and one small asperity. The curve was determined using
superposition. In a practical problem, however, there would be something on the order of 500
tall asperities, 1000 mid-sized asperities, and 500 small asperities. However, it was done this
way in Figure 11 to show all four curves on a single plot. In the real case, the solid line

140

1201
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representing the total force would be off the scale of the given axes.

Figure 11: Total force vs. deflection given an asperity distribution (1,2,1).
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Since the force, f, on one asperity is a function of both the deflection, &, on that asperity as well
as the radius of curvature, r, of the asperity, a three-dimensional graph can be created to observe
the relationship between these three parameters on a per asperity basis. Figure 12 shows the
three-dimensional graph; it summarizes the relationships of force, deflection, and asperity radius
of curvature, on one graph.

Force vs. Deflection for given Asperity Radii of Curvature

Deflection (m) o o

Asperity Radius of Curvature (m)

Figure 12: Force vs. deflection per asperity given asperity radius of curvature.
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5.0 Conclusion

The purpose of this study was to determine a force-deflection relationship and a force-radius of
contact area relationship between a flat planar solid and a spherical solid in terms of material and
surface properties of the two solids. This relationship was determined and it was discovered that
the force was directly proportional to both the deflection and contact area.

When asperities arose on the micro scale geometry, a modified force-deflection relationship was
derived to determine the force applied on one asperity given the geometrical properties of the
asperity and the deflection of the contacting bodies. A model of contacting bodies with
asperities was created. Three different types of asperities on the surface of the spherical body
were analyzed as a first-case approach to the problem to determine the effects of the asperities on
the system variables. A new model of the shape of an asperity was created for ease of
calculation. A graph was created to describe this relationship. In fact, it was determined that
each asperity is independent of each other, and the total force applied is equal to the
superposition of the individual forces on each asperity multiplied by the density (or number) of
that specific type of asperity in a given area.

In the second-case approach to the problem, a random distribution of asperity types was used.
An expression was derived for the total force applied in terms of a given deflection and a range
of asperity radii of curvature. A three-dimensional graph was created to show how each of these
variables depends on the other two when asperities exist.

This relationship is very significant, because it can be used to improve the current technology by
changing certain geometrical or material properties of the solids to achieve better performance.
This expression can also be used to determine the specifications in the manufacturing process to
achieve a certain deflection or area of contact between the contacting bodies, thereby improving
the current manufacturing process.

Finally, there are a few areas in which further research in this study would be beneficial. One
area is in experimentally verifying the relationship between contacting bodies with asperities to
determine how well the theoretical model compares to the experimental results. Another area of
research could be in changing the geometrical properties or material properties of the contacting
bodies, and then experimentally determining if there was a desired improvement or not in the
chip performance. For example, by increasing the surface finish on the contacting bodies, one
may be able to lose some of the asperities and increase the contact area between the surfaces.
Still further research could be done in investigating conductive adhesives to attach the RFID chip
to the antenna, thereby decreasing the resistance between the surfaces and improving the chip
performance.
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