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Abstract
The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides
and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl,
heteroaryl and vinyl halides can be prepared via this method in good to excellent yields.

Aryl halides are ubiquitous synthetic intermediates in organic chemistry that are used for
numerous transformations.1 They are also present in a wide variety of natural products,
pharmaceuticals and agrochemicals.2 Therefore, the development of general and
regioselective methods for the preparation of functionalized aryl halides is of great
importance. Sulfonate esters, often referred to as pseudo-halides, can be employed as
alternatives to aryl halides in many cross-coupling reactions.3 Such pseudo-halides,
however, cannot be used as precursors for the generation of free radicals4 or organometallic
reagents.1 Traditional methods for the synthesis of aryl halides (bromides or chlorides) from
phenols require either forcing conditions5 or multi-step procedures.6 Herein, we report the
first example of palladium-catalyzed direct conversion of readily available aryl sulfonate
esters to aryl bromides and chlorides.

Although a catalytic method has not yet been reported, several mechanistically related
metal-mediated carbon–halogen bond-forming processes have been published.7 For
example, the reductive elimination of aryl halides from Pt(IV),8 Ni(III),9 Pd(IV),10 and
Pd(III)11 has been demonstrated. In addition, the reductive elimination of aryl halides from
arylpalladium(II) halide complexes in the presence of a large excess of P(t-Bu)3 has been
reported.12,13 A number of copper14- and nickel15-mediated halide exchange reactions have
also been developed in which carbon–halogen reductive elimination processes are proposed
to take place.

Despite these advances in aryl–halide bond formation, to the best of our knowledge, there
are few examples of the catalytic conversion of an aryl sulfonate to an aryl halide16

including the ruthenium-catalyzed conversion of 2-naphthyl triflate to 2-
bromonaphthalene16b and our recent report of the palladium-catalyzed conversion of aryl
triflates to aryl fluorides.17 This prompted us to query whether we could uncover a catalytic
process to convert aryl triflates into corresponding aryl bromides and chlorides; and results
are disclosed herein.

Catalysts based on dialkylbiaryl monophosphines 1–4, which have been successfully utilized
as ligands in numerous transformations,17,18 were initially examined for the conversion of
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4-n-butyl phenyltriflate into 4-n-butylbromobenzene (5). In initial experiments, these
reactions were carried out in the presence of 2.0 equivalents of Bu4NBr, 1 mol% Pd2(dba)3
and 3 mol% ligand in toluene at 100 °C. This set of conditions afforded only small amounts
of aryl bromide products (1–6%, entries 1–4). Other bromide sources were tested but the
results were unimpressive, with KBr providing the highest yield (11%, entry 5). Since
potassium bromide has a low solubility in toluene, we reasoned that the use of a phase
transfer catalyst (PTC) might be beneficial. Adding polyethylene glycols improved the yield
to 32% (entry 6). All attempts to increase the yield of this reaction with more forcing
conditions or higher catalyst loading failed. We were initially puzzled by this and wondered
whether product inhibition was occurring. Therefore, we repeated the 4-n-butyl
phenyltriflate to 4-n-butylbromobenzene reaction (eq. 1) in the presence of 1 equivalent of
potassium triflate and found that the reaction was completely inhibited (entry 7). This was
surprising since the triflate anion is known to be a poor nucleophile.19 In order to probe
whether this result was due to the existence of an unfavorable equilibrium, 5 was heated
under similar catalytic conditions with KOTf as the coupling partner. However, no
conversion to aryl triflate was observed, ruling out this possibility. Our next efforts focused
on the sequestration of KOTf as it was formed. After survey a broad range of Lewis acids,
we found that the yield of the reaction could be increased to 50% when Et3B was used as
additive (entry 8). Full conversions were observed when commercially available i-Bu2AlF
or i-Bu3Al was used; however, about 50–60% of the C–C coupling product, 1-n-butyl-4-i-
butylbenzene, was formed in both cases (entries 9 and 10).20 The use of the bulkier i-Pr3Al
additive prevented the formation of the C–C coupling product, although the desired aryl
bromide was only formed in 25% yield with the reduction product, n-butylbenzene, now
formed in 75% yield (entry 12). Fortunately, in situ formation of dialkylaluminum alkoxides
by the addition of ketones or alcohols suppressed both C–C coupling and reduction
byproducts; the yield was increased to 92% when 2-butanone was used (entry 13).

With the optimal conditions for this new transformation in hand, we next explored the
reaction scope (Table 2). Both electron-poor and electron-rich aryl triflates are suitable
substrates and provide aryl bromides in good yield. Significantly, heteroaryl triflates, such as
quinolines, indoles, carbazoles and benzothiazoles can be efficiently converted to
corresponding aryl bromides. Ester groups were well tolerated but can, in some cases,
undergo unwanted transesterification. With 4-trifluoromethylsulfonyl ethylbenzoate as
substrate, this undesired side reaction could be avoided by using EtOH as an additive in
place of 2-butanone (Table 2, compound 8). Aromatic amines are also tolerated in these
transformations as exemplified by the formation of 7-bromo-1-naphthyl amine in moderate
yield from the corresponding triflate (Table 2, compound 11). In this case, the 2-butanone
imine was initially formed, which was then cleaved after work up and flash chromatography.
The bromination of 3-bromophenyl triflate and 4-chloro-1-naphthyl triflate demonstrates
that polyhalogenated products may be efficiently formed. Vinyl triflates are also effective
substrates for the bromination reaction. For example, a vinyl triflate derived from estrone is
easily converted to the corresponding vinyl bromide in 92% yield (Table 2, compound 20).

As highlighted in Table 3, aryl and vinyl triflates can also be converted to aryl and vinyl
chlorides under similar reaction condition using KCl as the chloride source in good to
excellent yields.21

In conclusion, a new method for the direct conversion of aryl and vinyl triflates to aryl and
vinyl halides has been achieved using palladium catalysis. The use of sterically hindered
dialkylbiaryl monophosphines is key for success in achieving this new transformation.
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TABLE 2

Palladium-Catalyzed Conversion of Triflates to Bromidesa

a
Reaction conditions: 1.0 mmol triflate, 1.5–2.5 mol% of Pd2(dba)3, 3.75–6.25 mol% of 4 (4 : Pd = 1.25 : 1), 1.5 mmol KBr, 1.5 mmol 2-

butanone, 1.5 mL of iBu3Al (1M solution in toluene), 120 mg PEG3400, toluene (6.0–8.0 mL), 20–24 h; Isolated yields (average of two runs).

b
1.25 equiv of i-Bu3Al and EtOH as additives; contains ~5% of ethyl 4-i-butylbenzoate.

c
Contains 1,4-dichloronaphthalene and 1,4-dibromonaphthalene (4–10% total).
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Table 3

Palladium-Catalyzed Conversion of Triflates to Chloridesa

a
Reaction conditions: 1.0 mmol triflate, 1.5–2.5 mol% of Pd2(dba)3, 3.75–6.25 mol% of 4 (4 : Pd = 1.25 : 1), 1.5 mmol KCl, 1.5 mmol 2-

butanone, 1.5 mL of iBu3Al (1M solution in toluene), 120 mg PEG3400, toluene (6.0–8.0 mL), 20–24 h; Isolated yields (average of two runs).

b
1.25 equiv of i-Bu3Al and EtOH as additives; contains ~5% of ethyl 4-i-butylbenzoate.
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