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Abstract 
The social elements of technical decision-making are not 

well understood, particular among expert committees. 

This is largely due to a lack of methodology for directly 

studying such interactions in real-world situations. This 

paper presents a method for the analysis of transcripts of 

expert committee meetings, with an eye towards 

understanding the process by which information is 

communicated in order to reach a decision. In particular, 

we focus on medical device advisory panels in the US 

Food and Drug Administration. The method is based 

upon natural language processing tools, and is designed 

to extract social networks from these transcripts, which 

are representative of the flow of information and 

communication on the panel. Application of this method 

to a set of 37 meetings from the FDA's Circulatory 

Systems Devices Panel shows the presence of numerous 

effects. Prominent among these is the propensity for panel 

members from similar medical specialties to use similar 

language. Furthermore, panel members who use similar 

language have the propensity to vote similarly. We find 

that these propensities are correlated – i.e., as panel 

members' language converges by medical specialty, panel 

members' votes also tend to converge. This suggests that 

voting behavior is mediated by membership in a medical 

specialty and supports the notion that voting outcome is, 

to some extent, dependent on an interpretation of the data 

associated with training. 

Key Words:  Quantitative Content Analysis, Group 

Decision-Making 

 

1. Introduction 
 

In the committees that concern us in this paper, 

information must be aggregated from multiple expert 

specialists. Evaluating committee decision processes 

requires a means of understanding the interaction between 

the social and technical specifics of the system in 

question. The decision of what information is important 

and how it should be interpreted is the subject of 

exchange up until the time that each committee member 

casts a vote. That different experts hold different 

perspectives and values makes it more likely that 

additional aspects of a problem will come under 

consideration. Nevertheless, this does not guarantee 

consensus on the interpretation of data. 

Different experts, having been trained in different 

areas or components, will tend to pay attention to those 

elements of the system that they find consistent with their 

professional training – i.e., cognitively salient [1]. The 

mechanisms by which this training is achieved include 

acculturation within specific professional specialties, and 

require learning that professional institution’s language 

and jargon. By institution, we mean a set of social norms 

to which a particular community adheres. This leads to a 

situation wherein individual experts develop different 

views of the system.  
Understanding how best to structure committees such 

as those described above requires a method of empirically 
examining communication within a real-world setting. 
This paper presents an empirical method aimed at 
extracting communication patterns and social dynamics 
through a computational analysis of committee meeting 
transcripts. A computational approach is used for its 
consistency and reliability across meetings. Furthermore, 
an algorithmic approach enables any potential biases that 
might be present in the analysis to be minimal and 
transparent. In particular, we use a modification of the 
Author-Topic Model [2], a Bayesian inference tool used 
in the field of machine learning, to discover linguistic 
affinity between committee members.  We find that the 
resulting output may be used to construct social networks 
representing patterns of communication among panel 
members. Analyses of these networks are then performed. 

2. Literature Review 
Work within the anthropology and Science, 

Technology and Society (STS) literatures is perhaps most 

relevant to this inquiry. In particular, the penetrating 

analyses of Mary Douglas note that group membership 

may affect perception of data [1]. Among technical 

experts, this is reflected in the fact that each specialty 

possesses its own unique language and jargon, which 

carries with it an implicit scheme for categorizing 

perceived phenomena [3]. The STS literature extends this 

notion by noting that language is used as a cognitive 

mechanism to delineate professional boundaries. This 

directs the attention of experts within a specialty toward a 

The authors would like to acknowledge the MIT-Portugal Program 

for its generous support of this research. 
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given interpretation of a problem that is consistent with 

that expert’s training, while simultaneously directing that 

attention away from other possible interpretations.  

 

3. Case Study: FDA Advisory Panels 
The empirical analysis mentioned above requires data 

in the form of committee meeting transcripts. These are 
often not recorded in textual form, or are proprietary to 
the organization that commissioned the committee. We 
therefore turn to transcripts of expert committee meetings 
that are a matter of public record. The ideal data source 
must have the following attributes: 

1. Analysis or evaluation of a technological artifact 

2. Participation of multiple experts from different 

fields or areas of specialization 

3. A set of expressed preferences per meeting(such 

as a voting record) 

4. Multiple meetings, so as to enable statistical 

significance 

These requirements are met by the Food and Drug 

Administration’s medical device advisory panels.  

 

4. Methodological Approach 
A major challenge to the use of linguistic data for the 

analysis of social behavior on expert committees stems 
from the strong assumption that such dynamics are 
entirely reflected in language, and that differences in 
language necessarily indicate differences in perception. 
Another similar concern is absence of data that might 
result if a particular voting member of the committee 
remains silent or says little. Neither can strategic attempts 
by actors to hide preferences and thereby avoid revealing 
personal information be explicitly captured in this 
representation. Indeed, work by Pentland [4] has shown 
that much social signaling occurs through body language 
and vocal dynamics that are not able to be captured in a 
transcript. It should therefore be clarified that this paper 
does not claim that all social dynamics are manifest in 
language – rather, word-choice provides one source of 
insight into a complex, multi-modal process. The extent 
and severity of this challenge is mitigated somewhat by 
the literature cited above. Differential use of language 
due, for example, to assigned roles, may reflect a salient 
role-based difference between decision-makers that is 
worth studying on its own merits.  

4.2. Construction of a Word-Document 

Matrix 

Our analysis begins with a standard “bag of words” 
representation for natural language processing 
applications. For the analyses reported in this paper, a 
word-document matrix, X, was constructed using the 
Python 2.5 programming language. Non-content-bearing 
“function words”, such as “is”, “a”, “the”, etc., were pre-
identified and removed automatically. In addition, words 

were reduced to their roots using the PyStemmer 
algorithm. 

4.2. AT Model Structure and Implementation 

The Author-Topic model provides a structured 
analysis of X. In particular, each author (in this case, a 
speaker in the meeting) is modelled as a distribution over 
topics, where each topic is, in turn modelled as a 
distribution over words. A plate-notation representation of 
the generative process underlying the Author-Topic model 
is found in Figure 1. The Author-Topic model is 
populated by a Markov-Chain Monte Carlo Algorithm 
that is designed to converge to the distribution of words 
over topics and authors that best matches the data. Details 
of the MCMC algorithm implementation are given in [2]. 
The AT model was implemented in MATLAB using the 
Topic Modelling Toolbox algorithm [5].  
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Legend:

 
Figure 1.  A plate notation representation of the Author-Topic model 

from [2]. Authors are represented by a multinomial distribution over 

topics, which are in turn represented by a multinomial distribution over 

all words in the corpus. 

4.3. Hyperparameter Selection 

Each author’s topic distribution is modeled as having 
been drawn from a symmetric Dirichlet distribution, with 

parameter α. Values of α that are smaller than unity will 
tend to more closely fit the author-specific topic 

distribution to observed data – if α is too small, one runs 

the risk of overfitting. Similarly, values of α greater than 
unity tend to bring author-specific topic distributions 

closer to uniformity. A value of α=50/(# topics) was used 
for the results presented in this paper, based upon the 
values suggested by Griffiths and Steyvers [5]. For the 
numbers of topics considered in these analyses (generally 
less than 30), this corresponds to a mild smoothing across 

authors. Similar to α is the second Dirichlet parameter, β, 
from which the topic-specific word distributions are 

drawn. β values that are large tend to induce very broad 
topics with much overlap, whereas smaller values of 

β induce topics which are specific to small numbers of 
words. Following the empirical guidelines set forth by 
Griffiths and Steyvers [5], and empirical testing 
performed by the author, we set the value of 
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β = 200/( # words). It is interesting that there has been 
relatively little work within the topic modeling community 
on the appropriate choice of hyperparameters. Exceptions 
include algorithms, such as those designed by Wallach 
[6], which overfit hyperparameters for the purposes of this 
analysis. To the author’s knowledge, there has been no 
analysis of the co-selection of topics and hyperparameters. 

4.4. Selection of Number of Topics 

Given hyperparameter values, as defined above, we 
may use perplexity as a metric for choosing T. Non-
parametric methods may also be used (e.g., [7]) but at a 
greater computational cost than required for our purposes, 
especially given our use of fitted priors. The method 
presented here chooses T so as to be as small as possible 
(i.e., maximum dimensionality reduction) while still 
constituting a good model fit. The number of topics is 
chosen independently for each transcript as follows: 35 
AT models are fit to the transcript for t = 1 … 35 topics (a 
value determined empirically). As the number of topics 
increases, model cross-entropy becomes asymptotically 
smaller. Griffiths and Steyvers [5] report a unique 

minimum for fitted values of α although they tested topics 
in increments of 100. In principle, given a sufficiently 
large number of topics, the perplexity would begin to 
increase at a relatively mild slope as the model starts over-
fitting. Lacking such a unique minimum here, we choose 
the minimum number of topics such that the cross-entropy 
values are statistically indistinguishable from larger 
numbers of topics. Thus, for each model, 20 independent 
samples are generated from one randomly initialized 
Markov chain after a burn-in of 1000 iterations. Sample 
independence is guaranteed by introducing a lag of 50 
iterations between each sample (lags of 100 iterations 
were tested, yielding qualitatively similar results). We find 
the smallest value, t0, such that the 95

th
 percentile of all 

samples for all larger values of t is greater than the 5
th
 

percentile of t0. Given fitted priors of the sort 
recommended by Griffiths and Steyvers [5], the 
asymptotic behavior displayed in Figure 2 is typical of AT 
Model fits. We set the value of T = t0 + 1 so as to ensure 
that the model chosen is well beyond the knee in the 
curve, and therefore in the neighborhood of the minimum 
perplexity.  
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Figure 2.  Perplexity vs. number of topics for the meeting of the FDA 

Circulatory Systems Devices Panel held on July 9, 2001. T, the number 

of topics, is equal to 28, using the procedure described above. 

Horizontal lines indicate the 5th and 95th percentiles for perplexity for a 

27 topic model fit. 

Once the number of topics has been chosen, a T-topic 
AT Model is again fit to the transcript. Ten samples are 
taken from 20 randomly initialized Markov chains, such 
that there are 200 samples in total. These form the basis 
for all subsequent analysis. 

4.4.1. Committee Filtering. Our analysis focuses 
primarily on the voting members on an advisory panel. It 
is precisely these members whose evaluations will 
determine the panel recommendations. Other panel 
members, such as non-voting guests and consultants, are 
also included in the analysis because, like the voting 
members, they play the role of resident experts. Panel 
members such as the executive secretary, and consumer, 
patient and industry representatives are not included as 
part of the committee in the following analyses because 
they play a relatively small role in panel discussion in the 
meetings examined. Inclusion of these members is 
straightforward, and examination of their roles is left to 
future research.  

It is often difficult to differentiate between panel 
members, especially since the majority of the speech 
during an FDA panel meeting is occupied by presentations 
from the sponsor and the FDA. A given voting member 
might speak relatively rarely. Furthermore, panel members 
share certain language in common including procedural 
words and domain-specific words that are sufficiently 
frequent as to prevent good topic identification. As a 
result, a large proportion of the words spoken by each 
committee member may be assigned to the same topic, 
preventing the AT model from identifying important 
differences between speakers. In a variant of a technique 
suggested in [8]

1
 this problem is solved using the AT 

model by creating a “false author” named “committee”. 
Prior to running the AT model’s algorithm, all committee 
voting members’ statements are labeled with two possible 
authors – the actual speaker and “committee”. Since the 
AT model’s MCMC algorithm randomizes over all 
possible authors, words that are held in common to all 
committee members are assigned to “committee”, whereas 
words that are unique to each speaker are assigned to that 
speaker. In practice, this allows individual committee 
members’ unique language to be identified. In the limiting 
case where all committee members’ language is common, 
half of all words would be assigned to “committee” and 
the other half would be assigned at random to the 
individual speakers in such a way as to preserve the initial 
distribution of that author’s words over topics.  

                                                 
1 The author paper would like to thank Dr. Mark Dredze for suggesting this 

approach 
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4.5. AT Model Output 

When applied to a transcript, we treat each utterance 
as a document. Thus, the meeting transcript may be 
viewed as a corpus. Words within each utterance are 
grouped into topics with probability proportional to the 
number of times that word has been previously used in 
that topic, and the number of times that word’s “author” 
(i.e., speaker) has previously used that topic.  

4.6. Network Construction 

We would like to develop a principled way to 
determine what constitutes a link within a given model 
iteration. As noted above, we would like to link together 
speakers who commonly use the same topics of discourse. 
In particular, we examine each author-pair’s joint 
probability of speaking about the same topic.  
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We would like to be able to construct an Author-

Author matrix, ∆∆∆∆, with entries equal to 1 for each linked 
author pair, and entries equal to 0 otherwise.  

4.6.1. Author-Author Matrix Determination The 
AT model outputs an Author-Topic matrix, A, that gives 
the total number of words assigned to each topic for each 

author. This information must be reduced to the ∆∆∆∆ matrix 
identified above. The form of the author-topic model 
makes an explicit assumption regarding an author’s prior 
distribution over topics. This value is expressed by the 

hyperparameter α. Given the number of topics fit to a 

particular model, we may use the value of α to generate a 
set of a priori author-specific topic distributions. These, in 
turn, can be input into the equation above in order to 
generate a prior distribution for any given author-pair’s 
link probability. Such a distribution is shown in Figure 3. 
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Figure 3.  Prior probability distribution for links between speakers in 

the April 21, 2004 meeting with 28 topics. The median of this 

distribution is 0.0356; whereas 1/28 = 0.0357.  

In practice, the median value of this distribution 
becomes arbitrarily close to 1/(# topics). Therefore, within 
one iteration we assign a link if the observed probability 

that a given author pair discusses the same topic is linked 
exceeds 1/(# topics). In other words, it is more likely than 
not that the author-pair is linked. If there are 10 topics, we 
would expect every author-pair to have a 10% probability 
of being linked, a priori. This scheme allows network 
construction to adapt to changing numbers of topics. 

As before, we average over multiple MCMC iterations 
to enable a social network to be created with weighted 
links, where the weight of each link is proportional to its 
frequency of occurrence among iterations. Nevertheless, 
the variability among draws from the MCMC algorithm 
suggests that links should not be weighted. Histograms of 
the distribution of these link frequency values tend to 
show a bimodal structure (see Figure 4) suggesting that a 
description of author pairs as either connected or not 
connected is appropriate.  

10 30 50 70 90 110 130 150 170 190
0

50

100

150

200

250

300

350

Link Frequency Bin
 

Figure 4.  Sample histogram of linkage frequency for an FDA Advisory 

Panel meeting of April 21, 2004. The horizontal axis is the link weight 

(i.e., the frequency with which author-pairs are connected over 200 

samples from the AT model). The vertical axis is the link frequency of 

links with the weight specified by the abcissa (i.e., the number of 

author-pairs that are connected with the frequency specified by the 

abcissa). Note the existence of two modes located at the extremes of the 

distribution.  

The final challenge in constructing a network is 
determining where to establish the cutoff beyond which 
we accept that a pair of speakers is linked.  

4.6.1. Bonferroni Cutoff Criterion Two authors are 
considered to be linked in a network if they are more 
likely to be connected by an edge in a given sample 
iteration than not. Since there are 200 samples from which 
a link might be inferred, we would like to establish a 
cutoff value that is consistent across networks. The largest 
committee in our sample of 37 FDA advisory panel 
meetings possesses 15 potential voting members (not 
including the committee chair). Therefore, the largest 
network has 15*14/2 = 105 potential links among voting 
members. Each potential link must be tested in order to 
determine if it occurs more frequently than would be 
expected by chance. Lacking any prior information on link 
probabilities, we assume that a given speaker has no 
predisposition towards either linking or not linking. 
Therefore, we would expect that a randomly chosen pair 
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of speakers would be linked 100 times out of 200.  We 
would like to know if a given pair’s link frequency is 
higher than what we would expect under a uniform 
distribution across conditions of linkage and no linkage. 
The binomial test may be used for precisely this sort of 
analysis. Furthermore, given that we are testing up to 105 
different independent potential links, the p-value for this 
test should be subject to a Bonferroni correction. Using a 
binomial test, and a family-wise error rate of p=0.05, a 
given author pair must be linked at least 125 times out of 
200 samples to be considered more frequently linked than 
we would expect by chance. This is the criterion that we 
use for the results presented.  

5. Results 
Consider a graph, ∆∆∆∆, generated by the method outlined 

in chapter 4. One such graph may be generated for each of 
the 37 meetings that we analyze. We would like to be able 
to determine, on a given graph, how likely members of the 
same medical specialty are to be linked to one another. 

Suppose that graph ∆∆∆∆ has n edges, m of which connect a 
pair of speakers who have the same medical specialty. We 
may therefore define specialty cohesion as m/n – the 

proportion of edges in graph ∆∆∆∆ connecting members of the 
same medical specialty. A high specialty cohesion might 
indicate that members of the same medical specialty are 
more likely to link than are members of different medical 
specialties – on the other hand, it might just indicate that 
the meeting is homogenous – if there is very little 
diversity on a panel, then we might expect cohesion to be 
high by definition. We would therefore prefer to compare 
the observed specialty cohesion to the cohesion of graphs 

that have similar properties to ∆∆∆∆.... We can do this by 
examining specialty cohesion percentile: For each graph, 

∆∆∆∆, representing a meeting, 1000 random graphs (a number 
that has been empirically found to converge to a stable 
value) are generated having a number of nodes, and a 

graph density, equal to those found in ∆∆∆∆. . . .  Each node is 

similarly assigned a medical specialty as in ∆∆∆∆. Specialty 
cohesion is calculated for each of these random graphs, 
generating a meeting-specific distribution. Specialty 
cohesion percentile is defined as the proportion of the 
resultant graphs that have lower specialty cohesion than 

∆∆∆∆....     

 

Figure 5.  Histogram of Specialty Cohesion Percentiles for the 37 

meetings in our sample. 

Figure 5 shows the empirical distribution of specialty 
cohesion percentiles for the 37 meetings analyzed 
(textured). This is contrasted with the specialty cohesion 
percentile distribution for 1000 random graphs – a 
uniform distribution. We may see, by inspection, that the 
empirical specialty cohesion percentile distribution has a 
right skew – i.e., probability mass is concentrated near 1 
and away from 0. This suggests that specialties are more 
likely to group together than we might expect under 
conditions of chance. A Kolmogorov-Smirnov test for 
equality of distributions finds that the empirical 
cumulative distribution function (CDF) is significantly 
less than the uniform background CDF (p=0.0045). These 
results provide support for the notion that members of the 
same medical specialty tend to preferentially link to one 
another, but not in a way that totally precludes links to 
other specialties.  

Our experience also suggests a relation between voting 
behavior and linkage patterns. If people who vote the 
same way also share linguistic attributes, then this 
suggests that their attention may be directed towards 
something that drives their decision outcome. This further 
suggests the possibility of agreement on a relatively small 
number of reasons for either approval or non-approval. 
On the other hand, the absence of links between members 
who vote the same way suggests that there may be a high 
diversity of reasons for why individuals vote a certain 
way. In a similar manner to how we define specialty 
cohesion, we define vote cohesion as the proportion of 
edges in a graph that connect two panel members who 
vote the same way. Vote cohesion percentile is the 
proportion of random graphs, out of 1000 samples, that 
have lower vote cohesion than a graph representing a 
given meeting. There are 11 meetings in which there is a 
voting minority that has at least two people in it. These are 
used to generate a second meeting-specific distribution 
found (textured) in Figure 6. This is contrasted against the 
vote cohesion percentile distribution for 1000 random 
graphs – a uniform distribution. 

 

 

Figure 6.  Histogram of Vote Cohesion Percentiles for the 11 meetings 

with a minority of size 2 or greater.  

We may see, by inspection, that the empirical vote 
cohesion percentile distribution has a right skew – i.e., 
probability mass is concentrated near 1 and away from 0. 
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This suggests that people who vote alike are more likely 
to group together than we might expect under conditions 
of chance. A Kolmogorov-Smirnov test for equality of 
distributions finds that the empirical cumulative 
distribution function (CDF) is significantly less than the 
uniform background CDF (p=0.015). These results 
provide support for the notion that panel members who 
vote similarly tend to be linked. 

A scatter plot of specialty cohesion percentile vs. vote 
cohesion percentile for the 11 meetings analyzed shows 
that the two quantities are correlated (Spearman rho = 
0.79, p=0.0061; see Figure 7).  

Figure 7.  Scatter plot of Vote Cohesion percentile vs. Specialty 

Cohesion percentile for 11 meetings in which there was a minority of 

two or more. Datapoints are color-coded by the proportional size of the 

minority in each meeting, suggesting that this effect holds independent 

of proportional minority size. 

This is a relatively tight correlation, suggesting that as 
specialty and voting cohesion increase together. In other 
words, meetings in which individuals’ language links them 
by specialty are also meetings in which individuals’ 
language links them by vote. Of the 11 meetings observed, 
9 are located in the upper right quadrant, with high er-
than-average specialty cohesion and vote cohesion, 
suggesting that these factors are dominant on this 
particular panel. The two outliers were meetings held on 
June 22 & 23, 2005 – both experimental cardiac devices 
with large committees and high data ambiguity.  

It is likely that within each voting group, a relatively 
small number of device features might attract the attention 
of a number of panel members, causing them to vote a 
certain way for that reason. Common language could 
suggest a common direction of attention and perhaps 
common preferences. In cases of mild ambiguity, where a 
small number of potential interpretations of the data are 
possible, Douglas [1] notes that institutional membership 
acts to direct one’s attention to a given framing of a 
situation or problem. This framing mechanism could 
potentially serve as an antecedent to preference formation. 
If such is the case, then a correlation between vote 

cohesion percentile and specialty cohesion percentile 
would be expected. In these situations, the data may be 
difficult to interpret, e.g., due to mixed signals from a 
device that has a high risk but high potential reward, or 
sparse or ambiguous data. Under such conditions, many 
possible interpretations of the data might be possible 
within each specialty, suggesting that voters could rely on 
idiosyncratic beliefs. Medical specialties would have a 
weaker effect on an individual’s perception since the data 
might not match any situation previously encountered. 
Specialty cohesion would be lower because panel 
members from the same specialty would have different 
perceptions of the data. Under these circumstances, 
individual expertise becomes particularly valuable, 
although it is unclear whose expertise is most appropriate. 
Panel members who vote the same way would likely do so 
for different reasons, thus leading to low vote cohesion.  

6. Conclusion 
This research is aimed at the development of a 

quantitative methodology that may be applied to analyze 
multi-actor decision-making by committees of technical 
experts. The methodology presented in this paper has been 
used to generate meaningful social networks from 
transcripts of FDA medical device advisory panel 
meetings. Future work will focus on applying this method 
to a larger number of cases with the intention of producing 
generalizable findings and developing theory.  
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