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Abstract
A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles
has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents
the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-
enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the
primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric
cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic
cycle.

Alkyl–alkyl couplings are among the most challenging of cross-coupling processes, due in
part to the potential for intermediates in the catalytic cycle to undergo β-hydride elimination
and other undesired reactions.1,2 The development of highly versatile methods will likely
have a substantial impact on organic synthesis,3 particularly if carbon–carbon bond
formation can be accomplished enantioselectively. We have recently begun to pursue this
objective with both activated and unactivated secondary alkyl electrophiles.4,5, 6

Asymmetric cross-couplings of unactivated substrates have proved to be especially difficult,
and to date only two families of halides have undergone coupling in good ee (homobenzylic
bromides5a and acylated bromohydrins (and one chlorohydrin)5b). In each instance, a
functional group proximal to the electrophilic site (an aryl substituent or a carbonyl oxygen)
is likely interacting with the chiral catalyst in the stereochemistry-determining step of the
reaction.7

Because a wide array of molecules possess nitrogen-containing functional groups, including
bioactive compounds such as alkaloids,8 we sought the development of an amine-directed
method for the asymmetric alkyl–alkyl cross-coupling of unactivated electrophiles.9 In this
report, we describe the achievement of this objective, specifically, stereoconvergent Suzuki
reactions10 of racemic secondary alkyl chlorides that bear proximal arylamines (eq 1).
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(1)

The potential of β-halo trialkylamines to cyclize (e.g., nitrogen mustards11) led us to focus
on arylamines as the directing group12 and chlorides as the leaving group for our desired
asymmetric alkyl–alkyl Suzuki reaction. We recognized that attenuating the nucleophilicity
of the amine toward the halide might also diminish the likelihood that the amine would serve
as a directing group and that only a single example of an enantioselective cross-coupling of
an unactivated secondary alkyl chloride had been described.5b

When we applied the conditions that we had developed earlier for enantioselective Suzuki
reactions of homobenzylic bromides5a to the cross-coupling of a secondary chloride bearing
a pendant arylamine, we obtained a promising lead (eq 2; 70% ee, 58% yield). Optimization
of the reaction parameters, primarily through the use of C2-symmetric 1,2-diamine (1),13

provided a method that furnishes the desired alkyl–alkyl coupling product with improved
enantioselectivity and yield (Table 1, entry 1).

(2)

Under our optimized conditions, an array of stereoconvergent arylamine-directed alkyl–
alkyl Suzuki couplings of unactivated secondary chlorides can be achieved with good
enantioselectivity (Table 1).14 The aromatic ring of the arylamine can be un- (entries 1–3),
para- (entries 4–6), meta- (entries 7–9), or ortho-substituted (entry 10). Furthermore, it can
be fused to another ring (entries 11 and 12). Suzuki reactions of more hindered electrophiles
(e.g., entries 2, 3, and 10) sometimes proceed in moderate ee or yield. Functional groups
such as ethers, acetals, and aryl fluorides are compatible with the cross-coupling
conditions.15 Although this method was developed for asymmetric Suzuki couplings of
unactivated secondary alkyl chlorides, we have determined that it can be applied without
modification to the cross-coupling of an alkyl bromide in good ee and yield (eq 3).

(3)

The spatial relationship between the arylamine and the chloride is important for obtaining
good enantioselectivity. Thus, if an additional methylene unit is introduced between the
arylamine and the chloride (3), then the cross-coupling product is generated with essentially
no ee (<5%). Furthermore, a secondary alkyl chloride that bears a conformationally
constrained arylamine (4) couples with only modest enantioselectivity. 16
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We hypothesize that the effective asymmetric induction in the Suzuki cross-couplings
illustrated in Table 1 arises from complexation of the arylamine to the chiral nickel catalyst
in the stereochemistry-determining step of the catalytic cycle. In order to gain insight into
whether this interaction is primarily through the aromatic ring5a or through the nitrogen12 of
the arylamine, we examined enantioselective Suzuki reactions of arylamines 5 and 6. We
determined that these electrophiles undergo cross-coupling with very modest ee (cf. 7),
comparable to a substrate that lacks an amino substituent altogether (8).17 Collectively, these
data are consistent with our new Suzuki couplings being nitrogen-directed processes. They
therefore complement the only two previous examples of asymmetric cross-couplings of
unactivated alkyl electrophiles, which are directed by carbon- (aromatic ring)5a and oxygen-
based (carbonyl)5b functional groups.

To date, the rate law has not been determined for any enantioselective cross-coupling of an
unactivated secondary alkyl halide. For the Suzuki reaction of an arylamine-containing
secondary chloride (entry 1 of Table 1), we have established that the rate law is first order in
the catalyst and in the organoborane, but zeroth order in the electrophile,18 which is
consistent with a catalytic cycle in which transmetalation is the turnover-limiting step (e.g.,
Scheme 119). In a competition experiment, the catalyst cross-couples an alkyl bromide in
preference to a chloride with very high selectivity (eq 4), indicating that, if complexation of
the amine to nickel precedes oxidative addition, the complexation is likely reversible vis-à-
vis oxidative addition.20 The data illustrated in eq 5 are further consistent with the
suggestion that the arylamine does not play a dominant role in determining relative
reactivity in these Suzuki couplings of alkyl halides.

(4)

(5)

In summary, a new family of stereoconvergent cross-couplings of unactivated secondary
alkyl electrophiles has been developed. These nitrogen-directed enantioselective Suzuki
reactions represent the third example of such processes, complementing previous reports of
couplings directed by carbon- (arenes) and oxygen-based functional groups, as well as the
first investigation focused on the use of unactivated alkyl chlorides as substrates. Structure-
enantioselectivity studies indicate that the likely primary site of coordination of the
arylamine to the catalyst is the nitrogen, not the aromatic ring. The rate law for an
asymmetric cross-coupling of an unactivated alkyl electrophile has been determined for the
first time, and the data are consistent with transmetalation being the turnover-limiting step of
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the catalytic cycle. Additional catalyst-development and mechanistic investigations of
enantioselective alkyl–alkyl cross-couplings are underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Outline of a Possible Pathway for a Nickel-Catalyzed Cross-Coupling of a Simple
Unactivated Alkyl Electrophile.
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Table 1

Stereoconvergent amine-directed alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides (for
the reaction conditions, see eq 1).a

entry electrophile R2 ee (%) yield (%)b

1 n-Hex 88 84

2c 96 52

3 82 72

4 85 68

5 87 76

6 84 78
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entry electrophile R2 ee (%) yield (%)b

7 (CH2)3OTBS 91 63

8 94 86

9 92 70

10 71 82

11 83 70

12 92 57

a
All data are the average of two experiments.

b
Yield of purified product.

c
Catalyst loading: 20% NiBr2 · diglyme, 24% 1.

J Am Chem Soc. Author manuscript; available in PMC 2012 June 1.


