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Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary
Alkyl Chlorides**

Zhe Lu and Prof. Dr. Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)

Abstract

The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl
chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at
room temperature) with the aid of commercially available catalyst components. This method has
proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary
and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic
investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle
for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides.
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Among cross-coupling processes that form carbon–carbon bonds, the Suzuki reaction is
perhaps the most widely used, due to considerations such as functional-group tolerance, the
accessibility of organoboron coupling partners, and toxicity issues.[1] Most of the early
investigations of Suzuki cross-couplings focused on reactions of aryl and vinyl electrophiles.
Of course, the ability to also couple a wide range of alkyl electrophiles would significantly
enhance the utility of Suzuki reactions, and advances toward this goal have been described.
[2,3] Despite this progress, many classes of alkyl–alkyl Suzuki cross-couplings still have not
been achieved, including reactions of unactivated secondary alkyl chlorides.[4,5] In this
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report, we establish that this family of electrophiles can indeed serve as suitable partners in
alkyl–alkyl Suzuki couplings under mild conditions through the use of an appropriate nickel
catalyst [Eq. (1)].

(1)

In the case of our method for alkyl–alkyl Suzuki cross-couplings of secondary bromides and
iodides,[4a] we observed that the corresponding chlorides are much less reactive. For
example, the coupling illustrated in entry 1 of Table 1 proceeds in poor yield (9%) when that
procedure is applied. Nevertheless, by systematically examining the various reaction
parameters, we determined that the desired cross-coupling of an unactivated secondary alkyl
chloride can in fact be accomplished efficiently at room temperature. Specifically, altering
the nickel source (entry 1→entry 2), the ligand (entry 2→entry 3), and the solvent (entry
3→entry 4) led to a method that furnishes the target coupling product in good yield (entry 4:
86%; all of the catalyst components are commercially available).

One practical drawback of our previous procedures for alkyl–alkyl Suzuki reactions of
secondary bromides/iodides[4] was our observation that cross-couplings that were set up
without a glove box proceeded in lower yield than reactions conducted in a glove box. When
we attempted to employ the method illustrated in entry 4 of Table 1 without a glove box, we
also obtained a diminished yield. We hypothesized that adventitious water might be the
culprit, and we therefore added powdered 4 Å molecular sieves to the reaction mixture.
Indeed, with this modification, we were able to generate a good yield of the Suzuki coupling
product of the secondary chloride without the use of a glove box (83%).
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As illustrated in Table 2, the scope of this new cross-coupling method is fairly broad.[6]
Both cyclic (entries 1–6; including nitrogen and oxygen heterocycles: entries 5 and 6) and
acyclic (entries 7–13) secondary alkyl chlorides are suitable substrates. A variety of
functional groups are compatible with the reaction conditions, such as alkyl and silyl ethers
(entries 2, 6, 8, 9, and 13), alkenes (entry 4), carbamates (entry 5), esters (entries 11 and 12),
and acetals (entries 12 and 13).

We were pleased to determine that this method for alkyl–alkyl Suzuki cross-couplings,
which we optimized for a new family of substrates (unactivated secondary alkyl chlorides),
can be applied without modification to an array of reaction partners. Thus, secondary alkyl
bromides and iodides, both cyclic (including heterocyclic) and acyclic, are suitable
electrophiles (Table 3, entries 1–8).[7] Furthermore, primary chlorides, bromides, and
iodides undergo Suzuki coupling in good yield (entries 9–11).

We have examined the relative reactivity of cyclohexyl halides in Suzuki cross-couplings
with an alkylborane under this set of conditions [Eq. (2)]. The iodide and the bromide couple
at comparable rates, whereas the chloride reacts more slowly.

(2)

Interestingly, in competition experiments between pairs of cyclohexyl electrophiles, the
catalyst differentiates effectively between halides [Eq. (3)].[8] Collectively, these data are
consistent with oxidative addition not being the turnover-limiting step of the catalytic cycle
in the case of cyclohexyl iodide and bromide.[9]

(3)

We have determined that, for the reaction of cyclohexyl bromide, the rate law is first order
in the catalyst (NiBr2•diglyme/ligand 1), first order in the alkylborane, and zeroth order in
the electrophile. These data are also consistent with oxidative addition not being the
turnover-limiting step for this Suzuki reaction of cyclohexyl bromide. In contrast, for
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cyclohexyl chloride, the rate of cross-coupling is dependent on the concentration of the
electrophile.

In conclusion, we have developed the first method for achieving alkyl–alkyl Suzuki
reactions of unactivated secondary alkyl chlorides. Carbon–carbon bond formation occurs
under mild conditions (at room temperature) with the aid of commercially available catalyst
components. This method, although developed for cross-couplings of unactivated secondary
chlorides, has proved to be versatile: without modification, it can be applied to Suzuki
reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl
chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-
limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides,
whereas it may be (partially) for chlorides. Additional mechanistic and catalyst-development
studies of a wide array of alkyl–alkyl cross-couplings are underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Effect of reaction parameters on an alkyl–alkyl Suzuki cross-coupling of an unactivated secondary alkyl
chloride.

[a]
Determined by GC versus a calibrated internal standard (average of two experiments).

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2011 September 3.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu and Fu Page 7

Table 2

Alkyl–alkyl Suzuki cross-couplings of unactivated secondary alkyl chlorides [for the reaction conditions, see
Eq. (1)].

entry R–Cl 9-BBN–R1 yield (%)[a]

1 80

2 69[b]

3 53[b]

4 67[c]

5 70

6 71

7 72

8 64

9 64
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entry R–Cl 9-BBN–R1 yield (%)[a]

10 74

11 72

12 81

13 83

[a]
Isolated yield (average of two experiments).

[b]
Diastereoselectivity: >20:1 trans:cis (relative to the proximal substituent).

[c]
Diastereoselectivity: 2:1 β:α.
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Table 3

Alkyl–alkyl Suzuki cross-couplings of unactivated alkyl halides [for the reaction conditions, see Eq. (1)].

entry R–X 9-BBN–R1 yield (%)[a]

1 X = Br: 75

2 X = I: 75

3 X = Br: 65

4 X = I: 64

5 X = Br: 74

6 X = I: 76

7 X = Br: 75

8 X = I: 76

9 63

10 70

11 78
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[a]
Isolated yield (average of two experiments).
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