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Abstract

Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory
intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually
monitoring the patient’s brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion
rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of
electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A
more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the
anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control
framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided
closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression.
We used as the control signal the burst suppression probability (BSP), the brain’s instantaneous probability of being in the
suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and
estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary
filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive
control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in
individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding
both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the
overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain
reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be
applied in patient care.
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Introduction

Medically-induced coma (also referred to as medical coma) is a

drug-induced state of profound brain inactivation and uncon-

sciousness used to treat refractory intracranial hypertension and

status epilepticus, i.e., epilepsy that is refractory to standard

medical therapies [1–3]. Following a traumatic brain injury, an

anesthetic drug such as a barbiturate or propofol, is administered

continuously to provide brain protection by decreasing the

cerebral metabolism and blood flow, and thereby, intracranial

hypertension [2]. In the treatment of status epilepticus the

anesthetic is administered to directly inhibit activity in the seizure

foci [3]. For treating both refractory intracranial hypertension and

status epilepticus, the state of medical coma is achieved by

continually monitoring the patient’s brain activity with the

electroencephalogram (EEG) and titrating the anesthetic drug

infusion rate to maintain a specified level of burst suppression.

Burst suppression is an EEG pattern characterized by intervals of

electrical bursts that alternate with isoelectric or quiescent intervals

termed suppressions [4,5] and is an EEG marker of profound

brain inactivation. In most cases, once burst suppression is

achieved, it can be controlled by decreasing or increasing the

infusion rate of the anesthetic to decrease or increase the

suppression level.

No guidelines have been set to define what level of burst

suppression should be achieved to maintain a medical coma [3]. A

common practice is for the intensive care unit team to agree upon

a target level of burst suppression, monitor continually the EEG

and adjust manually the infusion rate of the anesthetic to maintain

the target level. In most cases, the medical coma is required for at
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least 24 hours and frequently longer. It is not realistic to expect

intensive care unit staff to maintain reliable and accurate control

of a patient’s brain state for such a long period by manually

changing the infusion rate of the anesthetic in response to changes

in the EEG observed in the bedside monitor. A more rational

approach would be to define numerically a target level of burst

suppression and implement a computer controlled system or a

brain-machine interface (BMI) that monitors the actual level of

burst suppression based on the brain’s EEG activity and adjusts

the rate of the anesthetic infusion pump as needed in real time to

maintain the target level.

When used to control the delivery of anesthetic drugs, BMIs are

often termed closed loop anesthetic delivery (CLAD) systems.

During the last 60 years considerable work has been done on the

development of CLAD systems for maintenance of general

anesthesia and sedation (see Discussion). Interest in CLAD systems

has grown driven by attempts to design more efficient, cost-

effective ways to administer anesthesia care. To date, no CLAD

system has been developed to manage medical coma. Systems to

control burst suppression have only been studied in rodent models.

Vijn and Sneyd implemented a CLAD system in a rodent model

to establish a paradigm for testing new anesthetics [6]. Cotten and

colleagues used the Vijn and Sneyd paradigm to study new

etomidate-derived anesthetics in a rodent model [7]. Both studies

reported average control results rather than results for individual

animals and controlled constant target levels of burst suppression

rather than time-varying target levels. Here we present a BMI

using a stochastic control framework for control of time-varying

burst suppression target trajectories in individual rodents. Our

study uses a rodent model to establish the feasibility of automatic

control of burst suppression as a way to eventually achieve real-

time control of medical coma for therapeutic purposes in humans.

We show that for individual rodents the BMI enables accurate

maintenance of multiple desired target levels within the same

experimental session, enables prompt transitions between target

levels without overshoot or undershoot, and allows specific

constraints to be formally imposed over the infusion rates or the

vital states (see Discussion).

The presented BMI applies an EEG-guided, closed-loop

infusion of propofol to control the level of burst suppression in

medically-induced coma in a rodent model using a stochastic

control framework. In this framework, we use the concept of the

burst suppression probability (BSP) to define the brain’s instanta-

neous probability of being in the suppressed state and quantify the

burst suppression level. We use a two-dimensional linear

compartment model to characterize the effect of propofol on the

EEG. For each animal, we estimate the parameters of the

compartment model by nonlinear least-squares in an experiment

prior to initiating control. The BMI consists of two main

components: an estimator and a controller. We derive a two-

dimensional state-space algorithm to estimate the BSP in real time

from the EEG thresholded and segmented into a binary time-

series. Taking the BSP estimate as the control signal, we derive

controllers using both a linear-quadratic-regulator (LQR) and a

model predictive control strategy. We first verify the performance

of the developed stochastic control framework in a simulation

study based on the model parameters estimated from the actual

experimental data. We then illustrate the application of our BMI

system by demonstrating its ability to maintain precise control of

time-varying target levels of burst suppression and to promptly

transition between changing target levels without overshoot or

undershoot in individual rodents.

Materials and Methods

Animal Care and Use and Ethics Statement
Animal studies were approved by the Subcommittee on

Research Animal Care, Massachusetts General Hospital, Boston,

Massachusetts, which serves as our Institutional Animal Care and

Use Committee. Animals were kept on a standard day-night cycle

(lights on at 7:00 AM, and off at 7:00 PM), and all experiments

were performed during the day.

BMI Design
Overview. We use a stochastic optimal control paradigm to

design a real-time BMI to control medical coma using burst

suppression (Figure 1a). As our measure of the burst suppression

level, we use the burst suppression probability (BSP), a number

between 0 and 1, which defines the instantaneous probability of

the EEG being suppressed. The BSP is computed in one-second

intervals in real time by filtering and thresholding the EEG to

convert it into binary observations (Figure 1b). To estimate the

BSP from the binary observations we first formulate a two-

dimensional compartment model that relates the BSP to the

concentrations of the anesthetic in the central compartment and

the effect site compartment (Figure 1c). We next estimate the

parameters of the compartment model based on the EEG

observations recorded in a systems identification experiment

conducted prior to initiating real-time control (Figure 2). We

carry out our stochastic control framework by developing from the

two-dimensional compartment model a recursive Bayesian

estimator of the concentration states and consequently of the

BSP from the binary observations in real time (14)–(17). We

develop a LQR controller that takes the concentration estimates as

feedback and determines the drug infusion rate in real time (25). In

addition to the LQR control strategy, we also implement a model

predictive controller (MPC) that allows us to explicitly impose

constraints on the anesthetic infusion rates (27). We present the

mathematical details of the system identification, formulation of

the Bayesian estimator and the two controllers for the interested

readers below. These mathematical details in this subsection are

Author Summary

Brain-machine interfaces (BMI) for closed-loop control of
anesthesia have the potential to enable fully automated
and precise control of brain states in patients requiring
anesthesia care. Medically-induced coma is one such drug-
induced state in which the brain is profoundly inactivated
and unconscious and the electroencephalogram (EEG)
pattern consists of bursts of electrical activity alternating
with periods of suppression, termed burst suppression.
Medical coma is induced to treat refractory intracranial
hypertension and uncontrollable seizures. The state of
coma is often required for days, making accurate manual
control infeasible. We develop a BMI that can automatically
and precisely control the level of burst suppression in real
time in individual rodents. The BMI consists of novel
estimation and control algorithms that take as input the
EEG activity, estimate the burst suppression level based on
this activity, and use this estimate as feedback to control
the drug infusion rate in real time. The BMI maintains
precise control and promptly changes the level of burst
suppression while avoiding overshoot or undershoot. Our
work demonstrates the feasibility of automatic reliable and
accurate control of medical coma that can provide
considerable therapeutic benefits.

Brain-Machine Interface to Control Medical Coma
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Figure 1. The BMI system. (a) The BMI records the EEG, segments the EEG into a binary time-series by filtering and thresholding, estimates the BSP
or equivalently the effect-site concentration level based on the binary-time series, and then uses this estimate as feedback to control the drug
infusion rate. (b) A sample burst suppression EEG trace. Top panel shows the EEG signal, middle panel shows the corresponding filtered EEG
magnitude signal (orange) and the threshold (blue) used to detect the burst suppression events, and bottom panel shows the corresponding binary
time-series with black indicating the suppression and white indicating the burst events. (c) The two-compartmental model used by the BMI to
characterize the effect of propofol on the EEG.
doi:10.1371/journal.pcbi.1003284.g001

Brain-Machine Interface to Control Medical Coma
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not necessary to follow the remainder of the paper beginning with

the Results.

Problem formulation. Our goal is to control the anesthetic

state of the brain in burst suppression, which depends on the

effect-site (i.e., brain) drug concentration. The burst suppression

state or the effect-site concentration, however, are not directly

observable. What we observe is the EEG signal, a stochastic

process that depends on the burst suppression state. To design the

closed-loop BMI, we present a certainty-equivalent optimal

feedback control approach [8] by deriving an estimator for the

burst suppression state based on the EEG observations and

designing an optimal feedback controller that takes this estimate as

a feedback signal to control the drug infusion rate in real time

(Figure 1a).

As our measure of the burst suppression state, we use the burst

suppression probability (BSP) by filtering and thresholding the

EEG signal in small intervals to identify the activity in each

interval as a burst or a suppression event (see Experimental

Procedure; Figure 1b). BSP is then defined as the brain’s

instantaneous probability of being in the suppressed state at a

given time interval. We denote the BSP at time t by pt. The BSP is

in turn related to the effect-site drug concentration. Since higher

levels of effect-site concentration should result in higher levels of

BSP and since BSP should be a number between ½0,1�, in this work

we relate the BSP to a measure of the effect-site concentration,

xe(t), using a hyperbolic transform

pt~
1{exp({xe(t))

1zexp({xe(t))
: ð1Þ

Hence our goal is to control the BSP, or equivalently to control

this measure of effect-site concentration, xe(t).

To develop the estimator and the controller, we construct a state

model for the drug concentration state that describes its dynamics

in response to propofol infusion. Pharmacokinetic models charac-

terize the dynamics of a drug’s absorption, distribution, and

elimination in the body (e.g. [9,10]). We adapt a simplified two-

compartment linear pharmacokinetic model [11] to describe the

anesthetic drug’s dynamics in burst suppression. In this model, one

compartment represents the central plasma and the other

compartment represents the effect-site or brain (Figure 1c). The

anesthetic drug enters the body and is eliminated from the body

through the central compartment, and can flow in both directions

between the two compartments. In the Results section we show

that this model is sufficient to achieve reliable and accurate control

of burst suppression.

Given the two compartments in the model, the concentration

state is two-dimensional and is denoted by xt~½xc(t),xe(t)�
0
, where

as before, xe(t) is the brain’s anesthetic concentration and xc(t) is a

measure of the central plasma concentration at time t. Denoting

the sequence of drug infusion rates by u0, � � � ,ut, the sequence of

anesthetic concentration states in the two-compartment model,

x0, � � � ,xt, are generated according to the linear dynamical system

xt~Axt{1zBut{1, ð2Þ

where

xt~
xc(t)

xe(t)

� �
ð3Þ

A~
1{D(kcezkc0) Dkec

Dkce 1{Dkec

� �
ð4Þ

B~
D

0

� �
: ð5Þ

Here D is the discretization time step, and A (or equivalently kce,

kec, and kc0) are parameters of the two-compartment model that

we need to estimate (Figure 1c). We estimate this model for each

animal from the EEG data prior to initiating real-time control as

discussed in detail in the System Identification section.

We first derive a recursive Bayesian estimator of the burst

suppression level from the EEG thresholded and segmented into a

binary time-series. We then derive an optimal feedback-controller

that uses this estimate as a feedback signal to decide on the drug

infusion rate in real time.

Recursive Bayesian estimator. We now develop a recur-

sive Bayesian estimator for the drug concentrations and conse-

quently for the BSP based on the binary observations of the

thresholded EEG signal. Since the drug concentration state, xt, is

Figure 2. System identification. (a) and (b) show two sample fitted system responses. The measured BSP trace in response to a preliminary bolus
of propofol is shown in grey and the response of the second-order system model in (2) fitted using nonlinear least-squares is shown in red.
doi:10.1371/journal.pcbi.1003284.g002

Brain-Machine Interface to Control Medical Coma
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a positive variable, we estimate its logarithm, zt~log(xt), from the

EEG signal instead.

A recursive Bayesian estimator consists of two probabilistic

models: the prior model on the time sequence of the concentration

states, and the observation model relating the EEG signal to these

states [12,13]. Using the two compartment model in (2), we write

the prior model for zt as

zt~
zc(t)

ze(t)

" #

~
log A11 exp(zc(t{1))zA12 exp(ze(t{1))½ �

log A21 exp(zc(t{1))zA22 exp(ze(t{1))½ �

" #
zBut{1zwt

~f (zt{1)zwt

ð6Þ

where wt is a zero-mean white Gaussian noise with covariance

matrix W and summarizes the uncertainties in the state model,

and Aij is the (i,j)th component of A. At time t, ut{1 is the known

drug infusion rate used by the BMI in the previous time step. Note

that our prior state model is nonlinear.

The observation in the estimator is the binary time-series of the

burst suppression events obtained by thresholding the EEG (see

Experimental Procedure; Figure 1b). To construct the observation

model, we assume that in each time interval D there can be at most

N suppression events and that the number of such suppression

events is binomially distributed with burst suppression probability

pt. Denoting the number of suppression events by Nt, the

observation model is given by

p(NtDzt)~
N

Nt

� �
pt(zt)

Nt (1{pt(zt))
N{Nt ð7Þ

where we have indicated the dependence of the BSP, pt, on the

states, zt, explicitly.

Using the prior and observation models in (6) and (7), we now

derive the recursive Bayesian estimator. The estimator’s goal is to

causally and recursively find the minimum mean-square error

(MMSE) estimate of the state zt at each time step, which is given

by the mean of the posterior density at that time step, p(ztDN1:t).
To derive the recursions and denoting the sequence of suppression

counts by N1:t~ N1, . . . ,Nt½ �, using the Bayes rule we can write the

posterior as

p ztjN1:tð Þ~

p Ntjztð Þp ztjN1:t{1ð Þ
p NtjN1:t{1ð Þ !pt ztð ÞNt 1{pt ztð Þð ÞN{Nt p ztjN1:t{1ð Þ,

ð8Þ

which states the posterior density as a function of prediction

density, p ztjN1:t{1ð Þ. Note that we have used

p Ntjzt,N1:t{1ð Þ~p Ntjztð Þ, since we assume that the observations

of the EEG at a given time step only depend on the concentration

states at that time step and hence are conditionally independent of

the previous EEG observations. Using the Chapman-Kolmogorov

equation, we can in turn write the prediction density as

p ztjN1:t{1ð Þ~
ð

p ztjzt{1,N1:t{1ð Þp zt{1jN1:t{1ð Þdzt{1

~

ð
p ztjzt{1ð Þp zt{1jN1:t{1ð Þdzt{1:

ð9Þ

Here we have used the conditional independence,

p ztjzt{1,N1:t{1ð Þ~p ztjzt{1ð Þ, which comes from the prior model

in (6). Now the second term inside the integral is just the posterior

density from the previous time step. Hence substituting (9) into

(8) generates the recursion. The exact expression in (8) is in

general complicated and not easy to find analytically. In the

special case when both the prior and observation models are

linear and Gaussian, these recursions have exact analytical

solutions and result in the celebrated Kalman filter. In our case,

however, first, the prior model is nonlinear and second, the

observation model is not Gaussian but binomial. Hence we

make two approximations at every time step to compute the

recursions. First, similar to the case of the extended Kalman

filter, we make a linear approximation to the prior model at

each time step. Second, we make a Gaussian approximation to

the posterior at each time step.

We denote the mean of the posterior, i.e., E ztjN1:tð Þ, by ztDt and

its covariance matrix by WtDt. Similarly, we denote the mean of the

one step prediction density, p ztjN1:t{1ð Þ, by ztDt{1 and its

covariance matrix by WtDt{1. As the first approximation, we

linearize the prior model in (6) around the posterior mean,

zt{1Dt{1. Doing so we have

zt&f (zt{1Dt{1)z~AA(zt{1{zt{1Dt{1)zwt ð10Þ
where

~AA~
Lf

Lz

� �
zt{1Dt{1

ð11Þ

~

A11 exp(zc(t{1Dt{1))

f1(zt{1Dt{1)

A12 exp(ze(t{1Dt{1))

f1(zt{1Dt{1)

A21 exp(zc(t{1Dt{1))

f2(zt{1Dt{1)

A22 exp(ze(t{1Dt{1))

f2(zt{1Dt{1)

2
64

3
75 ð12Þ

with ½:�a denoting the evaluation of the inside expression at value a

and with

f1(zt)~A11 exp(zc(t))zA12 exp(ze(t)),

f2(zt)~A21 exp(zc(t))zA22 exp(ze(t)):
ð13Þ

As the second approximation, we make a Gaussian approxi-

mation to the posterior density. Doing so, from (9) the prediction

density will be approximately Gaussian since p(ztDzt{1) is

approximately Gaussian from (10). Using (10) we can find the

prediction mean and covariance as

ztDt{1~f (zt{1Dt{1) ð14Þ

WtDt{1~~AAWt{1Dt{1
~AA
0
zW ð15Þ

This is the prediction step of the estimator. Now making the

Gaussian approximation we get the update step (see Supporting

Text S1 for details)

zt tj ~zt t{1j zWt tj
0

ct
pt 1{ptð Þ Nt{Nptð Þ

" #
zt t{1j

ð16Þ

Brain-Machine Interface to Control Medical Coma
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W{1
tDt ~W{1

tDt{1z
0 0

0 ct

� �
ztDt{1

ð17Þ

where again ½:�ztDt{1
indicates the evaluation of the inside

expression at ztDt{1 and

ct~
xe tð Þexp xe tð Þð Þ
1zexp xe tð Þð Þ 1{ptð Þ ð18Þ

ct~
Nc2

t

pt 1{ptð Þ{
Nt{Npt

pt 1{ptð Þ
L2pt

Lz2
e tð Þ{

1{2pt

pt 1{ptð Þ c
2
t

" #
ð19Þ

with

L2pt

Lz2
e tð Þ~ct 1zxe tð Þ{ 1{ptð Þxe tð Þexp xe tð Þð Þ½ � ð20Þ

Hence (14)–(17) give the estimator recursions. The estimator

finds the MMSE estimate of the state or equivalently the posterior

mean at time t in two steps: first, before data Nt is observed, it uses

the prior model in (6) to make a prediction on the state, i.e., find

ztDt{1 given zt{1Dt{1 and ut{1—this is the prediction step in (14)

and (15). Once data Nt is observed, it combines the observation

model in (7) with the prediction density to find the posterior mean

ztDt—this is the update step in (16) and (17). Consequently since

xt~exp(zt), we find the concentration state estimate as

xtDt~exp(ztDt), and since the BSP is related to xe(t) by a hyperbolic

transform in (1), we estimate it as pt tj ~
1{exp {xe t tjð Þð Þ
1zexp {xe t tjð Þð Þ.

Optimal feedback-controller. The recursive Bayesian esti-

mator derived above provides us with a real-time estimate of

the concentration states at each time step. We now design a

real-time optimal feedback-controller that takes as feedback

this state estimate and decides on the sequence of drug infusion

rates ut to control the BSP. To find ut in the optimal control

framework, we need to quantify the goal of the controller in a

cost function that will then be minimized by selecting the

optimal ut. For the linear state model in (2), if we pick the cost

function as a quadratic function of the state and control signals

given by

J~
XT{1

t~1

x
0
tQxtzwru

2
t

� �
zx

0
T QTxT , ð21Þ

where T is the time duration of anesthesia, Q and QT are

positive semidefinite and wr is positive, then the optimal

control signal at any time, ut, is simply a linear feedback of the

state at that time given by [8]

ut~{Ltxt, ð22Þ

where the feedback matrices, Lt, can be found recursively and

offline [8]. This is the linear-quadratic-regulator (LQR)

solution. Moreover, when the state model ½A,B� is controllable

(as is the case in our problem using the experimental fits; see

Results), there exists a steady-state solution, L, for the feedback

matrix in (22). This steady-state feedback matrix is the solution

to the discrete form of the famous algebraic Riccati equation

given by [8]

L~(wrzB’PB){1B’PA, ð23Þ

where

P~QzA’PA{A’PB(wrzB’PB){1B’PA: ð24Þ

In the general LQR formulation above, however, the goal is to

derive the states close to zero—while limiting the total amount of

control—as evident from the cost function in (21). In the control of

burst suppression, our goal is to achieve a desired non-zero target

BSP level, p�, or equivalently to take the effect-site concentration

state close to a non-zero target level x�~log (1zp�)=(1{p�)ð Þ,
using as little drug as possible. Hence to find the solution, we

additionally shift the origin of the state-space to x� [14]. This way,

the control goal is equivalent to deriving the shifted state variable

close to zero, as in the classical LQR formulation. We show in the

Supporting Text S1 that, in our problem, it is possible to shift the

origin and the optimal drug infusion rate is in turn given by

ut~{L(xt{x�)zu� ð25Þ

where

x�~
kec
kce

x�

x�

" #
u�~

kc0kec

kce

x� ð26Þ

The value of xt at each time step is provided by the estimator.

Note that the LQR formulation does not impose any

constraints, such as positivity of the control variables. In practice

we can impose these constraints by bounding the LQR control

solution in (25) appropriately (for example if the solution is

negative, use zero instead). Another way to solve optimal control

problems with constraints is to use a model predictive control

approach as we develop next.

Model predictive controller. One approach to solve the

optimal control problem while explicitly imposing constraints on

the state and control variables is to use a model predictive

controller that approximately solves the constrained optimal

control problem at each time step t [8]. In model predictive

control, at every time step t we solve the optimization problem

min
xtz1,���,xtzTh

,ut ,���,utzTh{1

XtzTh{1

t~t

(xt{x�)
0
Q(xt{x�)zwru

2
t

� �
ð27Þ

subject to ut[U and xtz1~AxtzBut t~t, � � � ,tzTh{1, ð28Þ

where Th is a finite control horizon, U is a convex set of

permissible control values, and xt is the input to the optimization

problem at time t and is given by the estimator (i.e., xt~xtDt). If

needed, we can also add constraints on the permissible state

variables in the optimization problem, i.e., xt[X ,Vt. Hence in

every time step, we solve one quadratic optimization problem over

the state and control variables. Since solving this constrained

optimization problem over the entire time course is computation-

ally expensive, smaller time horizons, Th, are selected in practice.

Solving this optimization problem and denoting the solutions by
�xxtz1, � � � ,�xxtzTh

,�uut, � � � ,�uutzTh{1, the model predictive controller
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takes ut~�uut as the drug infusion rate at time t. Note that again the

optimal control or drug infusion rate is a function of the value of

the current state xt, though a complicated function (i.e.,

ut~p(xt)). This process gets repeated for every time step.

In our BMI, we implement both the bounded LQR controller

and the model predictive controller in which such constraints (such

as positivity of drug infusion rates) are explicitly imposed in the

formulation. We show that in our problem, in which there are only

constraints on the drug infusion rate or equivalently the control

variable, the two approaches yield approximately the same

infusion rates. However, as we expand on in the Discussion

section, the recursive Bayesian estimator combined with the

implemented model predictive controller could solve more general

problems in which constraints are also required on the state

variables and could extend our framework to the joint control of

the anesthetic state and other vital states such as blood pressure.

Experimental Setup and Signal Acquisition
Surface EEG recordings were collected using extradural

electroencephalogram electrodes that were surgically implanted

at the following 4 stereotactic coordinates relative to lambda: A

(Anterior) 0 mm L (Lateral) 0 mm, A6L3, A6L-3, and A10L2

[6,15,16]. During implantation, general anesthesia was induced

with isoflurane. At the above four stereotactic coordinates, four

holes were made using a microdrill (Patterson Dental Supply Inc.,

Wilmington, MA). An electrode with mounting screw and socket

(Plastics One, Roanoke, VA) was screwed into each of these four

holes. The sockets were in turn inserted in a pedestal. Dental

acrylic cement was used to permanently fix the screws, sockets and

pedestal. Recording began after at least 7 days of recovery

following implantation.

During the experiment, the potential difference between

electrodes A0L0 and A6L3 was recorded and the signal was

referenced to A10L2 and recorded using a QP511 Quad AC

Amplifier System (Grass Instruments, West Warwick, RI) and a

USB-6009 14-bit data acquisition board (National Instruments,

Austin, TX). The binary signal was acquired at a sampling rate of

500 Hz and fed into our BMI. Our algorithm was implemented in

a simulink-matlab framework on a HP Probook 5430 s laptop.

This setup controlled a Physio 22 syringe pump (Harvard

Apparatus, Holliston, MA) to deliver the propofol infusion rate.

A 24 gauge intravenous catheter was placed in a lateral tail vein

during brief general anesthesia with isoflurane (2% to 3%) in

oxygen, and then the animal was allowed to fully recover from the

isoflurane general anesthetic in room air before the start of the

experiment. The temperature of the animal was monitored and

maintained in the normothermic range for the duration of the

experiment.

Experimental Procedure
For all experiments, the magnitude of the raw EEG signal was

low-pass filtered below 5 Hz and then thresholded to convert it

into a binary signal. At the start of an experiment, the threshold

level was empirically chosen based on visual inspection of the BSP

and the corresponding binary data and based on the values of the

filtered EEG over the bursts and suppressions. Figure 1b shows the

burst-suppression raw EEG, filtered EEG and threshold, and the

resulting binary signal. The segmentation algorithm was run in

real time. Several preliminary boluses of propofol were adminis-

tered to each rat and the obtained BSP traces were used for system

identification in each animal (see System Identification section

below). The experiment was then conducted by giving the rat a

manual propofol bolus to induce a burst suppression state, and the

real-time BMI control experiment started once the BSP dropped

to a level of 0.1–0.3. In the real-time BMI experiments, the goal

was to acquire, maintain, and transition between three target BSP

levels (low, medium, high). The order of the target levels was

randomized. Each real-time BMI control experiment was

conducted for an average of 62 min. Three rats were available

for the experiments, weighing 366, 391, and 422 gr respectively.

Each rat was used for two real-time experiments, resulting in six

real-time experiments.

System Identification
Our system identification procedure is conducted prior to real-

time BMI control for each animal in a preliminary experiment and

consists of two steps. First, a BSP signal is estimated from the

binary thresholded EEG trace using a special case of our recursive

Bayesian estimator in which we take the state to be the scalar

variable ze(t). Hence the corresponding state model in the

estimator imposes a smoothness constraint on ze(t) using a first-

order linear Gaussian process [17]. Specifically, we use a special

case of (10) as ze tð Þ~ze t{1ð Þzwt. Second, the corresponding

BSP estimate pt tj is fitted using a non-linear least-squares

procedure to minimize the sum-squared-error between the model

predicted BSP and the estimated BSP. The system parameters are

thus the solution to

arg min
kce,kc0,kec

XT

t~1
pt tj {psim

t kce,kc0,kecð Þ
� 	2 ð29Þ

where psim
t (kce,kc0,kec) is the model predicted BSP given the

values for the system parameters (see Results and Figure 2).

Experimental Performance Metrics
To characterize the performance of the BMI at steady state, we

compute the error between the target BSP at each time, p�(t), and

the controlled BSP, pt tj , as

et~p� tð Þ{pt tj : ð30Þ

We use the error to calculate multiple standard metrics [18] of

performance. These metrics are the median absolute deviation

(MAD)

MAD~median etj jð Þ, ð31Þ

the median prediction error (MDPE)

MDPE~median et=p� tð Þð Þ|100, ð32Þ

and the median absolute performance error (MDAPE)

MDAPE~median etj j=p� tð Þð Þ|100: ð33Þ

The MDPE is a measure of bias at steady state and the MDAPE is

a measure of normalized error. We compute these metrics for low,

medium, and high target BSP levels and across all levels for each

experiment. The median is computed across data points at steady

state. Finally we compute the median of all these measures across

all experiments to quantify the overall performance of the BMI.

To characterize the performance of the BMI in transitioning

between target BSP levels, we calculate the rise time for an upward

transition and the fall time for a downward transition. These are

defined as the time it takes, once the target is changed, for the BSP
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to reach within 0.05 BSP units of the new target BSP. We then

find the rate of BSP change defined as

rate~
DBSP

transition time
ð34Þ

and calculate the median of this rate across all upward transitions

and also across all downward transitions.

Bayesian Analysis of BMI Performance
In addition to calculating the steady-state error metrics above

for the low, medium, and high levels in each experiment, across all

levels for each experiment, and across all experiments (Table 1),

we also performed specific statistical assessments based on the

error distribution at each level to examine the reliability of the

BMI overall [19]. In particular, we considered the BMI to be

reliable at each level if its absolute error measure, etj j, was lower

than a specified value with high probability. Experimentally we

found that the absolute error at any time step in our BMI system

was almost always below 0:2. Therefore we considered the BMI to

be reliable at a given level if its absolute error at that level was less

than 0.15 with probability $0.95 and highly reliable if the absolute

error at each level was less than 0.10 with probability $0.95. This

is equivalent to the 95th percentile of the absolute error

distribution at a given level being less than 0.15 and 0.10,

respectively. Hence we can compute from the absolute error

distribution at each level the 95th percentile and consequently

identify the BMI performance at each level as reliable or not.

After evaluating the reliability of the BMI at each level

separately, we use a Bayesian analysis to identify the reliability

of the BMI across all levels. To do so, we combine the results of the

reliability assessments across all levels to compute an overall

assessment of reliability for the experiment. In our experiments, we

tested the BMI over 20 levels with the time duration at each level

between target transitions being 18.6 minutes on average. For the

purpose of steady-state error calculation, we remove 5 minutes of

data after an upward transition and 7 minutes of data after a

downward transition to ensure that the system is at steady-state

and to ensure approximate independence between levels. The

independence assumption between levels is justified because if we

assume even a high first-order serial correlation of 0.98 between

adjacent data points separated by one second and we allow

between 5 to 7 minutes for the transition between levels before

making the steady-state error calculations, then the maximum

correlation between the closest two points in immediately adjacent

levels is between (0:98420~2:1|10{4, 0:98300~2:3|10{3),
where 420~7 min |60 data point per minute and 300~5
minutes |60 data points per minute. Because these maximum

correlations are effectively 0, assuming independence between

levels is highly reasonable (we acknowledge that lack of correlation

is not equivalent to independence). Hence the data between levels

within animals are approximately independent so that the 20 levels

serve as the unit of analysis in the overall assessments of reliability.

Denoting the probability that the BMI system is reliable at any

level by pr, the total number of reliably controlled levels, k, is

binomially distributed with success probability pr out of n~20
independent levels. The number of successes k is in turn equal to

the number of levels for which the BMI is identified as reliable as

described above. Given the binomial likelihood and taking the

prior distribution for pr to be the uniform distribution on the

interval (0, 1), it follows that the posterior distribution for pr is the

beta distribution with parameters a~kz1 and b~n{kz1
[15,20]. We thus estimate pr as the mode of this beta distribution

and consider the BMI system reliable overall if the leftmost point

of the 95% credibility interval for pr is greater than 0.

Results

To test our closed-loop BMI system for control of medical

coma, we perform both simulation-based verification as well as

real-time in vivo experiments in rats. In both cases, we implement

the recursive Bayesian estimator combined with both the bounded

LQR controller as well as the model predictive controller. Using

both validation methods, we show that the closed-loop BMI

Table 1. Performance metrics across experiments.

Experiment # 1 2 3 4 5 6 Median

Low Level

Median Abs. Dev. 0.027 0.043 0.017 0.032 0.034 0.031 0.032

Median Abs. Perf. Error 5.43 10.72 4.90 11.44 8.47 6.18 7.32

Median Pred. Error 20.80 10.72 1.79 211.44 28.47 23.04 21.92

Mid Level

Median Abs. Dev. 0.018 0.016 0.019 0.017 0.052 0.019 0.019

Median Abs. Perf. Error 2.62 2.32 3.80 3.35 7.37 2.68 3.02

Median Pred. Error 1.75 1.00 20.40 21.45 27.37 20.06 20.23

High Level

Median Abs. Dev. 0.012 0.016 0.031 0.038 0.043 0.017 0.024

Median Abs. Perf. Error 1.35 1.75 3.69 4.35 4.81 1.87 2.78

Median Pred. Error 20.81 21.73 23.69 24.35 24.81 21.84 22.77

All Levels

Median Abs. Dev. 0.019 0.022 0.021 0.032 0.041 0.022 0.022

Median Abs. Perf. Error 2.82 3.01 4.14 4.98 5.61 3.07 3.61

Median Pred. Error 20.13 0.99 21.24 24.87 25.60 21.63 21.44

doi:10.1371/journal.pcbi.1003284.t001
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system can accurately control time-varying target levels of burst

suppression in real time.

System Identification
For each experiment, we first performed the system identifica-

tion step for each animal using the scalar filtering and the

nonlinear least-squares model fitting (see Materials and Methods).

Figure 2 shows two sample BSP traces in response to boluses of

propofol administered in preliminary experiments prior to BMI

control, and the fitted system response of the second-order system

in (2). The estimated parameters for Figures 2a and 2b are

(kce,kec,kc0)~(5:6|10{5,0:078,0:006) and (kce,kec,kc0)~

(2:7|10{5,0:048,0:004), respectively. Once the system model

was fitted, the real-time BMI control experiments were conducted.

We use the fitted system model in Figure 2b for our simulation-

based verification below.

Simulations
We first perform a set of simulations to verify the performance

of the closed-loop BMI system. In our simulations, we assume that

the anesthesia drug delivery period is a total of 45 minutes and

that the goal is to keep the BSP at three desired target levels, 0.4,

0.7, 0.9, each for 15 minutes. We simulate all 6 possible order

permutations of these levels. To run the simulations, we use the

estimated system model in Figure 2b. Note that all the fitted

system models in our experiments were controllable.

To specify the cost function (see (27) and Supporting Text

(S.18)), we take Q~
0 0

0 1

� �
. We choose this Q since the main

goal is to have the effect-site concentration close to the target value

and since the effect-site concentration is the observable through

the EEG. The choice of wr in turn depends on how fast we desire

the controller response to be. Smaller values of wr result in faster

controller response since the cost on the amount of drug infusion is

reduced. Here we pick wr~0:005 for our desired response.

We take the discretization step to be D~1 sec. This means that

the closed-loop system updates its estimate of the BSP and its drug

infusion rate every second. To simulate a trial of the closed-loop

controlled system response, at each time t we use ut{1 and xt{1 to

find xt using (2) with initial condition x0~0, u0~0. To get the

binary output of the thresholded EEG within this time step, we

generate a realization of the binomial distribution in (7) with mean

Npt~N
1{exp {xe tð Þð Þ
1zexp {xe tð Þð Þ and using a sampling rate of 10 Hz (i.e.,

taking N~10). Given this binomial realization, we use the

recursive Bayesian estimator to estimate the concentration state

xtDt, and then use this estimate as feedback in the controller to

decide on the infusion rate ut.

We impose the constraints on the control (i.e., drug infusion

rate) by first finding the unconstrained control solution from (25)

and then using the closest value to it in the constrained feasible set

U . For example, to impose positivity and for negative control

solutions we use zero instead. We can similarly do this for

constraints on the maximum drug infusion rate.

Figure 3 shows sample closed-loop controlled BSP traces for

each of the 6 possible permutations of the desired target

trajectories. Here the only imposed constraint is positivity of the

drug infusion rates. In each subfigure, the top panel shows the BSP

traces and the bottom panel shows the drug infusion rate. The

stochastic control framework can achieve successful control of

burst-suppression. The framework is particularly successful in

changing the BSP level without overshoot or undershoot.

We also tested the model predictive controller with various time

horizons, Th. In the model predictive controller, we impose the

constraints on the control inputs (i.e., drug infusion rates) explicitly

in the formulation and thus find the constrained (approximately)

optimal solution. Since our goal is to compare the bounded LQR

and MPC control strategies in this set of simulations, we assume

that both controllers know the BSP perfectly at each time (i.e., we

use the true xt as feedback in the controller). We compare the

MPC drug infusion rate with the bounded LQR infusion rate in

Figure 4, where the constraint is positivity on the drug infusion

rate. As we increase the optimization horizon, the two solutions

converge. This shows that, in this problem, solving the uncon-

strained LQR and then bounding it is approximately optimal. The

controlled BSP in Figure 3 is noisier than in Figure 4 because in

the former the BSP is estimated from a stochastic binary time-

series emulating the segmented EEG (Figure 1b) and in the latter

BSP is assumed to be perfectly known to the controllers. We can

also show that, similarly, when an upper-bound on the drug

infusion rate is desired, the two solutions again converge (Figure 5).

It is important to note, however, that in our problem no

constraints are placed on the state. Our recursive Bayesian

estimator combined with the implemented real-time MPC can

extend our framework to solving more complex problems with

constraints also on the state variables, such as blood pressure (see

Discussion).

Even though simulation-based validations are helpful in

assessing the behavior of the BMI, the true test of the BMI is in

in vivo experiments as we present below.

BMI for Closed-Loop Control of Medical Coma in Rodents
We implemented our BMI in experiments with rodents and

tested it for controlling the level of burst suppression in real time.

The BMI used the recursive Bayesian estimator combined with

either the bounded LQR controller or the MPC. The BMI in both

cases could successfully and accurately control the BSP level in

rodents in real time.

The control sessions lasted an average of 62 minutes and

consisted of at least 3 target BSP levels, thus requiring at least 3

transitions. Figure 6 shows the BSP and the drug infusion rate in 6

closed-loop BMI sessions that were run in real time in rodents (see

also Supporting Figure S1 that shows the evolution of xt in these

experiments). Figure 6a–e were run with the bounded LQR

controller and Figure 6f was run with the MPC. All experiments

except for the one in Figure 6e consisted of 3 target levels,

identified as low, medium, and high levels for the purpose of

metric calculation. The experiment in Figure 6e consisted of 5

target BSP levels and hence we identify the lowest two levels as the

low level and the highest two levels as the high level to calculate

the metrics.

As is evident in Figure 6, the BMI could successfully and

promptly transition between levels and accurately maintain the

BSP at a desired target level. At steady state, the BMI-controlled

BSP closely followed the target BSP level. The real-time variations

in the drug infusion rate at higher levels of BSP, e.g., at 0.9, were

larger than at the lower levels since larger amounts of propofol are

needed to keep the EEG in suppression 90% of the time while

allowing for the bursts 10% of the time (this can also be seen from

(1) by observing that Lxe tð Þ=Lpt is monotonically increasing with

pt). The MDAPE (measure of normalized error) across all

experiments for the low, medium, and high target BSP levels

was only 7.32%, 3.02%, and 2.78%, respectively. When consid-

ering all levels, the MDAPE was only 3.61% (Table 1). Moreover,

the deviation between the target BSP level and the BMI-controlled

BSP, measured through MAD, was 0.03 BSP units or less for any

level. Across all levels the MAD was only 0.02 BSP units (Table 1),

a negligible error in practice. Finally, the MDPE was small across
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all levels. Together, these results demonstrate that the BMI

achieved precise control of multiple target burst suppression levels

at steady state within the same experimental session.

We also performed a Bayesian analysis to assess overall

reliability of the BMI based on the steady state error distributions

at each of the 20 levels used in the experiments (Materials and

Figure 3. Simulated closed-loop controlled BSP traces. In each subfigure, the top panel shows the BSP traces and the bottom panel shows the
drug infusion rate. In the top panels, sample trials of the closed-loop controlled BSP traces are shown in black and the corresponding estimated BSP
traces are shown in grey. The time-varying target BSP level is shown in green. The bottom panel shows the corresponding controller infusion rates.
Each subfigure (a–f) corresponds to one possible permutation of the 3 BSP target levels.
doi:10.1371/journal.pcbi.1003284.g003
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Methods). The data at different levels within animal are

approximately independent so that the 20 levels serve as the unit

of analysis in the overall assessment of reliability. The 95th

percentile of the absolute error distribution at each of the 20 levels

was less than 0.15 giving a mode of the posterior density for pr

(probability that the BMI is reliable at any level) of p̂pr~20=20~1
and a 95% credibility (Bayesian confidence) interval for pr of (0.87

to 1.00) (Figure 7). The lower bound of the 95% credibility interval

Figure 4. Comparison of the bounded LQR and MPC strategies. In each subfigure, the top panel shows the closed-loop controlled BSP traces
using the bounded LQR control strategy and using the MPC strategy with various time horizons, Th~50,100,200 time samples (seconds). The bottom
panel shows the corresponding drug infusion rates. The only constraint imposed here is non-negativity of the drug infusion rate. Each subfigure (a–f)
corresponds to one possible permutation of the 3 BSP target levels.
doi:10.1371/journal.pcbi.1003284.g004
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of 0.87 is well above 0, the point of no control. These findings

establish that the system is reliable. In addition, for 17 out of 20 of

the levels the 95th percentile of the absolute error distribution was

less than 0.1, giving a mode of the posterior density for pr of

p̂pr~17=20~0:85 and a 95% credibility interval for pr of (0.67 to

1.00) (Figure 7). This finding suggests that furthermore the BMI

system meets our definition of being highly reliable overall. We

therefore conclude that the BMI system is highly reliable for real-

time control of medical coma using burst suppression across

dynamic targets.

In addition to accurate and reliable control at steady state, the

BMI was especially successful in promptly transitioning between

target BSP levels. The BMI could increase the level of BSP rapidly,

while avoiding overshoot. To increase the BSP, the BMI

immediately increased the drug infusion rate once the target was

increased, and then gradually reduced the infusion rate until the

BSP approached the new target level. The rate at which the BMI

increased the BSP level was 0.32 BSP units per minute. The

median rise time in our experiments was under a minute

(49 seconds).

The BMI was also able to decrease the BSP level without

undershoot. To decrease the BSP, the BMI first stopped the drug

infusion and then gradually restarted it once the BSP approached

the lower target BSP level. The rate at which the BMI could

decrease the BSP level was 0.11 BSP units per minute. In

decreasing the level of BSP, the time response of the BMI is mainly

governed by the clearance rate in the pharmacokinetic model of

the rat. Hence although the controller stopped the drug infusion

immediately once the target was dropped, it took a few minutes for

the BSP to go down to the desired target level. The median fall

time in our experiments was 4.45 minutes.

These results thus demonstrate the feasibility of automatic

reliable and accurate control of medically-induced coma using a

BMI.

Discussion

To study the feasibility of automating control of medically-

induced coma, we developed a BMI to control burst suppression in

a rodent model. Our BMI system reliably and accurately

controlled burst suppression in individual rodents across dynamic

target trajectories. The BMI promptly changed the BSP in

response to a change in target level without overshoot or

undershoot and accurately maintained a desired target BSP level

with a median performance error of 3.6% and a percent bias

of -1.4%.

BMI Development for Control of Anesthesia-Induced
Brain States

Our work contributes to the extensive BMI research in

anesthesiology aimed at controlling brain states under general

anesthesia. This field began in the 1950s [21–23] and developed

further in the 1980s [24]. BMI systems for control of sedation are

now commercially available [25] and have been recently approved

for use in the United States. The most commonly used control

signal is the Bispectral Index (BIS) [26–40]. Other control signals

include an auditory evoked potential index [41], the spectrogram

median frequency [24,42,43], a wavelet-based index [44] and an

entropy measure [45]. Both standard and non-standard control

paradigms [24,27,35,41,45] have been used in these systems with

the principal objective being control of unconsciousness [24,26–

32,34,44]. A recent report controlled both antinociception and

unconsciousness [45]. Although several criteria have been

established for successful control, a criterion used in BIS studies

has been maintaining BIS not at a specific value but in the broad

range between 40 to 60 [26–39]. Vijn and Sneyd [6] and Cotten et

al. [7] controlled constant target levels of burst suppression in

rodent models and reported average control results over rodents.

Schwilden demonstrated control of median frequency in individ-

ual human subjects [24]. None of these studies considered control

of dynamic time-varying trajectories.

We developed a BMI for real-time control of burst suppression

across time-varying target levels in individual rodents using a

stochastic control framework. Our stochastic control framework

consists of a two-dimensional state estimator and an optimal

feedback controller. In our formulation, we assumed a stochastic

form of the log transformed version of our system to incorporate

Figure 5. Comparison of the bounded LQR and MPC strategies with upper-bound constraints on the drug infusion rates. In each
subfigure, the top panel shows the closed-loop controlled BSP traces using the bounded LQR control strategy and using the MPC strategy with
various time horizons, Th~50,100,200 time samples (seconds). The bottom panel shows the corresponding drug infusion rates. In addition to being
non-negative, here the drug infusion rate is required to be less than 2.4 mg/min. Here we have shown two example permutations of the target levels
but the bounded LQR and the MPC drug infusion rates converge with increasing Th in all cases.
doi:10.1371/journal.pcbi.1003284.g005
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both the two-dimensional system model and noise in our estimates

and to ensure non-negative concentration estimates (Eqs. (2) and

(6)). This model-based two-dimensional state estimator is one

major reason that the current BMI largely avoided overshoot and

undershoot. By incorporating the two-dimensional stochastic

dynamic model and computing both xe(t) and xc(t) at each

update (Eqs. (14)–(17)), the estimator predicted the effect of the

real-time drug infusion rate on the BSP. In upward transitions, this

Figure 6. In vivo real-time BMI control of burst suppression in individual rodents. In each subfigure, the top panel shows the estimated
closed-loop controlled BSP trace (black) and the time-varying target level (green), and the bottom panel shows the corresponding BMI drug infusion
rate using the bounded LQR strategy (a–e) and the MPC strategy (f).
doi:10.1371/journal.pcbi.1003284.g006
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avoided underestimating the BSP in response to drug infusion that

would result in overestimating the required amount of drug and

hence in an overshoot. This similarly prevented undershoot in

downward transitions. Our framework is thus analogous to

maintaining control in a navigation system by estimating both

position and velocity.

In addition to the two-dimensional estimation algorithm, the

BMI consists of LQR and MPC controllers. Controllers using

Figure 7. Reliability of the real-time BMI. Each subfigure (a–f) corresponds to one of the six real-time BMI experiments (Figure 6) and shows the
modified boxplot summaries for the absolute error distribution at each of the levels used in that experiment. The lower and upper end of the boxes
represent the 25th and 75th percentiles of the absolute error distribution and the middle line in each box represents the median. Whiskers represent
the 95th percentile of the absolute error distribution at each level. The BMI is reliable (95th percentile of the absolute error ,0.15) at all 20 levels.
Additionally, the BMI is highly reliable (95th percentile of the absolute error ,0.1) at 17 of the 20 levels.
doi:10.1371/journal.pcbi.1003284.g007
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MPC and LQR strategies have been used successfully in many

applications. We recently demonstrated the success of a LQR

paradigm to control a motor neuroprosthetic device using point

process observations of spiking activity and a linear Gaussian

kinematic state model [46–50]. MPC has been widely used in

process control and chemical industries [51–53] and has been

previously applied to closed-loop administration of analgesics

[54], for sedation control using the BIS as the control signal

[55] and in a simulation study for control of BIS during

surgery [40]. The LQR and MPC controllers are both

formulated in an optimal feedback control framework [8].

They specify the control objective as a cost function to be

minimized by selecting the optimal infusion rates. We can

therefore adjust the behavior of these controllers, for example

the speed of transitions, by adjusting the penalty on various

terms in the cost function. While our LQR implementation

imposes constraints on the drug infusion rates by bounding the

control solution, our MPC implementation allows us to impose

explicitly any required constraints on both the states and the

drug infusion rates, such as non-negative or bounded infusion

rates, by solving a constrained optimization problem at each

time step in real time. For example, if the BMI system always

needed to keep the drug infusion rate below a specified

maximum level, the MPC controller could impose this

explicitly in the solution. Since the only constraints in our

problem were on the control variable (i.e., the infusion rate),

the LQR and MPC strategies performed similarly (Figure 5).

However, the recursive Bayesian estimator combined with the

real-time MPC strategy can be used to solve problems that

require constraints on the state variables as well. This situation

could arise in problems requiring joint control of multiple state

variables, such as controlling simultaneously the anesthetic

level and other physiological variables such as blood pressure

and heart rate.

Other approaches can also be used for anesthesia control. We

recently reported successful control of burst suppression using a

proportional-integral (PI) controller in simulated rodent [11],

simulated human [11], and actual rodent experiments [19]. The

experimental studies differed from the ones presented here in that

the transitions between target levels were carried out in 5 to

10 minutes ramps. Also, the BSP estimation algorithm in those

studies was one rather than two dimensional. Given the stochastic

two-dimensional dynamic model and the EEG signal, here we

used a stochastic control paradigm consisting of a two-dimensional

estimator and an optimal feedback controller in place of the one

dimensional estimator and the deterministic PI controller. The

model-based two-dimensional state estimator in our framework is

one major reason that the current BMI can both make prompt

and reliable transitions between levels (median rise time of

49 seconds and fall time of 4.45 minutes) and avoids BSP

overshoots and undershoots in any transitions. The stochastic

control framework also offers tremendous flexibility. In particular,

the MPC allows us to extend the BMI to control with constraints

on the control variable and a vital variable such as blood pressure.

The stochastic optimal formulation also provides a framework for

adjusting the behavior of the BMI by simply modifying the cost

function. Finally, while the mathematical derivation for the

stochastic framework may be more complex, the final infusion

rate solution is straight forward. The LQR solution is given simply

by a linear function of the state estimate at each time. The MPC

controller optimization problem is convex and can be solved using

existing convex optimization software. Indeed we ran the MPC in

real-time in our rodent experiments on a standard laptop

(Figure 6f).

A BMI System for Control of Burst Suppression
We chose levels of burst suppression as a control target because

it is a physiologically defined brain state [4,5] with a well-defined

EEG signature that can be readily characterized in real time for

the purpose of control. The linear two-dimensional state model

(Eq. (2)) is the simplest pharmacokinetics representation for

relating the concentrations of anesthetic in the blood and in the

brain to BSP (Eq. (1)) computed from burst suppression in the

EEG. This simplified two-compartment model was sufficient in

our experiments to achieve reliable and accurate control of burst

suppression.

Our Bayesian state estimator (Eqs. (14)–(17)) computes the

central compartment and the effect-site concentrations in real time

from the EEG converted into binary observations. Here, both the

prior state model (Eq. (6)) and the binomial observation model (Eq.

(7)) are non-linear functions of the state. We thus use two

approximations at each time step to derive the estimator

recursions, a linear approximation to the prior model at that step

and a Gaussian approximation to the posterior model. Gaussian

Laplace-type approximations have been successfully used in many

applications for example in our previous work estimating states

with linear prior models from point process observations of neural

spiking activity [12,13,47–50,56–59]. Our system identification

procedure used the one-dimensional version of the binary filter,

coupled with a non-linear least squares procedure to estimate

model parameters (Eq. (2)) for each animal and thereby,

implement individually tailored control strategies. Future work

can extend this system identification procedure to an efficient

expectation-maximization (EM) algorithm by replacing the one-

dimensional binary filter algorithm with the current Bayesian state

estimator [13,60], or can design an adaptive estimator that not

only computes the BSP but also updates the system parameters

during the several hours of real-time control.

We demonstrated in a rodent model that the BMI achieved

reliable and accurate control of burst suppression. It would also be

valuable as a next step to test this BMI in a rodent model of

refractory seizures or intractable intracranial hypertension prior to

testing it in humans.

A BMI System for Control of Medically-Induced Coma and
States of General Anesthesia

A BMI system to automatically control medically-induced coma

could provide considerable cost-saving and therapeutic benefits.

Although the state of medical coma is often required for several

days, it is achieved by manually adjusting the anesthetic infusion

rate to maintain a specified level of burst suppression assessed by

continual visual inspection of the EEG. Automated control would

allow much more efficient use of intensive care unit personnel as a

single nurse per shift would not have to be solely dedicated to the

task of manually managing the drug infusion of a single patient for

several days. Hence even assuming the same patient outcomes

between automated and manual control, there could be important

savings in intensive care unit resources under the automated

control regimen.

In addition to the inefficient use of the intensive care unit staff,

manual manipulation of the infusion rate does not approximate

the infusion rate changes of an automatic controller (Figure 6).

Similarly, visual inspection of the EEG does not provide an

accurate estimate of the state of burst suppression. The current

work establishes the feasibility of implementing automated,

accurate and reliable control of medical coma in a rodent model

suggesting that a BMI could be developed to study whether such

accurate control improves patient outcomes. For example, reliable

and accurate control of medical coma could offer the possibility of

Brain-Machine Interface to Control Medical Coma
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ensuring adequate brain protection for intracranial hypertension

and adequate therapy for status epilepticus while using the least

amount of anesthetic and minimizing overshoots when transition-

ing to a desired level of burst suppression. Reliable and accurate

control would also make it easier to induce periodic arousals to

conduct neurological assessments and prevent anesthetic overdose

syndrome [61]. To establish these potential therapeutic benefits of

reliable and accurate control of medical coma, outcome studies in

rodent models of intracranial pressure and status epilepticus will

be required before proceeding to human investigations.

We have also shown that other states of general anesthesia have

well defined EEG signatures [62,63]. Therefore, the ability of our

BMI to track accurately changing target levels of burst suppression

further suggests that it could be adapted to control states of general

anesthesia and sedation for patients requiring surgical or non-

surgical procedures. Our stochastic estimation paradigm and model

predictive controller could also be used to control jointly the state of

general anesthesia and physiological variables such as blood

pressure. These investigations will be the topics of future reports.

Supporting Information

Figure S1 Evolution of xc and xe in real-time BMI
experiments. Each subfigure shows the estimated xc(t) (top

panel) and xe(t) (bottom panel) in the six real-time BMI

experiments (Figure 6) using the bounded LQR strategy (a–e)

and the MPC strategy (f).

(TIF)

Text S1 Derivation of the update step of the recursive
Bayesian estimator and the optimal feedback control
solution.

(PDF)
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