Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyne–Aldehyde Coupling Reactions

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ja900701g</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/82098</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Regio- and enantiocontrolled reductive coupling reactions catalyzed by transition metals provide an efficient route to highly functionalized synthons from a diverse range of inexpensive, readily available commercial starting materials, such as aldehydes, ketones, imines, epoxides with alkynes, allenes, and alkenes. 1 The exact mechanism of many of these processes is still unknown and varies heavily on the metal, substrates, and reducing agent. In particular, nickel-catalyzed reductive couplings of an alkyne with an aldehyde afford access to synthetically important allylic alcohols 2 with the use of various reducing agents, including organozincs, 3 silanes, 4 organoboranes, 5 vinylzirconium reagents, 6 and chromium(II) chloride. 7 The couplings of alkene with aldehyde or ketone are more difficult and were achieved recently only through the use of stronger Lewis acids such as AlMe 3 or silyl triflates. 8 Here, we establish the mechanism and nature of rate-, regio- and stereoselectivity determining transition states for alkyne-aldehyde couplings catalyzed by Ni(0)-phosphine catalyst and borane reductant.

Four different mechanisms have been proposed for metal-catalyzed reductive coupling reactions: 2c,d 9 a) the most widely proposed mechanism is oxidative cyclization of alkyne and aldehyde to form a metallacycle intermediate, followed by transmetallation of the reductant and subsequent reductive elimination of the product (Scheme 1); b) a similar mechanism but with the metal bonded to the reductant in the oxidative cyclization; 9 c) oxidative addition of the reductant to the metal and subsequent insertion of the two π components; d) oxidative addition to one π component (alkyne or aldehyde) and subsequent insertion of the second component. We have investigated the mechanisms of this process with density functional theory. 10 Mechanism a) (Scheme 1) is found to be favored for the model system involving reaction of acetylene and acetaldehyde with PMe 3 ligand and BEt 3 as reductant. 11

The catalyst resting state is the 16e − alkyne(bisphosphane)-nickel(0) complex 3. All 18e − complexes are more than 5 kcal/mol less stable than the 16e − complex 3. Aldehyde complexation in place of one phosphine gives η 1 − complex 4 or η 2 − complex 5, which are 10.6
and 8.2 kcal/mol less stable, respectively, while only the η^2-complex leads to product. Complex 5 is trigonal planar with five low-energy d orbitals to accommodate the ten d electrons on Ni (Figure 1). Upon oxidative cyclization, 5 is transformed to the T-shaped metallacycle 6 with four low-energy d orbitals, instead of the five present in 5, accommodating the eight d electrons in the Ni(II) intermediate 6. The transformation from 5 to 6 involves electron transfer from the filled metal $d_{x^2-y^2}$ orbital to the in-plane π^* orbitals of alkyne and aldehyde. In TS1-A and 6, the planar geometry also enabled the back-donation from the filled metal d_{xz} orbital to the out-of-plane alkyne π^* orbital.

The $d \rightarrow \pi^*$ back-donation stabilizes the transition state TS1-A and intermediate 6. In the oxidative cyclization of ethylene and acetaldehyde, no such back-donation is possible due to the lack of out-of-plane π orbitals. The oxidative cyclization transition state TS1-A’ and intermediate 6 involving ethylene are 7.6 and 8.6 kcal/mol less stable than those of the reaction with acetylene, respectively (Figure 2b). This explains the inertness of alkene in the oxidative cyclization with aldehyde and Ni(0) when no Lewis acid is present.8,12

We also investigated an alternative pathway, in which the BEt$_3$ reductant coordinates with the aldehyde oxygen as a Lewis acid to stabilize the negative charge building up in the oxidative cyclization transition state (Path B, Scheme 1). For the reaction with acetylene, coordination of BEt$_3$ to the aldehyde oxygen destabilizes the reactant π complex 7 and the oxidative cyclization transition state TS1-B by 14.2 and 2.4 kcal/mol, respectively, in terms of free energies (Figure 2a). However, BEt$_3$ coordination slightly stabilizes the cyclization transition state of ethylene and acetaldehyde by 0.8 kcal/mol. This suggests that coordination with weak Lewis acid BEt$_3$ slightly accelerates the oxidative cyclization of aldehyde with alkene, but not with alkyne. The stronger Lewis acid AlMe$_3$ strongly favors coordination with aldehyde oxygen (path B) for both ethylene and acetylene, lowering the activation free energies by 19.2 and 16.0 kcal/mol, respectively. This acceleration effect makes the oxidative cyclization with alkene a feasible process in the presence of strong Lewis acids.8,13

For the reaction with acetylene, the transformation from the catalyst resting state 3 to the BEt$_3$ complexed metallacycle 8 is only slightly exergonic, while the subsequent steps are very exergonic with low activation barriers. Ethyl migration from BEt$_3$ to the Ni (TS2) requires activation energy of 9.9 kcal/mol. β-Hydrogen elimination from the ethyl on nickel and reductive elimination of the product are found to be a concerted process (TS3) with a low barrier of only 3.8 kcal/mol. The π-complex 10 then dissociates to liberate the borinic acid ether product and coordinates with reactants to enter the next catalytic cycle.14 Oxidative cyclization (TS1-A) is the rate-determining step, and controls the regio- and enantioselectivity of this reaction.15

Based on these calculations, the aforementioned oxidative cyclization mechanism has such a low barrier that it would be difficult for other processes to compete. In mechanism b, the reactant and the oxidative cyclization transition state are all much less stable when Ni is bonded to BMe$_3$ in place of PMe$_3$. The transition state and product of the oxidative addition of BEt$_3$ to the metal (mechanism c) cannot be located. The reactant complex of this mechanism, the borane(bispNichosphine)nickel complex is 3.6 kcal/mol higher energy than TS1-A. Thus, oxidative addition of BEt$_3$ is not likely to occur. The activation barriers of oxidative addition to acetylene or acetaldehyde (mechanism d) are 33.7 and 40.8 kcal/mol, respectively, both much higher than the oxidative cyclization mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

We are grateful to the National Science Foundation for financial support (CHE-0548209). Calculations were performed on the NSF TeraGrid resources provided by NCSA and the UCLA ATS and IDRE clusters.

References

10. All geometry optimizations and frequency calculations were performed with the B3LYP functional implemented in Gaussian 03: Frisch, MJ., et al. Gaussian 03. Pittsburgh, PA: Gaussian, Inc.; 2004. The LANL2DZ basis set was used for nickel, and the 6–31G(d) basis set was used for other atoms.

11. Calculations on a real system (R1 = Ph, R2 = Me, R3 = i-Pr, L = PEt3) suggested its TS geometries and activation energies are similar to the model system. See SI for detailed information.

13. (a) When phosphine ligand is present, ZnMe2 also coordinates with aldehyde oxygen and accelerates the oxidative cyclization. See SI for detailed information. (b) ZnMe2 can also accelerate the oxidative cyclization of enone and alkyne in a ligand-free system. See ref. 9.

14. See Supporting Information for the free energy profile of the full catalytic cycle.

15. For experimental regio- and enantioselectivities, see refs 4d,5b, c, e, g, i.
Figure 1.
Oxidative cyclization of alkyne and aldehyde. Bond lengths are in Å. Energies are with respect to the catalyst resting state 3.
Figure 2.

a) An alternative pathway of alkyne-aldehyde oxidative cyclization: borane coordination to the aldehyde oxygen. Bond lengths are in Å. Energies are with respect to the catalyst resting state 3. Hydrogens in BEt3 are not shown. b) Oxidative cyclization of ethylene and acetaldehyde. Bond lengths are in Å. Energies are with respect to the catalyst resting state alkene(bisphosphane)nickel(0) complex 3'.

McCarren et al. J Am Chem Soc. Author manuscript; available in PMC 2010 February 18.
Scheme 1.
The oxidative cyclization mechanism of Ni-catalyzed reductive coupling between alkynes and aldehydes.