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Abstract

We consider two familiar techniques for encoding message lengths.

One technique breaks messages into packets, with each but the last

packet of a message having the same length. The message length is

encoded by specifying the last packet and its length. The other technique

uses a special bit sequence called a flag to terminate the message and

slightly re-encodes the message to prevent the flag from appearing within

the message. For a geometric message length distribution and for properly

chosen parameters, we show that the packet strategy is optimal in the

Huffman coding sense and that the flag strategy is very close. Moreover,

we show that for a given expected message length the expected code word

lengths are quite insensitive to the message length distribution.

*This work was supported under Grant NSF/ENG76-24447. Roger J. Camrass is
presently at Plessey Telecommunications Limited, Beeston, Nottingham, NG 9
LLA, England.

Key Words: Source Coding, Multiplexing, Data Networks

Appeared in IEEE Transactions on Information Theory, July, 1978



Introduction

Encoding the lengths of messages is a problem that arises frequently

in binary data transmission systems. One might think that from a protocol

standpoint all that is required is to precede the message with the ordinary

binary number representation of its length. There are two disadvantages to

such a strategy. The first is that this representation requires a fixed

number of bits and thus puts an upper limit on allowable message lengths;

the second is that the encoder might not be able to store the entire message

while determining its length. There are two common strategies, which we

call the packet strategy and the flag strategy, used in practice to avoid

the above problems. The point of this note is to show that when the para-

meters of these strategies are appropriately chosen, and when the distribution

of the message lengths is geometric, then the packet strategy is an optimal

encoding and the flag strategy is almost optimal.

Packet Strategies

A packet strategy is a strategy in which each message is broken into

one or more packets before transmission. We assume that the packets have

some maximum length L and that each message is segmented into as many L

bit packets as possible with the final packet containing what is left over.

If the packets are to be decoded back into messages, then a protocol is

clearly necessary to distinguish the last packet and to encode the number

of message bits (from 1 to L) in the last packet. Figure 1 shows a simple
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form for this protocol. Each non-final packet is preceded by a one and the

final packet is preceded by a zero plus a length specifier of approximately

log2 L bits.

In the Figure, the transmitted sequence, with its length protocol, is

shown preceded by a sequence of idle bits followed by a start bit. This

should be regarded as a separate protocol to indicate where each message

starts; such protocols are necessary for synchronous transmission in which

there is sometimes no message to send. Gallager (1] treats message start-

ing protocols in the more general context of networks and shows their

relationship to addressing.

With the strategy of Figure 1, the protocol that specifies the length

of a message consists of a single bit preceding each packet plus the length

specifier. More precisely, for a message of length m, there are L(m-l)/L 

l's preceding the non-final packets (where i xJ denotes the integer part of

x) and then a 0 and a length specifier preceding the final packet. This

entire set of protocol bits then can be regarded as the unary code for

L(m-1)/Lj (i.e. L(m-l)/LJ l's followed by a 0) followed by an encoding of

the integers 1 to L. Now assume that the probability mass function on the

message lengths is given by

m-l
P(m) = (l-a)a ; m > 1 (1)

It is shown in Gallager and VanVoorhis [2] that the optimal binary source

code (in terms of minimum expected length) for the integers
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with the distribution in (1) is formed as follows: define L to satisfy

L L+i L L-1
a + a < 1 < a + a (2)

then form the unary code for L(m-l)/LJ and the Huffman code for (m-l]

modulo L; the concatenation of these two codes is the desired optimal

code for the integers. We observe that this is precisely the code being

used in the packet strategy above, and thus the packet strategy is optimal

(in terms of minimal expected number of protocol bits) if L is chosen

according to (2).

In (2] it is shown that the expected length, n, of this code exceeds

the entropy of the distribution by a quantity that fluctuates between .025

-1
and .033 for mean message lengths m = (i-a) greater than 12 or so. Further-

more, the entropy of the distribution is I(a)/(l-a) where' #is the binary

entropy function. For large m, this entropy is approximated by log2 m +

log 2 e + 0(1/m), yielding, for future comparison,

1.468 < n - log2 m + 0(1/m) < 1.475 (3)

It is interesting to note that the packet length L that satisfies (2)

is approximated by L = m In 2, which is sometimes inconveniently large. It

should also be emphasized that the strategy is only optimal in the Huffman

coding sense of mapping message lengths into code words. One could further
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reduce the expected number of protocol bits by jointly encoding several

message lengths at a time or by jointly encoding the message length and

the message data. This is of purely academic interest, however, given the

redunduncy of a few hundredths of a bit per message.

The optimal strategy above is particularly simple to implement when

L is a power of 2 since the Huffman code for the last packet length is

just a binary number representation. We now evaluate what happens with the

restriction that L is required to be a power of 2., The expected number of

protocol bits is qiven by

n = E L + 1 + log2 L (4)

1 + log 2 L
i-a

Define = L Since m= (-- L ri and

Define L/ Since m (-a) , we have a = e + 0(l/) and

n = log2 M + + 1 lo2 + 0(l/m) (5)
l-e

This is minimized, subject to the power of 2 restriction on L, by constraining

6 to .48 < ~ < .96. These restrictions.. determine.a unique.L for each-m and

lead to

1.471 < n - log 2 m + 0(l/m) < 1.565 (6)

In other words, restricting L to a power of 2 and letting the length specifier

be simply the binary representation of the length of the last packet, costs

less than .1 bits per message.
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Finally, let us eliminate the assumption that the message length

distribution is geometric; we continue to assume that the mean message

length, m, is known. Since x-l < LxJ < x, we can bound n, as given by

(4), by

(m-l)/L + log2 L < n < m/L + 1 + log2 L (7)

Choosing L to be the power of 2 between m/2 and m, (7) can be further

bounded as

.913 + 1/L < n - log2 m < 2 (8)

This result is somewhat related to universal coding, except that the

objective of a universal code is to minimize (over code choices) the

maximum redundancy over a set of probability distribution. Here instead

we have approximately minimized (over code choices) the maximum expected

length over all distributions with given meqn.

Flag Strategies

A flag strategy is a strategy in which a unique bit pattern (a flag)

of, say, r bits is used to indicate the end of the message (see Figure 2).

To prevent premature terminations of the messages, the source must slightly

re-encode the messages to avoid appearances of the flag within the messages.

This re-encoding is done as follows: if r-l consective bits of the message

stream match the first r-l bits of the flag, then an insertion of a bit

is made into the message, the insertion being the complement of the final
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flag bit. The decoder, upon seeing this r-l bit pattern in the decoded

data, either removes the next inserted bit (which is recognizable as the

complement of the final flag bit) or accepts the flag if the next bit is

the final flag bit (see Figure 3).

We shall consider the bit pattern of a 0 followed by r-l l's to be our

flag. Camrass [3] gives a more complete discussion of the issues involved

in choosing a flag. The IBM synchronous data link control (SDLC) procedure

[4] uses 0111 1110 as a flag, but the 0 at the end has no

function in specifying message length (it allows for other distinguishable

control characters with more than 6 contiguous ones).

In analyzing the flag strategy, we shall assume that the messages are

composed of independent equiprobable binary digits but that the message

distribution is arbitrary with mean message length m. The expected number

of bits used to specify the message length, n, is r (the flag length) plus

the expected number of insertions. For a message of length m bits, we note

that the first r-2 bits cannot be followed by insertions, whereas each

-r+l
subsequent bit is followed by an insertion with probability 2 Thus

E(Im), the expected number of insertions, given a message length m, is

(m-r+2) 2 for m > r-2 and 0 otherwise. It is convenient to bound this

for all m > 1 by

(m-r+2)2 - r + l < E(Im) < m 2-r + l (9)
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Averaging this over m, we have

r+ (m--r+2)2r+l < n < r + m 2 1 (10)

The right hand side of (10) is minimized, subject to the integer constraint

on r, by

r = 1 + log2 J (11)

With this choice of r, the upper and lower bounds in (10) are approximately

equal for large m, and we have

-r+l
n = r + m 2 + O((log m)/m) (12)

This expression fluctuates depending on how close log2 m is to an integer,

and we have

1.914 < n - log2 m + 0((log m)/m) < '2 (13)

Conclusion

We have formed the expected number of bits n required to represent

message length using packets (3), (6), (8), and using flags (13). For all

practical purposes the strategies are equally efficient and insensitive to

the message length distribution. The flag strategy has one practical
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advantage for some applications in which messages come into the encoder

sequentially with no prior indication of length. The flag strategy can

encode such messages with no delay and virtually no storage, while the

packet strategies incur a packet's worth of both delay and storage. The

flag strategy has the disadvantage, however, that the number of protocol

bits is dependent on the data; this causes a slight increase in the second

moment of the.encoded-message length which in turn increases queueing

delays (see Camrass [3]).
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Figure 1
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Figure 2
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Message: 0 1 1 1 00 0 0 1O 1 1 1 1 0 1.:

Places for insertion

Encoded 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1
Message _

Digits following decoded Flag
string 0 1 1

Examples of Insertions and Deletions
for the flag 0 1 1 1

Figure 3
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