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Abstract: Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among 
pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconven-
tional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in 
the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active 
and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from 
natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Ad-
vances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the 
role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic ther-
apy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the chal-
lenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains un-
solved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation 
and development, and underlines the need for highly informative and comprehensive translational approaches. 

Keywords: Antimicrobial resistance, multidrug efflux systems, natural efflux pump inhibitors, photo inactivation, dual action 
antimicrobials, biofilms, virulence. 

INTRODUCTION 

 The 20th century gave rise to many successful methods 
for preventing and controlling infectious diseases but fos-
tered the mindset that the war against infectious microbes 
was over. In the 1980s consensus among pharmaceutical 
companies was that there were enough antibiotics already on 
the shelf and research efforts were redirected elsewhere [1].  
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Optimism was short-lived however when outbreaks and epi-
demics of new, re-emerging, and drug-resistant infections 
arose. Termed “superbugs”, emergent microorganisms pos-
sessing effective and dynamic pathogenic capabilities con-
tinue to be a dangerous threat. Each year over 13 million 
deaths worldwide are attributed to the emergence of new 
infectious diseases or to the re-emergence of diseases previ-
ously thought well-controlled. 

 One major component of resistance to many classes of 
antimicrobials as well as chemotherapeutic agents is mul-
tidrug efflux [2]. Efflux results from the activity of mem-
brane transporter proteins known as multidrug efflux sys-
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tems (MES) [3, 4]. MES perform essential roles in cellular 
metabolism and differ in membrane topology, energy cou-
pling mechanisms, and, most importantly, substrate speci-
ficities [5]. Identifying natural substrates and inhibitors of 
efflux systems is an active and expanding research topic [6]. 
Based on their sequence similarity, efflux systems have been 
classified into the following six super-families (Fig. 1): 
ATP-binding cassettes (ABC), Multidrug and Toxic com-
pound efflux (MATE), resistance-nodulation cell division 
(RND), small multidrug resistance family (SMR), multi-
antimicrobial extrusion protein family, and multidrug en-
dosomal transporters (MET). The first five families are 
found in microorganisms while the MET family appears re-
stricted to higher eukaryotes. Representatives of all groups 
are expressed in mammalian cells [7]. ABC transporters are 
the largest super family, containing seven subfamilies desig-
nated A to G based on sequence and structural homology [8]. 

 The molecular mechanism of the transporter substrate 
recognition, the kinetics, the stoichiometry and the features 
of the antiport process, is an ongoing field of investigation. 
Structural studies indicate that the transporters may capture 
their substrates directly from the periplasm or from the outer 
leaflet of the cytoplasmic membrane [9,10]. In retrospective, 
the key steps of drug transport involve several and specific 
interplays between intramolecular and intermolecular con-
formational changes and intermolecular dynamics; It will be 
impossible to dissect without a coordinated effort that in-
volves crystallography, molecular modeling, molecular biol-
ogy, energy calculation and biological–functional investiga-
tions. The scenario is more complicated since some drug 
transporters show a cooperative interaction or can act se-
quentially [11,12].  

 A fundamental challenge associated with drug transport 
both for RNDs and ABCs efflux systems independently of 
the mechanistic differences between antiport and energy 
dependent efflux is associated is the broad specificity (or 
poly-specificity). It is very difficult to distinguish between a 

‘single’ binding step and a correct recognition binding inside 
the high-affinity pocket with an active conformation, allow-
ing efficient translocation of the drug to the outer membrane 
channel. The structural data including molecular docking 
calculations have provided some information [13], but they 
are rather far from model development without biological 
support [14,15]. The energy source is a key element of trans-
port function and substrate recognition as for at least the pro-
ton antiporters efflux is a pH- dependent process [16]. This 
is also an active field of investigation in a variety of patho-
gens [17,18]. 

 In order to address the obstacles of efflux to chemother-
apy, an array of approaches have been investigated i) By-
passing efflux systems by improving the molecular design of 
old antibiotics in order to reduce their efflux. ii) Decreasing 
the efficacy of the membrane barrier by a direct modification 
or a channel-blocker that induces a ‘traffic jam’ in the outer 
membrane channel restoring a high intracellular drug con-
centration. iii) Blocking the efflux capacity of microbial cells 
through competitive, non-competitive inhibition as well as 
direct or indirect energy depletion via an anti-porter site or 
via a collapse of energy driven mechanisms of the microbial 
cell envelope.  

 Natural products play a major role in drug discovery by 
providing bioactive scaffolds with activity against a variety 
of targets in infections and cancer. The strategy of efflux 
system inhibition employing natural product efflux pump 
inhibitors (EPIs) emerged in the last decade. Reports for 
novel and already known natural chemical entities which are 
active against virtually all of the major microbial efflux sys-
tems have populated the chemical space as well as the litera-
ture [6, 19]. The concept of restoring and enhancing the util-
ity of antimicrobials by employing EPIs is appealing but is 
not yet at a therapeutic stage. Discovery efforts are multidi-
mensional and continuously expanding but a number of con-
ceptual and methodological gaps are barring identification of 
lead EPIs for clinical implementation. This review summa-

 

Fig. (1). Schematic illustration for key members of the 5 super-families of the microbial efflux systems: NorM, multi-antimicrobial extrusion 
protein family (MATE), QacA major facilitators (MFS), QacC small multidrug resistance family (SMR), MexAB, resistance-nodulation cell 
division (RND), LmrA, ATP-binding cassettes (ABC). 



36    The Open Microbiology Journal, 2013, Volume 7 Kourtesi et al. 

rizes the tools for EPI discovery and validation with empha-
sis on those of plant origin. The path forward towards devel-
opment and deployment in a clinical setting is also outlined. 

MES in Gram-positive Bacteria 

 The major efflux systems implicated in Gram-positive 
bacterial related drug resistance are the chromosomally en-
coded MFS Nor-family (NorA, NorB, NorC), MdeA the 
MATE mepRAB (multidrug export protein) [20] and the 
SMR SepA [21]. There is also evidence for plasmid encoded 
systems such as QacA, QacB, [22,23] and Tet(K) that func-
tion as tetracycline-divalent metal complex/H+ antiporters 
[24]. A NorA homolog (EmeA) has also been validated in 
Enterococcus faecalis [25]. These systems have a broad and 
overlapping substrate specificity including quinolones, tetra-
cyclines, monovalent and divalent antimicrobial cations (in-
tercalating dyes, quaternary ammonium compounds, dia-
midines, biguanidines) and plant secondary metabolites [26, 
27].  

MES in Gram-negative Bacteria 

 Multidrug-resistant (MDR) and pandrug-resistant (PDR) 
Gram-negative bacteria, pose a grave threat of truly untreat-
able infections [28,29]. Efflux systems are key players in a 
variety of challenging clinical conditions. The resistance 
nodulation cell division (RND) family includes proton-
driven systems with key members the AcrAB-TolC in E. coli 
with strong homology in Francisella tularensis, Yersinia 
pestis, and Brucella sp. AcrB functions as a multi-subunit 
complex in association with the outer membrane channel 
TolC and the membrane fusion protein AcrA. There are 12 
RND-type efflux systems present in Pseudomonas aerugi-
nosa of which three, MexAB-OprM, MexCD-OprJ, and 
MexXY-OprM have been shown to accommodate and pro-
vide resistance to β-lactams and fluoroquinolones (with the 
addition of MexEF-oprN) [30]. The partition of efflux in the 
resistance related to aminoglycosides, antimicrobial peptides 
and biofilm formation is established but is part of a more 
sophisticated cell response [30]. The characteristics of addi-
tional RND-type systems such as MexABC-OpmB [31] and 
TriABC-OpmH, a triclosan efflux pump, have been recently 
dissected [32]. The mex-locci in P. aeruginosa are phyloge-
netically related with a set of homologues systems in 3 key 
pathogens:  

1. The 11 Bpe-efflux systems in Bulkhoderia pseudomallei, 
and B. mallei [33]. BpeAB-OprB is a broad-spectrum MES 
which is only expressed at low levels and only marginally 
contributes to multidrug resistance (MDR). In contrast, 
strains expressing BpeEF-OprC are highly resistant to most 
of the clinically useful antibiotics for melioidosis treatment.  

2. The 16 RND efflux systems present in B. cenocepacia 
(Bcc complex, RND-1 to -16) [34] and bmeABC1-16 in the 
Bacteroides fragilis [35]. At least seven BmeB efflux pumps 
are functional in transporting antimicrobials and have over-
lapping substrate profiles, and at least four confer intrinsic 
resistance [35]. 

3. At least 5 ade RND systems have been fully functionally 
characterized in Acinetobacter baumannii including AdeIJK 
[36] adeSR-adeABC, adeDE [37] and AdeFGH [38]. 

 ABC efflux systems have been identified in several occa-
sions including the heterodimeric SmdAB in Serratia 
marcescens [39] and the E. coli macrolide transporter Ma-
cAB [40]. The later has been also validated in Neisseria 
gonorrhoeae [41]. 

 A number of MFS with efflux capabilities are present in 
Gram-negative bacteria. This list includes the Salmonella 
enterica sv. Typhimurium SmvA, most similar to QacA of S. 
aureus [42], the EmrAB-TolC in E. coli [43], and the QepA 
and OqxAB plasmids involved in quinolone resistance in E. 
coli and Klebsiella spp. [44] but with a wide distribution in 
Enterobacteriaceae. CraA in A. baumannii is homologous to 
the MdfA of E. coli, which extrudes only chloramphenicol 
and the acquired narrow-spectrum systems TetA, TetB, 
CmlA, and FloR [45]. AmvA, mediates antimicrobial and 
disinfectant resistance in A. baumannii [46]. Members of the 
SMR and MATE families have been detected in a variety of 
Gram-negative bacterial species. AbeM and AbeS have been 
characterized in A. baumannii, as have AdeXYZ, AdeDE 
and QacE for other Acinetobacter spp. [45]. SugE, contrib-
utes to antimicrobial resistance in Enterobacter cloacae [47]. 

MES in Mycobacteria 

 The Mycobacterial complex possesses a remarkable vari-
ety of efflux systems which are either members of the MFS 
or ABC super families. Mycobacterium tuberculosis presents 
one of the largest numbers of putative drug efflux pumps 
compared with its genome size. Bioinformatics as well as 
direct and indirect evidence have established relationships 
among drug efflux with intrinsic or acquired resistance in M. 
tuberculosis [48]. Tap is the first MFS system identified 
(Rv1258 in the annotated sequence of the M. tuberculosis 
genome) [49]. Genome analysis and homology search be-
tween the identified transporters and proteins characterized 
in other organisms have revealed 16 open reading frames 
encoding putative drug efflux pumps belonging to the MFS. 
The efflux function has been demonstrated in at least three of 
these including the sequence Rv0849. [50,51]. The list is 
expanding to include ABC Superfamily members such as 
DrrAB [52] Bcg0231 (M. bovis BCG) Rv0194 [53] 
Rv1218c[51] Rv1456c-Rv1457c-Rv1458c [54] and the SMR 
systems Rv3065 [51] LfrA in M. smegmatis [55] as well as 
the homologues of M. tuberculosis Rv1145, Rv1146, 
Rv1877, Rv2846c (efpA), [56] and Rv3065 (mmr and emrE) 
in both M. tuberculosis and M. smegmatis [57]. 

MES in Fungi 

 The best-studied families of fungal MES are from Sac-
charomyces cerevisiae, especially those responsible for plei-
otropic drug resistance (PDR) [58]. Members of this family 
are highly conserved and are often responsible for drug-
resistance among pathogenic fungal species [59]. Although 
fungal cells contain many genes for both types of systems, 
clinical azole resistance is most often associated with over-
expression of ABC transporters [60]. Clinically important 
PDR transporters include C. albicans Cdr1p (CaCdr1p) and 
CaCdr2p, which are homologs of the S. cerevisiae Pdr5p 
(ScPdr5p) and mammalian G-type ABC transporters [60-62]. 
Fungal PDR efflux systems have relatively promiscuous 
substrate specificities that are presumably defined by their 
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transmembrane domains. Analysis of the C. albicans ge-
nome has identified several efflux pumps (CDR1, CDR2, 
CDR3, CDR4, CDR5, SNQ2, and YOR1) belonging to the 
ABC superfamily.  

Role of MES in Antimicrobial PDT 

 Given the broad spectrum of multidrug efflux pumps to 
raise resistance against various antibiotics and antimicrobi-
als, an unconventional antimicrobial discovery effort is 
needed [1]. Photodynamic therapy (PDT), is a light-based 
technology platform [63], which uses harmless visible light 
in combination with non-toxic photosensitizers (PS) to con-
trol infections (Fig. 2). Historically PDT has had a prominent 
role in the cancer therapeutics and is also currently used to 
treat age-related macular degeneration [64]. Currently PDT 
is being investigated as an alternative treatment for localized 
infections [65]. PSs are usually organic aromatic molecules 
with a high degree of electron delocalization [66]. Por-
phyrins, chlorins, bacteriochlorins, phthalocyanines as well 
as a plethora of dyes with different molecular frameworks 
have been proposed as antimicrobial PSs [67,68]. These dyes 
include halogenated xanthenes (e.g. Rose Bengal (RB), [69] 
perylenequinones (e.g. hypericin), phenothiazinium dyes 

such as methylene Blue (MB) and toluodine blue (TBO) 
[70], cationic fullerenes (e.g. derivatives of C60), [71,72] and 
psoralens (e.g. furanocoumarins) [73]. 

 PDT is quite different in comparison with conventional 
drug discovery platforms, since three elements (PS, visible 
light and oxygen) are essential for successful deployment. 
One of the main challenges for the rational design of effi-
cient PSs arise precisely from the fact that the electronically 
excited states (singlet, triplet and reactive intermediates) of 
the photoactive agent causes cell toxicity [74,75]. This 
prompts the use of complex, computing-demanding high 
level Quantum Chemistry approaches for dealing with ex-
cited states [76-81]. Such in silico modeling, in combination 
with photophysical experimental studies are required for 
rationally tuning the desired properties of the PSs including 
dark toxicity, molar absorption coefficient, absorption wave-
length, singlet-triplet intersystem crossing quantum yield and 
forthcoming singlet oxygen generation and probably also the 
study of open sheel species (radical cations in case of photo-
toxicity in the absence of oxygen) [82-84]. Examples from 
these interdisciplinary efforts yielded chemical modifications 
to enhance known dyes, as well as the re-consideration of 
dyes which absorb outside the desirable wavelength window 

 

Fig. (2). Schematic illustration for: the mechanism of photodynamic inactivation including the Jablonski diagram (left) and the microbial 
permeability barriers of Gram-positive, Gram-negative bacteria and fungi (right). The PS initially absorbs a photon that excites it to the first 
excited singlet state and this can relax to the more long lived triplet state. This triplet PS can interact with molecular oxygen in two pathways, 
type I and type II, leading to the formation of reactive oxygen species (ROS) and singlet oxygen respectively.  
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(600-850 nm) by means of two-photon absorption [83-85] of 
yellow-orange dyes by means of potent red lasers, as well as 
the preparation of either highly positively charged deriva-
tives [86] or conjugates of the PS and antibodies or nanopar-
ticles for improving their specificity and/or cell accumula-
tion [87-89]. 

 Many of the elements of the bacterial phenotype may 
play an important role as PDT applications evolve. A set of 
technical challenges will have to be met using sophisticated 
tools and approaches that address complex biological ques-
tions regarding resistance mechanisms, biofilm inactivation, 
and persister cell formation. There are no validated examples 
of biofilm photoinactivation or PDT being used in reliable 
polymicrobial infection models. Minimal information exists 
for the design of host-pathogen studies exploring the ability 
of PDT to interfere with virulence determinants, although 
there is one notable exception; a report of a host-parasite 
model to assess intracellular targeting specificity of novel 
phthalocyanines against Leishmania parasites infecting 
macrophages and dendritic cells [90]. However the non-
specific mechanism of action and successful clinical imple-
mentation prompt and direct a growing critical mass of an-
timicrobial PDT explorations.  

 The participation of efflux systems in PS mediated PDT 
has been observed with the ABC mammalian transporters 
ABCG2 (or Breast Cancer Resistance Protein BCRP), 
ABCC1 (or multidrug resistance-associated protein 1, 
MRP1) and in a lesser extent with ABCB1 (P-glycoprotein, 
P-gp). Primary evidence came from a variety of PDT inves-
tigations with porphyrins (phytoporphyrin, protoporphyrin 
IX) [91-93], pyropheophorbides and purpurinimides [94]. 
Both ABG2 and ABCC1 affected the outcome of hypericin-
mediated PDT in HT-29 adenocarcinoma cells [95]. In these 
two systems it is clear that MES affect PDT for a variety of 
PS chemotypes. In contrast, for ABCB1 the evidence for PS 
substrates (chlorine e6 and psoralen) is sporadic and contra-
dictory [96, 97]. In one only occasion, a hypericin-
mitoxantrone (MTZ) cocktail plus illumination with blue 
light potentiated cytotoxicity in bladder and breast cancer 
cells that overexpress P-gp [98].  

 The two phenothiazinium dyes MB and TBO are amphi-
pathic cations and physicochemically similar to the natural 
product antibacterial alkaloid berberine, a well-characterized 
substrate of MFS efflux systems in Gram-positive bacteria 
[27, 99]. This has raised the possibility that phenothiazinium 
PSs are substrates of microbial efflux systems. Experimental 
evidence indicated that phenothiaziniums were NorA (MFS) 
substrates in S. aureus and possibly MexAB (RND) sub-
strates in P. aeruginosa [100]. Contrarily this evidence was 
not supported by a model study using sixty clinical isolates 
of P. aeruginosa overexpressing efflux systems where it was 
demonstrated that antibiotic-resistant P. aeruginosa was as 
susceptible to TBO-mediated PDI as susceptible strains 
[101]. The observation that ABC transporters and not MFS 
transporters affect MB-mediated PDT in the pathogenic 
yeast Candida albicans is perplexing [100, 102]. An in silico 
modeling venture, employing MB and the ABCB1 crystal 
structure adds in this perplexity. The study reveals a strong 
overlap for the PS binding site with the classic efflux sub-
strates berberine and rhodamine 6G due to similarity in 
shape and electronic distribution (Fig. 3). It was concluded 
that MB appears to be at least as well substrate of ABCB1 as 
berberine and rhodamines [103]. Furthermore, the structur-
ally related phenothiazines thioridazine and chromazine have 
been characterized as EPIs or functional transporter regula-
tors as opposed to substrates of a variety of pathogen efflux 
systems [104-106].  

 The well-documented promiscuity of efflux systems may 
explain the scattered reports for the role of porphyrins as 
potential substrates. Porphyrin uptake and efflux seem to be 
regulated by the TolC system in E coli [107]. In Streptococ-
cus agalactiae, two co-regulated efflux transporters modu-
late intracellular heme and protoporphyrin IX availability 
[108]. In contrast the PDT pattern of amphiphilic protopor-
phyrin diarginate PPArg in a variety of efflux related S. 
aureus strains show no correlation for the PS with MES 
[109].  

Tools for EPI Discovery 

 A number of assays to identify EPIs have been developed 
in the last 15 years. As the knowledge around efflux systems 

 

Fig. (3). Left: Methylene blue PS bound to a hydrophobic pocket of an ABC transporter. The electrostatic potential varies from red (-) to 
blue (+). Right: The dye (blue tubes) shares the site with berberine (green tubes), a natural antimicrobial and also an ABC substrate. 
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is advancing and due to their polyspecificity and overlapping 
roles in the microbial cell physiology, the majority of the 
EPI-discovery venture is an evolving “work in progress”. 
The activity of microbial efflux systems is not accurately 
detected by classical non-functional methods (Northern blot-
ting, RNase protection, RNA in situ hybridization, RT-PCR 
or immunostaining). Efflux pump protein expression is often 
not correlated with mRNA levels, as transcripts are often 
present below the detection threshold, since relatively few 
active transporter molecules can cause major alterations in 
drug transport.  

 One key and generic distinction can be made between 
functional and phenotypic assays. Both groups of method-
ologies employ strains that lack or overexpress efflux sys-
tems and are usually robust with reproducible results, have 
been used extensively in low and middle throughput, and are 
amenable to miniaturization. Computational approaches have 
also been used but those efforts were not entirely independ-
ent as either an assay from the first two categories was cou-
pled to provide proof of principal experimental information. 
Furthermore, the “on demand” regulation for many efflux 
systems in the presence of an antimicrobial agent compli-
cates more these expeditions. One of the best understood 
examples at the molecular level involves the expression of 
TetA in response of tetracycline/Mg++ complex, mediated 
by the TetR transcriptional regulator [110,111] (Fig. 4). 

 A functional efflux assay is based on the ability of efflux 
systems to move compounds passively or actively against the 
concentration gradient, across the cell membrane and on the 
availability of a variety of fluorescent molecule-dyes to act 
as substrates of the pump under investigation. Upon loading 
of the cells with a lipophilic dye capable of diffusing across 
cell membranes, the fluorescence intensity of the cell will 
depend upon the activity of the efflux system. The cells, 
where highly active transporters are present, will display 
lower fluorescence intensity values because of the increased 

efflux of the dye/substrate. In the presence of an active EPI, 
these substrates will accumulate in the cell. The transporter 
function can be measured in cellular uptake, efflux, or 
steady-state distribution of fluorescent substrates over time. 
Two subcategories of functional transporter assays, using 
fluorescent dyes are commonly employed: i. the accumula-
tion assay measures dye uptake in the presence or absence of 
known EPIs and ii) the retention assay where the cells are 
loaded with the substrate in the absence of any modulator-
potential EPI, washed, and then further incubated without 
dye but in the presence of modulators to allow time for the 
substrate to be transported out of the cell by the efflux sys-
tem under investigation. As substrates act differently under 
different experimental conditions, the distinction between 
accumulation and retention is essential when evaluating cells 
for efflux phenotypes. Both assay subcategories offer higher 
throughput, generic readouts (increase in fluorescence inten-
sity), and are readily automated. As the critical mass and the 
variety of efflux-based expeditions is increasing, assay de-
velopment and screening for EPIs have been transferred 
from conventional fluorimeters and plate readers to fluores-
cence microscopes and high-resolution multi-parametric 
flow cytometers.  

 Acridine orange, berberine, ethidium bromide (EtBr) and 
rhodamines (6G, and 123) have all been extensively used to 
report efflux activity in a wide variety of organisms includ-
ing bacteria and fungi [6]. Recently, by using AcrAB-TolC 
efflux phenotypes Nile red was validated as a fluorescent dye 
substrate [112]. Variations of functional assays have been 
developed through automation to allow evaluation of EPIs 
against multiple bacterial strains. Classic examples are a) the 
agar-based method employing EtBr with modifications to 
evaluate as many as twelve bacterial strains and has been 
termed the EtBr-agar cartwheel method. Agar plates contain-
ing different concentrations of EtBr are swabbed with bacte-
rial cultures [113] and b) a thermocycler based method for 

 

Fig. (4). Structure of the transcriptional repressor TetR in its apo form (violet) and bound to the tetracycline-Mg2+ complex (green); the latter 
is not competent for binding the TetA MFS promoter; this yielding expression of the MFS just upon antibiotic challenge. 
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the real-time assessment of accumulation and efflux of EtBr 
under varying physiological conditions (temperature, pH, 
presence and absence of the energy source) as well as pres-
ence of EPIs. The method is sufficiently sensitive to charac-
terize intrinsic efflux systems of multiple reference strains 
[114].  

 Unlike mammalian efflux systems, the capabilities of 
flow cytometry to contribute in microbial EPI discovery 
have not been extensively explored. In a recent example, an 
EtBr flow cytometric efflux assay has been developed to 
verify the EPI activity of celecoxib, (a cyclooxygenase-2 
inhibitor) in S. aureus strains including MRSA and also M. 
smegmatis [115]. EPI activity for the RND efflux systems in 
E. coli and P. aeruginosa have been monitored using a mi-
crofluidic channel device under a fluorescence microscope. 
Fluorescein-di-β-D-galactopyranoside (FDG), a fluorogenic 
compound, is hydrolyzed by β-galactosidase in the cyto-
plasm of E. coli to produce a fluorescent dye, fluorescein. 
Both FDG and fluorescein were found to behave as sub-
strates of E. coli efflux, and employed to validate the micro-
fluidic channel device with two EPIs, the MexB-specific 
pyridopyrimidine (D13-9001) and non-specific Phe-Arg-β-
naphthylamide (PAβN) [116]. 

 In a few occasions uptake using radioactive labeled anti-
biotics have been used. Uptake of [14C]ciprofloxacin verified 
tariquidar and elacridar as EPIs in S. aureus and elacridar in 
S. maltophilia [117]. [14C]chloramphenicol was employed to 
identify the EPI activity of an alkylaminoquinazoline in 
Gram-negative efflux pump-overproducing strains [118].  

 The phenotypic assays are essentially growth inhibition 
assays with some modifications. The ultimate goal is to iden-
tify whether potential EPI compounds enhance the efficacy 
of antimicrobials for the interrogated efflux system(s). 
Growth inhibition of potential EPIs in the presence of sub-
strates in sub-inhibitory concentration have been broadly 
used in low, middle and high throughput. Checkerboard or 
matrix assays are the most common and require both com-
pounds (the antimicrobial and the EPI) to be diluted over a 
concentration range to assess through viability the nature of 
their interaction. The final readout set up and throughput 
may vary depending on the viability or imaging method 
used. The method is straightforward and calculates 1. The 
generic modulating factor (MF, fold potentiation of an an-
timicrobial present at sub-inhibitory concentration [119, 120] 
and 2. The robust Fractional Inhibitory Concentration indices 
(FICI, distinguishes whether two compounds together are 
demonstrating additive, synergism or antagonistic activity. 
FIC indices (FICI) are interpreted as synergic when values 
are ≥ 4. The results between synergy and antagonistic ten-
dency are defined as additive or indifferent [120, 121]. 

 An EPI targeting proton antiporters should not disrupt the 
proton motive force. This is clarified through protonophore 
counter-screen assays that employ for example the accumu-
lation of radiolabeled lactose via the proton motive force (the 
membrane potential and the pH gradient) [120]. Independ-
ently of the targeting pump an EPI should be stable in poten-
tiating the killing effect of antimicrobials over time. A 
microbiological time-kill assay is a final in vitro step for the 
functional characterization of a potential EPI [122]. In a 
classic example piperine effectively enhanced the bacteri-

cidal activity of rifampicin in time-kill studies and also sig-
nificantly extended its post-antibiotic effect (PAE) [123]. 

 Although the X-ray crystal structures of some transporter 
families have been reported [124-132] only a limited number 
of computational methods have been used for microbial EPI 
identification and validation. Emphasis has been given in 
MFS and methods are available for the NorA and Rv1258c 
in M. tuberculosis). The virtual screening procedure em-
ployed Fingerprints for Ligands and Proteins (FLAP), a new 
methodology based on GRID force field descriptors [133] 
The 3D structure of Rv1258c, using in silico modeling, was 
analyzed to elucidate the binding of piperine to the active 
site [123]. Quantitative structure activity relationship [134] 
has been performed in order to obtain a highly accurate 
model enabling prediction of inhibition of S. aureus NorA of 
new chemical entities from natural and synthetic sources. 
Algorithm based on genetic function approximation method 
of variable selection in Cerius2 was used to generate the 
model. The model is not only able to predict the activity of 
new compounds but also explains the important regions in 
the molecules in quantitative manner [135]. 

 Examples of Quantitative Structure-Activity Relation-
ships (QSAR) models for prediction of pump inhibitory ac-
tivity have been employed. The key example involves a 
model designed with genetic algorithm (GA) and partial least 
square (PLS) analyses with a good predictive power and 
yielded the compound 2-(2-Azidomethyl-5-phenoxy-
phenyl)-5-nitro-1H-indole. The EPI lower the MIC of ber-
berine to 0.091 mg/L in the S. aureus NorA over expression 
phenotype K2361 [136].  

 The National Institutes of Health Molecular Libraries 
Probe Production Centers Network (NIH MLPCN) is tasked 
with finding small molecule probe compounds for academic 
facilities and investigators lacking adequate HTS tools to 
exploit biological systems. The University of New Mexico 
Center for Molecular Discovery (UNMCMD) has pioneered 
the development of cell suspension HTS transporter inhibitor 
discovery assays utilizing a sensitive multiplex flow cytome-
try platform [137]. The approach incorporates profiling li-
braries such as the Prestwick Chemical Library (PCL) which 
consists of 1200 off-patent and known biologically active 
compounds along with the diverse Molecular Libraries Small 
Molecule Repository (MLSMR, http://mlsmr.glpg.com/ML-
SMR_HomePage/) library of greater than 350K compounds. 
We set out to develop new small molecule scaffolds with 
distinct efflux inhibition selectivity profiles based on multi-
plex efflux system target screening. It paved the way for a 
series of innovations in chemical genetics including novel 
flow cytometry efflux assays in both mammalian (ABCB1, 
ABCB6, ABCG2, ABCC1) and yeast transporters including 
ABC (CDR1, CDR2 in Candida albicans, V-ATPase in Sa-
charomyces cerevisae) and MFS (MDR1) [138-141].  

 An HTS campaign was employed based on Nile red or 
R6G as the fluorescent probes and a phenotypic multiplex 
(triplex) of heterologous expressed C. albicans transporters 
in a S. cerevisiae system where endogenous efflux systems 
have been disabled. The PCL HTS campaign led to confir-
mation of enniatin B as a CDR1 inhibitor and revealed that 
the monoamine oxidase A inhibitor clorgyline is a broad-
spectrum inhibitor of fungal ABC and MFS efflux pump 
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activities which reverses the azole resistance of C. albicans 
and Candida glabrata. In a slightly different approach, a 
target-based functional flow cytometry assay that measures 
vacuolar pH-dependent fluorescence changes in response to 
V-ATPase function was developed. The experimental strat-
egy uses the pH-sensitive fluorophore BCECF-AM specific 
for the yeast vacuole and a potent and highly specific V-
ATPase inhibitor, concanamycin A. The assay was also es-
tablished by using pH Luorin, a radiometric pH-sensitive 
GFP derivative that is used to monitor cytosolic pH. 

 This approach has been orchestrated as a center driven 
initiative with ultimate goal to set the foundation for the 
Transporter-Ligand Interactome. The foundation of the inter-
actome is a UNMCMD predictive tool. This tool is com-
prised of a database and a visualization component that in-
corporates data from HTS flow cytometry campaigns with 
genomics, proteomics, structural informatics and knowledge 
mining using yeast and mammalian model systems for 
chemical probe discovery. 

EPI Combined with Antibiotics 

 The NorA system in S. aureus has been the most promi-
nent discovery target. An array of synthetic efforts has iden-
tified a number of chemotypes but there is wealth of struc-
tures and information for lead EPIs of natural origin  
(Table 1). There are numerous antibiotics categorized as first 
and second line countermeasures to treat TB. According to 
the WHO report more than 110,000 cases of deaths occur 
every year and, ~490,000 cases of MDR to first line TB-
drugs, and 40,000 cases of extensively drug resistant (XDR) 
to first and second line TB-drugs emerge every year [142]. 
Although resistance to TB is multifactorial, the importance 
of efflux has been identified and documented in a variety of 
occasions [51, 143]. A number of synthetic EPI scaffolds 
have been validated in combination with antibiotics in vitro. 
Several NPs mostly flavonoids exhibit EPI activity against 
resistant Mycobacteria strains (Table 2) in a variety of efflux 
assays but there is no substantial evidence either for syner-
gistic activity with antibiotics or specificity in respect with 
classes of efflux systems or inhibition patterns.  

Table 1. Representative NPs with EPI-activity Against Gram-Positive Bacteria 

 S. aureus EPIs Synergist Isolated From EPI [C] References 

Polyphenols   

4,5 caffeoylquinic acid fluoroquinolones Artemisia absinthum 10mg/L [188] 

2-Arylbenzofuran   

spinosan A Berberine Dalea spinosa 48 µM [189] 

pterocarpan - - 56 µM - 

N-Caffeoylphenalkylamides   

N-trans-feruloyl 4’-O-methyldopamine Norfloxacin Mirabilis jalapa 100 mg/L  [190] 

Chalcones   

chalcone Berberine D. versicolor  10 mg/L [191] 

Coumarins   

4-{[(E)-5-(3,3-dimethyl-2-oxiranyl)-3-methyl-2-
pentenyl]oxy}-7H-furo[3,2-g]chromen-7-one 

Norfloxacin grape fruit oil 35.7 mg/L [192] 

7-{[(E)-5-(3,3-dimethyl-2-oxiranyl)-3-methyl-2-
pentenyl]oxy}-2H-2-chromenone 

- - 30 mg/L [192] 

Galbanic acid Ciprofloxacin Ferula szowitsiana 300 mg/L [193] 

        

- Ethidium Bromide - 0.5 mg/L - 

Flavones   

baicalein 5, 6, 7-trihydroxyflavone Tetracycline Thymus vulgaris L n/a [194] 

Flavonols   

chrysosplenol-D Berberine Artemisia annua 25 mg/L [195] 

chrysoplenetin - - 6.25 mg/L - 

Tiliroside Ciprofloxacin Herissantia tiubae 32 mg/L [196] 

Flavonolignans   
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Table 1. Contd….. 
 

S. aureus EPIs Synergist Isolated From EPI [C] References 

5’-methoxyhydnocarpin-D Norfloxacin Berberis aetnensis 10 mg/L [197] 

Isoflavones   

genistein Norfloxacin Lupinus argenteus 10 mg/L [198] 

orobol - - - - 

biochanin A - - - - 

Homoisoflavonoids   

bonducellin Berberine Caesalpinia digyna   unpublished data 

8-methoxybonducellin - -   - 

Phenylpropanoids   

acetoxycavicolacetate Ethidium Bromide  Alpinia galanga 50 mg/L unpublished data 

Tannins   

epicatechin gallate Norfloxacin   20 mg/L [199] 

epigallocatechin gallate -   - - 

epigallocatechin gallate Tetracycline Green tea 
0,0625-

0.125mg /L 
[200] 

Diterpenes   

Carnosic acid Erythromycin Rosmarinus officinalis 10mg/L  [201] 

carnosol Erythromycin R. officinalis 10mg/L  [201] 

(+) Totarol Ethidium bromide 
Chamaecyparis noot-

katensis 
5 mg/L  [202] 

isopimarane diterpenes: methyl-1alpha-acetoxy-
7alpha 14alpha-dihydroxy-8,15-isopimaradien-18-
oate and methyl-1alpha,14alpha-diacetoxy-7alpha-

hydroxy-8,15-isopimaradien-18-oate 

Tetracycline Lycopus europaeus   [203] 

ferruginol Norfloxacin, Oxacillin C. lawsoniana 2 mg/L  [204] 

Triterpenoids  

oleanolic acid  C. edulis 10mg/L [205] 

ulvaol  C. edulis 10mg/L - 

Oligosaccharides-Glycosides   

murucoidins XII-XVI Norfloxacin Ipomoea murucoides 5-25 mg/L [206] 

orizabin XIX -IX-XV Norfloxacin 
Mexican Morning 

Glory Spp. 
1-25 mg/L [207] 

polyacetylated neohesperidosides Berberine/fluroquinolones Geranium caespitosum 10 mg/L [208] 

Resin glycosides (murucoidins, pescaprein and 
stoloniferin) fluoroquinolones  I. murucoides  [209] 

kaempferol-3-O-beta-d-(6''-E-p-coumaroyl) 
glucopyranoside (tiliroside) 

Corfloxacin, Ciprofloxacin, Lome-
floxacin, Ofloxacin  Herissantia tiubae 

10 mg/L 
[196] 

piperine Ciprofloxacin Piper nigrum 50 mg/L [210] 

2,6-Dimethyl-4-phenylpyridine-3,5-dicarboxylic 
acid diethyl ester 

- Jatropha elliptica 2 mg/L [211] 
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S. aureus EPIs Synergist Isolated From EPI [C] References 

reserpine Tetracycline, Norfloxacin Rauwolfia vomitoria   [19] 

harmaline Ethidium Bromide Peganum harmala    [212] 

ergotamine Norfloxacin Claviceps purpurea  [19] 

pheophorbide a Ciprofloxacin Berberis aetnensis 0.5 mg/L [213] 

julifloridine, juliflorine and juliprosine Norfloxacin  Prosopis juliflora    [214] 

indoles, indirubicin 
Ciprofloxacin 

Wrightia tinctoria R. 
Br.  

12.5-25 
mg/L [215] 

Pyridines  

2,6-dimethyl-4-phenyl-pyridine-3,5-dicarboxylic 
acid diethyl ester 

fluoroquinolones Jatropha elliptica [192, 211] 

Table 2. Representative NPs with Mycobacterial EPI-Activity  

Mycobacterial EPIs Synergist Microorganism(s) EPI [C] References 

Plant Flavonoids       

(-)-epicatechin  Isoniazid Mycobacteria spp. 32 mg/L [216] 

kaempferol - - - - 

isorhamnetin  - - - - 

taxifolin - - - - 

rutin - - 16 mg/L - 

myricetin - - - - 

quercetin - - - - 

resveratrol Ethidium Bromide M. smegmatis (MC2 155) - [217] 

genistein - - - - 

baicalein - - 10 mg/L - 

biochanin A - - 32 mg/L - 

Totarol Isoniazid M. tuberculosis (H37Rv)   [218] 

ferruginol - -     

sandaracopimeric acid  - -     

4-epiabetol  - -     

plumbagin - -     

farnesol Ethidium Bromide M. smegmatis (MC2 155) 32 mg/L [219] 

Curcumin Isoniazid - 32 mg/L   

demethoxycurcumin - - - [220] 
 

 The pan resistance ability of Gram-negatives triggered a 
number of sophisticated EPI discovery strategies. The num-
ber of chemotypes is substantially smaller in comparison 
with Gram-positives but the number of available studies em-
ploying the core of EPIs is comprehensive. Phenyl-arginine-
beta-naphthylamide (PaβN) was the first EPI identified in P. 
aeruginosa by assaying an array of synthetic compounds and 

natural products using strains over-expressing each of the 
three MES (MexAB-OprM, MexCD-OprJ, MexEF-OprN) in 
the presence of levofloxacin. It has been a valuable tool for 
drug discovery [144]. This approach has explored: i) the de-
velopment of preclinical candidates including strategies for 
lead optimization; ii) activity in vivo through alternative 
scaffolds; iii) optimization of potency in the pyri-
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dopyrimidine series through the application of a pharma-
cophore model; and iv) extensive structural activity relation-
ships in toxicity, stability and solubility. Mechanistically, it 
has been proposed that PAβN itself is an RND competitive 
substrate. It seems that PAβN may recognize and bind to the 
substrate pocket specific to the potentiated antibiotics. Alter-
natively, due to a proximal binding site, the EPI may also 
generate steric hindrance, impairing the antibiotic binding at 
its affinity site. PAβN has been validated against the AcrAB-
TolC in a variety of Gram-negative pathogens (K. pneumo-
niae, E. coli, S. typhimurium E. aerogenes) and multiple ho-
mologous systems (A. baumannii, Campylobacter sp.). 
Naphthylpiperazines, notably 1-naphthylmethyl-piperazine 
(NMP) are among the most potent unsubstituted arylpipera-
zines, with a dose-dependent ability to increase the intracel-
lular concentration of several antibiotics [145]. NMP seems 
to be effective in A. baumannii and several Enterobacteri-
aceae [145,146]. The list also includes trimethoprim and 
epinephrine, indole derivatives and quinolone derivatives 
[147]. Recently, artesunate was found to enhance the anti-
bacterial effect of beta-lactam antibiotics against E. coli by 
increasing antibiotic accumulation via inhibition of AcrAB-
TolC [148]. A number of NPs have been implicated in 
Gram-negative efflux inhibition (Table 3). Again the list is 
chemotypes is limited and the mechanistic implications un-
exploited. As a general rule, it is challenging to identify NPs 
with Gram-negative EPI properties with the available func-
tional or phenotypic efflux assays [149, 150]. In a recent 
study, total alkaloids of Sophora alopecuroides-induced 
down-regulation of AcrAB-TolC and reverse susceptibility 
to ciprofloxacin in MDR E. coli isolates [151]. 

 There is a core of natural products that can enhance the 

potency of antifungals: 1. Tacrolimus isolated from the fer-
mentation broth of Streptomyces tsukubaensis and when 
added in sub-inhibitory concentrations (10-5 to 10-3 mM) can 
reduce 16-fold the MIC of itricanazole in the CDR1-
expressing resistant strain C. albicans and 8–fold in a 
CaMDR-expressing resistant strain [152]. 2. The cyclodep-
sipeptides unnaramicin A and unnaramicin C isolated from 
the extracts of marine bacterium Photobacterium sp reduce 
the MIC of fluconazole by 64-fold (320 mg/L to 5 mg/L) 
against azole-resistant C. albicans at relatively low (1.25µM-
5µM) concentration [153,154]. 3. Geodisterol-3-O-sulfite 
and 29-demethylgeodisterol-3-O-sulfite isolated from marine 
sponge Topsentia sp. enhanced the activity of fluconazole 
against overexpressed MDR1 in clinical isolate of C. albi-
cans [155]. 4. Enniatin B reduced the IC50 of cyclohexamide 
8-fold (0.13 to 0.016 µg/mL) against a Pdr5p-overexpressing 
strain of Saccharomyces cerevisiae at 6.0 µM [156]. 5. Mil-
bemycins α9 found to enhance the activity of fluconazole and 
the triazole SCH-56592 against clinical isolates of C. albi-
cans [157]. 

EPI Combined with PDT 

 The concept of synergistic action of antimicrobials with 
EPIs has been exploited in PDT to potentiate the phototoxic 
action of phenothiazinium PSs [158]. The PDT effect of MB 
or TBO was substantially enhanced by small molecule EPIs 
in S. aureus that affect NorA as assessed by both reduction 
of viable cells and fluorescent dye accumulation. The poten-
tiation is less pronounced against P. aeruginosa with Mex 
AB [158]. 

Table 3. Representative NPs with EPI-Activity against Gram-Negative Bacteria (EPI [C] is Ranging between 10-50mg/L) 

RND-EPIS Synergist Plant Source References 

Alkaloids 

Cathinone Ciprofloxacin Catha edulis [221] 

Theobromine 
Ciprofloxacin,Tetracyclin, Chloramphenicol,Ethidium 

bromide 
Theobroma (cacao tree) - 

Epinephrine,catecholamine 
Ciprofloxacin, Tetracyclin,Erythromycin, Chloram-

phenicol,Ethidium bromide 
- - 

Norepinephrine, catecholamine Ciprofloxacin, Tetracyclin,Erythromycin - - 

Theophylline, methylxanthine Ciprofloxacin - - 

Caffeine Ciprofloxacin  - 

EA-371alpha, EA-371delta Levofloxacin Streptomyces spp. [157] 

5'-methoxyhydnocarpin-D (5'-MHC-D), 
pheophorbide a  

CIprofloxacin Berberis aetnensis [213] 

Extracts of Commiphora molmol, Centella 
asiatica, Daucus carota, Citrus aurantium 

and Glycyrrhiza glabra 
Chloramphenicol,Nalidixic acid,Tetracyclines 

Commiphora molmol, Centella 
asiatica, Daucus carota, Citrus 

aurantium and Glycyrrhiza 
glabra 

[214] 

Thanatin,peptide  Podisus maculiventris [222] 

Ellagic tannic acids 
Novobiocin, coumermycin, chlorobiocin, rifampicin, 

fusidic acid 
n/a [223] 
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 Prates et al. tested this hypothesis by comparing MB- 
PDI for two pairs of isogenic C. albicans strains i) YEM 12 
and YEM 13 mutant overexpressing MDR1 MFS; and ii) 
YEM 14 and YEM 15 mutant overexpressing CDR1/CDR2. 
Since efflux systems affect APDI of MB in C. albicans, a 
logical strategy was to explore whether EPIs could potentiate 
antimicrobial PDI (APDI) with MB. They used two well-
documented EPIs, one for each corresponding efflux system, 
INF271 (targeting MFS) and verapamil (+) (targeting ABCs 
both in yeast and mammalian systems) and the reference C. 
albicans strain DAY185. Pre-exposure to INF271 followed by 
MB mediated PDI, resulted in a paradoxical protection rather 
than enhancement of phototoxicity. On the other hand, pre 
exposure of C. albicans cells to verapamil (+) and subse-
quent MB-mediated APDI led to an increase of phototoxicity 
when compared with the PDI efficacy of MB in the absence 
of EPIs. In addition, pre exposure of the CDR1/CDR2 over-
expressing mutant YEM 15 in verapamil (+) and subsequent 
APDI revealed 2 logs10 of cell reduction in the presence of 
the EPI, in comparison with virtually no effect in the absence 
of the ABC pump blocker. The authors demonstrated that 
ABC pumps are directly implicated in MB efflux from the 
cell cytoplasm. 

Animal Models of Infection, and the Challenge of Clini-
cal EPI Implementation  

 A major obstacle to the path of microbial EPI implemen-
tation may arise from the fact that efflux systems manipula-
tion could cause unexpected toxicities due to the multitude 
of physiological roles MES may play in human cells. In this 
context, efforts directed at specifically inhibiting efflux 
pumps operating only in prokaryotes may offer a greater 
chance of therapeutic success. Interestingly, it has been 
shown that target bacteria respond to clinical challenge with 
EPIs by developing resistance mutations that decrease the 
efficacy of the EPI [159,160]. In the same context, it was 
demonstrated that reserpine can select multidrug resistant 
Streptococcus pneumoniae strains [161]. 

 The threat of cross-resistance to different antibiotics ele-
vates the complexity of EPI discovery ventures. Addressing 
this requires that efflux substrates and inhibitors be clearly 
differentiated, this may be also of interest for the PS for use 
in antimicrobial PDT. The latter case will demand rational 
approaches that simultaneously address both the photo-
chemical mechanistic aspects of PDT and efflux phenotypic 
variations. A reported strategy of “dual antimicrobial action” 
targeting NorA in Gram-positive bacteria provides a path 
forward towards addressing these issues. A hybrid com-
pound (SS14) was created by fusing the plant antimicrobial 
berberine to the synthetic NorA EPI INF55. SS14 was estab-
lished as an effective antimicrobial against S. aureus, (100-
fold more effective than the berberine parent molecule) in-
cluding mutant strains that over express NorA [162]. MIC’s 
for SS14 against S. aureus are interestingly 2-16 times lower 
than berberine in combination with the EPI INF55 when 
present together. The hybrid rapidly accumulated in bacterial 
cells and showed higher efficacy than vancomycin in a 
Caenorhabditis elegans model of enterococcal infection 
[162]. Analogs of SS14 exhibited similar antimicrobial  
activities [163,164] suggesting that significant structural 

changes can be made to these hybrids without adversely af-
fecting their ability to block MES or their antibacterial activ-
ity. Further compelling the cytotoxicity associated with 
INF55 was found absent in the hybrid SS14. Such hybrids 
are predicted to have an advantage over separate compound 
administration in terms of synchronous or near synchronous 
delivery of both agents to the appropriate bacterial target 
sites. Interestingly –conjugation of the indole derivatives to 
ciprofloxacin rendered the hybrid orders of magnitude less 
effective than ciprofloxacin alone (Anthony Ball unpub-
lished data). Perhaps the lesson is antibiotics are not ideal 
candidates for hybrid strategies; but rather antimicrobials; or 
agents with a non-specific mechanism of action are perhaps 
the better suited for conjugate approaches. It is noteworthy 
that plants evolved a complex milieu of toxins and synergists 
which are synthesized in defense against microbial attack –
and that such a technique differs largely from that strategy 
employed by antibiotic producing microbes.  

 Among the potential roles, it has been demonstrated that 
efflux pumps are important for processes of detoxification of 
intracellular metabolites, bacterial virulence in both animal 
and plant hosts, cell homeostasis and intercellular signal traf-
ficking [165]. Researchers have engaged in new antimicro-
bial development tractable whole-animal screens that utilize 
the well-studied nematode C. elegans, the great wax moth 
Galleria mellonella, the fruit fly Drosophilla melanogaster 
and the zebra fish. Those have been employed as model 
hosts to identify and develop new classes of antimicrobial 
agents with antivirulence or immunomodulatory efficacy and 
evaluate toxicity or efficacy. The amenability of these non-
vertebrate hosts to large screens has made them invaluable in 
drug discovery against either bacterial or fungal pathogens 
[166-168]. The design of host-pathogen studies exploring the 
ability of efflux to interfere with virulence determinants 
sounds promising and highly informative but often requires 
more sophisticated tools and approaches as the results varies. 
For example, C. elegans was used to assess the fitness of in 
vitro selected P. aeruginosa MexABOprM (nalB) and Mex-
CDOprJ (nfxB) multidrug resistant mutants [169] and to 
confirm that overproduction of MexEF-OprN does not im-
pair P. aeruginosa fitness in competition tests, but produces 
specific changes in bacterial regulatory networks [170]. B. 
pseudomallei is able to cause ‘disease-like’ symptoms and 
kill the nematode but all the indication are that the killing 
mechanism is not related with efflux systems that pump out 
either aminoglycosides or macrolides [171]. In a similar 
fashion C. elegans and an array of antimicrobials were valu-
able tools in correlating membrane efflux and influx with 
both multidrug resistance and virulence of K. pneumoniae 
[172]. 

 The nematode model was employed to validate the an-
timicrobial potential of the dual action antimicrobial hybrids 
in a variety of pathogens [162, 164] but also to demonstrate 
that the quorum sensing inhibitor C-30 (brominated fu-
ranone) can trigger rapidly efflux mutations in P. aeruginosa 
[173]. In a recent example employing C. elegans it was 
demonstrated RamA, a member of the AraC/XylS family, 
influences both virulence and efflux in S. enterica serovar 
Typhimurium [174]. In a unique example the nematode 
model was pivotal to dissect the mechanism that Pdr1p fam-
ily members in S. cerevisiae and C. glabrata use and directly 
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bind to structurally diverse drugs and xenobiotics, resulting 
in stimulated expression of drug efflux pumps [175]. 

 The reports that correlate the rest of the model hosts with 
efflux are not extensive. G. melonella was employed to vali-
date the efficacy of azithromycin against intracellular infec-
tions of Francisella [176]. AcrAB-TolC mutants were used 
only in vitro and were not employed to infect the caterpillars. 
D. melanogaster was a valuable tool to display the virulence 
characteristics and resistance patterns of the Liverpool epi-
demic strain (LES) of P. aeruginosa, a transmissible aggres-
sive pathogen of cystic fibrosis (CF) patients [177]. Myco-
bacterium marinum-infected zebrafish larvae for in vivo 
characterization of antitubercular drug activity and tolerance. 
It was demonstrated that efflux systems required for intracel-
lular growth mediate this macrophage-induced tolerance. 
This tolerant population also developed when M. tuberculo-
sis infects cultured macrophages, suggesting that it contrib-
uted to the burden of drug tolerance in human tuberculosis. 
Verapamil was shown to reduce that tolerance [178]. 

 The results for EPI efficacy in murine models are limited 
and inconclusive. The combination of piperine with mupiro-
cin in a mice dermal infection model showed better in vivo 
efficacy when compared with the commercially available 
formulation of 2 % mupirocin [179]. Using a mouse model 
of lethal infection, it was demonstrated that concomitant 
administration of the lactoferricin-derived peptide P2-15 and 
erythromycin against P. aeruginosa afforded long-lasting 
protection to one-third of the animals [180]. A d-octapeptide 
EPI acts synergistically with azoles in a murine oral candidi-
asis infection model [181]. In a latest in vivo study, PDT 
employing EPIs was able to reduce bacterial load in P. 
aeruginosa burn wounds, to delay bacteremia and to keep 
the bacterial levels in blood 2-3 log10 lower compared to an 
untreated group [182]. 

 A number of fitness and in vivo modeling studies have 
been conducted using different mice models. In MRSA 
MW2 (USA400 lineage) for example, NorB facilitated bac-
terial survival upon overexpression in a staphylococcal ab-
scess and may contribute to the relative resistance of ab-
scesses to antimicrobial therapy, thus linking bacterial fitness 
and resistance in vivo [183]. An intraperitoneal mouse model 
of systemic infection was used to evaluate the role of Ac-
rAB-TolC on antimicrobial resistance in vivo employing 
clinical isolates of Enterobacter cloacae overexpressing or 
lacking parts of the RND efflux system. This approach, re-
vealed reduced virulence in both E. cloacae clinical strains 
when either the acrA or tolC genes were inactivated [184]. 
Similar studies with emphasis in the AcrAB-TolC system 
have been conducted in a variety of F. tularensis strains in-
cluding the live vaccine strain (LVS) [185, 186] and SCHU 
S4 [187]. 

CONCLUSION 

 The lengthy description of this array of endeavors leads 
in four main conclusions: a. Tools and technological plat-
forms for EPI discovery are available and rapidly advancing 
with emphasis on flow cytometry and imaging. b. A core of 
NP chemotypes has been validated as EPIs in many patho-
genic systems but the real challenge of discovery remains 
Gram-negatives. c. PDT and other alternative antimicrobial 

strategies may provide a niche for EPI implementation. This 
statement requires further elaboration: Efflux systems have 
been evolutionary co-ordinate to pump out a broad range of 
non-specific compounds including potential toxins which do 
not attack a single target. Indeed many efflux substrates are 
generally active against microbial membranes and DNA nei-
ther of which is essentially mutable. Antimicrobial PS, like 
amphipathic cations represent old and familiar enemies to 
the microbial efflux systems and APDI potentiation with 
EPIs NPs seems like a broader scheme with multi fold appli-
cations. NP EPIs have shown remarkable efficacy in poten-
tiating largely ineffective antimicrobials such as berberine. 
PDT is able to exhibit substantially higher cidal efficacy than 
the traditional plant antimicrobials. This concept may apply 
by incorporating PS and PDT-based applications to the cur-
rent hybrid models which employ traditional antibiotics 
(evolution has already refined to reasonably evade efflux 
systems with their neutral moieties) or plant based antim-
icrobials (they are only marginally effective and only within 
the presence of EPIs; or multiple EPIs within the plant’s 
natural environment). d. An apparent methodological gap 
between in vitro and preclinical studies remains and host-
pathogen interactive expeditions incorporating EPIs are not 
providing conclusive results. Although the progress in high-
lighting the role that MES play in microbial ecology survival 
and virulence seems to be slow but satisfactory, the hurdles 
and challenges associated with antimicrobial drug EPI-based 
design remain overwhelming.  
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ABBREVIATIONS 

ABC = ATP Binding Cassette 

APDI = Antimicrobial Photodynamic Inactivation 

CDR1 = Candida Drug Resistance-1 

CFU = Colony forming unit 

EPI = Efflux Pump Inhibitor 

FDG = Fluorescein-di-β-D-galactopyranoside  

FICI = Fractional Inhibitory Concentration indices 

FLAP = Fingerprints for Ligands and Proteins  

HTS = High Throughput Screening 

LES = Liverpool epidemic strain  

MB = Methylene Blue 

MDR = Multidrug Resistance  

MDR1 = Multidrug Resistance-1 

MIC = Minimal Inhibitory Concentration 
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MF = Modulation Factor 

MFS = Major Facilitator Superfamily  

NP = Natural Products 

PaβN = Phenyl-arginine-beta-naphthylamide  

PDI = Photodynamic Inactivation 

PDR = Pleiotropic Drug Resistance 

PDT = Photodynamic Therapy 

PEI-ce6 = polyethyleneimine-chlorin(e6), 

P-gp = P-glycoprotein 

PS = Photosensitizer 

QSAR = Quantitative Structure-Activity Relation-
ships 

RB = Rose Bengal 

RND = Resistant Nodulation (cell) Division 

ROS = Reactive Oxygen Species 

R6G = Rhodamine 6-G 

TBO = Toluidine Blue 
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