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Abstract

Public transportation is undeniably an effective way to move a large number of people
in a city. Its ineffectiveness, such as long travel times, poor coverage, and lack of direct
services, however, makes it unappealing to many commuters. In this thesis, we address
some of the shortcomings and propose solutions for making public transportation more
preferable.

The first part of this thesis is focused on improving existing bus services to provide
higher levels of service. We propose an optimization model to determine limited-stop
service to be operated in parallel with local service to maximize total user welfare.
Theoretical properties of the model are established and used to develop an efficient
solution approach. We present numerical results obtained using real-world data and
demonstrate the benefits of limited-stop services.

The second part of this thesis concerns the design of integrated vehicle-sharing
and public transportation services. One-way vehicle-sharing services can provide bet-
ter access to existing public transportation and additional options for trips beyond
those provided by public transit. The contributions of this part are twofold. First,
we present a framework for evaluating the impacts of integrating one-way vehicle-
sharing service with existing public transportation. Using publicly available data, we
construct a graph representing a multi-modal transportation service. Various eval-
uation metrics based on centrality indices are proposed. Additionally, we introduce
the notion of a transfer tree and develop a visualization tool that enables us to easily
compare commuting patterns from different origins. The framework is applied to as-
sess the impact of Hubway (a bike-sharing service) on public transportation service
in the Boston metropolitan area. Second, we present an optimization model to select
a subset of locations at which installing vehicle-sharing stations minimizes overall
travel time over the integrated network. Benders decomposition is used to tackle
large instances. While a tight formulation generally generates stronger Benders cuts,
it requires a large number of variables and constraints, and hence, more computa-
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tional effort. We propose new algorithms that produce strong Benders cuts quickly by
aggregating various variables and constraints. Using data from the Boston metropoli-
tan area, we present computational experiments that confirm the effectiveness of our
solution approach.

Thesis Supervisor: Cynthia Barnhart
Title: Ford Professor of Civil and Environmental Engineering
Associate Dean, School of Engineering
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Chapter 1

Introduction

1.1 Motivation

The world’s urban population grew rapidly over the last century. According to a

UN report (United Nations Population Fund, 2007), more than half of the world’s

population, 3.3 billion, lived in urban areas in 2008, and the number of urbanites

is expected to swell to almost five billion by 2030. As a result of urbanization, the

increasing mobility demands in many cities have exceeded the available transporta-

tion capacity, causing severe traffic congestion and other consequences. The Texas

Transportation Institute estimates the cost of traffic congestion in U.S. urban areas

in 2010 to be as high as $101 billion, which results from 4.8 billion hours of travel

delay and 1.9 billion gallons of wasted fuel (Lomax et al., 2011).

Public transportation is undeniably an effective way, economically and environ-

mentally, to move a large number of people in a city. It reduces traffic congestion, fuel

consumption, and carbon footprint. An average single-occupancy vehicle emits 76%

more greenhouse gas per passenger mile than heavy rail transit (subways, metros,

or rapid transit) and 33% more than buses (Hodges, 2010). In 2010, the presence of

public transportation in 439 U.S. urban areas saved 300 million gallons of fuel and 796

million hours of delay, amounting to $16.8 billion of cost savings (Lomax et al., 2011).

In addition to the social impacts, an American can save, on average, $9,917 annually

by switching from owning and driving private vehicles to riding public transporta-
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tion, according to the American Public Transportation Association’s Transit Savings

Report (August, 2012).

Despite the benefits of public transportation, a number of people still prefer driv-

ing their private vehicles. Almost 80% of Americans drove alone to work in 2010 (U.S.

Census Bureau). Some common reasons that discourage people from taking public

transportation are poor coverage and accessibility, inflexible and infrequent schedules,

unreliable services, lack of direct services (hence, multiple transfers required), long

travel times, cargo carrying needs, privacy, and safety concerns.

In this thesis, we address some of these shortcomings and propose solutions for

making public transportation more preferable.

1.2 Contributions and Thesis Outline

The first part of this thesis is focused on improving existing bus services to provide

higher levels of service. One of the major disadvantages of bus service, making it an

unattractive choice for many commuters, is long in-vehicle travel times resulting from

frequent stops. Limited-stop bus services have the advantage of shorter in-vehicle

times for passengers and shorter running times that enable bus operators to serve

more demand with the same number of buses and reduced operating costs. In Chapter

2, we seek to find an optimal way to introduce a limited-stop service to be operated

in parallel with an existing local bus service. We propose an optimization model to

determine: (1) the bus stops along a route to be served by a limited-stop service; and

(2) the frequencies of the limited-stop and the local services that maximize total user

welfare, for a given route during a given time period. A few theoretical properties

of the model are established and used to develop a solution approach. As a proof of

concept, we present numerical results obtained using real-world data together with

comprehensive discussions of solution quality, computational times and the model’s

sensitivity to different parameters. Moreover, we solve the optimization model for

178 real-world bus routes with different characteristics in order to demonstrate the

impacts of some key attributes on the potential benefits of limited-stop services.
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The second part of this thesis concerns the design of integrated vehicle-sharing and

public transportation services. Vehicle-sharing service (or short-term vehicle rental

service) has been growing tremendously in the past two decades and becoming an

attractive alternative for urban transportation. It provides flexible, personal mobil-

ity without the full cost of vehicle ownership. Importantly, in the case of one-way

vehicle-sharing service, where users do not need to drop-off a vehicle at the pick-up

station, it also complements existing public transportation systems. In particular,

with a proper design of a one-way system, it can provide better access to existing

public transportation and additional options for trips beyond those provided by pub-

lic transit.

In spite of the many benefits of public transportation, it is economically infeasible

to provide high levels of public transportation service over scattered urban areas.

Additionally, the environmental benefits of public transit are only materialized when

capacities are utilized to a significant extent. Therefore, the potential impacts of

integrating one-way vehicle-sharing service with existing public transportation can

be far-reaching.

In Chapter 3, we present a framework for evaluating the impacts of integrating

one-way vehicle-sharing service with existing public transportation. Using publicly

available data and web services, we model a graph representing a multi-modal trans-

portation service. Various metrics based on centrality indices are proposed. Addi-

tionally, we introduce the notion of a transfer tree that details the transfer hierarchy

of trips originating from a given transit node. A web-based interactive visualization

tool is developed and used to compare commuting patterns from different origins and

identify critical transit hubs that are not well connected by the network under consid-

eration. As a case study, we apply the framework to assess the impact of Hubway, a

bike-sharing program in the Boston metro area, on the existing public transportation

system operated by the Massachusetts Bay Transportation Authority (MBTA).

In Chapter 4, we present an optimization model to select a subset of locations at

which installing vehicle-sharing stations minimizes overall travel time over the inte-

grated vehicle-sharing and public transportation network. Benders decomposition is
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used to tackle large instances. While a tight formulation generally generates stronger

Benders cuts, it involves a large number of variables and constraints, and hence,

more computational effort. We propose new algorithms that produce strong Benders

cuts quickly by aggregating various variables and constraints. Using data from the

Boston metropolitan area, we present computational experiments that confirm the

effectiveness of our solution approach.

Finally, we conclude this thesis in Chapter 5.
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Chapter 2

Incremental Bus Service Design:

Combining Limited-Stop and Local

Bus Services

2.1 Introduction

One of the major disadvantages of bus service, making it an unattractive choice

for many commuters, is long in-vehicle travel times resulting from frequent stops.

Limited-stop bus services on high-demand corridors, such as those successfully op-

erated in cities such as Bogota, Chicago, Montreal, New York City, and Santiago,

however, have the advantage of shorter in-vehicle times for passengers and shorter

running times that enable bus operators to serve more demand with the same num-

ber of buses and reduced operating costs.

Figure 2-1: An example of a 4-stop corridor with a local route overlapping with a
limited-stop route serving stops 1, 3, and 4.
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Given the benefits of limited-stop bus service, we are interested in finding an

optimal way to introduce a limited-stop service to be operated in parallel with an

existing local bus service, which serves every bus stop along the corridor (see Figure

2-1). In this work, we focus on incremental changes to the existing schedule. In

particular, we seek to modify a given bus service on a particular corridor by optimally

reassigning some number of (local) bus trips, as opposed to providing additional trips,

to operate a limited-stop service. This ensures that the new operation does not require

additional buses and incurs no extra cost. Additionally, we consider introducing only

one additional limited-stop route to facilitate adoption of the new service and avoid

complicated operations.

The challenges in the incremental bus service design problem are as follows. There

are trade-offs between in-vehicle time reduction and out-of-vehicle time increase.

Specifically, while the passengers served by a limited-stop service experience shorter

in-vehicle travel times, those served only by the reduced frequency local service have

to wait longer for a bus. Additionally, we need to take into account passenger behav-

ior in response to a limited-stop service. For passengers that are served by both local

and limited-stop service, some may board the first bus to arrive; while the others

may wait for the limited-stop service. A passenger’s choice depends on the travel

time savings he/she can get from the limited-stop service.

One of the major goals of this work is to develop a tractable optimization model

together with an efficient solution approach that can be used to solve the incremental

bus service design problem for real-world bus services. We propose an optimization

model to determine: (1) the bus stops along a route to be served by a limited-

stop service; and (2) the frequencies of the limited-stop and the local services that

maximize total user welfare, for a given route during a given time period. A few

theoretical properties of the model are established and used to develop a solution

approach. Despite the implementation of limited-stop services around the world and

the extensive literature on bus network design, there are, to our knowledge, only two

published works, one by Leiva et al. (2010) and the other by Ulusoy et al. (2010)

that develop optimization models for the design of limited-stop services overlapping
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with local services. The major differences between earlier published works and our

approach are summarized in Table 1, and discussed in detail in what follows. Using

data from a bus operator in a major city, we present numerical results as a proof of

concept. Through the results, we also examine solution quality, computational times

and the model’s sensitivity to different parameters.

Another goal of this work is to provide insights into limited-stop bus service design.

Solving the optimization model for 178 bus services with different characteristics, we

investigate the impacts of some key attributes discussed in Scorcia (2010), Leiva et al.

(2010), and Larrain et al. (2010) on potential benefits of limited-stop services.

The chapter is organized as follows. In the next section, we review the literature

related to the design of limited-stop service. In Section 2.3, we describe the incremen-

tal bus service design problem and present the optimization model. In Section 2.4, we

present the solution approach consisting of three key parts: decomposition, problem

size reduction, and a heuristic. The numerical results together with discussions on

solution quality, computational times and sensitivity analyses are provided in Section

2.5. In Section 2.6, we discuss how some characteristics of a bus service impact the

potential benefits of limited-stop services. Finally, in Section 2.7, we conclude and

suggest future research on this topic.

2.2 Literature Review

Despite the extensive literature on public transit network design (see Ceder and Wil-

son, 1986; Desaulniers and Hickman, 2007; Ceder, 2007; Guihaire and Hao, 2008),

there are, to our knowledge, only two published works, one by Leiva et al. (2010) and

the other by Ulusoy et al. (2010) that develop optimization models for the design of

limited-stop services overlapping with local services.

Leiva et al. (2010) formulate a mixed integer nonlinear model to determine fre-

quencies of a set of predefined limited-stop routes such that the social costs, compris-

ing user and operator costs, are minimized. For passenger assignment, they assume

that every passenger chooses a set of acceptable lines based on the expected total
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Leiva et al.
(2010)

Ulusoy et al.
(2010)

This work

Assumptions:
- O-D matrix Fixed Fixed Fixed
- Transfers Allowed Allowed Not Allowed
- Number of Unlimited Unlimited 1
limited-stop
routes allowed

Objective Minimize social
costs

Minimize social
costs

Maximize user
welfare

Constraints:
- Capacity �(heuristic) � �
- Fleet size - � �
Passenger
Assignment

Proportional to
the frequencies of
each attractive
line

A logit-based
model
considering wait,
transfer, and
in-vehicle times

A linear function
of frequency
share and
in-vehicle travel
time savings

Solution
Approach

Leiva et al. (2010): Given a set of predefined limited-stop
routes, find optimal frequencies using a nonlinear program
without capacity constraints. Iteratively increase the fre-
quencies of overcrowded lines until the capacity constraints
are satisfied.

Ulusoy et al. (2010): Exhaustively search over all prede-
fined limited-stop routes and all possible frequencies for an
optimal solution to a mixed integer nonlinear model.

This work : For each frequency allocation, find an optimal
limited-stop route using a mixed integer program together
with an algorithm for reducing problem size. Then, select
the frequency allocation that yields the highest objective
value. A heuristic is proposed to further improve computa-
tional times

Table 2.1: Comparison of papers by Leiva et al. (2010), Ulusoy et al. (2010), and this
work
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travel times and always takes the first bus to come. Consequently, demand for each

acceptable line is proportional to its frequency and does not depend on its travel time

savings. In order to obtain an optimal solution, they first limit the complexity of the

model by omitting the capacity constraints and solve the resulting nonlinear model

(no binary decision variables). If the optimal solution violates the capacity constraint,

a heuristic is then applied to progressively increase the frequencies of the overcrowded

lines until the capacity constraints are satisfied. They present numerical results for a

bus service along a 19-stop corridor with 23 predefined limited-stop routes (including

express services, short turning, and deadheading). Computational times however are

not provided. Additionally, they examine the impacts of different demand profiles on

the objective function value. This topic is further discussed in Larrain et al. (2010).

One major advantage of this work is the flexibility of the optimization model,

which allows transfers, multiple limited-stop routes along a corridor, and non-homogeneous

fleet (big and small buses). Nevertheless, the numerical results show that transfer do

not occur if the transfer penalties are high, and the additional benefits from having

more than two limited-stop routes operated along a corridor is minimal.

Similarly, Ulusoy et al. (2010) formulate a mixed integer nonlinear model to deter-

mine frequencies of a set of predefined limited-stop routes such that the social costs

are minimized. The main advantage of this work is that they estimate demand for

each service according to the in-vehicle, wait, and transfer times using a logit-based

model. This however results in an intractable nonlinear model. They propose an ex-

haustive search algorithm for obtaining an optimal set of frequencies. Using data from

a real-world rail transit line, they present numerical results for a 6-station service.

Computational times are again not provided.

In addition to the papers discussed above, Scorcia (2010) extends the work of

Schwarcz (2004) and proposes a comprehensive framework for the design and evalu-

ation of limited-stop and BRT services overlapping with local services. The model

evaluates limited-stop service configurations based on six measures of effectiveness

including demand split between local and limited-stop services and change in average

passenger travel time. Although the work does not involve any optimization, they
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are particularly useful for evaluating limited-stop services obtained from optimization

models.

Finally, there is another set of closely related works that provide optimization

models and algorithms for other bus route planning strategies for high-demand corri-

dors such as deadheading (Ceder and Stern, 1981; Furth, 1985), short turning (Ceder,

1989; Furth, 1987) and zonal service (Jordan and Turnquist, 1979; Furth, 1986).

2.3 Incremental Bus Service Design

Given the benefits of limited-stop bus services, we seek to modify a given bus schedule

on a particular corridor by optimally reassigning some number of bus trips, as opposed

to providing additional trips, to operate a limited-stop service in parallel with the local

service, which serves every stop along the corridor. Consequently, the new operation

does not require additional buses and incurs no extra costs. In this section, we present

an optimization model to determine, for a given bus route, (1) the bus stops along the

route to be served by a limited-stop service; and (2) the frequencies of the limited-stop

and the local services that maximize total user welfare. It is important to note that we

consider introducing only one additional limited-stop route, as implemented in many

cities, to facilitate adoption of the new service and avoid complicated operations.

Moreover, Leiva et al. (2010) find that additional benefits of having more than two

limited-stop routes operated along a corridor are minimal.

2.3.1 Basic Assumptions

In the proposed model, we assume the following.

1. The O-D demand is given and fixed. Specifically, we assume that passengers will

continue to board and alight at the stops they previously prefer and not walk to

nearby stops that are served by both local and limited-stop services. However,

the demand split between the local and limited-stop services is captured in

the model and determined according to the attractiveness of services, demand
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elasticity, and available capacities.

2. Passengers arrive randomly at their origins at a constant rate over the time

period under consideration.

3. Passengers are assigned on each bus service according to a system-optimal as-

signment, rather than user-optimal assignment. The validity of this assumption

will be discussed further in Section 2.5.2.

4. Transfers between local and limited-stop services are not allowed. The validity

of this assumption depends on the cost of a transfer. Leiva et al. (2010) show

in their case study that transfers do not occur with high transfer penalties.

2.3.2 Model Formulation

Consider an existing bus service serving bus stops in a set S = {1, 2, . . . , |S|}. The bus

route begins at stop 1 and ends at stop |S|. Operated by a homogeneous fleet of buses

with capacity of C passengers, the service currently runs at a constant frequency1 of

f0 trips over a period under consideration (e.g., AM peak or PM peak) of length T

minutes. Let K denote the set of origin-destination (O-D) pairs served by this bus

service, which is given by {k = (sk, dk) | sk, dk ∈ S, sk < dk}. The expected demand

for an O-D pair k ∈ K over the time period is pk passengers. Lastly, an expected

travel time saving from running express from stop i to stop j(j > i) (i.e., a service

stops at stops i and j and skips every stop between i and j) is cij minutes. Note that

if stops i and j are adjacent, that is j = i + 1, the expected travel time saving cij

equals zero.

Decision Variables

The decision variables used in the model are summarized as follows. The first set of

variables is related to limited-stop service, and the second set is related to passenger

assignment.

1Note that the term ‘frequency’ in this work refers to the number of bus trips operated over a
period under consideration of length T minutes
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f = number of limited-stop bus service trips over the period under

consideration

αij = 1 if the limited-stop service runs express from stop i to stop j (i.e.,

stops consecutively at stop i and j), where i, j ∈ S and j > i

βi = 1 if the limited-stop service serves stop i ∈ S

γk = 1 if the limited-stop service serves O-D pair k ∈ K. Specifically, an

O-D pair k = (sk, dk) ∈ K is served by a limited-stop service if and

only if both origin sk and destination dk are served by the

limited-stop service.

xk

ij
= portion of passengers of O-D pair k ∈ K assigned to the express

segment from stops i to j (i, j ∈ S and j > i) of limited-stop service

yk = portion of passengers of O-D pair k ∈ K assigned to local service

zk = portion of passengers of O-D pair k ∈ K preferring the limited-stop

service

wi = number of passengers on the local service traveling from stops i to

i+ 1

Objective Function

The objective of our model is to maximize total user welfare, which is defined as total

in-vehicle time savings for the passengers served by the limited-stop service, minus the

total increase in wait time, weighted by disutility of wait time relative to in-vehicle

time µw, for those served by the reduced frequency local service and those preferring

the limited-stop service. Because we fix the total number of bus trips operated by

local and limited-stop services, the new operation incurs no extra cost, and we omit

operator cost from the objective function. Mathematically, the objective function is
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given by

Maximize
�

k∈K

pk
�

(i,j)∈Γk

cijx
k

ij

− µw

�

k∈K

pk(1− γk)
1

2

�
T

f0 − f
−

T

f0

�

− µw

�

k∈K

pkzk
1

2

�
T

f
−

T

f0

�
,

(2.1)

where Γk denotes a set of segments that can be used to serve O-D pair k ∈ K.

Mathematically, for an O-D pair k = (sk, dk) ∈ K, Γk is given by {(i, j) | i, j ∈

S, sk ≤ i < j ≤ dk}.

The first term is the total in-vehicle time savings for the passengers served by the

limited-stop service. For an O-D pair served only by local service, no passengers can

be assigned on the limited-stop service (i.e., xk

ij
’s are zero), and hence this term is

zero. The second term corresponds to the total increase in the expected wait time (in

equivalent in-vehicle minutes) for passengers served by the reduced frequency local

service. For an O-D pair served by both local and limited-stop services, we have that

1 − γk equals 0, and this term is zero. Finally, the last term represents the total

increase in the expected wait time (in equivalent in-vehicle minutes) for passengers

preferring the limited-stop service.

Note that in Equation (2.1), we have the expected wait times equal half the head-

way, assuming vehicle arrivals are equally spaced with perfect headway. In general,

for a random headway H, the expected waiting time for a randomly arriving pas-

senger is equal to
σ
2
H
+E

2[H]
2E[H] , where E[H] and σ2

H
are the mean and variance of the

headway H. Therefore, the perfect headway assumption can be relaxed by replacing

a factor of 1
2 with an appropriate value. Additionally, this form of wait time function

may not be appropriate for low-frequency service, for which passengers tend to time

their arrivals according to the published schedule. Nonetheless, because we focus on

incremental changes to high-frequency service, operating every 15 minutes or less,

passengers are presumably accustomed to not timing their arrivals and will continue

this practice even after the limited-stop service is introduced.
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Limited-Stop Service Route Constraints

In order to allow a limited-stop service route to begin and end at any bus stops in S,

we introduce dummy stops s+ and s− at which a limited-stop service route virtually

begins and ends, respectively. The following set of constraints ensures that the values

of αij’s constitute a valid route.

�

i∈S\{|S|}

αs+,i = 1 (2.2)

�

j∈S:j<i

αji + αs+,i =
�

j∈S:j>i

αij + αi,s− ∀i ∈ S (2.3)

�

i∈S\{1}

αi,s− = 1 (2.4)

αij ∈ {0, 1} ∀(i, j) ∈ {(i, j) | i, j ∈ S, i < j} (2.5)

αs+,i, αi,s− ∈ {0, 1} ∀i ∈ S

Note that a limited-stop route serving exactly one stop (i.e., all αij’s are zeros

except αs+,i and αi,s− for some i ∈ S) is also valid according to constraints (2.2)-(2.5).

Such routes however cannot serve any passengers, while increasing wait times of all

passengers. Therefore, their corresponding objective function values are negative, and

they cannot be an optimal solution.

Given the values of αij’s, the values of βi’s and γk’s can then be obtained through

the following constraints.

βi =
�

j∈S:j>i

αij + αi,s− ∀i ∈ S (2.6)

γk
≤ βsk ∀k = (sk, dk) ∈ K (2.7)

γk
≤ βdk ∀k = (sk, dk) ∈ K (2.8)

βi ∈ {0, 1} ∀i ∈ S (2.9)

γk
∈ {0, 1} ∀k ∈ K (2.10)
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Figure 2-2: An example of a 4-stop corridor with a limited-stop route serving stops
1, 3, and 4.

Note that a stop i ∈ S is served by a limited-stop service (βi = 1) if there exists

an express segment starting at stop i in the limited-stop service route. According to

constraints (2.7) and (2.8), for each O-D pair k = (sk, dk) ∈ K, if both origin and

destination are served by the limited-stop service (βsk = βdk = 1), the value of γk

in an optimal solution must be 1 in order to maximize the objective function value.

Figure 2-2 illustrates the values of αij’s, βi’s and γk’s for a 4-stop corridor with a

limited-stop service serving stops 1, 3, and 4.

Passenger Flow Constraints

The validity of passenger flows is captured by the following constraints.

xk

ij
≤ αij ∀k ∈ K, (i, j) ∈ Γk (2.11)

yk +
�

j∈S:sk<j≤dk

xk

sk,j
= 1 ∀k = (sk, dk) ∈ K (2.12)

�

j∈S:sk≤j<i

xk

ji
−

�

j∈S:i<j≤dk

xk

ij
= 0

∀k = (sk, dk) ∈ K,

i ∈ {i ∈ S | sk < i < dk}
(2.13)

0 ≤ xk

ij
≤ 1 ∀k ∈ K, (i, j) ∈ Γk (2.14)

0 ≤ yk ≤ 1 ∀k ∈ K (2.15)

In words, constraints (2.11) ensure that each passenger can be assigned on an

express segment only if the segment is included in the limited-stop service route.

Imposed by constraint (2.12), the model assigns every passenger to either local or
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Figure 2-3: Example flows of passengers on O-D pair (1, 4) on both local service and
limited-stop service serving stops 1, 3, and 4.

limited-stop service. Additionally, for a given O-D pair k = (sk, dk) ∈ K, the flow

of passengers on the limited-stop service is conserved at each stop between sk and

dk by constraint (2.13). Figure 2-3 depicts flows of passengers on O-D pair (1, 4)

(i.e., traveling from stop 1 to 4) on both local service (y(1,4)) and limited-stop service

(x(1,4)
ij

’s).

Capacity Constraints

The total number of passengers on each service cannot exceed its total capacity,

defined as frequency multiplied by bus capacity. Note that although the total capacity

of both services is greater than the given travel demand, this set of constraints is

still needed to ensure that the numbers of limited-stop service passengers and local

service passengers each do not exceed their respective capacities. While the number

of passengers on each segment of the limited-stop service route can be computed

directly from the xk

ij
’s, the number of passengers on each segment of the local service

has to be derived through the wi’s (see Figure 2-4). Thus, the capacity constraints
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Figure 2-4: Number of passengers on the local service traveling between adjacent
stops.

can be written as follows.

w1 =
�

k∈K,

s
k=1

pkyk (2.16)

wi =
�

k∈K,

s
k≤i

pkyk −
�

k∈K,

d
k≤i

pkyk ∀i ∈ S \ {1, |S|} (2.17)

0 ≤ wi ≤ (f0 − f)C ∀i ∈ S \ {|S|} (2.18)
�

k∈K:Γk�(i,j)

pkxk

ij
≤ (fC)αij ∀(i, j) ∈ {(i, j) | i, j ∈ S, i < j} (2.19)

f ∈ {1, 2, . . . , f0 − 1} (2.20)

Because our definition of frequency is the number of bus trips operated over a

period under consideration, we are only interested in integral values of frequency.

Additionally, we can ignore the cases where f equals 0, and f equals f0. Clearly,

when f is zero, the solution yields an objective function value of zero as there is

no change to the original operation. When f equals f0, that is, all buses operate

a limited-stop service, the limited-stop service route must contain every stop along

the corridor; otherwise, some O-D demand would not be satisfied. As a result, the

limited-stop service becomes the local service, and again, there is no change to the

original operation.
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Demand Split Constraints

One of the challenges for this optimization problem formulation is to capture passen-

ger behavioral changes in response to a new limited-stop service. We model demand

for a limited-stop service as follows:

�

j∈S:sk<j≤dk

xk

sk,j
≤

f

f0
+ ak




�

(i,j)∈Γk

αijcij



 ∀k ∈ K, (2.21)

where ak’s are constants representing the incremental proportion of passengers pre-

ferring the limited-stop service per minute of travel time reduction.

From the equation, the demand for a limited-stop service is a linear function of

frequency share and travel time reduction, which is given by the term in parentheses.

If a limited-stop service does not provide any travel time reduction, passengers are

indifferent between the local and limited-stop services and board the first bus to

arrive. In this case, the demand for the limited-stop service is proportional to its

frequency relative to the local service. As the reduction in travel time increases,

the demand for the limited-stop service increases linearly at the rate of ak because

some passengers are willing to wait longer for the limited-stop service, as opposed to

boarding the first arriving bus. One possible choice of ak, which we use in this work,

is the negative of travel time elasticity divided by the expected travel time of O-D

pair k on the local service.

We refer to the portion of passengers assigned to a limited-stop service beyond

its frequency share ( f

f0
) as those preferring the limited-stop service. Mathematically,

the portion of passengers on O-D pair k preferring the limited-stop service (zk) can

be obtained through the following constraints.

zk ≥
�

j∈S:sk<j≤dk

xk

sk,j
−

f

f0
∀k ∈ K (2.22)

0 ≤ zk ≤ 1 ∀k ∈ K (2.23)

Because the objective function improves as zk decreases, the constraints ensure

32



that zk is equal to max
�
0,
�

j∈S:sk<j≤dk
xk

sk,j
−

f

f0

�
in an optimal solution.

Lastly, note that if an O-D pair k ∈ K is not served by a limited-stop service,

xk

ij
’s must be zero, and hence the constraint (2.21) is redundant.

We close this section by establishing one important property of the model:

Proposition 1. The integrality of βi’s and γk’s can be relaxed.

Proof. Because constraints (2.2)-(2.4) together with (2.5) ensure that the right hand

side of constraint (2.6) is either 0 or 1, we can simply omit the integrality constraint

(2.9) of βi’s. Now consider the value of γk associated with O-D pair k = (sk, dk).

From constraints (2.7) and (2.8), if βsk and/or βdk take the value 0, γk must also be

0—an integral value. If both βsk and βdk equal 1, without the integrality constraint

(2.10), γk may take any real value from 0 to 1, while all the constraints are still

satisfied. In the optimal solution, however, γk has to take the value 1 in order to

maximize the objective function, provided that pk is positive. If pk is 0, then γk can

take any value without affecting the optimal solution.

2.4 Solution Approach

In this section, we present a solution approach to the mixed integer nonlinear model

described earlier. The solution approach, consisting of three key parts, allows us to

solve the incremental bus service design problem for real-world bus services efficiently.

2.4.1 Decomposition

Note that the nonlinearity in our model is caused by the limited-stop service frequency

variable f in the capacity constraint (2.19) and the objective function (2.1). If a value

of f is fixed, the model will become linear and can be solved for an optimal limited-

stop service route more easily. We therefore decompose the original optimization

problem into two stages. First, we repeatedly solve the optimization model assuming
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different limited-stop service frequencies. Then, given the set of optimal limited-

stop routes for different limited-stop service frequencies, we select the limited-stop

service frequency that yields a limited-stop route with the highest objective function

value. This can be done because we are interested in values of f from a finite set

{1, 2, . . . , f0 − 1}. In particular, let z be the optimal objective function value of the

optimization model in Section 2.3 and z(f) be the optimal objective function value

for a fixed f , we have that

z = Maximize
f∈{1,2,...,f0−1}

z(f).

When it is optimal to have no limited-stop service, the optimal limited-stop service

routes for every f in {1, 2, . . . , f0 − 1} will be identical to local service, yielding an

objective function value of zero.

One might attempt to establish a systematic way to search for the optimal limited-

stop route frequency. However, we empirically found that z(f) is not necessarily

a unimodal function of f , and therefore search algorithms might find only a local

optimum. This occurs because of the discrete nature of the limited-stop service route

decisions. Consequently, we have to exhaustively search over the set of possible values

of f in oder to ensure optimality. Nevertheless, there are usually a small number of

possible frequency allocations for a period under consideration (e.g., AM peak or PM

peak), and only frequency shares within a certain range are likely to be of interest to

transit agencies.

2.4.2 Problem Size Reduction

The mixed-integer linear model resulting from fixing the value of limited-stop service

frequency remains difficult to solve for large instances, that is, problems with many

stops along the routes. It has some parallels to the facility location problem, which

is commonly known as a hard problem. One possible way to limit computational

complexity is to reduce problem size. To do so, we derive upper bounds on the

contributions of αij’s to the objective function value, and then use these to eliminate

some variables.
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Recall that αij is equal to 1 when a limited-stop service serves stops i and j and

no other stops in between, i.e., runs express from stops i to j. Thus, every passenger

whose origin or destination is between stops i and j is not served by the limited-stop

service and will experience increased expected wait time of δf = 1
2

�
T

f0−f
−

T

f0

�
. On

the other hand, those whose trips start before stop i and end after stop j might benefit

from the in-vehicle time savings of cij minutes on the limited-stop service. The actual

contribution to the objective function is subject to available capacity, the demand split

between local and limited-stop services, and whether their origins and destinations

are served by limited-stop service. By assuming that every stop before i and after j

is served by limited-stop service, the maximum possible in-vehicle time savings from

running express from stops i to j is given by cijmin
�
fC,

�
k∈K:Γk�(i,j) p

k

�
. Therefore,

an upper bound on the contribution of αij to the objective function value, for a given

limited-stop frequency f , is given by

Uij(f) = cijmin



fC,
�

k∈K:Γk�(i,j)

pk



− µw

�

{k∈K|i<s
k
<j}

∪{k∈K|i<d
k
<j}

pkδf . (2.24)

For any pair of stops i and j, a variable αij can then be eliminated from the

formulation if the upper bound Uij(f) is negative for a given limited-stop service

frequency f . Because variables xk

ij
’s for all k ∈ K such that (i, j) ∈ Γk can take

positive values only when αij equals 1, the corresponding xk

ij
’s can also be eliminated.

Additionally, we observe and prove the following property of this upper bound.

Proposition 2. For 0 ≤ f ≤ f � < f0, if Uij(f) < 0, then Uij(f �) < 0.

Proof. We first claim that the upper bound Uij(f) is a concave function of f ∈ [0, f0).

From equation (2.24), the two terms inside the minimum operator are linear, and

hence concave, in f . Because concavity is preserved under minimum operation, we

have that the first term in equation (2.24) is concave. The second term (including

the minus sign) is also concave as its second derivative is non-positive for f ∈ [0, f0).

Lastly, because concavity is preserved under summation, we have that Uij(f) is a

concave function of f ∈ [0, f0). Next, note that Uij(0) = 0. Depending on the first
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derivative of Uij(·) at 0, the value of Uij(f) may increase as f increases until the

first derivative becomes zero. The concavity ensures that once the value of Uij(f)

falls below 0 for some f , it remains negative for all f � > f . We thus establish the

claim.

In other words, once a variable αij is eliminated for some f , it will also be elim-

inated for any f � > f . More importantly, the property suggests that it is generally

easier to solve the optimization model for a large limited-stop service frequency f as

more variables are likely to be eliminated.

2.4.3 Heuristic

The underlying idea of this heuristic arises from the observation that the optimal

limited-stop service route for a particular limited-stop service frequency f is almost

identical to the optimal limited-stop service routes for f − 1. Potentially, an optimal

solution for a particular limited-stop service frequency f can be valuable input to the

optimization model for f − 1 to reduce computational complexity.

Note that for a large limited-stop service frequency f , the optimal limited-stop

service route tends to skip only a few stops because of the limited capacity of the

local service and the substantial increase in wait time for passengers who are not

served by the limited-stop service. As a limited-stop service becomes less frequent,

the local service capacity increases; the increase in wait time for local passengers

diminishes; and consequently, an optimal limited-stop route tends to skip more stops.

Empirically, we observe that if a certain stop is not included in the optimal limited-

stop route for a limited-stop service frequency f , that stop is also not included in the

optimal routes for any f � < f . Thus, we propose the following heuristic that can be

used to solve a sequence of optimization problems for different limited-stop service

frequencies.

1. Solve the optimization model for a limited-stop service frequency f = (f0 − 1).

Let β∗
i
(f) denote the optimal values of βi’s for a limited-stop service frequency

f .
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2. For each stop i in S, if β∗
i
(f) is zero, add the constraint βi = 0 to the optimiza-

tion model.

3. Solve the optimization model with the additional constraints for a limited-stop

service frequency f = f − 1.

4. Repeat steps 2 and 3 for less frequent limited-stop service.

We start the heuristic with a large limited-stop service frequency because it is easier

to solve as suggested by the property in Proposition 2.

Finally, although the optimality of the solutions obtained from this heuristic has

not been proved analytically, we have not found any instances where this heuristic

leads to suboptimal solutions.

2.5 Proof of Concept

Using data from a bus operator in a major city, we provide in this section numerical

results obtained from our optimization model and solution approach. We also ex-

amine solution quality, computational times, and the model’s sensitivity to different

parameters.

2.5.1 Data and Parameters

We obtain real-world data from a bus operator in a major city. The data set con-

tains route information and expected O-D demands of 178 high-frequency bus routes,

operating every 15 minutes or less. In this work, we focus on the weekday, morning

peak schedules, from 7 a.m. to 9 a.m. (T = 120 minutes).

Table 2.2 summarizes the baseline values and expressions of the parameters we

use in this work. We assume that the travel times between adjacent stops are equal

for simplicity, and more importantly, to facilitate our understanding of the model

behavior and solutions. The dwell times at each stop are also assumed to be equal for

the same reasons. We acknowledge that instead of constants, dwell times should be a
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Parameter Baseline Value

Wait time disutility weight µw 1.0
Bus capacity C 80 passengers
Travel time between adjacent stops ti,i+1 1.5 minutes
Dwell time at stop i td

i
0.5 minutes

Travel time elasticity e -0.5
Total travel time from stop i to stop j on

a local service
tij

�
j−1
l=i

tl,l+1 +
�

j−1
l=i+1 t

d

l

Total travel time savings from running ex-
press

between stops i and j

cij
�

j−1
l=i+1 t

d

l

Rate of increase in limited-stop service
demand per minute of travel time re-

duction
for O-D pair k = (sk, dk)

ak −e

t
sk,dk

Table 2.2: Baseline values of parameters.

function of the expected numbers of passengers boarding and alighting at the stops,

which in turn depend on the decision variables—limited-stop service route, frequency

allocation, and the resulting passenger assignments. Incorporating variable dwell

times however will result in an intractable model. Lastly, we simply specify the total

travel time savings from running express between two stops as the sum of the dwell

times at the skipped stops (i.e., every stop between the two stops). To be more

precise, rigorous estimates of limited-stop service run times like the one presented in

Tétreault and El-Geneidy (2010) can be used.

In this section, our discussions focus on one particular bus service, referred to as

bus service A. Bus service A consists of 35 stops along its corridor spanning almost

9 miles. With 24 bus trips, the service carries on average a total of 3,151 passengers

during the two-hour morning peak period. The average trip length of passengers

served by service route A is 11 stops.

2.5.2 Numerical Results

We implemented the solution approach proposed in Section 2.4 with Java 1.6 and

IBM ILOG CPLEX 12.2. The result obtained from the optimization model shows
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Figure 2-5: Visualization of the optimal limited-stop service route together with (a)
numbers of passengers boarding and alighting at each stop and (b) O-D demands.

that, by reassigning 13 out of 24 bus trips (54%) to operate a limited-stop service,

a total user welfare of 1,506 minutes can be achieved on route A. Covering 84% of

the demand, the limited-stop route skips 11 out of 35 stops (31%) along the corridor.

Figure 2-5 visualizes the optimal limited-stop service route together with (a) numbers

of passengers boarding and alighting at each stop and (b) O-D demands. A hollow

circle represents a bus stop which is served by the limited-stop route. A height of a

bar at each stop in Figure 2-5a indicates the number of passengers boarding/alighting

at the stop. Thickness and opacity of an arc connecting two stops in Figure 2-5b

indicates a proportion of passengers on the O-D pair.

It is evident that most bus stops with high demands for boarding and/or alighting

are included in the limited-stop service route as the service can then potentially

benefit a large number of passengers. However, the bus stops that are served by

the limited-stop service do not necessarily have higher demands than those skipped

stops. For example, stop 6, which is not served by the limited-stop service, has slightly

higher demand than stop 32 (the fourth from last), which is served by the limited-

stop service. This is because stopping at stop 6 affects in-vehicle travel times of a
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Figure 2-6: Cumulative distribution function (CDF) of travel time changes.

large number of passengers boarding the limited-stop service at the first and second

stops. Additionally, there are very few passengers boarding at stop 6, and those who

alight at stop 6 gain only little benefit from the limited-stop service. On the other

hand, although there are fewer passengers alighting at stop 32, a lot of them travel

longer distances, thereby contributing larger in-vehicle travel time reduction to the

objective function value. Moreover, stopping at stop 32 affects in-vehicle travel times

of a smaller number of passengers on the limited-stop service who alight at the last

three stops.

It is essential to understand how passenger travel times (wait and in-vehicle times)

change compared to the original service. Figure 2-6 shows a cumulative distribution

of the travel time changes. About 16% of the passengers are not served by the limited-

stop service and have to wait on average 3 minutes longer for the frequency-reduced

local service. Another 42% of the passengers are not affected by the introduction of

the limited-stop service. In particular, these passengers are served by both local and

limited-stop services, but the limited-stop service does not provide any travel time

reductions to their trips (i.e., every stop between their origins and destinations is

served by the limited-stop service). Lastly, the other 42% of the passengers benefit

from travel time reductions ranging from 0.4 to 5.5 minutes. The average travel time

reduction is 2.3 minutes.

The distribution of the travel time changes suggests that passengers are not likely
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to make transfers between local and limited-stop service because besides the inconve-

nience of transferring and the possibility of additional fare costs, the potential travel

time savings are offset for most passengers by additional wait times at transfer points.

Specifically, if a passenger first boards the local service and connects to the limited-

stop service, the additional wait time is 1
2(

120
13 ) = 4.6 minutes on average; and if a

passenger first boards the limited-stop service and connects to the local service, the

additional wait time is 1
2(

120
11 ) = 5.5 minutes on average. Therefore, for this particular

route, our assumption that transfers between local and limited-stop services are not

allowed is generally valid. Similarly for the other 177 high-frequency bus routes in

our network, we also find that, in each optimal solution, the average wait time for

both local and limited-stop services is larger than the average travel time reduction

provided by the limited-stop service.

In terms of ridership split, 55% and 45% of the passengers are assigned on the

local and limited-stop services, respectively. Figure 2-7 visualizes a bus’s load profile

for each service. The dashed line at the top indicates the bus capacity. The limited-

stop service is generally less crowded than the local service. Moreover, it is important

to note that the limited-stop buses are never full, which implies that the capacity

constraints of the limited-stop service are not tight. Consequently, all the passengers

who want to get on a limited-stop bus (either because it is the first bus to arrive, or

because he/she prefers the limited-stop service) can board, and the system-optimal

assignment is identical to the user-optimal assignment. This is also the case for

the other bus routes in our network. Nonetheless, in general, when a limited-stop

service capacity is reached—especially in subproblems with small limited-stop service

frequencies, the optimal solution corresponds to the system-optimal assignment, and

its objective function value serves as an upper bound on the total user welfare in the

user equilibrium.

2.5.3 Computational Times

One major goal of this work is to develop an optimization model together with a

solution approach that can be used to solve efficiently the incremental bus service
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Figure 2-7: Load profiles of the local and limited-stop services.

design problem for real-world bus services. We present in this section computational

times and discussions on the effectiveness of the solution approach proposed earlier.

Computations are carried out on a Mac OS X machine with an Intel Core i7 2.7

GHz processor and 8 GB of RAM. We decompose the problem into 23 subproblems,

one for each possible value of limited-stop service frequency f . The computational

time for each subproblem is limited to 300 seconds. Table 2.3 summarizes the compu-

tational times for bus service A when the problem size reduction and/or the heuristic

presented in Section 2.4 are applied. In order to compute the optimality gap of a so-

lution, we obtain the optimal solution for each subproblem by applying the problem

size reduction and letting the CPLEX MIP solver run without imposing a time limit.

As a baseline, we first solve each subproblem using only the MIP solver, that

is, neither the problem size reduction nor the heuristic presented in Section 2.4 are

applied. For f less than or equal to 11, the solver cannot obtain any feasible solution

within the time allotted; and for f between 12 and 14, the solutions provided by the

solver are not optimal.

The next set of computational times are obtained by using the upper bound in

(2.24) to reduce the problem sizes before running the MIP solver. Although feasible

solutions still cannot be obtained within the time limit for f less than or equal to 11,

the computational times are significantly reduced for the other values of f . Moreover,

the optimal solutions for f equal to 13 and 14 can now be obtained within the time

limit.

For the third set of computational times, we apply the heuristic outlined in Section
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Limited-
stop service
frequency

Computational time in seconds (Non-zero Optimality Gap)

None
Problem size

Heuristic only Both
reduction only

1 - - 63.81 (19%) 298.93
2 - - 299.03 (20%) 299.07
3 - - 298.96 299.10
4 - - 299.10 298.88
5 - - 225.30 137.35
6 - - 144.66 86.10
7 - - 113.87 64.62
8 - - 72.03 40.58
9 - - 38.73 28.12
10 - - 22.83 13.86
11 - - 14.65 5.87
12 289.38 (35%) 297.49 (13%) 12.72 4.29
13 289.52 (31%) 297.79 8.85 2.20
14 289.25 (6%) 128.12 4.49 1.09
15 266.14 40.84 3.65 0.65
16 139.66 23.16 11.78 1.94
17 94.83 8.92 23.12 2.03
18 46.83 4.36 13.54 1.73
19 36.49 1.48 20.76 0.63
20 22.00 0.60 5.49 0.20
21 7.72 0.16 5.57 0.09
22 4.29 0.05 2.36 0.04
23 1.30 0.02 1.44 0.02

Table 2.3: Computational time.
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2.4.3 without the problem size reduction. The heuristic enables us to obtain the

optimal solutions within the time limit for all possible limited-stop service frequencies

except for f equal to 1 and 2, where suboptimal feasible solutions are obtained. Note

that for f equal to 1, the MIP solver stops before the time limit is reached with

a nonzero optimality gap. This occurs because the heuristic adds more constraints

to the original formulation according to the solution for f equal to 2, which is not

optimal, and consequently leads the MIP solver to an incorrect optimal solution. The

computational times are again significantly reduced from the baseline, although the

problem size reduction appears to be more effective for f greater than or equal to 17.

Finally, we apply both the problem size reduction and the heuristic. The optimal

solutions can now be obtained within the time limit for all possible limited-stop service

frequencies, and the computational times are further reduced.

Effectiveness of problem size reduction using the upper bound in (2.24) is depicted

in Figure 2-8. In the figure, each arc connecting stops i and j represents a variable

αij that has a nonnegative upper bound on the contribution to the objective function

value and hence remains in the optimization model. For a limited-stop frequency of 1,

only about 2% of variables αij’s are eliminated. As implied by Proposition 2—more

variables can be eliminated for higher limited-stop service frequencies, 80% and 94%

of variables αij’s are eliminated for a limited-stop service frequencies of 14 and 23,

respectively. For the latter, there are only two possible routes from the remaining

variables—one serves every stop (like the local service) and the other serves every stop

except stop 19. Therefore, the optimization model can be solved extremely quickly.

Moreover, the optimal limited-stop service routes for different limited-stop service

frequencies in Figure 2-9 illustrates the optimality of the heuristic for bus service A.

In particular, it can be seen that when a stop is skipped in an optimal limited-stop

route for a limited-stop service frequency f , the stop is also skipped in the optimal

limited-stop routes for any limited-stop service frequencies smaller than f .
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Figure 2-8: Remaining variables after problem size reduction using the upper bound
in (2.24).

2.5.4 Sensitivity Analyses

The numerical results presented in Section 2.5.2 are obtained using the baseline values

of parameters. In this section, we examine how changes in the values of parameters

affect the total user welfare for bus service A. The results are summarized in Figure

2-10. A solid circle in each plot indicates the baseline case. Additionally, the charac-

teristics of limited-stop service in the optimal solution of each scenario are provided

in Table 2.4.

Dwell Time. Dwell times depend on many factors such as traffic conditions,

passenger loads, fare payment methods, busway designs, and vehicles (floor heights,

door configurations). Increasing the dwell time at a stop causes increases in total

in-vehicle travel times for services serving the stop and total travel time savings of

limited-stop services skipping the stop. Because, in this work, the total travel time

savings is simply defined as a sum of dwell times at the skipped stops, varying dwell

times essentially adjusts travel time savings achievable by limited-stop services. As a
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result, total user welfare increases as the dwell time per stop increases. Additionally,

Figure 2-10a shows that these increases are more substantial as dwell times increase.

In-vehicle : wait time disutility. So far, we assume that one minute of in-

vehicle travel time poses the same level of disutility as one minute of wait time. In

the transportation literature, wait time cost is usually assumed to be larger than in-

vehicle time cost primarily because of discomfort caused by weather, safety, etc. On

the other hand, transit agencies in many cities around the world now provide real-

time bus arrival information, allowing passengers to schedule their arrivals at bus

stops such that their wait times are minimized, regardless of the scheduled headway

of the bus service. In this case, the cost of wait time amounts to the cost of schedule

delay, which might be less than or equal to the in-vehicle time cost as passengers can

remain productive until the next bus arrives.

According to Figure 2-10b, as wait time disutility increases, the total user welfare

drops at a decreasing rate. This suggests that reassigning some number of local bus

trips to operate a limited-stop service is particularly beneficial to bus systems for

which the wait time cost or disutility is relatively low compared to the in-vehicle time

cost.

Travel time elasticity. Travel time elasticity usually varies from one city to

another and depends on many factors such as income, trip length and time of day.

Typically, travel time elasticity ranges between -0.3 and -0.7. According to constraints

(2.21)-(2.23), increasing travel time elasticity can potentially increase the proportion

of passengers preferring limited-stop service. The increase is however subject to

travel time reductions relative to travel times on the local service and the additional

wait time resulting from not boarding the first arriving bus. For dwell times of 30

seconds, total user welfare decreases minimally as travel time elasticity increases (see

Figure 2-10c). This happens because the travel time reductions achievable by limited-

stop services are small relative to the travel times on the local service. Specifically,

only 1.4% of passengers prefer the limited-stop service in the baseline case. We also

perform a sensitivity analysis for dwell times of 40 seconds to see the effect of travel

time elasticity when the travel time reductions achievable by limited-stop services are

49



higher. In this case, the changes in total user welfare are more significant. Lastly, note

that because we assume a fixed O-D matrix, travel time elasticity only affects total

user welfare through the ridership split between the local and limited-stop services. In

reality, it also affects the number of new riders attracted to the limited-stop service.

2.6 Insights into Limited-Stop Bus Service Design

The tractability of the optimization model together with our efficient solution ap-

proach allows us to solve the incremental bus service design problem for all 178

high-frequency bus routes in our data set, in which the longest bus route consists

of 104 stops along its corridor spanning 23.4 miles. Given the optimal solutions for

these bus services with different characteristics, we examine the impacts of some key

attributes discussed in Scorcia (2010), Leiva et al. (2010), and Larrain et al. (2010)

on the potential benefits of limited-stop services.

The attributes of bus services we consider in this work are demand volume (pas-

sengers), service frequency (buses), route length (stops), average trip length (stops),

and demand variability (dimensionless). For a loop service, because once a bus com-

pletes its service in one direction, it continues the service in the reverse direction

right away, we treat the service in both directions as a continuous service on one long

corridor, and hence the route length is given by the total number bus stops along

both directions. Additionally, we measure demand variability using the coefficient of

variation of the total demand (boarding and alighting) at each bus stop. In order to

fairly compare the benefits of limited-stop services among different bus services, we

calculate the total user welfare attained by an optimal solution as a percentage of the

total travel time, including both wait and in-vehicle travel time, of all passengers.

Figure 2-11 summarizes the statistics and correlations of different attributes and

total user welfare. Specifically, the diagonal panels show the distributions of each

attribute in our data set. The upper diagonal panels are scatter plots for each pair

of attributes, and their associated correlation coefficients are provided in the lower

diagonal panels.
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Figure 2-11: Statistics and correlations of different bus service attributes and total
user welfare.
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Service frequency has the highest correlation with total user welfare. This is rea-

sonable because if an original service frequency is low, reassigning some bus trips to

operate a limited-stop service will drastically increase wait times for those who are

only served by the reduced frequency local service. Although it is commonly known

that limited-stop services are promising for high-demand corridors, the correlation

between demand and total user welfare is not particularly high. One possible reason

is that, despite the high demand, many passengers may only make short trips, thereby

not gaining large benefits from limited-stop service. Nevertheless, because high de-

mand generally implies a large number of passengers who can potentially benefit from

a limited-stop service, the correlation coefficient between the demand and the total

user welfare in minutes, as opposed to the relative percentage, is as high as 0.56.

With the second highest correlation with total user welfare, average trip length is

another key attribute that determines the benefits of limited-stop services. For every

O-D pair, it takes into account both the number of passengers and how much they

can potentially benefit from limited-stop services. Even though route length is highly

correlated with average trip length, it is barely correlated with total user welfare,

and hence not an accurate indicator of a successful limited-stop service. Again, this

is simply because passengers do not necessarily travel along the entire long route.

However, because a long bus route typically serves more passengers, the correlation

coefficient between the route length and the absolute total user welfare (in minutes)

is as high as 0.34.

Lastly, demand variability exhibits correlation with total user welfare to some

extent. High demand variability corresponds to a concentration of demands, for both

boarding and alighting, at certain stops. Consequently, high demand variability allows

a limited-stop service to serve a number of passengers without making frequent stops

and therefore increases the potential benefits of limited-stop services. Recall that we

measure demand variability using the coefficient of variation of the total demand at

each stop. As a result, it does not capture how high-demand stops are distributed

along the corridor. In particular, if the high-demand stops are close together, having

a limited-stop service serving all the stops will result in minimal travel time reduction,
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while having a limited-stop service skipping some of the stops will increase wait times

of many passengers. In short, high demand variability can only partially indicate

the demand patterns or load profiles that allow for successful limited-stop services.

Additionally, Scorcia (2010) points out that it is important to have some minimal level

of demand at low-demand stops. Otherwise, local service may spend short amounts

of time at the stops or even skip them often, and hence, limited-stops services provide

little additional travel time savings. Because in this work, we assume a constant dwell

time at each stop, our results cannot demonstrate this observation.

2.7 Conclusions and Future Work

This work addresses the incremental bus service design problem, in which we seek

to modify a given bus service by optimally reassigning some number of bus trips to

operate a limited-stop service without incurring extra operating costs. We formulate

a mixed integer nonlinear model to determine the limited-stop service to be operated

in parallel with the local service, and to optimize its associated frequency to maximize

total user welfare. Exploiting some theoretical properties of the model, the proposed

solution approach consists of three parts: decomposition, problem size reduction, and

a heuristic. Although the optimality of the heuristic has not been proved analytically,

we have not found any instances where the heuristic leads to suboptimal solutions.

Using real-world data from a bus operator in a major city, as a proof of concept, we

provide numerical results together with detailed discussion regarding solution quality,

including the distribution of travel time changes and ridership split between local and

limited-stop services. The reported computational times demonstrate the tractability

of the model and effectiveness of the solution approach. The sensitivity analyses

shows that

• as travel time savings achievable by limited-stop services increases, the benefits

of limited-stop services, measured by total user welfare, increase at an increasing

rate;
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• reassigning some number of local bus trips to operate a limited-stop service

is particularly beneficial to the bus systems for which the wait time cost is

relatively low compared to the in-vehicle time cost; and

• the impact of travel time elasticity is noticeable only when the travel time

reductions achievable by limited-stop services are large relative to the travel

times on the local service.

Moreover, we solve the optimization model for 178 bus routes with different char-

acteristics in order to examine the impacts of some key attributes on the potential

benefits of limited-stop services. We find that service frequency and average trip

length are highly correlated with the total user welfare attained by the optimal solu-

tions, while demand volume and route length show reasonable correlation with total

user welfare only in an absolute sense. Lastly, demand variability exhibits correla-

tion with total user welfare only to some extent as it still depends on the underlying

demand profile.

As in most mathematical models in the public transit network design literature,

we make certain assumptions to simplify the problem and ensure tractability of the

model. In terms of future research, the following are particularly interesting direc-

tions:

• Relaxing the fixed O-D matrix assumption. This assumption prohibits passen-

gers whose origins or destinations are not served by a given limited-stop service from

walking to nearby stops that are served by both local and limited-stop services. The

assumption can be restrictive if the travel time savings from a limited-stop service

are considerable and sufficiently justify walking to other bus stops. Additionally, this

ignores potential ridership increase in the long run.

• Considering multiple bus routes that share a segment along their corridors si-

multaneously. This is important because introducing a limited-stop service for one

bus route will not only affect the ridership split between the local and limited-stop

services, but might also lead to ridership shift from one bus route to another.
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• Taking into account shorter running times of limited-stop service. As a result

of shorter running times of limited-stop service, an operator might be able to operate

more bus trips over a period under consideration using the same number of vehicles.

This however will increase the operating costs, and the objective function can no

longer omit the operator cost to ensure profitability.

• Incorporating limited-stop service frequency into the demand model. In the pre-

sented model, the portion of passengers preferring a limited-stop service only depends

on the travel time savings, not the frequency of limited-stop service. This can be ad-

dressed by (1) redefining ak as a function of limited-stop frequency f , instead of a

constant; and/or (2) subtracting the expected additional wait time for limited-stop

service (in equivalent in-vehicle minutes) from the total travel time savings in the

demand model. Although the resulting demand model will become nonlinear in f ,

the presented solution approach still works as it decomposes the problem into sub-

problems with fixed values of f .
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Chapter 3

Evaluating Impacts of Integrating

One-Way Vehicle-Sharing Service

with Existing Public

Transportation

3.1 Introduction

Vehicle-sharing service (or short-term vehicle rental service) has been growing tremen-

dously in the past two decades and becoming an attractive alternative for urban

transportation. It provides flexible, personal mobility without the full cost of vehi-

cle ownership. As of 2010, more than 1,250,000 individuals shared 31,000 vehicles

through car-sharing programs in 26 countries (Shaheen and Cohen, 2012), and as

of 2011, over 236,000 bikes were installed in 135 bike-sharing programs worldwide

(Shaheen et al., 2012a).

In addition to the direct benefits to individuals, vehicle-sharing service offers a

number of environmental and social benefits. With a fleet of fuel-efficient, electric,

or non-motorized vehicles, it reduces the transportation-related carbon footprint in

a city. For car-sharing service, its cost effectiveness—achieved through ownership
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cost sharing—leads to car ownership reduction, which can potentially reduce traf-

fic and parking congestion, discourage unnecessary car trips, and encourage public

transportation use.

Importantly, in the case of one-way vehicle-sharing service, where users do not

need to drop-off a vehicle at the pick-up station, it also complements existing public

transportation systems. In particular, with a proper design of a one-way system, it

can provide better access to existing public transportation and additional options for

trips beyond those provided by public transit.

In spite of the many benefits of public transportation, it is economically infeasi-

ble to provide high levels of public transportation service over scattered urban areas.

Additionally, the environmental benefits of public transit are only materialized when

capacities are utilized to a significant extent. The average single-occupancy vehi-

cle is more environmental friendly than the average bus carrying fewer than seven

passengers (Hodges, 2010). Therefore, the potential impacts of integrating one-way

vehicle-sharing service with existing public transportation can be far-reaching.

A number of studies have validated some of the benefits of vehicle sharing men-

tioned earlier (e.g., Rydén and Morin, 2005; DeMaio, 2009; Martin et al., 2010; Martin

and Shaheen, 2011; Shaheen et al., 2012b). However, to our knowledge, no quantita-

tive approach, beyond the use of surveys, to evaluating the impacts of the integration

between one-way vehicle-sharing service and existing public transportation has been

proposed. This motivates us to explore the topic further.

In this work, we present a framework for evaluating the impacts of integrated

vehicle-sharing and public transportation services. The framework enables us to un-

derstand the impacts of integration in detail and answer many important questions.

For example, who can benefit from a given vehicle-sharing network?; how much travel

time savings can be achieved through the vehicle-sharing service?; and how do differ-

ent vehicle-sharing network designs affect overall commuting patterns?

The core component of our evaluation framework is a public transit graph that

represents a public transportation network and captures various service attributes

such as wait times, travel times, and transfer times. One of the goals in developing
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the evaluation framework is applicability, so that our framework can be applied to

transportation networks in different cities. We construct the graph using publicly

available data from the General Transit Feed Specification (GTFS), which is a stan-

dard format for publishing transit service schedules, and MapQuest Open Directions

Service, which is a web service that uses the open-source worldwide map provided by

OpenStreetMap.

We propose three sets of metrics for measuring the impacts of vehicle-sharing ser-

vice: accessibility, utilization, and efficiency. Similarly to centrality indices widely

used in the network science literature, these new metrics are defined based on the

shortest paths between transit nodes and/or vehicle-sharing stations in a network.

In addition to these metrics, we develop an interactive visualization tool that helps

us understand commuting patterns over a public transit network, and more impor-

tantly, identify critical transit hubs that are not well connected by the network under

consideration. In order to create a compact representation of commuting patterns,

we introduce the notion of a transfer tree that details the transfer hierarchy of trips

originating from a given transit node.

Finally, as a case study, we apply the framework to assess the impact of Hubway, a

bike-sharing program in the Boston metro area, on the existing public transportation

system operated by the Massachusetts Bay Transportation Authority (MBTA).

This chapter is organized as follows. We first provide in Section 3.2 a review

of related research in the literature. The modeling of integrated public transit and

vehicle-sharing networks is described in Sections 3.3 and 3.4. In Section 3.5, we

explain our evaluation metrics and visualizations of commuting patterns. In Section

3.6, we present our Boston case study. Finally, we conclude the work and discuss

future work in Section 3.7.

3.2 Literature Review

In this section, we review two streams of research that are closely related to our work

in this chapter.
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3.2.1 Impacts of Vehicle Sharing

A number of studies have validated some of the benefits of vehicle sharing. Katzev

(2003); Lane (2005); Cervero et al. (2007) report decreased vehicle miles traveled, re-

duced vehicle ownership, and increased public transportation usage among the mem-

bers of different car-sharing programs. Based on a survey, it is estimated that car

sharing in North America has removed between 90,000 to 130,000 vehicles from the

road (Martin et al., 2010) and reduces the net green house gas emissions between

158,000 and 224,000 metric tons per year (Martin and Shaheen, 2011). Rydén and

Morin (2005) provide a similar assessment of environmental impacts of car sharing in

Europe.

For bike sharing, Borgnat et al. (2011) and Nair et al. (2013) analyze historical trip

data from bike-sharing operators, Vélo’v (Lyon, France) and Vélib’ (Paris, France),

and allude to the use of bike-sharing service in conjunction with traditional public

transit. In particular, they observe that bike stations in close proximity to transit

stops and services generally have higher activity levels. The City of Paris reports

that 28% of survey respondents used Vélib’ as a first or last segment of their multi-

modal transit trips (DeMaio, 2009). Shaheen et al. (2012b) conduct a user survey

across multiple bike-sharing systems in Montreal, the Twin Cities (Minneapolis and

Saint Paul), Toronto, and Washington, D.C., and study, among others, the effect of

bike-sharing service on traditional public transit use. The results suggest that some

commuters use public transit less as their trips can be completed faster using the

bike-sharing services; while others use public transportation more as the bike-sharing

services provide better access to the existing transit services. The split however

varies from one city to another. Importantly, 40% of the respondents indicate that

they drove less as a result of bike sharing.

To our knowledge, beyond the use of surveys, no quantitative approach has been

proposed to evaluating the impacts of the integration between vehicle-sharing service

and existing public transportation. While a survey can potentially reveal actual user

perception, the results are subjected to sampling errors, that is, the samples are not
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representative of the population. Long, complex surveys could also affect the accuracy

of the responses and further reduce the response rate. Therefore, it is very difficult

to use surveys to understand in great detail the impacts of integrated vehicle-sharing

and public transportation services.

3.2.2 Transportation System Evaluation

The evaluation metrics proposed in this work are similar to centrality indices, which

are widely used in the network science literature to study complex systems such as

connection topology of social and biological networks. Centrality indices measure the

importance of nodes in a network based on different criteria such as closeness and

betweenness (Freeman, 1978–1979). Their applications to transportation networks

were however relatively limited until the past decade.

Traditionally, centrality indices are defined for an unweighted graph. Crucitti et al.

(2006) and Porta et al. (2006) extend the concept of centrality indices to geographic

networks in which each arc is associated with a physical distance between the arc’s

end nodes, and present the Multiple Centrality Assessment framework for analyzing

urban street networks.

Many published works that analyze public transit networks using centrality indices

(notably, Latora and Marchiori, 2001, 2002; Sienkiewicz and Ho�lyst, 2005; Vragović

et al., 2005; von Ferber et al., 2009; Derrible and Kennedy, 2009, 2010; Derrible, 2012)

work with either unweighted graphs or simple weighted graphs in which arc lengths

represent physical distances between nodes or the numbers of overlapping transit

lines. They focus primarily on statistical descriptions or topological properties of the

networks and ignore disutility, such as wait and transfer times, associated with trips.

Additionally, most of these works are restricted to networks with a single mode of

transportation.

To our knowledge, Scheurer and Porta (2006) is the first work that incorporates

transit service information, such as travel times and frequencies, into the underlying

network. Their transit network model is, however, different in several aspects from

our approach described in Section 3.3. First, they introduce a travel arc (called
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transfer-free link) for every pair of stops along a transit line’s route, as opposed to

one for each pair of adjacent stops. With this representation, the topological length

of a path (i.e., the number of arcs in the path) is equal to the number of service

boardings in the corresponding trip. Because the number of arcs grows exponentially

with the length of a transit line, this modeling approach can limit the capability to

analyze large-scale multi-modal networks. Moreover, in their graph, boarding and

transfers are not explicitly modeled with dedicated arcs, and disutility from wait

time is captured by dividing the travel time associated with an arc with the service

frequency. Although this approach works well for the network they consider, it may

not be appropriate for networks with low-frequency transit lines because passengers

might time their arrivals, and the wait times are no longer inversely proportional to

service frequencies. The work is further expanded and included as part of a tool for

assessing accessibility in the urban planning context (Curtis and Scheurer, 2010).

3.3 Public Transit Graph

The core component of our evaluation framework is a public transit graph representing

a public transportation network. It captures various service attributes such as wait

times, travel times, and transfer times. The graph representation allows us to apply

graph-theoretic algorithms to determine the best way to travel from one location

to another over the network and evaluate the network performance with respect to

different metrics.

Modeling multi-modal public transit networks is quite complicated compared with

road networks. Specifically, while we can simply model a road network as a graph

comprising nodes and arcs representing intersections and road segments connecting

the intersections (Porta et al., 2006); in a public transit graph, additional nodes and

arcs are required to model multiple service lines along the same street and passenger

activities like waiting and transferring. Moreover, time dependence of transit services

can further complicate the resulting graph. However, for the purpose of evaluat-

ing transportation networks, we are interested in the “average” travel time over the
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network during a given time period. Thus, we can avoid modeling detailed service

schedules and work with a more aggregated network, thereby differentiating our mod-

eling approach from most of the published works on public transit network modeling,

which focus on creating a time-expanded or time-dependent graph for trip planning

purposes (Müller-Hannemann et al., 2007; Pyrga et al., 2008; Bast et al., 2010). This

enables us to analyze large-scale networks.

3.3.1 Input Data

One of the goals in developing this evaluation framework is applicability—requiring

minimal amounts of data and relying on publicly available data—so that our frame-

work can be applied easily to transportation networks in different cities. In this work,

we use data from the General Transit Feed Specification (GTFS), which is a stan-

dard format developed by Google for publishing transit service schedules and related

transit geographic information1. As of 2012, more than 400 transit agencies around

the world have made their service information available in the GTFS format2.

Given a GTFS feed, we extract three elements of the public transit network:

transit nodes, transit lines, and transit services. Transit nodes are access points to

the public transportation service. A transit node is usually a bus stop or a rail station,

but it may also represent a physical facility that contains multiple bus or rail stops.

A transit line can be described by a sequence of stops served by the service. A transit

service represents a group of transit lines that appear as a single service to commuters.

For instance, the MBTA’s bus 1 service has two lines serving two different sequences

of stops—inbound and outbound. Some transit services may operate different sets of

transit lines at different times of the day.

The sets of transit nodes and transit services, denoted by N and M, are read-

ily available from files stops.txt and routes.txt in the GTFS feed. For each

service m ∈ M, we extract trips associated with the service from file trips.txt

and group them into transit lines based on their stop sequences (detailed in file

1http://developers.google.com/transit/gtfs/reference
2http://www.gtfs-data-exchange.com/
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stop events.txt). The result is the set of transit lines, L where each line l ∈ L be-

longs to transit service m(l) ∈ M. Additionally, we use the time information associ-

ated with trips to compile service schedule information for each transit line, including

departure and arrival times at every stop in the sequence, average frequency/headway,

and travel times between stops.

3.3.2 Graph Construction

Figure 3-1 illustrates the structure of our public transit graph. Given public tran-

sit service information extracted from a GTFS feed, we construct a directed graph

representing the transit system as follows.

Nodes

There are two sets of nodes in the public transit graph—one associated with transit

nodes and the other associated with transit lines. For each transit node n ∈ N , we

introduce access and egress nodes, denoted by acc(n) and egr(n), where passengers

begin and end their trips.

For each transit line l ∈ L described by a sequence of |l| stops (sl1, s
l

2, . . . , s
l

|l|
), we

add a depart node, dep(l, sl
i
) for each i ∈ {1, 2, . . . , |l| − 1} (i.e., every stop except the

last stop in the sequence) and add an arrive node, arr(l, sl
i
) for each i ∈ {2, 3, . . . , |l|}

(i.e., every stop except the first stop in the sequence).

Arcs

There are six types of arcs representing activities and connectivities over the public

transit network.

1. Walk Arcs (Figure 3-2a). For short trips, passengers may walk directly from

one transit node to another. We therefore connect each access node to egress nodes

of nearby transit nodes. Let Nn denote the set of transit nodes within a maximum

walking distance from a given transit node n. Formally, the set of walk arcs is given
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Access node Walk arc

Egress node Board arc

Arrive node Alight arc

Depart node Transfer arc

Travel arc

Dwell arc

Figure 3-1: An example of public transit subgraph induced by two nearby stops served
by three transit lines.
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(a) Walk arcs

(b) Board arcs

(c) Alight arcs

Figure 3-2: Arcs in public transit graph
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(d) Transfer arcs

(e) Travel and dwell arcs (for line l1)

Figure 3-2: Arcs in public transit graph

by

{(acc(n), egr(n�)) | n ∈ N , n�
∈ Nn}.

2. Board Arcs (Figure 3-2b). Connecting access to depart nodes, a board arc

represents a passenger waiting and then boarding a transit line. It may connect

access and depart nodes of different transit nodes, that is a passenger can also walk

to a nearby transit node, wait, and then board a transit line that does not serve

his/her access point. Let Ln denote the set of transit lines serving a given transit

node n. Mathematically, the set of board arcs is given by

{(acc(n), dep(l, n)) | n ∈ N , l ∈ Ln, n �= sl
|l|
}

∪ {(acc(n), dep(l, n�)) | n ∈ N , n�
∈ Nn, l ∈ Ln� \ Ln, n

�
�= sl

|l|
}.

Note that passengers cannot board transit line l at its last stop sl
|l|
. Condition l ∈

Ln� \ Ln ensures that a passenger walks to board a transit line at a nearby transit

node only if the transit line does not serve his/her access point.

3. Alight Arcs (Figure 3-2c). In parallel with board arcs, we have alight arcs
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connecting arrive to egress nodes. The set of alight arcs is given by

{(arr(l, n), egr(n)) | n ∈ N , l ∈ Ln, n �= sl1}

∪ {(arr(l, n�), egr(n)) | n ∈ N , n�
∈ Nn, l ∈ Ln� \ Ln, n

�
�= sl1}.

Note that passengers cannot alight from transit line l at its first stop sl1.

4. Transfer Arcs (Figure 3-2d). Passengers can transfer from one transit line to

another of a different transit service, probably of different modes, through a transfer

arc connecting an arrive node of the inbound transit line to a depart node of the

outbound transit line. A transfer may occur within a transit node or between two

nearby transit nodes. Formally, the set of transfer arcs is given by

{(arr(l, n), dep(l�, n) | n ∈ N , l, l� ∈ Ln,m(l) �= m(l�), n �= sl1, n �= sl
�

|l�|}

∪ {(arr(l, n), dep(l�, n�) | n ∈ N , n�
∈ Nn, l ∈ Ln, l

�
∈ Ln� \ Ln,

m(l) �= m(l�), n �= sl1, n
�
�= sl

�

|l�|}.

Condition m(l) �= m(l�) ensures that transit lines l and l� belong to different transit

services m(l) and m(l�).

5. Travel Arcs (Figure 3-2e). A travel arc represents a passenger’s in-vehicle move-

ment from one transit stop to the next one served by the transit line. It connects a

depart node of a transit line at a stop to the arrive node at the next stop. The set of

travel arcs is given by

{(dep(l, sl
i
), arr(l, sl

i+1)) | l ∈ L, i ∈ {1, 2, . . . , |l| − 1}}.

6. Dwell Arcs (Figure 3-2e). Between travel arcs, there are dwell arcs connecting

arrive and depart nodes at the same stop. A dwell arc captures a period when

passengers get on and off the vehicle or wait on the vehicle. The set of dwell arcs is

given by

{(arr(l, sl
i
), dep(l, sl

i
)) | l ∈ L, i ∈ {2, 3, . . . , |l| − 1}}.
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Given the public transit graph, a route from transit nodes n to n� can be repre-

sented as a direct path from the access node acc(n) to the egress node egr(n�).

Notice that another possible way to model a passenger’s walking and boarding

a transit line at nearby transit nodes is to have walk arcs connect to access nodes,

so that passengers can first walk from one access node to another and then board a

transit line, as presented in Spiess and Florian (1989). Essentially, this enables us to

reduce the number of arcs by replacing all board arcs across transit nodes—one for

each transit line—with walk arcs to the access nodes—one for each nearby transit

node. This alternative modeling approach, however, allows a path visiting several

access nodes constituting a walking path that may exceed the given maximum walking

distance. We therefore do not adopt this approach to avoid solving the constrained

shortest path problem when we evaluate the network. A similar reasoning applies to

our modeling approach for alight and transfer arcs across transit nodes.

Additionally, it is important to note that our graph has one transfer arc for each

pair of transit lines, which allows us to capture connection-specific information, such

as mode switch or a minimum transfer time requirement. As shown in Spiess and

Florian (1989), another way to model transfers, potentially with fewer arcs, is to

replace transfer arcs with alight arcs connecting arrive to access nodes, in addition to

egress nodes. Consequently, a transfer can be represented by a path from an arrive

node to an access node through an alight arc, and then to a depart node through a

board arc. This alternative approach, in addition to not capturing connection-specific

information, may lead to less accurate calculation of transfer times as it is implicitly

assumed that the time until the next outbound service’s departure is independent of

the inbound service.

3.3.3 Costs

There are many factors that may affect a passenger’s route choice (modes, transit

lines, and transfer points). In order to compare different public transit routes, we

associate each arc in the public transit graph with a vector of various types of costs and

define a cost function, or a utility function (Ben-Akiva and Lerman, 1985), specifying
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the weights for different cost components. A passenger is then assumed to take the

route whose associated path yields the least total cost.

In this work, we consider three types of costs: average travel time, transfer penalty,

and schedule delay.

Average Travel Time

Travel time can be categorized into in-vehicle time, walk time, and wait time.

1. In-vehicle travel times. In-vehicle travel times are associated with arcs repre-

senting vehicle movement, that is, dwell and travel arcs. The average in-vehicle time

for each arc can be obtained directly from the transit line’s schedule.

2. Walk times. All arcs that include walking have an associated positive walk

time. In addition to walk arcs, these include board, alight, and transfer arcs across

transit nodes. For simplicity, we estimate walk time using a great-circle distance3 and

assuming a walking speed of 5 kilometers/hour (about 3 miles/hour).

3. Wait times. There are wait times associated with board and transfer arcs. For

the purpose of computing average wait times, we assume that the transit operator

strives to maintain regular headways for high-frequency, operating every 15 min-

utes or less, lines and adheres to published schedules for low-frequency lines. More

specifically, the arrival process of a high-frequency line is a random process that is

independent of arrival processes of other transit lines, with a deterministic interar-

rival time equal to the average headway of the service; while the arrival process of a

low-frequency line is deterministic according to the published schedule. Given these

assumptions, we presume that passengers whose transit trips include low-frequency

service, not necessarily in the first segment of the trip, will time their trips to minimize

the wait times.

The calculations of wait times for board and transfer arcs are different as wait

times for the latter may also depend on the inbound transit line, as opposed to just

3the shortest distance between two points on the surface of a sphere
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the outbound line. For each board arc, we assume wait time is half the headway if

the transit line runs at a high frequency. Otherwise, we assume that passengers will

time their arrivals, and their wait times are fixed at 7.5 minutes. The reason for this

rather high fixed wait time for low-frequency lines is that passengers do not want to

miss their connections and thus, arrive early to avoid at least another 15 minutes of

waiting. (We acknowledge that in practice, this buffer time should be set based on

the reliability of a transit line.) In summary, a wait time associated with a board arc

to transit line l is given by min(hl/2, 7.5) where hl is the headway of transit line l in

minutes.

Now consider an average wait time of a transfer between transit lines l and l� with

headways of hl and hl� minutes, respectively. If the outbound transit line l� is a high-

frequency service, the average wait time is given by hl�/2 because of our independence

assumption for high-frequency lines. For a transfer from a high-frequency line to a

low-frequency line, we presume that passengers will time the inbound trip on a high-

frequency line to avoid arriving at the transfer point too early. As a result, the wait

time is uniformly distributed between 0 and hl, and the average wait time is given

by hl/2, half the headway of the inbound service. Intuitively, the higher frequency of

the inbound service, the shorter the wait time at the transfer point.

Lastly, for a transfer between two low-frequency lines, despite the inflexibility, we

presume that passengers will still try to minimize the wait time. In particular, we

calculate the average wait time considering only efficient connections, defined as those

with minimum wait times locally. Formally, let {al1, a
l

2, . . . , a
l

fl
} be an ordered set of

arrival times of transit line l at an inbound stop and {dl
�
1 , d

l
�
2 , . . . , d

l
�
f
l�
} be an ordered

set of departure times of transit line l� at an outbound stop, which may or may not

be the same as the inbound stop. A connection (al
i
, dl

�
j
) is a feasible connection if

the time difference dl
�
j
− al

i
is larger than a minimum transfer time requirement, δ.

Minimum transfer times are equal to walk times for transfers across transit nodes.

For a transfer within a transit node, a minimum transfer time represents the amount

of time that passengers need to walk between platforms and can be obtained from

file transfers.txt in the GTFS feed. Figure 3-3 illustrates feasible and efficient
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al
i
+ δ

dl
�
j

Figure 3-3: Connections between two low-frequency transit lines. Dashed arrows
represent feasible connections, and solid arrows represent efficient connections.

connections between two low-frequency transit lines. Mathematically, an efficient

connection (al
i
, dl

�
j
) is a feasible connection that satisfies the following condition:

�i� ∈ {i+ 1, i+ 2, . . . , fl}, dl
�

j
− al

i� ≥ δ and

�j� ∈ {1, 2, . . . , j − 1}, dl
�

j� − al
i
≥ δ.

Transfer

Because of inconvenience associated with transfers, passengers generally prefer transit

routes with fewer or no transfers, unless the alternatives with more transfers can

provide significant travel time savings. In this work, we penalize transfers by assigning

a fixed cost to each transfer arc. Note that this transfer penalty is imposed in addition

to the travel time associated with the transfer, such as wait time for the outbound

service and/or walk time to the another transit node.

Schedule Delay

Although passengers can time their trips involving low-frequency transit lines to min-

imize the total travel time, low-frequency services are not preferable due to the lack

of flexibility and the hassle of the need to time trips. To penalize for this inconve-

nience, we assign a fixed cost to board and transfer arcs associated with boarding

low-frequency transit lines.

Lastly, transit fare is not considered in this work, as commuters may purchase

a discounted pass for unlimited rides and hence make a route choice without tak-

ing fare into account. It however can be included in the model by assigning fare to
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board and transfer arcs accordingly. Moreover, because our transit graph can capture

connection-specific information through transfer arcs, we may adopt a more sophis-

ticated model of transfer penalties, including those recently presented in Guo and

Wilson (2011) and Raveau et al. (2011), that distinguish transfers between different

modes, at different stations, with different facilities (such as staircase, escalators),

etc.

3.4 Vehicle Sharing Network

In order to consider integrated public transit and vehicle-sharing services, we augment

our transit graph with nodes and arcs corresponding to vehicle-sharing options.

Let Ñ be the set of vehicle-sharing stations. For each station ñ ∈ Ñ , we introduce

access and egress nodes where passengers begin and end their trips. To be consistent

with our public transit representation, a vehicle-sharing service is modeled as a single

transit line, denoted by l̃, and we add a depart node dep(l̃, ñ) and an arrive node

arr(l̃, ñ) for each station ñ ∈ Ñ .

Walk, board, alight and transfer arcs can then be added in a manner similar to

that for public transit. For tractability, a trip from one vehicle-sharing station to

another is represented by a single travel arc connecting the origin’s depart node to

the destination’s arrive node. This representation allows us to avoid modeling the

underlying road network, thereby increasing significantly the sizes of the networks we

are able to evaluate, without sacrificing our network evaluation capabilities. Unlike

transit lines, which operate on fixed routes, there can be multiple travel arcs adjacent

to arrive and depart nodes of the vehicle-sharing service, and there are no dwell arcs.

Because of the on-demand nature of vehicle-sharing services, there are no wait

times associated with board and transfer arcs. Nevertheless, we assign board, alight,

and transfer arcs each a fixed amount of travel time corresponding to renting and

returning a shared vehicle.

Travel time between stations can be estimated using historical trip data specifying

origin, destination, and duration of each trip made by users. However, when this
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evaluation framework is applied to assess a new vehicle-sharing network, such data

might not be available. In this case, we can utilize existing trip planners to obtain

the best route—presumably taken by most commuters—between each pair of stations.

In this work, we use MapQuest Open Directions Service4, a publicly available web

service that uses the open-source worldwide map provided by OpenStreetMap5.

3.5 Network Evaluation

In this section, we describe various metrics and a visualization technique that we use to

analyze multi-modal transportation networks and evaluate the impacts of integrating

vehicle-sharing service with existing public transportation.

3.5.1 Metrics

In this work, we propose three sets of metrics that measure the impacts of vehicle-

sharing service: accessibility, utilization, and efficiency. Similarly to centrality indices,

these new metrics are defined based on the shortest (least cost) paths—minimizing

overall disutility—between transit nodes and/or vehicle-sharing stations in a network.

Centrality indices are not directly applicable here because they are defined for an

individual node in a network, while we are interested in metrics defined for a transit

node or a vehicle-sharing station, which are associated with multiple nodes in our

public transit graph.

Accessibility

One immediate question one might have when given a transportation network is how

easy it is to access other transit nodes from a given node. We measure accessibility

of a transit node by calculating the average travel time and the average number of

transfers of the shortest paths to every other transit nodes.

4http://open.mapquestapi.com/directions/
5http://wiki.openstreetmap.org/
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Let tt(i, j) and tr(i, j) denote the total travel time and the number of transfers

of the shortest path from nodes i to j. The average travel time from a transit node

n ∈ N to other transit nodes is given by

Att(n) =
1

|N | − 1

�

n�∈N\{n}

tt(acc(n), egr(n�)), (3.1)

and the average number of transfers from a transit node n ∈ N to other transit nodes

is given by

Atr(n) =
1

|N | − 1

�

n�∈N\{n}

tr(acc(n), egr(n�)). (3.2)

The larger the values of Att(n) and Atr(n), the poorer the accessibility to other

transit nodes from node n. Note that the metrics consider only origin-destination

(O-D) pairs between public transit nodes, not vehicle-sharing stations. This is to

ensure that when we evaluate different designs of vehicle-sharing networks, the metrics

are directly comparable, as the same set of trips is considered. Additionally, the

metrics are only well defined for a connected graph where tt(acc(n), egr(n�)) and

tr(acc(n), egr(n�)) are finite. Our accessibility metrics are similar to the closeness

centrality indices of Freeman (1978–1979).

At the network level, the average travel time and the average number of transfers

of all O-D pairs between public transit nodes are given by

Att(N ) =
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

tt(acc(n), egr(n�)), and (3.3)

Atr(N ) =
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

tr(acc(n), egr(n�)). (3.4)

Utilization

For a given design of a vehicle-sharing network, it is important to know the potential

service usage. Specifically, we want to know the proportion of O-D pairs whose

shortest paths utilize vehicle-sharing service. This can be achieved by calculating the

proportion of O-D pairs whose shortest paths contain a segment using the vehicle-
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sharing service.

Formally, for each vehicle-sharing link from vehicle-sharing node ñ to ñ� ∈ Ñ , its

potential utilization is given by

U(ñ, ñ�) =
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

(dep(l̃,ñ),arr(l̃,ñ�))∈r
n,n� , (3.5)

where rn,n� denotes the shortest path between nodes n and n�. Each term in the sum-

mation equals one if the corresponding shortest path contains the travel arc between

the vehicle-sharing stations (dep(l̃, ñ), arr(l̃, ñ�)), and zero otherwise. Again, we only

count the O-D pairs from the set of public transit nodes N .

At the station level, the potential utilization of each vehicle-sharing station ñ ∈ Ñ

is given by

U(ñ) =
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

dep(l̃,ñ)∈r
n,n�∨arr(l̃,ñ)∈rn,n� (3.6)

=
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

�
dep(l̃,ñ)∈r

n,n� + arr(l̃,ñ)∈r
n,n�

�

=
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}




�

ñ�∈Ñ\{ñ}

(dep(l̃,ñ),arr(l̃,ñ�))∈r
n,n�

+
�

ñ�∈Ñ\{ñ}

(dep(l̃,ñ�),arr(l̃,ñ))∈r
n,n�





=
�

ñ�∈Ñ\{ñ}

U(ñ, ñ�) + U(ñ�, ñ).

The second equality follows from the fact that the shortest path rn,n� does not

contain a loop and may include either the depart node dep(l̃, ñ) or the arrive node

arr(l̃, ñ), not both. This metric is similar to the betweenness centrality indices (Free-

man, 1977).

Lastly, the potential utilization of a given set of stations Ñ , is given by

U(Ñ ) =
1

|N |(|N | − 1)

�

{n,n�∈N|n �=n�}

r
n,n�∩{(dep(l̃,ñ),arr(l̃,ñ�))|ñ,ñ�∈Ñ}�=∅

. (3.7)
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Each term in the summation is one if the corresponding shortest path contains at

least one travel arc using the vehicle-sharing service. Consequently, each O-D pair

can be counted at most once even if its shortest path may consist of multiple segments

using the vehicle-sharing service.

Efficiency

Passengers will find a link, provided by a vehicle-sharing service, from one station to

another attractive if it is more efficient than existing public transit, that is providing

travel time savings or reducing the number of transfers required. In order to measure

travel time savings and transfer reduction, we need to compare the shortest paths

between the vehicle-sharing stations obtained from networks with and without the

vehicle-sharing service.

Let G0 be a public transit graph without a vehicle-sharing service. Specifically,

arrive nodes, depart nodes, and travel arcs associated with the vehicle-sharing service

are removed, but egress and access nodes corresponding to vehicle-sharing stations

are retained. This allows us to consider trips starting and ending at vehicle-sharing

stations without using the vehicle-sharing service. Let tt0(i, j) and tr0(i, j) denote

the total travel time and the number of transfers of the shortest path from nodes i

to j over graph G0.

Travel time savings provided by a link between vehicle-sharing stations ñ and

ñ� ∈ Ñ is given by

Ett(ñ, ñ
�) = Max(0, tt0(acc(ñ), egr(ñ

�))− tñ,ñ�), (3.8)

where tñ,ñ� is the travel time from station ñ to ñ� using vehicle-sharing service. We

define travel time savings to be nonnegative because passengers can use public transit

if the link between vehicle-sharing stations does not provide a shorter travel time.

Because the vehicle-sharing service provides a direct link between stations ñ and
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ñ� ∈ Ñ , the reduction in the number of transfers is simply given by

Etr(ñ, ñ
�) = tr0(acc(ñ), egr(ñ

�)). (3.9)

For efficiency at any station ñ and at the network level, we calculate the average

efficiency over the links involving station ñ and over every link between vehicle-sharing

stations, respectively.

3.5.2 Visualization

In addition to measuring the impacts of vehicle-sharing service using the accessibility,

utilization, and efficiency metrics, it is necessary to understand commuting patterns

over an existing public transit network.

We first need to identify the shortest paths between transit nodes in a network.

Algorithms like Dijkstra’s algorithm (Dijkstra, 1959) or its variants (see Ahuja et al.,

1993) can be used to obtain the shortest paths from an origin to the other nodes

in the network. These algorithms output a so-called shortest path tree, a directed

tree detailing the unique optimal paths from the root (origin) to the other nodes (see

Figure 3-4a). Essentially, a shortest path tree reveals commuting patterns over the

transit network, key transit lines that connect the origin to destinations, and major

stops where commuters make transfers.

It is however difficult to create an intelligible visualization of a shortest path tree

for our public transit graph because there are multiple nodes associated with each

transit node, and the number of transit nodes in a city can be very large. One possible

solution is to collapse all nodes corresponding to the same transit node into a single

node. Nevertheless, we are likely to lose the tree structure due to overlapping transit

lines (see Figure 3-4b). In particular, there may exist multiple arcs connecting some

pairs of nodes in the resulting graph, and therefore, we can no longer accurately

identify from the graph the shortest paths from the origin to the other transit nodes.

To overcome this difficulty, we propose the notion of transfer tree. Instead of

including every transit node, a transfer tree includes only the origin and the transfer

78



points—transit nodes at which commuters board subsequent transit services in their

shortest paths. Each arc in a transfer tree represents a transfer-free movement from

one transit point (or the origin) to another transit point. Because the shortest path

from the origin to each transfer point is the same for any destinations reached via the

transfer point, there is exactly one incoming arc to each transfer point, and therefore,

the resulting transfer tree inherits the tree structure (see Figure 3-4c).

To highlight the importance of each transfer point, we can visualize transfer trees

using the Sunburst visualization (Stasko et al., 2000), as illustrated in Figure 3-5a.

Located at the center of the plot is the root of a transfer tree (an origin location).

The circular slices in the innermost ring represent the access points, where commuters

board their first transit services. Circular slices representing subsequent transfer

points are placed outward from the center. For instance, the second innermost ring

represents first transfer points in the optimal paths. The underlying tree structure is

shown in Figure 3-5b. The angle swept by each slice (hence, the area) is proportional

to the number of destinations whose shortest paths visit the corresponding transit

node. And the color of each slice indicates the travel time from the origin to the

corresponding transit node.

Depicting the transfer hierarchy of trips originating from a given transit node, this

compact representation allows us to compare commuting patterns of different origins,

and more importantly, identify critical transit hubs that are not well connected by

the network under consideration—big slices that are located further away from the

center of the plot. More examples and demonstration of its use will be given in the

case study.

3.6 Case Study: Boston Network

To demonstrate use of our evaluation framework, we assess the impact of Hubway,

Boston’s bike-sharing program, on the existing public transportation system operated

by the Massachusetts Bay Transportation Authority (MBTA).
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Stop 1 Stop 2 Stop 3

(a) Shortest path tree

(b) The graph resulting from combining all nodes corresponding to the same transit
node in the shortest path tree into a single node

(c) The corresponding transfer tree

Figure 3-4: In this example illustrating a shortest path tree and a transfer tree,
there are three stops and four transit lines with four different destinations. From
the shortest path tree, passengers traveling to destinations 3 and 4 need to make a
transfer at Stop 3.
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(a) (b)

Figure 3-5: Transfer tree visualization

3.6.1 Network Details and Input Data

The MBTA provides public transportation service to 175 cities and towns in the

Boston Metro area (MBTA, 2010). Spanning over 1,500 route miles, the MBTA

services include subway (the T), bus, commuter rail, and boat. The key service map

is shown in Figure 3-6. As discussed in section 3.3.1, we obtain the service information

from the GTFS feed provided by the MBTA. In this work, we focus on the service

network over the weekday morning peak (6–9 am), which contains 8,120 transit nodes,

234 transit services, and 683 transit lines (around 15% of which are high-frequency

lines, operating every 15 minutes or less).

Hubway6 was introduced in July, 2011 with an initial fleet of 600 bicycles and 60

stations located around Boston. To access the fleet of bicycles, users may register

for an annual membership or purchase a 3-day or 1-day pass. This covers unlim-

ited short trips, and any trips longer than 30 minutes incur additional fees. Like

most bike-sharing programs, a user can rent a bike from any station and return it to

another. This one-way rental model allows commuters to use shared bikes in conjunc-

6http://thehubway.com/
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Figure 3-6: An MBTA rapid transit/key bus routes map

tion with traditional transit services. In Summer 2012, Hubway partnered with the

municipalities of Brookline, Cambridge, and Somerville and expanded their network

to over 100 stations.

The Hubway’s network information can be obtained from their live feed7, listing

stations together with other station-specific information such as location, number

of available bikes/docks, and installed date. In this work, we consider two Hubway

networks: one comprising 61 stations operated at the end of 2011 and the other

comprising 95 stations operated at the end of September, 2012 (see Figure 3-7).

7http://www.thehubway.com/data/stations/bikeStations.xml
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Figure 3-7: A Hubway station map

In addition to the live feed, as part of the Hubway Data Visualization Challenge8,

Hubway released trip historical data, including dates, durations, origin and destina-

tion stations of every trip made from the time of Hubway’s launch until the end of

September, 2012. With this dataset, we validate some of our findings and understand

the limitations of our evaluation framework.

We obtain bike times using MapQuest Open Directions service (MQOD), as dis-

cussed in Section 3.4, and calibrate them using the trip historical data. In particular,

for each O-D pair that has at least 20 trips made by registered users, we estimate the

bike time using the median of durations of trips made by registered users. We focus

on registered users as they are likely to use the service for commuting purposes, and

their trip durations should be less variable. From the dataset, we can calculate bike

time estimates for about 30% of all station pairs. We then compare the estimates

with the bike times obtained from MQOD. In Figure 3-8, we can see that the bike

8http://hubwaydatachallenge.org/
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Figure 3-8: Bike times between stations (in seconds)

MBTA with Hubway (2011) with Hubway (2012)

Nodes 56,710 56,764 56,900
Arcs 2,630,987 2,649,081 2,672,560

Table 3.1: Graph sizes

times from MQOD consistently underestimate the bike times from the historical data.

To account for this, we fit a simple linear model and use it to adjust the bike times

of every O-D pair from MQOD.

Given the network information, we build the public transit graphs as outlined in

Sections 3.3 and 3.4. We assume, in this work, the maximum walking distance is 800

meters (about half a mile), and the maximum bike trip duration is 30 minutes. The

former directly affects the number of arcs involving walking across transit nodes in

the graphs, while the latter affects the number of travel arcs between bike stations.

The sizes of the resulting graphs are summarized in Table 3.1.

Note that in the MBTA-only graph, we also include access and egress nodes as-

sociated with every bike station, so that we can use the graph to compute efficiency

metrics, as discussed in Section 3.5.1.
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3.6.2 Evaluation

In order to compute the evaluation metrics presented in Section 3.5, we first need to

obtain the shortest paths between transit nodes. We implement, in Python, Dijkstra’s

algorithm using the heap (priority queue) data structure to speed up computational

times (see Ahuja et al., 1993). The algorithm is then used repeatedly to solve one-to-

all shortest path problems starting at each transit node. For each instance with over

8,000 transit nodes, obtaining the shortest paths for every O-D pair takes around one

hour on a Mac OS X machine with an Intel Core i7 2.7 GHz processor and 8 GB of

RAM.

The cost function we use in this work is relatively simple. In particular, different

types of travel times (in-vehicle, walk, and wait) are weighted equally, and inconve-

nience due to transfers or schedule delay is penalized—each transfer and low-frequency

service boarding is equivalent to 10 and 5 minutes of travel time, respectively. For

interested readers, Central Transportation Planning Staff (1997), Guo and Wilson

(2004), and Guo and Wilson (2007) have extensively studied the cost of transfers

for the Boston metro area and estimated route choice models using data from an

on-board survey conducted in 1994. None of these works, however, include cycling as

an alternative.

Network Level

Table 3.2 summarizes the impact of Hubway at the network level. The Hubway service

in 2011 reduces the average travel time and the average number of transfers for O-

D pairs between transit nodes (about 66 million O-D pairs) by 0.57% and 0.43%,

respectively. This rather small improvement in network accessibility is because there

are a large number of O-D pairs whose origins and destinations are outside the Hubway

service area. In fact, while each link between bike-stations, on average, provides travel

time savings of almost 9 minutes and decreases the number of transfers by 0.208, only

8.43% of O-D pairs benefit from the Hubway service (that is, utilize the service in

their shortest paths).
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MBTA
with Hubway

2011 2012

Accessibility
Avg. travel time (secs) 4,267 4,243 (-0.57%) 4,207 (-1.40%)
Avg. number of transfers 1.764 1.756 (-0.43%) 1.725 (-2.20%)
Utilization
% of O-D pairs that benefit – 8.43 17.74
from the Hubway service

Efficiency
Avg. travel time savings (secs) – 521 609
Avg. number of transfers reduced – 0.208 0.345

Table 3.2: Impact of Hubway at the network level

With larger coverage in 2012, the percentage of O-D pairs that benefit from the

Hubway service is doubled to 17.74%. The increase in network efficiency also suggests

that the expansion to Boston’s neighboring cities helps provide better access between

these areas and Boston, where major transit hubs are located. As a result, the overall

network accessibility improves more substantially compared to the 2011 network.

Note that while the number of stations increases by only about 55% in 2012 (from 61

to 95 stations), the number of links between bike stations within the maximum bike

trip duration of 30 minutes increases by 140% (from 3,565 to 8,573 O-D pairs). This

partly amplifies the impact of the Hubway network in 2012.

Node Level

In addition to the network-level evaluation, which might be obscured by a large

number of O-D pairs that are not affected by the Hubway networks, we also examine

the impact of Hubway at the node level. In this section, we will focus only on the

Hubway network in 2012.

The changes in average travel time from a transit node to the others range from

-11.4 to +1.6 minutes. The increase in average travel time of some transit nodes

results from the use of the bike-sharing service to reduce the number of transfers,

thereby improving the objective function value, despite the increase in travel time.

In Figure 3-9, we exhibit the improvement in travel time accessibility of transit nodes
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Figure 3-9: Improvement in travel time accessibility of transit nodes resulting from
the Hubway’s 2012 network

resulting from Hubway service in 2012. Hubway significantly improves the travel

time accessibility of transit nodes that are not in close proximity to subway stations.

Without Hubway service, trips originating from these transit nodes usually involve

long waits for infrequent bus services and/or multiple transfers. On the other hand,

travel time accessibility of transit nodes around subway stations improves minimally

as they are already well connected to the existing public transit network. While

omitted here, the changes in accessibility in terms of number of transfers yield similar

results.

To illustrate the importance of bike stations in areas that are not well connected

to the existing public transit network, we compare the accessibility and commuting

patterns of two transit nodes, MIT and North Station, with and without Hubway

service. For MIT, we consider the bus stop in front of MITs main entrance (77

Mass Ave). This bus stop is served by two bus services: #1 and #CT1 (whose
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MBTA with Hubway 2012

MIT
Avg. travel time (secs) 3,168 2,858 (-9.77%)
Avg. number of transfers 1.178 1.024 (-13.07%)
North Station
Avg. travel time (secs) 2,508 2,480 (-1.11%)
Avg. number of transfers 0.942 0.861 (-8.59%)

Table 3.3: Accessibility of MIT and North Station

route overlaps with service #1 but skips some stops). Only service #1 is operated

at a high frequency. The nearest subway station, the Kendall/MIT station, is an

8-minute walk away. North Station, on the other hand, is served by one bus, two

subway, and four commuter rail services. In Hubway’s 2012 network, there are bike

stations, MIT (Mass Ave/Amherst St) and TD Garden, nearby the transit nodes.

As shown in Table 3.3, accessibility from MIT is improved substantially compared to

North Station, especially with respect to travel time.

The transfer trees associated with each scenario are provided in Figures 3-10-3-13.

In Figure 3-10a, we illustrate trips originating from MIT using the MBTA network,

There are seven transit nodes (including the bus stop at 77 Mass Ave) in the inner-

most ring, where commuters board their first transit services. Approximately 70% of

commuters travel through Kendall/MIT station (Figure 3-10b). The second inner-

most ring, representing first transfer points in the optimal paths, is almost completely

filled, indicating that most destinations (precisely, 81% of them) require at least one

transfer. In the outermost ring, there are 57 destinations (less than 1%) requiring as

many as four transfers.

Our interactive visualization allows users to hover the mouse cursor over a transit

node to view its details, including station name, connecting services, the number of

destinations whose optimal routes from the origin visit the node, optimal route to the

node, and the corresponding travel time. For example, Haymarket station, shown in

Figure 3-10d, is a transfer station to seven bus services serving 8% of the total set

of destinations. The optimal route from MIT to Haymarket takes 25 minutes and

involves walking to Kendall/MIT to use the Red line service and then transferring
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to an Orange line service at Downtown Crossing. One can trace this optimal path

interactively as illustrated in Figures 3-10b-3-10d.

Figure 3-11a shows the transfer tree originating from MIT for the integrated

MBTA and Hubway’s 2012 networks. With one level fewer and minimal areas filled

in the outermost ring, the resulting tree suggests a decrease in the average number of

transfers. A node with an additional circle around the dot represents a bike station.

As shown in Figure 3-11b, 68% of commuters now utilize the Hubway service and

start their trips at the MIT (Mass Ave/Amherst St) bike station. For Haymarket

station, the optimal route is to bike directly from MIT, which takes six minutes less

and one transfer fewer than the previous scenario (Figure 3-11c).

For North Station, its transfer tree over the MBTA network is shown in Figure

3-12a. Most of the transfer points can be reached within 15 minutes. This explains

the lower average travel time for trips originating from North Station compared to

MIT, presented in Table 3.3. The majority of commuters can board their first transit

services at North Station without walking to nearby transit nodes (Figure 3-12b).

South Station is a transit node at which a large number of commuters beginning

their trip at North Station make a transfer. Despite being two major transit hubs,

North Station and South Station are not connected by subway service (Figure 3-6).

The optimal route from North Station to South Station takes 13 minutes and involves

a long walk (Figure 3-12c).

With Hubway service in place, commuting patterns of most trips from North

Station remain unchanged, that is, most board their first transit services at North

Station (as shown in Figure 3-13a). For 22% of the destinations, however, Hubway

service provides a benefit, and the optimal routes for these destinations begin at the

TD Garden bike station (Figure 3-13b). Hubway service establishes a direct link

between North Station and South Station, providing a minute of travel time savings

(Figure 3-13c). As it connects the two major transit hubs, this link accounts for the

largest number of trips in the historical data. Note that we only focus on the morning

peak, when most people commute to work. The frequencies of the subway service are

lower during non-peak periods, translating into greater savings with Hubway.
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Station
No. of transit Utilization Avg. travel time

services (% of O-D pairs) savings (secs)

1. TD Garden 1 2 4 3.86 419
2. Harvard Square

(Mass Ave/Dunster)*
13 1 2.03 459

3. Dudley Square 7 1 2.00 789
4. Andrew Station* 7 1 1.56 515
5. Ruggles Station 14 1 3 1.22 626
6. Somerville City Hall* 4 1.07 1,034
7. South Station 5 2 6 1.03 347
8. Central Square* 8 1 1.00 447
9. Roxbury Crossing

Station
10 1 0.81 575

10. Union Square
(Somerville)*

5 0.77 834

* bike stations introduced in the 2012 network

Table 3.4: Top 10 Hubway stations with the highest utilization

In measuring the efficiency of Hubway stations, Figure 3-14 shows the top 20

stations that provide the highest average travel time savings, ranging from about 13

to 19 minutes. Their locations coincide with the areas where travel time accessibility

is significantly improved.

The top 10 Hubway stations with the highest potential utilization are listed in

Table 3.4. They all can be considered major transit hubs as they are served by

many transit lines. However, not all of them provide large travel time savings. This

suggests that while bike stations located near transit hubs, like TD Garden, might

not substantially improve accessibility of neighboring transit nodes, they together

with the other bike stations, like MIT, improve overall accessibility by providing

better connections to major transit hubs, enabling efficient multi-modal trips over

the integrated network. Given the volume of commuters traveling through transit

hubs, these bike stations are not less important than the stations distant from transit

hubs. Consequently, a good design of a one-way vehicle-sharing network should strive

to balance the two types of stations so that the impact of integration with an existing

public transit network is maximized.
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3.7 Conclusions and Future Work

In this chapter, we present a framework for evaluating the impacts of integrating

one-way vehicle-sharing and public transportation services. The modeling of public

transit graphs representing integrated multi-modal transportation services in this

framework allows us to assess the impacts of vehicle-sharing networks at the level of

O-D’s. The accessibility, utilization, and efficiency metrics together can be used to

measure the benefits of vehicle-sharing networks from different aspects. In addition

to the evaluation metrics, we introduce the notion of a transfer tree and develop an

interactive visualization tool that facilitates understanding of changes in commuting

patterns resulting from vehicle-sharing services, as demonstrated in the Boston case

study.

Because our framework utilizes publicly available data and web services, trans-

portation engineers and urban planners can apply it to evaluate a potential or ex-

isting vehicle-sharing network in any city whose transit schedules are published in

the increasingly adopted GTFS format. In fact, with appropriate modification, the

framework can also be used to evaluate other types of transportation services that

aim at complementing existing public transportation service, like shuttle bus services.

In terms of future research, we identify two interesting directions. The first direc-

tion is to incorporate travel demand information into the framework. In this work, we

focus on the use of our framework for strategic planning, that is, to understand how

the integrated vehicle-sharing and public transit network improves mobility in a city.

We therefore treat each O-D pair equally so that the results are not dominated by

O-D pairs with large demand. In fact, O-D pairs with small demand deserve special

attention because it is economically infeasible for transit operators to provide them

with high levels of traditional public transit services, and they are likely to benefit

greatly from vehicle-sharing services. However, if the framework were to be used by

vehicle-sharing operators to estimate usage, or more importantly, revenue, each O-D

pair should be weighted by its travel demand to obtain more accurate estimates.

The second direction is to consider operational performance of both public transit
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and vehicle-sharing services that can potentially influence a commuter’s mode choice.

For instance, one of the advantages of cycling over taking buses is less travel time

variability as bus travel times are subject to traffic conditions. On the other hand, fleet

imbalances in one-way vehicle-sharing systems—having no vehicles at some stations

and no parking spaces at others—can potentially limit the impacts of these services.

To take these levels of services into account, additional historical operations data are

required.
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(a) Overall

Kendall/MIT Station
An access stop to 5,703 destinations (70%)
 red   85 

Optimal route 8 mins

(b) Kendall/MIT

Downtown Crossing Station
A transfer stop to 1,694 destinations (21%)
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Optimal route 19 mins

 +   red 

(c) Downtown Crossing

Haymarket Station
A transfer stop to 632 destinations (8%)
 111   325   326   426   442   450   455 

Optimal route 25 mins

 +   red  +   orange 

(d) Haymarket

Figure 3-10: A transfer tree of trips originating from MIT over the MBTA network
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(a) Overall

MIT at Mass Ave / Amherst St
An access stop to 4,776 destinations (68%)
 hubway 

Optimal route 1 mins

(b) MIT

Haymarket Station
A transfer stop to 684 destinations (10%)
 325   326   426   441   442   450   455 

Optimal route 19 mins
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(c) Haymarket

Figure 3-11: A transfer tree of trips originating from MIT over the integrated MBTA
and Hubway’s 2012 networks
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(a) Overall

North Station
An access stop to 7,909 destinations (97%)
 green   orange   fitchburg/south acton 
 haverhill   lowell   newburyport/rockport   4 

Optimal route 0 mins

(b) North Station

South Station
A transfer stop to 974 destinations (12%)
 fairmount   franklin   greenbush 
 kingston/plymouth   middleborough/lakeville 
 silver 

Optimal route 13 mins

  orange 

(c) South Station

Figure 3-12: A transfer tree of trips originating from North Station over the MBTA
network
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TD Garden - Legends Way
An access stop to 1,620 destinations (22%)
 hubway 

Optimal route 0 mins

(b) North Station

South Station
A transfer stop to 963 destinations (13%)
 fairmount   franklin   greenbush 
 kingston/plymouth   middleborough/lakeville 

Optimal route 12 mins
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(c) South Station

Figure 3-13: A transfer tree of trips originating from North Station over the integrated
MBTA and Hubway’s 2012 networks
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Figure 3-14: Top 20 Hubway stations with the highest efficiency
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Chapter 4

Designing Integrated

Vehicle-Sharing and Public

Transportation Services

4.1 Introduction

As discussed in the previous chapter, one of the major benefits of one-way vehicle-

sharing services is its potential integration with traditional public transportation. It

can provide better access to existing public transportation and additional options

for trips beyond those provided by public transit. Especially, in the areas with low

travel demand, where it is economically infeasible to operate many traditional public

transit services at high frequencies, on-demand vehicle-sharing services can be a more

flexible, attractive alternative.

This part of the thesis concerns passenger-centric strategic planning for one-way

vehicle-sharing systems. In particular, we address the vehicle-sharing network design

problem in which we seek to select, from a set of candidate stations, an optimal subset

of locations at which installing vehicle-sharing stations minimizes overall travel time

over the integrated vehicle-sharing and public transportation network. We assume

that the number of stations to be installed is predetermined, and all commuters travel
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on their best available routes, as opposed to making probabilistic route choices. With

a proper vehicle-sharing network design, a number of commuters can reduce their

travel times by using the vehicle-sharing service to better access transit hubs or travel

directly to their destinations without long waits or multiple transfers which might be

inevitable in the existing public transit network by itself. The literature on vehicle-

sharing network design is very limited, and to our knowledge, this work is the first

one that takes a passenger-centric approach to solving this problem.

The contributions of this work are as follows. We first present a mixed integer

program for solving the vehicle-sharing network design problem. Because the problem

consists of two sets of decisions that are made sequentially—a vehicle-sharing network

design and optimal commuting paths, it is natural to use Benders decomposition as a

solution approach to tackle large instances. While a tight formulation generally gen-

erates stronger Benders cuts, it requires a large number of variables and constraints,

and hence, more computational effort. We propose an alternative formulation that

aggregates various variables and constraints. An optimal solution to this aggregate

formulation can be obtained very fast at the expense of weaker cuts, which result

in more iterations required for convergence. To overcome this, we develop new algo-

rithms that take an optimal solution to the aggregate formulation and incrementally

adjust it to produce stronger Benders cuts. Consequently, this process enables us to

produce strong Benders cuts quickly. As a proof of concept, we present computational

results obtained using data from the Boston metropolitan area. The results confirm

the effectiveness of our solution approach.

In the next section, we provide reviews of related work and the fundamentals of

Benders decomposition. In Section 4.3, we state the vehicle-sharing network design

problem in detail, present a mixed integer program for this problem, and describe the

Benders reformulation. The alternative formulation together with the new algorithms

for strengthening Benders cuts are proposed in Section 4.4. In Section 4.5, we present

computational results. Finally, we conclude the work and discuss future work in

Section 4.6.
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4.2 Background

In this section, we survey the literature related to vehicle-sharing network design and

provide a review of Benders decomposition, which is the solution approach we use in

this work.

4.2.1 Related Work

Much of the research on optimization in one-way vehicle-sharing operations has been

focused on fleet rebalancing operations (Kek et al., 2009; Shu et al., 2010; Nair and

Miller-Hooks, 2010; Benchimol et al., 2011; Contardo et al., 2012; Raviv and Kolka,

2013; Raviv et al., 2013; Chemla et al., 2013). The literature concerning vehicle-

sharing network design is very limited.

Awasthi et al. (2007, 2008) present a multi-stage decision making process for iden-

tifying locations for car-sharing stations. The process relies on ratings from experts

based on several criteria. A candidate station is open if its overall score exceeds a

specific threshold.

Lin and Yang (2011) propose a nonlinear integer program to determine locations

of bike-sharing stations. Their objective function is to minimize the total user and

operator costs. Additionally, they impose minimum service level constraints. In

particular, a certain fraction of O-D pairs must have bike-sharing stations near their

origins and destinations, and each station must have bicycles available with a high

probability. A small hypothetical network with 11 candidate stations and 72 O-D

pairs is used to test the model and study the sensitivity of parameters. While it is

advantageous to incorporate operational considerations into the location problem, the

model as it is presented is not sufficiently detailed to accurately account for the actual

operations. Specifically, it captures only the number of bikes leaving each station, not

incoming. It also assumes that bike inventory at each station can be replenished with

a constant lead time, rather than considering realistic bicycle relocation operations.

Kumar and Bierlaire (2012) analyze historical trip data from Auto Bleue, a car-

sharing service in Nice, and fit a linear regression model to estimate performance
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of car-sharing stations, measured by average daily trips. The explanatory variables

associated with a given station include, among others, public transport ridership,

number of nearby car-sharing stations, sizes of targeted population groups, and pres-

ence of different types of establishments, such as colleges and commercial centers, in

the vicinity of the station. Some of these variables are defined based on the locations

of other stations to capture the diminishing benefits of having multiple stations within

the same catchment. The authors propose a nonlinear integer program to identify

a subset of locations that maximizes the total expected daily trips and present a

heuristic for solving the optimization problem.

The dissertation of Nair (2010) is the only work in the literature that, similarly

to our work, explicitly considers integration between vehicle-sharing and public tran-

sit services. He proposes a bilevel, mixed-integer program to determine an optimal

vehicle-sharing network configuration. Capturing a vehicle-sharing operator’s deci-

sions, the upper-level program determines locations of bike stations, numbers of dock-

ing slots at each station, and base inventory of vehicles at each station. It maximizes

the overall utilization, subject to budget and equity constraints. Given the decisions

from the upper-level program, the lower-level program determines optimal commuter

flows over the integrated vehicle-sharing and public transit networks using the pas-

senger assignment model of Spiess and Florian (1989). An exact solution method

and a meta-heuristic approach for solving the optimization problem are presented.

In the exact solution method, Nair exploits the convexity of the lower-level problem

and transforms the bilevel program into a single mixed integer program. Using five

randomly-generated networks, he demonstrates the use of the model and performs

sensitivity analysis on the infrastructure cost assumptions. Despite the relatively

small test networks, the model cannot be solved to optimality within an hour for

many instances. In the meta-heuristic approach, Nair considers a simpler problem.

In particular, station capacity and base inventory decisions are no longer included in

the upper-level problem, and it is assumed that the number of stations to be installed

is known a priori. This makes it very similar to the problem we consider in this work.

The major difference lies in the objective function. Instead of maximizing the overall
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utilization (and hence, the operator’s revenue), we take a passenger-centric approach

and focus on minimizing the overall travel time for commuters. As shown in his re-

sults, the two objectives are not necessarily aligned. Moreover, public transit network

data are preprocessed differently. Specifically, to limit problem sizes, he considers only

major transit services in the existing public transit network. In contrast, as discussed

in Section 4.5.1, we first determine, for each O-D pair, the optimal path over the

full public transit network and then use the transfer tree concept introduced in the

previous chapter to identify important transit nodes and aggregate O-D pairs based

on their commuting patterns. Nair uses a genetic algorithm to solve this simplified

problem for the Washington D.C. metropolitan area with 455 candidate stations and

1,000 O-D pairs. Computational time is not reported, and no discussion on solution

quality is provided.

In additional to the research on vehicle-sharing network design, our problem also

shares similarities with several classic problems in the operations research literature,

specifically, the network design problems (Magnanti and Wong, 1984; Minoux, 1989;

Kim et al., 1999) and the discrete location problems (Mirchandani and Francis, 1990;

Hamacher and Drezner, 2002; Reese, 2006; Mladenović et al., 2007; Smith et al., 2009;

Daskin, 2011). As described in the general network design problems of Contreras and

Fernández (2012), these problems can be classified based on design and operational

decisions. The design decision involves locating facilities or creating links between

nodes, and the operational decision involves assigning customers to facilities or routing

commodities through available links and/or facilities. Different types of costs may be

imposed on both decisions. Table 4.1 provides a comparison between our work and

some classic optimization problems.

4.2.2 Benders Decomposition

A common approach to solving large-scale (mixed) integer programs is through prob-

lem decomposition. Benders decomposition is one of the standard decomposition

algorithms that has been successfully applied to solve a wide range of problems, in-

cluding network design (Magnanti et al., 1986; Costa, 2005, and references therein),
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Problems
Facility Link Assignment Routing

decision cost decision cost decision cost decision cost

p-median � � �
Facility location � � � �
Network design � � � �
Our problem � � �

Table 4.1: Comparison between the problem we address and classic optimization
problems

facility/hub location (Geoffrion and Graves, 1974; de Camargo et al., 2008; Contreras

et al., 2011, 2012), and integrated airline scheduling (Cordeau et al., 2001; Mercier

et al., 2005; Papadakos, 2009). It is particularly attractive for solving problems that

involve multi-stage decision making, or more generally, problems in which once a sub-

set of decision variables are fixed, the optimal values of the others can be determined

easily.

We now briefly explain the classical Benders decomposition algorithm (Benders,

1962) applied to a mixed integer program. Let vectors x and y represent continuous

and integer decision variables, respectively. Consider a mixed integer program of the

form:

minimize cx+ dy

subject to Ax+Dy ≥ b

Fy ≥ f

x ∈ Rn1
+ , y ∈ Zn2

+ ,

(4.1)

where c ∈ Rn1 , d ∈ Rn2 , b ∈ Rm1 , f ∈ Rm2 , A ∈ Rm1×n1 , D ∈ Rm1×n2 , and F ∈

Rm2×n2 . We assume that there exists a finite optimal solution to this problem.

Let Y denote the set of feasible solutions of the variables y, {y ∈ Zn2
+ | Fy ≥ f}.

For a given ȳ ∈ Y , the vector x that minimizes problem (4.1) can be obtained from
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the following primal subproblem (PS)

z(ȳ) = minimize cx

subject to Ax ≥ b−Dȳ

x ∈ Rn1
+ .

(PS)

Let z(ȳ) equal the optimal cost of the PS for a given ȳ if it is feasible (otherwise,

z(ȳ) = +∞). The original problem (4.1) can then be rewritten as

minimize z(y) + dy

subject to y ∈ Y.
(4.2)

Essentially, we project the original problem (4.1) onto the space of the integer decision

variables y.

By the strong duality theorem, we have that

z(ȳ) = max
π≥0

{π(b−Dȳ) | πA ≤ c}, (DS)

where π is the vector of dual variables associated with the constraint in the PS. This

maximization problem is referred to as the dual subproblem.

Note that the feasible region Π of the DS, {π ∈ Rm1
+ | πA ≤ c} is independent of a

given ȳ. The assumption that the original problem (4.1) has a finite optimal solution

implies that Π is nonempty and thus can be characterized by a set P of extreme

points and a set Q of extreme rays. The assumption also implies that the optimal

cost of the DS is finite (otherwise, the original problem is infeasible). It follows that

q(b−Dȳ) ≤ 0, ∀q ∈ Q, (4.3)

that is, moving along the extreme rays does not improve the objective function value.

Additionally, the optimal cost z(ȳ) can be expressed in terms of extreme points,
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maxp∈P p(b−Dȳ). Equivalently, z(ȳ) is the smallest number z such that

p(b−Dȳ) ≤ z, ∀p ∈ P. (4.4)

Combining (4.2), (4.3), and (4.4), we reformulate the original problem (4.1) as the

following,

minimize z + dy

subject to q(b−Dy) ≤ 0 ∀q ∈ Q

p(b−Dy) ≤ z ∀p ∈ P

y ∈ Y.

(MP)

This formulation is referred to as the master problem (MP), and constraints (4.3) and

(4.4) are called feasibility cuts and optimality cuts, respectively.

Because the number of extreme points and extreme rays of Π, and hence the

number of constraints in the MP can be very large, and most of the constraints are

not binding at the optimal solution anyway, the Benders decomposition algorithm

uses delayed constraint generation. Specifically, the algorithm maintains the relaxed

master problem (RMP) that contains only a subset of cuts from the MP, that is,

the sets P and Q of extreme points and extreme rays in constraints (4.3) and (4.4)

are replaced with some P̂ ⊂ P and Q̂ ⊂ Q, and iteratively adds more cuts to the

formulation.

The classical Benders decomposition algorithm is summarized in Algorithm 1.

At iteration t, we solve the RMP with the subsets P̂ and Q̂ of extreme points and

extreme rays for an optimal solution (yt, zt). Note that the optimal cost of the RMP

provides a lower bound (lb) to the MP, and hence the original problem (4.1), as it is

less restricted. We then solve the DS for an optimal solution πt, given the optimal

solution values yt as parameters. If the DS is unbounded, we obtain an extreme ray

and add the associated feasibility cut to the RMP. Otherwise, the DS has a finite

optimal solution. We obtain an extreme point and add the associated optimality cut

to the RMP. Additionally, in this case, we have that yt is a feasible solution to the

original problem (4.1), and therefore, its cost z(yt) + dyt provides an upper bound
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(ub) to the original problem (4.1).

The algorithm terminates when the lower bound is equal to the upper bound (i.e.,

the optimal cost of the current RMP is equal the cost of the incumbent solution), or

more practically, when the gap is sufficiently small.

Algorithm 1 The classical Benders decomposition algorithm
t ← 0
P̂ , Q̂ ← ∅

ub ← ∞, lb ← −∞

loop
Solve the RMP with P̂ and Q̂ for (yt, zt)
lb ← zt + dyt

if ub = lb then
break

end if
Solve the DS with yt for πt

if z(yt) < ∞ then
P̂ ← P̂ ∪ {πt}

if z(yt) + dyt < ub then
ub ← z(yt) + dyt

end if
else

Q̂ ← Q̂ ∪ {πt}

end if
t ← t+ 1

end loop

Depending on the underlying structure of a problem, Benders decomposition might

suffer from slow convergence. A number of techniques have been proposed in the

literature to accelerate the algorithm.

One computational bottleneck in the algorithm is to solve to optimality the RMP,

which is an integer program, at every iteration. Because Benders cuts can be obtained

from any extreme point or extreme ray of the feasible region of the DS, any feasible

solution to the RMP could be used in the objective function of the DS to generate

a valid cut. McDaniel and Devine (1977) propose adding a cut generated from the

solution of the RMP linear program relaxation at each iteration, in addition to the

integer optimal solution. Geoffrion and Graves (1974) suggest that one could stop

solving the RMP once an integer feasible solution ȳ with an objective function value

105



smaller than ub− � is found (for some nonnegative tolerance parameter �), and then

solve the DS with ȳ to generate a new cut. The incumbent solution at termination is

an �-optimal solution to the original problem. Côté and Laughton (1984) also point

out that one could iteratively generate cuts from integer feasible solutions obtained

from heuristics that are computationally less expensive than the RMP. This approach

however does not guarantee optimality at termination. Recently, several works (Fortz

and Poss, 2009; Naoum-Sawaya and Elhedhli, 2010; Adulyasak et al., 2012) demon-

strate integration of Benders decomposition and the branch-and-cut framework (see

Nemhauser and Wolsey, 1988). In particular, the RMP is solved using the standard

branch-and-bound method, and Benders cuts are iteratively added to the formulation

at each node of the branch-and-bound tree.

When a Benders subproblem can be decomposed into smaller independent sub-

problems (more precisely, the coefficient matrix A associated with the variable x in

the PS is block diagonal), multiple cuts associated with each independent subproblem

can be generated and added to the RMP at each iteration (Birge and Louveaux, 1988),

as opposed to aggregating them into a single cut. de Camargo et al. (2008) show that

while this multi-cut approach is effective in reducing the number of iterations required

for convergence, a large number of cuts added to the RMP make it more difficult to

solve and increase the overall computation time. On the other hand, Tsamasphyrou

et al. (2000), Contreras et al. (2011) and Adulyasak et al. (2012) demonstrate that,

instead of adding one cut for each independent subproblem, one can aggregate the

cuts to a certain level and still benefit from the reduced number of iterations.

In cases where the DS is degenerate, there are multiple optimal solutions, and

each could lead to a different Bender cut. Some cuts are stronger–more effective in

reducing the number of iterations—than others. Magnanti andWong (1981) introduce

the notion of Pareto optimal (PO) cuts, defined as follows.

Definition 1. (Magnanti and Wong, 1981)

(i) The cut π1(b − Dy) ≤ z generated from a dual solution π1 ∈ Π dominates or

stronger than the cut π2(b −Dy) ≤ z generated from π2 ∈ Π if π1(b −Dy) ≥
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π2(b−Dy) for all y ∈ Y , with a strict inequality for at least one point.

(ii) A cut is Pareto optimal if no cut dominates it.

The authors also provide a method for obtaining Pareto optimal cuts. Let a core

point y0 be a point in the relative interior of the convex hull of Y . They prove that for

a given ȳ ∈ Y , the cut generated from an optimal solution to the following auxiliary

problem (AP) is Pareto optimal.

maximize π(b−Dy0)

subject to π(b−Dȳ) = z(ȳ)

πA ≤ c

π ≥ 0

(AP)

The AP essentially selects, among the optimal solutions to the DS for the given ȳ, a

solution that maximizes the objective function of the DS for a core point y0. Note

that different core points might result in different PO cuts.

Geoffrion and Graves (1974) and Magnanti and Wong (1981) discuss the impact

of different formulations of a mixed integer program on convergence of the Benders

decomposition algorithm. In particular, despite a large number of constraints, a

tighter formulation—one whose linear programming (LP) relaxation has a smaller

feasible region—is more desirable as it provides stronger Benders cuts.

4.3 Vehicle-Sharing Network Design Problem

Consider a directed graph G = (N ,A) consists of a set N of nodes and a set A of

arcs representing an existing public transit network together with a potential vehicle-

sharing (VS) network. Nodes in set Ñ ⊂ N are designated as candidate locations

for VS stations. Starting and ending at candidate VS stations, arcs in set Ã ⊂ A

represent VS service and are available only if both stations are installed. Let H ⊆

N ×N denote a set of origin-destination (O-D) pairs. Associated with each O-D pair
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h ∈ H is a travel demand wh from the origin o(h) to the destination d(h). Traveling

along arc (i, j) ∈ A incurs a positive cost cij. Note that the cost is independent of a

commuter’s origin and destination. Lastly, to satisfy an operator’s budget constraint,

at most K stations can be installed.

There are two sets of decisions to be made in this problem: (1) a design of a VS

network specifying locations of VS stations to be installed; and (2) for each O-D pair,

a commuting path that minimizes the total travel cost.

4.3.1 Mixed Integer Program Formulation

Let xh

ij
denote the number of commuters of O-D pair h ∈ H traveling on arc (i, j) ∈ A,

and yi be a binary decision variable that equals one if a VS station is installed at

node i ∈ Ñ . A mixed integer program for the vehicle-sharing network design problem

(VSND) can be formulated as follows.

minimize
�

h∈H

�

(i,j)∈A

cijx
h

ij
(4.5)

subject to

�

(i,j)∈A

xh

ij
−

�

(j,i)∈A

xh

ji
=






wh i = o(h)

−wh i = d(h)

0 otherwise

∀h ∈ H, ∀i ∈ N (4.6)

xh

ij
≤ whyi ∀h ∈ H, ∀(i, j) ∈ Ã (4.7)

xh

ij
≤ whyj ∀h ∈ H, ∀(i, j) ∈ Ã (4.8)

�

i∈Ñ

yi ≤ K (4.9)

xh

ij
≥ 0 ∀h ∈ H, ∀(i, j) ∈ A (4.10)

yi ∈ {0, 1} ∀i ∈ Ñ (4.11)

The objective (4.5) is to minimize the total travel cost of commuters assigned

to all arcs. The flow of commuters of each O-D pair is conserved at each node by
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constraint (4.6). Constraints (4.7) and (4.8) ensure that commuters cannot use the

VS service between nodes i and j unless both stations are installed. Lastly, constraint

(4.9) limits the number of stations installed to K stations.

Because the arcs representing existing public transit service in the set A \ Ã are

always included in the graph, this problem is feasible for any VS network design.

Additionally, given that the arc costs are positive, the cost of the optimal design is

finite.

While the formulation is quite simple, the numbers of variables and constraints

grow substantially as the network size and/or the number of O-D pairs increase.

This potentially prohibits the use of this formulation to solve problems representing

real-world urban transportation networks.

4.3.2 Benders Reformulation

Because the VSND consists of two sets of decisions that are made sequentially—a VS

network design and optimal commuting paths, it is intuitive to tackle large instances

of the VSND using Benders decomposition, outlined in Section 4.2.2.

For a given VS network design ȳ, we can solve the following primal subproblem

(PS) for the optimal commuting paths.

minimize
�

h∈H

�

(i,j)∈A

cijx
h

ij
(4.12)

subject to

�

(i,j)∈A

xh

ij
−

�

(j,i)∈A

xh

ji
=






wh i = o(h)

−wh i = d(h)

0 otherwise

∀h ∈ H, ∀i ∈ N (4.13)

xh

ij
≤ whȳi ∀h ∈ H, ∀(i, j) ∈ Ã (4.14)

xh

ij
≤ whȳj ∀h ∈ H, ∀(i, j) ∈ Ã (4.15)

xh

ij
≥ 0 ∀h ∈ H, ∀(i, j) ∈ A (4.16)
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Because there is no capacity imposed on each arc included in the network, all com-

muters travel on their shortest available paths in the optimal solution. Consequently,

this problem reduces to a collection of |H| shortest path problems, one for each O-D

pair h ∈ H, over the set of available arcs, A \ {(i, j) ∈ Ã | ȳi = 0 ∨ ȳj = 0}.

Let ph
i
, uh

ij
, and vh

ij
denote the negatives of the dual variables associated with

constraints (4.13), (4.14), and (4.15), respectively. The corresponding dual subproblem

(DS) is given by:

maximize z(ȳ) =
�

h∈H

wh



 �
ph
d(h) − ph

o(h)

�

−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 ȳi





(4.17)

subject to

ph
j
− ph

i
≤ cij ∀h ∈ H, ∀(i, j) ∈ A \ Ã (4.18)

ph
j
− ph

i
≤ cij + uh

ij
+ vh

ij
∀h ∈ H, ∀(i, j) ∈ Ã (4.19)

uh

ij
, vh

ij
≥ 0 ∀h ∈ H, ∀(i, j) ∈ Ã. (4.20)

Again, this problem can be decomposed further into |H| independent subproblems.

Because uh

ij
and vh

ij
are the dual variables associated with constraints (4.14) and (4.15),

we can interpret their values as the potential savings for O-D pair h resulting from

making arc (i, j) available. Hence, the term
��

(i,j)∈Ã uh

ij
+
�

(j,i)∈Ã vh
ji

�
associated

with candidate station i ∈ Ñ in the objective function (4.17) represents the potential

savings for O-D pair h resulting from installing station i in the VS network.

Because the underlying network structure guarantees feasibility and finite opti-

mum of the PS for any feasible solution ȳ, by the strong duality theorem, the DS is

also feasible and has a finite optimal cost. Consequently, the optimal cost of the DS
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is given by

z(ȳ) = max
(p,u,v)∈P

�

h∈H

wh



�ph
d(h) − ph

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 ȳi



 ,

where P denotes the set of extreme points associated with the feasible region of the

DS.

The Benders master problem (MP) can then be formulated as follows:

minimize z (4.21)

subject to

z ≥

�

h∈H

wh



 �
ph
d(h) − ph

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 yi



 (4.22)

∀(p, u, v) ∈ P
�

i∈Ñ

yi ≤ K (4.23)

yi ∈ {0, 1} ∀i ∈ Ñ (4.24)

Notice that there is no Benders feasibility cut in this formulation as the DS is

guaranteed to have a finite optimal cost. Because the DS can be decomposed into

|H| independent subproblems, multiple cuts associated with each subproblem can be

added to the formulation instead of a single aggregate cut. In particular, we can

replace constraint (4.22) with

zh ≥ wh



 �
ph
d(h) − ph

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 yi



 , ∀h ∈ H, ∀(p, u, v) ∈ P

and change the objective function to minimize
�

h∈H
zh. We refer to this alternate

formulation as multi-cut formulation.

Applying the classical Benders decomposition algorithm (see Algorithm 1), we
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solve repeatedly the restricted master problem (RMP) containing only a subset P̂ of

all extreme points. At each iteration, we obtain a new extreme point by solving the

DS with the current optimal solution to the RMP as parameter, and add it to the set

P̂ . The algorithm terminates when the optimal cost of the RMP is equal to the cost

of the incumbent solution.

4.3.3 Solving Benders Subproblems

Because the DS has to be solved at every iteration to generate a new Benders cut, an

efficient method for solving the DS can improve the overall computational time. While

it is already straightforward to solve the linear program (4.17)-(4.20) to obtain an

optimal solution (p, u, v), we can exploit the network structure of its primal (4.12)-

(4.16), which can be solved more efficiently using a specialized algorithm like the

network simplex algorithm. Therefore, we solve the PS as a network flow problem

and obtain an optimal solution (p, u, v) to the DS from the dual values.

As mentioned earlier, the optimal solution to the PS for a given O-D pair can

actually be obtained by simply finding the shortest path from the origin to the des-

tination over the set of available arcs. We however need to solve it as a network flow

problem in order to obtain a complete set of dual values that constitute an optimal

solution (p, u, v) to the DS, from which we generate a Benders cut.

Pareto Optimal Cuts

When the DS has multiple optimal solutions, we can strategically select an optimal

solution that corresponds to a stronger Benders cut. Pareto optimal (PO) cuts (Mag-

nanti and Wong, 1981) are non-dominated cuts (see Definition 1) that are proven to

be effective in accelerating convergence of the Benders decomposition algorithm. Let

Y denote the set of feasible solutions of the variables y, {y ∈ {0, 1}|Ñ | |
�

i∈Ñ
yi ≤ K},

and y0 denote a core point—a point in the relative interior of the convex hull of Y .

As explained in Section 4.2.2, we can select, among the optimal solutions to the DS

for a given ȳ ∈ Y , a solution that maximizes the objective function of the DS for a
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core point y0. In particular, a PO cut can be generated from an optimal solution to

the following auxiliary problem (AP):

maximize
�

h∈H

wh



 �
ph
d(h) − ph

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 y0
i



 (4.25)

subject to

zh(ȳ) = wh



 �
ph
d(h) − ph

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

uh

ij
+

�

(j,i)∈Ã

vh
ji



 ȳi



 ∀h ∈ H (4.26)

ph
j
− ph

i
≤ cij ∀h ∈ H, ∀(i, j) ∈ A \ Ã (4.27)

ph
j
− ph

i
≤ cij + uh

ij
+ vh

ij
∀h ∈ H, ∀(i, j) ∈ Ã (4.28)

uh

ij
, vh

ij
≥ 0 ∀h ∈ H, ∀(i, j) ∈ Ã, (4.29)

where zh(ȳ) denotes the optimal cost of the DS for the given ȳ associated with O-D

pair h.

Let xh

0 denote the negatives of the dual variables associated with constraints (4.26),

and xh

ij
denote the dual variables associated with constraints (4.27) and (4.28). The

dual of the AP is given by:

minimize
�

h∈H




�

(i,j)∈A

cijx
h

ij
− zh(ȳ)xh

0



 (4.30)

subject to

�

(i,j)∈A

xh

ij
−

�

(j,i)∈A

xh

ji
=






wh(1 + xh

0) i = o(h)

−wh(1 + xh

0) i = d(h)

0 otherwise

∀h ∈ H, ∀i ∈ N (4.31)

xh

ij
≤ wh(y0

i
+ xh

0 ȳi) ∀h ∈ H, ∀(i, j) ∈ Ã (4.32)

xh

ij
≤ wh(y0

j
+ xh

0 ȳj) ∀h ∈ H, ∀(i, j) ∈ Ã (4.33)

xh

ij
≥ 0 ∀h ∈ H, ∀(i, j) ∈ A. (4.34)

113



As discussed in Magnanti et al. (1986), this problem could be viewed as |H| net-

work flow problems each parameterized by xh

0 . Moreover, an optimal solution to each

subproblem can be obtained by fixing the value of xh

0 to a sufficiently large num-

ber. Specifically, notice that each unit of additional portion of demand xh

0 decreases

the objective value by zh(ȳ). Therefore, the objective value can be improved, by

increasing xh

0 , as long as the marginal cost of sending the additional flow is smaller

than zh(ȳ). Additionally, because the capacity of each arc unavailable in the current

solution ȳ is wh min{y0
i
, y0

j
}, the maximum amount of flow possibly routed through

paths including these unavailable arcs is equal to
�

(i,j)∈Ã wh min{y0
i
, y0

j
}. The excess

flow must be routed though the optimal path for the current network ȳ, whose cost

is zh(ȳ), and hence, increasing xh

0 beyond
�

(i,j)∈Ã min{y0
i
, y0

j
} will no longer improve

the objective value.

Consequently, we can solve |H| network flow problems with appropriate values of

xh

0 and generate a PO cut from the optimal dual values. Note that it is computation-

ally more expensive to generate a PO cut as we first need to obtain the optimal cost

of the DS for the given ȳ ∈ Y .

4.4 Alternate Formulation and Implementation

4.4.1 Tree Formulation

In this section, we discuss an alternative formulation that has significantly fewer

decision variables and constraints and can potentially be solved more easily, especially

on a machine with smaller memory. Let L denote the set of all origins ∪h∈H{o(h)};

W l denote the total demand of all O-D pairs originating from node l ∈ L; and xl

ij

denote the number of commuters originating from node l ∈ L and traveling on arc

(i, j) ∈ A. The VSND can be refomulated as follows:

minimize
�

l∈L

�

(i,j)∈A

cijx
l

ij
(4.35)
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subject to

�

(i,j)∈A

xl

ij
−

�

(j,i)∈A

xl

ji
=






W l i = l

−wh (l, i) = h ∈ H

0 otherwise

∀l ∈ L, ∀i ∈ N (4.36)

xl

ij
≤ W lyi ∀l ∈ L, ∀(i, j) ∈ Ã (4.37)

xl

ij
≤ W lyj ∀l ∈ L, ∀(i, j) ∈ Ã (4.38)

�

i∈Ñ

yi ≤ K (4.39)

xl

ij
≥ 0 ∀l ∈ L, ∀(i, j) ∈ A (4.40)

yi ∈ {0, 1} ∀i ∈ Ñ . (4.41)

We refer to this compact formulation as a tree formulation. Because the capacity

constraints (4.37) and (4.38) are aggregated over O-D pairs with the same origins,

the feasible region of its LP relaxation is not as tight as that of the O-D formulation

(4.5)-(4.11). As a result, the optimal cost of its LP relaxation does not provide

a good lower bound for the original mixed integer program, making it difficult to

solve using standard approaches like the branch-and-bound algorithm, in which good

lower bounds are required for pruning the branch-and-bound tree. While the tree

formulation is less favorable in theory, as we will show shortly, it can be solved, using

off-the-shelf solvers, faster than the O-D formulation, especially for large instances.

For the Benders decomposition algorithm, the tree-based PS for a given VS net-

work design ȳ is formulated as follows:

minimize
�

l∈L

�

(i,j)∈A

cijx
l

ij
(4.42)
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subject to

�

(i,j)∈A

xl

ij
−

�

(j,i)∈A

xl

ji
=






W l i = l

−wh (l, i) = h ∈ H

0 otherwise

∀l ∈ L, ∀i ∈ N (4.43)

xl

ij
≤ W lȳi ∀l ∈ L, ∀(i, j) ∈ Ã (4.44)

xl

ij
≤ W lȳj ∀l ∈ L, ∀(i, j) ∈ Ã (4.45)

xl

ij
≥ 0 ∀l ∈ L, ∀(i, j) ∈ A. (4.46)

The problem can be decomposed into |L| independent subproblems. Because the

commuters travel on their shortest available paths in the optimal solution, for each

subproblem associated with an origin l ∈ L, we can use a standard algorithm like

Dijkstra’s algorithm to construct a shortest path tree rooted at node l using only arcs

available in ȳ and obtain the respective shortest paths for each destination.

Let pl
i
, ul

ij
, and vl

ij
denote the negatives of the dual variables associated with

constraints (4.43), (4.44), and (4.45), respectively. The corresponding tree-based DS

is given by:

maximize z(ȳ) =
�

l∈L




�

h∈Hl

wh
�
pl
d(h) − pl

o(h)

�

−

�

i∈Ñ

W l




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 ȳi





(4.47)

subject to

pl
j
− pl

i
≤ cij ∀l ∈ L, ∀(i, j) ∈ A \ Ã (4.48)

pl
j
− pl

i
≤ cij + ul

ij
+ vl

ij
∀l ∈ L, ∀(i, j) ∈ Ã (4.49)

ul

ij
, vl

ij
≥ 0 ∀l ∈ L, ∀(i, j) ∈ Ã, (4.50)

where Hl denotes the set of O-D pairs originating from node l ∈ L.

As previously discussed in Geoffrion and Graves (1974) and Magnanti and Wong
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(1981), a tight formulation, usually achieved through a large number of constraints,

yields stronger Benders cuts. To see this in our context, recall that the term
��

(i,j)∈Ã ul

ij
+

�
(j,i)∈Ã vl

ji

�
associated with candidate station i ∈ Ñ can be interpreted as the po-

tential savings for the O-D pairs originating from node l resulting from installing

station i in the VS network. Because the term is weighted by the total demand W l in

the objective function, even though some of the O-D pairs might not actually benefit

from station i, the total savings tend to be overestimated, and the resulting cut is

not strong. We will revisit this issue and present an approach to strengthening the

cuts obtained from the tree formulation in Section 4.4.2.

The tree formulation of the AP for generating a PO cut is given by

maximize
�

l∈L




�

h∈Hl

wh
�
pl
d(h) − pl

o(h)

�

−

�

i∈Ñ

W l




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 y0
i





(4.51)

subject to

zl(ȳ) =
�

l∈L




�

h∈Hl

wh
�
pl
d(h) − pl

o(h)

�

−

�

i∈Ñ

W l




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 ȳi





∀l ∈ L (4.52)

pl
j
− pl

i
≤ cij ∀l ∈ L, ∀(i, j) ∈ A \ Ã (4.53)

pl
j
− pl

i
≤ cij + ul

ij
+ vl

ij
∀l ∈ L, ∀(i, j) ∈ Ã (4.54)

ul

ij
, vl

ij
≥ 0 ∀l ∈ L, ∀(i, j) ∈ Ã, (4.55)

where zl(ȳ) denotes the optimal cost of the DS associated with O-D pairs originating

from node l, for a given ȳ ∈ Y .

Let xl

0 denote the negatives of the dual variables associated with constraints (4.52),

and xl

ij
denote the dual variables associated with constraints (4.53) and (4.54). The
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dual of the AP is given by:

minimize
�

l∈L




�

(i,j)∈A

cijx
l

ij
− zl(ȳ)xl

0



 (4.56)

subject to

�

(i,j)∈A

xl

ij
−

�

(j,i)∈A

xl

ji
=






W l(1 + xl

0) i = l

−wh(1 + xl

0) (l, i) = h ∈ H

0 otherwise

∀l ∈ L, ∀i ∈ N (4.57)

xl

ij
≤ W l(y0

i
+ xl

0ȳi) ∀l ∈ L, ∀(i, j) ∈ Ã (4.58)

xl

ij
≤ W l(y0

j
+ xl

0ȳj) ∀l ∈ L, ∀(i, j) ∈ Ã (4.59)

xl

ij
≥ 0 ∀l ∈ L, ∀(i, j) ∈ A. (4.60)

Similarly to the O-D-based formulation, we can solve |L| network flow problems

with appropriate values of xl

0 and generate a PO cut from the optimal dual values.

4.4.2 Strengthening Tree Cuts

While Benders cuts generated from the O-D formulation are effective in reducing

the number of iterations required for convergence, it is very time-consuming to solve

one optimization problem (or two to generate PO cuts) for each O-D pair. On the

other hand, through grouping O-D pairs with a common origin, the tree formulation

allows us to solve fewer subproblems at each iteration at the expense of weaker cuts,

which result in more iterations. In this section, we present efficient algorithms for

strengthening cuts generated from the tree formulation, referred to as tree cuts.

Consider a feasible solution ȳ ∈ Y and an origin l ∈ L. Let (pl, ul, vl) be an optimal

solution to the subproblem of the tree-based DS (4.47)-(4.50) associated with origin

l for the given ȳ. We first establish the following proposition.

Proposition 1. An optimal solution (pl, ul, vl) is also an optimal solution to the

subproblem of the O-D-based DS associated with any O-D pair h ∈ Hl.
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Proof. Because constraints (4.48) - (4.50) in the tree formulation are of the same form

as constraints (4.18) - (4.20) in the O-D formulation, a feasible solution (pl, ul, vl) to

the tree formulation is also a feasible solution to the subproblem of the O-D-based

DS associated with any O-D pair h ∈ Hl. For each O-D pair h ∈ Hl, the objective

value of (pl, ul, vl) is given by

wh



�pl
d(h) − pl

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 ȳi



 ≤ zh(ȳ), (4.61)

where zh(ȳ) denotes the optimal cost of the O-D-based DS for the given ȳ associated

with O-D pair h. Summing the objective values over all O-D pairs in Hl, we have

�

h∈Hl

zh(ȳ) ≥
�

h∈Hl

wh



�pl
d(h) − pl

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 ȳi





=
�

h∈Hl

wh
�
pl
d(h) − pl

o(h)

�
−

�

i∈Ñ

W l




�

(i,j)∈Ã

ul

ij
+

�

(j,i)∈Ã

vl
ji



 ȳi

= zl(ȳ),

where zl(ȳ) denote the optimal cost of the DS for the given ȳ associated with O-D

pairs originating from node l. Because, by definition,
�

h∈Hl zh(ȳ) is equal to zl(ȳ),

it follows that inequality (4.61) holds with equality for every O-D pair h ∈ Hh.

Given this fact, our algorithms start with an optimal solution (pl, ul, vl) to the tree

formulation and incrementally adjust it to produce an optimal solution (ph, uh, vh) to

the O-D formulation from which a potentially stronger Benders cut can be generated.

Consider Benders cuts associated with O-D pair h ∈ H. From Definition 1, the

cut generated from (p1, u1, v1) dominates or stronger than the cut generated from
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(p2, u2, v2) if

wh



�p1
d(h) − p1

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

u1
ij
+

�

(j,i)∈Ã

v1
ji



 yi





≥ wh



�p2
d(h) − p2

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

u2
ij
+

�

(j,i)∈Ã

v2
ji



 yi



 ,

for all y ∈ Y with a strict inequality for at least one point. Therefore, we can

potentially strengthen a cut by decreasing the values of uh and vh, while maintaining

the feasibility and optimality of (ph, uh, vh). Recall our earlier discussion that Benders

cuts generated from the tree formulation are not strong because the potential savings

ul

ij
and vl

ij
resulting from making arc (i, j) available are counted for every O-D pair in

Hl (i.e., weighted by W l). By decreasing the values of uh and vh for each individual

O-D pair h ∈ Hl, we essentially make the estimate of the potential savings more

accurate.

Because, for each arc (i, j) ∈ Ã, the constraint ph
j
− ph

i
≤ cij + uh

ij
+ vh

ij
must be

satisfied, decreasing ph
j
might enable us to decrease uh

ij
and vh

ij
further. Note that for

an O-D pair h, besides uh and vh, only ph
o(h) and ph

d(h) associated with the origin o(h)

and the destination d(h) are included the objective function. Hence, we can adjust

the values of ph associated with the other nodes without affecting the objective value.

Consequently, for an O-D pair h ∈ Hl, our algorithms fix the values of ph
o(h) and

ph
d(h) to their initial values pl

o(h) and pl
d(h), and incrementally decrease the values of

uh, vh, and ph associated with the other nodes; while maintaining the feasibility

of (ph, uh, vh). The following result ensures the optimality of (ph, uh, vh), and thus,

establishes the correctness of our algorithms.

Proposition 2. Let (p1, u1, v1) be an optimal solution to the O-D-based DS associated

with O-D pair h ∈ H for a given ȳ ∈ Y , with an optimal cost of zh(ȳ). And let

(p2, u2, v2) be another feasible solution. If p2
o(h) = p1

o(h), p
2
d(h) = p1

d(h), u
2
ij
≤ u1

ij
for all

(i, j) ∈ Ã, and v2
ij
≤ v1

ij
for all (i, j) ∈ Ã, (p2, u2, v2) is also optimal.

Proof. From the optimality of (p1, u1, v1) and the properties of (p2, u2, v2), we have
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that

zh(ȳ) ≥ wh



�p2
d(h) − p2

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

u2
ij
+

�

(j,i)∈Ã

v2
ji



 ȳi



 (4.62)

= wh



�p1
d(h) − p1

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

u2
ij
+

�

(j,i)∈Ã

v2
ji



 ȳi



 (4.63)

≥ wh



�p1
d(h) − p1

o(h)

�
−

�

i∈Ñ




�

(i,j)∈Ã

u1
ij
+

�

(j,i)∈Ã

v1
ji



 ȳi



 (4.64)

= zh(ȳ). (4.65)

Consequently, the inequalities hold with equality, and (p2, u2, v2) must be optimal.

More importantly, if u2
ij
(or v2

ij
) is strictly less than u1

ij
(or v1

ij
) for some arc (i, j) ∈

Ã, it follows that the cut generated from (p2, u2, v2) dominates the cut generated from

(p1, u1, v1).

Finally, because, by construction, an optimal solution to the tree-based AP (4.51)-

(4.55) is also an optimal solution to the tree-based DS (4.47)-(4.50), our algorithms

can also be used to strengthen PO tree cuts.

Using the observations and results established in this section, we now present the

details of the algorithms for strengthening tree cuts.

Basic Algorithm

Consider an O-D pair h ∈ Hl. The algorithm first initializes (ph, uh, vh) to the asso-

ciated solution to the tree formulation (pl, ul, vl). For brevity of notation, we assume

in this section that there are also uh

ij
= 0 and vh

ij
= 0 associated with each arc

(i, j) ∈ A \ Ã. Consequently, the constraints associated with each (i, j) ∈ A are of

the same form: ph
j
− ph

i
≤ cij + uh

ij
+ vh

ij
.

Updating ph
i
. For each node i �= o(h) and d(h), the algorithm decreases ph

i
to

its lower bound, which is determined by the constraints associated with its outgoing
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arcs. In particular, to preserve feasibility, the following constraints must be satisfied

ph
i
≥ ph

j
− cij − uh

ij
− vh

ij
, ∀(i, j) ∈ A.

The lower bound of ph
i
is then given by maxj:(i,j)∈A{phj − cij − uh

ij
− vh

ij
}. If the set of

outgoing arcs from node i is empty, we set ph
i
to ph

l
.

Updating uh

ij
and vh

ij
. For a candidate station i ∈ Ñ , once ph

i
is decreased, we

can potentially decrease the values of uh

ji
and vh

ji
associated with an incoming arc

(j, i) ∈ Ã, provided that ul

ji
+ vl

ji
is positive. For feasibility, the new value of uh

ji
+ vh

ji

must be at least δji = max(0, ph
i
− ph

j
− cji). We then set the values of uh

ji
and vh

ji

according to their initial proportion, that is,

uh

ji
=

ul

ji

ul

ji
+ vl

ji

δji and vh
ji
=

vl
ji

ul

ji
+ vl

ji

δji.

This consequently ensures that uh

ji
and vh

ji
are nonincreasing, and by Proposition 2,

the optimality is preserved as the algorithm proceeds.

Node Selection. Given the constraint ph
j
− ph

i
≤ cij + uh

ij
+ vh

ij
for each arc

(i, j) ∈ Ã, decreasing ph
j
is beneficial for decreasing uh

ij
and vh

ij
only if ph

j
is sufficiently

larger than ph
i
. This suggests we consider reducing ph

i
with large values first. There-

fore, we examine nodes in descending order of pl
i
. Note that the order is determined

once at the beginning and used throughout the process.

The complexity of the algorithm is established in the following proposition.

Proposition 3. For a given origin l ∈ L, the computational complexity of the basic

algorithm is O(n log n+ k(m+ m̃)), where n = |N |,m = |A|, m̃ = |Ã|, and k = |Hl|.

Proof. Sorting pl requires O(n log n) time. For each O-D pair in Hl, updating ph
i
’s

involves scanning outgoing arcs at each node and requires a total of O(m) operations.

For each arc (i, j) ∈ Ñ , uh

ij
and vh

ij
are updated once when node j is examined. Hence,
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updating uh and vh requires O(m̃) operations. It follows that the overall complexity

of the basic algorithm is O(n log n+ k(m+ m̃)).

To demonstrate the algorithm, we provide a small example in Figure 4-1. A label

on each arc denotes an arc cost. Note that node 0 is the only origin in this example.

There are six integer feasible solutions to this problem: {0, 4}, {0, 5}, {0, 6}, {4, 5},

{4, 6}, {5, 6}, each represents the set of open stations.

For feasible solution ȳ = {0, 6} (that is, (ȳ0, ȳ4, ȳ5, ȳ6) = (1, 0, 0, 1)), an optimal

solution (pl, ul, vl) to the tree formulation (with an origin l = 0) and the set of

(ph, uh, vh)’s obtained from the basic algorithm are provided in Table 4.2. Let z

denote the total cost in the Benders RMP. The cut generated from (pl, ul, vl) is given

by

z ≥

�

i=1,2,3

(pl
i
− pl0)−W l

�
(ul

04 + ul

05 + ul

06)y0 + vl04y4 + vl05y5 + vl06y6
�

= 10− 3y4 − 3y5.

Notice that for ȳ = {0, 6}, this cut yields a lower bound of 10, which is the optimal

routing cost when arc (0, 6) is available.

Now we will go through the algorithm step-by-step to obtain (ph, uh, vh) for O-D

pair h = (0, 3).

• Initialize ph
i
to pl

i
for all i ∈ N , and examine nodes in descending order of pl

i
.

• At node 2, set ph2 to its lower bound, which is max{ph1 − 2, ph3 − 2} = 1.

• At node 5, set ph5 to its lower bound, which is ph2 − 1 = 0. The lower bound of

uh

05 + vh05 is max(0, ph5 − ph0 − c05) = 0. Decrease vh05 to 0.

• Skip node 3 as it is the destination of this O-D pair.

• At node 1, set ph1 to its lower bound, which is ph2 − 2 = −1.

• For node 6, ph6 already attains its lower bound, which is ph3 − 1 = 2.
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Ñ = {0, 4, 5, 6}

Ã = {(0, 4), (0, 5), (0, 6)}

H = {(0, 1), (0, 2), (0, 3)}

wh = 1, ∀h ∈ H

K = 2

Figure 4-1: An example network with four candidate stations and three O-D pairs.

• At node 4, set ph4 to its lower bound, which is ph1 − 1 = −2. The lower bound

of uh

04 + vh04 is max(0, ph4 − ph0 − c04) = 0. Decrease vh04 to 0.

• The algorithm terminates at node 0.

Note that decreasing vh04 and vh05 to zero corresponds to the fact that making arcs

(0, 4) or (0, 5) available does not provide additional savings to the current optimal

path for O-D pair (0, 3), which is through node 6.

Similarly, for O-D pair h = (0, 1), we can decrease vh05 to zero; and for O-D pair

h = (0, 2), we can decrease vh04 to zero. Consequently, the (aggregate) cut obtained

from our algorithm is given by

z ≥

�

h∈Hl

�
(ph

d(h) − ph
o(h))−

�
(uh

04 + uh

05 + uh

06)y0 + vh04y4 + vh05y5 + vh06y6
��

= 10− y4 − y5,

which dominates the cut generated from (pl, ul, vl). Additionally, note that for ȳ =

{0, 6}, the new cut yields the same lower bound of 10, which indicates that the set of

(ph, uh, vh)’s obtained from our algorithm are optimal solutions to the corresponding

O-D-based DS as proved in Proposition 2.

So far we have not specified the order in which O-D pairs inHl should be processed.

Because the algorithm examines nodes in descending order of pl
i
, for O-D pairs h and

h� ∈ Hl where pl
d(h) < pl

d(h�), we have that ph
i
is equal to ph

�
i

for any node i that is
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superscript p0 p4 p6 p1 p3 p5 p2 (u04, v04) (u05, v05) (u06, v06)

l = 0 0 2 2 3 3 3 4 (0,1) (0,1) (0,0)

h = (0, 1) 0 2 -1 3 0 0 1 (0,1) (0,0) (0,0)
h = (0, 2) 0 1 2 2 3 3 4 (0,0) (0,1) (0,0)
h = (0, 3) 0 -2 2 -1 3 0 1 (0,0) (0,0) (0,0)

Table 4.2: Optimal solutions to the DS for feasible solution ȳ = {0, 6}

examined before d(h�) (i.e., pl
i
> pl

d(h�)). For example, from Table 4.2, the values of ph2

and ph5 are the same for O-D pairs (0, 1) and (0, 3). Therefore, we could have avoided

repeating the same calculation. To implement this, we process O-D pairs in Hl in

descending order of pl
d(h). Additionally, instead of producing (ph, uh, vh) directly from

(pl, ul, vl), we maintain a partially processed solution (p̂, û, v̂), which is valid for any

O-D pair h ∈ Hl whose pl
d(h) is less than that of the most recent node examined.

The basic algorithm with this minor improvement is summarized in Algorithm 2.

The algorithm begins with initializing a partially processed solution (p̂, û, v̂) to an

optimal solution (pl, ul, vl) to the tree formulation. It then computes a list S of node

indices sorted in ascending order of pl
i
(i.e., S[1] = argmin

i∈Npl
i
). Set T denotes a set

of O-D pairs in Hl that have been processed.

The remaining part of the code consists of two nested while-loops. The major

difference between the two loops is that the outer loop performs update operations on

(p̂, û, v̂), while the inner loop performs update operations on (ph, uh, vh) for a specific

O-D pair h ∈ Hl. Variable n(n�) denotes the number of candidate station nodes that

have been examined in the outer(inner) loop; and variable pos(pos�) indicates the

position of the node currently examined in the outer(inner) loop.

The outer loop repeats until all O-D pairs in Hl are processed or all candidate

station nodes are examined. In the latter case, it means we already considered de-

creasing the values of ûij and v̂ij for every (i, j) ∈ Ã, and for each remaining O-D

pair h ∈ Hl \ T , we set (ph, uh, vh) to (p̂, û, v̂) (on line 35).

In the outer loop, the algorithm examines nodes in descending order of pl
i
. At each

iteration, if the current node i is a destination of O-D pair (l, i) ∈ Hl, the algorithm

proceeds to compute (ph, uh, vh). Otherwise, (p̂, û, v̂) is updated accordingly (on lines
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superscript p0 p4 p1 p5 p2 p6 p3 (u04, v04) (u05, v05) (u06, v06)

l = 0 0 2 3 4 5 6 7 (1,0) (0,2) (0,4)

From the basic algorithm:
h = (0, 1) 0 2 3 1 2 3 4 (1,0) (0,0) (0,1)
h = (0, 2) 0 2 3 4 5 3 4 (1,0) (0,2) (0,1)
h = (0, 3) 0 2 3 4 5 6 7 (1,0) (0,2) (0,4)

From the improved algorithm (1 pass):
h = (0, 1) 0 2 3 0 1 0 1 (1,0) (0,0) (0,0)
h = (0, 2) 0 2 3 4 5 3 4 (1,0) (0,2) (0,1)
h = (0, 3) 0 2 3 4 5 6 7 (1,0) (0,2) (0,4)

Table 4.3: Optimal solutions to the DS for feasible solution ȳ = {0, 4}

26-32).

For O-D pair h = (l, i), the algorithm initializes (ph, uh, vh) to (p̂, û, v̂). Because

ph
i
must be fixed, and we no longer need to examine nodes that have already been

processed in the outer loop, the inner loop begins with pos� = pos−1 and n� = n. The

algorithm goes through the remaining nodes and updates (ph, uh, vh) accordingly.

Improved Algorithm

To motivate the idea of the improved algorithm, we consider an optimal solution

(pl, ul, vl) to the tree formulation and the set of (ph, uh, vh)’s obtained from the basic

algorithm for another feasible solution ȳ = {0, 4} in Table 4.3. Again, the cut gen-

erated from the basic algorithm, z ≥ 15 − 3y0 − 4y5 − 6y6, dominates the tree cut,

z ≥ 15 − 3y0 − 6y5 − 12y6. Note that for O-D pair h = (0, 1), vh06 is positive, even

though arc (0, 6) does not provide any savings. This suggests that we might be able

to strengthen the cut further.

The limitation of the basic algorithm is that, for a given O-D pair h ∈ Hl, each

node i is examined for decreasing ph
i
exactly once. We however might be able to

decrease ph
i
further after node j that is limiting the lower bound of ph

i
(i.e., ph

i
=

ph
j
− cij − uh

ij
− vh

ij
) is considered. From our example in Table 4.3, for O-D pair

h = (0, 1), the lower bound of ph3 becomes 1 after ph2 is decreased to 2. If we had

decreased ph3 to 1, then we could decrease ph6 to 0, and thus reduce vh06 to 0. The
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Algorithm 2 The Basic Algorithm

Input: (pl, ul, vl)
Output: (ph, uh, vh), ∀h ∈ Hl

1: (p̂, û, v̂) ← (pl, ul, vl)
2: S ← list of node indices sorted in ascending order of pl

i

3: T ← ∅

4: n ← 0
5: pos ← |N|

6: while T �= Hl and n < |Ñ | do
7: i ← S[pos]
8: if (l, i) = h ∈ Hl then
9: (ph, uh, vh) ← (p̂, û, v̂)
10: n� ← n
11: pos� ← pos− 1
12: while n� < |Ñ | do
13: k ← S[pos�]
14: ph

k
← maxj:(k,j)∈A{phj − ckj − uh

kj
− vh

kj
} if {j : (k, j) ∈ A} �= ∅;

15: ph
l
otherwise

16: if k ∈ Ñ then
17: δjk ← max(0, ph

k
− ph

j
− cjk), ∀(j, k) ∈ Ã

18: uh

jk
← δjkul

jk
/(ul

jk
+ vl

jk
) if (ul

jk
+ vl

jk
) > 0, ∀(j, k) ∈ Ã

19: vh
jk

← δjkvljk/(u
l

jk
+ vl

jk
) if (ul

jk
+ vl

jk
) > 0, ∀(j, k) ∈ Ã

20: n� ← n� + 1
21: end if
22: pos� ← pos� − 1
23: end while
24: T ← T ∪ {h}
25: end if
26: p̂i ← maxj:(i,j)∈A{p̂j − cij − ûij − v̂ij} if {j : (i, j) ∈ A} �= ∅; p̂l otherwise
27: if i ∈ Ñ then
28: δji ← max(0, p̂i − p̂j − cji), ∀(j, i) ∈ Ã

29: ûji ← δjiul

ji
/(ul

ji
+ vl

ji
) if (ul

ji
+ vl

ji
) > 0, ∀(j, i) ∈ Ã

30: v̂ji ← δjivlji/(u
l

ji
+ vl

ji
) if (ul

ji
+ vl

ji
) > 0, ∀(j, i) ∈ Ã

31: n ← n+ 1
32: end if
33: pos ← pos− 1
34: end while
35: (ph, uh, vh) ← (p̂, û, v̂), ∀h ∈ Hl \ T

127



resulting cut is given by z ≥ 15− 3y0 − 4y5 − 5y6, which dominates the cut obtained

from the basic algorithm.

Therefore, in the improved algorithm, we examine nodes in multiple passes, al-

lowing the changes in nodes with small values of pl
i
to propagate to nodes with higher

values of pl
i
. Depending on the size and structure of an underlying network, many

passes might be required until no further changes could be made to (ph, uh, vh). To

balance the trade-off between solution quality and computational effort, we parame-

terize the algorithm with a maximum number of passes allowed (pass).

The improved algorithm is summarized in Algorithm 3. For brevity, we introduce

function Update() in Algorithm 4. Its arguments are a solution (p, u, v) on which

the update operations are performed; a starting position, begin; an ending position,

end < start; and an O-D pair h under consideration. The function examines nodes

in descending order of ph
i
from begin to end and updates (p, u, v) as usual.

The outer loop is similar to that of the basic algorithm. On line 8, the algorithm

reexamines nodes that have already been processed in the outer loop again before

computing (ph, uh, vh) for a given O-D pair h ∈ Hl. Note that the update operations

are performed on (p̂, û, v̂), which is valid for any O-D pair that has not been processed.

The Update() call on line 10 is equivalent to the inner loop in the basic algorithm.

At this point, for a given O-D pair h ∈ Hl, the algorithm has made one pass

through all nodes in addition to the updates carried out in the outer loop. On lines

11-17, additional passes through the nodes are performed until there is no change to

(ph, uh, vh) or the pass limit is reached.

4.5 Computational Results

In this section, we present computational results that demonstrate the effectiveness

of the proposed algorithms in solving the VSND. All algorithms are implemented

in Java 1.6 with IBM ILOG CPLEX 12.5 library. Computations are carried out on
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Algorithm 3 The Improved Algorithm

Input: (pl, ul, vl), pass
Output: (ph, uh, vh), ∀h ∈ Hl

1: (p̂, û, v̂) ← (pl, ul, vl)
2: S ← list of node indices sorted in ascending order of pl

i

3: T ← ∅

4: pos ← |N|

5: while T �= Hl do
6: i ← S[pos]
7: if (l, i) = h ∈ Hl then
8: Update((p̂, û, v̂), |N |, pos+ 1, h)
9: (ph, uh, vh) ← (p̂, û, v̂)
10: Update((ph, uh, vh), pos− 1, 1, h)
11: while pass > 1 do
12: Update((ph, uh, vh), |N |, 1, h)
13: if no change to (ph, uh, vh) then
14: break
15: end if
16: pass ← pass− 1
17: end while
18: T ← T ∪ {h}
19: end if
20: p̂i ← maxj:(i,j)∈A{p̂j − cij − ûij − v̂ij} if {j : (i, j) ∈ A} �= ∅; p̂l otherwise
21: if i ∈ Ñ then
22: δji ← max(0, p̂i − p̂j − cji), ∀(j, i) ∈ Ã

23: ûji ← δjiul

ji
/(ul

ji
+ vl

ji
) if (ul

ji
+ vl

ji
) > 0, ∀(j, i) ∈ Ã

24: v̂ji ← δjivlji/(u
l

ji
+ vl

ji
) if (ul

ji
+ vl

ji
) > 0, ∀(j, i) ∈ Ã

25: end if
26: pos ← pos− 1
27: end while
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Algorithm 4 Update()

1: function Update((p, u, v), begin, end, h)
2: pos� ← begin
3: while pos� ≥ end do
4: k ← S[pos�]
5: if k �= o(h) and k �= d(h) then
6: pk ← maxj:(k,j)∈A{pj − ckj − ukj − vkj} if {j : (k, j) ∈ A} �= ∅;
7: po(h) otherwise
8: if k ∈ Ñ then
9: δjk ← max(0, pk − pj − cjk), ∀(j, k) ∈ Ã

10: ujk ← δjkul

jk
/(ul

jk
+ vl

jk
) if (ul

jk
+ vl

jk
) > 0, ∀(j, k) ∈ Ã

11: vjk ← δjkvljk/(u
l

jk
+ vl

jk
) if (ul

jk
+ vl

jk
) > 0, ∀(j, k) ∈ Ã

12: end if
13: end if
14: pos� ← pos� − 1
15: end while
16: end function

Amazon Elastic Compute Cloud (EC2) with 2.5 EC2 Compute Units1 and 7 GB of

RAM.

4.5.1 Instances

The test instances are constructed based on the public transportation network in

the Boston metropolitan area. The existing Hubway bike-sharing stations are used

as candidate stations. Solving the VSND on these instances essentially determines,

if Hubway were to operate with fewer stations—perhaps to limit operating costs,

which subset of stations should be installed to minimize overall travel time over the

integrated public transportation and VS network. Because bike-sharing service like

Hubway is generally used as first- or last-mile transportation, for travel demand, we

consider trips originating from each candidate station to the other transit nodes in

the existing public transportation network, over 8,000 of them, and presume that the

reverse trips would equally benefit from the integrated service.

Additionally, we use the transfer tree concept introduced in Section 3.5.2 to limit

1One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor.
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Instance |N | |Ñ | = |L| |A| |Ã| |H| K

1 439 8 990 54 1,435 4
2 527 13 1,488 151 2,279 6
3 571 18 1,938 294 3,128 9
4 603 23 2,351 484 4,021 11
5 630 27 2,763 675 4,698 13

Table 4.4: Instances

problem sizes. In particular, at each demand origin, we compute the shortest paths

from the origin to the other transit nodes over the existing transit network and derive

the corresponding transfer tree. Recall that in a transfer tree, each node represents a

transfer point (or an access point if it is adjacent to the origin), and each arc represents

the shortest path between the arc’s end nodes. The nodes and arcs constituting the

transfer trees are then used to construct a graph for each instance. The VS arcs

connecting candidate stations are added to the graph, and travel demand to individual

transit nodes in the original network is aggregated based on their final transit points.

Consequently, each instance is made up of overlaying transfer trees originated from

every candidate station. When a candidate station is adjacent to nodes that are also

in the transfer trees originating from other candidate stations, the VS arcs linking

the stations enable potential multi-modal trips.

The details of the instances are summarized in Table 4.4. For each instance, we

consider the number of open stations equal to K = �|Ñ |/2�, which results in the

largest (or second largest if |Ñ | is odd) number of feasible solutions
�
|Ñ |

K

�
. Note that

the number of O-D pairs considered in each case is quite large relative to the number

of candidate stations.

4.5.2 Problem Formulation and Pareto Optimal Cuts

In this section, we present a set of computational results to illustrate the impacts of

problem formulation—multi-cut formulation and tree formulation—and Pareto opti-

mal cuts. In particular, we consider two ways of formulating the VSND: (1) the O-D

formulation (presented in Section 4.3.2) and (2) the tree formulation (presented in

131



Section 4.4.1). At each iteration, in addition to solving the DS, we may also solve

the AP to obtain a PO cut. Lastly, because of the separability of the DS, different

numbers of cuts can be added to the RMP. We consider adding (1) |H| cuts, one for

each O-D pair, (2) |L| cuts, one for each origin, and (3) a single aggregate cut. The

results obtained using the smallest instance are summarized in Table 4.5.

Consistently with our discussion earlier, the O-D formulation yields stronger Ben-

ders cuts than the tree formulation, as indicated by the numbers of iterations. The

tree formulation, however, can significantly reduce the computation times. In this

case, with the tree formulation, we need to solve only 8 optimization problems, one

for each origin, to obtain a usual cut at each iteration; while with the O-D formula-

tion, we need to solve 1,435 optimization problems. Nevertheless, for larger instances,

the slow convergence resulting from tree cuts can potentially worsen the overall com-

putation time. We will demonstrate this in the section. This comparison between

the O-D and tree formulation substantiates the potential advantages of our solution

approach, which allows us to obtain an optimal solution to the O-D-based DS quickly

from an optimal solution to the tree-based DS.

The results show that adding multiple cuts at each iteration are effective in im-

proving the convergence of the Benders algorithm. In fact, with a single tree cut

added to the RMP at each iteration, the algorithm ends up enumerating all
�
8
4

�
= 70

feasible solutions. Given the large number of O-D pairs considered in each instance,

adding |H| cuts to the RMP at each iteration quickly makes it more difficult to solve

as the algorithm proceeds and potentially increases the overall computation time as

discussed in de Camargo et al. (2008). For this reason, the |L|-cut formulation is used

to obtain the computational results presented in the next section.

Finally, PO cuts are proven to perform better than usual cuts in most cases for

both O-D and tree formulations. In particular, the results suggest that the computa-

tion time savings from the reduced number of iterations outweigh the additional time

required for solving the AP.
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O-D based Tree based

Pareto Usual Pareto Usual

|H|-cut
# iterations 5 5

N/A N/A# cuts 7175 7175
runtime (secs) 16.74 16.13

|L|-cut
# iterations 5 7 16 28

# cuts 40 56 128 224
runtime (secs) 14.82 23.25 1.32 1.89

1-cut
# iterations 7 16 70 70

# cuts 7 16 70 70
runtime (secs) 23.81 51.24 4.45 4.29

Table 4.5: Computational results demonstrating the impacts of problem formulation
and Pareto optimal cuts.

4.5.3 Algorithm Performance

In this section, we compare the performance of different algorithms for solving the

VSND. To obtain the results in this section, we implement a slightly modified version

of the classical Benders decomposition algorithm (Algorithm 1). Specifically, we limit

the RMP solving time to the amount of time spent generating cuts in the previous

iteration or until a feasible integral solution is found. This allows us to balance

the time spent generating new cuts and solving the RMP and iterate the Benders

Algorithm more quickly. In the last iteration, however, the RMP is still solved to

optimality to ensure the optimality of the incumbent solution at termination. Note

that this change only affects later iterations at which the RMP becomes too difficult

to solve to optimality within the time limit. The adverse effect of early termination

is that some unnecessary cuts generated from suboptimal solutions to the RMP are

added to the formulation. Nonetheless, in many cases, the MIP solver can easily find

the optimal solution to the RMP within the time limit, but more computation time

is required only to verify its optimality.

Tables 4.6 and 4.7 summarize the computational results for the Benders decom-

position approach with 11 types of cuts and the traditional branch-and-cut approach

using CPLEX. The 11 types of cuts are PO cuts from both O-D and tree formula-
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tions, usual cuts from the O-D formulation, cuts obtained from the basic algorithm

(Algorithm 2), and cuts obtained from the improved algorithm (Algorithm 3) with

the maximum number of passes ranging from 1 to 45. In the basic and improved algo-

rithms, we use an optimal solution to the tree-based AP as an initial solution. Lastly,

in the branch-and-cut approach, the tree formulation is used as the O-D formulation

can only be solved for the smallest instance due to memory limit. The solving time

is limited to two hours.

Comparing the first two columns in Table 4.6, we conclude that PO cuts are indeed

effective in accelerating the Benders decomposition algorithm. The results for PO cuts

generated from the O-D and tree formulations confirm that a tight formulation yields

stronger Benders cuts, as indicated by the numbers of iterations.

Our proposed algorithms are proven to be effective in strengthening Benders cuts.

Even with the basic algorithm, which involves minimal computational effort, the

resulting cuts require significantly smaller numbers of iterations to converge compared

to the PO tree cuts, which are used as initial solutions in the algorithm. More

importantly, in terms of overall computation time, the cuts generated from the basic

algorithm outperform the PO O-D cuts in the first four instances, despite the larger

numbers of iterations.

Additionally, the results clearly demonstrate that the improved algorithm can

effectively strengthen Benders cuts further. As the pass limit increases, the number

of iterations required becomes smaller. Remarkably, in many cases, the improved

algorithm results in smaller numbers of iterations than that of the PO O-D cuts.

Overall computation time, however, does not necessarily decrease as we increase the

pass limit. In particular, the computation time savings resulting from fewer iterations

might not make up for the extra computation time for strengthening the cuts. From

the results, we conclude that to achieve the best computation time, the maximum

number of passes should be increased, that is strengthening the cuts more aggressively,

as the problem size grows.

The advantages of the Benders decomposition algorithm are more pronounced

in the larger instances. Especially for Instance 5, the Benders algorithm takes less
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than 13 minutes to solve to optimality; while the branch-and-cut approach fails to

obtain a lower bound to ensure optimality of the incumbent solution, which is in fact

optimal, within the time limit of two hours. As discussed in Section 4.4, this is partly

because the tree formulation used in the branch-and-cut approach is not tight, and the

optimal cost of its LP relaxation does not provide a good lower bound to the original

mixed integer program. In conclusion, this suggests that the Benders decomposition

algorithm together with our cut generation algorithm is a more effective exact method

for solving the VSND.

It is important to note that in addition to its effectiveness, the Benders decomposi-

tion approach offers reoptimization capabilities (Geoffrion and Graves, 1974; Cordeau

et al., 2006), which are particularly useful for strategic planning, as in this context.

Specifically, when we modify the problem such that it does not affect the feasible

region of the Benders dual subproblem, the extreme points found when solving the

original problem are still valid and can be used to generate Benders cuts for the new

problem. In fact, if the changes only affect the master problem (e.g., adding side

constraints), the Benders cuts previously generated can be used without additional

computation. This allows us to avoid solving the modified problem from scratch and

obtain a new optimal solution in fewer iterations, while for the branch-and-bound ap-

proach, solving the modified problem from scratch is inevitable. In our context, the

reoptimization capabilities enable us to reexamine the problem with different num-

bers of stations K, travel demand estimates wh, travel costs cij, and/or additional

logical constraints on the network configuration (for example, at least three stations

must be installed in each partnered municipality).

4.6 Conclusions and Future Work

This chapter addresses passenger-centric strategic planning for one-way vehicle-sharing

systems. We develop optimization models for locating vehicle-sharing stations to min-

imize overall travel time over the integrated vehicle-sharing and public transportation

network. Benders decomposition is used to tackle large instances. We present and
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discuss two classes of formulations: the O-D and tree formulations. While an aggre-

gate formulation—the tree formulation in this case—is generally discouraged in the

literature as it yields weaker Benders cut, and hence slower convergence, we exploit

it to generate Benders cuts quickly and propose novel algorithms to strengthen the

resulting cuts further. Using data from the Boston metropolitan area, we present

computational results that confirm the effectiveness of our solution approach.

There are three particularly interesting extensions of this work for future research.

• Application to other network design problems. The idea of obtaining Benders

cuts quickly using aggregate formulations, as presented in this work, is applicable to

any network design problems whose Benders subproblem involves solving a network

flow problem, and whose commodities or O-D pairs have a common origin (or desti-

nation) that can be grouped together. Cut strengthening algorithms, however, need

to be tailored for different problems.

• Integrating with local search heuristics. While this work is focused primarily on

developing an exact solution method for the problem, the capability to obtain good

solutions quickly might also be helpful, in the initial phases of the planning process,

for getting insights into good network designs for the city and/or understanding the

effects of different parameters and constraints. Therefore, it would be interesting

to integrate local search heuristics with our exact solution approach to improve the

incumbent solutions at early iterations. Rei et al. (2009), among others, have demon-

strated the successful use of the local branching technique of Fischetti and Lodi (2003)

to accelerate Benders decomposition.

• Incorporating operational considerations into the model. In order to keep the

optimization models tractable, we do not explicitly consider vehicle movements in

this work and assume that commuters can always find a vehicle and a docking slot

available at any station. Nevertheless, careful tactical and operational planning with

appropriate decisions on station capacity, fleet size, and fleet relocation operations

can help limit the extent to which the assumption is violated.
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Chapter 5

Concluding Remarks

Public transportation is undeniably an effective way, economically and environmen-

tally, to move a large number of people in a city. It reduces traffic congestion, fuel

consumption, and carbon footprint. Its ineffectiveness, such as long travel times, poor

coverage, and lack of direct services, however, makes it unappealing to many com-

muters. In this thesis, we present analytics and optimization approaches to improving

public transit and its integration with vehicle-sharing services.

In Chapter 2, we propose to improve existing bus services through introduction

of limited-stop bus services, which have the advantage of shorter in-vehicle travel

times for passengers. Focusing on incremental changes to the existing schedule, we

seek to reassign some number of local bus trips to operate a limited-stop service.

We present an optimization model to determine optimal limited-stop service route

and frequency that maximize total user welfare. In this model, we introduce a novel

way to capture user behavioral changes in response to a new limited-stop service.

Theoretical properties of the model are established and used to develop an efficient

solution approach. The use of data visualization in this process (see Figures 2-5, 2-8,

2-9) is proven to be helpful for understanding the model and structure of optimal

solutions. Using data from a bus operator in a major city, we present numerical

results and discussions on solution quality, computational times, and sensitivity of

parameters. In addition to the methodological contributions, we provide insights into

key characteristics of a bus service that affect the potential benefits of limited-stop

139



services.

In Chapters 3 and 4, we propose to improve urban mobility through better inte-

gration between existing public transportation and one-way vehicle-sharing services.

A proper design of one-way vehicle-sharing networks can provide better access to ex-

isting public transportation and additional options for trips beyond those provided by

public transit, especially in the areas with low travel demand, where it is economically

infeasible to provide high levels of traditional public transportation services.

We present, in Chapter 3, a framework for evaluating the impacts of integrated

vehicle-sharing and public transportation services. We describe our approach to

modeling public transit graphs representing integrated multi-modal transportation

services, which allows us to assess the impacts of vehicle-sharing networks at the

level of O-D’s. Based on centrality indices, we propose accessibility, utilization, and

efficiency metrics for measuring the impacts from different aspects. To facilitate un-

derstanding of changes in commuting patterns resulting from vehicle-sharing services,

we introduce the notion of a transfer tree and develop a novel approach to visualize

a transfer hierarchy of trips originating from a given transit node. Through a case

study of Boston, we demonstrate the use of evaluation metrics in conjunction with

the visualization tool. Because the framework utilizes publicly available data and

web services, transportation engineers and urban planners can apply it to evaluate a

potential or existing vehicle sharing network in any city whose transit schedules are

published in the increasingly adopted GTFS format. Additionally, we believe that

the visualization tool can help enhance communication between different stakeholders

in the planning process. In fact, a slightly different version of our visualization tool1

was selected as a winner of the Hubway Data Visualization Challenge2 by a panel of

judges consisting of representatives from Hubway, the Metropolitan Area Planning

Council, the School of Architecture and Planning at MIT, and the Boston Globe.

Given the benefits of integrating vehicle-sharing and public transit services, we

present, in Chapter 4, a methodology for passenger-centric strategic planning for one-

1http://hubway.virot.me
2http://hubwaydatachallenge.org/

140



way vehicle-sharing systems. We present optimization models for selecting vehicle-

sharing station locations to minimize overall travel time over the integrated network.

Because the problem consists of two sets of decisions that are made sequentially—a

vehicle-sharing network design and optimal commuting paths, it is natural to use

Benders decomposition as a solution approach to tackle large instances. We discuss

two classes of formulations: the O-D and tree formulations. While an aggregate

formulation—the tree formulation in this case—is generally discouraged in the lit-

erature as it yields weaker Benders cut, and hence slower convergence, we exploit

it to generate Benders cuts quickly and propose novel algorithms to strengthen the

resulting cuts further. Using data from the Boston metropolitan area, we present

computational results that confirm the effectiveness of our solution approach. In ad-

dition to its effectiveness, the reoptimization capabilities of Benders decomposition

make it particularly more appealing for strategic planning, as in this context.
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