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Abstract

Draper Laboratory has developed a core technology that provides the foundation for
onboard trajectory generators. The main goal is for these generators to create robust
trajectories for the Terminal Area Energy Management phase of flight. The current
onboard generator is the first working prototype that utilizes this core technology and has
demonstrated the design of multiple trajectories for varying conditions. However, the
optimality or robustness of these trajectories is not known. Therefore, in order to further
progress the work done in real-time trajectory generation, it is necessary to establish the
metrics for determining the robustness of a trajectory. This will also help in the creation
of a suitable benchmark for which to judge and formulate future trajectory generators.

This thesis determines benchmark robust trajectories for the current onboard trajectory
generator. This is accomplished by utilizing an optimization routine to generate a wide
variety of trajectories around different cost functions. A physical measure and definition
of robustness was then determined through a thorough analysis of all the parameters of
the optimized trajectories. This led to the selection of a benchmark cost function that
portrays the definitive characteristics of robust trajectories. In addition, the grading
system used in the determination of the benchmark can be used to calculate a quantitative
value of robustness for existing trajectories.

The robustness grading system, along with analysis of different trajectories, led to the
characterization of the trajectories created from the current onboard generator. While
these trajectories were determined to be solutions to tightly constrained problems, they
also proved to be sub-optimal representations of the trajectory benchmark. In addition,
they are shown to be fairly robust as well. Information and insight gained in the thesis is
used to present recommendations for ways to continue the development and testing of
new technology for onboard trajectory generation.

Technical Supervisor: Gregg H. Barton
Title: Principle Member of the Technical Staff, C.S. Draper Laboratory, Inc.

Thesis Advisor: John J. Deyst
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background

The flight success of the Space Shuttle is based in part on its re-entry guidance and

control algorithms. So much so, that even after 25 years little has been done to improve

upon the baseline shuttle Guidance and Control (G&C) framework. Even vehicles being

designed today, like the X-34, X-37 and X-40, utilize G&C techniques designed to

operate on circa 1970s flight computers. These algorithms were originally restricted by

the limited memory and raw computing power available at the time. They rely on loaded

trajectories defined well before launch, which involves labor-intensive pre-flight design,

restricts the vehicle to tight, nominal flight corridors and reduces the vehicle's robustness

to changing flight conditions. Any abort contingencies must also be pre-defined, and pre-

loaded, which effectively prevents the full exploitation of a vehicle's recovery capacity.

In addition, any flight condition encountered by the vehicle for which no pre-planned

trajectory has been defined may result in the catastrophic loss of the vehicle.

The Charles Stark Draper Laboratory (Draper) has begun an initiative to develop the

technologies necessary for the formulation of a next generation guidance and control

framework for Reusable Launch Vehicles (RLV). This framework seeks to address and

improve upon the limitations of the shuttle era G&C systems. The plan calls for three

key components: an autonomous abort planner, an onboard trajectory generator and an

Integrated G&C (IG&C) framework. Understanding the relationship between these

components provides a clearer context for each individual technology.

Current shuttle G&C techniques rely on mission planners designing trajectories for every

abort scenario they can envision and loading these "canned" responses into the vehicle's

flight computer. While this may prove effective for a small range of conditions, the

current system is not capable of robust abort, or the ability to direct the vehicle to a safe

landing for a wide range of off-nominal failure conditions. In contrast, an autonomous

abort planner would instantaneously assess the vehicle's current states and scrutinize the

available "energy versus downrange" for a variety of landing options. It would select the
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best runway within the vehicle's capability, but must rely on the guidance system to
generate the necessary reference trajectory.

The onboard trajectory generator would autonomously create the reference trajectories

from the vehicle's current position to the desired terminal conditions in real time. This
could greatly enhance the G&C's capacity to handle off-nominal, anomalous conditions
while taking advantage of the vehicle's full flight capability. While its use in this
capacity may provide the greatest enhancement for next generation systems, it should
also function equally well under nominal flight conditions. The use of an onboard
generator will eliminate the need for mission-specific, pre-defined trajectories and can
lead to greater robustness, improved overall performance and lower operational costs.

In order to fully capture the improvements offered by an onboard trajectory generator, it

is necessary to couple it with an IG&C framework. This would enable the control system

to utilize the new guidance inputs and recalculate the necessary control gains so that the
vehicle accurately follows the reference trajectory. The current shuttle-based techniques
separate the G&C functions, which has the undesired result that the guidance and control

systems sometimes react to each other instead of cooperating to achieve the desired
trajectory. An IG&C framework has the potential to overcome these difficulties by
integrating and coupling the guidance and control systems, allowing real-time

implementation of onboard generated trajectories and improved performance.

1.2 Problem Definition

Draper's work in pursuit of the onboard trajectory generation component has resulted in
the creation of three different programs, all utilizing the X-34 as a representative RLV

model. The Auto-Landing I-Load Program (ALIP) was developed by G. H. Barton as a
rapid, pre-mission design tool for the generation of autolanding trajectories. This

program laid the foundation for rapid, real-time trajectory propagation and served as

starting point for further research conducted by A. R. Girerd. In his 2001 MIT Master's

thesis, Girerd presented methodologies for onboard generation of trajectories throughout

the subsonic portion of the Terminal Area Energy Management (TAEM) flight regime,

consisting of altitudes less than 40,000 feet. His results provided the insight for the

necessity of a more general design approach, which encompasses the full range of

TAEM, including supersonic and high altitude flight. This led to the development of

Proto-snake, by A. C. Grubler, which demonstrates a unique trajectory generation
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methodology that uses dynamic pressure schedules and a real-time ground track solver.

The methodology consists of predicting a straight-line ground track shape, derived from

the full capabilities of the vehicle, and then "snaking" around the ground track to satisfy

the given design constraints. This solution method enables the program to design

trajectories throughout the TAEM regime and for a variety of different vehicle

conditions.

Proto-snake does have its limitations however. Currently the ground track solver

employed by Proto-snake provides an ad hoc solution for limiting cases, through the use

of "brute force" techniques. While this does provide solutions for varying conditions, it

does not create optimal trajectories or guarantee robustness*. In addition, the dynamic

pressure schedules used in the formulation of the trajectories are user specified. This

means that Proto-snake does not choose the best schedule for the given design conditions

or present situation.

These limitations are due in part to the lack of a suitable benchmark that represents the

defining characteristics of a robust trajectory. These characteristics include the actual

lateral ground track shape, in addition to the dynamic pressure schedules flown by the

vehicle, which define the longitudinal flight profile of the trajectory. It is hoped that a

suitable benchmark will provide characteristics that can be mimicked by a real-time

ground track solver to produce sub-optimal robust trajectories for a wide-variety of

conditions.

Generating a robust trajectory through offline methods is difficult in itself. While

methodologies exist for the propagation of optimal or feasible trajectories, no such

program currently generates "robust" trajectories. Optimization routines can be used in

the creation of trajectories, however they rely on the formulation of a cost functions that

utilize vehicle states and controls. The robustness of a vehicle is not a vehicle state or

even a well-defined vehicle parameter. This limits the ability to create benchmark robust

trajectories, while at the same time provides freedom for a designer to establish his or her

own set of characteristics for defining robust trajectories.

A robust trajectory is defined as a trajectory that can handle future dispersions while

still providing the means for the vehicle to attain the final end condition.
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1.3 Thesis Objective

This thesis seeks to determine benchmark robust trajectories for the current onboard
trajectory generators. This is done by utilizing a Legendre Pseudospectral Optimization

method to generate a wide variety of trajectories around different cost functions. An

analysis of the resulting trajectories, in addition to the use of desirability criterion, will

lead to the determination of the characteristics of robust trajectories. This research also
intends to characterize the optimality and robustness of the current trajectories created by
A. Grubler's Proto-snake trajectory generator. Furthermore, the resulting trajectories are
intended to provide a starting point for the formulation of future ground track solvers.

1.4 Thesis Overview

The present chapter provides an overall view of the main subject of research for this

thesis. Subsequent chapters are narrower in their focus as they describe in detail the
necessary background as well as procedures for the attainment of the thesis objective.

Chapter 2 gives an overview of RLV type vehicles, including the X-34, which was the
demonstration vehicle of choice for this research, as well as for previous onboard
trajectory generators, while Chapter 3 presents the derivations of the equations of motion,
which govern the vehicle in flight. Chapter 4 describes the shuttle-era G&C framework
as well as Draper's vision for the Next Generation Guidance and Control (NGGC). The
main technological component of Draper's NGGC, onboard trajectory generation, is
covered in Chapter 5, including a more thorough description of the three developmental

programs and their methodologies. Chapter 6 provides an overview of the Legendre

Pseudospectral Method and it use while Chapter 7 describes the actual problem setup
used for the determination of a trajectory benchmark. Chapter 8 describes the results of
the research program and Chapter 9 concludes the thesis with an overall summation of

the results and recommendations for future research.
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Chapter 2

Vehicle Description

2.1 Overview

Draper Laboratory has been in pursuit of technologies that are necessary for the

formulation of a Next Generation Guidance and Control (NGGC) system for Reusable

Launch Vehicles (RLV). In order to understand the development of these technologies,

particularly the onboard trajectory generation component, it is necessary to understand

the vehicle for which they are designed to guide through the atmosphere. This chapter

intends to provide an overview of RLVs in general, including their basic mission design

and aerodynamic properties. The last section describes the X-34, which was chosen as

the representative RLV model on which the trajectory generation technology was applied

during previous research. This thesis continues to use this vehicle for convenience and

continuity sake.

2.2 Mission Design

Reusable Launch Vehicles are spacecraft designed to perform specified missions,

multiple times. The missions may include ferrying humans and supplies to orbit,

launching satellites, or even performing experiments during flight. They were originally

developed to dramatically reduce the cost of access to low Earth orbit, strictly due to their

reusability. For instance, the Saturn V rocket was expended while sending humans to the

Moon. In order to perform another Moon flight, it was necessary to construct another

rocket. On the other hand, the Space Shuttle, the first reusable launch vehicle or first

generation RLV, has performed over one hundred missions between four flight vehicles.

Draper Laboratory's NGGC concept is primarily focused on guiding shuttle-like RLVs.

This includes vehicles designed with the same general characteristics of the Space

Shuttle, in addition to the same relative flight dynamics. The shuttle is designed to make

unpowered gliding approaches to horizontal landings on a conventional runway. Its

general characteristics include low aspect ratio wings, a lifting body shape, and four

primary flight control surfaces. The shuttle is also a low Lift-over-Drag (L/D) flight

vehicle, and its corresponding trajectories are significantly different from gliding aircraft
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or sailplanes. The X-33, X-34, X-37, and X-40 all fall into the category of "shuttle-like"

and the NGGC system being developed can easily be applied to any of these vehicles.

2.3 Aerodynamic Properties

Shuttle-class gliding reentry vehicles fly differently from conventional aircraft. With no

available thrust to provide a net positive energy source, low L/D vehicles must budget

their total energy throughout their entire descent to ensure they will reach the target

runway at the specified dynamic constraints. The low L/D characteristics impede

efficient gliding performance and generally result in trajectories with steep equilibrium

glide slopes and relatively high velocities. Therefore, shuttle-like RLVs usually have a

more limited landing footprint and a smaller margin for trajectory errors than higher L/D

vehicles. This fact helps to justify the need to design robust trajectories in order to

guarantee vehicle safety and recoverability.
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Figure 2.1: Trimmed Lift and Drag Coefficients (X-34)
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A RLV can control its L/D ratio to some extent by varying its angle of attack, a. This is

due to a's effect on the lift and drag coefficients of the vehicle, as shown in Figure 2.1.

The aerodynamic data presented is for the X-34 with a speedbrake setting of 550, but is

indicative of RLVs in general. For values of a less than five degrees, the lift coefficient

varies almost linearly with angle of attack, while the drag coefficient remains relatively

flat. Beyond five degrees however, the drag grows exponentially, while the lift retains

the linear trend. The resulting L/D curve, shown in Figure 2.2 for various Mach

numbers, soon peaks and then starts decreasing. This causes the contour to be divided

into afront side and back side. The maximum L/D of the vehicle occurs at the peak in

the contour for the given angle of attack. The front side of the curve is usually quite short

for low lift-to-drag vehicles such as the shuttle.
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Figure 2.2: Trimmed L/D versus Angle of Attack (X-34)

It is important to keep the L/D curve in mind when designing trajectories. Controllability

issues usually mandate keeping the RLV on the front side of the curve, where significant
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changes in lift are accompanied by only modest changes in drag. These characteristics

are required to sustain flight at a given flight path angle. If the vehicle flies on the back

side of the curve, small changes in lift will result in large drag penalties. As speed is

reduced due to the increased drag, the vehicle will try to pitch upward to increase the lift

lost by the decrease in speed. This cascades into a non-returnable energy decay wherein

a specific trajectory cannot be sustained and may lead to the loss of the vehicle [1].

2.4 Physical Description

The X-34 technology demonstrator, designed by Orbital Sciences, was chosen as the

technical model for RLVs in this research. This vehicle was chosen in order to maintain

continuity with previous research efforts, which also used the X-34, as well as to take

advantage of the large amount of technical information and experience available for the

vehicle at Draper Laboratory. Under contract with Orbital, Draper developed the entry

and autolanding guidance, as well as the flight software, in support of previously planned

flight tests. Also, Draper was awarded a Future-X flight demonstration of autonomous

Robust Abort Technologies on the X-34 (RADX34) [2]. However, NASA cancelled the

flight tests of the X-34 in April 2001, and the two vehicle specimens are currently in

flyable storage. A schematic of the X-34 is presented in Figure 2.3.

The X-34 was developed as a single stage RLV, capable of flights up to 250,000 feet and

speeds in excess of Mach 8, after being air-launched from the belly of an L- 1011 carrier

aircraft. It was designed to behave similarly to the shuttle in order to minimize risk, cost,
and time of development, and even utilizes the same basic flight controls. These include

a rudder, speedbrake, body flap and elevons. The body flap is used exclusively as a trim

device for successive stages of entry and is not actively employed by the flight control

system. All the pertinent physical characteristics of the vehicle are summarized in Table

2.1.

The X-34 is primarily a bank-to-turn vehicle. In its design, the rudder lacks the ability to

cause large changes in the vehicle's heading angle and is only used to keep the vehicle in

coordinated flight. The vehicle must bank to achieve any desired yaw rate, which results

in a slow yaw response due to the need to roll before a change in heading can occur.
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The X-34 is also powered by the reusable Fastrac engine, which runs off a mixture of

liquid oxygen and kerosene. This was designed and developed by NASA's Marshall

Space Flight Center, and can yield approximately 60,000 pounds of thrust. Even though

the X-34 is powered, this research is only focused on the unpowered, gliding flight

portion of the vehicle's flight envelope.

.UpWsun

-Braking Parachute

Figure 2.3: Schematic of Orbital Sciences' X-34 [1]

Table 2.1: X-34 Physical Characteristics [3, 4]

Length 58.3 feet

Wing Span, b 27.67 feet

Mean Aerodynamic Chord, E 14.54 feet

Planform Area, S 357.5 feet2

Gross Launch Weight 46,500 lbf

Dry Weight 19,000 lbf

Elevon Deflection Range -34.2' to +15.8'

Speedbrake Deflection Range 00 to 1030
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Chapter 3

Equations of Motion

3.1 Overview

The equations of motion for an atmospheric vehicle are vital to the formulation and the

understanding of the developments in this thesis. They are presented in this chapter,

along with their derivations and the appropriate assumptions. The first two sections of

this chapter describe the necessary coordinate reference frames and the transformation

matrices between the frames. The third section covers the derivations of the equations.

For more detailed derivations, see References 5 and 6.

3.2 Reference Coordinate Frames

It is necessary to determine a set of coordinate reference frames when formulating the

equations of motion for a vehicle. The following five reference coordinate frames are

relevant to the movement of a vehicle in atmospheric flight. They all employ right-

handed rectangular Cartesian axes.

Inertial Reference Frame (il, , ki): an Earth-fixed coordinate system, with its origin at

the runway threshold as depicted in Figure 3.1. The Earth is assumed to be flat and

stationary in inertial space, therefore the Earth is an inertial system, one in which

Newton's laws are valid. Additionally, gravity is assumed uniform and constant, and

hence the aircraft's center of mass and center of gravity (CG) are the same point.

Local Horizontal Reference Frame (l,, J k,): a coordinate system with the origin at the

vehicle CG, with axes parallel to the inertial reference frame, as shown in Figure 3.1.

The rotation matrix between the inertial and local horizontal reference frames is the

identity matrix and is time-invariant.

Velocity Reference Frame (l1 , J ,,): a coordinate system with the origin at the vehicle

CG and the 1, axis pointing along the velocity vector. The j,, axis remains in the local

horizontal i, - ]', plane and the k,. axis completes the right-handed coordinate system.
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Figure 3.1: Inertial, Local Horizontal and Body Reference Frames

Body Reference Frame (i 1,, k,): a coordinate system in which the origin lies at the

vehicle center of gravity. The l' axis points through the nose of the aircraft and is

coincident with the longitudinal axis of the aircraft. The j. axis is positive out the right

wing and the k. axis points in the vehicle's ventral direction (positive downward) as

depicted in Figure 3.1. If the vehicle is flying wings level and is pointing parallel to the

runway, the transformation matrix between the body and local horizontal reference

frames would be the identity matrix.

Stability Reference Frame (Is, ,J ): a coordinate system with the origin at the vehicle

CG. The i, axis lies along the projection of the velocity vector (V) onto the body lh - kh

plane. With the assumption of zero sideslip, the velocity vector lies along the is axis.

The f axis is coincident with the body l, axis along the wing and the k, axis completes

the right-handed coordinate system. By definition, the airplane lift and drag vectors are

perpendicular and parallel, respectively, to V and are aligned with the - is and -k, axes

of this frame, as shown in Figure 3.4.

3.3 Transformation of Coordinate Frames

For this thesis, it is assumed that the aircraft always flies coordinated turns. This means

that the sideslip angle (p8) is always assumed to be zero. The following transformations

take this into account.
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Transformations between coordinate frames involve Euler angle rotations about the k, J,

and i axes, in order. A transformation matrix (denoted as Ta2b) is a square array

containing the Euler rotations between the vector components of the individual

coordinate systems. The rotations are represented as sines and cosines of the separation

angles between the frames. A vector is rotated from one reference frame into another

reference frame by a multiplication of the transformation matrix. Rotating in the opposite

direction simply involves multiplying by the transpose of the transformation matrix.

Equation 3.1 demonstrates this principle.

y = T,2b Y,

z h

x xL zzU j a b ]
Heading / Flight Path Rotations: The orientation of the velocity reference frame with

respect to the inertial and local horizontal reference frames is given by an Euler rotation

sequence about the k, and Jh axes as shown in Figure 3.2. In the inertial reference

frame, the angles X and y are defined as the runway-relative heading angle and flight path

angle respectively. The transformation matrix from the local horizontal reference frame

to the velocity reference frame is

cosysin%

cos X

sinysing

- siny]

0

cosy

(3.2)

A

Jh

kh
A

1 V

Figure 3.2: Heading Angle / Flight Path Angle Rotation
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Bank Angle Rotation: The stability reference frame differs from the velocity reference

frame by a bank angle p rotation about their i axis, which is the velocity vector. The

transformation matrix from the velocity reference frame to the stability reference frame is

shown in Eq 3.3. The bank angle p is shown below.

> lIV

- p
-is ,~b

ks
ki

Figure 3.3: Bank Angle Rotation

1 0 0

Tc = 0 Cos p sin p (3.3)

L0 -sin p cos pj

Angle of Attack Rotation: The transformation from the stability reference frame to the

body reference frame is given by a rotation of the angle of attack, a. The angle a is

shown in Figure 3.4 and the transformation matrix is

cosa 0 -sina

TS2b 0 1 0 (3.4)

sina 0 cosa
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Figure 3.4: Stability and Body Reference Frames

Any other required transformation matrices can be expressed as products of those

presented above. For example, the transformation matrix from the velocity reference

frame to the body reference frame is given by

T 2h =T Ts2 T,, (3. 5)

simplifying yields

sina sin p

cos p

-cosasin p

-sinacosp~

sin p

cosacosp_

3.4 Nonlinear Equations of Motion

The full nonlinear equations of motion for an atmospheric vehicle are derived using

Newton's Laws. The derivations are subject to assumptions chosen to reduce the

complexity of the formulation. These assumptions are listed below.

. the vehicle has a plane of symmetry

. the vehicle mass properties are constant
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. the vehicle produces no thrust

. there are no aerodynamic moments (the vehicle is always in a state of static trim)

. there are no side forces (Y) present (no sideslip)

. the vehicle is a rigid airframe (no bending)

. the wind velocity is always zero

Refer to Reference 1 for derivations that include the complete set of nonlinear wind

equations.

The derivation begins by expressing the position vector of the vehicle center of mass with

respect to the inertial reference frame, as shown in Eq 3.7. In this frame (as well as the

local horizontal reference frame), the positive k,,, axis direction is down. However, this

direction refers to the height of the vehicle above ground, and the convention is for a

positive increase with vertical distance from the ground. Therefore, the k1, position

component will be expressed as z = -h (where h represents altitude), shown below,

r = xi, + y, + zk, = xl + yjh -hkl, (3.7)

The velocity vector P is the time derivative of the position vector and is given by

- d
V -- xi11 + jh -hk, (3.8)

dt

To track the flight path relative to the local horizontal reference frame, it is necessary to

transform the velocity vector with respect to the velocity reference frame to the local

horizontal reference frame. This is accomplished by using the inverse of the T,2,, matrix.

V

T/= T,, 0 =VCO Coycos X i, + V cos y sin jh- V sin yk,, (3. 9)

0 -1
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The differential equations for the coordinates of the flight path are then

i= VcosycosX

= VcosysinX (3.10)

h= - =V siny

The remaining equations are simply statements of Newton's second law of motion,

namely

SF= ma = J ,e.r + g,.ai., (3. 11)

The forces affecting the vehicle consist of aerodynamic forces and gravity. The

aerodynamic forces are lift (L) and drag (D). The lift and drag vectors represented in

these equations are for the complete aircraft, including the wing, tail, fuselage, etc., and

act in relation to the stability reference frame of the aircraft. The gravity force,

materialized in the weight (W) vector, always acts downward, towards the Earth along

the ki,, axis.

Consider an aircraft CG to be the intersection of the axes of Figure 3.5. The figure is

drawn so that the plane of the page is coincident with the i,, -k,, axes of the velocity

reference frame. The curvilinear motion of the aircraft along a curved flight path can be

expressed by first taking a summation of the forces parallel to the flight path, and then

taking a summation of the forces perpendicular to the flight path.

The sum of the forces parallel to the flight path is

S=-D - W siny (3.12)

The acceleration parallel to the flight path is

d
a, =-V=V (3. 13)

dt
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Figure 3.5: Forces Projected onto the Vertical Plane of the Velocity Reference Frame

Applying Newton's Law yields

. -D
V= -g siny

m
(3. 14)

The components of the forces perpendicular to the flight path are

I F, = W cosy - L cosu (3.15)

The radial acceleration, perpendicular to the flight path, is written in Eq 3.16. It follows

the convention of the velocity reference frame, where k, is positive down.

V 2
a, = -- - -Vf

where f is the angular velocity equal to the rate of change of the flight path angle.
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Applying Newton's Law and solving for f yields

1
=- [L os p - W cos y]mV

(3.17)

Consider now an aircraft CG to be the intersection of the axes of Figure 3.6. The figure is

drawn so that the plane of the page is coincident with the i, - j, axes of the velocity

reference frame (top-down view).

D
V cosy

flight pathLsinp

Figure 3.6: Forces Projected onto the Horizontal Plane of the Velocity Reference Frame

The sum of the forces perpendicular to the flight path is

(3. 18)Z F 3 =L sin p

The instantaneous radial acceleration along the flight path is

(V cos y)2 _a-, - -(Vcosy)}( (3. 19)
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where -j is the angular velocity equal to the rate of change of the runway-relative

heading angle.

Applying Newton's Law and solving for >' yields

L sin p
mrc=sy(3. 20)
m V cos y

The total acceleration vector of the vehicle in the velocity reference frame can be written

as a summation of Eqs 3.13, 3.16 and 3.19, as shown below

5a=Vi, + (Vcosy)'j1 -Vfk, (3.21)

The acceleration loading on the vehicle expressed in the body frame is very important. It

is a design parameter in certain instances and can be considered a measure of human

'ride-ability' for the vehicle. Specifically, the quantity of interest is the body Nz

acceleration. It is defined as the sensed normal specific force or maneuver acceleration

of the vehicle along the k, axis. To determine the acceleration loading on the vehicle,
each of the acceleration components are first normalized to gravity.

Nx, = - (3. 22)
g

Ny, = (V cos y) (3.23)
g

NzV = - (3. 24)

Then, the accelerations are rotated from the velocity reference frame into the body

reference frame using the transformation matrix in Eq 3.6 to give

Nxh = Nx,cosa + Ny, sin asinp - Nzsina cos p (3. 25)

Nyb = Ny, cos p + Nzsinpt (3. 26)
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Nzh = -Nx, sin a+ Ny, cos a sin p - Nz, cos a cos (2

Nzh undergoes a sign change in order to follow the convention whereby positive Nz, is

up.

The drag and lift forces contained in the equations can be expressed as functions of the

dynamic pressure q7, the vehicle planform area S, and the dimensionless coefficients of

lift CL and dragC

L = qSCL

D = qSC)

(3. 28)

(3. 29)

Dynamic pressure can also be written as a function of atmospheric density (which is a

function the altitude of the vehicle), and the velocity of the vehicle.

q = pV 2
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Chapter 4

Guidance and Control

4.1 Overview

The purpose of an RLV's Guidance and Control (G&C) system is to guide the vehicle to

a safe runway landing without violating certain constraints. These constraints may

consist of thermal, dynamic pressure or acceleration loading limits imposed on each

trajectory. In the classical arrangement, the guidance system regulates the vehicle's

trajectory and energy, while the flight control system determines the actuator control

deflections, based on steering commands from the guidance system. In the case of

manned vehicles, including the shuttle, a human pilot typically acts as an intermediary

between the guidance and control systems, and interprets cues provided by guidance into

commands that are sent to the flight control system. However, future RLV's may be

unmanned and will have no pilot available to make up for the limitations in the traditional

G&C system layout. These limitations, described in the next section of this chapter,

preclude autonomous systems from taking advantage of the full capabilities of the

vehicle. Draper Laboratory feels that these limitations can be reduced by the introduction

of a new G&C system layout. In order to explain the layout, this chapter first describes

the "traditional" shuttle G&C concept and its limitations, and then presents Draper's Next

Generation Guidance and Control (NGGC) system.

4.2 Traditional Shuttle Guidance and Control

4.2.1 Guidance and Control Concept

The traditional G&C system concept, including the relationships between various

components, is illustrated in Figure 4.1. This concept was originally devised for the

Space Shuttle, and due to its proven success, has become the standard for RLVs. Flight

planning begins on the ground, by mission planners, who design a series of "reference

profiles". These profiles are a set of vehicle states or control histories arranged with

respect to some monotonically changing variable, such as time, downrange distance or

velocity. The reference profiles are the result of the efforts of engineers to discover,

through iterative design and optimization techniques, the nominal and abort trajectories
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for a given vehicle mission. A typical profile (or trajectory) design approach used by the

engineers is shown in Figure 4.2. Due to any revisions made to a vehicle's aerodynamic

characteristics or configuration, and any alterations in expected initial flight conditions,

both a nominal trajectory and a series of contingency abort trajectories must be

redesigned, and then translated into reference profiles, for each and every flight made by

a vehicle. Once the profiles are completed, they are uploaded onto the onboard guidance

computers through a large sequence of I-loads, sometimes numbering in the thousands.

On-board
Guidance

----------------------------

On-board
Control

a~~ R1 L l

---------- -------T- -- - - -- - -- - - -- - -
Fiur 4.1 Trdtoa pc ISuteG Lyu

Figure 4.2: Traditional Approach to Trajectory Generation [7]
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During a typical flight, the onboard guidance system generates commands that attempt to

match the actual vehicle states with the preloaded reference states. These guidance

commands are usually for the speedbrake position (8 ,h), roll (<), and acceleration along

the vehicle's negative body kb axis (Nz). Once generated, the commands are fed to an

onboard control system that produces a set of deflection commands for the control

surface actuators, in the case of an autonomous unmanned vehicle, or a set of pilot cues,

in the case of a manned vehicle. It should be noted that in the shuttle-class G&C system,

shown in Figure 4.1, the guidance and control systems are artificially partitioned into

separate efforts, even though it is a coupled task. Additionally, separate guidance

software is required for the nominal flight plan and each abort contingency.

4.2.2 Terminal Area Energy Management and Approach and Landing

Phases

Due to the wide variations in conditions that the shuttle, or an RLV, may experience

during a typical flight, its entry descent is divided into three sequential phases. This

allows the guidance scheme to be broken up into three phases as well, making it more

robust than a single scheme developed to handle the entire flight. The three phases are

the Entry Phase, the Terminal Area Energy Management (TAEM) Phase, and the

Approach and Landing (A/L) Phase. This thesis is only concerned with the flight of

RLVs through the TAEM and A/L phases, so only these two areas will be discussed in

this sub-section.

The TAEM phase is characterized by glider-type flight dynamics, and is initiated at a

specified Mach number and/or altitude where the vehicle attains full control through the

use of aerosurfaces only. The purpose of this phase is to control the energy state of the

vehicle and direct it towards the landing site. This is accomplished conceptually by

flying a predetermined Energy over Weight (E/W) profile as a function of range to the

runway, or range-to-go. The E/W term, which captures both the potential and kinetic

energies of the vehicle, and thus the total energy, is expressed as:

E =h+ i- (4.1)
P g
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During the development of the TAEM phase, engineers decided to split the longitudinal

and lateral channels, considering a full integration too complex [8]. Thus, the vehicle's

angle of attack controls the longitudinal channel, while the bank angle controls the lateral

channel.

The independent variable used during TAEM is range-to-go, and consists of two

components: downrange distance and crossrange distance. This variable, more properly

defined as the distance left along a predicted ground track, is easily calculated using well-

defined geometric segments [9]. For this reason, TAEM is further divided into four

distinct subphases, shown in Figure 4.3. These subphases, in order of occurrence, are S-

turn, Acquisition, Heading Alignment, and Prefinal Approach. The TAEM phase

terminates at a point known as the Auto-Landing Interface (ALI), where the A/L phase

begins.

3 Prefinal

approchapi
subpase Runway

X-

G ~ Acquingition

alignment approach plane
subphaseY

G energy
dissipation

Figure 4.3: TAEM Subphases [9]

The S-turn subphase is used to provide large adjustments to the energy state of the

vehicle. This subphase is only executed when the vehicle's energy state is too high to

reach the ALI at the specified constraints. In other words, the predicted ground track

length is not long enough to allow the excess energy to dissipate before reaching the ALI.

In such cases, the guidance system commands the vehicle to turn at a maximum rate
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away from the desired heading, while the resulting S-turn lengthens the ground track

distance, thus dissipating excess energy. This turn is continued until the current energy

state matches the E/W reference profile.

The Acquisition subphase is initiated to steer the vehicle towards a smooth interception

with the Heading Alignment Cone (HAC), described in the subsequent paragraph. This

phase, shown in Figure 4.4, consists of two segments. The first segment is a constant

bank angle turn, approximated by an arc segment of constant radius. This arc is intended

to change the vehicle's heading to that of a direction tangent to the HAC. The subphase

is completed by connecting the endpoint of this segment to the tangent point on the HAC.

HEADING
ALIGNMENT
SUBPHASE

ACQUISITION 2"n
SUBPHASE SEGMENT

1s'SEGMENT

TAEM
INTERFACE

Figure 4.4: Acquisition Subphase Segments

The Heading Alignment subphase is initiated when the vehicle reaches the HAC tangent

point. The HAC is an imaginary inverted cone placed uprange of the runway with its

surface tangent to an extended projection of the runway centerline. Figure 4.5 provides

an illustration of the HAC along with a vehicle's projected flight path. During this

subphase, the lateral guidance keeps the vehicle on the HAC surface using radial position

and rate errors to generate the necessary bank angle commands. By forcing the vehicle to

fly around the outer surface of the HAC, this subphase removes crossrange position and

vehicle heading errors prior to entering the Prefinal Approach subphase.
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Figure 4.5: Flight Path along the HAC [9]

The last subphase in TAEM is the Prefinal Approach subphase. This is merely another

straight-line segment intended to allow any existing crossrange errors to settle before the

vehicle transitions from TAEM to the AlL phase. Guidance roll commands in this phase

are calculated from any crossrange or crossrange rate errors from the runway centerline.

Upon completion of the TAEM phase at the ALI, the Approach and Landing (A/L) phase

is initiated, which guides the vehicle along a predefined velocity and altitude profile to

touchdown on the runway [10]. The ALI is usually placed at 10,000 feet and at a

predetermined uprange distance, consistent with the particular design of the five

autolanding subphases. These subphases consist of an initial steep glide slope to a

circular flare, which exponentially decays into a shallow terminal glide slope. A final

flare arrests the touchdown sink rate at a desired value and ensures the final vehicle pitch

attitude. The A/L phase, including all defining constraints, is shown in Figure 4.6. The

vehicle's flight, along with the A/L phase, ends after the termination of vehicle rollout.
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Figure 4.6: Approach and Landing Subphases [9]

4.2.3 Limitations

The traditional G&C concept has several important inefficiencies and limitations. These

are the direct result of the fundamental design choices made during the formulation of the

original G&C layout. This layout is based upon the use of fixed trajectory profiles that

are determined pre-flight and in the uncoupling of the lateral and longitudinal channels

throughout the TAEM and A/L guidance phases. In order to realize the potential that

exists for improving vehicle performance by addressing the shortcomings of the existing

TAEM methodology, it is necessary to understand the limitations of this system.

The use of pre-defined loaded trajectories is a big limitation. This process is very labor

intensive and each flight requires a standing army of ground support, which contributes to

high operational expenses. The use of preloaded trajectories confines a vehicle to tight

flight corridors, which reduce the vehicle's robustness to changing flight conditions,

while the use of preplanned abort contingencies effectively prevents the full exploitation

of a vehicle's recovery capacity. In addition, no mission planner can devise abort
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trajectories for every possible situation. This fact leads to the formation of "gaps" in the

guidance coverage over the vehicle's flight path, for which there is no provision to

intelligently guide the vehicle to a safe landing. These gaps will always exist for every

pre-determined flight profile, and are potentially dangerous. The flight of a vehicle into a

gap can result in the loss of the vehicle and possibly the loss of human life.

The geometry used in the formulation of the pre-defined trajectories has two important

limitations. First, the Acquisition subphase is calculated by an arc segment of constant

radius. This may hold true for small angles of rotation, but larger gliding turns will

follow a spiral ground track instead, due to the effect of decreasing velocity and

increasing density. In an abort situation, where the initial conditions are radically

different from nominal initialization conditions, it may be necessary to make a large

acquisition turn in order to fly towards a suitable landing location. With the present

formulation, the resulting acquisition turn will lead to an error in the ground track

prediction, causing a situation where the guidance system is tracking to an inadequate

energy profile.

Second, the Heading Alignment Cone is always placed at a fixed location, uprange from

the runway. With the current formulation, there exists the possibility of moving the HAC
once during flight, from a distance 7nm from the runway to one 4nm from the runway, in

an attempt to compensate for situations when the vehicle is low on energy. However, the

use of only two locations removes the ability of fine-tuning the lateral ground track for

the present energy situation, while also potentially forcing the vehicle from a state of low

energy to state of extremely high energy versus range. This may lead to unwanted excess

energy as the vehicle reaches the runway.

Finally, the separation of lateral and longitudinal channels in the guidance algorithms is a

limitation on the overall system. The longitudinal guidance uses a wings level energy

profile to predict a vehicle's projected ground track length, and thus its range capability.

However, this approach completely ignores the large effect that banking has on a

vehicle's lift vector, and thus the effect it has on a vehicle's energy and range. For

trajectories with large acquisition turns (possible abort scenarios), this may lead to an

incorrect determination of the overall ground track length, and the possibility of

uncorrectable trajectory errors.
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4.3 Next Generation Guidance and Control (NGGC)

4.3.1 Guidance and Control Concept

The goal of Draper's NGGC system is to significantly increase flight vehicle safety and

reduce life cycle costs while gaining increased operation and performance capabilities for

RLVs. This is the result of formulating a new G&C framework, which seeks to improve

upon the limitations of the traditional G&C system concept. The NGGC overall system

concept is shown in Figure 4.7. This concept is made up of three key components: an

onboard autonomous abort planner, an onboard trajectory generator, and an Integrated

Guidance and Control (IG&C) framework.

On-board On-board Tracking and
Mission Targeting Stabilization
Planner

AbortIntegrated
Decson Trajectory Guidance

DeisonGeneration and Plan

LogicControl

i II

------------------------------------------------------

Figure 4.7: Next Generation Guidance and Control System Concept

4.3.2 Components

The abort decision planner would enhance the capability of current RLVs by providing a

continuous, real-time, autonomous means of recovering the vehicle intact in the event of

any major failure or off-nominal conditions. This NGGC component works by analyzing

the current vehicle states to determine whether or not the vehicle can reach the nominal

target landing site. If not, it would be able to select an alternative landing site based upon

energy and vehicle constraints. In the event of those rare occasions when no emergency

landing areas are available, the abort planner would direct the vehicle away from

populated centers, improving overall system safety. The abort system presents whatever
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flight plan is determined to the onboard trajectory generator, which actually targets the
intended landing site and calculates the necessary reference trajectory.

The use of an onboard trajectory generator eliminates the dependency on pre-defined,
preloaded trajectories. This, in turn, lowers recurring operational costs by removing the
labor-intensive trajectory design process of each new flight for a one-time algorithm
certification effort. The use of actual rather than predicted flight states grants flexibility
to each trajectory and expands the vehicle's flight corridors. In addition, an onboard
generator creates up-to-date profiles, which maximize robustness. In the case of an abort
situation, an instantaneous assessment of current vehicle flight conditions allows for
successful recovery trajectories to be produced for unanticipated cases, while still taking
advantage of the full capabilities of the vehicle.

Draper is pursuing an onboard trajectory generator that follows a different approach from
the conventional "brute-force" trajectory generators currently used to calculate the shuttle
trajectories. The approach chosen is the use of a real-time design tool, which utilizes
embedded intelligence and knowledge of key system dynamic tendencies as decision aids
in the formulation of a trajectory. This design approach is shown in Figure 4.8. The next
chapter covers in detail the fundamental layout as well as the operational and design
background of Draper's current onboard trajectory generator.

State (Embedded Intelligence)
Inp ut h-O u tp u t

Desired
(Terminal)
Conditions

Figure 4.8: NGGC Approach to Onboard Trajectory Generation [7]

Future advances in onboard trajectory generation will not be fully realized without the
creation of an IG&C system. This system is designed to perform over a wider range of
conditions throughout the flight envelope, as compared to traditional G&C systems.
Central to the design is the ability of the system to reconfigure to vehicle failures (such as
a stuck elevon, or locked rudder) and to adapt to changing flight conditions as mandated
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by the onboard trajectory generator. The adaptive nature of the control system will lead

to automatic tuning of an optimal controller for various flight conditions. In addition, the

tracking and stability control loops are integrated into a single process that optimizes the

trajectory performance while accommodating the actuator control stability constraints.

With the development of each of these components, it is hoped that the resulting NGGC

system will enable the performance of the vehicle to be only constrained by its physical

design limitations and not the guidance and control algorithms.
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Chapter 5

Onboard Trajectory Generation

5.1 Overview

Draper Laboratory's vision for a Next Generation Guidance and Control system is based

on the ability to design trajectories with an onboard trajectory generator. Traditional

trajectory design approaches are very time intensive and would not lend themselves to

real time implementation. Draper has recently developed a new approach that could

potentially form the core technology for an onboard system. This method uses a new

dynamic procedure, known as the Kernel Extraction Protocol (KEP), where the trajectory

dynamics are extracted from the non-linear kernel dynamic equations of motion. The use

of KEP enables the near real time generation of trajectories, including all the

corresponding flight dynamics and control histories for online optimization within the

flight control system. This chapter presents the basic methodology behind the Kernel

Extraction Protocol and its formulation. It begins with the derivations of the kernel

equations of motion and the fundamentals of the protocol. The following sections present

application and expansion of the KEP technology with regards to trajectory generation,
while the last sections describe the status of Draper's onboard trajectory generator.

5.2 Kernel Extraction Protocol (KEP)

5.2.1 Kernel Equations of Motion

The conventional method of generating a trajectory involves integrating the equations of

motion in the time domain in order to propagate the trajectory forward in space. This

traditionally requires an iterative approach on adjusting the time-history control reference

so that the resulting trajectory satisfies the design goals. However, a more efficient

method, using the Kernel Extraction Protocol, designs the trajectory geometry based on

desired characteristics, and then extracts the required dynamics and control history to fly

that trajectory. The kernel equations of motion are essentially rearrangements of the

equations of motion derived in Chapter 3, but differ by replacing the traditional guidance

state (velocity), and the independent variable (time), with dynamic pressure and altitude.
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The use of dynamic pressure (7), as the dynamic variable, or guidance state, has two
important benefits. First, 7 is a more slowly varying parameter than velocity, due to the
fact that on an entry trajectory, the increasing density partially offsets the decreasing
velocity [11]. Also, dynamic pressure is near constant at equilibrium conditions, and it
experiences practically linear variations over small changes in altitude. These ;
characteristics enhance the stability and robustness when propagating the nonlinear
kernel equations of motion. Second, many of the dynamic constraints imposed on
trajectories are imposed directly on q and indirectly on vehicle velocity. These can be
dynamic pressure limits at the ALI target conditions, or actual vehicle loading limits,
which are functions of dynamic pressure. Additionally, controlling dynamic pressure still
implies controlling velocity because q is directly related to velocity.

Changing the independent variable from time to altitude provides an easier and more
convenient means of designing trajectories. Because KEP does not rely on the time
integration of the equations of motion to generate a trajectory, the time history of the
trajectory is not important from a design standpoint. Therefore, the independent variable
can be any monotonically changing quantity. The choice of altitude allows the designing
of trajectories based on predetermined altitude steps, which is a convenient method of
handling gliding reentry trajectories. Also, because density is a function of altitude, it
would be more difficult to characterize the change in density with respect to any other
independent variable, such as downrange distance x, or time. It should be noted that the
time history is not lost, since it too can be extracted from the KEP solution.

The formulations of the kernel equations begin with the equations of motion derived in
Chapter 3 and reproduced here for ease of reference.

-D
V - - g sin ) (5.1)

= -[L cos -W cos y| (5.2)
mV

.L sin pj
= m i s (5.3)

m VCOSy/
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Once again, the aerodynamic forces can be represented as functions of dynamic pressure,

which is used to provide a more well-behaved iteration on the above equations. Dynamic

pressure is defined as:

q = Y2 2 (5.4)

Converting Eq 5.1 into a form governing the change

differentiating Eq 5.4 with respect to time.

in dynamic pressure begins with

,= l91bv 2 ±pV (5. 5)

The next step involves rewriting b as a function of altitude, using the chain rule:

P d dh
dh dt

(5. 6)

where dp/dh is a known quantity of an atmospheric model, easily extracted from tabular

data, and dh/dt is the vertical component of the derivative of the vehicle position vector

given by:

(dh = h Vsin2y
cdt)

Recall the definition of the drag force from Chapter 3:

D =;qSCD

(5. 7)

(5. 8)

Now, substituting Eqs 5.1, 5.6 and 5.8 into Eq 5.5 and simplifying in respect to k, yields

an equation for the change in dynamic pressure with respect to time,

. -I dp pSCI- _ P= A q -i/ g C

[p dh m sin~ j
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Next, the chain rule is used to replace time with altitude as the independent variable.
This simplifies to just dividing by h.

d( d( ) dt d( ) 1
dh dt dh dt (

After applying this change, and rearranging Eq 5.2 into an equation for dynamic pressure,
Eqs 5.9, 5.2 and 5.3 can be written as:

dl_1dp pSC1 )-- = g, -Ap (s 11
dh p dh msiny)

W COS)y
SC, cos p2m sin;/ I i (5.12)

(p dh

dX pSC, sin (5.13)
dh msin2/

These are the kernel (or core) equations of motion used by the Kernel Extraction
Protocol. Also, the advantage of using altitude as the independent variable is now
apparent, because y(h) and '%I? (h) can be expressed in closed-form based on the
geometry of a given trajectory, where

y(h) = atant -h (5. 14)
dx

It should be noted that the g7 equation is a reformulation of the f equation and
establishes the lift for a given bank angle required to stay on the longitudinal profile of a
trajectory at any given altitude. The dlf/dh equation is a reformulation of the Y
equation and establishes the required drag to stay on the energy profile of a trajectory and
the d%/dh equation defines the bank angle necessary to maintain the desired heading
[12].
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5.2.2 KEP Methodology

The Kernel Extraction Protocol is a rapid method for solving the kernel equations of

motion derived above. The equations already have the geometrical constraints built into

the dynamics, so a trajectory is created by substituting the actual values for the geometry,
such as y, dy/dh, and d%/dh, into the equations and then "balancing the dynamics" to

satisfy the physics of flight mechanics to stay on the reference profiles. The Kernel

Extraction Protocol is this process of "balancing the dynamics", which is explained more

explicitly in the subsequent example. Propagating and balancing the three kernel

equations as the vehicle descends along a trajectory yields an altitude-correlated solution.

The actual technical process of KEP is quite simple. The best way to describe it is with a

simple trajectory design case: a wings level, straight trajectory that follows a constant

glide slope. In this case, the following is true,

y(h) = y1 = constant (5. 15)

dy
p = 0 and -- = 0 (5. 16)

dh

Therefore, the kernel equations of motion simplify to

dF-_ 1 dp pSCJ) _- -q -p SI pg =f, (q7, a, h) (5. 17)
dh p dh m sin y

W cosyif
q - 1  - f2(a, h) (5.18)

SCL

d = 0 (5. 19)
dh

After simplifying the equations for the given geometry, it is apparent that the system

complexity has been reduced to two equations of motion, dq/dh and q7, and one control,

a. The angle of attack controls the lift and drag coefficients of the vehicle and hence

Eqs 5.17 and 5.18. Also note, that the two equations are actually correlated so that the

only state remaining is dynamic pressure. However, even though the problem is

simplified, there is no closed-form solution to balancing the dynamics and completing the
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trajectory design due to the fact that the equations are non-linear and the aerodynamic
coefficients come from actual vehicle aerodynamic tables. Therefore, the Kernel
Extraction Protocol is based upon an iterative technique where the angle of attack is
adjusted such that the resulting aerodynamic properties balance the required lift to stay on
the trajectory (i equation) with the proper drag to maintain the required energy state
(dqj/dh equation). This process is sometimes referred to as "balancing the dynamics",
which is in fact just the balancing of the q equation, which gives the current state
dynamic pressure based upon present conditions, with an estimated ;, which comes
from an integration of the dqf/dh equation.

The iteration of the trajectory begins at the top of the trajectory, at a point where the
designer chooses. For example, this may be the airdrop location for a free-fall test
vehicle, or the point in the space shuttle's trajectory where an abort is initiated and a new
trajectory is needed. Either way, the initial altitude and all of the vehicle states are
known. The derivative of ;7 at the initial altitude is easily obtained from Eq 5.17. To
solve for the angle of attack and the dynamic pressure at the next integration step,
h + Ah, we first guess a value for a. This gives two estimates for 7 at altitude h + Ah,
one calculated from the differential equation, ft ,,, and one calculated from Eq 5.18,
qal I The quantity i is obtained by using an improved Euler numerical integration

technique.

q7(h + Ah), ag (a(h + Ah), h + Ah) (5. 20)

q7(h + Ah),Itr =q+(h)h+ -+ +h) (5. 21)
2 dh d

where d(h + Ah) = f (q(h + Ah),, a(h + Ah), h + Ah).

The estimates 7 ,,, and io. are compared to determine if the correct angle of attack was

chosen to keep the vehicle on the specified geometry.

q1 = ql -qdf, (5. 22)
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If the estimates for dynamic pressure do not match, then a(h + Ah) is varied by a secant

root finding method until they do match as shown below. Figure 5.1 also demonstrates

this principle.

a(h + Ah) = a(h)+ i7e,,kAa (5. 23)

where kA. is an adaptive gain that provides an incremental change in angle of attack.

h

h+ Ah

!(a,N , h+ Ah) J
_Y

q err

Figure 5.1: "Balancing the Dynamics" through Dynamic Pressure

Once the values for the dynamic pressures converge to the specified tolerance, the

solution for a(h + Ah) and q(h + Ah) is complete and the process is repeated for every

altitude step until ending at the specified target altitude. The vehicle control history, i.e.

the elevon angle values, is determined by trimming the vehicle at every altitude step.

This consists of adjusting the elevon to zero the pitching moments of the vehicle at each

calculated angle of attack.

The process described above is the same for three-dimensional trajectories as well. In

those cases however, there are two controllers, angle of attack and bank angle. The
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solution technique typically involves using multiple nested loops to balance the three
kernel equations of motion, unless some other clever rearrangement is used to simplify
the equations. While the three-dimensional case may be a little more complicated, it
follows the same process described above to balance the dynamics and obtain a solution
for the states and controls.

The Kernel Extraction Protocol described here provides a simple, fast method for
designing trajectories. It does not require, nor is it sensitive to, small changes in the
control history vital to standard time-integrated shooting trajectory generators. This
enables KEP to design trajectories potentially in real time, since the trajectory control
history is correlated to the geometry at each altitude increment. Also, the protocol
appears to be robust in this domain. If the profile under consideration is not within the
capabilities of the vehicle, then the equations will not balance and no solution will be
found. However, the potential for having no solution is mitigated by constraining the
geometry or resulting i7 profiles to well-behaved, simple shapes. Therefore, every
trajectory generated by KEP is intrinsically flyable.

Draper has devised two methods for using KEP in a trajectory generator. The first
method, which is restricted to the subsonic region, adjusts a fixed number of geometric
shapes and segments linked together to solve a two-point boundary value problem
(TPBVP). The second method, which is used for the entire flight space (supersonic and
subsonic regions), continuously adjusts the geometry to follow a specified energy profile.
These two versions of the trajectory generator are covered in the following sections.

5.3 Geometrically Constrained Methods

5.3.1 Definition

Geometrically Constrained Methods refer to those trajectory designs that are constructed
around pre-defined geometric shapes and segments. The geometric shapes may consist
of straight-line constant glide slopes, circular or exponential flares, or even circular turns
and vertical conical spirals. These shapes help to simplify the kernel equations of motion
and are useful in reducing the order of the system to be solved, as discussed in the
previous section.
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5.3.2 Auto-Landing I-load Program (ALIP)

The Auto-Landing I-load Program (ALIP) was developed by G. Barton of Draper

Laboratory as a pre-mission design tool for the X-34 project [11]. This program rapidly

generates unpowered autolanding reference trajectories from the Auto-Landing Interface

(ALI) at 10,000 feet to touchdown. It also generates the Mission Data Loads (I-loads),
consisting of the state and control effector references, for input within the shuttle-class

algorithms used by the X-34, and predicts the flight behavior while flying the reference

trajectory. The primary motivation for the development of ALIP was to simplify the

time-intensive conventional approach of designing autolanding trajectories by automating

the process. This was accomplished by the use of KEP.

The autolanding (A/L) trajectory profile used by the X-34 is identical to the reference

used by the Space Shuttle. This flight portion occurs on final approach, when the shuttle

is flying wings level and its heading is aligned with the runway. The A/L profile is made

up of well-defined geometric segments or subphases, consisting of a steep glide slope,

circular flare, exponential decay, shallow glide slope, and final flare. These subphases

are shown in Figure 5.2. It should be noted that a vehicle flying through the A/L flight

phase is traveling subsonically and it is essentially restricted to longitudinal motion, i.e.

pitching motion only.

(XK, HK)
Steep

Glide slope R

HCLOOP h
Circular

Flare 1

Exp. X
HDECAY 

Ep
Decay Shallow

Glide slope

XZERO XEXP XAIMPT

Figure 5.2: Auto-Landing Subphases and Geometry [11]
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With the geometry well-defined, and enforcing physical constraints such as loads,

vertical descent rate, continuity and smoothness, the design problem reduces to a two-

point boundary value problem, with conditions on the initial and final dynamic pressure.

The kernel equations simplify to Eqs 5.17, 5.18, 5.19, just like the simple example used

to describe KEP. The substitutions for the geometry into the kernel equations are as

follows:

-Steep /shallow glide slope

d - 0 
(5. 24)

dh

-Circular flare

dy _ 1d7--= (5. 25)
dh (HK - h) tan y

-Exponential decay

dy HDECAY cOS 2 )/ XEXP - (]
dh , 2tan) exp (5. 26)

where a is the decay rate of the exponential flare.

In order to solve the TPBVP between the initial and final dynamic pressures, ALIP

assumes an initial value for XZERO and uses KEP to design a trajectory from the ALI to

the runway using each of the geometric segments. The variable XZERO represents the

outer glide slope intercept with the landing altitude. If the touchdown 27 does not fall

within tolerances, the program adjusts XZERO, sliding it either towards or away from the

runway, until the trajectory satisfies the constraints (Figure 5.3). In this regard, ALIP

uses the initial downrange state to remove landing energy errors at the final state, but in

the process designs several complete trajectories before finding a solution. This method

is sometimes referred to as a "shooting method", since it "shoots" several trajectories

until it satisfies all the constraints. Also note that because ALIP adjusts XZERO to solve

the TPBVP, it is solving a problem of unconstrained range, because the initial vehicle

position or starting point is not fixed.
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Figure 5.3: Effect of Adjusting XZERO [1

5.3.3 ALIP3D

Draper Laboratory chose to expand the capabilities of ALIP and KEP by extending it into

the subsonic portion of the TAEM flight regime, consistent with the expected X-34

unpowered drop tests. This led to the development of ALIP3D), designed by A. Girerd,

which is covered in an MIT thesis entitled Onboard Trajectory Generation for the

Unpowered Landing of Autonomous Reusable Launch Vehicles [13]. This trajectory

generator has many similarities with ALIP, including designing subsonic flight

trajectories around predefined geometric shapes derived from the Space Shuttle's

guidance scheme. However, ALIP3D) uses the full three-dimensional equations of

motion, and successfully couples the lateral and longitudinal flight dynamics into the

resulting trajectories.

The entire flight geometry is designed from the subsonic portion of the shuttle's TAEM

region. Four geometric segments comprise the elements of the lateral flight portion and

are shown in Figure 5.4. The first segment, the circular acquisition turn, changes the

vehicle's heading towards tangency to the Heading Alignment Cone (HAC). The second

segment is a straight-line tangent to both the acquisition turn and the HAC. The third

segment is defined as the distance traveled along the HAC spiral and the fourth segment

is a straight line from the HAC to the ALI. The longitudinal flight portion generally

consists of three segments, which includes an initial straight-line glide slope to a

flare/anti-flare, and ends with a final glide slope to the ALI. An anti-flare is defined as a

dive or constant increase in the magnitude of y/ with respect to altitude. The longitudinal

geometry is shown in Figure 5.5.
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Figure 5.4: Elements of Lateral Geometry [13]

With the addition of the lateral geometry, the KEP methodology must make use of all
three kernel equations of motion. However, a clever rearrangement of the dx/dh can be
used to reduce the system back down to two equations. After substituting the
longitudinal geometry (y and dy/dh) into the kernel equations and rewriting, the system
to be solved consists of:

-= f, (q, a, h) (5. 27)
dh

q = f (a, h, p) (5. 28)

- = (a, h,p) (5. 29)
dh

The dz/dh equation is then rewritten by solving for bank angle p :

p/= sin dmsin2] =f 4 (a,h) (5.30)
1dh pSCL
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Therefore, because the bank angle is a function of the other variables in Eq 5.28, Eq 5.28

can be condensed into:

q7 = f 2(a, h) (5.31)

With all of the geometry substituted into the kernel equations, it can be seen that the

problem has been simplified back down to two equations (Eqs 5.27 and 5.31). Once

again, KEP is used to balance the dynamic pressure equations through the use of angle of

attack.

h Drop Point h Outer glide slope

Outer glide slope

Flare OR Anti-flare

x X

ALI glide slope ALI ALI glide slope ALI

Figure 5.5: Elements of Longitudinal Geometry [13]

In general, ALIP3D begins the trajectory design by using the initial vehicle dynamic state

and position to determine the location and radius of the acquisition turn. The minimum

turn radius is defined by the maximum allowable Nzh. The maximum turn radius is

determined by calculating the largest acquisition circle that still allows tangency to the

HAC. ALIP3D can be programmed to choose a radius based on user specifications, so

long as it lies in between the two requirements described above. Once this segment has

been established, the program lays out the remaining ground track segments, including

the pre-positioned HAC, and calculates the bank angles necessary to follow this lateral

geometry. It is important to reiterate that the radius of the acquisition circle, and thus the

maximum turning capability of the vehicle at the trajectory initiation, is determined
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solely on the initial vehicle energy state. Designing the lateral portion first enables

ALIP3D to predict the effect of the lateral maneuvers on the longitudinal profile.

The program continues with the design of the longitudinal flight path following the

geometry of Figure 5.5. The altitude flight space for these trajectories is usually between

40,000 ft and the ALI (10,000 ft). Once the lateral and longitudinal profiles have been

finalized, KEP is used to propagate the states and controls and complete the trajectory

design.

5.3.4 Limitations

Although ALIP and ALIP3D rapidly calculate flyable trajectories, neither trajectory

generator is well suited for onboard implementation. First, the use of pre-defined fixed

geometry in the calculation is undesirable because it takes away from the main design

feature of an onboard trajectory generator, that is, the ability to design for abort scenarios.

These scenarios are anticipated to occur during off-nominal conditions, so the use of

nominal pre-defined geometric profiles is not feasible. While using fixed geometry

simplifies the kernel equations of motion, it also reduces the possible number of

trajectories that can be designed by forcing them to contort to those geometrical

constraints. For example, one can clearly understand the difficulty of generating an abort

trajectory around off-nominal conditions while still trying to make it to a pre-defined

HAC, which is designed for certain, nominal conditions. Also, ALIP and ALIP3D only

design trajectories feasible in the subsonic regime. This is a limiting feature considering

that this regime makes up the smallest portion of an RLV's gliding flight. Additional

limitations are program specific.

ALIP's use of a shooting method that uses XZERO as the design parameter forces ALIP to

solve a TPBVP of unconstrained range. This precludes ALIP's use as an onboard

trajectory generator. In reality, an onboard system must design a trajectory using the

current vehicle states, including its exact position. Therefore, the TPBVP to be solved by

an onboard trajectory generator is necessarily constrained in range. However, ALIP was

designed as a pre-flight design tool and not as an onboard system. It calculates the

optimum approach to touchdown for a given set of design conditions, and does it very

well. Additionally, it is unlikely that A/L trajectories will ever need to be generated in

real time. As a vehicle passes through 10,000 ft during an approach to a runway, it is

improbable that it will be able to choose a different landing spot and design a new
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trajectory at that moment. Therefore, it is safer, and more convenient to design

trajectories to a predefined ALI point and blend it in to an A/L trajectory created by

ALIP. ALIP3D follows this approach and tries to adapt ALIP methodologies into a

working onboard system.

ALIP3D correctly designs trajectories correlated to the initial states and exact position of

the vehicle, but it presets the radius of the circular acquisition turn by an evaluation of the

initial vehicle velocity. This limits the capabilities of the program by reducing the

solution space. For instance, a vehicle at subsonic speeds possesses a much tighter

turning capability than at supersonic velocities. If the radius of the acquisition turn is

formulated around an initial velocity of Mach 3.5, the resulting turning maneuver would

have a girth greater than the total distance to the HAC and the program would fail to find

a solution (Figure 5.6). However, a solution might be possible if a smaller acquisition

turn is used later, after the vehicle loses velocity. In this respect, ALIP3D does not

account for the increase in maneuverability with decrease in flight speed. This severely

limits its application in the supersonic flight regime.

Figure 5.6: Possible High Mach Number Acquisition Turn [1]
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5.4 Sub-optimal Nodal Application of the Kernel Extraction (SNAKE)
Method

5.4.1 Overview

To specifically address the supersonic flight regime design challenges, A. Grubler

developed the Sub-optimal Nodal Application of the Kernel Extraction (SNAKE)

method. This method does not rely on pre-defined fixed geometry and is valid over the

entire TAEM region, including high altitudes and supersonic flight speeds. The SNAKE

method generates trajectories in three distinct steps, covered in the following sections.

Step 1): is the design of a dynamic pressure schedule, from which the longitudinal flight

profile of the vehicle is derived. Step 2): is a formulation of the vehicle's ground track,

or lateral flight profile, by means of a real-time ground track solver. And Step 3): is the

use of KEP to balance the dynamics around the geometry calculated in the first two steps

and to complete the trajectory design.

Note: All SNAKE trajectories are designed to fly to the ALI, and utilize an ALI-relative

coordinate system, as shown in Figure 5.7. The origin lies at the ALI transition point of

XALI downrange, zero crossrange, and 10,000 ft altitude. The positive x-axis points in the

direction of the runway, while the positive y-axis points perpendicularly to the right of

the runway. Additionally, the heading angle X is equal to zero when it is aligned with

the positive x-axis. This reference system is used in the remainder of this thesis.

g ALI-relative
Vehicle
Position (010 h) /ALI

IZ 

Z

hALI

(XALI YALI ,0),,,l,

Figure 5.7: ALI-relative Coordinate System [1]
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A. Grubler's work is covered in an MIT thesis entitled New Methodologies for Onboard

Generation of Terminal Area Energy Management Trajectories for Autonomous

Reusable Launch Vehicles, and can be referred to for a more detailed explanation of the

technical process of the SNAKE method [1].

5.4.2 Dynamic Pressure Schedule

All trajectories that are designed to end at the ALI are required to meet the dynamic and

geometric constraints mentioned in Chapter 4. This includes the dynamic pressure

constraint of 335-psf. ALIP designs the autolanding outer glide slope so that the vehicle

experiences a state of near-static equilibrium, or nearly constant q7, as it descends. In

reality, a vehicle flying this constant glide slope will experience slight variations in

dynamic pressure due to density and velocity changes. For this reason, the unique glide

slope has been termed the quasi-static equilibrium glide slope. However, this glide slope

is only valid at lower altitudes and velocities. In order to maintain a constant q or follow

a q schedule in the design space utilized by SNAKE, the vehicle must hold to a

continuously varying flight path as it descends through TAEM. This results in the

alteration of the trajectory from pre-defined shapes, such as glide slopes. Therefore, the

SNAKE method utilizes a q schedule or profile to determine the longitudinal shape of

the trajectory, which consists of continuously varying geometry.

A q schedule is a pre-defined change in dynamic pressure with a given altitude. A

typical schedule may consist of an unvarying or constant ; profile, or a schedule that

varies through different q values before settling in on the ALI target q condition (Figure

5.8). In general, the nature of these schedules is arbitrary and left up to the choice of the

trajectory designer, although the focus of this thesis may guide in the selection of these

schedules. The only major concerns are that the changes in dynamic pressure between

altitude steps remain physically realistic and that the schedule presents a path to the

constraint i value at ALI. Reference 1 presents a method for using a quadratic dqj/dh

form to ensure that the schedule moves from the initial to final value smoothly, with no

discontinuities or dynamic constraint violations. Additionally, the q schedule chosen

must also fall within the vehicle energy corridor. This corridor contains the range of

possible dynamic pressures with which the vehicle can maintain flight, and represents the

physical range limits for the vehicle. The edges of the energy corridor are dubbed the

Max Dive (MD) and the Max Glide (MG) limits.
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Figure 5.8: Dynamic Pressure Schedules

The Max Dive boundary represents the steepest path a vehicle may follow without

violating its maximum dynamic pressure limit. It also defines the shortest possible

ground track length the vehicle may achieve. A trajectory designed to follow the MD

limit utilizes a constant q7 profile and represents the uttermost limit of the vehicle dive

capability. The X-34 is limited to a maximum dynamic pressure of 500-psf, beyond

which structural damage may occur. A typical Max Dive trajectory through the TAEM

region is shown in Figure 5.9. It can be seen that following a constant q profile results

in a continuously evolving flight path, and not the quasi-static equilibrium glide slope

utilized by ALIP and ALIP3D. The vehicle must continuously pitch downward to

maintain the high dynamic pressure as the vehicle slows and descends into the ever-

thickening atmosphere. As it approaches the ALI, it must then pitch upward to decrease

the dynamic pressure in order to satisfy the 335-psf constraint.
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Figure 5.9: Flight Path for Max Dive Trajectory

The Max Glide limit represents the furthest horizontal distance a vehicle may achieve,

and is determined by following the vehicle's maximum lift-over-drag contour. In order

to fly at the max L/D, a vehicle must maintain an angle of attack corresponding to the

peak in the L/D curve. This actually varies due to velocity and speed brake changes over

the course of a typical trajectory. A suitable approach for determining the MG limit is to

substitute it with a constant q profile that closely approximates the Max Glide line. Not

only does this provide for a smoother trajectory, but it also standardizes the energy

corridor boundaries with a constant q7 profile much like that of the MD limit. The MG

line for the X-34 is set at a dynamic pressure value of II0-psf, in accordance with

Reference 1. A graph of the nominal energy corridor, including the Max Dive and Max

Glide boundary lines, is shown in Figure 5.10.

A center of corridor profile is a trajectory that follows a constant dynamic pressure of

335-psf. This type of profile allows a vehicle to fly in between its MD and MG limits
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and theoretically may represent the point of maximum robustness for the vehicle because

it has the maximum ability to change between energy states. Maximum robustness is

defined as the condition of greatest tolerance to future dispersions. For example, if a

vehicle is following a center of corridor profile and suddenly finds itself short of the

runway, it can extend its range by transitioning towards the max glide boundary.

However, if it were initially following an MG trajectory, it would not be able to extend its

range and would fail to reach the target location. Once again, it should be noted that the

choice of the dynamic pressure schedule is left up to the trajectory designer, be this a

human operator or an automated program.
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Figure 5.10: Typical Energy Corridor
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5.4.3 Ground Track Formulation

The next step in the application of the SNAKE methodology is the formulation of the

ground track or the design of the lateral trajectory profile. This is done by the use of a

real-time ground track solver that takes advantage of the varying maneuverability

resulting from the large variations in speed and altitude over the trajectory, and

manipulates a projected ground track to reach the final target location. The formulation

of the projected ground track is derived from the SNAKE's method of handling the

design space through the use of nodes and straight-line segments.

100,000ft

10,000ft

yX

Ground Track

x

Figure 5.11: Nodes and Ground Track Segments [1]

SNAKE divides the TAEM region into altitude steps with a node corresponding to each

altitude value. The nodes are then connected to each other by straight-line trajectory

segments shown in Figure 5.11. A projection of these trajectory segments onto the

xmL ~ yPo plane makse up the ground track shape of the trajectory. As can be seen in

Figure 5.12, the 2-D ground track segment lengths and orientations are geometrically

determined from node to node by the vehicle's flight path and heading angles

respectively. The vehicle's flight path angle is dynamically constrained to maintain a q7

schedule as discussed in the previous section, and yields an estimation of all the segment
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lengths. Thus, the overall predicted ground track is specified by a summation of all the
ground track segments.

h a

Figure 5.12: Ground Track Segment Orientation [1]

In the previous subsection, the ground track range was determined assuming wings-level
flight for a specific q schedule. Now, it is important to add in the turning capability of
the vehicle. Unlike ALIP3D, where the turning radius is determined by a given Nz load
and the initial vehicle velocity, the SNAKE method calculates the turning capability for a
given Nz load at every altitude step. This allows designing trajectories within the full
capability of the vehicle as well as correctly handling the dynamics of flight. To do this,
the SNAKE method calculates the ground track for a constant Nz turn from the
initialization of a TAEM trajectory to the end. The resulting ground tracks are spiral in
nature due to the fact that any constant Nz turn in a gliding vehicle will lead to a turn of
ever decreasing radius as the vehicle loses velocity. Figure 5.13 depicts the ground tracks
for a family of constant Nz turns. These spiraling turns provide a measure of the
flexibility of the entire ground track for a particular q schedule at a specified Nz limit
and lead directly to the derivation of a d% array, which delineates the maximum number
of degrees of heading angle change allowable between any two trajectory segments. The
heading angle changes define how far the segmented ground track is allowed to bend at
each node.

Correlating the ground track to a segmented toy snake is the best way of visualizing the
calculation of the final ground track shape. For this analogy, the joints of the toy snake
represent the trajectory nodes, while the body segments between the joints correspond to
the ground track segments of the trajectory. The orientation of the snake's tail
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characterizes the current vehicle position and heading, and the head symbolizes the final

position and heading of the vehicle that must eventually be brought to lie at the ALI.

Figure 5.14 clearly shows the relationship between the toy snake and the trajectory

ground track.
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2.5 r--

2

1.5

0
0

0.5

0 '
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0 0.5 1

X 10,

Figure 5.13: Family of Constant Nz Turns [1]

The lateral movements of the snake segments are constrained by the range of the motion

of the joints, and correspond directly to the flexibility of the ground track with respect to

the Nz banking limits, as determined from the propagation of the spiral turns. In the

same fashion, the toy snake is more flexible near the head due to the increase in turning

capability as a vehicle loses velocity. Also, the snake segments decrease in length as they

are bent, caused by the increase in flight path angle as a vehicle banks. This effect is

sometimes referred to as "dumping the lift" [1].
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Figure 5.14: Analogy of Toy Snake to Ground Track [1]

(Figure not drawn to scale. In actuality, the number of ground track segments equals the

number of snake body segments)

With the analogy of the toy snake established, it may be employed to further explain the

formulation of the trajectory ground track. For example, assume a trajectory is being

designed for a vehicle with an initial crossrange and downrange offset from the Auto-

landing Interface. The dynamic pressure schedule has already been selected and the

maximum straight-line ground track profile is propagated through an estimation of the

flight path angles. This ground track distance overshoots the ALI by several thousands of

feet. The only way for the vehicle to arrive at the ALI while flying the selected 2-

schedule is to "snake" the ground track around so that it terminates at the ALI target.

This must be done without violating any of the turning constraints placed upon each

segment and must also take into account the loss of segment length caused by each turn.

The toy snake demonstrates this example in Figure 5.15.

Defining the lateral profile in this fashion completely discards any dependency on fixed

geometric shapes. The resulting ground track is designed entirely from the vehicle's

capabilities and the coupled lateral and longitudinal dynamics. The actual manipulation

of the snake-like ground track is handled by a real-time ground track solver, which must

bend it to the final conditions, just like the example above. Once the final ground track

shape has been finalized, the y, dy/dh, and d%/dh values are passed on to be used by

KEP in the propagation of the trajectory. It should be noted that the intelligence of the

SNAKE methodology lies in the formulation of the lateral ground track. If the ground

track solver can generate a solution for all types of initial conditions, then the SNAKE

method can generate trajectories for all conditions.
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Figure 5.15: Manipulation of Projected Ground Track to the ALI [1]

5.4.4 Rapid Trajectory Propagation

Once the dynamic pressure schedule is determined, and the ground track is formulated, a

trajectory is rapidly propagated through the use of the Kernel Extraction Protocol. This

involves the balancing of all three kernel equations of motion, because the order of the

system has not been reduced by introducing constraining geometry. The system of

equations to be solved consists of:

- = f, (q,7, a,h) (5. 32)

7 = f-(r, a,h,,u) (5. 33)

- f3(, a, h, p) (5. 34)
dh
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The general solution technique involves using three nested loops to achieve the required

balance between the three equations. This program layout is shown in Figure 5.16. The

innermost loop adjusts the flight path angle y to balance the two estimates of the

dynamic pressure derived from Eqs 5.32 and 5.33. The next outward loop adjusts the

angle of attack to ensure that the dynamic pressure determined in the inner loop matches

the ;7 of the chosen dynamic pressure schedule. Finally, the outermost loop adjusts the

bank angle p to satisfy the required dy/dh or Nz value determined during the ground

track formulation. Once all three equations are in agreement, the process continues for

each altitude step until the completion of the trajectory design.

Figure 5.16: General Propagation Algorithm [1]
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5.5 Proto-Snake

5.5.1 Methodology

The Proto-snake is a prototype trajectory generator, designed by A. Grubler, which

makes use of the SNAKE methodology. It is the first generator to utilize the three

SNAKE technological components and the first to demonstrate the potential application

of an onboard ground track solver. The Proto-snake can generate trajectories throughout

the TAEM region and has proven to be fairly robust in this domain. Reference 1 contains

a collection of results for this generator.

Proto-snake begins its trajectory design, as per the SNAKE methodology, with the

determination of a dynamic pressure schedule. At the present time, the generator does

not have the intelligence or ability to design or select the most appropriate dynamic

pressure schedule for the given conditions. However, Proto-snake does have the ability

to step the trajectory up or down from the initial q state using the previously described

quadratic function, which can blend the step with the initial and terminal boundary

constraints.

With the qT profile decided, the program uses KEP to propagate both a wings level

trajectory at the specified q7, and a spiral constant Nz trajectory. The Nz used for the

spiral turn is set by the user, and again is not chosen automatically by the trajectory

generator. These two trajectories are used by the ground track solver in determining the

lateral profile shape, or in regards to the previously used analogy, the shape of the toy

snake. The wings level trajectory gives the ground track solver the projected flight path

angles, and the spiral trajectory gives it the maximum allowable heading angle changes at

each node and the impact on the wings level flight path angle. If the ground track solver

needs to turn at less than the maximum allowable, the corresponding flight path angle is

an interpolation between the wings level and spiral values of 7. This is shown in Figure

5.17.

The real-time Ground Track Solver (GTS) used by Proto-snake is the only real automated

process within the trajectory generator. It takes the current vehicle location, and the

output from the wings level and spiral trajectories and designs the necessary ground track

shape to reach the ALI. While maintaining the dynamic pressure schedule, it solely

designs trajectories following a pre-designed method. In this manner, it is an ad hoc
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solution for limiting cases, but it is does demonstrate the unique capabilities and

advantages of the SNAKE method.
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Figure 5.17: y versus d 4 , Table for Segment Length Prediction [1]

The ad hoc approach taken in the design of the GTS was to force it to operate in much the

same way as an objective function. By using "brute force" methods, the GTS drives the

trajectory crossrange errors to zero as quickly as possible. This takes place in two

phases. In phase one, shown in Figure 5.18, the GTS begins by marching down the nodes

of the projected ground track while bending each node towards the x-axis at the

maximum allowable bend (determined from the Nz limit). Each adjacent segment to the

node currently being bent is flexed in the opposite direction until the remaining ground

track is parallel with the x-axis. This continues until the remaining projected ground

track is coincident with the x-axis, which is when the crossrange error is zero.

The second phase is used to pull out the excess ground track that extends beyond the ALI

threshold. To do this, the GTS continues to bend the segments at the maximum Nz away

from the ALI while bending the remaining segments back towards the x-axis and holding

them coincident with the axis (Figure 5.19). This is continued until the downrange error
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has been removed. Once the final node is coincident with the ALI location, the GTS ends

and passes on the heading angle profile for the resulting ground track to the general KEP

propagator for the completion of the trajectory design.
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Figure 5.18: Phase One of the Ground Track Solver
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5.5.2 Limitations

The SNAKE method has successfully addressed the shortcomings that the geometric

constrained methods have in the supersonic flight regime. However Proto-snake, as the

first prototype in the application of the SNAKE methodology, has its limitations. These

include the following:

Dynamic Pressure Schedules: These are currently user defined and are not designed

differently for varying trajectory scenarios. This means that the q7 schedule selected may

not provide the most suitable path for flying from the initialization point to the ALI. The

greatest benefit of an onboard trajectory generator is its ability to design trajectories

during an abort scenario. Hopefully the trajectories designed would be robust enough to

handle future dispersions during the flight. If the 7 schedule defined is non-optimal for

the given conditions, the resulting trajectory will not be the best solution to the problem.

Currently there is no fine measure of an optimal dynamic pressure schedule or a protocol

that determines how that schedule is formulated. The research presented in this thesis

hopes to address this problem and lay out possible criteria for the calculation and

formulation of more robust q schedules and thus more robust trajectories. This research

focuses on benchmarking trajectories at a variety of different conditions using an offline

optimizer, and determining the desirable physical characteristics of robust trajectories for

an ad-hoc onboard trajectory generator. By analyzing the results, dynamic pressure

schedules that define robust trajectories can be identified.

Ground Track Solver: The current solver uses brute force methods to force a trajectory

towards the ALI, but only by one method. While this may work and prove feasible in

designing a score of trajectories for a variety of different initial conditions, it actually

limits the design space and reduces the number of possible solutions. For example, if the

Proto-snake is initialized for an altitude and q reference in which the resulting ground

track is just long enough to make it to the ALI, the GTS would try and bend it through its

two design phases and would discover that the trajectory is short on range and fails to

supply a solution to the problem. However, a possible solution exists if the trajectory is

bent only slightly towards the runway so that the resulting ground track shape is basically

a straight-line flight to the ALI. This is an obvious shortcoming when the program

cannot find a trajectory for a given set of conditions even though a solution does exist.
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Additionally, the GTS does not guarantee the optimality or robustness of the trajectory

shapes designed. This is due in part to the lack of a suitable benchmark that represents

the ground track characteristics of a robust trajectory. The research presented in the later

chapters of the thesis is focused primarily on this issue. Once an optimal trajectory

benchmark is established, a ground track solver may be programmed to produce ground

tracks that emulate the features of those trajectories.

Proto-snake's design time for the creation of trajectories is also slowed down by the

process of having to design two trajectories before designing the final one. This is

reminiscent of the time penalty incurred by ALIP's use of a shooting method. Hopefully

the wings level and spiral trajectories can be pre-designed for different ~q profiles and

stored to reduce this computation time.

Predictor / Corrector: In the present form, Proto-snake passes on the y values predicted

during the wings level and spiraling trajectories along with the dX values determined

from the GTS to the KEP propagation algorithm for the completion of the trajectory

design. However, the bank angle of a vehicle has a direct effect on the flight path angle

necessary to hold on to a given dynamic pressure schedule. This means that any

adjustment to the ground track will result in a modification of the y profile. Proto-snake

takes this into account, but incurs a small error if the bank angle required by the GTS is

less than the one used during propagation of the spiral turns. This is shown in Figure

5.17, when the GTS interpolates the y value for a given bank angle. While this is a good

approximation, it is not equal to the actual y calculated during the KEP procedure.

Therefore, a corrector should be added that compensates for the change in the y values

due to the resulting ground track shape. Adding this component would greatly reduce

any errors present in the final trajectories.

5.6 Summary

Draper's progress in the development of a Next Generation Guidance and Control system

has been highlighted in this chapter by the presentation of the work done on the

formulation of an onboard trajectory generator. The designs of three different prototypes,

covering two different fundamental design methods, were explained along with their

limitations. Each system improved upon the shortcomings of the previous trajectory

generators and expanded upon the use of the Kernel Extraction Protocol, or the core

technology, key to the rapid propagation of trajectories within the chosen design space.
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Out of these programs, the Sub-optimal Nodal Application of the Kernel Extraction

method has shown the greatest promise for future development. This involves addressing

the limiting issues of the method's first functioning prototype, Proto-snake, and

improving upon its design.

The following chapters discuss the work completed in this research for the advancement

of the SNAKE method. This involves characterizing benchmark trajectories that future

ground track solvers should strive to emulate and creating guidelines for the

determination of appropriate dynamic pressure schedules. Chapter 6 explains the type of

optimization method used to attain these goals while Chapter 7 describes the actual

problem setup and execution method.
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Chapter 6

Optimization Tools

6.1 Overview

Proto-snake demonstrated the feasibility of using the SNAKE methodology to design

reentry trajectories suitable for reusable launch vehicles. Its use of a real-time ground

track solver enabled the program to automatically generate realistic flight paths for a

variety of different flight conditions and dynamic pressure schedules. However, the

optimality and robustness of the trajectories created was never proven or verified. The

goal of this thesis is to characterize the ground tracks created by the GTS and to establish

the benchmark trajectory for an onboard trajectory generator. This is accomplished by

creating trajectories through the use of an optimization routine. This chapter covers the

optimization tools used to realize this goal. The first section provides an overview of a

dynamic optimization problem, while the second section describes the pseudospectral

optimization method. The final sections describe the software and hardware tools used to

complete this research, including the MATLAB routine DIDO.

6.2 Optimization Problem

The basic idea in an optimization problem is the minimization of an objective (or cost)

function, subject to certain constraints. The cost function can be made up of any

combination of state and/or control variables, and possibly state variable values at certain

clock times. Once the problem is set up, a technique is chosen to solve for the

minimization of the cost function by manipulating the state and control variables, while

satisfying the dynamic constraints, such as the equations of motion.

It is necessary to describe the mathematical formulation of the basic optimization

problem before describing the solution techniques or direct application to trajectory

generation. The setup for the trajectory optimization contained in this thesis can be

described in its simplest form as follows, as stated in Reference 14.

Let x e R" and u e Rm. The variable x is a vector made up of the state variables of the

problem, while u is a vector made up of the control variables. The goal is to determine
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the trajectory-control pair, {x(-), u(-)}, and possibly the clock times or "event" times that

minimize the objective function. The clock times, rz- and rf , are the initial and final

times respectively. The objective function, also known as the Bolza cost functional, can

be written as:

Jx(-) f= # (x(r), x(r ),r ,, >1+ f L(x(r),u(r),r) di: (6.1)

where J represents the objective function, # represents the

and L is known as the integrand or Lagrange cost.

The objective function is subject to the dynamic constraints,

end point cost or Mayer cost

(6. 2)

and the end point constraints, also known as event constraints, that occur at certain

"'event" times,

(6. 3)

Note: the subscripts 1 and , stand for lower and upper respectively. An equality constraint

is simply expressed by setting the lower bound equal to the upper bound.

The objective function is also subject to constraints on the state and control variables, as

well as mixed trajectory-control path constraints. These can be written as:

x1  x(r) ! x and u, 1 u(r) 5 u

p 5 p(x(r),u(r), ) : p

(6. 4)

(6. 5)

Also note, that all functions are piecewise differentiable and if there are any

discontinuities in the state and control variables they are of finite number.
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6.3 Optimization Methods

6.3.1 Pseudospectral Methods

There are many methods available for the solving of optimization problems, applicable to

trajectory generation. Essentially these methods are broken down into two categories,
indirect and direct methods. The indirect methods basically use calculus of variations to

explicitly solve for the optimality conditions of the optimality problem. This is done by

reducing the problem to a nonlinear multi-point BVP. Direct methods, on the other hand,

convert the optimization problem into a parameter optimization problem, by discretizing

the time domain into a set of subintervals. The end points of these intervals are called

nodes, and the parameters are the values of the states and controls at these nodes [15].

The resulting problem can be solved using any one of many nonlinear programming

codes. However, using pseudospectral methods in solving optimization problems is

faster and more accurate than the two methods mentioned above even though it makes

use of essentially the same direct technique. The difference comes from using a

pseudospectral differentiation matrix as opposed to finite difference matrices or finite

element methods [16].

Pseudospectral methods have an advantage in solving optimization problems because

their approximations of differential equations are more accurate than the traditional finite

difference or finite element methods. This accuracy comes from the pseudospectral

differentiation matrix, which is used to discretize the nonlinear differential equations into

nonlinear algebraic equations. The resulting equations are then rearranged into a

parameter optimization problem, which is solved through the use of a numerical

optimizer. This differentiation matrix is best described by starting with an explanation

of a finite difference matrix.

6.3.1.1 Finite Difference Matrix

Assume that there is positional data for an object moving in a straight line, taken at 6

times separated by equal time steps. The velocity of the object is the time derivative of

the position.
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V =dx (6.6)
dt

A finite difference formula can be used to estimate the velocity at each of the six points.

This is done by using a forward difference approximation for the first point, a backward

difference approximation for the last point, and a central difference approximation for all

points in between. The formulas for these approximation are derived from the first two

terms of a Taylor series expansion and are shown below. The error, denoted by e, is due

to the truncation of the Taylor series expansion [16].

Forward Difference: V = + e where e O(At) (6.7)
At

Central Difference: V, = X 1 + e where e O(At 2) (6. 8)
2At

Backward Difference: V 1 I- + e where e ~ O(At) (6. 9)
At

Using these expressions, the velocity at each time point can be written as:

x- - x

At

2At

x4 - x

V

2At

x6 -X4
2At

At
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Expressing the above equations in matrix form yields the finite difference matrix of Eq

6.11. This matrix is referred to as the "D-matrix" and is denoted as D6 , where the

subscript represents the number of points used in the calculation of the matrix.
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(6. 11)

The error in the approximation of the velocity can be reduced if more terms from the

Taylor series expansion are added into the difference approximations.

The most important concept in the formulation of the finite difference matrix is the idea

that a continuous differential equation can be approximated by a discrete set of algebraic

equations [16]. If a vector of position data taken at different time points is given for an

object, then the velocity at those time points can by approximated using the D-matrix.

V d(x) (6. 12)
dt

V ~ D (6. 13)

This equation can be extended to systems of equations with finite set of N points, where

the D-matrix in those cases would be N x N matrices denoted by DN-

6.3.1.2 Pseudospectral Differentiation Matrix

The pseudospectral D-matrix can be used to approximate derivatives in the same manner

as the finite difference D-matrix. However, the theory behind the pseudospectral matrix

differs from that of the finite difference matrix by the choice of spacing between the

points. Whereas the finite difference approach uses equally spaced points, the

pseudospectral technique does not. This is mainly due to the choice of interpolation used

to estimate a curve fit for the points, made up of a polynomial or sum of polynomials.
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The pseudospectral method uses a Lagrange interpolation to fit polynomials between the

data points. For a set of N data points, the Lagrange interpolation formula is:

N

y(t)= YY#0 (1) (6.14)
J=1

y(t) = the approximating polynomial

where y = the value of y at t1

#, (t) = the set of interpolating functions

The approximation of Eq 6.14 only applies to values of t between the t node points. This

is defined to be exactly equal to the data points at the values of ti. It should be noted that

there is no reason that the data nodes be evenly spaced. Therefore, this is a method for

finding a polynomial to approximate a set of arbitrarily spaced points [16].

The formulation of the pseudospectral D-matrix comes about by using the polynomial

approximation above to estimate derivatives at the node points, with respect to t. This

begins by taking the derivative of Eq 6.14.

ft)= yQ,(t) (6.15)

Only the derivatives at the node points are desired. This yields:

N N

p(tl) = Jy5, (t,) = ZD,y, (6. 16)

where = vector of N data points at the nodes
DN = the N x N pseudospectral differentiation matrix
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Therefore, the elements of the DN matrix are given by:

(6. 17)

For a more detailed derivation of the pseudospectral differentiation matrix, refer to

Reference 16.

6.3.2 Legendre Pseudospectral Optimization Method

As mentioned previously, the node spacing of the data points is arbitrary. However, it is

possible to choose the spacing that will yield the best polynomial approximation.

Approximation theory has shown that the optimal node spacing occurs when the nodes

are the roots of orthogonal polynomial such as Tschebyscheff or Legendre polynomials

[16].

The Legendre pseudospectral method is a pseudospectral method

coincident with the set of Legendre-Gauss-Lobatto (LGL) points.

defined as:

that places its nodes

The LGL points are

t = -1

t= roots of L' (j = 2...N -1)

t N

where LN (t) is the Legendre polynomial of order N -1 .

These points must be computed numerically because there are no closed form equations.

Figure 6.1 shows the characteristic spacing of the nodes. The nodes actually "bunch up"

near the ends and "spread out" in the middle of the domain.

x 1 x2 X 3 X 4
x5 x

6

Figure 6.1: Position Data Taken at LGL Time Points [16]
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In summary, the Legendre Pseudospectral Method is a way of writing any optimization

problem modeled with differential equations as a problem with only algebraic constraints

by use of the pseudospectral differentiation matrix. It is then rearranged as a parameter

optimization problem and solved by a numerical optimizer. This method was developed

by F. Fahroo and I. M. Ross of Naval Postgraduate School, and has been demonstrated to

work well with both continuous and discontinuous states and controls. The results of this

thesis are the result of an application of this method. For more detailed information

concerning the legendre pseudospectral method, refer to References 17 and 18.

6.4 Direct Indirect Dynamic Optimization (DIDO)

DIDO is a MATLAB routine for solving possibly discontinuous dynamic optimization

problems by using the legendre pseudospectral method. This program was developed by

I. M. Ross and F. Fahroo, and has several key characteristics that make it useful for

trajectory optimization problems. It is easy to use, demonstrates robust convergence and

is fairly quick in obtaining a solution. It provides an intuitive front end for setting up an

optimization problem to those not familiar with optimization procedures. One only needs

to understand how to set up the basic problem, then input that problem into a specific

DIDO format and start the program. DIDO does the rest.

DIDO works by taking the problem input by the user, and transforming it from the

domain of the dynamic equations to the LGL domain. Then it calculates the

pseudospectral D-matrix and uses it to transform the derivatives into algebraic

expressions. This information is transferred to a numerical optimizer that actually solves

the problem. The solution data is then returned to the MATLAB command window for

analysis by the user. The numerical optimizers currently used by DIDO are either

NPSOL or SNOPT, which are explained in the next section.

DIDO is the optimization routine used during this thesis, and all data presented is the

solution results supplied by the program. The basic procedure for creating trajectories

through DIDO is as follows:

1. Choose the states and control variables of the trajectory problem.

2. Write out the dynamic equations. These usually consist of any differential

equations that describe the system and that must be met at all points in the
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trajectory problem. For example, this may be the governing equations of motion

of the problem, such as those derived in Chapter 3.

3. Non-dimensionalize the problem. This is done by choosing values that will make

all the values in the optimization vector roughly the same order of magnitude. A

canonical scaling system or ad hoc method can be used. Non-dimensionalizing

the problem usually improves the numerical properties of the problem as well as

working better within the numerical optimizer.

4. Write out all the trajectory constraints, appropriate path constraints and bounding

values for the states and controls.

5. Formulate the cost or objective function. This function is the designing factor in

the creation of the trajectories.

6. Code steps 1-5 into the DIDO format and run the code.

A sample of the DIDO interface code is contained in Appendix A. This format is what is

required to run DIDO, and is the direct result of step 6 above.

It should be noted that this version of DIDO can only solve an optimization problem

using one cost function. Future versions may have the ability for solving problems that

utilize multiple cost functions.

6.5 Software and Hardware Specifications

6.5.1 Software

MATLAB-DIDO is run using MATLAB, version 5.3.1.29215a (R11.1). Its producer,

The Math Works, Inc, released this version on September 28, 1999.

NPSOL-this is one of the numerical optimizers used by DIDO. It was developed by P.

Gill at the University of California, W. Murray and M. Saunders at Stanford University,

and M. Wright at Bell Laboratories. This program was originally written as a set of

FORTRAN subroutines for nonlinear programming problems. DIDO is able to run the

code through the use of an NPSOL mexfile. For more information, see Reference [19].

SNOPT-this numerical optimizer is setup in the same fashion as NPSOL. It is written

as a set of FORTRAN subroutines used for solving nonlinear programming problems.

However, SNOPT applies a sparse sequential quadratic programming (SQP) method that
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requires less matrix computation than NPSOL. It was developed by P. Gill at the

University of California, and W. Murray and M. Saunders at Stanford University. For

more information, see Reference [20].

6.5.2 Hardware

The computer used for this research was supplied by Draper Laboratory, Inc. and its

specifications are listed in Table 6.1 below.

Table 6.1: Computer Hardware Specifications
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Manufacturer Gateway Inc.

Main Memory 392 MB

Microsoft Windows
Operating System 2000 5.00.2195

Intel Pentium 4
CPU Type 1500MHZ CPU



Chapter 7

Benchmark Determination

7.1 Overview

The limitations of Proto-snake, presented in Chapter 5, are its inability to determine the

best dynamic pressure schedule for the given conditions, in addition to its creation of

trajectories for which optimality and/or robustness is unknown. These limitations are due

in part to the lack of a suitable trajectory benchmark that provides the characteristics

inherent to robust trajectories. Chapter 6 provided an overview of the Legendre

Pseudospectral Optimization Method that is used by DIDO in the creation of optimal

trajectories, in addition to an explanation of DIDO itself. The sections of this chapter

present the actual optimization problem formulation used to set up DIDO. The following

sections also detail the procedure used to determine the different cost functions as well as

the criteria and process used to determine the robust trajectories, or trajectory

benchmarks.

7.2 Problem Setup

DIDO is used to create the optimal trajectories analyzed in this thesis. Before executing

the program, it is necessary to set up the trajectory problem in the same format as the

basic optimization problem described at the beginning of Chapter 6. This involves

specifying the state and control variables, and all the constraints that apply to the

problem. The following subsection presents this formulation. Once the problem is set

up, it can be coded into the required DIDO format as specified in Appendix A.

7.2.1 Mathematical Formulation

7.2.1.1 States and Controls

Recall from Chapter 6 that x e R" and u c R', where the variable x is a vector made up of

the state variables, while u is a vector made up of the control variables. A TAEM

trajectory normally involves both lateral and longitudinal dynamics, so a complete
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representation of the vehicle's flight path requires that x be made up of 6 quantities: three

position states and three velocity states. Table 7.1 identifies these state variables.

Table 7.1: Description of State Variables

State Description Symbol

x Position Coordinate (downrange distance) x

y Position Coordinate (crossrange distance) y
Altitude h

Inertial (Ground-Relative) Velocity V

Flight Path Angle y
Heading Angle X

Note that x is a vector of the state variables, while x is a state variable.

The control variables used for trajectory propagation by the Kernel Extraction Protocol

are the vehicle's angle of attack, a, and bank angle, pu. However, in order to facilitate

the use of a soft-knot, described in subsection 7.2.4 below, the controls chosen for DIDO

are the angle of attack rate, d, and bank angle rate, p . Therefore a and u join the six

variables above to complete the state vector x. The vectors x and u can be written as:

x

y
h

V

r'

X
a

-AU_

and u=L. (7.1)

7.2.1.2 Dynamic Constraints

The objective function of an optimization problem is subject to dynamic constraints,

defined in Chapter 6 as:
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i(r) = f(x(r),u(r), r) (7.2)

The dynamic constraints for the trajectory problem are the equations of motion that

govern the flight of the vehicle, derived in Chapter 3. Rewriting the equations in

vector/constraint form yields:

Vcosycos
X VcosysinX

.9 Vsiny
hi - D .

.-- g sin y
V m

i~r) 1 (.3
[L cos p -W cos (7.3)

mV
Lsin p

& mVcosy

U 2

where uI and u2 are the two components of the control vector u.

7.2.1.3 Event Constraints

The event constraints are also known as the end point constraints, and are written as:

el s! e(x(re ), x(,f), rO, r.,):5 eu (7. 4)

Applying these event constraints can be described as fixing the initial and/or final values

of particular state variables. Therefore, these constraints can actually be split and written

as:

eo, eo (x(r 0 ), TO ): eo (7.5)

e :5 e (x(r>),"r) e (7.6)
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where the subscripts o and 1 refer to the initial and final values respectively.

For this particular problem, all of the initial state values are fixed, and are set equal to the

initial values of a Proto-snake trajectory. In this case, in order to fix the state at a certain

value, the constraint is made an equality constraint by simply setting the lower bound of

Eq 7.5 equal to the upper bound. The final values are handled the same way, and are set

to the final values of a Proto-snake trajectory. However, the final values for y and a are

left free, in order to give some leeway to the optimizer and to be consistent with the

constraints imposed on the ALI target, since these values are not specified. In addition,
the final time, r,1 , is left free and is not specified by the event constraints.

The choice to fix the event constraints to the end point values of a Proto-snake trajectory

was made in order to make suitable comparisons between DIDO and Proto-snake

trajectories. This allows DIDO to design an optimal trajectory around the same set of

conditions imposed upon Proto-snake. For instance, if Proto-snake happens to produce

an optimal trajectory, and its end points are fed into DIDO, the resulting trajectories

would theoretically match. Therefore, the event constraints force DIDO to design

trajectories between the same two points given to Proto-snake. This is important to

understand, particularly when the trajectory comparisons are presented.

In all the trajectories produced, the end conditions are specified by the ALI constraints

described in Chapter 4, while the initial conditions may vary. For comparison sake, a

Proto-snake trajectory is referred to as the reference, and is given a number that

corresponds to a given set of initial conditions or starting point, while a DIDO trajectory

is referred to by the cost function used to generate it along with the number of the Proto-

snake reference. For this thesis, four reference trajectories were produced, corresponding

to trajectories starting at four different locations. This means that four different sets of

initial conditions were used to formulate trajectories in DIDO as well. The four reference

trajectories are explained further in subsection 7.4.

7.2.1.4 Path Constraints

The path constraints confine the optimizer to stay within a set "path" when determining

the trajectory. These constraints apply to parameters that are functions of the states

and/or controls, but are not part of the dynamic equations.
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The mathematical representation of the constraints can be written as

p p(x(r), u(r), r) p 1 (7. 7)

For the trajectory problem, the path constraints refer to limits on certain vehicle

parameters that define the vehicle's capability. These include dynamic pressure and

vehicle loading limits. Therefore p can be written as:

Nxh]

Ny,

NzIL

NxV cosa + Ny,, sinasinp - Nz, sinacosp

Ny,, cos p + Nz,, sin p

- Nx, sin a + Ny, cos a sin p - Nz, cos a cos p
(7. 8)

The actual values for the upper and lower constraint limits were set to correspond to the

predefined vehicle dynamic limits. These limits are shown in Table 7.2

Table 7.2: Path Constraint Bounds

Path Constraint Bounds

Body x-acceleration, Nxh -1 to 0.6

Body y-acceleration, Nyh -1 to 1

Body z-acceleration, Nz -1 to 3

Dynamic Pressure, q 110 psf to 500 psf

7.2.2 Non-Dimensionalization

Optimization codes, including most numerical codes, behave in a fundamentally superior

fashion (accuracy, speed, etc.) when the variables are scaled properly [14]. It is

necessary to scale, or non-dimensionalize, this problem before coding it into DIDO. The

goal of scaling is to make every state and control variable about the same order of

magnitude. This is accomplished by simply dividing the appropriate quantities by their

non-dimensionalizing counterparts. There are different ways of determining the non-
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dimensionalizing values. These include canonical scaling schemes or ad hoc methods.

Both techniques yield the same results: enhancing the numerical computation.

For this particular problem formulation, an ad hoc scaling method was used for non-

dimensionalization. The process involves choosing three different length scales that

correspond to the three state variables with units of length. The length scales are chosen

to make the states the same order of magnitude, even though the three states may be of

different order when dimensionalized, such as y = 10 ft and h = 100,000 ft. A velocity

scale is also chosen to non-dimensionalize the velocity state. Once these non-

dimensionalized values are determined, the equations are rewritten to reflect the change.

This is shown in Eqs 7.9 through 7.13.

x = (7.9)

* = (7. 10)

h =YMI(7. 11)

V*V (7.12)

V -VO cos y sin Xr
x

.. y
V * Vorn sinyr

hnri

V = - gsin (7.13)

1 [Lcosp-Wcosy]

a mVVtr,
L sin p

-p mV*VMrrn cosy
U'

U,

The subscript "no,,," in the above equations stands for the normalizing value, and the

superscript " * "marks the scaled parameters.
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The values of y, X, a and p are converted to radians, which is already non-

dimensional. It should also be noted that because three length scales are used, a

normalizing value for time cannot be derived from a length scale and a velocity scale, as

is done in the canonical scheme. Instead, a normalizing value for time can be chosen.

For this problem however, time was relatively small, so it was left in its dimensionalized

units, along with the path constraint of dynamic pressure. This means that dynamic

pressure must be scaled before using it in a cost function. For all cost functions

containing 7 in the thesis, the value of 7 is normalized by the max dive limit of 500 psf.

7.2.3 Tables

The aerodynamic properties for flight vehicles are normally stored in aerodynamic tables.

These tables are the result of wind tunnel testing, computational fluid dynamics and/or

actual flight-testing. The data contained in the longitudinal tables consists of the lift,

drag, and pitching moment coefficients of the vehicle for different flight speeds, and

control position deflections. For this problem, it was decided to use the actual

aerodynamic tables in the optimization routine in order to capture trajectories designed

around the aerodynamics of a true vehicle, in this case the X-34. However, it is

computationally intensive for DIDO to numerically calculate the Jacobian matrix from

table data, especially if the multi-dimensional tables are not smooth, as will be the case

for the X-34 as it flies through Mach one.

Several options are available in order to reduce the numerical complexity of the problem

to a manageable size. One solution involves fitting a spline to the data. However, for

every iteration made by the optimizer, a spline would have to be re-computed, increasing

the computation time. Another possible solution involves calculating analytic functions

that are representative of the data. This method defeats the purpose of using the "actual"

table data. The solution chosen for this thesis involves reducing the three-dimensional

data to two dimensions by setting the X-34's speedbrake to 55 degrees and trimming the

vehicle at every node in the trajectory. A new table is then produced that contains the

reduced aerodynamic data spread over an evenly spaced grid. This allows the use of a

linear interpolation function in MATLAB that is especially designed for evenly spaced

tables, and reduces the computation time to a reasonable time frame.
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7.2.4 Nodal Determination

The number of nodes used in the optimization routine is an important parameter. The

accuracy of the solution is directly correlated to the number of nodes. Theoretically, an

infinite number of nodes would provide the best possible solution, in terms of accuracy.

However, the tradeoff for using a large number of nodes is the speed of the optimization

process. This is caused by the increased complexity of a large problem. By increasing

the number of nodes, the size of the Jacobian increases. This in turn slows the routine

because of the large computational burden placed upon the numerical solver to calculate

the derivatives for every entry in the Jacobian matrix. Therefore, the process for deciding

the nodal size is a balancing of the desired solution accuracy with a reasonable solution

time.

For this trajectory problem, the number of nodes was set between 50 and 60 nodes. This

size was determined through a trial and error process that was primarily concerned with

time. The number of nodes was increased until the time of the solution made it infeasible

to obtain the number of results needed for analysis. A trajectory of 60 nodes can take

anywhere between 12 and 30 hours to solve. Adding more nodes would only make it

worse. In comparison, this nodal size is about half the number of nodes used by Proto-

snake. A typical Proto-snake trajectory is created with nodes placed at every 1000 ft

increment in altitude space. This, on average, yields trajectories consisting of about 100

nodes that take less than 5 minutes to design. DIDO may take up to a week to design a

100 node trajectory.

7.2.5 Soft-Knot

A soft-knot is a pseudo-event defined by state continuity. It is used to improve the

accuracy during a change or switch in the dynamics or controls at a certain time, without

increasing the number of points in the solution. For this problem, the vehicle flies

through Mach one, where the spike in the aerodynamic data occurs. This is a perfect spot

to add a soft knot. In this case, afree soft knot is added, where the location of the knot is

determined as part of the optimization routine. The optimizer may or may not place the

soft knot at the Mach one point, but it will choose a location that yields the best solution

and improves overall accuracy [14].
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The soft knot can be thought of as splitting the optimized trajectory into two parts, one

before the knot and one afterwards. The optimizer changes each part of the trajectory,

while maintaining state continuity over the knot, in order to calculate the best solution.

In a trajectory without a soft knot, the trajectory nodes lie at the Legendre-Gauss-Lobatto

(LGL) points spread out over the entire solution. However, with a soft knot added, the

nodes of the first part of the trajectory lie at the LGL points spread over the first

trajectory segment up to the knot, while the remaining nodes lie at the LGL points spread

over the second trajectory segment after the knot. This in a way shows that there are two

solutions, which are joined at the knot to make one overall solution. Recall that the LGL

points have a characteristic where the nodes "bunch up" near the ends (see Figure 6.1).

With a soft knot in place, this means that the nodes "bunch up" at the ends and also near

the soft knot, which accounts for the increased accuracy near the knot. For this problem,

35 nodes were always delegated to the trajectory segment before the soft knot. The

remaining nodes, either 15 or 25, were assigned to the segment after the knot.

While the soft-knot guarantees state continuity throughout the solution, it does not

necessarily assure continuity of the controls over the knot. This means that the vehicle's

trajectory controls, a and p, may be discontinuous at the soft knot. A discontinuous

control reference is not a desirable solution from a guidance and control standpoint in

regards to aerodynamic flight controls. Therefore, the controls chosen for this trajectory

problem were a and p , as described in the subsection 7.2.1.1, in order to overcome this

problem. Angle of attack and bank angle were added to the states in order to make them

continuous over the knot and ensure trajectory control continuity. For more information

on soft knots, please see Reference 17.

7.3 Cost Function Formulation

7.3.1 Proto-Snake Characterization and Verification

The main purpose of an optimization routine is the minimization of the cost or objective

function. The characteristics of the solution are directly dependent upon the parameters

contained within the cost function. These include any combination of the states and/or

controls, or functions of the states and controls. Therefore, in order to generate

trajectories through optimization, it is necessary to formulate an appropriate cost

function. For the Legendre Pseudospectral Method, this cost function is also known as

the Bolza cost functional and can be written as:
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J() r =$~z~s(x(re),x(rj )'rr + L(x(r),u(r),r)dr (7.14)

Note that the end point cost, denoted by #, is a function of the state vector at the initial

and final clock times. This means that this portion of the cost function imposes

constraints on the initial and final states. However, in this particular problem

formulation, the constraints on the initial and final conditions are determined by the event

constraints mentioned previously. Therefore, the only portion of the cost function that

needs to be established is the integrand or Lagrange cost denoted by L.

The first cost function formulated was used to verify the implementation of the Proto-

snake and DIDO methodologies. The goal was to force the DIDO optimizer to follow the

same lateral and longitudinal geometry established by Proto-snake in order to compare

the resulting dynamics and controls. If DIDO produces optimal and feasible trajectories,
then the dynamics and controls determined by Proto-snake should match. The converse

is also true. If Proto-snake creates intrinsically flyable and accurate trajectories, and

DIDO is working properly, than both programs will produce the same results. This

verification was carried out first, in order to make sure both programs were in agreement

and so that the future results from DIDO can be applied to Proto-snake. The verification

cost function can be written as:

I/

J = f[o.75(h - h,,)2 +0.25(y - y,,)2] dt (7.15)

The subscript "pt," refers to Proto-snake trajectory profiles. These references are fed into

DIDO by interpolating the appropriate trajectory parameter profiles at the nodes being

used during the optimization. Therefore, the Proto-snake references and the state

variables are the same size and are oriented to the same nodes. The first term in the cost

function forces the altitude state to match Proto-snake's altitude profile at every node,

while the second term forces the crossrange state to match. In this way, the optimized

trajectory is forced to match both the lateral and longitudinal geometry of a Proto-snake

trajectory. The weighting chosen for both terms is a design choice. It was decided that
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the longitudinal portion is a more important parameter and should be weighted heavier

than the lateral component. This decision is carried out in all remaining trajectories.

Figure 7.1 shows a comparison of a Proto-snake trajectory and a DIDO trajectory. It is

apparent from the graphs that both the geometry and the control variable a are nearly

identical. The remaining states and the bank angle control variable also compare

favorably but are not displayed here. It should be noted that Proto-snake uses KEP to

balance the equations through a manipulation of both angle of attack and bank angle, in

order to create a trajectory around a given geometry. For this cost function, DIDO has

done the same thing. It determined the controls, a and p, necessary to minimize the

cost function, which in this case results in a matching of the reference geometry fed into

the cost. The fact that the resulting control histories for the constrained geometry are

nearly identical verifies the implementation of both methodologies.
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Figure 7.1: Comparison of DIDO Verification Trajectory to a Proto-snake Trajectory
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The next cost function was established in an attempt to characterize the optimality of

Proto-snake trajectories. Because Proto-snake's ground track solver (GTS) uses an ad

hoc approach to solving the lateral ground track, it is not known if the resulting

trajectories are optimal for a given set of parameters. The only way to determine this is

to create trajectories for a given cost function and see how they compare. If the

trajectories come out close or even match, then the GTS theoretically designs sub-optimal

trajectories about the same parameters used in the cost function.

The cost function created for the characterization task is formulated to follow the same

logic utilized by Proto-snake's GTS. As described in Chapter 5, the GTS manipulates a

predicted ground track, produced from following a dynamic pressure schedule, to meet

the terminal conditions. The resulting shape initially bends towards the runway in order

to eliminate any crossrange error as quickly as possible. The characterization cost

function idealized to capture the same effect is:

J= f[0.6(;7 -;7e ) + 0.4(y)2]1 dt (7. 16)

The subscript "rer" refers to a reference value of ; for a constant q profile. This ;

reference can also be replaced by a q schedule, which is implemented in much the same

way as the Proto-snake trajectory profiles used in the previous cost function. The first

term of this cost function forces the trajectories designed to follow a set 7 schedule

while the second term tries to eliminate crossrange errors.

7.3.2 Robust Trajectories

7.3.2.1 Goals

The focus of this thesis is to design robust trajectories that can be used as benchmarks for

onboard trajectory generators. Once again, a robust trajectory is defined as a trajectory

that can handle future dispersions while still providing the means for the flight vehicle to

attain the final end condition. Because the trajectories are being created through the use

of an optimization routine, the easiest way to create robust trajectories is to input the

negative of the "robustness parameter" in the cost function. This would have the effect of

producing a trajectory with maximum robustness. Unfortunately, there is no such thing
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as a "robustness parameter" or variable. Instead, cost functions must be produced

through the clever arrangement of different parameters in order to obtain different

trajectories. Then, a metric must be created in order to compare the different trajectories

and to classify robustness. Through the design of scores of cost functions, it is hoped to

establish certain parameters that govern both trajectory geometry and robustness.

7.3.2.2 Cost Layout

The parameters in the cost function control the outcome and shape of the optimized

solution. For a trajectory optimization problem, these parameters can almost be thought

of as a type of guidance for the resulting trajectory. Because of this it is necessary to

include appropriate trajectory control parameters in every cost function. A flight through

the TAEM region involves both lateral and longitudinal dynamics. Therefore, in order to

control a trajectory through this region, the cost function should be made up of both

lateral and longitudinal parameters.

The basic format for all trajectory cost functions used for benchmark determination in

this thesis is written as:

J= f0.6(Longitudinal Parameters) 2 + 0.4(Lateral Parameters)2] dt (7. 17)

The longitudinal parameters are defined as a variable or combination of variables that

have a direct influence on longitudinal motion or position of the vehicle throughout the

trajectory. They can be made up of any of the vehicle states, controls or functions of the

states and controls. The longitudinal parameters chosen for use are listed in Table 7.2.
These were chosen to create trajectories in the same fashion as Proto-snake. That is, to

be able to create trajectories that follow the center of the energy corridor q schedule, as

well as trajectories that fly on the max-dive and max-glide q limits. These three types of

trajectories are referred to as center-of-corridor, max-glide and max-dive trajectories. By

choosing these longitudinal parameters, the DIDO trajectories can be compared against

Proto-snake trajectories of the same type, whose simple designs are easily implemented

in an onboard guidance algorithm. In addition, the different trajectories will show the

variances of different dynamic pressure schedules amongst optimal trajectories. This will
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help in determining what type of q schedule should be used by

initial phase of trajectory formulation.

Table 7.3: Longitudinal Parameters

Type of Trajectory Parameter

Center-of-Corridor ( - 335)

Max Glide (maximize E/W) (-E / W)

Max Dive (minimize E/W) (E / W)

Proto-snake during the

The lateral parameters of the cost function are made up of those combinations of states

and/or controls that directly influence the lateral motion or position of the vehicle

throughout the trajectory. Unlike the longitudinal parameters, where there are three main

terms, there are no clear overriding lateral terms that directly control the entire lateral

space. Therefore, this portion of the cost function is made up of multiple combinations.

Table 7.4 lists the possible lateral parameters. The actual combinations of variables used

in the cost function formulations are described in the next section.

Table 7.4: Lateral Parameters

Description Parameter

Heading Angle

Heading Angle Rate

Bank Angle

Bank Angle Rate

Crossrange Distance y
Body z-acceleration Nzb
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7.4 Trajectory Selection / Benchmark Selection

7.4.1 Desirability Criterion

There are certain trajectory attributes that are desirable in the trajectories created through

DIDO. These attributes, or desirability criterion, were determined from an intuitive

knowledge of the trajectory problem, including an overarching concept of what might

define robust characteristics. Table 7.5 includes a list of the desirability criterion and

explanations.

Table 7.5: Desirability Criterion

Criterion Explanation

No major oscillations or radical state changes, and smooth

control histories (real-time flight control virtues)

Low Dynamic Loads Reduced body accelerations, particularly Nz,
Follows a type of schedule that can easily be mimicked by

Follows i7 Schedule Proto-snake for future applications in a real-time guidance

scheme

m oReduced crossrange errors. Spends more time flying towards
Time on Centerline

the runway centerline

This set of criterion was established to help in the down-selection of 'robust' trajectories

from a broad test matrix. In this manner, a trajectory that is oscillatory and choppy can

be eliminated over trajectories that are very smooth and continuous. In addition, these

attributes were also used in the formulation of cost functions. For instance, the body z-

acceleration term was added as a lateral parameter in the cost functions in an attempt to

meet the low dynamic load criterion. Also, the establishment of this criterion led to the

consideration of using d in some of the cost functions. This term helps to smooth the

control history of respective trajectories. When implemented, it is grouped within the

lateral parameter term and equally shares the 0.4 lateral weighting shown in Eq. 7.17.

However, experimentation has shown that a should actually be increased by a factor of

50 to return the desired results. An example of d in a cost function is:
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J = iO.6(q -q, )2 + 0.2(50 )2 + 0.2(y)2] dt (7.18)

where the lateral parameter can be written as (50d)2 + (y) 2 . For simplicity sake, this 50

is not mentioned when describing the a term. However, it is included in every cost

function utilizing a .

7.4.2 Test Layout

The test layout chosen for the determination of benchmark trajectories involved testing a

wide variety of cost functions and analyzing the resulting solutions. This process was

initiated by creating cost functions made up of combinations of longitudinal and lateral

parameters. These cost functions were used to create trajectories and gain insight into

what type of influence the different parameters have over the trajectory characteristics.

Initially, the cost functions were written by choosing a longitudinal parameter and joining

it with a "family" of lateral parameters. For example, the center-of-corridor parameter

joined with the "chi-family" of lateral parameters would yield some of the cost functions

written in Eqs 7.19. Note: for simplicity sake, the cost functions are abbreviated by only

writing the pertinent parameters, and not the full mathematical expression and

appropriate weightings.

J = f( - 335) 2 + X2 or

J = f( - 335)2 +k 2  or
(7. 19)

J= f(7-335)2+X2+_2 or

J = (q-335) 2 +(; - rf )2 etc.

This type of family exploration led to the creation of 30 different cost functions. Tables

7.6, 7.7 and 7.8 present these cost functions, organized by longitudinal parameter. As a

reminder, the cost is made up of a longitudinal parameter and the listed combinations of

the lateral parameters. All but 3 of the cost functions contain the a term.
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Table 7.6: Center of Corridor Cost Functions

J= f0.6(7 - 335) 2 +0.4(....[below]...)

0.5(d)2 +0.5(g) 2  0.5(d)2 + 0.5(p - 20 ) 2

0.5(d)2 + 0.25(g) 2 -. 25(p) 2  0.5(d)2 + 0.5(, - 400)2

0.5(d)2 + 0.5(Z)2 0.5(d) 2 + 0.25(g) 2 + 0.25(p - 20 )2

0.5(d) 2 + 0.5( )2 0.5(d)2 + 0.25(g) 2 + 0.25(u - 400 )2

0.5(d)2 + 0.5(X - re/)2 0.5(d)2 + 0.5(y) 2

0.5(d)2 + 0.25(g) 2 + 0.25(X)2 (y)2

0.5(d)2 + 0.25(g) 2 + 0.25()2 ((y)2 )*

0.5(d)2 + 0.25(g) 2 + 0.25(X - rt)2 0.5(d)2 + 0.25(g) 2 + 0.25(y) 2

(Nzh )2 (0.5(d) 2 + 0.25(g) 2 + 0.25(y) 2

0.5(d)2 + 0.5(Nzb )2 (0.5(d)2 + 0.25(g) 2 + 0.25(Nzb )2 )*

0.5(d )2 +0.25(g ) 2 +0.25(Nzb)2

Note that the " * " refers to cases when the dynamic pressure scaling was removed. This

had the effect of weighting the longitudinal parameter more than the lateral parameter.

Table 7.7: Max Glide Cost Functions

S= f- 0.6(E / W)2 +0.4( ... [below...)

0.5(d) 2 +0.5(yp) 2  0.5(d ) 2 + 0.25(gp) 2 + 0.25(Nz,) 2

0.5(d) 2 + 0.5(p) 2  0.5(d) 2 + 0.25(g) 2 + 0.25(y)2

0.5 (d) 2 + 0.5 (Y)2 0.5 (d)2 + 0.25 ( ) 2 + 0.25(2

Table 7.8: Max Dive Cost Functions

J = J0.6(E / W) 2 + 0.4( ...[belowl...)

0.5(d) 2 + 0.5(g) 2  0.5(d) 2 + 0.25(g) 2 + 0.25(Nz )2

0.5(d) 2 + 0.25(g) 2 + 0.25(y) 2
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The cost functions for the max glide and max dive trajectories were established after

analyzing most of the results from the center of corridor trajectories. This gave insight

into which parameters were more desirable and effective, and helped reduce the number

of combinations for those cases significantly.

All thirty cost functions were used to generate trajectories between the initial and

terminal conditions given from a Proto-snake reference trajectory that is used to specify

the DIDO event constraints. Four reference trajectories were established from Proto-

snake. These trajectories are referred to by numbers corresponding to different starting

points. Figure 7.2 is a crossrange versus downrange plot, or top down view of the four

trajectories. The trajectory used for the first 30 cost functions is the point 1 reference.

x 10,
4 r

3

2

-1

0

-2

-3

-7 -6 -5 -4 -3 -2 -1 0 1 2 3
Downrange Distance (ft) x 10d

Figure 7.2: Proto-snake Reference Trajectories

Table 7.9 describes the initial conditions for the Proto-snake references. Each of the four

starting points and initial headings were chosen to be distinctly different from each other.
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This helps to test the capabilities of the cost functions and to ensure that the results for a

cost function are not "initial condition specific". Note that all of the reference trajectories

have the same "snaking" trend that is characteristic of the Proto-snake GTS. Both point I

and point 4 references are designed to be center-of-corridor trajectories. The point 2 and

point 3 references are max glide and max dive trajectories, respectively. Both points

have an initial and final dynamic pressure of 335 psf and follow the dynamic pressure

schedules depicted in Figure 5.8.

Table 7.9: Initial Conditions of Proto-snake Reference Trajectories

Parameter Point 1 Point 2 Point 3 Point 4

Altitude, h 80,000 ft 100,000 ft 100,000 ft 100,000 ft

Downrange Distance, x -250,000 ft -650,000 ft -550,000 ft 300,000 ft

Crossrange Distance, y 30,000 ft 400,000 ft 1,000 ft -347,000 ft

Heading Angle, X 00 -250 00 1700

Mach Number, M 3.1 4.9 4.9 4.9
0335 3 3 35'

Constant Constant
;7 Schedule (psf) 33J110 5009

3353 335

Unfortunately, running the thirty different cost functions resulted in the generation of

thirty different trajectory characteristics. It became apparent that it was necessary to

reduce the size of this test matrix to something more reasonable, before being able to

choose the benchmark trajectory. Thus, an initial down-selection was done to reduce the

option-space by applying the desirability criterion presented in subsection 7.4.1.

The first criterion was for smooth trajectories. The easiest way to determine which

trajectories are smooth is to integrate the control variables of the trajectory in the time

domain. If the controls are sufficiently smooth, an integration of the controls will yield

the exact same states and dynamics as included in the solution. The trajectories can then

be compared to determine what variables of the cost function dictated this "smoothness".

The most obvious parameters that guarantee smooth controls are the control parameters

themselves, which proved in fact to be the case. The use of a and p in the cost function

produced the smoothest trajectories. Figure 7.3 shows a comparison between trajectories
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with and without a and ft in the cost function. The graph on the top is the trajectory

solution created without a and ft in the cost function. The graph on the bottom is the

trajectory solution created with d and ft in the cost function. Both graphs are plotted

against a trajectory shape resulting from the integration of their respective control

x 10,

2

00

-2
-3 -2.5 -2 -1.5 -1

Downrange dist (ft)
-0.5 0

x 10
4 r

U)

42)
0)
C

(I,

0

-2.5 -2 -1.5 -1 -0.5 0
Downrange dist (ft)

0.5
x 10

0.5

x 1

histories.

Figure 7.3: Effect of a and ft in the Cost Functions

The top graph shows that without d and ft in the cost function, an integration of the

trajectory controls will not yield the same solution. There is so much error or lost

information over the time span that the integrated solution does not even end at the

terminal condition. The bottom graph shows a dramatic improvement in the integrated

solution and a change in the lateral characteristics when including the "smoothing" costs.

Figure 7.4 presents graphs comparing the control histories for the trajectories in figure

7.3. Note the much-improved behavior when including the "smoothing" costs,

particularly in the bank angle profile. Based on these results, all trajectories without d
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and At in the cost function were eliminated from the test matrix. This left eighteen cost

functions after the first down-select.

10

6

4 4

2

01
-3 -2.5 -2 -1.5

Groundtrack distance (ft)
-1 -0.5 0

x 10W

100 , 1 1 1 1

6i50

00

C

'M

-3 -2.5 -2 -1.5 -1 -0.5
Groundtrack distance (ft)

0
x 105

Figure 7.4: Effect of d and At in "Smoothing" a and p

The second criterion for down-selection consisted of eliminating cost functions that

contained intuitively undesirable design characteristics. Included in that category are cost

functions with constant bank angle and arbitrary heading angle references, in addition to

the cost functions where the dynamic pressure was left un-scaled. It was also decided

that cost functions that minimize t or A have the effect of also minimizing X and p.

Therefore, the cost functions with just , or p were removed. At the end of this down-

selection, eleven cost functions remained and are presented in Table 7.10.
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Table 7.10: Cost Functions Remaining After Second Down-Selection

Longitudinal Parameter (q -335) (-E / W) (E / W)

Lateral Parameter Center of Max Glide Max Dive
Corridor

d+ X X X

a + p + Nz, X X X

+i+y X X X

d+__+__ X X

The weightings for the parameters, including the factor of 50 on d , are not indicated in

the table. This makes it easier to see the general layout of the cost functions. The X's in

the table signify the existence of a single cost function and its corresponding trajectory.

A cost function is a combination of a row and column of the table. Therefore the cost

function corresponding to the first entry in the table can be written as:

= 0.6(q - 335)2 + 0.2(50d)2 + 0.2(A)] dt (7. 20)

The third criterion for the down-selection involved a critical look at the shapes of the

eleven trajectories. The focus this time was on how the overall trajectory looked with

regards to its dynamic loading, dynamic pressure profile and crossrange errors. This

process was explicitly subjective with regards to how the down-selection was made.

Even though all the parameters of a trajectory were analyzed, there was no quantifying

measure used to distinguish one trajectory from another one. It was simply a designer's

choice. Reasons selected for eliminating trajectories during this down-selection are

described below.

The two primary reasons for eliminating trajectories included those that had, on average,

higher g-loads or a fluctuating dynamic pressure profile over the course of the flight. An

example of this is shown in Figure 7.5. It is desired that the resulting trajectories follow a

fairly constant or well-behaved dynamic pressure profile. The goal of this research is to

establish the best q schedule for easy implementation in an onboard guidance algorithm.

Once established, the onboard generators could be programmed to mimic these
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schedules. Although the "nearly constant dynamic pressure profile" in Figure 7.5 is

oscillatory, for all practical purposes, it can be approximated by a constant q schedule.

However, it would be undesirable to duplicate a random fluctuating q schedule.

Therefore, the cost functions that resulted in these varying q schedules were eliminated.

440
reference
DIDO

420
Fluctuating

Dynamic Pressure
Profile

400

~380

Nearly Constant Dynamic
360 Pressure Profile

340 -

320 f
-3 -2.5 -2 -1.5 -1 -0.5 0

Groundtrack distance (ft) x 10

Figure 7.5: Comparison of Different Dynamic Pressure Profiles

After the third down-selection, there are only seven cost functions remaining. The cost

functions are listed in Table 7.11 along with appropriate names. This naming scheme is

meant to quickly describe the cost function and all resulting trajectories. The names

result from the components of the cost function. A trajectory created by that cost

function is referred to by the cost function name and the number of the Proto-snake

reference trajectory it was designed around. For example, qam is used to name the cost

function of Eq 7.20. The q stands for the dynamic pressure term, the a stands for a and

the m stands for p. If this cost function is used to create a trajectory around the point 1

reference, the resulting trajectory is named qam].
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Table 7.11: Cost Functions Remaining After Third Down-Selection

Longitudinal Parameter (7-335) (-E/ W) (E/W)

Lateral Parameter Center of
Max Glide Max Dive

Corridor

d_+ qam

& + p + Nz. minEamnz

& + p + y qamy maxEamy minEamy

&? +_ + _ _ _ qamc maxEamc

These seven cost functions are the primary focus of the test plan. All give insight into the

characterization of robust trajectories, in addition to stimulating ideas for improving

Proto-snake. In order to complete the test plan, these cost functions were run at the other

three reference points in order to yield a total of four trajectories per cost function. This

allowed collection of more data for each cost function, which will hopefully lead to better

results and conclusions.

7.4.3 Scoring / Grading

To complete the research, it is necessary to select which cost function produces the

desired benchmark characteristics. This involves one final down-selection. However, the

process should involve a more objective approach, rather than choosing which one

"looks" better. This requires determining quantifiable and measurable characteristics for

each trajectory that can be repeated from test to test. The method used is common in

systems engineering when down-selecting amongst various system architectures,
whereby a scoring system is applied to certain variables of a particular problem. This

results in a raw score for each characteristic or attribute in the trajectories. Then a

weighting scheme is applied to the attributes in order to assign an order of precedence

when adding the scores. The weighted scores are added which results in the assignment

of a grade to each trajectory. The lowest scoring trajectory has the best mix of desirable

characteristics for that particular reference point, and is set as the winner for that point.

The cost function with the most winning trajectories over the four reference points is

selected as the benchmark cost function.
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The process begins by first determining the attributes or parameters of the trajectories

that are important. These parameters are actually dictated by the desirability criterion

established in subsection 7.4.1. Table 7.12 lists the down-select parameters along with a

description of the effect they have on the trajectories. These parameters were also chosen

to classify robustness.

Table 7.12: Benchmark Selection / Robustness Parameters

Description of Effect in Cost Function Parameter

Dictates i schedule, controls vehicle energy q
Regulates dynamic loads Nz,
Lateral controller, reduces dynamic loads

Lateral controller, reduces crossrange errors y
Smoothes trajectory solutions a
Smoothes trajectory solutions p'

The next step involves developing a scoring system that is applied to each parameter so

that the trajectories can receive a score dependent upon those parameters. This also

includes scaling the scores so that a q score is comparable in magnitude to a Nz, score.

The easiest way to accomplish this is to give each trajectory a score between 0 and 1 for

each parameter. A score of 0 means that the trajectory has met the desirability criterion.

A score of 1 means the trajectory has not satisfied the criterion and is undesirable. These

scores are assigned to each node of the trajectory for a given parameter. The scores of

the nodes are then averaged to give the total score for that parameter. The actual scoring

assignment varies for each parameter, depending upon the desired results. The scoring

assignment or scheme for each parameter is presented below.

For the dynamic pressure parameter, it is desired that the trajectory follow a center of

corridor profile. This keeps the vehicle off the design limits in addition to guaranteeing

the ability to change dynamic states dependent upon disturbances. For instance, if a

vehicle follows a max dive trajectory profile and finds itself being pushed by a strong

tailwind, it cannot dive any steeper or shorten the ground track any further due to the fact

that it is riding the 500 psf limit. However, if the vehicle followed a center of corridor

trajectory profile, than it would be able to dive to a different 7 value in order to handle

the disturbance. Therefore a score of 1 will penalize trajectories designed on the 500 psf
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limit or on the 110 psf limit. Figure 7.6 shows the scoring system applied to each node of

the trajectory for the q parameter.

S ------------------------------ 1

linear fit

quadratic fit
Score

0 0

325 335 345
110 500

Dynamic Pressure (psf)

Figure 7.6: Dynamic Pressure Scoring Scheme

Each node of the dynamic pressure profile of the trajectory is analyzed and given a score.

For this scheme, if the node lies between 325 and 345 psf, it receives a score of 0, which

corresponds to a center of corridor profile. This small range is sort of a dead-band area to

handle any noise or oscillations in the signal. If the node lies at 422 psf, it will receive a

score of X7, while a node at 218 psf will receive a score of /2 and so on. All of the

scores of the nodes are then averaged to give a total dynamic pressure score for that

particular trajectory. For the dynamic pressure score, it was decided that having slightly

higher values of q is better than being low on energy. That is why the upper values are

governed by a quadratic curve and not by the linear curve applied to the lower 7 values.

The reasoning behind this is that a vehicle is more likely to experience a loss in energy

due to the effect of dispersions rather than a net gain in energy. Therefore, a vehicle that

is at flying at a q of 400 psf is considered more robust than if it was flying at 300 psf.

The scoring scheme takes this into account.

The scoring system for the Nzh parameter is a little simpler. The goal here is to apply

low scores to those trajectories that have low dynamic loading values. Proto-snake

designs trajectories at an Nz, value of 0.6, while the maximum value for the vehicle is 3.
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However, if the vehicle carried humans returning from orbit, the lower the values the

better. Therefore, the scoring scheme chosen is shown in Figure 7.7. This indicates a

dead-band area of about 0 to 0.2. All values between 1 and 3 are given a full score of 1.

I

Score

0

1

0

0 0.2 1 2 3

Dynamic Loading (Nzh)

Figure 7.7: Nzh Scoring Scheme

The scoring assignment for the ; and y parameters is slightly different. It is not clear

what heading and crossrange errors should be penalized during the early flight regime, so

no penalty is applied. Theoretically, a trajectory may take any shape to the ALI, so long

as it meets the end constraints. However, those trajectories that remove most of the

crossrange and heading errors early, and spend most of the time flying on the required

end conditions should receive lower scores. These trajectories are considered more

robust than trajectories that turn at the very last second to meet the boundary constraints.

Therefore, only the nodes near the end of the flight should be given scores for the X and

y parameters.
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There are different ways of selecting the nodes near the end of the trajectory. Assigning

the weightings to the nodes once the vehicle reaches a certain ground track distance from

the runway is one possibility. However, a vehicle flying faster will reach the ALI in a

shorter amount of time and thus has less time to correct errors. Therefore, the "switch"

for assigning weightings to the nodes should occur at a set time from the ALI. This gives

each trajectory, independent of velocity, the same amount of time to reduce the

crossrange and heading angle errors. The switch for this problem occurs when the

trajectory has 80 seconds of flight time remaining. This corresponds to about 10 nautical

miles of ground track distance to the ALI. Once this switch has occurred, the nodes for

y and y are given scores. The total score for the respective parameter is an average of

those scores over the 80 seconds of flight. The scoring assignment for X is shown in

Figure 7.8.

1 --------------

linear fit

Score

0 0

0 90 180

Heading Angle (deg)

Figure 7.8: Heading Angle Scoring Scheme

A score of 0 is assigned to the node when it is aligned with the runway centerline. A

score of 1 is applied to those nodes or trajectories that are aligned perpendicular to the

runway centerline or are actually pointed away from the ALI. Turning away from the

ALI is undesirable due to the effect it has on projecting vehicle energy away from the

target area. If a sudden loss of energy occurs due to some type of dispersion, the ability

to recover safely and effectively is drastically reduced. Therefore it is good practice to

keep vehicle momentum and energy projected towards the ALI. The x-axis in the figure
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corresponds to the absolute value of the ;r parameter. A dead-band area is not included

in this scoring scheme in order to penalize trajectories in which the heading angle is not

absolutely aligned with the centerline.

The scoring scheme for the crossrange distance y is shown in Figure 7.9. This shows that

a trajectory that has approximately zero crossrange error when it reaches the last 80

seconds of flight will receive a score of 0. Zero crossrange error corresponds to a

trajectory lying within a wedge of five degrees about the runway centerline. This five

degree wedge can be considered the dead-band area for this parameter. A score of 1 is

assigned if the trajectory is outside a wedge of 20 degrees. These wedges actually extend

in both directions from the ALI. In this manner, a trajectory that is riding the runway

centerline, but approaching from the opposite direction (from the right) still receives a

score of 0. However that trajectory will receive a score of 1 for the heading angle error it

exhibits. The scoring between the two wedges is a linear curve, as shown in Figure 7.10.

The value x is the trajectory's downrange distance from the ALI.

5

........ ------------------
x

Figure 7.9: Crossrange Parameter Scoring Area
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Figure 7.10: Crossrange Parameter Scoring Scheme

The scoring assignment for the last two parameters is nearly the same. The goal is to

minimize both a and ta values for a trajectory. A score of 1 is applied to the nodes that

lie above a chosen maximum value for each parameter. The dead-band area, where a

score of 0 is applied, is set between 0 and 10% of the chosen maximum value. The

scoring scheme for both a and p is shown in Figure 7.11. The x-axis in the figure

corresponds to the absolute value of the parameters.
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Figure 7.11: a and ,i Scoring Scheme
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With all the parameters of a given trajectory assigned a score, it is necessary to determine

how the scores are added to result in a final grade. This is also a subjective process. The

designer must apply a weighting to each parameter score that reflects how important the

parameter is with regards to robustness. The weightings assigned to each parameter are

listed in Table 7.13. This shows that the dynamic pressure profile is the most important

attribute of a robust trajectory. The dynamic loading is the second most important

parameter and so on. Therefore, a center of corridor trajectory will win over a max dive

trajectory in most circumstances, even if all other parameter scores remain the same.

However, it is still possible for a center of corridor trajectory to have an undesirable mix

of benchmark attributes and score poorly. This scoring and grading system was used to

determine the benchmark trajectories and the corresponding cost function.

Table 7.13: Scoring Parameter Weightings

Applied Parameter

Weighting

50

25 Nzb

10 X

5 y
5 a

5

100
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Chapter 8

Results

8.1 Overview

This chapter presents the results of the benchmark trajectory selection process. The first

section describes a characterization of Proto-snake trajectories. The next section

summarizes the scoring and grading results for each of the four reference points. Finally,

a single cost function is presented for representing the formulation of robust trajectories,

and serves as the benchmark for onboard trajectory generators. All of the results give

insight into the characteristics of robust trajectories and provide an understanding of how

to make improvements to Proto-snake.

8.2 Proto-Snake Characterization

The goal of the characterization cost function and resulting trajectories is to classify the

optimality of the Proto-snake trajectories. As stated in Chapter 7, the initial cost function

formulated for this task is:

J= (0.6(q -q,/ )2 +0.4(y)2] dt (8.1)
10

However, the trajectories that resulted from this cost function were choppy and did not

follow the Proto-snake trajectories. In order to smooth the output from DIDO, a and 4f

were added to the cost function (as reported in section 7.4). This put the cost function in

the form of:

J = [O.6(q - q,"f )2 +0.2(50d)2 +0.2(0.5(/p)2 + 0.5(y)2] dt (8. 2)

This cost function is also known as qamy from the previous chapter, and is one of the

seven that was tested for creating robust trajectories. However, the resulting trajectories

from qamy did not match all the Proto-snake attributes. Different weightings were tried
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and still the results did not prove fruitful. In the end, the Proto-snake characterization

activity did provide valuable insight into the type of trajectories produced by Proto-snake,

and was instrumental in developing the benchmark metrics. However, there were

primary differences that precluded the characterization by a single cost function, as

discussed below.

It was discovered that Proto-snake does not really minimize crossrange errors, in the

exact sense. Figure 8.1 provides a comparison between two DIDO trajectories and the

appropriate reference trajectories from Proto-snake. The cost function used in the

creation of the DIDO trajectories is expressed in Eq 8.2. Note that they parameter in the

cost function forces the trajectory to stay as close to centerline as possible whereas Proto-

snake only bends the trajectory towards the centerline initially. It will continue to

overshoot and develop additional crossrange distance errors until the predicted ground

track lies at the ALI. This "initial bend towards the runway" cannot be captured by a

simple crossrange parameter in a cost function.

x 104
4 r--

G)

C

(n

0

2

0

-2

-4'-
-2.5 -2 -1.5 -1 -0.5 0

Downrange distance (ft)
0.5

x 10,

1

0

S

-2

-3

-4'
-1

x 10,

-0.5 0 0.5 1 1.5 2 2.5 3
Downrange distance (ft) X 10

Figure 8.1: Effect of y Parameter in Cost Function
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Another limiting factor in determining the characteristic cost function is the dynamic

loading parameter, NZb. In Proto-snake's program formulation, a maximum NZb is set and

used in the determination of the lateral ground track. In this case NZb is set at 0.6. When

the trajectories are calculated, the entire turning profile occurs at the constrained value.

The only time the trajectory is not bent at the constraint is near the end of the flight where

only a slight adjustment may be need to bend the trajectory back to centerline. Figure 8.2

depicts a comparison between a Proto-snake trajectory and a optimized DIDO trajectory.

It should be noted in the upper graph of the figure, that Proto-snake flew the entire

trajectory at an NZb of 0.6, whereas the DIDO trajectory resulted in a varied NZb profile.

This is significant, considering that both trajectories follow the same dynamic pressure

schedule. Therefore, even though DIDO flew the same ;7 schedule, it selected a different

NZb profile in order to minimize the cost function.
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Figure 8.2: NZb Parameter Matching Issue

The bottom graph in Figure 8.2 shows a crossrange versus downrange plot of a DIDO

trajectory and the point 1 reference. In this particular trajectory, the maximum NZb value

in DIDO was constrained at 0.6. This shows that when DIDO was forced to fly on the
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NZb constraint, it chose instead to release the q schedule in order to minimize the cost

function. With a departure from the dynamic pressure schedule, the resulting trajectory

actually ended up bending in the opposite direction from the reference. Therefore,

constraining both q and NZb in Proto-snake precludes it from designing a more nearly

optimal trajectory. Thus, Proto-snake trajectories are solutions of a constrained problem,

which is not a bad ad hoc design approach. This is how the trajectory generator is able to

generate the solutions so quickly. It reduces the design space to a set of constraints and

generates trajectories along those constraints.

With these two factors limiting the initial characterization cost function, it was necessary

to see if any other cost function embodied the trend of Proto-snake trajectories. The cost

function qam actually exhibited similar characteristics. Figure 8.3 shows a comparison of

qam and Proto-snake trajectories for reference points 1 and 4. These points were chosen

because the Proto-snake references were designed to be center of corridor trajectories.

This is consistent with qam, which optimizes about the center of the corridor.
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As can be seen in the Figure 8.3, both qam and Proto-snake generated similar trajectory

attributes. The only real differences occurred in the slight variations of Nzb and the

dynamic pressure profiles. This verifies that Proto-snake is not simply minimizing

crossrange errors, as the y parameter was not included in the qam cost function. Even

though there are slight variances between the two, qam provides the closest

approximation in the characterization of the cost function qualities observed in the Proto-

snake algorithm.

8.3 Benchmark Trajectory / Cost Function

As presented in Chapter 7, a grading system was used to down-select to one or two cost

functions that create robust trajectories from a field of seven. This involved analyzing 28

different trajectories, corresponding to four different sets of initial conditions. The

process consisted of developing a scoring scheme that determined the values of various

attributes within a trajectory. Then different scoring weights were applied to the

parameters in proportion to their importance in governing what are considered the robust

characteristics of trajectories. A sum of the weighted parameter scores yielded a grade

for each trajectory and corresponding cost function. These values were compared to each

other in order to determine the best cost function for each reference point. The results of

this process are organized below. Appendix B contains a graphical presentation of all 28

trajectories that were compared through this method.

The results for the first reference point are contained in Table 8.1. This table presents the

resulting grade for each trajectory and the rank of the trajectory when compared to the

others. Appendix C contains tables that include all of the parameter scores, in addition to

the raw total of the scores and final grade, for the 28 trajectories analyzed. Please refer to

this appendix, as well as Appendix B, for a more detailed comparison between the actual

trajectory characteristics and parameters. All of the information presented in the tables of

this section is a summation of the tables of Appendix C.
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Table 8.1: Point 1 Grading Results

Cost Function Grade Rank

qam 17.21 3

qamy 23.35 7

qamc 17.42 4
..........

miamn 13.6 ..

minEamy 20.38 5

maxEamc 21.72 6

maxEamy 54.51 8

Proto-snake 14.20 2

The highlighted row within the table indicates the most robust trajectory of this reference

point. In this case it happens to be the result of the minEamnz cost function. Figure 8.4

shows the ground track shape of minEamnz1 and its corresponding ;7 profile. The Proto-

snake reference trajectory is also presented on the graphs.
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-0.5 0

Ni

I I

-2 -1.5
Groundtrack distance (ft)

-1 -0.5

Figure 8.4: Most Robust Trajectory of Point 1
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This particular trajectory distinguished itself from the others by its low crossrange errors,
heading errors and dynamic loading. It accomplished this by following a higher dynamic

pressure schedule, which reduced total ground track length and enabled it to fly

practically straight to the ALI. This in turn reduced the number of turns necessary to

accomplish the task and reduced most of the errors in the parameters. The parameter

scores were so low for y, Nzb, and X, that they offset the penalty the trajectory gained by

flying on the 500 psf limit. It should be noted that for this particular reference point,

Proto-snake scored second in terms of robustness. This accomplishment was the result of

smaller dynamic loading than the characteristic cost function qam, even though they both

had similar shapes.

Table 8.2 presents the results for the second reference point. The most robust trajectory

of this set is the result of the cost function qamy. This particular trajectory is presented in

Figure 8.5, along with the corresponding reference trajectory. The qamy trajectory

scored better than the other two center of corridor trajectories (qam and qamc), because

of slightly reduced y and X errors during the last 80 seconds of flight. This produced a

slight bowing of the trajectory toward the runway centerline midway through flight.

This reference point also highlights a limitation of Proto-snake's ground track solver. In

order to find a snaked ground track solution, the program bends the trajectory towards

centerline at the maximum turn rate. For the given initial conditions, a center of corridor

q schedule produces a ground track distance that is too short to reach the ALI by this

method. In order for Proto-snake to generate a solution for this case, a max glide

dynamic pressure schedule had to be input, even though the DIDO trajectories prove that

a center of corridor (335 psf) trajectory is a viable solution. Therefore, Proto-snake's

present GTS is not able to generate trajectories that fly straight to the terminal point.

The results for the third reference point are displayed in Table 8.3. The most robust

trajectory of this set is qamc3, which defeated qam3 by a slightly smaller NZb parameter

score. This trajectory, along with the point 3 reference, is presented in Figure 8.6. Proto-

snake finished in fourth place in this case. This is primarily due to the fact that it used a

max dive dynamic pressure schedule instead of a center of corridor schedule as utilized

by the top three finishers. The q parameter penalty far outweighed the other

characteristics, even though the crossrange and heading errors, in addition to the dynamic

loading proved to be the lowest of all of the trajectories.
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Table 8.2: Point 2 Grading Results

Cost Function Grade Rank

a 7.04 2
. ........................ . . .. . .... ... :E

qamc 7.21 3

minEamnz 20.96 4

minEamy 24.56 5

maxEamc 51.01 7

maxEamy 55.28 8

Proto-snake 36.82 6

-5 -4 -3
Downrange distance (ft)

-2 -1

-8 -7 -6 -5 -4 -3 -2 -1 0
Groundtrack distance (ft)

Figure 8.5: Most Robust Trajectory of Point 2
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Table 8.3: Point 3 Grading Results

Cost Function Grade Rank

qam 23.87 2

qamy 28.81 3

qamc 21.98 *.

minEamnz 37.93 6

minEamy 30.57 4

maxEamc 51.95 7

maxEamy 55.56 8

Proto-snake 36.17 5
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Figure 8.6: Most Robust Trajectory of Point 3
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Table 8.4 presents the results of the fourth reference point. In this case, the trajectories

created by qam and qamc proved to be the most robust. In addition, the Proto-snake

trajectory came in a close third. The top three trajectories demonstrated lower Nzb

parameter scores than the cost functions containing a crossrange parameter. In those

cases the dynamic loading increased significantly in order to reduce the overall

crossrange errors. Those trajectories also incurred penalties in the ;r parameter due to

their nature of turning into the ALI at the last moment. The top three trajectories

demonstrate a delayed turn towards the runway that results in increasing the time they

spend aligned with the ALI near the end of the flight. The qam4 trajectory is shown in

Figure 8.7, along with its dynamic pressure schedule and the corresponding point 4

reference trajectory.

Table 8.4: Point 4 Grading Results

Cost Function Grade Rank

qamy 23.05 4

qamc 8.22 2

minEamnz 30.82 5

minEamy 49.04 8

maxEamc 47.45 7

maxEamy 47.20 6

Proto-snake 12.89 3

A final selection of the appropriate benchmark cost function involves a summation of the

results from each of the four reference points. This method is actually similar to what is

done for sailing regattas. Visualize that the rank of the cost function for each reference

point is the place it scored in that "race". A summation of its places yields an overall

score for the regatta. The cost function with the lowest score wins the regatta, or in this

case, is chosen as the benchmark. Table 8.5 summarizes the selection process by listing

the results for all four reference points. The cost functions in this table are listed in order

of how they placed overall.
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Figure 8.7: Most Robust Trajectory of Point 4

Table 8.5: Overall Grading Results

Cost .I Overall
Functon Point 1 Point 2 Point 3 Point 4 Total rak

Function Rank

qam 3 2 2 1 8 1

qamc 4 3 1 2 10 2

qamy 7 1 3 4 15 3

Proto-snake 2 6 5 3 16 4

minEamnz 1 4 6 5 16 4

minEamy 5 5 4 8 22 6

maxEamc 6 7 7 7 27 7

maxEamy 8 8 8 6 30 8
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This shows that the cost function that generates benchmark trajectories for onboard

trajectory generators based upon the listed desirability criterion is qam, and is written as:

= 0.6(q +0.2(50d) + 0.2(Cp)] dt (8.3)

Also observe that the top three finishers are cost functions that produce center of corridor

trajectories. The next two are the costs that produce the max dive trajectories. Max glide

trajectories finished last. It should also be pointed out that Proto-snake actually tied for

fourth place in its current implementation. This result is actually surprising, considering

that Proto-snake is the first working prototype that demonstrates the SNAKE

methodology. Though it is encouraging that it placed so well, the results gained in the

benchmark determination process will still be used for future improvements.

8.4 Summary

The results presented in this chapter can be summarized primarily by three main points.

First of all, the qam cost function was selected as the benchmark for future trajectory

generators, based on the following desirability features. It creates center of corridor

trajectories that exhibit very smooth control histories. The smooth controls result in

gradual turns and smooth transitions from the initial starting point to the autolanding

interface. This in turn reduces dynamic loading, and ensures an entrance into the ALI

that experiences relatively small crossrange distance and heading angle errors. These are

all defining characteristics of robust trajectories, as determined and presented by this

thesis.

Second, the Proto-snake trajectory generator produces sub-optimal trajectories that are

characterized by the benchmark cost function. The trajectories are solutions to a

constrained problem, whereby the dynamic loading is fixed throughout the turns. In

addition, the initial turn must always be made towards the runway centerline. While this

method is effective, it sometimes precludes the determination of a solution for a given set

of conditions, even if one exists. This basically reveals itself in Proto-snake's inability to

produce straight-line trajectories from an initial starting point if there is any crossrange
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error present. All Proto-snake trajectories must snake the excess energy in the approach

trajectory to satisfy the ALI boundary constraint.

Finally, the trajectories currently produced by Proto-snake do exhibit a fair amount of

robustness. This was revealed by the benchmark scoring and grading system presented in

Chapter 7. While the generator tied for 4th out of eight possible trajectory formulators, it

still has its limitations. Recommendations for improvements, derived from the results of

the benchmark selection, are presented in the next chapter.
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Chapter 9

Conclusions

9.1 Summary and Conclusions

Draper Laboratory has been in pursuit of a Next Generation Guidance and Control

(NGGC) system that may be applied to future Reusable Launch Vehicles (RLV). This

system seeks to significantly increase flight vehicle safety and reduce life cycle costs

while gaining increased operation and performance capabilities. A key technological

element of the NGGC system is an onboard trajectory generator. This tool should rapidly

generate flyable trajectories, in real time, around an RLV's current flight conditions.

Several trajectory generators have been demonstrated including one version that utilizes

the SNAKE methodology. This prototype generator is known as Proto-snake and has

shown the greatest promise for fulfilling the requirements necessary to operate within the

NGGC framework.

The Proto-snake trajectory generator creates trajectories from the supersonic TAEM

region to the auto-landing interface. It utilizes a real time Ground Track Solver (GTS)

that manipulates the predicted ground track by "snaking" it around in order to solve a

two-point boundary value problem. The predicted ground track is determined from a

user- input dynamic pressure schedule. While this program has proven successful in the

generation of multiple trajectories for various initial conditions, it does have limitations.

Because the dynamic pressure schedule used by Proto-snake is pre-defined, it can only

provide robust trajectories for a limited subset of the total design space. Also, the current

GTS utilizes an ad hoc scheme, developed from its designer's engineering intuition, for

determining the lateral ground track. This means that the robustness of each trajectory

for the given conditions has not been evaluated due to the lack of a suitable benchmark

that defines those characteristics. In addition, no methodology currently exists for

quantitatively grading the robustness of a trajectory.

This thesis presented a methodology for further advancing the work done on onboard

trajectory generation through the determination of suitable benchmarks. A number of

trajectories were created through the use of a Legendre Pseudospectral Optimization

method, which involved formulating several different cost functions. A physical measure
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and definition of robustness was then determined through a thorough analysis of all the

optimized trajectories and their corresponding attributes. The use of a detailed scoring

and grading system enabled a down-selection to one final cost function, which was set as

the benchmark cost function for future work. Trajectories created through the use of this

cost function are considered benchmark trajectories that portray the definitive

characteristics of robust trajectories. These attributes should be modeled and mimicked

by future onboard generators to create better reference trajectories. The grading system

used in the determination of the benchmark can also be used to calculate a quantitative

value of robustness for existing trajectories. In this manner, Proto-snake trajectories were

shown to be sub-optimal representations of the benchmark trajectories. Additionally, this

research has provided insight into possible ways to improve upon the baseline Proto-

snake generator.

Some of the insight gained is with regards to the interaction between various components

and variables that comprise a trajectory and how they may be manipulated by an onboard

generator in order to create a solution. In particular, the interaction between overall

trajectory shapes and dynamic pressure schedules has been explored. The use of a i

schedule enables the formulation or prediction of an overall ground track length. This

ground track must then be manipulated in order to create a trajectory between the initial

starting point and the termination point at the ALI. There are only two ways of doing

this; adjusting the dynamic pressure schedule, and "snaking" the trajectory, either

horizontally or vertically. A vertical snake experiences positive and negative dynamic

loading and resembles a ride on NASA's KC-135, also known as the vomit comet to

occupants experiencing the undesirable trajectory features of such a motion. A horizontal

snake occurs in the x-y plane and usually results in higher constant positive dynamic

loading. If the ground track length is too short, the i schedule must be reduced (i.e.

lower q7) in order to lengthen the overall trajectory length. If the ground track is too

long, the trajectory can be snaked, or the dynamic pressure schedule increased (i.e. higher

q7). Both adjusting the i schedule and snaking the trajectories affect overall robustness.

Therefore, creating the most robust trajectory involves a balancing of the tradeoffs

between them.

Proto-snake can readily handle the horizontal snaking of trajectories to arrive at viable

solutions. However, the dynamic pressure schedules that should be followed were not

explored during its development. The results presented in this thesis have shown that

robust trajectories are the result of a center of corridor q schedules. Therefore, Proto-
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snake should primarily design center of corridor trajectories. If the ground track length is

too short to reach the targeted end condition, then the dynamic pressure schedule should

be reduced slightly until the vehicle flies an essentially straight trajectory (in the lateral

sense) to the end point. The GTS should not excessively snake the ground track when the

7 is below 335 psf, because low i values result in poor robustness to future dispersions.

However, if the ground track is too long, it should just be snaked around to satisfy the

boundary conditions. Proto-snake should only switch to a higher ; schedule if the

snaking is too great, which may lead to the growth of dynamic loading throughout the

trajectory, in addition to crossrange and heading errors at the ALI. In the future, a q

schedule that allows too much snaking may be identified by analyzing the Energy over

Weight (E/W) value at a predetermined altitude.

In conclusion, the results presented here are derived from standardized systems

engineering pratices, whereby a quantifiable metric is established for measuring a

previously unknown quantity. This led to an objective approach in differentiating

between and comparing various trajectories. In the end, a benchmark was established for

onboard trajectory generators that should make it easier to formulate future ground track

solvers. In addition, the amount of information derived in the process of creating this

thesis has led to a greater understanding of trajectory generation that can be directly

applied to improving Proto-snake.

9.2 Recommendations for Future Work

The initial focus of this research was to advance the work done on Draper's onboard

trajectory generator. This was accomplished by determining trajectory benchmarks that

can be used to further improve the current version of Proto-snake. In addition, it is hoped

that the results of this thesis will be used in the formulation of a more advanced trajectory

generator, one that is designed around the findings of this research. Therefore, the

recommendations made here are for two improvements that can be made to Proto-snake

to increase its capability of generating robust trajectories, in addition to suggestions that

may be used in the formulation of future trajectory generators. The improvements for

Proto-snake involve its dynamic pressure schedules and its ground track solver. These

are presented below.

Dynamic Pressure Schedules: Currently, the dynamic pressure schedules used by Proto-

snake are input by the user. This is due to the fact that Proto-snake is the first working

145



prototype that utilizes the SNAKE methodology and a dynamic pressure selector was not

necessary for the demonstration of SNAKE. However, without a ; selector, cases arise

where a q schedule is entered into the program that yields a ground track length that is

too short to reach the end condition, which causes Proto-snake to fail. Therefore, a

dynamic pressure schedule selector should be added to Proto-snake. This selector should

be able to choose a i schedule that always returns a trajectory solution, while at the

same time maximizes the robustness of the trajectories.

One possible way to implement this 7 schedule selector is through the use of dynamic

pressure plateaus. These plateaus represent a given dynamic pressure value, and their

respective ground track distance, for a given starting altitude. By storing a number of

these plateaus, a q schedule selector can choose a different schedule based on its need

for a specific ground track distance. A visual representation of these plateaus is shown in

Figure 9.1.

Figure 9.1: Dynamic Pressure Schedule Plateaus

A trajectory is formulated to maintain a center of corridor q schedule. This results in the

generation of the most robust trajectories. It must also always end with a i value that

matches the ALI target constraints. If the ground track distance is too long, the trajectory

is snaked to meet the end conditions. However, if the snaking violates too many
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robustness parameters, such as dynamic loading or crossrange errors, or even ends up

bending the trajectory away from the ALI, a different i schedule is selected. This is

depicted in Figure 9.1. The selector chooses a higher i schedule in order to reduce

ground track distance. It is yet to be determined how the selector creates the variation

from 335 psf to the chosen plateau value. One possibility may be to use the 7
quadratic presented in Reference 1. Additionally, the selector must choose whether the

dynamic pressure schedule should use a higher plateau for a shorter period of time or a

lower plateau for a longer period of time. In terms of maximizing robustness, the later

should be implemented. Also, the selector only chooses a lower plateau value for cases

where there is not enough ground track distance to make the ALI. It should never select a

lower plateau for cases where a center of corridor schedule yields a solution.

Ground Track Solver: The ground track solver utilized by Proto-snake follows a logic

coined "steer-to-zero". This logic results in the GTS starting a trajectory design by

bending the ground track towards the runway at one node, while bending it back to a

heading angle of zero at the next node. The process is continued down through all the

nodes until the projected trajectory lies coincident with the ALI centerline. Figure 9.2

shows the shapes of the ground track during this process. This logic is the first phase of

the ground track formulation procedure followed by the GTS, and is described more fully

in Chapter 5. The second phase results in the addition of extra loops or snaking of the

ground track away from centerline in order to allow the end of the trajectory to lie at the

ALI.

While this GTS has yielded sub-optimal solutions that are fairly robust, it can be

improved upon. The steer-to-zero logic causes Proto-snake to fail in certain instances

where it determines the ground track distance is too short to allow a solution for the given

dynamic pressure schedule. This problem has been clearly shown in Chapter 8, where

Proto-snake had to use a max glide q schedule in order to generate a solution for the

point 2 initial conditions, even though DIDO proved a center of corridor trajectory is a

viable answer. While this problem can be somewhat alleviated by the introduction of a

q schedule selector, the GTS can be modified to help in the solution as well. For the

most part, the steer-to-zero logic causes the ground track shapes to snake too much and

prohibits the GTS from designing essentially straight-line trajectories from the starting

point to the ALI. Changing the logic from a "steer-to-zero" to a "steer-to-transition" can

remove this problem.
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Figure 9.2: "Steer-to-Zero" Logic

A steer-to-transition logic is a slight modification of the steer-to-zero logic. The steer-to-

transition refers to aligning the trajectory with a transition point that lies ahead of the

ALI. It is yet to be determined where exactly this point should be, but perhaps it is

around a downrange value of 10 nm, which corresponds approximately to the last 80

seconds of flight for a vehicle. During the trajectory formulation, as the GTS marches

down the trajectory and bends the nodes towards the runway, it should not bend each

subsequent node back toward a heading of zero as is done in the steer-to-zero logic.

Instead, the GTS should keep the trajectory pointed in the direction of the last heading

change until this heading is coincident with the heading to the transition point. While this

is occurring, the last 10 nm of the ground track is kept aligned with a heading of zero.

This logic idea is shown in Figure 9.3. The ground track is continually bent until the end

point lies at the ALI. If the ground track is too long, the phase two snaking is carried out

as before, except this time the excess looping is done from the transition heading and not

the ALI centerline.

The result of this steer-to-transition logic will be the generation of fairly straight

trajectories, for an appropriate dynamic pressure schedule. This should increase the

solution space of Proto-snake. In addition, the use of the transition point for aiming

allows the trajectory to turn towards the ALI at this point and not right at the ALI. This
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mimics the Heading Alignment Cone (HAC) used by the shuttle, and enables the

reduction of crossrange distance and heading angle errors at a predetermined distance

from the runway. Because the scoring scheme presented in this thesis only measures

crossrange and heading errors during the last moments of flight, this transition point logic

will maximize the robustness of the trajectories created by Proto-snake.

Starting Point y

Heading to
transition point

with snaking

Transition Point 0 ALI

Figure 9.3: "Steer-to-Transition" Logic

Future Trajectory Generators: The future SNAKE trajectory generators should

encompass the same recommendations presented here for Proto-snake, in addition to a

warm start capability. A warm start is where the generator can begin the trajectory

creation process at any node in the trajectory. It does not have to always follow the same

beginning to end procedure if an initial trajectory already exists. The warm start

capability will enable the trajectory generator to recalculate a new trajectory at any given

time. This time may correspond to when the vehicle finds itself low on energy or near a

constraint and it needs to create an updated trajectory that takes this into account.

A warm start capability will also enable the formulation of a more advanced guidance

and control concept. This process may begin by the generation of an initial trajectory that

is fed to the flight management system. As the vehicle begins to fly down the trajectory,
the mission manager uses the grading system presented in this thesis to determine the

overall robustness of the initial trajectory. It then identifies the attribute with the highest
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value or error and issues a command to the trajectory generator to correct it with another

trajectory design. Because the vehicle is already in flight, this new trajectory does not

start from the initial position, but the current vehicle location. A warm start capability is

the key piece that may make this possible. As the vehicle continues through the flight,

the mission manager continuously assesses the trajectory robustness and modifies the

remaining ground track to improve upon any deficiencies, similar to the way a highly

trained pilot would react to changing circumstances. This has the effect of creating the

most robust trajectory for that particular flight, no matter how the conditions change

during throughout the flight. A trajectory generator of this type would help the overall

NGGC system concept come to full fruition.
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Appendix A

DIDO Problem Setup

A.1 User Interface Code

TaemMainmu-Main file needed to run DIDO. This sets up the bounds on the states,

controls, path constraints and event conditions. It also calls the four separate files. These

include TaemCostmu, TaemDynamics, TaemEvents and TaemPath.

load aerotables
load output335

global CONSTANTS MACHTAB ALPHATAB
global CDTAB CLTAB

CONSTANTS.W = 18013.7;

CONSTANTS.g = 32.174;

CONSTANTS.S = 357.5;

CONSTANTS.Hrun = 3840.5;
CONSTANTS.Vnorm = 6000;

CONSTANTS.hnorm = 150000;
CONSTANTS.xnorm = 300000;
CONSTANTS.ynorm = 80000;

MACHTAB = mach sav; 7,

ALPHATAB = alphasav;
CDTAB = cd sav;

CLTAB = cl sav;

taemProblem. cost =
taemProblem.dynamics =
taemProblem.events =
taemProblem. path = 't

to = 0;

tfMax = 1000;

tfguess = t.nodes(end)

Runway ; eiht (ft)

V Veo ityt/sec) "normal 1 in va.lue

% Nor Downange(ft)

Mac(ih a.

D*ra coeff tabe

Li e a.. bl

a emrCostu'
aemDvnamics ';
aemLEvent s'
aem.Path' ;
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S eup k:nots

knots.locations
knots.definitions
knots.bounds.lower
knots.bounds.upper
knots.numNodes

= [tO 125 tfguess];
= {'hard', 'soft', 'hard'};

= [0 95 0];
= [0 155 tfMax];
= [35 15];

Ntotal = sum(knots.numNodes);

>etups bound~s and BC's

t.states(1,
t.states(2,
t.states(3,
t.states(4,
t.states(5,
t.states(6,
t.states(7,
t.states(8,

1); Vf = t.states(1,end);
1); cf = t.states(2,end);
1); hf = t.states(3,end);
1); xf = t.states(4,end);
1); yf = t.states(5,end);
1);

1);
1); mf = t.states(8,end);

bounds.lower.states = [500/CONSTANTS.Vnorm; -pi; 0;...
-30e4/CONSTANTS.xnorm; -100000/CONSTANTS.ynorm;

(-45*(pi/180)); 0; -75*(pi/180)1;
bounds.upper.states = [6000/CONSTANTS.Vnorm; pi;
150000/CONSTANTS.hnorm; 30e4/CONSTANTS.xnorm;...
100000/CONSTANTS.ynorm; 0; 20*(pi/180); 75*(pi/180)];

bounds.lower.controls = [-15*(pi/180); -180*(pi/180)];
bounds.upper.controls = [15*(pi/180); 180*(pi/180)];

bounds.lower.events = [VO; cO; hO; xO; yO; gO; aO; mO;...
Vf; cf; hf; xf; yf; mf];

bounds.upper.events = bounds.lower.events;

bounds.lower.path = [-1; -1; -1; 110];
bounds.upper.path = [0.6; 1; 3; 500];

P-r- - ide -a-gues

guess.states
guess.states
guess.states
guess.states
guess.states
guess.states
guess.states

guess.states

(1,
(2,
(3,
(4,
(5,
(6,
(7,
(8,

guess.controls(1,
guess.controls(2,
guess.time

[t.states (1,
[t.states(2,
[t.states(3,
[t.states (4,
[t.states (5,
[t.states(6,
[t.states(7,
[t.states(8,

1:35)
1:35)
1:35)
1:35)
1:35)
1:35)
1:35)
1:35)

t.states
t.states
t.states
t.states
t.states

t.states
t.states

t.states
= [t.controls(1,1:35)

= [t.controls(2,1:35)

(1,37
(2,37
(3,37
(4,37
(5,37
(6,37
(7,37
(8,37

:end)
:end)
:end)
:end)
:end)
:end)
:end)
:end)

t.controls(1,37:end)];
t.controls(2,37:end)];

= [t.nodes(1,1:35) t.nodes(1,37:end)];
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% un! Dido

[cost, primal] = dido(taemProblem,knots,bounds,guess,useropt);

save tOutmuA

TaemCostmu-File containing the setup for the cost function.

function [zeroEndPointCost, integrandCost] = taemCostmu(primal)

global CONSTANTS MACHTAB ALPHATAB

V = primal.states(l,:);
h = primal.states(3,:);
mu = primal.states(8,:);

ul = primal.controls(l,:);
adot = ul;

wf = 0.6;

bar~kanaie

- weighting funcIn

for II = 1:(length(V(1,:)));
[tmp(II),pres(II),rho(II),sos(II)] = atmos4(0,((h(II).*...

CONSTANTS.hnorm)+CONSTANTS.Hrun));
end
qbar = (0.5)*(rho).*((V.*CONSTANTS.Vnorm).^2);

zeroEndPointCost = 0;
integrandCost = 0.6*(((qbar-335)./500).^2)+0.2*((mu).^2)+...
0.2* ((50*adot).^2);

TaemDynamics-File containing the setup of the dynamic constraints, or equations of

motion.

function residuals = taemDynamics(primal)

global CONSTANTS MACHTAB ALPHATAB
global CDTAB CLTAB

primal.states
primal.states

primal.states

primal.states

primal.states

(1,
(2,
(3,
(4,
(5,

Vdot
cdot
hdot
xdot
ydot

primal.statedots
primal.statedots
primal.statedots
primal.statedots
primal.statedots
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(1,
(2,
(3,
(4,
(5,

7e-lcit

%ah
salttud

%downrane

;
;
;
;
;

;
;
;
;
;



g = primal.states(6,:); gdot = primal.statedots(6,:); :gaima

alpha = primal.states(7,:); adot = primal. statedots (7,:); eangle
of attack
mu = primal.states(8,:); mdot = primal.statedots(8,:); %bank

agl

ul = primal.controls(1,:);
u2 = primal.controls(2,:);

for II = 1: (length(V(1, :)));
[tmp, pres, rho (II) , sos (II) ] = atmos4 (0, ( (h (II) .*.

CONSTANTS.hnorm)+CONSTANTS.Hrun));
end
Mach = ((V.*CONSTANTS.Vnorm)./sos);
qbar = (0.5)*(rho).*((V.*CONSTANTS.Vnorm).^2);
CL = interp2 (MACHTAB, ALPHATAB, CLTAB, Mach, (alpha.
CD = interp2 (MACHTAB, ALPHATAB, CDTAB, Mach, (alpha.

* (180/pi) ) , '*iinear')
* (180/pi) ) , ' *linear');

% --etup-state equation-s/residual

N = length(primal.states(1,:));
residuals = zeros(8,N);

residuals(1,:) = Vdot-((-CONSTANTS.g./(CONSTANTS.W.*
CONSTANTS.Vnorm)) .*((qbar.*CONSTANTS.S.*CD)+(CONSTANTS.W. *sin(g))));
residuals(2,:) = cdot- ((CONSTANTS.g./(CONSTANTS.W*V.
*CONSTANTS.Vnorm)).*((qbar.*CONSTANTS.S.*CL.* sin(mu))./(cos(g))));
residuals(3,:) = hdot-((V.*CONSTANTS.Vnorm.*sin(g))./
(CONSTANTS.hnorm));
residuals(4,:) = xdot-((V.*CONSTANTS.Vnorm.*(cos(c)).*(cos(g)))./
(CONSTANTS.xnorm));
residuals(5,:) = ydot-((V.*CONSTANTS.Vnorm.*(sin(c)).*(cos(g)))./
(CONSTANTS.ynorm));

residuals(6,:) = gdot-(CONSTANTS.g./(CONSTANTS.W*V.*CONSTANTS.Vnorm)).*
((qbar.*CONSTANTS.S.*CL.*cos (mu) )(CONSTANTS.W.*cos(g))));
residuals(7,:) = adot - ul;
residuals(8,:) = mdot - u2;

TaemEvents-File containing the specification of the event conditions.

essentially specifications on the states at the initial and final times.

function boundaryConditions = taemEvents (primal)

global CONSTANTS

These are
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primal.states
primal. states
primal.states
primal. states
primal.states
primal. states
primal. states
primal. states

(1,
(2,
(3,
(4,
(5,
(6,
(7,
(8,

1)
1)

1)
1)
1)
1)
1)
1)

Vf
cf
hf
xf
yf

gf
af
mf

primal.states
primal. states
primal.states
primal. states
primal.states
primal. states
primal. states
primal. states

(1, end)
(2, end)
(3, end)
(4, end)
(5, end)
(6, end)
(7, end)
(8, end)

d;ownrangEllIC

arosan
- am

alphani-

- m

boundaryConditions = zeros(12,1);

boundaryConditions(1) = VO;
boundaryConditions(2) = co;
boundaryConditions(3) = hO;
boundaryConditions(4) = xO;
boundaryConditions(5) = yO;
boundaryConditions(6) = gO;
boundaryConditions(7) = aG;
boundaryConditions(8) = mO;

boundaryConditions(9) = Vt;
boundaryConditions(1) = cf;
boundaryConditions(11) = hf;
boundaryConditions(12) = xf;

boundaryConditions(13) = yf;
boundaryConditions(14) = mf;

TaemPath-File that specifies the path constraints for the problem. In this case, these

include the dynamic pressure ;7, Nxb, Nyb, and Nzb.

function pathconstraints = taemPath(primal)

global CONSTANTS MACHTAB ALPHATAB
global CDTAB CLTAB

V = primal.states(1,:);
c = primal.states(2,:);
h = primal.states(3,:);
x = primal.states(4,:);
y = primal.states(5,:);
g = primal.states(6,:);
alpha = primal.states
mu = primal.states

(7,:)
(8,:)

chi
altitude

ownrang~e
cssrangeo w .1 oa -

angle of attack
"' bank anglie

ak a
n ark ar'.cf jd '-

ul = primal.controls(1,:);
u2 = primal.controls(2,:);
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for II = 1:(length(V(1,:)));
[tmp,pres,rho(II),sos(II)] = atmos4(0,((h(II).*...

CONSTANTS.hnorm)+CONSTANTS.Hrun));
end
Mach = ((V.*CONSTANTS.Vnorm)./sos);
qbar = (0.5)*(rho).*((V.*CONSTANTS.Vnorm).^2);
CL =

interp2 (MACHTAB,ALPHATAB,CLTAB,Mach, (alpha.* (180/pi)),
CD =

interp2 (MACHTAB,ALPHATAB,CDTAB,Mach, (alpha.* (180/pi)),

~iinear )

V V )

Vdot = ((-CONSTANTS.g./(CONSTANTS.W.*CONSTANTS.Vnorm)).*...
((qbar.*CONSTANTS.S.*CD)+(CONSTANTS.W.*sin(g))));

cdot = ((CONSTANTS.g./(CONSTANTS.W*V.*CONSTANTS.Vnorm)).* ...
((qbar.*CONSTANTS.S.*CL.*sin(mu))./(cos(g))));

gdot = ((CONSTANTS.g./(CONSTANTS.W*V.*CONSTANTS.Vnorm)).* ...
((qbar.*CONSTANTS.S.*CL.*cos(mu))-(CONSTANTS.W.*cos(g))));

Nxa = ((Vdot.*CONSTANTS.Vnorm)./CONSTANTS.g);

Nya = ((cdot.*V.*CONSTANTS.Vnorm.*(cos(g)))./(CONSTANTS.g));
Nza = ((-gdot.*V.*CONSTANTS.Vnorm)./(CONSTANTS.g));

Nxb = Nxa.*(cos(alpha))+Nya.*(sin(alpha)).*(sin(mu))-...
Nza.*(sin(alpha)).*(cos(mu));

Nyb = Nya.*(cos(mu))+Nza.*(sin(mu));
Nzb = (-Nxa.*(sin(alpha)))+Nya.*(cos(alpha)).*(sin(mu))-...

Nza.*(cos(alpha)).*(cos(mu));

N = length(primal.states(l,:));
pathconstraints = zeros(4,N);

pathconstraints(l,:) = Nxb;
pathconstraints(2,:) = Nyb;
pathconstraints(3,:) = Nzb;
pathconstraints(4,:) = qbar;
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Appendix B

DIDO Results

B.1 Graphical Presentation of DIDO Results

The figures presented on the following pages are graphical presentations of the data

output from DIDO. Each figure compares a DIDO trajectory to the reference produced

by Proto-snake. The first seven figures are the results of DIDO running each of the seven

cost functions at the first reference point. The second group of seven figures are the

results of the cost functions at the second reference point and so on. The cost function

used for the formulation of the DIDO trajectory presented in a particular figure is

displayed at the bottom of the page.

For each figure, the top two plots present the longitudinal flight of the trajectory,

represented by its altitude and flight path angle profiles. The next two plots are of the

trajectory control states, angle of attack and bank angle. In DIDO, the actual control

variables are the derivatives of these states. The next two plots are of the path

constraints, dynamic pressure and dynamic loading. All six states / constraints shown at

the top each figure are plotted against the overall ground track distance. The largest plot

at the bottom of each figure is a top down view of the trajectory, which represents the

lateral flight or lateral ground track shape of the trajectory. For this plot, the crossrange

distance is plotted against the trajectory downrange distance.
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Figure B.28: DIDO Run (maxEamy4) versus Point 4 Reference
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Appendix C

Scoring Results

C.1 Tables of Parameter Scores

The tables of parameter scores are listed below. Across the top of the tables are the

trajectory names. The scores for each of the parameters of the trajectories are listed along

with the raw total and final grade, which is made up of a weighted sum of the parameter

scores.

Table C.1: Point 1 Trajectory Results

qam1 qamyl qamc1 minEamnzl minEamyl maxEamcl maxEamyl Proto-snake

g score 0.0000 0.0006 0.0000 0.2139 0.2918 0.2901 0.7485 0.0000

Nz score 0.3097 0.6246 0.2897 0.0000 0.1459 0.0774 0.1390 0.2198

; score 0.4589 0.3257 0.5636 0.0789 0.0169 0.1145 0.7186 0.4031

y score 0.7320 0.1749 0.6995 0.0934 0.0500 0.2380 0.8750 0.5499

a score 0.1141 0.3315 0.1042 0.2023 0.2036 0.4752 0.3150 0.2967

/ score 0.1298 0.3827 0.1037 0.1387 0.1408 0.1133 0.0945 0.0883

Raw total 1.7445 1.8400 1.7607 0.7272 0.8490 1.3085 2.8906 1.5578

Grade 17.2110 23.3490 17.4155 13.6560 20.3785 21.7175 54.5085 14.2005

Table C.2: Point 2 Trajectory Results

qam2 qamy2 qamc2 minEamnz2 minEamy2 maxEamc2 maxEamy2 Proto-snake

if score 0.0026 0.0290 0.0025 0.2758 0.3680 0.7953 0.7941 0.6466

Nzh score 0.0000 0.0142 0.0000 0.0000 0.0097 0.0393 0.0899 0.1166

X score 0.2875 0.1057 0.2928 0.2501 0.1688 0.3556 0.7040 0.0000

y score 0.7237 0.3068 0.7450 0.7244 0.6045 1.0000 1.0000 0.0893

a score 0.0704 0.1543 0.0702 0.1273 0.1491 0.2772 0.1878 0.1886

1 score 0.0121 0.0559 0.0169 0.0829 0.0920 0.0636 0.0693 0.0379

Raw total 1.0963 0.6659 1.1274 1.4605 1.3921 2.5310 2.8451 1.0790

Grade 7.0360 5.4470 7.2135 20.9640 24.5585 51.0075 55.2780 36.8240
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Table C.3: Point 3 Trajectory Results

qam3 qamy3 qamc3 minEamnz3 minEamy3 maxEamc3 maxEamy3 Proto-snake

score 0.0000 0.0005 0.0000 0.5164 0.4243 0.7265 0.5419 0.5646

Nzh score 0.5257 0.6837 0.4707 0.0500 0.2464 0.1287 0.6152 0.2025

X score 0.5997 0.6600 0.5711 0.4355 0.0109 0.6952 0.5601 0.0607

y score 0.6645 0.7220 0.6512 0.7827 0.0466 0.7808 0.6435 0.0161

a score 0.1799 0.1420 0.1520 0.3374 0.2889 0.2334 0.5872 0.3329

/ score 0.1007 0.1553 0.0978 0.1817 0.2814 0.0772 0.2659 0.1041

Raw total 2.0705 2.3635 1.9428 2.3037 1.2985 2.6418 3.2138 1.2809

Grade 23.8650 28.8116 21.9835 37.9340 30.5685 51.9515 55.5590 36.1650

Table C.4: Point 4 Trajectory Results

qam4 qamy4 qamc4 minEamnz4 minEamy4 maxEamc4 maxEamy4 Proto-snake

score 0.0000 0.0000 0.0000 0.4199 0.6163 0.7737 0.7866 0.0000

Nzh score 0.2344 0.6106 0.2386 0.1646 0.2736 0.0485 0.0714 0.2391

score 0.1021 0.2692 0.1019 0.1772 0.4234 0.2963 0.1831 0.2463

y score 0.0639 0.4820 0.0633 0.5028 0.6926 0.5816 0.5144 0.5800

a score 0.1357 0.3374 0.1358 0.1890 0.5451 0.2742 0.2590 0.2524

L score 0.0432 0.1981 0.0480 0.0954 0.1919 0.0616 0.0772 0.0570

Raw total 0.5793 1.8973 0.5876 1.5489 2.7429 2.0359 1.8917 1.3748

Grade 8.0950 23.0465 8.2195 30.8180 49.0370 47.4475 47.1990 12.8875
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