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the requirements for the degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

Instrumentation intended for aerodynamic and thermal performance measurements in a rotating turbine
facility were design, developed, and fabricated. These included multi-layer, thin-film heat flux gauges
and a flow angle probe (FAP). An experimental study of rotor exit tangential flow angle of a fully scaled
turbine stage was conducted with the FAP. Spatially-resolved and spatially-average tangential flow angle
data are examined and discussed in this study.

The experimental tests were conducted in the MIT Blowdown Turbine Facility using a film-cooled
turbine stage. The facility is a short-duration experimental apparatus capable of testing turbine stages
under fully scaled conditions, producing useful data for comparison over a time period of approximately
500 ms for each test run. The FAP developed for this project was designed to have sufficient frequency
response to resolve certain unsteady characteristics in the turbine flow field. Prior to introducing the FAP
into the turbine test section, a detailed calibration was carried out in order to relate measured surface static
pressures to tangential flow angles via a non-dimensional pressure parameter. A detailed uncertainty
analysis was carried out for the calibration procedure and the reduction of experimental data.

Turbine tests were carried out at several FAP radial positions at the design operating point of the turbine
stage. This allowed for radial mapping of the circumferential spatially-averaged flow angle
measurements. In addition, some turbine test runs were carried out a high corrected speed operating
conditions. Spatially-resolved results were taken to measure flow angle variations through nozzle guide
vane (NGV) wakes. Periodic fluctuations observed in the measured flow angle with run time confirmed
the expected variations through the NGV wakes. These fluctuations, which were observed to occur with a
frequency of approximately 11 Hz, were due to the FAP passing the NGV wakes since the FAP was
mounted on a rotating downstream translator for the turbine tests. High corrected speed test runs
consistently showed lower spatially-averaged flow angle values than their corresponding design point
tests. This is explained by the difference in rotor mechanical speed between these runs.

In addition, the design, development, and fabrication of multi-layer, thin-film heat flux gauges was a
portion of this research work. These heat transfer gauges consisted of thin nickel temperature sensors on
either side of 25 pm thick polyimide (Kapton*) film. The fabrication of these gauges with the desired
gauge geometry and material composition employed techniques including electroless nickel deposition,
photomachining using an excimer laser, and electrolytic copper plating.

Thesis Supervisor: Dr. Gerald R. Guenette
Title: Principal Research Engineer
Gas Turbine Laboratory
Department of Aeronautics and Astronautics
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or Mechanical Speed
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Chapter 1: Introduction

1.1 Background

The aerodynamic performance and efficiency of gas turbine engines has seen

dramatic increases since the inception of these devices some half a century ago. Axial

flow gas turbine engines used for electrical power generation currently operate with

polytropic efficiencies in excess of 90 % and turbine inlet temperatures above 1700 K.

Continual efforts to improve performance of gas turbine engines require a variety of

unique instrumentation capable of acquiring relevant data. Devices designed to measure

heat loads experienced by engine components have been among those at the focus of

various research efforts in the past decade. In addition, instruments that measure flow

characteristics inside turbine engines are also of interest because of the difficulty

associated with accurately modeling these flow fields using computer simulations. There

have been significant advances in the field of Computational Fluid Dynamics (CFD) in

recent times, but experimental testing should always be performed to support and validate

such activities.

In both research circles and industry alike, experimental gas turbine testing has

been used to make various aerodynamic and thermal performance measurements.

However, current steady-state turbine testing practices have proven to be very expensive

and impractical. The cost associated with a steady-state gas turbine experiment can

easily be in the millions of dollars for relatively simple test conditions. As a result,

steady-state testing is not a practical alternative at academic institutions. In the specific

case of turbine engine used for power generation, full-scale, steady-state experimental

apparatus are not used due to their large size and resource requirements. In these cases,

engine components are typically tested in service, thus resulting in minimal

improvements in efficiency and performance over the life of an engine due to constraints

imposed on in-service equipment.
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In the early 1980's, the Blowdown Turbine (BDT) was developed at the

Massachusetts Institute of Technology's (MIT) Gas Turbine Laboratory (GTL) in order

to study turbine performance. The BDT is a fully-scaled, short-duration experimental test

facility. Using transient testing techniques, researchers at the GTL have been able to

obtain highly accurate data relating to aerodynamic and thermal performance of axial

flow turbines. The time scales associated with this short duration test facility are on the

order of several hundred milliseconds. Useful data relating to steady-state operation can

be obtained using instrumentation with sufficiently high frequency response. Both

turbine inlet temperature and rotor tip speed can be significantly reduced in such an

apparatus by scaling appropriate dimensionless parameters including Reynolds number,

total stage pressure ratio, gas-to-wall temperature ratio, and corrected speed. A facility

such as the BDT requires far fewer overall resources for its construction, maintenance,

and operation than its steady-state counterparts.

Various instruments for aerodynamic and thermal measurements have been

previously developed during research programs for the BDT. A program to develop

instrumentation intended to measure the heat transfer rates to individual blades, and to

develop instrumentation and measure the rotor exit flow angle of a film-cooled turbine

stage has been undertaken. This thesis is a summary of research efforts focused on these

goals.

1.2 Previous Work

A brief summary of the work conducted on the MIT Blowdown Turbine Facility

since its construction in the early 1980's is included below.

The MIT Blowdown Turbine Facility was design and constructed by Guenette [8].

Initial work on the facility was focused on the design and development of the

fundamental components of the test apparatus. Significant effort was involved in the

development of the fast-acting main valve, eddy current brake, and heat flux

instrumentation. Early research efforts focused on heat transfer measurements to the tip

casing and nozzle guide vanes in an uncooled turbine stage.
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Shang [19] examined the influence of non-uniformities in turbine inlet

temperature on the heat transfer to turbine blades. Radial temperature distortions were

found to have a significant effect on blade heat transfer, while circumferential distortions

seemed to have little impact.

Keogh [10] and Spadaccini [25] examined and compared the aerodynamic

performance of uncooled and film-cooled turbine stages. Significant modifications to the

existing turbine stage were required in order to incorporate film-cooling. Keogh [10] also

examined and quantified the specific aerodynamic losses associated with the addition of

film-cooling.

Van Poppel [28] made measurements of heat transfer rates to the tip casing of the

turbine stage under various operating conditions. This required the design and

fabrication of a complicated instrumented tip casing insert.

1.3 Motivation

The characterization of flow fields, including the measurement of flow angle, is

not a new endeavour. Several pieces of literature exist [3,14] that describe various

aspects of flow measurement including the design and fabrication of appropriate

instruments. These instruments are easily incorporated in stationary apparatus such as

blade cascades. However, the task of flow characterization in rotating turbomachinery is

a much more complicated task. Research work focused on measuring the flow

characteristics in experimental engines with rotating components, such as the MIT

Blowdown Compressor Facility, has been conducted in the past [16,27]. Thompkins and

Kerrebrock [27] studied the flow, including flow angles, ahead and downstream of a

high-work transonic compressor rotor in order to develop theoretical models capable of

quantitatively describing the flow. Often times, however, such studies do not include a

comprehensive uncertainty analysis, which is extremely useful in validating experimental

data. These types of measurements have not to date been made in the MIT Blowdown

Turbine Facility. The most significant portion of the research reported herein was

conducted in order to obtain spatially-resolved rotor exit tangential flow angle
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measurements, with an appropriate uncertainty analysis, that may be used in comparisons

with other theoretical predictions of flow field in the turbine stage tested.

Both semi-infinite and thin-film heat flux gauges have been employed to make

heat transfer measurements on various turbine engine components in the past. The task

of making these measurements on the surface of rotating blades is extremely difficult.

Guenette [8] was successful in achieving this using multi-layer, thin-film heat flux

gauges in previous research efforts, but the fabrication methods used to produce these

gauges proved too difficult to make their duplication a worth while activity in subsequent

test series. The development of innovative methods to produce such gauges was required

in order to render a gauge manufacturing process that was sufficiently reliable to be

applied to subsequent experimental testing. This effort was also a portion of the research

that is the subject of this document.

1.4 Objectives

The objectives involved in this research effort revolved around instrumentation

for aerodynamic and thermal performance measurements in a short-duration turbine test

facility. These objectives include:

1) The design and fabrication of an instrument capable of measuring the

tangential flow angle in a short-duration test facility with adequate sensitivity and

frequency response to resolve spatial flow characteristics associated with

circumferential surveys

2) The calibration of the flow angle measuring device in a separate wind tunnel

to allow for the experimental determination of flow angle from raw pressure

measurements

3) The integration of the flow angle instrument into the existing downstream

translator of the turbine test section with the provision varying the radial height of

the probe once installed
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4) The measurement of tangential flow angle downstream of the turbine rotor in

the test section

5) The design of multi-layer, thin-film heat flux gauges capable of measuring

heat transfer rates to turbine blades with sufficient frequency response

6) The development of new fabrication techniques for reliably manufacturing

multi-layer, thin-film heat flux gauges

1.5 Thesis Outline

This chapter outlines the content of the thesis, reviews previous research work in

the Blowdown Turbine Facility and other related work, and reviews the motivation and

objectives of the project. Chapter 2 introduces the MIT Blowdown Facility including

details of the primary components. Facility scaling issues and typical run conditions are

discussed. Details pertaining to recent modifications to the facility, instrumentation, and

data acquisition system are discussed. The design, development, and fabrication of

multi-layer, thin-film heat flux gauges capable of measuring heat transfer to turbine

blades are discussed in Chapter 3. This section also includes a gauge model and selection

criteria for the design and materials selected for these gauges. Chapter 4 presents the

design, development, and fabrication of a three-hole, hemispherical-nose, multi pressure

sensor, flow angle probe (FAP). The integration of the FAP into the existing Blowdown

Facility is also discussed. The calibration of the FAP that was performed prior to

implementing the probe into the test section is the subject of Chapter 5. A description of

the calibration procedure and associated analysis of the calibration results is included. In

addition, a detailed error analysis of the calibration of the FAP is also discussed. Chapter

6 discusses the experimental results obtained using the FAP in the Blowdown Facility.

The development of the test conditions and the approach taken to analyze the

experimental results are included in this chapter. Both spatially-resolved and spatially-

averaged tangential flow angle results are presented and discussed. Results from several

radial FAP positions are included to map the tangential flow angle at different turbine

23



stage operating point settings. Chapter 7 is the conclusion of the thesis, including a

summary of the results and recommendations for future research work.
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Chapter 2: Blowdown Turbine Test Facility

2.1 Introduction

The MIT Blowdown Turbine Facility is a short-duration, blowdown wind tunnel

capable of accomodating a complete, rotating stage in an environment that rigorously

simulates the fluid physics and heat transfer phenomena that occur in a turbine. This

chapter presents an overview of the MIT Blowdown Turbine Facility. A description of

the facility design, configuration, and operational procedures is included. Scaling of the

turbine operating point for achieving full-scale similarity is discussed. Both the

individual components and instrumentation used are examined herein. The data

acquisition system is also briefly presented.

2.2 Facility Configuration

The MIT Blowdown Turbine Test Facility is shown in Figure 2.1. The facility

consists of seven primary components: the supply tank, fast acting valve, test section,

eddy current brake torque meter, critical flow venturi nozzle, coolant feed system (not

shown), and dump tank. A detailed review of the overall design of the facility can be

found in Guenette [8].
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2.2.1 Supply Tank and Fast Acting Valve

The supply tank is a 364 ft3 cylindrical pressure vessel rated at 150 psia. It is

surrounded by an external jacket through which heat transfer oil is circulated to warm the

tank to the desired test temperature. An electric stirring fan is employed to ensure a

uniform test gas temperature distribution.

The test section is separated from the supply tank by a fast-acting, axially

traversing, plug valve. This valve is designed to fully open in approximately 50 ms and

introduce disturbance-free flow into the test section. Valve dynamics are controlled by

damping chambers, which produce a force on the plug whose magnitude and direction

depend on its position and velocity. In its fully closed position, this force acts to seal the

plug. After the seal is broken, the valve plug is accelerated open. As it nears its fully

open position the plug is decelerated to rest. An internal pneumatic piston assembly

actuated by a small compressed argon gas cylinder provides the force used to break the

seal.

2.2.2 Test Section

A cut-away of the test section assembly is shown in Figure 2.2 and Figure 2.3.

The test section is composed of the forward frame, main frame, and the rotor unit. The

forward frame contains the nozzle guide vanes, the inlet boundary layer bleeds, and the

rotor heat shield and mates to the main valve. The forward frame is followed by the main

frame, which houses the turbine rotor assembly, the downstream probe translator

package, the eddy current brake magnet assembly, the turbine throttle, and drive motor.

The rotor unit contains the rotor discs, blades, bearings, shaft, and the eddy current brake

'loss' drum (not shown). This drum is inserted into the eddy current brake magnet

assembly.
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Figure 2.2: Detailed View of Test Section
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Figure 2.3: Detailed View of Turbine Installation

A cross-sectional view of the test section flow path is shown in Figure 2.4.

Upstream of the turbine stage a boundary layer bleed provides clean inlet flow. The rotor

exit flow is exhausted through an adjustable throttling area to provide the desired

pressure ratio across the turbine. During the usable portion of the test, this area is

choked. Also shown in Figure 2.4 are the upstream and downstream measurement

locations. Downstream, the total temperature and pressure probes, and a flow angle

probe are mounted on a circumferential translator.
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Figure 2.4: Test Section Flow Path

2.2.3 Circumferential Probe Translator

A downstream circumferential translator is available to provide measurement of

non-axisymmetric features of the turbine flow field. Circumferential non-uniformities

downstream of the turbine stage are a result of nozzle guide vane wakes. Downstream
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flow field measurements are thus biased by their circumferential location. The

downstream translator is used as a solution to this problem in the MIT Blowdown

Facility. For all of the experiments reported herein, the downstream translator was

employed with instrumentation.

The downstream translator is composed of a drum forming the inner annulus of

the turbine exit and is mounted on thin-line bearings. The downstream translator houses

three 'canisters' spaced 200 apart, which contain the appropriate electrical and pneumatic

connections to support total temperature or pressure rakes, or other instrumentation.

Connections are also available for several wall static pressure taps. The translator is

restricted to a 350* rotation angle by a spring-loaded hard stop to prevent the translator

from freely spinning and destroying the canisters' electrical wiring. A Baldor ME-4090-

BLBCE servomotor drives the translator, delivering approximately 3 in-lb of torque

through an equivalent 13.5:1 gear ratio. This motor is controlled by a Galil DMC-400-10

card and powered by a Copley MB6-10 amplifier. In addition to the hard stop, an

aluminum shear pin is installed on the shaft coupling exiting the servomotor to prevent

translator runaway. The downstream translator rotates at a constant angular speed of

approximately 0.25 revolutions per second during the test window [9].

2.2.4 Eddy Current Brake

The eddy current brake serves as both the turbine load and the turbine torque

meter. It consists of two components: a cylindrical Inconel drum directly attached to the

rotor shaft and a stationary array of DC-excited electromagnets arranged

circumferentially around the drum. Electric currents are induced in the drum as it rotates

through the applied magnetic field. The flow of this current through the electrical

resistance of the drum dissipates the power produced by the turbine, which appears as

resistive heating of the drum. Setting the magnitude of the applied magnetic field

controls turbine speed.

The braking system was modified by Keogh [10] to serve as a shaft torque meter.

The electromagnet assembly was mounted on bearings and the braking torque was

measured through two load cells.
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2.2.5 Critical Flow Venturi Nozzle

A critical flow venturi, developed and installed by Keogh [10] and Spadaccini

[25] in line with the exit flow path, is used to measure the mass flow rate through the

turbine. The nozzle design and upstream duct requirements are based on the American

National Standards Institute (ANSI) standard [2] for a torroidal throat critical flow

venturi. Modifications to the facility were required to meet installation requirements for

the nozzle. A 66 in. extension was added between the dump tank and main frame in

order to relocate the eddy current brake and starter motor. Extensions were also required

to connect the boundary layer bleeds to the dump tank, and to connect the fill system to

the supply tank.

A 50 % open area screen is installed at the entrance to the upstream duct. This

reduces the total pressure non-uniformity caused by the stepped transition from annular to

circular cross section around the starter motor. The nozzle was calibrated with the

upstream duct and a simulated blockage in place.

The nozzle was designed and built by Flow Systems Incorporated of Boulder

Colorado and calibrated by Colorado EESI. This calibration is traceable to the National

Institute for Standards and Technology (NIST). A cross section of the critical flow

venturi nozzle is shown in Figure 2.1.

2.2.6 Coolant Feed System

The coolant system consists of a coolant supply tank, a fast-acting pneumatic ball

valve, a pipe network, and several orifice plates for metering the flow. In a similar

manner to the facility itself, the cooling system operates in a blowdown mode. The

existing facility coolant system was modified by Spadaccini [25] to provide three

independent and separately metered streams to the rotor blades, vanes, and tip casing.

The coolant supply tank is 3.97 ft3 and has a pressure rating of 450 psia. Like the

main supply tank, it is surrounded by a metal jacket and insulation for controlling tank

temperature. A flow of liquid nitrogen mixed with compressed air is used to cool the
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tank lining and the coolant gas to the desired temperature. The fast-acting ball valve at

the tank exit is actuated by a 1000 psi argon bottle. It is triggered simultaneously with

the main valve and closes approximately 1.2 s later. The piping network feeds the

coolant gas from the coolant supply tank into the test section and to the turbine.

An overhead view of this network can be seen in Figure 2.5. Three independent

feed lines are employed, one each to the rotor blades, nozzles, and tip casing. The flow is

split in a manifold downstream of the ball valve. A thick, square edged, choked orifice

with known discharge coefficient meters each feed split. Each orifice accurately sets the

mass flow to each turbine component, provided the desired flow ratio.
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Figure 2.5: Schematic of Coolant Feed System

2.2.7 Film-Cooled Turbine Stage

In order to modify the uncooled turbine stage for coolant flow injection, the %-

scale film-cooled model turbine was required to have similar external geometry,

including film hole quantity, distribution, diameters, and injection orientations over the

airfoil surfaces. However, the internal passages were not directly replicated since the
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focus of the program was on external heat transfer. Keogh [10] and Spadaccini [25]

made extensive modifications to the existing non film-cooled turbine stage.

Sophisticated machining techniques, including electrical discharge machining (EDM),

and laser machining were employed to produce the film cooling holes.

The nozzle guide vanes, rotor blades, and the tip casing were modified for

cooling. Nozzle guide vanes were retrofitted with 12 rows of coolant injection holes on

the airfoil surface, as well as several holes on the upper and lower platforms. Two

vertical channels were required to feed all of the airfoil surface cooling holes. Coolant

was supplied to the platform holes via manifolds above and below the locations where the

vanes mate to the facility. The scaled film-cooled turbine blades include five rows of

coolant injection holes: two on the leading edge, one on the suction surface and one on

the pressure surface. The leading edge holes are oriented at compound angles. Although

not used for this experiment, the rotor tip casing was modified with film-cooling holes on

the leading and trailing edges of the tip casing ring.

2.3 Scaling of Test Conditions

Validity of scaled wind tunnel experiments depends on the similarity between the

test flow and the actual flow being simulated. In dimensionless form, the equations for

mass continuity, momentum and energy transfer produce non-dimensional parameters

that completely characterize the physics of flow field. Similarity between experiment

and reality only requires that these non-dimensional parameters be reproduced.

For an uncooled turbine stage operating under adiabatic conditions, corrected

mass flow and total temperature ratio (or efficiency) depend on four dimensionless

parameters: total pressure ratio, corrected speed, Reynolds number, and specific heat

ratio [8]. Two additional parameters are required to simulate the heat flux distribution:

the gas-to-wall temperature ratio and the Prandtl number. For a film-cooled turbine test,

the coolant mass and momentum flux ratios must also be reproduced. These parameters,

which govern test similarity, can be matched by properly setting the facility initial

operating conditions.
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The operating conditions consist of the test gas composition, upstream total

temperature and pressure, coolant total temperature and pressure, mechanical speed,

throttle area, and brake excitation. The supply tank temperature is set by matching the

gas-to-wall temperature ratio. Specific heat ratio is matched by setting the test gas

mixture ratio, typically argon and carbon dioxide. Shaft mechanical speed is set by

matching the corrected speeds. Initial supply pressure is set by the Reynolds number, and

pressure ratio by the downstream throttle position. Table 2.1 summarizes the conditions

of a typical blowdown experiment and compares them to that of a full scale engine.

Table 2.1: MIT Blowdown Turbine Facility Scaling

Parameter Full Scale Engine MIT Blowdown Facility
Working Fluid Air Argon-CO 2
Ratio of Specific Heats 1.28 1.28
Mean Metal Temperature 1100 K 300 K
Metal to Gas Temperature Ratio 0.647 0.647
Inlet Total Temperature 1700 K 464 K
Reynolds Number 5.6 x 106 5.6 x 106
Inlet total Pressure 15 atm 7 atm
Exit Total Pressure 7.4 atm 3.47 atm
Exit Total Temperature 1470 K 401 K
Prandtl Number 0.928 0.742
Design Rotor Speed 3600 rpm 5954 rpm
Design Mass Flow 312 kg/s 23.3 kg/s
Coolant/Inlet Flow 9.8 % 9.8 %
Stage Power Output 91 MW 1.26 MW
Test Time Continuous ~0.800s

2.4 Test Procedure

Preparations for a blowdown experiment begin by determining the required

conditions for achieving full-scale turbine operating point. These consist of the upstream

total temperature and pressure, coolant total temperature and pressure, test gas

composition, mechanical speed, throttle area, and brake excitation. The experiment then

proceeds as follows:

1) The entire facility is evacuated and the throttle plate is positioned for a

predetermined area based on operational experience.
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2) The main supply tank is heated to the desired upstream total temperature and is

brought to thermal equilibrium.

3) The main valve is sealed and the supply tank is filled with the required test gas

mixture to the desired upstream total pressure.

4) Simultaneously, the coolant supply tank is filled to the desired pressure and

cooled to the predetermined temperature.

5) At this post-fill state, all differential pressure transducers are calibrated by cycling

their back-pressure ports between vacuum and atmosphere. This provides a scale

factor for each transducer. Instrumentation and calibration are discussed in further

detail below.

6) The brake excitation is set.

7) The data acquisition system and translator servo-motor controller are set to stand-

by mode and are waiting to be triggered.

8) The turbine rotor is then accelerated to the desired mechanical speed by a starter

motor.

9) Once this speed is exceeded, the motor is powered down and the rotor spins freely

in the vacuum. It is slowly decelerated by bearing friction and the applied back

EMF of the drive motor.

10) When the decelerating rotor reaches the preset speed, a trigger causes the main

valve and coolant ball valve to open. Simultaneously, the data acquisition system

begins collecting data, the downstream translator begins it traverse, and the eddy

current brake torque meter is energized.

11) The test gases then flow through the test section and quasi-steady state operation

is reached after a 300 ms transient. The useful test window is approximately 500

Ms.

12) After approximately 1.2 s the coolant ball valve closes and the brake is turned off.

13) The rotor decelerates and comes to a stop.

14) Once the gas inside the tunnel stabilizes, all differential pressure transducers are

re-calibrated to check for drift.

15) The tunnel is then re-evacuated and cooled to room temperature.
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2.5 Instrumentation

The facility was designed to provide a relatively benign experimental

environment for flow measurement. The nature of the short duration experiment imposes

a strict requirement on the time response of instrumentation used to sample its flow field.

Performance calculations based on these measurements also require a high level of

instrumentation accuracy. These considerations led to the development of highly

accurate total temperature and pressure instrumentation with the capability of accurately

characterizing turbine performance.

2.5.1 Total Temperature Instrumentation

The MIT Gas Turbine Laboratory has engaged in the development of total

temperature probes for use in turbine aero-performance measurements in the Blowdown

Test Facility. With each new design, time response and instrument accuracy generally

improved. Work focused on reducing the transient errors resulting from the heat transfer

processes within the thermocouple junction support wires and led to a design with much

faster time response than previously achieved. Special attention was also given to the

probe head design to reduce probe sensitivity to flow angle, which is important for

downstream wake measurements.

Details of the temperature probes are shown in Figure 2.6 and Figure 2.7. The

measurement heads consist of 0.0005 in. diameter type-K thermocouple junctions

mounted in vented stagnation tubes. The rake probe shown in Figure 2.7 is mounted on

the downstream translator and contains an internal temperature reference junction. A

stationary six head version is mounted upstream of the turbine. The radial rake with six

heads is positioned roughly mid-way between two of the facility's inner annulus support

struts. The inlet rake can employ either an internally mounted or external reference

junction.

Three additional single head probes, spaced 1200 apart, are mounted upstream at

mid-span on the inlet annulus. The thermocouple reference junctions for these probes are
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external. Three total temperature probes are dedicated to monitoring the flow through the

critical flow venturi nozzle. These probes are also 0.0005 in. diameter type-K

thermocouples and have similar time response and accuracy to the upstream probes.

The cooling system is instrumented with seven type-K thermocouples. These

probes do not require the time response of the turbine inlet and outlet sensors and employ

0.003 in. junctions. These probes are located at points upstream of the choked metering

orifices and as close as possible to where the coolant enters the test section.

With the exception of the turbine inlet and outlet rakes, all thermocouples are referenced

to Omega TRCII ice point cells. The signals are processed using high stability DC

amplifiers and filters prior to being recorded by the data acquisition system. The long-

term static accuracy of the system-consisting of the measurement head, reference

junction and signal conditioning electronics-is 0.13 K.

Thermocouple
Junction

Thermocouple
Wire

Inlet

Ceramic
Tubing

Teflon L Stainless Steel
Tubing Probe Shield

Figure 2.6: Detailed View of Temperature Probe Head
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Figure 2.7: Downstream Total Temperature Rake

2.5.2 Total Pressure Instrumentation

The primary concerns in the design of the total pressure sensors for this facility

are sufficient time response and flow angle insensitivity. Flow angle sensitivity is

39

coise Ram
Junede



particularly important for downstream measurements where the probes are

circumferentially translated through the wakes created by the nozzle guide vanes. To

achieve the desired time response, semiconductor strain gauge type pressure transducers,

manufactured by Kulite, were used. A disadvantage of these transducers is their

tendency to drift with changes in temperature. As a consequence, extensive run-time

calibration routines were developed and used during every experiment. To allow a larger

range of inlet flow angle to the probe head, either vented Keil type or 150 beveled impact

heads were employed. The maximum acceptable flow angles are estimated to be ±27.50.

Downstream of the turbine stage, a rake type pressure probe with eight 150

beveled impact heads is employed to survey the pressure in the radial direction. The

probe is mounted on the downstream translator to also resolve flow characteristics in the

circumferential direction. The pressure transducers (100psig XCQ-063-100) are mounted

inside the probe body below the heads. Transducer reference backpressure is provided

via a tubing arrangement within the translator. The estimated average uncertainty in total

pressure measurement from these heads is 0.25 %. Cai [4] provides more information on

the design of this probe.

In addition to this rake, there are differential sensors located upstream of the

turbine and in the supply, coolant, and dump tanks. There are also several highly accurate

Sensotec (0.05 %) and Heise (0.02 %) pressure sensors mounted throughout the facility

for calibration reference. The coolant system is instrumented with lower accuracy (0.1%)

Sensotec transducers.

2.5.3 Nozzle Guide Vane Static Pressure Taps

To take static pressure measurements on the hub and tip region of the platform

surfaces of the nozzle guide vanes (NGV), one NGV is instrumented with static pressure

"taps" on the platform hub and tip surfaces. Four through holes were drilled into each

platform surface spaced one-quarter nozzle pitch apart. On the tip end, tubulations are

bonded into grooves machined into the outer manifold support of the nozzle cassette. For

the hub static tap, stainless steel tubes are bonded onto the top and run through the

NGV's cooling plenum. The outer manifold support of the nozzle cassette was modified
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with a feed through hole to allow access to the static tap tubulations. With an access

window removed, the tubulations are visible and accessible, as shown in Figure 2.8.

Urethane tubing connects to each of four hub and four tip tubulations and is passed

through Cajon fittings. The nylon tubing connects to brazed brass tubes (on a brass

support piece) which hold the tubes in place and provide a seal with the fitting.

Additional urethane tubes connect the brass tubes to a Scanivalve Direct Sensor Array

(DSA) 3017 pressure-monitoring device. To maximize frequency response and

measurement fidelity the DSA is placed as close to the tubulations as facility construction

permits.

Hub-Side Pressure Tap

Tip-Side Tubulations

Figure 2.8: Nozzle Guide Vane Static Pressure Taps

2.5.4 Flow Angle Probe

A three hole flow angle probe was developed and fabricated during this research

effort at the MIT Blowdown Facility. This instrument was used to determine the angle of

the flow leaving the rotor blades of the turbine stage. The design and construction of this

instrument will be discussed in detail in subsequent sections.

2.5.5 Other Instrumentation

Various other measurements are taken from the MIT Blowdown Facility with the

help of a number of instruments. Digital encoders are used to monitor turbine speed and
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translator position independently. The optical shaft encoder consists of two rings of 366

divisions per revolution in quadrature and a once per revolution ring. It is directly

mounted to the turbine shaft. Both digital and analog circuitry process the encoder

signals to provide shaft position and velocity for storage by the computer data acquisition

system.

Two piezoelectric sensors are mounted on the bearing housing to record shaft

vibration during an experiment.

The eddy current brake torque meter is instrumented with two load cells that

provide a measure of shaft torque. The brake voltage and current are also recorded by the

data acquisition system. A list of all instrumentation is provided in Table 2.2.

Facility reference instrumentation provides known conditions for use in the

calibration procedures. For these instruments, time response is sacrificed for absolute

accuracy and stability since all tunnel temperature and pressure measurements are based

on these references. Pressure references are available in the supply tank and test section

via slower, but more accurate capacitive type pressure transducers. Located on the

supply tank is a Sensotec Super TJE 150 psia (0.05 %) transducer. A Sensotec TJE 50

psia (0.1 %) transducer is located in the critical flow venturi. Recent augmentations to

the pressure reference instrumentation have included the use of three very accurate Heise

(0.02 %) pressure transducers in the supply, dump, and coolant tanks. These pressure

transducers give direct digital readings of the pressures that they measure, thus bypassing

the errors associated with other instruments that must pass through the intermediate data

collection system. The upstream Pitot probes are referenced to a Setra Model 228 1 psid

capacitive type pressure transducer. Temperature calibrations are referenced to a

Rosemount Standard Platinum Resistance Thermometer, Model 162N 1 OOA (S/N3779),

and when possible thermocouples are referenced to Omega TRCIII ice point calibration

cells. Efforts are now being made to convert all temperature references, with the

exception of those on the downstream translator probes, to the ice point to simplify

temperature data reduction.
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Table 2.2: Blowdown Turbine Instrumentation

43

Sensor Type Location

Facility Reference
Calibration: Dump Tank

Heise 2012 50 psia, Heise Run Time: Dump Tank Initial
Pressure / Atmosphere
Calibration: Supply Tank

Heise 2013 150 psia, Heise Run Time: Supply Tank Initial
Pressure
Calibration: Coolant Tank

Heise 2014 500 psia, Heise Run Time: Coolant Tank Initial
Pressure
Calibration: Coolant Tank /

PFEF300 300 psia, Sensotec: STJE/l 835/15 Facility
S/N: 589494 Run Time: Coolant Tank Initial

Pressure

150 psia, Sensotec: STJE/1833-12- Calibration: Supply Tank

PREF150 04 Fclt

S/N: 587965 Run Time: Supply Tank Initial
Pressure

50 psia, Sensotec: TJE/0713- Calibration: Facility

PREF050 04TJA-12 Run Time: Critical Flow

S/N: 631656 Venturi, Test Section Initial
Pressure

PREF001 1 psid, Setra: 228-1 S/N:708984 Calibration: Inlet Pitot Tubes
Rosemount Model 162N I OOA,

TREF3997dard Platinum Resistance Standard Calibration Reference

Thermometer

TREF10 0-100 *C Platinum RTD Run Time Reference

Supply Tank
Heise 2013 150 psia, pressure, Heise Supply Tank, Internal
PTOA 150 psid, pressure, Kulite Supply Tank, Internal
PTOB 150 psid, pressure, Kulite Supply Tank, Internal
TTOA 600 "F temperature, type J T/C Supply Tank, Internal
TTOB 600 *F temperature, type J T/C Supply Tank, Internal
TTOC 600 *F temperature, type J T/C Supply Tank, Internal

Shaft Monitoring
FTACH Speed, Digital Shaft/Bearing Assembly
ATACH Speed, Analog Shaft/Bearing Assembly
FBRING Vibration, forward Shaft/Bearing Assembly
RBRING Vibration, rear Shaft/Bearing Assembly

Eddy Current Brake
VTOT Excitation Volt External
ITOT Total Current External
IBRK Excitation Current External
ECBF1 Load Cell #1 Internal
ECBF2 Load Cell #2 Internal



Table 2.2: Blowdown Turbine Instrumentation, continued

Sensor Type Location

Main Valve
PVLV 450 psia Kulite Valve Damping Chamber
XVLV 0-8 in Linear Potentiometer Valve Slider

Turbine Inlet
PT2x, (x=A,B,C) Total Pressure Main Frame, 1200 apart
TT2x. (x=A,B,C) Total Temperature Main Frame, 1200 apart
PP2x, (x=A,B,C) Dynamic Pressure Main Frame, 1200 apart
PTYRn, (n=1,2,3,4,5,6) Total Pressure, 6 head radial rake Main Frame, fixed location

TTRI 01-n,(n=1,2,3,4,5,6) Total Temperature, 6 head radial Main Frame, fixed location
____________________ rake

Turbine Outlet

PFAPn, n=L,C,R Static Pressure, 3-hole flow angle Downstream Translatorprobe
PT45Rn, n=1,2,3,4,5,6,7,8 Total Pressure, 8 head radial rake Downstream Translator

TTR103-n, n=1,2,3,4,5 Total Temperature, 5 head radial Downstream Translatorrake
RTD103-n, n=1,2 T/C Reference RTD's, 2 locations Downstream Translator

TTR104-n, n=1,2,3,4 Total Temperature, 4 head radial Downstream Translator
rake

RDT104-n, n=1,2 T/C Reference RTD's, 2 locations Downstream Translator
P45HUB 50 psid wall static pressure Downstream Translator Hub
P45A 50 psid wall static pressure Main Frame Window

Critical Flow Venturi
PREF050 Static Pressure Venturi Inlet
PNOZ Static Pressure Flow Conditioning Nozzle
TTMFM1 Total Temperature Venturi Inlet
TTMFM2 Total Temperature Venturi Inlet
TTNOZ1 Total Temperature Flow Conditioning Nozzle
TTNOZ2 Total Temperature Flow Conditioning Nozzle

Dump Tank
Heise 2012 50 psia, pressure, Heise Dump Tank
PDMP Static Pressure Dump Tank
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Table 2.2: Blowdown Turbine Instrumentation, continued

Sensor T e Location

Cooling System
Heise 2014 500 psia, pressure, Heise Coolant Tank

PREF300 300 psia, Sensotec: STJE/l 835/15 Coolant Supply Tank
S/N: 589494

PTCO 300 psia Kulite Coolant Supply Tank
PTC Total Pressure, 300 psig Sensotec Coolant Supply Manifold
PTC2V Total Pressure, 100 psig Sensotec Vane Feed Manifold
PTC2B Total Pressure, 100 psig Sensotec Blade Feed Manifold
PCCV Static Pressure, 100 psig Sensotec Vane Feed Entrance

PCCC Static Pressure, 100 psig Sensotec Tip Casing Entrance

TTCO Total Temperature Coolant Tank Exit

TTC Total Temperature Coolant Supply Manifold

TTC2B Total Temperature Blade Feed Manifold

TTCBV Total Temperature Vane Feed Entrance, B window

TTCBC Total Temperature Casing Feed Entrance, B
window

TTCCV Total Temperature Vane Feed Entrance, C window

TTCCC Total Temperature Casing Feed Entrance, C
window
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2.6 Pressure Transducer Calibration

A standard calibration procedure is used for the calibration of all differential

pressure transducers. The calibration is performed immediately after the supply tank is

filled and at the conclusion of each experiment. Calibrating data just before and after

each experiment allows transducer drift and scale factor to be quantified. Figure 2.9

shows a typical calibration trace of a differential pressure transducer. This figure and the

calibration sequence are described below.

1) All transducers are provided a vacuum back-pressure reference by an external

vacuum pump. For a post-fill calibration this produces a zero pressure differential

across the transducers that are located inside the tunnel, since the tunnel is under

vacuum. For those in the supply or coolant tanks, a pressure differential equal to

the initial absolute tank pressure is recorded.

2) Data is taken at this condition for approximately two minutes as shown by the

first segment of the trace in Figure 2.9.

3) After two minutes, the back-pressure reference is exposed to atmospheric

pressure. Data is acquired for two minutes as shown in Figure 2.9.

4) After four minutes, the back-pressure reference is returned to vacuum where it

remains for the experiment.

5) This procedure is repeated after the blowdown experiment has been completed.
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Figure 2.9: Typical Differential Pressure Transducer Calibration Trace

This data provides a voltage change for each differential transducer that

corresponds to the local atmospheric pressure. A transducer scale factor can then be

computed. Transducer zeros are taken to be the average output prior to the opening of

the main valve. The scale and zero can then be used in the data reduction process via the

linear calibration relation.

2.7 Data Acquisition

The short duration nature of the blowdown experiment not only places special

requirements on instrumentation, but on data acquisition (DAQ) systems as well. The

DAQ systems must monitor all instrumented channels at a sampling rate sufficient to

capture all time scales of interest for the duration of the experiment. For aerodynamic

performance measurements, 1 kHz data sampling is sufficient to resolve the necessary

time scales. The required DAQ envelope typically spans 2-4 s in order to record useful

data and monitor tunnel 'spin-down.' The precise clocking sequence can be modified to

capture the desired window. In addition, the post-test calibration provides further insight

into the post-test tunnel state.

The current DAQ system consists of three computers. The low-speed system

used to monitor and record data from the majority of the instrumentation employs two
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National Instruments NI 6031 E 16-bit data acquisition boards each with 64 channels in a

Dell OptiPlex Pentium*& III computer, which is programmed with LabView lab

automation software. The 16-bit system is capable of monitoring up to 128

instrumentation channels, sampling at 1 kHz.

An IBM ThinkPad* 386CD laptop computer collects NGV static pressure tap data

from the Scannivalve DSA 3017 system. This computer interfaces with the DSA

pressure measurement system via a PCMCIA card and simple Ethernet protocol. The

operating parameters of the DSA unit can be specified through the laptop interface. Data

is also passed to and saved on the computer.

A third computer is used to interface with the three Heise pressure transducers

used with the facility. An IBM ThinkPad* 720ED laptop computer is programmed with

LabView software that allows each pressure transducer to be sampled at 4 Hz. This low-

speed data is used to monitor tunnel reference conditions, which can be used for

calibrations. Table 2.3 summarizes the Blowdown Turbine Facility DAQ equipment.

Table 2.3: Blowdown Turbine Facility Data Acquisition System

Specification Dell OptiPlex IBM ThinkPad* IBM ThinkPad*
Pentium* III 386CD 720ED

Speed Low Low Low
Operating System MS Windows 98 MS Windows 95 MS Windows 98
DAQ Platform LabView DSALink 2 LabView
DAQ Board NI 6031E
Resolution 16 bit
Board Channels 64 16 3
Number of Boards 2 1 1
Total Channels 128 16 3
Sampling Rate I kHz 200 Hz 4 Hz

2.8 Summary

This section has discussed the MIT Blowdown Turbine short duration

experimental facility used to acquire turbine stage data for calculation of adiabatic

efficiency. As well as a summary of the major components of the facility, run-time

preparations including the determination of blowdown operating conditions required to

achieve full-scale turbine similarity have been discussed. Total temperature and pressure
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instrumentation for highly accurate flow field measurements was briefly discussed along

with other instrumentation used to characterize turbine performance. This was followed

by a description of the standard differential pressure transducer calibration procedure.

Also included in this section was information regarding the Blowdown Turbine Facility

data acquisition system.
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Chapter 3: Heat Flux Gauges

3.1 Introduction

The development of heat transfer gauges capable of measuring the heat flux to

turbine blades was an important part of recent research at the MIT Blowdown Turbine

Facility. The availability of accurate data of this sort is very valuable to those who wish

to improve upon the performance of gas turbine engines. Included herein is a description

of the development and fabrication of heat flux gauges intended for use with rotating

components in a Blowdown Facility.

Any heat transfer gauge produced for use in the MIT Blowdown Turbine Facility

or any other short-duration research facility must be capable of simultaneously measuring

steady state and time resolved heat flux to a turbine rotor blade. To this end, certain

design requirements were necessary. Such an instrument must:

1) Be capable of operating in the test environment (450 K gas temperature, 400

K blade metal temperature)

2) Be small enough in size that several gauges can be placed on a single airfoil in

order to spatially resolve heat transfer on the blade surface

3) Provide minimal disruption to the flow and heat transfer processes on a rotor

blade

4) Be able to be implemented with minimal modification to the turbine blades

5) Be independent of the heat conduction distribution within the blade body

6) Be capable of operating under the high centrifugal accelerations experienced

by rotating components

7) Have a frequency response from DC to five times blade passing frequency

8) Be relatively simple, economical, and safe to manufacture
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Two candidate techniques for fulfilling these requirements were considered based

on recent work to measure heat transfer at the MIT Blowdown Facility. Both semi-

infinite heat flux gauges and multi-layer, thin-film heat flux gauges have been researched

and employed for this purpose in the past.

The former involves mounting a thin-film resistance thermometer on an insulating

substrate. Van Poppel [28] further developed previously employed techniques [11] of

using platinum paint on machineable ceramic (MACOR) in order to construct heat

transfer gauges for use in an instrumented tip casing insert. One very attractive feature of

such gauges is the ease with which they can be manufactured with in-house resources. In

addition, when these gauges are employed in an array of rows and columns for spatial

heat flux resolution, defective gauges can be individually removed and replaced.

Although very successful, this technique of heat flux measurement could not be as easily

modified for use on the surface of turbine blades. These MACOR gauges are such that

they would need to be recessed into the surface for which heat transfer measurements are

desired. Due to physical design constraints, this would not be possible with a film-cooled

turbine rotor blade. Adaptations such as the fabrication of ceramic turbine blades, or the

coating of existing metal blades with a suitable insulator would require far too complex

and costly.

Multi-layer, thin-film heat flux gauges were first investigated for use with the

MIT Blowdown Facility by Guenette [8], and have been used to successfully instrument

both tip casing inserts and rotor blades. These multi-layer heat flux gauges are comprised

of two metallic temperature sensors on either side of a thin insulating substrate. The

gauge is bonded directly to the surface under investigation. Previously instrumented

Blowdown Facility components have employed thin nickel temperature sensors on either

side of a 25 pm polyimide (Kapton*-DuPont commercial designation) insulating film,

which can be bonded to a metal surface using standard strain gauge glue. As a result, no

modifications are necessary in order to implement these heat transfer gauges on a turbine

rotor blade. By design, such gauges do not pose a large disturbance to the normal flow

conditions in the turbine. Previous research has demonstrated a frequency response of

almost 60 kHz, surpassing the current requirements. Below a certain frequency, normally

less than 20 Hz, these gauges operate in a direct mode in which the heat flux is
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determined by a measure of the temperature difference across an insulator. At higher

frequencies, normally above 1.5 kHz, the heat flux is deduced using only the upper

temperature measurement coupled with a one-dimensional semi-infinite heat conduction

model. Despite all of these advantages, the use of these gauges has been somewhat

limited recently due to the difficulty associated with their fabrication. Variations to

previously employed fabrication methods were required in order to render a gauge

manufacturing process that was sufficiently reliable to incorporate into research

activities. One of the key goals of this research effort was to seek improvements in

fabrication techniques of these multi-layer, thin-film heat transfer gauges.

3.2 Multi-Layer, Thin-Film Heat Flux Gauges

A multi-layer, thin-film heat transfer gauge consists of two thin-film temperature

sensors on either side of an insulating substrate. However, there are several design

criteria that need to be decided upon during the development and fabrication, including

physical design and material selection. In order to address these points and justify design

choices, Guenette [8] employed a multi-layer, time dependent, mathematical conduction

model. This model can provide exact solutions of internal thermal response to a known

external heat load in both modes of gauge operation. The model also proved very useful

for gauge calibration and data reduction. As a prelude to gauge design, a summary of the

pertinent points of this model is included in the following sections.

3.2.1 Multi-Layer, Time Dependent Heat Conduction Model

When employed to measure the heat flux to the test surface, a metal blade in our

case, the multi-layer, thin-film heat transfer gauge becomes part of a five-layered system

as shown in Figure 3.1.
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Figure 3.1: Schematic Cross-Section of Multi-Layer, Thin-Film Heat Transfer Gauges

The five layers include an upper thin-film temperature sensor, the insulating substrate of

thickness d, a lower thin-film temperature sensor, the adhesive layer, and the blade

surface under examination. Under the model used, these five layers were simplified to

two layers in order to make for a much less complicated and more practical mathematical

interpretation. This was done by assuming the thin-film temperature sensors to be

thermally transparent, as well as being negligible sources of heat when excited. The

assumption that the adhesive and insulating substrate layers had similar thermal

properties was also applied. This assumption is actually extended to any surface layer,

such as dirt on the gauge, which may exit. Thus, as illustrated in Figure 3.2, Layer 1

consists of the surface coating, insulating substrate, and adhesive, of total thickness L,

and Layer 2 consists of simply the blade.

54



SURFACE HEAT LOAD

0

L

SURFACE COATINGT

LAYER 1 (pI, cl, kj, KI) INSULATOR TEMPESTURE

ADHESIVET

LAYER 2 (P2, C2, k 2, K2) BLADE SURFACE

Figure 3.2: Schematic Representation of Simplified Two-Layer Gauge Model

In order to determine the temperature distribution in the two layers, heat

conduction equations were solved with the following assumptions and criteria:

1) Spatially uniform surface input heat flux, q(t)

2) Semi-infinite medium of infinite lateral extent (one-dimensional heat flow)

3) Uniform thermal properties within each layer

4) Layers make perfect thermal contact

As a result, the equations governing the temperature distribution in Layers 1 and 2,

respectively, are

at 'a x 2

_T 3J2T
aT2 = 2 2

at C2 aX2

0 x L

L 5x soo

(3.1)

(3.2)

where K is the thermal diffusivity of a particular layer in the model. The boundary

condition that exists at the surface of Layer 1 is
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k, -' = q(t) (3.3)

where k is the thermal conductivity of a particular layer in the model. The conditions that

exist at the interface between the two layers are

7 (L,t)= T2 (L,t) (3.4a)

k, = k2 -oo < t < +oo (3.4b)
ax x=L a x=L

In addition, the semi-infinite boundary condition must be included,

T2 (oo, t) =0 (3.5)

The initial condition that applies over the entire length of the layered model is

T (x,0) = constant =0 O Sx soo (3.6)

Setting the surface boundary condition and the initial conditions given by Equation (3.3)

and Equation (3.6), respectively, will fully define the problem. However, these

conditions are dependent on the external driving heat load to be applied to the surface

being investigated. The cases involving a steady harmonic variation in surface heat flux

and a step in surface heat flux were considered. For each of these cases, the exact

solutions for temperature distribution in Layer 1, Tj(xt), were included with the

development of the model. For the sake of brevity, the solutions themselves will not be

included herein. Only the important details drawn from their derivation that pertain to

gauge design will be discussed below. For a rigorous derivation of intermediate steps,

one should consult the work of Guenette [8].
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3.2.2 Gauge Model Discussion

As noted earlier, there are two limiting modes of operation (low-frequency and

high-frequency) for multi-layer, thin-film heat flux gauges while measuring heat transfer

rates. In the direct mode, the heat flux applied to the surface of the gauge is assumed

proportional to the temperature difference across the gauge. Previous work involving a

steady harmonic variation in heat load to a gauge operating in the direct mode showed

that the temperature rise with surface heat flux, also know as the gauge sensitivity, can be

approximated by

AT = d (3.7)
q k

This is applicable below a characteristic sensor cutoff frequency, oc, of the applied heat

flux described by

K2

d [ kIJ (3.8)

Equations (3.7) and (3.8) can be combined to obtain a relationship between gauge

sensitivity, AT/q, and response frequency bandwidth,fe,

AT 1 / 2- 1 1 (3.9)
q ' 2, p

The response bandwidth is simply the cutoff frequency, or the frequency below which the

gauge is said to operate in the direct mode, expressed in Hertz. From Equation (3.9), it is

clear that the product of the gauge sensitivity and the cutoff frequency is inversely

proportional to the thermal property pck of the insulating substrate to which the

thermal sensors are mounted. Certain points regarding material selection should be
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drawn from this. These equations show that a low thermal inertia pc, good for

maximizingf, as well as low thermal conductivity k, good for high AT/q, are desirable

gauge substrate properties. Once material thermal properties f have been selected,

the choice of the substrate thickness, d, will determine the trade-off between gauge

sensitivity and cutoff frequency.

The direct mode of operation as outlined above is only valid for uniform

temperature gradients across the gauge. However, this is not always the case. The

second mode of operation of the multi-layer, thin-film heat flux gauges is the semi-

infinite mode. This case arises when the thermal penetration depth is smaller than the

thickness of the gauge itself. In that event, the insulating substrate layer of the gauge

essentially damps frequency components of the applied heat load. Since the thermal

penetration depth is such that changes in the surface heat load do not reach the lower

temperature sensor, the heat flux must be inferred from the upper thin-film temperature

sensor. Previous analysis of this model showed that the lower temperature sensor would

be completely damped for input frequencies above 1 00wc for a steady harmonic heat load

input, resulting in semi-infinite mode operation. The upper surface temperature of the

gauge in such a scenario was given to be

T (0, t)= q" W-11 sin (wt - Y)(3.10)

As was the case with the direct mode of operation, the high-frequency temperature

sensitivity improves with low pek of the insulating substrate. Additionally, it can be

seen from the above that for a specific value of gauge sensitivity, the upper limit of

frequency response is increased with lower values of pck.

3.2.3 Substrate Material Selection

The thermal properties discussed above play a significant role in qualifying

potential insulating substrate materials for multi-layer, thin-film heat transfer gauges.
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Early developmental efforts by Guenette [8] determined that polyimide film had the

lowest fpck of a number of materials considered. This yielded the highest practical

sensitivity bandwidth combination. The substrate thickness was chosen to be 25 pm,

which yields a direct mode cutoff frequency of 20 Hz and a semi-infinite mode lower

response limit of 1.5 kHz. The same substrate thickness was employed for the fabrication

of gauges during this research effort. Additional factors involving ease of fabrication and

installment were also a consideration regarding the use of the same substrate. Polyimide

is known for displaying excellent temperature resistance and retaining mechanical

properties up to approximately 600 K. In addition, polyimide displays excellent electrical

properties and resistance to chemical attack in comparison to other plastic materials.

Many of these properties are a result of the structural form of Kapton® polyimide shown

below.

-N> N-0

Lo 0

Figure 3.3: Structural Formula of Kapton* Polyimide

The nitrogen atoms have a higher electron density than the carbonyl groups and the

resulting transfer of charge causes adjacent molecules to bond to each other forming

polymer chains. Similar intermolecular bonds can also exist between individual chains

causing them to stack on top of each other in cross-linking reactions. This cross-linking

occurs between nitrogen and carbonyl components from adjacent chains. These

intermolecular forces are sometimes refered to as van der Waals forces and result in

improved material properties [26].
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3.3 Temperature Sensors

Multi-layer, thin-film heat flux gauges employ two film resistance thermometers

to measure the temperature on either side of the insulating substrate layer. These

resistance thermometers are thin layers of a material that experiences a resistance change

with a change in temperature. Important design characteristics pertaining to resistance

thermometers that were the focus of previous research, Guenette [8], include the material

chosen as well as the physical design of the sensor itself. Some of the details regarding

the design of these temperature sensors are noteworthy.

As mentioned, temperature sensors rely on a change in resistance with changes in

temperature. The temperature coefficient of resistivity, a(T), which is itself a function of

temperature, quantifies the dependence of resistance on temperature. However, metals

normally chosen for use in such applications have temperature coefficients of resistivity

that do not significantly vary with temperature, so the change in resistance with

temperature can be expressed by

AR = RaAT (3.11)

The actual measurement made with these sensors when in operation is a voltage drop,

expressed by

AV = VxAT (3.12)

The sensitivity of the resistance thermometers can be defined as the drop in voltage

across the sensor over the change in temperature,

AV
- = Va (3.13)
AT

From Equation (3.13), it is clear that the sensitivity of the temperature sensors in the heat

flux gauge is directly proportional to the excitation voltage, V, and the temperature
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coefficient of resistivity, a. The excitation voltage must be limited based on the amount

of heat dissipated by the sensor, qd,

q = v 2  (3.14)
Riw

where / and w are the length and width of the film sensor, respectively, and the film

resistance, R, can also be expressed in terms of the geometry of the sensor,

R =i E(3.15)
wt

where t is the thickness of the film sensor sitting above the substrate layer, and p is the

resistivity of the material used as the resistance thermometer. By combining Equations

(3.14) and (3.15) with Equation (3.13), important criteria regarding the physical design of

the active film sensor can be obtained,

-V alqd / (3.16)
AT t

Equation (3.16) can be examined to see what sensor properties would maximize

temperature measurement sensitivity. Clearly, a long, thin sensor would be the best

physical design. Note that the sensor width does not appear in the above equation. Thus,

sensor geometry should be chosen to maximize the overall length of the active sensor.

The most significant constraint on this length would be the area available for the sensor,

based on the number of gauges required on a single rotor blade for spatial heat flux

resolution. A long, thin, and narrow serpentine pattern was chosen in an effort to

maximize measurement sensitivity. The requirement for a narrow (small w) sensor piece

was due to the limited area that the serpentine pattern could occupy, rather than any effect

of the sensor width on sensitivity. The details of the actual design and fabrication of the

serpentine pattern used for the sensors will be elaborated upon in later sections.
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Equation (3.16) also exposes ad as a material parameter that can be increased

to maximize the sensitivity of resistance thermometers. Previously compiled bulk

material properties were used to assure that the selected sensor material was justified.

This data is included below.

Table 3.1: Bulk Material Properties of Various Film Thermometer Materials [61

Metal Resistivity, Temperature Coefficient Sensitivity, ap"2 x10 3,
p, (pil cm) of Resistivity, a x10 3, (*C-1 ) (u 2 cm" 2oCl) Rank

Zirconium 40.0 4.4 27.8 1
Iron 9.71 6.51 20.2 2
Nickel 6.84 6.9 18.0 3
Tin 11.0 4.7 15.5 4
Tantalum 12.45 3.83 13.5 5
Platinum 10.6 3.927 12.7 6
Gold 2.24 8.3 12.4 7
Palladium 10.54 3.74 12.1 8
Cadmium 6.83 4.2 10.9 9
Chromium 12.9 3.0 10.7 10
Zinc 5.916 4.19 10.1 11
Copper 1.678 6.8 8.8 12
Aluminum 2.6548 4.29 6.9 13

From the above list, nickel was selected as the material for the film temperature sensors.

Nickel clearly has very good intrinsic properties for temperature measurement sensitivity.

Nickel was also chosen because of its proven performance in thin film chemical

deposition processes and applications using polyimide film [8].

3.4 Gauge Fabrication

The remaining obstacle in successfully producing multi-layer, thin-film heat

transfer gauges was to develop new fabrication techniques that would facilitate relatively

simple and reliable construction based on knowledge gathered from the gauge model.

The fabrication techniques were chosen such that they were compatible with the design

choices of substrate material, sensor material, and sensor geometry. Guenette [8]

employed sputtering and lift-off photolithography practices to produce similar heat flux

gauges. These methods were not very reliable, often resulting in very low yield rates of

62



successfully finished gauges. An effort was made to experiment with new methods of

bonding nickel to the polyimide substrate and of creating the intricate film sensor

structure desired based on gauge theory. The following sections give a detailed

description of the techniques developed to accomplish each of the required steps in gauge

fabrication.

3.4.1 Nickel Deposition on Insulating Substrate

The first step in fabricating multi-layer, thin-film heat flux gauges involves

bonding a layer of pure nickel onto either side of the substrate (25 pm thick polyimide

film in this case). The method of deposition by sputtering under pressure that was

previously used was not considered due to documented difficulties with high batch to

batch variations in surface coating and the apparent presence of high residual stresses,

which cause cracks in the nickel layers. In an effort to resolve these problems, Guenette

carried out a follow-on investigation involving electroless physical-chemical deposition

of nickel on polyimide film. Unfortunately, this work was not documented in detail, but

it did serve as the basis for the methods developed and used here. The electroless

deposition of nickel on polyimide film consists of two broad sub-processes. These

involve cleaning the substrate samples, and then the actual plating of nickel onto the

substrate. The final procedure for each of these sub-processes was a result of several

iterations and adaptations to the basic methods recorded in previous work. Many of these

adaptations were a result of trial and error investigation aimed at eliminating various

difficulties encountered.

3.4.1.1 Cleaning of Substrate Material

The polyimide film must first be properly cleaned in preparation for the

subsequent plating process. The detailed procedure of the cleaning process can be found

in Appendix A. A piece of 25 pm thick polyimide film, approximately 7.5 in. long and

5.5 in. wide, was mounted in a plexiglass frame prior to being cleaned.
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In order for the signals from the bottom side temperature sensor to be read once

the gauge is glued in place, small puncture holes were made in the substrate piece prior to

cleaning and plating. These holes were made by hand using a very fine scalpel blade. In

order to align the holes with the sensor leads, the plexiglass frame was mounted over a

metal base jig that had the positions of the through holes marked. A total of 16 gauges

were made on a single piece of substrate and, thus, 32 holes were required. The same

metal block later served as the base unit for aligning the plated substrate ready for the

sensor geometry to be fashioned.

Once the through-holes had been made, the procedure for cleaning the sample

was carried out. Several chemicals were required for the cleaning process. A list of the

chemicals, as well as their compositions is also included in Appendix A. The cleaning

process consists of several wash cycles using a concentrated cleaner/conditioner solution

followed by a distilled water rinse. The Shipley Cleaner/Conditioner 111 OA solution is

an acidic soak cleaner that is intended to remove oils and other contaminants, and to

condition the substrate to ensure complete metallic coverage during the electroless

plating procedure to follow [22]. Gentle agitation of the cleaner solution was employed

to avoid the concentration of foreign matter or soils. Another important step in the

cleaning process was a soak in a potassium hydroxide, KOH, and ethanol wet-chemical

etching solution. Etching of the substrate is a very important step in the pre-treatment

cleaning process. The goal of the etching is to destroy some of the intermolecular forces

that attract separate polymer chains to one and other. These intermolecular forces, also

known as van der Walls forces, are much weaker than the chemical bonds existing within

the individual polymer molecules. As a result, the etch will only destroy the cross-

linkages that exist between the macromolecular polymer chains, and not the

intramolecular bonds within the chains. Some literature states that the pre-treatment of

polyimide films for electroless metal plating does not actually cause surface roughening,

but rather it results in preparation of the surface for chemical forces to be invoked.

Unlike with other plastic materials such as acrylonitrile butadiene styrene (ABS), metal

adhesion to polyimide is a result of chemical forces rather than mechanical adhesion

effects [26]. The choice of an etchant is driven by the properties of the substrate. As

stated earlier, polyimides are known for their excellent resistance to chemical attack.
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However, polyimide materials will soften when subject to attack by strong alkalis.

Potassium is an extremely fast-diffusing alkali metal ion and is thus used as the basis of

etching solution for polyimide. Alkali metal hydroxides, like KOH, can be combined

with organic solvents, ethanol for these purposes, to form the etch solution. Care must be

exercised in handling these solutions due to their corrosive nature. An oven drying at low

temperature was used to ensure that no impurities would accumulate on the wet samples

following the cleaning process.

During the development of the procedure for cleaning the substrate several

difficulties were encountered, some of which are worthy of note. In early

experimentation involving the KOH etch solution, a white film appeared on some

samples of the polyimide film. Several stock rolls of DuPont's Kapton® polyimide were

being used for the substrate. Investigation revealed that two different types of Dupont

polyimide film were unknowingly being used. Kapton® Type HN film is an aromatic

polyimide, one containing a benzene ring, whose structure is shown in Figure 3.3. Type

HN film is well suited for use with KOH etch solution, producing no undesirable side

effects when the proper procedure is employed. The other stock roll of Kapton®

polyimide film was Type FN film, which is actually a composite polymer material

combining Type HN polyimide with tetrafluoroethylene (Teflon*-DuPont commercial

designation) [7]. When used in the etching process, the existence of the Teflon® caused a

white precipitate to contaminate the etch solution. Care was subsequently taken to ensure

that only Type HN polyimide film was used to avoid this problem. The choice to

implement the use of a plexiglass frame to hold the substrate during the cleaning process

was also a result of experimental difficulties. Without the frame, the substrate would fold

onto itself during the running water rinse steps involving the use of a hose. This would

not allow for the samples to be completely cleaned free of chemicals and contaminants.

The frame also made the addition of through-holes much easier.

3.4.1.2 Electroless Nickel Plating

Following the initial cleaning of the polyimide substrate pieces, additional pre-

treatment and subsequent nickel plating steps were required. A detailed procedure and
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chemical composition list for the electroless plating process are also included in

Appendix A. For this process, the samples were removed from the plexiglass frame used

during cleaning, and cut into to separate pieces that contained 16 gauges each. Each

cleaned sample would thus yield two pieces to be plated separately. Having the

polyimide pieces not confined by the plexiglass frame provided much better plating

results. However, as a result, no running water rinse steps were included during the

plating process. Static bath rinses were employed exclusively here.

Prior to the actual plating step, pre-conditioning of the samples was required.

Etched plastics are electrical insulators and are not immediately compatible with

electroless nickel deposition. In order to rectify this problem, the surface of the plastic

substrate must first be activated with the application of catalyst nuclei, which are most

often noble metals, such as palladium. The electroless deposition of metal will initiate on

these metal particles that have been introduced to the surface of the substrate [17].

Shipley Catalyst 9F solution is a palladium-based catalyst that seeds the non-conductive

plastic surfaces with catalytic nuclei. Following exposure to the catalyst, the substrate

has been activated, whereby the small catalyst particles help ensure the initiation of the

metal deposition, as well as a uniform coverage during plating [21]. Following the

application of the catalyst, the samples were rinsed and then treated by an accelerator

solution. Shipley Accelerator 19 solution was used to activate the catalyst particles and

ensure rapid and uniform coverage of nickel during the subsequent plating step. The

accelerator also prevents the catalyst on the substrate surface from later escaping into the

plating bath, thus minimizing contamination of the nickel source [20].

Because the substrate used is non-conducting, an electroless metal deposition

technique must be employed. More conventional electrochemical plating procedures

cannot be used unless an initial conductive metal coating is adhered to the sample

surface. Shipley Electroless Nickel PM-980 solution provides for deposition of an

adherent conductive coating onto the pre-treated substrate surface. If desired, such a

coating can serve as the basis for subsequent electroplating processes [23]. The

electrodeposition of metal from solution requires a source of electrons for the reduction

of the metal ions in solution to the parent metal at the substrate, which is known as the

cathode in such a process. In conventional electrolytic deposition, the electrons are
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provided by an external current source. However, electroless deposition does not use an

external current, but rather the electrons are produced by a chemical reaction in solution.

As a result, electroless metal deposition is also referred to as chemical metal deposition.

The electrons needed to discharge the metal ions in solution during such a process are

provided by reducing agents in the solution, which themselves are oxidized and thus

surrender electrons for use in reactions at the substrate. This basic process can be

described by the following electrochemical reactions involving a metal, M, and a

reducing agent, R,

R* - R(n+z)+ + ze- (3.17)

MZ+ + ze -+ M (3.18)

The reducing agent must provide exactly z electrons for each metal ion, which is the

valence number for that metal. Nickel has a valence of +2, meaning that it requires two

electrons to transition from a cation, Ni2 , to a pure metal, Ni. The Shipley PM-980

plating solution is an alkaline bath containing both nickel ions, from a soluble nickel salt,

and a reducing agent. These components are in stable equilibrium such that they will not

react under storage conditions. The plated layer is not actually pure metal alone, but also

includes some derivatives of the reducing agent used. The high solubility of reducing

agents in alkaline solution greatly reduces the need for any additional agents in basic

plating solutions. Alkaline solutions are also effective and desirable for use in low-

temperature electroless plating applications, such as the deposition of metal films on

polymeric materials, including polyimide.

The electroless deposition of metal is very closely related to the pH and

temperature of the plating bath. These two parameters affect the rate of deposition, and

the amount of reducing agent derivatives in the plating layer, which both in turn affect

several other coating properties. For this reason, ammonium hydroxide, NH40H, was

carefully added as a buffer to control the pH of the plating solution, and the temperature

of the plating solution was maintained at the appropriate level. Experimental trials

revealed that these two factors can indeed have significant negative influences on the
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finished product if not closely controlled. The pH of the PM-980 solution was

maintained in the range of 8.3-8.4, and the temperature was kept at 25 'C.

The reduction and deposition of metal ions will only initially occur on a

catalytically active surface, hence the cleaning and pre-treatment processes. Once the

initial plating takes place onto the palladium catalytic metal, further deposition can still

continue because the nickel itself is a catalyst for the electroless process. This is the

mechanism that allows for a variable layer thickness of nickel, depending on the length of

time that samples are left in the plating bath. The layer of nickel deposited to either side

of the substrate via the procedure used with these gauges is on the order of 0.1 pm.

Because the electroless plating solution is the source of the components consumed during

deposition, it is important to ensure that these chemicals are replenished to maintain the

quality of the plated product. The PM-980 solution was replaced with a freshly made

plating bath on a regular basis [17].

Experimental efforts concerning the electroless plating of nickel onto polyimide

film resulted in some important observations that were taken into consideration in the

final procedure for this process. Frequently during early plating processes, large

variations in plating finishes would result from identical plating procedures and

techniques. It was concluded that these batch to batch variations were merely a result of

cleanliness and contamination issues throughout the process. This underscores the

importance of delicate and sterile handling and techniques throughout cleaning, pre-

treatment, and plating processes. Certain additional steps were taken to mitigate

contamination of the substrate samples. Process results were on average much more

successful when a fresh Cleaner/Conditioner 11 1OA solution was used. As a result, a

new cleaner solution was prepared each day that the cleaning process was performed.

Another source of contamination was the transfer of some chemicals into others

throughout the process. The Catalyst 9F solution was particularly notorious for this, as

some of the chemical tended to remain pooled behind the tweezers used to hold the

polyimide film in the chemical baths, even following two static rinses. To avoid this

problem, the position of the tweezers was changed between the first and second static

rinse baths. This worked well to eliminate any excess Catalyst 9F that might otherwise

affect subsequent plating. A point that must be stressed is that general substrate and
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reagent cleanliness and care proved paramount to the success of this electroless metal

deposition scheme.

3.4.2 Implementing Gauge Geometry and Detail

Once a uniform layer of nickel was deposited on the polyimide samples, a method

to selectively remove the nickel from the substrate sheet was required. A technique was

sought that would:

1) Be capable of removing nickel from a single side of the polyimide film

without affecting the film itself or the nickel plating on the reverse side

2) Be capable of shaping gauge sensor geometry with a spatial resolution on the

order of several thousandths of an inch

3) Be capable of aligning multiple sets of gauge sensors and conductive leads on

both sides very accurately with one and other, and with plated through holes on

the substrate

4) Impose as little contamination and physical stress risks to the sample pieces as

possible

5) Be very reliable and easily repeatable

A photomachining process using a 248 nm krypton fluoride, KrF, excimer laser

system was selected for use in forming the gauge active sensors and leads.' Ablation

using this laser can be limited to a depth of approximately 1 pm, depending on the

material being removed, so single-sided patterning without deterioration of polyimide did

not pose a concern. Such a device is capable of consistently resolving line widths of

approximately 25 pm, which was a consideration in final gauge sensor design. The heat

flux gauges had to be fashioned in two separate steps using the excimer laser. The fine

details of the sensor head itself required the fabrication and use of a mask, and the

remaining leads were machined using an automated moving table. The capabilities of

this system along with gauge design criteria were factors influencing the final design of

' A commercial vendor with such a system was located, Photomachining Incorporated, Pelham, NH, USA.

69



the heat flux gauges. Consistent with Equation (3.16), a long, thin, and narrow band of

nickel in the shape of a square serpentine gauge sensor pattern was chosen. An identical

sensor pattern was used for both the top and bottom side of the heat flux gauge. A

detailed view of the sensor pattern used is shown below in Figure 3.4.

750 pm

800 pm - 50 pm

Ni

Cu

Figure 3.4: Detailed Schematic of Gauge Sensor Geometry

Conductive leads were also required in order to read the signals measured by these sensor

heads. Because the signals would only be taken from the top side of the gauge for both

top and bottom sensors, a different configuration for the leads was required for each side

of the gauges. Figure 3.5 shows a view of an entire single top and bottom side gauge.

Ni

Cu 0 0

Through
Holes 2.9 cm

0.24 cm-

Figure 3.5: Schematic of Top (left) and Bottom (right) Side of a Single Heat Flux Gauge
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The fabrication scheme developed was intended to produce a total of sixteen two-sided

heat transfer gauges, like the individual gauges shown above, on each sample piece of the

substrate material.

The procedure to process these sheets of gauges using the excimer laser required a

considerable amount of care and attention to detail. One key point is that the patterns on

the two separate sides of the sheets needed to lie directly over one and other. This was

essential to ensuring accurate heat transfer measurements for all modes of operation. A

mask with a pair of sensors having the sensor geometry was commercially fabricated in

order to easily ablate several sensor heads on each substrate sample. To ensure that the

through holes would lie in the centre of the proper lead, the sensors were machined with

reference to the pre-cut holes in the polyimide samples. In order to ensure that the

patterns on the bottom of the gauge would overlap on those on the top, a two-piece

aluminum frame and block was used. The block was aligned with and bolted to the

movable machining table, and polyimide samples were placed in a frame that could sit

top-side up or down on this block. This apparatus allowed any feature on a substrate

sample to be located and used as a physical reference feature, regardless of which side of

the heat transfer gauge was being machined, allowing successful overlapping of gauge

patterns.

3.4.3 Electrolytic Copper Plating of Gauge Leads

Because heat transfer gauges used in these applications are intended to measure

the heat flux to relatively small areas, it is beneficial to isolate the active sensor head as

the only portion of the gauge that will undergo a large change in resistance with changes

in temperature. Thus, the gauge leads must not be allowed to significantly contribute to

the measured resistance, or change in resistance, of the heat flux gauges. Equation (3.16)

describes temperature measurement sensitivity to a specific input heat load as a function

of geometry and material properties. The geometry of the gauge leads is fixed in order to

have a certain number of gauges fit on a single polyimide sheet. However, modification

of the material property ap can be used to alter the sensitivity of certain portions of

the heat transfer gauges. From Table 3.1 it can be seen that copper has a very low
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sensitivity parameter, av 1 , compared to other materials examined. Because the nickel-

plated polyimide film is a conducting surface, more conventional electrolytic copper

plating techniques could be employed to create the desired low resistance leads.

Unlike electroless metal deposition, electroplating uses electrons from by an

externally driven current to provide for the reduction of metal ions, which was described

by Equation (3.18). The process of electrolysis is most often carried out in a water

solution, or bath, of salts and ions. Copper pyrophosphate plating solutions are

commonly used in industry for the deposition of copper on circuitry with through holes.

Such a bath is desirable for applications involving plastics with a conductive surface,

including nickel-plated polyimide, due to its non-corrosive and non-toxic nature [13].

The complete procedure used in the electrolytic plating of copper onto machined heat

flux gauges is included in Appendix A. Lowenheim [13] suggests bath composition and

operating conditions for such a process. A solution of 30 g/L copper (II) sulphate

petahydrate, CuSO4 -5H20, 120 g/L sodium pyrophosphate decahydrate, Na4 P2Or 1 0H2 0,

and 36 g/L disodium hydrogen phosphate, Na 2HPO4, was used for plating. A simple

copper anode was used with this solution. An anode to cathode area ratio of 1.5 was

used. After some experimentation and consultations with Sadoway [18], successful

plating was consistently achieved with a cathode current density of 15 mA/in. 2 applied

for a time of 220 s using an external DC power source. Gentle agitation of the plating

solution was also implemented in an attempt to replenish ions in the vicinity of the

cathode. Symmetrical dispersion of the anodes was also used to help provide both sides

of the nickel-plated substrate with metal ions for reduction. Once the copper coating was

in place, heat flux gauges produced by this method consistently displayed resistance

values of approximately 1000 Q.

One important step during the development of the copper plating process involved

determining a technique to isolate the active sensor serpentines to prevent them from

being plated. A method to physically cover the sensor serpentines while in the plating

bath, thus electrically isolating them, was required. However, any treatment would have

to be easily reversed without harming the delicate sensor structure. Removal of this

protective covering would have to involve as little physical manipulation as possible.

The use of liquid photoresist was selected for this operation. Shipley 1805 Photoresist
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could be strategically and delicately applied to the machined substrate piece to ensure

selective copper plating. Once oven baked at low temperature, the resist was resistant to

the electrolytic solution, but could be very easily removed by a gentle ethanol rinse.

Many modifications to the copper electroplating process were made during

experimental development. Significant difficulty was experienced in producing an even,

flawless, and adhesive copper coating on the nickel deposit. These difficulties were

rectified by performing experiments using variable current densities and plating times.

Sadoway [18] suggested that peeling of the copper plating was due to residual stresses

arising during the process. Plating at lower current densities, for long plating times, was

used to combat this. Physical deformation, or bending, of the samples during plating

were also a sign of these residual stresses. Mechanical agitation and dispersion of the

anodes were other techniques employed to help avoid this problem.

3.5 Summary

New practices to fabricate multi-layer, thin-film, heat flux gauges have been

developed. The fabrication employs electroless nickel deposition, photomachining using

an excimer laser, and electrolytic copper plating. These methods are an improvement on

those previously used to produce similar gauges. The gauges and the techniques used to

produce them were designed based on gauge model theory presented and discussed in the

previous sections. Following calibration and mounting on rotor blade surfaces, these

gauges are ready for use in the MIT Blowdown Turbine Facility.
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Chapter 4: Flow Angle Probe

4.1 Introduction

The measurement of flow characteristics is extremely valuable to any

turbomachinery research effort. A significant portion of recent research work at the MIT

Blowdown Facility was focused on obtaining an accurate assessment of the pitchwise

flow angle downstream of the turbine rotor. The difficulty in accurately modeling flows

in such devices emphasizes the value of these types of experimental investigations. The

measurement of flow angle was accomplished with the design, development, fabrication,

calibration, and implementation of a three-hole, hemispherical-nose, multi pressure

sensor, flow angle probe (FAP). The following sections describe the process by which

the FAP was developed and incorporated into the current test facility.

4.2 Flow Angle Probe Design

The complexity associated with the quantitative experimental measurement of

fluid flow characteristics requires that significant thought be put into the design of any

instrumentation. Design of instrumentation for these purposes will be influenced by

several factors including spatial resolution, temperature sensitivity, ease of introduction

to casing, and desired frequency response to name a few. Due to the large number of

factors that influence probe design, each unique instrument will also require a calibration

before being implemented for its intended use. It was determined that a multi-port

pressure probe intended for use in measuring flow angle downstream of the rotor must:

1) Offer minimal disturbance to the natural flow patterns in the test stage
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2) Be robust enough to operate accurately in the test environment

3) Have sufficiently rapid response to resolve certain unsteady characteristics

4) Make all measurements close to a single point to enable spatial resolution in

the flow field

5) Be compatible with the existing facility structure, and relatively easily to

install and access for inspection and minor modification

6) Be relatively easy to manufacture

7) Allow for easy calibration in a separate wind tunnel

Pressure probes exhibit several advantages over other mechanical devices of

measuring flow angle such as streamers and vanes. The measurements taken from

pressure probes can be more easily related to a single point, and they tend to offer less

disruption to the flow than alternative methods. Pressure probes are also not affected by

inertial and gravitational effects than can influence measurements taken by mechanical

devices [3].

All pressure probes used to measure flow quantities exploit the distribution of

pressure that results around the surface of a body when it is immersed in a moving test

fluid. This distribution of pressure can be measured using any number of pressure

transducers that sample at different locations on the surface of the probe head. However,

as will be discussed later, the sensors need not necessarily be mounted directly on the

probe surface itself. The indicated pressure at each location on the probe head, or the

fraction of free stream dynamic pressure recovered at each transducer location, will be

dependent on the corresponding incident flow angle to the probe head [15]. The

particular size and geometry selected for a pressure probe will be dependent on its

particular intended use. Clearly, the physical dimensions of the pressure probe will limit

the spatial resolution in measurements that can be obtained, not to mention the impact of

probe size on flow disturbance. The complexity, including number of pressure tappings,

of the probe will be dependent on the number of flow quantities, including flow angles, to

be measured. Several pressure sensors can be mounted to quantify both pitchwise and

spanwise flow angles, however, this can have a considerable effect on probe size, thus

adversely affecting spatial resolution, as mentioned. This is a particular concern in
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conditions such as traversing wakes experienced downstream of the rotor. As a result, it

is often preferred to focus solely on pitchwise flow angle measurements, thus requiring

three-hole pressure probes instead of a larger, more complex five-hole probe [24].

In the development of the probe to be used with the MIT Blowdown Facility, the

radial flow angle measurement was sacrificed in order to allow for a smaller and less

complex probe design. This lead to a requirement for only three pressure measurement

holes, which are spaced in the circumferential direction of the turbine stage when the

probe is installed. Accommodations in the method of mounting the FAP in the test

section were made in order to vary the radial location of the probe and obtain a measure

of radial variations in the rotor exit flow angle. The mounting of the probe in the wind

tunnel test section will be addressed in subsequent sections. The probe itself is illustrated

in Figure 4.1 with an end view of the pressure holes on the probe nose surface also

included. The pressure measurements taken from the three holes were labeled PL, PC,

and PR for the left, center, and right holes, respectively, as viewed from behind the probe

facing into the oncoming flow. The pressure sensing holes shown in Figure 4.1 are

labeled accordingly. Both the probe tube and stem were manufactured using 17-4 PH

Stainless Steel. The diameter of the three pressure measurement holes is 0.036 in. each.
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Figure 4.1: Front (left) and Side (right) Views of Flow Angle Probe Tube and Stem

As can be seen in Figure 4.1, the FAP consists of a cylindrical stem and a

perpendicular tube for measurement. The axis of this tube lies perpendicular to the radial

axis of the test section, and the head of the tube faces in the upstream direction during

tests. An important design consideration is the shape of the head of this tube. The shape

of the head of the probe must be such that it disturbs the flow as little as possible. A

hemispherical end was selected for use with the FAP. The pressures resulting over the

forward half of a sphere when inserted into a flow can be predicted with reasonable

accuracy by simple potential flow theory [3]. Theoretical flow models were used as the

basis for determining data reduction techniques to be described in further sections. A

more detailed view of the probe tube itself is shown in Figure 4.2. An advantage of using

a hemispherical probe head is that the shape allows for less restrictive internal leads for

the pressure measurements. Cross-sections of the three internal leads can be seen in

Figure 4.2. The reduction in restriction of internal leads results in less lag of the pressure

signal in these leads and a simpler internal design [14].
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The shape of the probe nose was to be as close to hemispherical as possible. The

diameter of the nose was machined to be 0.125 in. Care was taken to ensure smoothness

in contour and surface finish. It was also extremely important to ensure that the edges of

the surface holes were free of burs, which would affect the flow around the surface.

Erroneous pressure results would be obtained if the air were deflected appreciably. In

any event, calibration of the probe was used to account for any prevailing imperfections

in its manufacture. Discrepancies such as burs pose the largest concern because their

form can be altered following the calibration of the probe during experimental testing,

rendering the calibrations inaccurate.

09 0

Figure 4.2: Side (below) and Top (above) Views of Flow Angle Probe Tube, with Internal Leads

As mentioned earlier, flow direction is determined by measuring the pressure at

ports placed on either side of a probe. The differential pressure between two ports can be

calibrated as a function of incident flow angle. The pressure holes on the FAP nose were

drilled parallel to the axis of the cylindrical probe tube, as is illustrated in Figure 4.2. The

sensitivity of a flow angle measuring device is a performance parameter that is related to

the change in measured pressure differential between surface locations with a change in

the incident flow direction. The sensitivity of hemispherical-ended probes is a function

of the offset angle, 6, of the pressure measurement holes. The highest sensitivity for a

probe with this profile is obtained with pressure holes having an offset angle of 45* [3].
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Since the pressure measurement holes for the FAP were not drilled to a specific offset

angle, only an approximation of the angle was obtained from calibration. The effective

offset angle of the hole on the FAP was determined to be approximately 38*, which is

quite close to the ideal theoretical value. The details of this approximation will be given

with those of the probe calibration in later sections.

Another factor that can affect the pressure distribution about the head of the probe

is the position of the probe stem. The stem for the FAP is shown in Figure 4.1, and its

axis is perpendicular to the direction of flow. In the flow, the stem will produce a

pressure at points on the probe tube upstream of itself, which can affect the measurement

of pressure at the three surface locations. Thus, the position of the pressure measurement

holes relative the probe stem is an important design consideration, which is determined

by the length of the probe cylindrical tube. The maximum possible distance from the

probe stem to the measuring plane would be ideal, however the rigidity of the probe will

limit this distance. Vibrations in the FAP, which can result in erroneous flow angle

readings, may occur due to the flow around the probe. In order to avoid overall

vibrations, the stem of the probe is thicker, with a diameter of 0.250 in., than the probe

tube. Previous research in the field of hemispherical pressure probes has shown that

pressure measurements made at a distance of eight probe diameters upstream of the stem

will be unaffected by the presence of the stem for subsonic flows [14]. Figure 4.1 shows

that the FAP design allows for 1.00 in. between the tip of the nose and the beginning of

the stem, which corresponds to eight times the probe diameter of 0.125 in.

The spatial resolution of a device measuring fluid flow will also be affected by the

manner in which the pressure transducers are housed in the probe. The size of the probe

head will determine the effective spatial resolution of flow measurements. In addition to

the number of pressure measurement holes on the probe, the location of the transducers

will have a significant influence on the size of the probe's nose. One way to maintain

small probe geometry with a number of sensor holes is to move the pressure transducers

away from the surface pressure holes and mount them remotely in the probe's body or

stem. Sub-surface mounting of the pressure sensors also provides them with better

protection against mechanical damage and temperature changes in short duration

facilities. However, the benefits of situating the transducers internally do not come
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without drawbacks. Moving the pressure transducers away from the probe's surface

reduces the maximum frequency response capability of the transducers. The use of

tubing to transmit the pressure signals from the probe head to the sensors will result in a

damping effect that reduces the frequency response of the measurement system. The

simplest evaluation of the resonance frequency of the tubing system is obtained from the

organ-pipe model or a Helmholtz generator [24]. A tubing arrangement was designed for

the FAP in which short lengths, approximately 1.250 in., of 0.028 in. inner diameter

stainless steel tubing were braised to each of the three pressure holes on the probes

surface. Using identical geometry for the internal leads ensured similar pressure response

for each pressure measurement. As can be seen in Figure 4.1, the three tubes pass the

length of the probe tube and are bent into the stem section. Wells to house the fast

response pressure transducer are braised to the terminating end of the pressure

transmission tubes. The wells used to mate the internal tubing and the pressure

transducers are shown in Figure 4.3. The pressure transducers were epoxied snugly into

these wells.

Pressure Transducer

0.320
Mate to Internal 0.200 Mate to Pressure

00.086 Tubing Transducer 00.066

00.0 36

000.075

Figure 4.3: Flow Angle Probe Pressure Transducer Wells

Pressure transducers used in such a device have their own frequency response. The

tubing arrangement reduces the available upper limit of this response, but not beyond the

point where the effects of nozzle guide vane (NGV) wake passing can be resolved, which

will become evident when discussing the reduction of experimental data. During the
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design of the internal leads of the FAP, it was necessary to establish a viable trade-off

between time resolution and spatial resolution of the pressure measurements.

4.3 Pressure Transducers

The sensors used to measure the pressure being transmitted from each surface

location on the probe head were Kulite XCQ-062-50D miniature, silicon-bonded, high

frequency, differential pressure transducers. These Kulite transducers are among the

smallest available, with an inner diaphragm diameter of 0.064 in. The transducers

measure the pressure differential between the FAP internal lines and backpressure

reference tubes. Small pieces of Tygon tubing, with an inside diameter of 0.010 in., were

used to connect the transducer backpressure tubes to the reference pressure line of the

probe assembly. As detailed in Chapter 2, these transducers were calibrated during the

course of a test run.

The normal frequency response range of these high frequency Kulite pressure

transducers is DC to more than 100 kHz [27]. However, as mentioned previously, the use

of internal tubing reduces the upper limit of this range. The estimated frequency

response of the FAP is on the order of 1 kHz. As is shown in Figure 4.3, the inside

diameter of the wells to house the transducers was machined to 0.066 in. so that the

transducers could be tightly secured and bonded with epoxy.

Pressure transducers of the type used in this research effort can be sensitive to

changes in temperature. Changes in the offset and sensitivity of the transducer can occur

with temperature changes, leading to erroneous readings of the actual pressure.

However, this is much more of a prevalent problem in steady state testing than in

transient experiments, where time scales of tests are too small to allow significant

temperature changes in the vicinity of the pressure transducers. Nevertheless, the

pressure transducers used employ temperature compensators to adjust the bridge output

via external compensation resistors to account for any thermal fluctuations [24].
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4.4 Flow Angle Probe Installation

Once details of the FAP design was addressed, the instrument needed to be

incorporated into the test section of the experimental facility. This was, of course,

following calibration of the instrument, which will be discussed in detail in the following

chapter. The FAP was mounted in an existing instrument port, which had previously

been used to house a total temperature rake, on the translator downstream of the turbine

rotor. The use of this port was attractive from the perspective of minimizing

modifications to the facility because of the availability of pre-existing electrical wiring

infrastructure running from the test section to the data acquisition system. The

downstream translator employs standard Bendix-type electrical ports for the instrument

socket and test section output. The use of familiar wiring junctions allowed the electrical

connections to the pressure transducers to be made with ease. This type of connector can

also accommodate reference backpressure lines from the pressure transducers. Figure 4.4

shows the FAP assembly in a housing that mates to the connector port on the downstream

translator. A view of the FAP installed in the downstream translator of the test apparatus

is shown in Figure 4.5.

Figure 4.4: Flow Angle Probe Complete Assembly
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Figure 4.5: Flow Angle Probe Installed in Blowdown Test Section

An important characteristic of the design of the FAP assembly is that it allows

adjustment of the probe's position and orientation. Tests were to be conducted with the

FAP at varying radial distances between the hub and tip of the flow annulus. There was

also a requirement to be able to adjust the alignment of the probe's head in the tangential

plane with respect to the axial direction of the test section. This will be discussed in the

following chapter. Both of these requirements were met with the use of a collar around

the stem of the probe, which can be seen in Figure 4.5. When the collar's set screws are

loosened, the probe is free to rotate and traverse in its housing. Once the desired position

is achieved, the screws are tightened. A small amount of excess length was left in the

FAP wiring to allow for the radial travel. Removal of a metal plate covering the window

to the test section at the probe's location allows for easy access to the probe without

dismantling the entire test section.

As mentioned, the ability to rotate the probe in the plane about its stem was an

important design capability during assembly and testing. The reason for this was that the

probe needed to be aligned in the same general direction as the flow so that the most

accurate measurement results could be obtained. Based on a general three-dimensional

computational fluid dynamic (CFD) model of the test stage provided by the sponsor, the

probe was to be installed at an angle of 25* to the left, when viewed facing upstream in

the flow, from the longitudinal axis of the test section. Deviations of the flow angle

relative to this position of the FAP were expected to be measurable with more certainty.

These points will be elaborated upon in further sections. In order to align the FAP at this
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250 angle, an aluminum block was machined to offer the correct angle with respect to the

test section. The FAP was aligned flush with the block before tightening the collar

around its stem.

4.5 Summary

A review of the design, fabrication, and installation of the FAP has been

presented. Several factors were considered and weighed in the selection of design

criteria. As is often the case with experimental instrumentation, certain design trade-offs

were required to tailor the performance of the device to research requirements. These

included the competing issues of spatial and time resolution of measurements. A detailed

calibration of the instrument was also required, which will be the focus of the next

chapter.
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Chapter 5: Flow Angle Probe Calibration

5.1 Introduction

Prior to utilizing an instrument such as the flow angle probe (FAP) for the

purpose of collecting experimental data, a calibration must be performed. The need for a

calibration arises from the fact that the performance of such devices can only be

approximated by theory. This is due to the variety of factors that influence variations in

probe behaviour, which were discussed in the previous chapter. A description of the

calibration procedure implemented and associated details regarding error analysis and

propagation are included herein.

5.2 Motivation

The requirement to calibrate the flow angle measuring device stems from the

selected mode of operation of the instrument in this experiment. This is because pressure

probe flow direction instruments can be operated in two distinct ways. Both methods can

be employed using similar probe designs with symmetrically distributed pressure sensing

holes, as is the case with the FAP.

The first of these is known as the alignment or null-reading method. In this

method of operation the probe is orientated such that equal pressure measurements are

obtained in symmetrically oriented pairs of holes, PL and PR in the case of the FAP being

used to measure the pitchwise flow angle. Once equivalent pressure readings are

obtained, the probe is essentially aligned with the direction of the flow, and the geometry

of the probe relative to the test section gives the flow angle. The null-reading method of

operation requires a minimum amount of calibration, however, it also requires longer
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running times and more complex and bulky probe housing and rotating mechanisms [15].

As a result, it is not a viable option for use in a short-duration experimental facility such

as the MIT Blowdown Facility.

The alternative method of operation involves fixing the position of the probe and

measuring pressure differences between symmetrically opposed holes. The flow

direction can be related to these pressure differences by way of a prior calibration,

obtained by orienting the probe, known flow. Ideally, a probe to be used in this manner

should be arranged such that the angle between the probe's axis and the incident flow are

related linearly to the difference in pressure to be measured [3,14]. References show that

the approximate range of± 15* between the probe and incident flow will offer such a

linear relationship between pressure difference and flow angle for multi-port probe heads

[3]. It was for this reason that the FAP was oriented at a 250 angle with respect to the test

section longitudinal axis when the probe was installed for testing, as mentioned in the

previous chapter. An additional benefit to roughly aligning the probe with the flow is

that it will interfere less with the natural flow tendencies in the test section.

The latter of the two methods outlined above was selected for use with the FAP.

As a result, an in-depth calibration of the probe under steady conditions was required.

The calibration was carried out over a wide range of incident flow angles and flow Mach

numbers.

5.3 Calibration Procedure

The calibration of pressure probes intended to measure flow orientation is

generally carried out by measuring pressure differences measured between sensing holes

with varying incident stream directions. In actuality, the ideal scenario for calibration of

such an instrument is to find non-dimensional variables based on pressure readings,

which are only sensitive to the flow parameter being investigated. The specific choice of

non-dimensional parameter relating to circumferential flow angle will be discussed in

subsequent sections. Regardless of the selected non-dimensional variable to be used in

the data analysis, the basis of the calibration is to obtain readings from each of the three
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pressure measurement locations on the probe's surface under steady-state flow

conditions. Additional variables that can affect the performance of a pressure probe are

the Reynolds number and the Mach number of the flow. Thus calibrations should include

flows with varying Mach number and Reynolds number to determine whether or not

these will be significant factors in the flow around the probe being calibrated. However,

these parameters could not be varied independent of one and other since only a constant

inlet total pressure was available. Ideally, one could determine a Mach number above

which the influence of these parameters on probe performance is negligible.

The FAP calibration was carried out in a 7 in. x 7 in. plexiglass test section

mounted to a De-Laval compressor. The turbomachinery of the De-Laval compressor is

used to induce the required flow through the test section, and a suitable range of flow

Mach numbers can be obtained by varying the compressor speed. The FAP was mounted

through a window in the test section as is shown in Figure 5.1.

Figure 5.1: Calibration Arrangement for Flow Angle Probe
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A cylindrical stem extension including a collar allowed the FAP to be attached to a

precise rotary table that was used to yaw the probe with respect to the inlet flow. The

probe was initially centred using a null-reading type method where the probe was rotated

until the PL and PR pressure readings were balanced during steady flow through the test

section. A total of five different flow Mach numbers were used during the calibration.

At each of these inlet flow Mach numbers, the FAP was positioned at angles ranging

from -55* to 550 in increments of 50, with additional increments of 10 in the range of yaw

angles from -5* to 5*. An arbitrary decision was made to define a positive flow angle as

being incident on the left side of the probe head when viewed from above. The

convention for describing flow angles for the FAP is included below in Figure 5.2.

Flow Direction

PL

Figure 5.2: Flow Angle Convention for Flow Angle Probe (viewed from above)

Measurements from the Kulite pressure transducers were taken through the same data

acquisition (DAQ) system to be used with the actual Blowdown Facility experiments. A

separate LabView program was written to average the steady state pressure readings at

each incident flow angle and inlet flow condition. In addition to the three FAP surface

pressure measurements, the ambient and inlet wall static pressure were also recorded

using a Setra Model 370 Digital Pressure Gage. These measurements provided for the

calculation of the free stream Mach number in the test section for each different

compressor speed setting.
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5.4 Calibration Results

5.4.1 Surface Pressure Measurements

The actual measurements made during the calibration of the FAP were the

variations in the three surface pressures with changes in the incident flow angle. A

sample of the measurements made at a single inlet flow condition during the calibration is

included in Figure 5.3.
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Figure 5.3: Flow Angle Probe Surface Pressure Measurements with Incident Flow Angle, M=0.57

The general shape of this plot is also representative of those derived from conditions

involving the five different inlet flow Mach numbers examined. The calibration plot

shows how the pressure recovery at each measurement location varies as the probe is

rotated about its stem. A smooth polynomial fit of fifth order is used to allow for

interpolation between the raw pressure measurements plotted in Figure 5.3. Each surface

hole is seen to have a maximum reading, located by a horizontal tangential slope to the

curve, which corresponds to the angle of the FAP at which the flow is aligned with that'
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particular hole. The fact that the maximum value of Pc occurs at 00 would imply that the

probe's initial alignment with the flow direction during the calibration sequence using the

'null-reading' method was sufficiently accurate. As mentioned earlier, the holes drilled

on the FAP have an associated offset angle, 6, which is difficult to physically measure.

However, Figure 5.3 gives an indication of the approximate effective offset angle, which

can be a result of machining inaccuracies causing flow disruption in and around the

measurement holes. Figure 5.3 shows that the maximum pressure recovery for PL and PR

occurs at approximately 38'. This, and the fact that the curves for PL and PR cross each

other at nearly 00 would imply that the FAP is symmetrical in its physical geometry.

5.4.2 Dimensionless Pressure Parameter for Tangential Flow Angle

In order to render the calibration measurements useful and applicable to

characterizing the flow during actual facility test runs, the data must be modified for the

particular flow characteristic being sought. As mentioned earlier, data is normally

manipulated to form a non-dimensional parameter, often based on pressure differences,

that reacts linearly to the flow parameter under investigation over the range of interest.

The objective here is to be able to predict the tangential flow angle, 6, from the measured

pressures PL, Pc, and PR. Insight into the selection of an appropriate non-dimensional

parameter was obtained by examining the expression for surface pressure in inviscid

potential flow around a sphere given by Anderson [1]. The surface pressure at each of

the measurement locations, as shown in Figure 5.3, on the FAP in potential flow is

P = P -9 Qsin2 (9 -6)=Po 4p(yRT) M2 sin2 (0 -3) (5.1)
L~~~ 042'

PP=9 Qsin2 (0)=p P 2 (p( yRT) M2 )sin2 (9) (5.2)

C 4 4 K22

9 204=p_9 (1 yR)M)si2(+)

PR=0 Qsn2 (+3)= Po 2{p( yRT)M2 sin2 (+6) (5.3)
R 4 4 2 )

92



In the above expressions, Po is the total pressure, Q is the dynamic pressure, and yRT

is the speed of sound of the flow being investigated. We wish to find a dimensionless

variable that is independent of both Po and Q since these are unknown quantities in the

actual facility. It is important to remember that the dynamic pressure is proportional to

the square of the flow Mach number for incompressible flow, as is shown in the

equations above. The dimensionless variable should be a function only of measured

quantities in order to avoid the need for iterative steps in the analysis scheme. The

variable must also be monotonic with respect to the flow attribute being measured. This

ensures that only a single value of the non-dimensional variable exists for each value of

the flow parameter. It can be seen that both the total and dynamic pressures will be

removed from any expression involving the quotient of two differential pressure terms.

The total pressure is removed when the mathematical difference is taken between any

pair of Equations (5.1), (5.2), and (5.3). The dynamic pressure is then withdrawn when

any two terms without the total pressure variable form a quotient. Previous flow

characterization efforts [16] were the basis of the selection of the following non-

dimensional pressure parameter for measuring the tangential flow angle,

yV(0)= - L -R _ L R (5.4)
(P -PL) +(P~-PR) 2P~PL~PR

The numerator of Equation (5.4) is the pressure difference between PL and PR, which is

quite sensitive to the pitchwise flow angle. This difference is normalized by an

approximation to the flow total pressure, (2PC - P - PR= 2Q). The parameter Vu(6) was

expected to display very little variation with flow Mach number and radial flow angle.

The extent to which this expectation was applicable to our calibration was determined by

plotting the dimensionless pressure parameter versus a range of tangential flow angles for

Mach numbers of 0.57, 0.53, 0.47, 0.40, and 0.34 as shown in Figure 5.4.
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Figure 5.4: Flow Angle Probe Dimensionless Pressure Parameter with Incident Flow Angle

The range of inlet tangential flow angles used for Figure 5.4 was limited to -35* to 35*

because all values diverge significantly beyond those limits. Once again, a smooth

polynomial fit of fifth order is used to allow for a more accurate comparison between the

different Mach number runs of the calibration. Figure 5.4 shows that the data points for

the three fastest inlet Mach numbers (0.57, 0.53, and 0.47) lie close together over the

entire range. Over a reasonable range of Mach numbers, there is very little variation in

the relationship between tangential flow angle and the dimensionless flow angle chosen.

The range of these three Mach numbers encompasses the estimated rotor absolute exit

Mach number as determined from data provided by the manufacturer. The dimensionless

values for the remaining two Mach numbers (0.40, and 0.34) diverge somewhat from the

mean, especially at extremes of the incident flow angles included in Figure 5.4. It is also

important to note that the three higher Mach number flows seem to give a linear

relationship between the non-dimensional flow parameter and the flow angle on the range

of -20* to 200. This was encouraging considering that, as mentioned earlier, literature

suggests that an ideal scenario is to have a linear relationship between the flow variable

and the dimensionless parameter.
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5.4.3 Tangential Flow Angle Calibration Curve

In order to apply the calibration data to facility test data, a calibration curve of the

tangential flow angle with dimensionless pressure parameter must be created. A

calibration curve was created based on the data shown in Figure 5.4. A modified

calibration data set was generated by averaging the values of y/(6) from the three highest

Mach number calibration runs over the range of flow angles from -20* to 200. Figure 5.5

shows the first order linear regression that was used to fit the tangential flow angle versus

the selected non-dimensional pressure parameter.
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Figure 5.5: Flow Angle Probe Incident Flow Angle with Experimental Averaged Dimensionless
Pressure Parameter (for Mach 0.57, 0.53, 0.47)

The equation for the first order line of best fit for the data is included in Figure 5.5. The

curve is seen to be a good fit to the data pairs as is shown by the R2 value of 0.9989. The

coefficient of determination, R2, is the proportion of the total variability explained by the

regression model, or put simply the overall adequacy of the model [29]. A value of the

coefficient very close to unity implies that the linear model chosen suits the data points
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very well, and that the relationship shown can be used with confidence over the intended

range of variables.

The equation for the relationship depicted in Figure 5.5, where the flow angle is

represented in degrees, is shown to be 0 (Vy) =0.160 (V) +17.519, as determined by the

method of least squares. With this equation the incident tangential flow angle can be

determined from an experimental value of the non-dimensional pressure parameter

measured with the FAP. However, one important additional point that must be

considered is the error associated with the use of this calibration curve. This will be the

focus of the following section.

5.5 Calibration Error Analysis

As with any procedure involving measurements taken from an experimental

apparatus, a calibration of the sort carried out for the FAP has a certain degree of error

associated with it, which cannot be ignored in a rigorous analysis. The regression model

will have an associated uncertainty, which stems from the uncertainty in the measured

variables that create the data pairs. Ideally, one would like to incorporate the

uncertainties in the measurements taken to create the calibration curve to give an

uncertainty in the coefficients of the regression curve representing the relationship shown

in Figure 5.5. If the uncertainty in the fit coefficients were known, then they could be

propagated through to the final calculated results during the reduction of experimental

test data.

Often times in experimental activities the uncertainty in the original measured

data are not included in further analysis and use of models. These models cannot predict

the true performance of a piece of equipment under study because uncertainties are

neglected. Uncertainty in the regression model is required to provide an interval within

which the instrument actually performs as it is expected to. Coleman and Steele [5]

present a comprehensive approach to linear regression uncertainty. In the method of least

squares, the first order linear regression coefficients for the slope, m, and intercept, c, can

be considered functions of the N data pairs, (yi/,6,) used to create the calibration. The
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reference material gives expressions for incorporating the absolute random uncertainty,

U9, and U , in both of the measured variables to give the uncertainty in the slope as

U N U + u (5.5)

Similarly for the intercept,

U'2 U + U2 (5.6)

The partial derivatives represented in the equations above need not be determined

analytically, instead they can be evaluated numerically. The following expression was

used to approximate the partial derivatives

Ar (5.7)
X....XN cons AX

The remaining inputs that need to be determined in order to evaluate Equations (5.5) and

(5.6) are the absolute random uncertainty, U, and U, , in both of the measured

variables. An estimate for Uo of 0.02* was made for the rotary table used to set the

incident flow angles. The determination of U, for each point in the calibration data set

was slightly more complicated since these values are unique for each point in the data set

and they arise from a calculation involving the measured pressures from the Kulite

pressure transducers. The reference [5] describes a general uncertainty analysis that can

be employed to propagate random errors through mathematical equations. For the case of

an experimental result, r, which is a function of J measure variables, X, the relative

uncertainty is described by
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U _ X ) 2r (U, )2 (X2 ar )2 (U 2 2 .. +Xj ar )2 UX, )2- +(5.8)
r2 r aX, X1 r aX2 X2 r aX. Xj

This general uncertainty expression can be applied to Equation (5.4) for the non-

dimensional pressure parameter to give the relative random uncertainty in each calculated

value of the parameter,

U 2{Ic-PR 2 -2 -P 2
, 2(c )U2+ (P )u2

/ {PL P R)(2 P P L -R) L -PR)(2c -C L PR) P

+ c (5.9)
{2Pc -L -PR c

The value of the relative random uncertainty in the Kulite pressure transducers, U /PL R

Up /PR , and U /1Pc , was obtained by analyzing the pressure transducer calibrations

preformed in a single run. The difference in the scale and zero values for the postfill and

posttest calibrations against a known pressure value offer insight into the error in these

values. The value of the relative random error for each transducer was determined to be

0.25 %. It is also important to remember that the dimensionless pressure parameter used

in creating the calibration plot was an average of three different values each from a

different Mach number trial. Thus, Equation 5.8 must also be employed to accrue the

absolute random uncertainty in each dimensionless pressure parameter measurement used

for the average value,

u2 = UM + U W'M2 + U 'M3 2 (5.10)V/ 3 ) 3 ) (3)

Once all components of the regression error analysis had been accounted for, the

error in the slope and intercept of the first order linear fit were calculated using Equations

(5.5) and (5.6). Incorporating the error analysis as described above the slope was
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determined to be 0.160 ± 0.0590, and the intercept was 17.519 ± 0.151'. The error

analysis in the calibration of the FAP is the last step required to allow for experimental

measurements with uncertainty to be made using this instrument. The values for the

calibration coefficients will allow for the errors associated in the calibration process to be

carried through in subsequent analysis.

5.6 Summary

A detailed description of the calibration used with the FAP has been discussed.

The rationale for such a procedure was included, as were the procedure followed and the

results of the calibration. The important issue of uncertainty analysis and propagation in

the calibration was also included. This will allow for a realistic estimate of the

uncertainty in the final measured values to be made. The application of the results of the

calibration of the FAP will become evident in subsequent sections involving the analysis

and discussion of experimental results.
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Chapter 6: Flow Angle Probe Experimental Results

6.1 Introduction

The flow field under investigation in this experimental study is extremely

complex. The flow angle probe (FAP) is being used in a three-dimensional, unsteady

flow, which is also influenced by the nearby passing turbine rotor blades. In order to gain

insight into the flow characteristics in a full-sized engine, the FAP was mounted on a

translator downstream of the rotor in a fully-scaled, film-cooled turbine test section,

which itself was described in detail in Chapter 2. The preceding calibration of the FAP

was used as the fundamental basis for determining the tangential flow angle, as well as

associated uncertainty, during the experimental test runs. Using the translator, tangential

flow angle measurements were taken across a portion of the circumference of the rotor

exit in hopes of observing fluctuations while passing through nozzle guide vane (NGV)

wakes. These measurements were taken for different FAP radial positions and engine

operating points. The basis for varying the operating point will be discussed prior to

presenting and analyzing data. A test matrix will also be presented to ease in the

comparison of data taken from various test runs. The results of this initial experiment

lead to a brief discussion comparing spatially-resolved and spatially-averaged tangential

flow angle data taken from various test runs.
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6.2 Turbine Operating Point

6.2.1 Turbine Stage Operating Point Map

As mentioned earlier, several non-dimensional engine parameters must be

matched in order to ensure test similarity and applicability of the test results. Because the

Reynolds number and ratio of specific heats are both kept within an acceptable range

throughout the test runs, the turbine operating point will be defined by the pressure ratio

and corrected speed. A turbine stage operating map with pressure ratio versus corrected

speed can be constructed to give a visual representation of the operating point with test

time. An example of an operating point map is included below in Figure 6.1.
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Figure 6.1: Turbine Stage Operating Point Map, T222
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Markers for the operating point are included every 25 ms between selected time intervals.

Note that a single complete revolution of the rotor occurs approximately every 10 ins, so

the operating point markers shown can be thought of as representing quasi-steady points

of the turbine operating point. The choice of the interval to be used in test comparison

will be addressed in the next section. These stage operating maps serve as the basis for

determining the suitability of comparisons between various experimental test runs.

6.2.2 Flow Similarity Time Interval

With an unsteady experimental apparatus, like the MIT Blowdown Facility, it is

important to remember that an initial transient startup period exists, which will not yield

useful data. As a result, data analysis must be confined to a defined time interval where

the flow is appropriately scaled. This period is termed the flow similarity time interval

(FSTI). For the results to be presented here, the FSTI begins at 500 ms and ends at 1000

ms after the beginning of the test run. The FSTI was selected based on the analysis of

previous experimental results at the MIT Blowdown Facility [28]. The FSTI will be used

for all analysis, including the turbine stage operating maps as shown in Figure 6.1.

6.3 Development of Test Conditions

The FAP was implemented in the experimental engine apparatus in order to

spatially-resolve measured tangential flow angles at various radial locations between the

rotor exit hub and tip at different engine operating points. As mentioned earlier, this

spatial-resolution of flow angle was provided by the use circumferentially traversing

downstream translator, on which the FAP was mounted. A total of six different FAP

radial positions were included in the tests. The combination of the use of the translator

and variations in probe radial position was intended to provide a useful map of the flow

angle across NGV wakes that would be encountered by the translating FAP. Increasing

the corrected speed from the design point at most of the radial probe positions was used

to change the operating point. The design point was taken from experimental tests

103



carried out by Van Poppel [28]. A summary of the turbine test runs is included below in

Table 6.1.

Table 6.1: Flow Angle Probe Test Run Summary

Test Number FAP Centreline from Rotor Corrected Speed, FAP Offset Angle (from test
Translator-Ring, (in.) Ne section longitudinal axis)

T221 0.54 Low 250 left
T222 0.54 Design 250 left
T223 0.35 Design 250 left
T224 0.35 Design 25' left
T225 0.15 Design 25' left
T226 0.15 High 250 left
T227 0.75 Design 250 left
T228 0.75 High 250 left
T229 0.94 Design 25' left
T230 0.94 High 250 left
T231 1.075 Design 00
T232 1.075 High 00

The radial position of the probe was measured from the surface of the translator to the

center of the middle hole of the probe tube. Varying the eddy current brake excitation

voltage changed the corrected speed.

6.4 Approach to Experimental Results

During the actual experimental engine tests, the FAP measured the surface

pressure at the three sensing locations. The measurements were taken by the data

acquisition (DAQ) system at a rate of 1 kHz, which was sufficient to resolve NGV wake

passing phenomena. When examining spatially-resolved data, fluctuations in the

experimental measurements will always be present. Some of these fluctuations may be

attributed to actual physical phenomena occurring in the turbine, but others may simply

be noise carried through the DAQ system. In order to remove some of the high

frequency noise, the raw data can be processed using a low-pass filter in the initial stages

of data reduction. This will more easily allow for identification of NGV wake passing

phenomena in the processed data. An example of the filtered pressure measurements

taken at the three sensing locations on the FAP while it was moving circumferentially on
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the translator is included in Figure 6.2. These pressure measurements were taken over

the entire run and a time transient period can clearly be seen prior to the beginning of the

FSTI at 500 ms.
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Figure 6.2: Filtered Flow Angle Probe Pressure Measurements with Run Time, T222

The filtered pressure measurements taken by the FAP were used to infer the

tangential flow angle in the local flow field at the rotor blade exit in the turbine test

section. This was done by evaluating the dimensionless pressure parameter, Vg, which

was defined earlier as

PL R _ L R

(CL-PL)+(Pc-PR) 21C-PL-PR
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The non-dimensional parameter was then used in conjunction with the FAP tangential

flow angle calibration curve, Figure 5.5, to determine the flow angle as follows,

0, (V))= m- V+c (6.2)

The values for the slope, m, and intercept, c, of the calibration curve are 0.1600 and

17.5190, respectively. Recall that the calibration fit was performed on data in the range

of -200 to 200 with respect to the probe head, and thus is only valid on that range. Data

for test runs T231 and T232 did not meet this angle range requirement, and thus cannot

be used in conjunction with the calibration fit described in the previous chapter. Both of

these runs resulted in calculated flow angles greater than 300, which is outside the useful

range of the FAP calibration, and thus will not be included in subsequent analysis. It is

important to note that the calibration will provide the flow angle with respect to the

probe, 0,,, (y), which itself is installed with an offset with respect to the longitudinal axis

of the test section. The FAP offset angle, Offse for each test run is included in Table 6.1.

This situation is illustrated below in Figure 6.3.

Test Section
Longitudinal Axis

\O~.ei >0_gse_>_0F lo w D irec tio n p Rf e - -

PL

Figure 6.3: Flow Angle Convention with Offset for Flow Angle Probe

This offset angle must be added to the flow angle determined using Equation (6.2) in

order to give the correct tangential flow angle in the test section. This can be expressed

simply by
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(6.3)0 =0,,+ ,ff,

The use of Equation (6.2) and Equation (6.3) will have an impact of the propagation of

uncertainties beyond those of the calibration that have already been presented.

Provisions for uncertainty analysis in the data reduction scheme will be discussed in the

following section. As discussed above, the filtered, spatially-resolved measurements

from the FAP combined with calibration data and plots will result in a plot of measured

tangential flow angle with run time over the FSTI. An example of the measured

spatially-resolved flow angle is included in Figure 6.4 below.
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Figure 6.4: Flow Angle Measurement with Run Time, T222

The results included in Figure 6.4 do not include the appropriate error bounds associated

with the analysis. Details of the uncertainty will be included in subsequent plots.
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Figure 6.4 shows the rotor exit flow angle distribution along the circumference of

the rotor. These variations are due to changes in pressure associated with NGV wakes,

through which the FAP passes during the test. The next task in the data processing

scheme is to determine an appropriate method of averaging the flow angle data.

It is desirable to obtain DC levels of the flow angle over a valid stage steady state

time interval in order to provide useful averaged flow angle data for easy comparison

between different test runs. When choosing an appropriate time interval, one must

realize that the operating point of the turbine stage is continuously changing. The

selected time interval should be short enough so that the operating point can be

considered quasi-static. The operating point maps of the test runs, shown together in

Figure 6.5, were examined to give an initial estimate of a suitable averaging and

comparison window for the flow angle measurements.
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Figure 6.5: Turbine Test Run Operating Point Maps
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In addition to examining the operating point maps of the test runs, a continuous

sliding average over the FSTI of the measured tangential flow angle shown in Figure 6.4

was used to determine a suitable data-averaging window for the FAP. The sliding

average was intended to compute the average flow angle based on a number of data

points on either side of the time point for which the average was being calculated. The

spatially-resolved flow angle distribution shown in Figure 6.4 shows a periodic response

with fluctuations in the measured flow angle. Ideally, the averaging technique should

take this into account and ensure that only one cycle is included in each average. This

would mean that an average is taken over a time period corresponding to a single NGV

pitch passing, which offers the effects of only a single wake. In order to do so, the time

period of the FAP passing one of these NGV wake fluctuations must be known. The

spatially-resolved data must be averaged using a time period because raw data is

presented with respect to run time, rather than with respect to circumferential FAP

position. Data for each test run, similar to that shown in Figure 6.4, was analyzed with an

automated computer function that estimates the power spectral density (PSD) of a time

signal. Peaks in the PSD correspond to frequencies prevalent in the data. General trends

in the flow angle data were removed prior to performing the PSD estimate so that peaks

at extremely low frequencies would not be dominant. A sample of the PSD of the flow

angle data in Figure 6.4 is included below in Figure 6.6.
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Figure 6.6: Measured Flow Angle Power Spectral Density, T222

The PSD shown in Figure 6.6 is representative of each test run. All show a clear peak at

a frequency value of approximately 0.0234. It is important to note that the frequencies

quoted on the abscissa are actually fractions of the Nyquist frequency, which is one-half

of the data sampling frequency. The sampling frequency for these experiments is 1 kHz,

giving a corresponding Nyquist frequency of 500 Hz. Thus, the frequency of the

repeating fluctuations observed in the measured flow angle data is approximately 11 Hz.

As a result, a time period of 90 ms was used in computing the sliding average of the data.

The significance of the frequency peak of 11 Hz that can be observed in the PSD plot of

the measured data with respect to NGV wakes will be discussed further in subsequent

sections. Figure 6.7 shows the spatially-averaged flow angle data computed using a

sliding average of the data in Figure 6.4. Also included in Figure 6.7 are the polynomial

fits of corrected speed, Nc, and pressure ratio, PR, over the FSTI.
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Figure 6.7: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
Run Time over FSTI, T222

Once again, the plots shown in Figure 6.7 are representative of those for each test run.

The spatially-average flow angle values are relatively constant, especially in the earlier

stages of the FSTI. For the experimental runs conducted, the time period that was chosen

to give a suitable data-averaging window was 600-650 ms, which falls within the FSTI.

DC values for the experimental measured flow angle values will be quoted over this

interval, as will corresponding averaged values of turbine stage corrected speed and

pressure ratio. It is important to include these turbine operating point parameters in any

averaged analysis in order to determine how consistent the turbine operating point was

kept between runs. The choice of a suitable data-averaging window allows both

spatially-resolved and spatially-averaged tangential flow angle data to be presented and

discussed in subsequent sections on experimental results.

One important point of note with respect to the average flow angle data presented

above is with reference to useful turbine performance measurements. Perhaps the most
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significant performance quantity that could be derived from an instrument such as the

FAP is the angular momentum flux of the flow leaving the rotor. However, one must

realize that the spatially-averaged flow angle measured is not directly representative of an

average of the momentum flux because of the changes in flow velocity through the NGV

wakes. Thus, in order to calculate a similar average of the momentum flux one would

also require accurate spatially-resolved flow velocity values.

6.5 Experimental Error Analysis

Results derived from data collected from experimental activities are not complete

unless the uncertainty in quoted values is also included. A realistic uncertainty

calculation is required to validate experimental results. The propagation of error through

the calibration of the FAP has already been discussed in the previous chapter, ultimately

resulting in uncertainty bounds on the calibration coefficients. These errors must also be

carried through to the final result in the data reduction schemes used on experimental

measurements. The procedure by which the remainder of the uncertainty propagation is

carried out is discussed here.

The error in the tangential flow angle measured by the FAP can be determined by

incorporating the general uncertainty propagation techniques previously outlined in

Equation (5.8). The absolute random uncertainty in the flow angle with respect to the

FAP as calculated using Equation (6.2) is given by

U =M2U +y/U2 + (6.4)

An expression to account for the uncertainty in the offset angle used when the

mounting of the FAP, O-f11t, must also be included. The final equation employed in data

reduction to determine the tangential flow angle accounting for the FAP offset is

Equation (6.3). The following expression allows the absolute uncertainty in the FAP

offset, U,, , to be included in the error for the final calculated flow angle value,
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U = Ur + UO (6.5)

The value for the uncertainty in the offset angle in the FAP mounting, )ff4,,, used in the

analysis of test data was 0.20, which stems from the estimated error in the manufacturing

of the aluminum alignment block used.

The propagation of uncertainty discussed in Chapter 5 and above culminates in

error bounds being applied to the measured spatially-resolved tangential flow angle data

as previously shown in Figure 6.4. The uncertainty in the measured flow angle will be

slightly different for each data point because the error is dependant on the absolute

pressure measurements taken, which are constantly changing. Spatially-averaged flow

angle data will also have an associated uncertainty value. A reasonable value can be

obtained by examining the spatially-resolved uncertainty calculated using the methods

above. After reviewing the data from all of the test runs, a reasonable estimate of the

absolute random uncertainty in the calculated spatially-averaged flow angle data is

approximately ±0.250, which is the same order of magnitude as the absolute random

uncertainty of each flow angle measurement.

6.6 Design Operating Point Results

6.6.1 Measurement Repeatability

In experimental investigations, measurement repeatability is always of paramount

importance. The ability to reproduce the results obtained under a specific set of test

conditions gives added confidence to the methods employed in research of this nature.

Two of the test runs carried out in this investigation, T223 and T224, were intended to

have identical test conditions, both being carried out at the turbine design corrected speed

and at a FAP radial position of 0.35 in. from the translator ring. These tests would be

expected to have almost identical operating point conditions and yield very similar
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measured results. The operating point maps of the two test runs over the FSTI are

overlaid and included below for comparison of test conditions.
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Figure 6.8: Stage Operating Point Maps, T223 and T224

Figure 6.8 shows the close similarity that exists between the two operating point maps.

This is important because there can often be significant discrepancies between intended

and actual test variables, which would cause variability in results. The spatially-resolved

tangential flow angle measurements for these two runs are included in Figure 6.9 and

Figure 6.10.
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Figure 6.9: Flow Angle Measurement and Uncertainty Bounds with Run Time, T223
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Figure 6.10: Flow Angle Measurement and Uncertainty Bounds with Run Time, T224

These two plots show that the spatially-resolved flow angle measurements of the two test

runs follow the same general pattern. Similar periodic fluctuating trends due to NGV

wake passing are seen to exist in both of the data sets. However, the degree of similarity

between the two sets of results is somewhat difficult to assess from these plots alone.

Spatially-averaged data provides for an easier comparison of the two identical test

runs at a glance. The sliding average performed on the measured flow angle is presented

in Figure 6.11 and Figure 6.12. The plots also include the stage corrected speed and

stage pressure ratio with run time over the FSTI.
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Figure 6.12: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
Run Time over FSTI, T224

The two plots of spatially-averaged flow angle above show extremely similar values and

trends in the data over the FSTI. Also, the plots of stage corrected speed and stage

pressure ratio show again the consistency that was obtained between the operating point

variables. Spatially-averaged values for the tangential flow angle as well as the operating

point variables over the time period of 600-650 ms are summarized in the following

table.

Table 6.2: Measurement Repeatability Test Matrix

Test FAP Radial Position Average N,, [% of Average PR, (over t Average Measured

Number from Translator Ring, design], (over t =600-650 ms) Flow Angle, (over t
(in.) 600-650 ms) = 600-650 ms)

T223 0.35 100.14 2.07 29.47
T224 0.35 100.29 2.07 29.35
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The spatially-averaged data presented in Table 6.2 gives a much better representation of

the repeatability of run conditions and results in tests T223 and T224. During the data-

averaging period, the corrected speed was maintained within 0.30 % of the design point

for the two tests. The average flow angles obtained over the time period being

investigated were almost identical, especially when considering the reasonable estimate

of uncertainty in the averaged measurements, which was estimated as ±0.250. This

combined with the fact that the corrected speed and pressure ratio have been very closely

reproduced lend a good deal of confidence to the experimental results as a whole.

6.6.2 Spatially-Resolved Measurements

The spatially-resolved data from design point runs can be examined to discuss the

phenomena that result in observed fluctuations in the measured results. Test runs

performed at five different radial locations in the turbine exit flow annulus and at design

point corrected speed provide useful information for discussion. The operating point

maps of the test runs, which were plotted together in Figure 6.5, allow for a comparison

of the turbine operating point over the FSTI for these runs. A plot of spatially-resolved

tangential flow angle with uncertainty bounds is included below for each of these five

tests. Note that the figures are included in order of ascending radial position rather than

test number, and that only one of the repeated tests discussed in the previous section is

included.

119



43
Tangential Row Angle
Measurement Uncertainty

42- -

41 -

(39 1 ~

37

36-

35--

341
5.00 550 600 650 700 750 800 850 900 950 1000

Run Time, t (m)

Figure 6.13: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=-0.15 in., T225
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Figure 6.14: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.35 in., T224

121



22

q21

700 750 8
Run Time, t, (ms)

Figure 6.15: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.54 in., T222
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Figure 6.16: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.75 in., T227
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Figure 6.17: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.94 in., T229

All of the plots included above appear to have some common characteristics.

Although the absolute values of the flow angles in each plot are distinct, Figure 6.13

through Figure 6.17 all display a low frequency oscillatory response in the measured

tangential flow angle. All of the plots also seem to show a slight trend of increasing flow

angle over the FSTI. This trend can be attributed to the slight reduction in corrected

speed during the runs, as seen from the operating point maps in Figure 6.5. An

explanation of why the flow angle would change in this manner with corrected speed will

be given when discussing the off design corrected speed runs later in this chapter. The

uncertainty bounds on each of the plots varies slightly, but all have values of

approximately ±0.250 about the calculated flow angle values throughout the FSTI.

Of all the characteristics mentioned above, that of the periodic fluctuations in the

measured flow angle is most worthy of note here. When discussing the operation of the

downstream translator in previous chapters, the existence of circumferential flow field
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non-uniformities due to NGV wakes was identified. By rotating circumferentially behind

the turbine stage, the translator allows for spatial resolution of the flow field through

these wakes. There are a total of 44 nozzle guide vanes in the turbine stage and the

downstream translator rotates at a constant speed of nearly 0.25 rps. Thus, during the

FSTI from 500-1000 ms, any instrumentation mounted on the rotating translator will pass

through 5.5 nozzle waves. This corresponds to a probe wake passing frequency of

approximately 11 Hz [9].

The PSD plots for Figure 6.13 through Figure 6.17 each resemble that shown

earlier in Figure 6.6. As mentioned earlier, the PSD function performed on the

previously filtered flow angle data yields a low frequency peak corresponding to

approximately 11 Hz. This is the same frequency at which the FAP is traversing through

the nozzle wakes while the downstream translator rotates circumferentially during the

test. Incidentally, one can also examine the flow angle plots above to see that

approximately 5.5 total cycles can be seen during the FSTI. This is evident in Figure

6.17, where the cycles can clearly be seen. Each of these cycles corresponds to the

translator moving the FAP through a complete NGV wake downstream of the rotor. The

choice of data sampling by the DAQ was indeed sufficient to resolve the passing of the

FAP through the nozzle wakes.

The circumferential non-uniformities in the measured flow angle behind the

turbine are a result of flow field variations. The flow velocity in the absolute reference

frame leaving a NGV and entering a turbine will be different inside and outside of the

nozzle wakes. This will in turn result in different rotor-relative inlet velocities depending

on the circumferential position with respect to the wakes. Different velocities entering

the rotor will result in variable flow turning through the rotor and in turn several distinct

exit flow angles in both the absolute and rotor-relative reference frames. It is this

circumferential variation in rotor exit tangential flow angle that is seen in the spatially-

resolved FAP data presented above. The fact that these fluctuations in measured flow

angle can be seen on the plots above is a testament to the need for a device such as the

translator when making aerodynamic measurements downstream of the turbine.
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6.6.3 Spatially-Averaged Measurements

In order to map the tangential flow angle with radial position it is best to examine

spatially-averaged run data for the design point corrected speed runs. Recall that five

different FAP radial positions were successfully employed at the design point corrected

speed. The sliding average performed on the data allows for the removal of the periodic

fluctuations that were discussed in the previous section. This enables an easier

comparison of data between test runs. The average tangential flow angle along with

stage corrected speed and stage pressure ratio are plotted below over the FSTI. Once

again, the tests are ordered by radial position from the translator ring as opposed to test

number.
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Figure 6.18: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
Run Time over FSTI, R=0.15 in., T225
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Figure 6.19: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
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Figure 6.21: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
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Figure 6.22: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
Run Time over FSTI, R=0.94 in., T229

Figure 6.18 through Figure 6.22 allow for a more direct comparison of average

flow angle and operating point characteristics over the FSTI. Note the very consistent

average flow angle measurements, showing only a slight increasing trend with test time,

as was mentioned previously. The choice of the sliding average time period seems to

adequately remove the periodic fluctuations, due to nozzle wakes, which were visible in

the spatially-resolved data. The spatially-averaged data is best presented in tabular

format over the pre-selected data-averaging window from 600-650 ms.
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Table 6.3: Design Operating Point Test Matrix

FAP Radial Position Average Nc, [% of Average Measured
Test from Translator Ring, design], (over t = Average PR, (over t Flow Angle, (over t

Number (in.) 600-650 ms) = 600-650 s) = 600-650 ms)
T225 0.15 100.55 2.07 37.45
T224 0.35 100.29 2.07 29.35
T222 0.54 100.61 2.07 20.89
T227 0.75 99.53 2.06 21.14
T229 0.94 101.23 2.07 26.06

Variations in average tangential flow angle with FAP radial position are clearly visible in

Table 6.3. The differences in the flow angles for the runs shown are significant in

comparison to the random uncertainty previously estimated for these spatially-averaged

values. The data presented in the table can be compared to one and other because of the

very small differences in the actual corrected speed and pressure ratio during the data-

averaging window used.

In order to show how the average turbine exit tangential flow angle varies with

annular radial position a plot can be constructed from the data in Table 6.3. Figure 6.23

is a plot of the average flow angle values with normalized radial position of the FAP.

The radial positions quoted in the table have been normalized by the height of the

annulus, 1.176 in., as determined from facility drawings. An additional point at a FAP

radial position of 1.075 in. from the translator ring is also included with relatively large

error bounds, and is denoted by a different symbol. This supplementary data point is

from the data of test T231, which as mentioned earlier could not be considered as reliable

as the other runs because the data exceeded the range over which the calibration of the

FAP had been performed. However, the point is included to offer a rough estimation of

where the average flow angle value might lie at this extreme radial position.
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Figure 6.23: Average Turbine Tangential Flow Angle with Normalized Flow Angle Probe Radial
Position at Design Operating Point, (t = 600-650 ms)

A scaled schematic of the end of the FAP head is also included in Figure 6.23 above.

This offers an appreciation of the size of the instrument with respect to the annular height

at the turbine exit. Flow angle data closer to the tip region would be useful in giving a

complete picture of the physical situation. However, difficulties are expected as the

probe is moved closer to the tip of the annulus because the probe head will likely pose

more interference to the unique flow phenomena that occur in the tip region. Spatially-

averaged flow angle data from the design point condition has offered insight into the

spatial variations of the exit flow field in the test apparatus.
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6.7 High Corrected Speed Results

Off-design operating point flow angle measurements were also obtained in this

test series by running some tests at high corrected speed settings. Tests at three of the

FAP radial positions used were carried out again with corrected speeds intended to be

close to 105 %. For these tests, the pressure ratio was to remain constant at the design

point value. Examining these turbine test runs can give insight into how the flow angle

changes with corrected speed.

6.7.1 Spatially-Resolved Measurements

The spatially-resolved data from the high corrected speed test runs can be

presented in the same fashion as for the design point runs. The operating point maps for

each of these runs over the FSTI are included in Figure 6.5. A general comparison of the

similarity of the test conditions for each of the runs can be made from this plot.

Spatially-resolved flow angle data with uncertainty bounds over the FSTI are included

below in Figure 6.24 through Figure 6.26. The data is presented in order of FAP radial

position. Note that only three of the five radial positions that were presented in the

previous section are included here at the high corrected speed condition.
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Figure 6.24: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.15 in., T226
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Figure 6.25: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=-0.75 in., T228
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Figure 6.26: Flow Angle Measurement and Uncertainty Bounds with Run Time, R=0.94 in., T230

All of the spatially-resolved data plots included above have similar characteristics

to those presented earlier for the design operating point runs. The periodic fluctuations at

approximately 11 Hz are clearly visible. This is the most important feature that was

evident in the spatially-resolved data presented. If these plots are compared to those

created for their counterparts with identical FAP radial positions, a common discrepancy

also begins to be revealed. After examining the spatially-resolved data shown here, the

high corrected speed runs seem to consistently have a slightly lower average flow angle

value than the design operating point runs. It will be much easier to see this trend when

examining and comparing spatially-averaged data in the next section. The rational

behind this occurring during these tests will also be addressed in subsequent sections.
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6.7.2 Spatially-Averaged Measurements

In order to better grasp trends in the experimental data that occur at high corrected

speed settings, spatially-averaged data can be examined. Plots of the average tangential

flow angle and stage operating characteristics over the FSTI are included below, as

Figure 6.27 through Figure 6.29, for each of the three radial positions examined.
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Figure 6.29: Spatially-Averaged Flow Angle, Stage Corrected Speed, and Stage Pressure Ratio with
Run Time over FSTI, R=0.94 in., T230

As was noted with the spatially-resolved data, these tests tend to have a slightly lower

average flow angle as compared to those carried out at the design operating point

settings. In order to gain a better appreciation of this, a table of this data over the

averaging window of 600-650 ms is included below.

Table 6.4: High Corrected Speed Operating Point Test Matrix

Test FAP Radial Position Average Ne, [% of Average PR, (over t Average Measured

Number from Translator Ring, design], (over t = 600-650 ms) Flow Angle, (over t
(in.) 600-650 ms) =_600-650 ms)

T226 0.15 104.69 2.09 35.70
T228 0.75 104.01 2.09 19.02
T230 0.94 104.74 2.09 24.10

The data listed above shows that all of the three runs were carried out at nearly identical

operating point conditions. The intended corrected speed setting was 105 %, which was

very closely met for each test. The spatially-averaged data displayed in Table 6.4 can be
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compared to that included in Table 6.3 to see that each of the high corrected speed tests

gives an average measured tangential flow angle that is approximately 20 less than its

design point counter part. This difference is indeed significant when compared to

estimated random uncertainty of +0.25' in the average flow angle values.

The difference in average flow angle between the design and high corrected speed

runs can be explained by examining the velocity triangles at the rotor exit. An increase in

the corrected speed of the stage results in an increased rotor mechanical speed,

represented by (or). The two schematics included in Figure 6.30 show how an increase

in mechanical rotor speed from (wr)Design to (O)r)High affects the relative and absolute

tangential exit flow angles, 9 and 9' respectively, from the rotor.

Inlet Flow

Nozzle Guide Vanes

(Wr) Rotor

Absolute Exit Rotor Relative Exit
Velocity " Velocity

0 0' 0 0 '

(or)DeHgn

Figure 6.30: Rotor Exit Velocity Triangles for Design (left) and High (right) Mechanical Speed
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It is clear that increasing the rotor mechanical speed serves to shallow the exit flow angle

in both the absolute and relative frames of reference. This serves to explain the trend

observed in the experimental results above. The schematic shown above also explains

why a general increasing trend in flow angle was observed over all test runs as mentioned

earlier. As the corrected speed decreases slightly over the FSTI, the flow angle will

increase slightly.

Because only three FAP radial positions were included in the high corrected speed

runs a complete radial map of the average flow angle cannot be made. However, the data

that is available can be added to that displayed in Figure 6.23 to create a second such plot

showing both the design and high corrected speed runs together in Figure 6.31. Once

again, an additional data point for the radial location at 1.075 in. from the translator ring

is included. This data comes from test T232, which is complimentary to test T231

included in Figure 6.23 as a supplementary data point. Once again, these extra points are

only included to offer a rough estimation of the average flow angle at this location.
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Figure 6.31: Average Turbine Tangential Flow Angle with Normalized Flow Angle Probe Radial
Position at Design Operating Point and High Corrected Speed, (t = 600-650 ms)

Figure 6.31 illustrates that the high corrected speed average flow angle data lags that of

the design point slightly. This is also the case for the additional test runs closest to the tip

radius, which can only be displayed with estimated values of flow angle and random

uncertainty. The plot suggests that the observed trend may exist over the entire annular

height, however further experimental tests would be required to support such a claim.

6.8 Summary

Both spatially-resolved and spatially-averaged turbine exit tangential flow angle

results over the FSTI have been presented in this chapter. An uncertainty analysis was

also performed to provide error bounds for the measurements taken. Spatially-averaged

data was examined and periodic fluctuations due to NGV wake passing were clearly
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evident at a frequency of approximately 11 Hz, which is concurrent with the downstream

translator operating parameters. Results for tests conducted at the design operating

corrected speed and pressure ratio were given for five different FAP radial positions from

the translator ring. Using a sliding average based on the observed period fluctuations in

the data, spatially-averaged data was produced over the FSTI. The test period of 600-650

ms was chosen as a time comparison window for spatially-averaged data. Plots of flow

angle with radial position were created to provide a rough map of the measured quantity.

Results of tests conducted a high stage corrected speed were also examined. Increasing

the stage corrected speed resulted in a reduction in tangential flow angle, as would be

expected from an examination of velocity triangles. Better radial spatial resolution of

flow angle data would be useful to augment these efforts.

143



144



Chapter 7: Conclusions and Recommendations

7.1 Review of Objectives

As discussed in Chapter 1, the primary objectives of this research effort involved

developing instrumentation capable of aerodynamic and thermal performance

measurements in a short-duration facility, and collecting experimental data of rotor exit

flow angle in the turbine. More specifically, the objectives included:

1) The design and fabrication of an instrument capable of measuring the

tangential flow angle in a short-duration test facility with adequate sensitivity and

frequency response to resolve spatial flow characteristics associated with

circumferential surveys

2) The calibration of the flow angle measuring device in a separate wind tunnel

to allow for the experimental determination of flow angle from raw pressure

measurements

3) The integration of the flow angle instrument into the existing downstream

translator of the turbine test section with the provision varying the radial height of

the probe once installed

4) The measurement of tangential flow angle downstream of the turbine rotor in

the test section

5) The design of multi-layer, thin-film heat flux gauges capable of measuring

heat transfer rates to turbine blades with sufficient frequency response

6) The development of new fabrication techniques for reliably manufacturing

multi-layer, thin-film heat flux gauges
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7.2 Summary of Work

An experimental study of the rotor exit flow angle of a fully scaled turbine stage

was conducted. The flow angle was derived from three surface pressure measurements

on a hemispherical-nosed flow angle probe (FAP). In addition to the filtered spatially-

resolved data, spatially-averaged flow angle measurements were computed to determine

the effect of varying the probe's radial position on the tangential flow angle.

The experimental tests were conducted in the MIT Blowdown Turbine Facility

using a film-cooled turbine stage. The facility is a short-duration experimental apparatus

capable of testing turbine stages under fully scaled conditions, producing useful data for

comparison over a time period of approximately 500 ms for each test run. The FAP was

designed to have sufficient frequency response to resolve certain unsteady characteristics

in the turbine flow field. Prior to introducing the FAP into the turbine test section, a

detailed calibration was carried out in order to relate measured surface static pressures to

tangential flow angles via a non-dimensional pressure parameter. A detailed uncertainty

analysis of the calibration was the beginning of a comprehensive error propagation

procedure employed with test data.

Turbine tests were carried out at several FAP radial positions at the design

operating point of the turbine stage. This allowed for radial mapping of the

circumferential spatially-averaged flow angle measurements. In addition, some turbine

test runs were carried out a high corrected speed operating conditions. Spatially-resolved

results were taken to measure flow angle variations through nozzle guide vane (NGV)

wakes. Periodic fluctuations observed in the measured flow angle with run time

confirmed the expected variations through the NGV wakes. These fluctuations, which

were observed to occur with a frequency of approximately 11 Hz, were due to the FAP

passing the NGV wakes since the FAP was mounted on a rotating downstream translator

for the turbine tests. High corrected speed test runs consistently showed lower spatially-

averaged flow angle values than their corresponding design point tests. This is explained

by the difference in rotor mechanical speed between these runs.

In addition, the design, development, and fabrication of multi-layer, thin-film heat

flux gauges was a portion of this research work. These heat transfer gauges consisted of
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thin nickel temperature sensors on either side of 25 ptm thick polyimide (Kapton*) film.

The fabrication of these gauges with the desired gauge geometry and material

composition employed techniques including electroless nickel deposition,

photomachining using an excimer laser, and electrolytic copper plating.

7.3 Recommendations for Future Studies

Several recommendations can be made to build and improve on the results

reported in this thesis. Additional experimental testing can be carried out to duplicate all

of the tests performed at the design operating point and at the high corrected speed

condition. This would allow one to observe whether the trend of a slightly lower average

flow angle with higher corrected speed holds for the remaining radial locations.

It would also be very useful to obtain flow angle data with the probe positioned at

several locations close to the tip of the flow annulus. This would help to give a more

complete map of the spatially-averaged flow angle with FAP radial position, which

makes for easier comparison with theoretical calculations. In the short-term this would

require merely running more test at several radial positions, but in the long-term it might

require the design and fabrication of an even smaller FAP, if possible.

Additional testing could also be carried out to determine the effect of various

other changes in operating conditions on the tangential flow angle at the rotor exit. This

could include further varying the stage corrected speed and stage pressure ratio, or even

performing experiments with different turbine tip gaps between the rotor and the tip

casing.

In terms of the multi-layer, thin-film heat flux gauges, there is still a significant

amount of future work to be performed in order to implement them in experimental

testing. Practice is required in mounting these gauges to a metal test sample. This could

be incorporated in calibrating the gauges with the data acquisition (DAQ) system to be

used. The gauges then have to be mounted to the actual test blades prior to testing,

including special wiring provisions if rotor blades are to be instrumented.
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Appendix A: Heat Flux Gauge Fabrication Procedure

A.1 Cleaning of Substrate Material

1) Cut a 7.5 in. by 5.5 in. piece of 25 pm thick Kapton* Type HN polyimide film and

mount in plexiglass frame.

2) Mount plexiglass frame on top of metal jig and carefully cut two sets of 32 through

holes in the polyimide film using a fine scalpel blade.

3) Running water rinse, 1 min. (with hose).

4) Cleaner/Conditioner 111 0A solution, 5 min. with agitation (TI110A =165-170 *F).

5) Running water rinse, 5 min. (with hose).

6) Deionized water rinse.

7) KOH etch solution, 12 min.

8) Running water rinse, 5 min. (with hose).

9) Deionized water rinse.

10) Cleaner/Conditioner 1110 A solution, 5 min. with agitation (T 1 10A =165-170 'F).

11) Running water rinse, 5 min. (with hose).

12) Deionized water rinse.

13) HCl solution, 1 min.

14) Two beaker static rinse baths, 2 min. in each beaker.

15) Deionized water rinse.

16) Oven dry, approximately 140 'F for 60 min.
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A.2 Electroless Nickel Plating

1) Cut cleaned polyimide sample into two separate pieces, each with 32 through holes.

Mount sample in plastic tweezers.

2) Deionized water rinse.

3) Cleaner/Conditioner 11 I0A solution, 5 min. with agitation (T I 1OA = 165-170 *F).

4) Two beaker static rinse baths, 2 min. in each beaker.

5) Deionized water rinse.

6) HCl solution, 1 min.

7) Catalyst-9F solution, 2 min.

8) Two beaker static rinse baths, 2 min. in each beaker. Change position of plastic

tweezers in between the two rinse steps.

9) Deionized water rinse.

10) Accelerator-19 solution, 30 sec.

11) Single beaker static rinse, 2 min.

12) Deionized water rinse.

13) PM-980 nickel plating solution, 6 min. (TpM.9s0= 25 'C, pH = 8.3-8.4). Use NH 40H

to adjust pH to proper level.

14) Deionized water rinse.

15) Hang from tweezers to dry at room temperature, 2 hours.

16) Rinse in ethanol.

17) Static soak in deionized water.

18) Hang from tweezers to dry at room temperature, 2 hours.

A.3 Electrolytic Plating of Gauge Leads

1) Following photomachining, apply small amount Shipley 1805 Photoresist to one side

of gauge sensor heads using soft solder piece. Use just enough resist to cover the

sensors.

2) Oven bake, approximately 115 'F for 60 min.
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3) Apply small amount of Shipley 1805 Photoresist to gauge sensor heads on reverse

side of gauge. Use just enough resist to cover gauge sensors.

4) Oven bake, approximately 115 'F for 60 min.

5) Mount polyimide sample in small plexiglass frame. Replace copper wire in the

groove of the frame. Replace copper tape on other side of frame to complete

conductivity.

6) Cut two copper anodes, each 0.75 times the surface area of the polyimide sample.

Drill small hole in each anode and attach copper wire.

7) Suspend sample and anode in plating bath solution and connect external DC power

source to copper wires. Pass 15 mA/in.2 DC cathode current density for 220 s.

Ensure that anodes are evenly spaced from cathode, and agitate solution.

8) Remove plated sample from frame and rinse in deionized water.

9) Hang from tweezers to dry at room temperature, 2 hours.

10) Static soak in ethanol until resist is removed. This step should not require and

physical manipulation of the sample.

11) Hang from tweezers to dry at room temperature, 2 hours.

A.4 Chemical Compositions

Cleaner/Conditioner 1110A Solution

Deionized Water 95 % by volume
Shipley Cleaner/Conditioner 111 OA 5 % by volume

KOH Etch Solution

Deionized Water 17 % by volume
Ethanol 83 % by volume
Potassium Hydroxide, KOH, pellets 56.1 g/L of solution

HCl Solution

Deionized Water 75 % by volume
Hydrochloric Acid 25 % by volume
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Catalyst-9F Solution

Deionized Water
Hydrochloric Acid
Shipley Catalyst-9F

Accelerator-19 Solution

Deionized Water
Shipley Accelerator- 19

40 % by volume
40 % by volume
20 % by volume

83.3 % by volume
17.7 % by volume

PM-980 Nickel Plating Solution

Deionized Water
Shipley PM-980
Adjust pH using NH 40H

Copper Electrolytic Plating Solution

Copper (II) sulphate petahydrate, CuSO4-5H20
Sodium pyrophosphate decahydrate, Na4P207-10H 2 0
Disodium hydrogen phosphate, Na2HPO4

86 % by volume
14 % by volume

30 g/L
120 g/L
36 g/L
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