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ABSTRACT

A software simulator for the SPHERES formation flight testbed, the GFLOPS SPHERES
Simulator (GSS), has been developed. The Synchronized Position, Hold, Engage, and
Reorient Experimental Satellites (SPHERES) testbed consists of three miniature space-
craft (or SPHERES), each with their own power, avionics, navigation, communications,
and propulsion. These spacecraft will operate inside the International Space Station to test
formation flying, autonomy, and autonomous rendezvous and docking algorithms. The
GSS runs on the Generalized FLight Operations Processing Simulator (GFLOPS), a real-
time embedded hardware testbed for the simulation of distributed space systems.
SPHERES flight code can be run in the simulator to test the performance of guest investi-
gator algorithms. The simulator models the characteristics of SPHERES hardware,
including thrusters and metrology sensors, and simulates the dynamics of the spacecraft.
Features include the ability to simulate SPHERE-SPHERE and SPHERE-wall collisions,
as well as docking between SPHERES. A 3-D viewer allows users to monitor the motion
of SPHERES within the test space and log the results for later playback. A command win-
dow allows users to view telemetry from the units and send them commands. Methods of
measuring flight code processor utilization are discussed. Results are presented from sam-
ple simulations that demonstrate the capabilities of the simulator. Simulations include a
leader-follower control architecture, a SPHERE-SPHERE collision, passive docking, and
cooperative docking. Suggestions are given for future improvements to the simulator.

Thesis Supervisor:
Dr. Raymond J. Sedwick
Dept. of Aeronautics and Astronautics
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The GFLOPS SPHERES Simulator is best introduced by selected lyrics from the great
Canadian rock group Rush. Clearly, these visionaries foresaw the GFLOPS SPHERES
Simulator a long time ago, but chose to speak about it only in riddles.

1. Introduction
Cygnus X-1: Book One - The Voyage (Verses I and II)
From A Farewell to Kings (@ Core Music Publising, 1977)

I.
Invisible
To telescopic eye
Infinity
The star that would not die
All who dare
To cross her course
Are swallowed by
A fearsome force
Through the void
To be destroyed
Or is there something more?
Atomized - at the core
Ot through the Astral Door -
To soar...

II.

The x-ray is her siren song
My ship cannot resist her long
Nearer to my deadly goal
Until the Black Hole -
Gains control....

2. GFLOPS
The Body Electric
From Grace Under Pressure (@ Core Music Publising, 1984)

1-0-0-1-0-0-1
S.O.S.
1-0-0-1-0-0-1
In distress
1-0-0-1-0-0

Memory banks unloading
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Bytes breaking into bits
Unit one's in trouble
And it's scared out of its wits

3. SPHERES
Cygnus X-1: Book II - Hemispheres (Verse VI: The Sphere A Kind of Dream)
From Hemispheres (@ Core Music Publising, 1978)

We can walk our road together
If our goals are all the same
We can run alone and free
If we pursue a different aim

Let the truth of Love be lighted
Let the love of Truth shine clear
Sensibility
Armed with sense and liberty
With the Heart and Mind united
In a single perfect sphere

4. Simulator Architecture and Modules
The Twilight Zone
From 2112 (@ Core Music Publising, 1976)

You have entered the twilight zone
Beyond this world strange things are known
Use the key, unlock the door
See what your fate might have in store
Come explore your dream's creation
Enter this world of imagination...

5. Simulation Results
Prime Mover
From Hold Your Fire (@ Core Music Publising, 1987)

I set the wheels in motion
turn up all the machines
activate the programs
and run behind the scenes
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I set the clouds in motion
turn up light and sound
activate the window
and watch the world go' round -

anything can happen

6. Conclusions
Mission
From Hold Your Fire (@ Core Music Publising, 1987)

Hold your fire -
Keep it burning bright
Hold the flame
'til the dream ignites -

A spirit with a vision
is a dream with a mission

Spirits fly on dangerous missions
Imaginations on fire
Focused high on soaring ambitions
Consumed in a single desire

In the grip of
a nameless possession -
A slave to the drive of obsession -
A spirit with a vision
is a dream with a mission...

We each pay a fabulous price
for our visions of paradise
But a spirit with a vision
is a dream with a mission...

Andrew D.B. Radcliffe
'Armchair Rocket Scientist"
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Chapter 1

INTRODUCTION

1.1 Motivation

A new class of satellite system architecture is being envisioned and designed that is funda-

mentally different from all previous ones. It involves clusters of co-orbiting satellites that

work together to attain their desired objectives. This type of mission architecture is

known as a distributed satellite system (DSS). Often in a distributed satellite system, the

spacecraft must maintain precise relative positions with respect to each other in order to

achieve the desired mission performance. Furthermore, it is easy to envision scenarios

where they would have to perform a maneuver to reconfigure the shape or size of the clus-

ter to respond to changing conditions or objectives. The acts of maintaining and reconfig-

uring constellation size or shape are collectively referred to as formation flying.

This is in stark contrast to the way that satellites operate today, where one large, mono-

lithic satellite usually fulfills the entire mission. Even if the satellite is part of a larger con-

stellation, such as a communications constellation, it is not orbiting in close proximity (ie.

on the order of a kilometer) with these other satellites, nor is it trying to maintain a precise

relative position with these other spacecraft.

Formation flying, and a closely related area, autonomous rendezvous and docking

between satellites, bring with them many inherent challenges and risks. This is true when

any untested and unproven technology is applied to space systems. The situation is exac-

17



18 INTRODUCTION

erbated for formation flying and docking, because the control algorithms being developed

for DSS, and the collaboration between spacecraft that will be necessary, are far more

complex than anything that has been done in these areas in the past. Moreover, the conse-

quences of failure for these technologies are great, since failure could result in collsions

between multi-million dollar satellites that could render them useless.

It is easy to see that a means of mitigating the risks associated with DSS, by allowing the

required technologies to be tested prior to deployment, would be invaluable. The Syn-

chronized Position, Hold, Engage, and Reorient Experimental Satellites (SPHERES) test-

bed, in development at the MIT Space Systems Laboratory (SSL) and Payload Systems

Incorporated (PSI), will provide this capability [Miller, 2002; Otero, 2000]. SPHERES

consists of 3 miniature satellites (or SPHERES) of about 0.2 m diameter, that will operate

inside the International Space Station (ISS). With these, it will be possible to test the types

of algorithms needed for formation flying, autonomy, and rendezvous and docking, in a

low-risk manner.

The value of the SPHERES testbed comes from the opportunity that it provides for exter-

nal guest scientists to test their own algorithms on the system. This allows experts in the

fields of formation flying, or rendezvous and docking, to verify their research on an actual

system. There will be 24 hours of experiment time available on ISS for the SPHERES

system, spread over the course of several months. It could take the form of twelve two-

hour sessions, eight three-hour sessions, or six four-hour sessions and will incorporate

tests from a number of different researchers from various organizations such as Draper

Laboratories and NASA Goddard Space Flight Center. Although there will be ample time

between tests to analyze results and make changes to the code running on the satellites, the

actual experiment time is very valuable and cannot be wasted by testing code that contains

bugs.

Clearly, given the limited experiment time allotted to SPHERES on ISS, the software that

will run on the satellites needs to be extensively verified before hand. The best way to
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verify software is to run it in a hardware-in-the-loop simulator. However, a limiting factor

with space systems is that it is impossible to duplicate long-term zero-gravity on Earth.

Therefore, there will always be certain types of algorithms that cannot be fully tested in a

hardware-in-the-loop simulator. A solution is to employ a software simulator that allows

actual flight code to be compiled into the simulator and tested in a simulated zero-gravity

environment. The GFLOPS SPHERES Simulator (GSS) provides just this capability. It

can run actual SPHERES flight code, while simulating the dynamics of the SPHERES

units and the characteristics of their sensors and actuators.

The GFLOPS SPHERES Simulator is the subject of this thesis. This chapter first

describes the objectives that were set out for the GSS. It then provides some background

on envisioned DSS missions, in order to acquaint the reader with the application area for

formation flying and docking algorithms. Further background on the SPHERES testbed,

including other methods for pre-flight testing of SPHERES flight software, follows.

Finally, an outline of the rest of the thesis is given.

1.2 Objectives

The idea for the GSS was conceived out of the need for a simulator that could test

SPHERES algorithms designed for a zero-gravity, six degrees of freedom (DOF) environ-

ment. The characteristics of thrusters and sensors had to be modeled correctly, and the

dynamics of the system had to be accurately represented. In addition, because rendezvous

and docking would be investigated with the SPHERES testbed, the simulator needed to be

able to seamlessly handle docking between units. The GSS was not seen as a tool for the

initial development of algorithms. This is more likely to be done using a tool more ame-

nable to rapid prototyping, such as MATLAB. The simulator was geared towards ensur-

ing that the algorithm's implementation in the flight code is correct and efficient. It was

also tasked with correctly representing the timing in the flight software and in the interac-

tion of the units with other elements of the system (such as metrology beacons). To sup-

port these goals, it was deemed necessary to be able to load actual flight code into the
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simulator, with as few changes as possible. In order to investigate the resource usage of

algorithms, a goal was set of being able to measure their CPU utilization, as well as their

memory usage. Ways were also needed to visualize and interpret the results of simula-

tions. State histories for the units in the simulation would be needed, and a virtual 3-D

viewer that showed the motion of satellites in the test space was desired as well.

1.3 Distributed Satellite Systems

Now that distributed satellite systems have been introduced, this section will explain some

of the reasons why they are considered such a promising mission architecture. Some

examples of planned DSS missions will also be presented.

1.3.1 Satellite Clusters

Some missions can benefit from, or can only be accomplished by, one or several clusters

of satellites. A satellite cluster consists of several satellites flying in fairly close proximity

(for example, a cluster with a 1 km radius), possibly with a high level of inter-satellite syn-

chronization and communication, with payload and processing shared among the space-

craft. These satellites are usually required to maintain precise relative positions.

Perhaps the best example of formation flying satellite systems is separated spacecraft

interferometers (SSI). Interferometry is the process by which electromagnetic waves from

two or more apertures are combined, or interfered, to obtain an image that has better reso-

lution than that obtained from any of the apertures in isolation. An SSI consists of two or

more imaging satellites that are separated in space, yielding the same angular resolution as

would be available from one large aperture with a diameter equal to the baseline between

the satellites. For resolutions that require a baseline of up to a kilometer, it is clear that

this cannot be accomplished by a single spacecraft, since raising such a spacecraft into

orbit would not be technically feasible. Because of the precise optical pathlengths that

must be maintained in SSIs, precise position and attitude control is required.
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1.3.2 Benefits of Distribution

Besides the fact that they can enable missions that would otherwise be impossible, there

are several other compelling benefits to using satellite clusters to perform a mission

[AFRL, 2002]. The distributed architecture makes it less vulnerable to failure. As long as

the cluster is designed to avoid single-point failures, by distributing critical functions

across the cluster, the mission can still survive if one or more satellites cease functioning,

although the overall performance will likely decrease. This graceful degradation, and the

possibility to reconfigure the cluster upon failures, greatly increases reliability. Adaptabil-

ity is also improved by allowing for the possibility of launching additional satellites, per-

haps with new instruments, that can interoperate with the existing spacecraft. In this way,

future technical advances can be incorporated cheaply instead of having to redesign the

entire system, and the cluster can be upgraded easily over time. Even with an existing

cluster, we can modify the cluster geometry to obtain different performance. This is par-

ticularly beneficial for imaging missions. Furthermore, manufacturing cost is decreased

because of the savings brought about by mass producing several similar satellites.

1.3.3 Future DSS missions

Several DSS missions are planned over the next decade. Some are merely in the planning

stage, while others are already in development. Some of these missions will now be dis-

cussed.

Starlight

Starlight is a NASA mission being developed at the Jet Propulsion Laboratory (JPL), with

a proposed launch date of July 2006 [JPLA, 2002]. Starlight will serve to develop and test

several new technologies and will be a precursor to future NASA missions. It will be the

first spaceborne stellar interferometer and will consist of two telescopes on two spacecraft

that will be separated by a distance of 40 - 600 m. The satellites will be required to main-

tain their separation to within less than 1cm and their angular bearing to within 3arcmin.

The formation flying for this mission will take the form of a master/slave scenario, where
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the slave, the smaller "collector" spacecraft will adjust its position and attitude in response

to the motion of the larger "combiner" spacecraft. Autonomous formation flying will be

tested and specific stars will be imaged. Figure 1.1 shows the two Starlight spacecraft in

Figure 1.1 Starlight mission.

operation.

Terrestrial Planet Finder

Terrestrial Planet Finder (TPF) will take the process of imaging planets even further. It

will study many characteristics of planets as far away as 50 light years, including their

chemistry, in order to determine which planets have the right chemistry to support life.

This will consist of measuring the relative amounts of gases such as carbon dioxide, water

vapour, ozone and methane. TPF will also study how planets form from disk material

around new stars. These goals will require four telescopes of 3.5 m diameter, with a base-

line of 75 - 1000 m [JPLB, 2002], as depicted in Figure 1.2.

TechSat 21.

The United States Air Force is developing a distributed sparse aperture radar system for

ground and air moving target indication (GMTI/AMTI) known as TechSat 21 [AFRL,

2002]. As can be seen from Figure 1.3, this system will be Earth-looking, in contrast to

the systems described so far that peer into space. A flight experiment with three space-

craft is projected for 2004, while a much more extensive operational system will follow in
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Figure 1.2 Terrestrial Planet Finder.

Figure 1.3 TechSat 21.

the future. TechSat 21 will feature extensive inter-satellite communication and complex

formation flying. Because the clusters will be orbiting around the Earth, instead of resid-

ing far away from Earth like the previous systems described, it will have to counter the

gravitational disturbances caused by the fact that the Earth is not a perfect sphere. Also,

because TechSat 21 will be multi-mission capable, the cluster will have to be able to resize

itself efficiently to adapt to different mission scenarios

Orbital Express

Another scenario that is being considered for the future is that of satellites that can rendez-

vous and dock autonomously. This could allow for the possibility of on-orbit refueling as

satellites run out of propellant, and for hardware reconfiguration of satellites by switching
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out the components of a satellite. One possibility is to have a robotic vehicle that moves

between orbiting fuel depots and the satellites that it services. The Defense Advanced

Research Projects Agency (DARPA) has envisioned such a system, known as an Autono-

mous Space Transporter and Robotic Orbiter (ASTRO) [DARPA, 2002]. Its Orbital

Express Space Operations Architecture program will seek to demonstrate these capabili-

ties with prototype technologies by 2004 and a working system by 2010.

1.4 SPHERES

1.4.1 Project Description

The SPHERES testbed will allow for cost-effective testing of algorithms for formation

flying, autonomy, and rendezvous and docking. The 3 miniature satellites that make up

the testbed each have their own power, on-board computer, navigation, propulsion and

communications. Therefore, they will be able to move around the ISS, calculate their

Thruster ~X
Ultrasonic
receivers

CO2 tank

Pressure Adjustable
gauge regulator

Satellite+
body axes

Figure 1.4 Computer-generated view of SPHERE.'

1. Reproduced from GSP Interface Document [HilstadA, 2002].
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positions and orientations, execute control algorithms, and send commands or telemetry to

each other. Figure 1.4 shows a computer generated view of a SPHERE. Other compo-

nents of the system include a laptop for user interaction with the satellites, and five ultra-

sound transmitter beacons that are placed around the test space. The beacons allow for

state determination based on the ranges between each beacon and a number of ultrasound

receivers onboard the satellites. The satellites are designed to eventually operate semi-

autonomously in the zero-gravity environment inside the International Space Station. The

operational environment will roughly take the form of a cube with side length of six feet,

although operation in a space of up to 10' x 10' x 10'is possible. Figure 1.5 depicts a typi-

cal test session. Commands are uploaded to the satellites wirelessly from a laptop, and the

Each satellite calculates

r pocol/commands psition from PADS

via wireless link transmitter

ISS Laptop

Performs formation
flying maneuver

Uplink protocols
from ground prior Control Loop
to SPHERES ops

Data Acquisition

ISS Laptop

Downlink experiment
data to ground after
SPHERES ops

Figure 1.5 Typical Spheres Test Session.

1. Reproduced from SPHERES CDR presentation, Feb. 15, 2002 [Miller, 2002].

satellites, which are able to determine their own position and orientation, fire appropriate

thrusters to maintain some formation flying configuration, or perform some maneuver.
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All the while, the satellites communicate with each other wirelessly, and send state and

debug data to the laptop. This data can then be sent back down to Earth after the test ses-

sion. Interaction by astronauts will consist of starting each test by arranging the

SPHERES and turning them on, sending commands from the laptop, and replenishing

consumables (batteries and propellant).

The SPHERES project began as a three-term project design course for undergraduates in

the Department of Aeronautics and Astronautics at MIT in 1998 and was transferred to

graduate students once the course was over and the prototype hardware had been built and

its operational capabilities verified. Since that time, graduate student researchers have

been refining the control, communication, and metrology algorithms used in the system.

Now, PSI is designing and building an improved set of hardware for the operational sys-

tem to be used on ISS. SPHERES will allow high-risk algorithms to be tested, verified

and improved before implementing them on complex satellites that cost tens or hundreds

of millions of dollars.

1.4.2 Testing Environments

The SPHERES software and hardware needs to be extensively verified prior to its use on

ISS. Besides the GSS, there are several other ways of doing this, each with its advantages

and disadvantages. These verification environments will now be discussed.

Three DOF Air Table

MIT SSL has an air-table setup that allows for 3 degrees of freedom (DOF) testing of the

SPHERES units. To operate on the table, the SPHERE is placed on a carriage that has

three air pucks on the bottom, arranged in an equilateral triangle. Three canisters of com-

pressed CO2 or, alternatively, a flexible hose providing compressed air, create a layer of

gas between the air pucks and the table, allowing for nearly frictionless translation and

rotation. In this way, the SPHERE is allowed to translate in two directions along the 1.25

m x 1.25 m glass surface, and rotate around one axis. This is an inexpensive way to test

SPHERES hardware as well as simple algorithms that do not depend on full 6 DOF
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motion. A SPHERES unit can also be hung by a string above the table to verify correct

state determination in three dimensions. The air table testing environment is accessible at

all times by the MIT SPHERES team, allowing for iterative development, with immediate

testing and verification of new code. However, with only 3 DOF, it is not possible to test

more complex algorithms. There are also some disturbances present in this setup that are

not expected in the ISS operational environment. Imperfections in the table surface and

build-up of material on the surface cause friction, while misalignment of the surface nor-

mal with the gravity vector causes a constant drift.

Johnson Space Center Reduced Gravity Program

Another testing environment that has been used is the Reduced Gravity Program at

NASA's Johnson Space Center in Houston, Texas. This program utilizes a specially mod-

ified KC-135A turbojet transport (similar to a Boeing 707) performing parabolic arcs to

create 20 - 25 second weightless periods. A typical flight lasts for 2 - 3 hours and consists

of 30 - 40 parabolas. Figure 1.6 shows the gravity experienced at different points in a typ-

ical parabolic maneuver. Further information can be obtained from the JSC Reduced

Gravity Program website [JSC, 2002]. These flights allow for verification of the opera-

tion of hardware in micro-g, as well as investigation of the performance of algorithms in 6

DOF. However, the fact that each weightless period lasts for only 25 seconds limits the

length of the tests that can be performed. Also, turbulence affects the relative motion of

the SPHERES inside the frame of reference, and since the nose of the plane goes from

pointing up 450 to pointing down 450 during the weightless period, the frame of reference

rotates 900 during this time. These effects limit the fidelity of tests that can be performed

in the KC-135. Another troublesome factor is that team members in close proximity to the

SPHERE who are helping to perform tests affect the measurements used by the SPHERE

to sense its position and attitude. As will be explained later, these measurements rely on

ultrasound pulses that propagate to the SPHERE from transmitter beacons placed inside

the test environment. Blockage of these waves by team members affects the results of

experiments. This problem will be less severe on the ISS since the continuous zero-grav-



INTRODUCTION

32En

.7

29000.

460 Nose Ho

3W0 nsj0

i1Bg

~' I

Zero-g

Figure 1.6 Gravity experienced during parabolic maneuver by KC- 135.

ity will mean that astronauts will not have to be in close proximity to catch the SPHERES

units every 25 s. But the most significant factor affecting the usefulness of the Reduced

Gravity Program is that flights by the SPHERES team occur only a few times a year.

Therefore, the limited availability of this test environment means that it cannot be used for

regular and/or unexpected testing and verification of SPHERES software. It is primarily

useful for validation of hardware.

1.4.3 Software Simulators

Since the SPHERES hardware is not likely to change after the new hardware is intro-

duced, the above testing environments are adequate for verifying the operation of hard-

ware. Some portions of the software are likely to remain static as well. However, many

critical software functions, such as control algorithms, will be modified regularly, and will

even be switched with completely new code. This is unavoidable due to the nature of the

guest scientist program, which is designed to let separate investigators test independent

algorithms that they design. We have seen that the above two test environments are not
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adequate for validating SPHERES code. The ig testbed can only test the 3 DOF perfor-

mance of algorithms, while the KC-135 test environment is plagued by limited flights and

other problems. Clearly, there is a need for the capability to test code developed for the

testbed on a regular basis, in a manner that closely represents the characteristics of the ISS

operating environment. Since there is no feasible way of simulating a zero-g environment

with the real hardware (other than on the KC-135), then a software simulator is the only

way to fully test code developed for SPHERES. A software simulator can easily simulate

a zero-g environment and is highly accessible for testing. The SPHERES Guest Scientist

Program (GSP) provides two software simulators for guest investigators.

GSP Simulation

The GSP simulation, developed by Mark Hilstad, is intended to aid initial code develop-

ment by guest scientists. It is described in detail in the SPHERES GSP Interface [Hil-

stadA, 2002]. It includes the ANSI C source code files that make up the SPHERES

software framework, into which the investigator's algorithms are added. The only change

made to these files is that some of the low-level functions that access hardware have been

modified. The GSP simulation is meant to allow investigators to check that their code

compiles into the SPHERES software framework, and to verify basic operations in a low-

fidelity simulation (either 1-g or 0-g). Guest investigators should be able to accomplish

these objectives without interaction with the SPHERES team. The output of the GSP sim-

ulation is a DAT file that contains state histories and debug info. A MATLAB m-function

is provided that can read this DAT file and plot state histories and the histories of quantita-

tive debug variables.

GFLOPS SPHERES Simulator

The other simulator is the GFLOPS SPHERES Simulator, the subject of this thesis. The

Generalized FLight Operations Processing Simulator (GFLOPS) is a testbed that consists

of hardware and associated software that was designed for real-time distributed satellite

system simulations. Located in the MIT Space Systems Laboratory, it consists of eight
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networked PowerPC single-board computers running the OSE real-time operating system.

Actual SPHERES code, with minor modifications, can be run on these computers. The

GFLOPS SPHERES Simulator propagates the dynamics of the SPHERES satellites and

provides metrology information to the SPHERES. It allows for simulation of motion in 6-

DOF, in a 0-g (free-flying) or 1-g (air table) environment, with multiple satellites. Noise

can be added to thruster firings or metrology readings in order to better approximate the

actual SPHERES operational environment. Alternatively, the satellites can be provided

with perfect state knowledge to investigate the performance of a formation flying algo-

rithm under best-case conditions. The simulator can provide debug data and state histories

from test runs. Furthermore, a viewer allows the results of test runs to be visualized in a 3-

D environment on a PC, either as the simulation progresses, or later in a playback mode.

The simulator also allows for commands to be sent to the satellites from a PC, just as in an

actual operational scenario. An advantage of this simulator is that its real-time nature

allows for better representation of the timing and interrupts of the actual SPHERES sys-

tem than the GSP simulation.

The four components of the SPHERES Guest Scientist Program are depicted in

Figure 1.7. The KC-135 tests are not considered part of the program since they occur too

infrequently and are used primarily for hardware verification. The accessibility and fidel-

ity of the various elements of the program vary inversely. The software simulators located

at the top of the figure are suitable for less mature algorithms, where we want to investi-

gate the general performance of the algorithm, to verify that nothing goes catastrophically

wrong. At this stage of development, a realistic disturbance environment is not necessary

and may even decrease the usefulness of tests. We desire high accessibility to the testing

environment at this point, because of the iterative nature of the early stages of algorithm

development. The air table and the Space Station testing environments have much more

fidelity, but they are less accessible for testing. The air table requires the time of

SPHERES team members, while the ISS testing is limited to 24 hours of total operations.

They are not as conducive to the initial algorithm development and testing needs of guest

scientists. However, for mature algorithms that can be tested in 3 DOF, the air table is a
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Figure 1.7 Guest Scientist Program components.

Figure 1.8 GSP testing sequence.

valuable verification environment since it allows testing with actual SPHERES units.

This is essential for refining control parameters that depend on the precise characteristics

of the SPHERES units. Figure 1.8 illustrates the iterative nature of testing within the GSP



32 INTRODUCTION

program. While testing begins at the GSP Simulation for a particular algorithm, it can

progress from there through any path through the various GSP elements. Data from test-

ing on the International Space Station can even be used to refine algorithms for future ses-

sions.

1.5 Outline of Thesis

This thesis provides a comprehensive description of the GFLOPS SPHERES simulator.

Chapters 2 and 3 contain essential background information. First, Chapter 2 gives a

detailed description of the SPHERES formation flying testbed. This discussion is very

important because it outlines those features of the SPHERES hardware that are modeled in

the simulator, as well as the software that must run in the simulator. Then, Chapter 3

describes both the hardware and software that make up GFLOPS, the real-time distributed

spacecraft simulation testbed on which the simulator operates. Chapter 4 is the main sec-

tion in the thesis. It describes each of the software modules that make up the simulator, as

well as the overall architecture into which they fit. It yields a thorough understanding of

the design and operation of each of these modules, as well as their interfaces with each

other. Chapter 4 also gives an account of ways that we can investigate the use of

resources, such as processing time or memory, by SPHERES flight code running on the

simulator. Chapter 5 contains simulation results that have been obtained thus far. Several

simulations were performed, providing insight into the uses of the simulator, and its accu-

racy in representing the SPHERES testbed. Finally, Chapter 6 sums up the work that has

been accomplished thus far, puts it into context, and provides suggestions for future work

that could further improve the effectiveness and accuracy of the GFLOPS SPHERES sim-

ulator.
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SPHERES

2.1 Introduction

This chapter describes the SPHERES formation flying testbed in detail. Since this is what

we are trying to simulate, it is important to have a good understanding of the SPHERES

hardware and software. We begin by examining the types of control architectures that can

be implemented with SPHERES. Then each of the SPHERES subsystems is discussed,

with emphasis on the details that are modeled or implemented in the GFLOPS SPHERES

Simulator.

2.2 Testing Scenarios

There are several testing configurations that are available with the SPHERES testbed

[Miller, 2002].

- Independent Control: With a single satellite, we can investigate long-term
station-keeping, as well as minimum propellant maneuvers involving rota-
tions, translations, or both. These same maneuvers can also be done in
multi-satellite tests. Each satellite determines its control actions based solely
on information about its state and its objectives.

- Master/Slave Control: We can have a master/slave control scheme, where
the "master" satellite receives the state information from all satellites and
decides on the action for each of them to take. The "slaves" simply send
state data to the master and receive commands in return, performing no con-
trol law computation themselves.

33
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- Leader-follower control: This involves the leader sending its state to the
follower satellites. The followers attempt to track the leader's state, with
some offset to avoid collisions.

- Distributed control: Distributed control is more complex, with each satel-
lite having knowledge of the state of all the others, and determining its own
motion based on this information.

These forms of control can be used to test a wide range of algorithms, including ones for

autonomous rendezvous and docking, collision avoidance, and fuel balancing maneuvers.

Retargeting and image plane filling maneuvers can also be performed.

2.3 Physical Properties

The physical properties of a SPHERES unit are not the same on the laboratory air table

and in micro-gravity. The reason for this is that on the air table, the carriage on which the

unit rests must be considered part of the SPHERE when measuring its physical properties.

This affects the mass of the SPHERE, as well as its inertia matrix. The mass and inertia

properties of a prototype SPHERE [HilstadA, 2002] are given in Table 2.1, for the 6-DOF

TABLE 2.1 Mass and inertia properties of prototype SPHERE for 6-DOF configuration.

Property Value Accuracy

Mass 3.4447 kg 0.001 kg

Inertia (body x-axis) 0.0204 kg m2  ±5 %

Inertia (body y-axis) 0.0170 kg m2  ±5 %

Inertia (body z-axis) 0.0190 kg m2  ±5 %

TABLE 2.2 Mass and inertia properties of prototype SPHERE for air table configuration.

Property Value Accuracy

Mass 5.5299 kg 0.001 kg

Inertia (body z-axis) 0.0311 kg m2  ±5 %

configuration, and in Table 2.2 for the air table configuration. Values for the flight

SPHERES were not available at the time of publishing of this thesis.
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2.4 Subsystems

A SPHERES unit consist of six main subsystems: power, software, communications,

metrology, avionics, and propulsion. These will now be described. The SPHERES Criti-

cal Design Review [Miller, 2002] is a good source for more information about power,

metrology, avionics and propulsion. More in-depth discussion about communications can

be found in [Otero, 2000], while the best sources for software and metrology are [Hil-

stadB, 2002], and the GSP Interface Document [HilstadA, 2002].

2.4.1 Power

The power subsystem consists of two AA alkaline battery packs that provide the power

that drives the operation of a SPHERES unit. The power subsystem is not modeled in the

GFLOPS SPHERES Simulator.

2.4.2 Software

The SPHERES flight software runs on a basic operating system with hardware support

functions. There are three different frameworks within which guest scientists can organize

their code. The Standard Control Interface is the most easy to use. It is made up of

three main interrupts (propulsion, communications, and control) as well as background

processing. When employing the Standard Control Interface, the guest scientist makes

changes only to the control interrupt. This interrupt consists of standard code blocks with

predefined inputs and outputs that must be adhered to. The programmer simply inserts

custom control code within the predefined blocks, and/or calls functions previously coded

by the SPHERES team. This process is designed to avoid modifications to the basic oper-

ation of the interrupt, thereby minimizing errors in timing or interaction with other inter-

rupts.

The Direct Control Interface involves the replacement of the controller interrupt code

and/or background processing code with custom logic. It places no real restrictions on the

custom code. Therefore, it can be quite different from the Standard Interface, with simi-
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larities existing only in the timing and general purpose of the interrupts. Thus, the Direct

Interface provides strong flexibility to investigators. However, it requires them to attain a

high level of understanding of the SPHERES software, especially with respect to the inter-

actions between interrupts.

The Custom Control Interface places essentially no restrictions on the SPHERES soft-

ware. The number, purpose, and timing of the interrupts can be changed, affording excep-

tional freedom to the investigator.

The four interrupts that make up the Standard Control Interface will now be described.

Figure 2.1 Custom Control Interface.'

1. Figure courtesy of Mark Hilstad.

Figure 2.1 shows the relationships between the various interrupts and functions of the

Standard Control Interface.
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Propulsion Interrupt

The highest priority interrupt is the propulsion interrupt (or thruster interrupt), which runs

at 1 kHz. This interrupt's main objective is to determine whether to turn each thruster on

or off, which is decided by checking a global array that holds the time remaining for the

current pulse of each thruster. The pulse times for the thrusters are set in the controller

interrupt. These times are decremented each time through the thruster interrupt, until they

reach zero and the thruster is turned off. The thruster interrupt also ensures that all thrust-

ers are turned off when the satellite is receiving global metrology, since the ultrasonic

noise produced by the thrusters can impair global metrology readings. Further tasks of the

thruster interrupt include incrementing time, battery and fuel usage counters, and sending

requests for new global metrology information at a set period, usually 500 ms. Because of

the 1kHz period of the interrupt, there is a 1 ms pulse-width resolution for the propulsion

system.

Communications Interrupt

The second highest priority interrupt is the communications interrupt. This is not a timed

interrupt. It executes only when communications data becomes available. It then fetches

the data, checks its source, and places it in the appropriate global array according to its

source (laptop, other satellite or global metrology reading), so that it can be accessed by

the other interrupts.

Controller Interrupt

The controller interrupt runs at the lowest priority. It can run at any integer frequency up

to 25 Hz, but usually runs at 10 Hz. The reason for the maximum frequency of 25 Hz is

that heat dissipation concerns in the thrusters limit the pulse-width frequency and hence

the control frequency [HilstadA, 2002]. The controller interrupt runs the desired control

algorithm and determines the lengths of thruster pulses. It also processes communications

received from other satellites and creates telemetry data that is ready to be sent to other

satellites or ground. Intersatellite communication is important for leader/follower archi-
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tectures, where the follower needs to know the state of the leader so that it can attempt to

follow it.

Background Processing

Whenever none of the above interrupts are executing, background processing occurs.

This consists of processing the communications data from the laptop that was placed into

global arrays in the communications interrupt, sending communications (of data usually

created in the controller interrupt) to other satellites or ground, performing housekeeping

tasks (such as checking battery and propellant tank levels), and running the position and

attitude determination routine that processes metrology information to determine the satel-

lite's state.

2.4.3 Communications

Communications in the SPHERES testbed consists of two wireless data transmission

modes: satellite-to-satellite (STS) and satellite-to-laptop (STL). These occupy different

communication channels, with the STS operating at 916.5 MHz and the STL at 868.35

MHz. While these channels are bi-directional, they are half-duplex, meaning that only

one unit can transmit at a time. Additionally, when a message is sent, it is received by

each of the units. They must determine for themselves if the message is intended for them

by looking at the destination information sent along with the message. To ensure that only

one unit transmits at a time, token ring networks are used (one for STS, another for STL).

These operate through the passing of a token around the network and the stipulation that a

unit can only transmit when it holds the token.

Communications is in the form of packets. A packet consists of a header, the data, and a

tail as depicted in Figure 2.2. Packets are divided into bytes. The start byte signals the

start of a new packet. The to field specifies the intended recipient of the data and is used

by units to check if a message was intended for them. Thefrom field denotes the sender of

the message, while type signifies whether it is a command, telemetry, or token message,

and size refers to the number of bytes contained in the data section. The tail consists of
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start to from type start timel time2 data ... data checksuml I checksum2

Figure 2.2 Packet configuration.

two checksum bytes, one representing the upper eight bits of the checksum, and the other

the lower eight bits. The checksum will be equal to the sum of all data in the message,

otherwise an error has occurred in the transmission. The packet is broken up into eight bit

pieces that are transmitted separately. Commands are acknowledged in their entirety, and

a good acknowledgment results in the sending of a GO command to instruct the com-

manded satellite to execute the command. If proper acknowledgment is not received, the

command is resent. Telemetry takes the form of state and non-critical error information

and is not acknowledged. That is, telemetry data that has a checksum error is simply

thrown away.

2.4.4 Metrology

The metrology subsystem enables the SPHERES units to maintain knowledge of their

state. The state of a SPHERES unit consists of its position and velocity with respect to the

global frame, orientation within this frame (expressed via a four-element quaternion), and

angular rotation rates about its three body axes. There are two metrology systems that

enable determination of this state. While they each could theoretically operate by them-

selves, they are used in combination.

The inertial measurement unit (IMU) consists of a 3-axis accelerometer and three single-

axis rate gyroscopes. All of these are aligned with the body axes defined for the SPHERE.

By integrating the output of the accelerometer, the velocity and position of the unit can be

recovered, while the rate gyro can yield the angular velocity and orientation. However,

due to the double integration, the accelerometer, by itself, can maintain reasonably accu-

rate position information for only about two seconds, while the rate gyros are useful for

approximately 20 minutes of independent operation [Otero, 2000]. The performance
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specifications for the Honeywell Q-Flex accelerometer are given in Table 2.3, while those

for the BEI Gyrochip II rate gyros are given in Table 2.4 [Miller, 2002].

TABLE 2.3 Honeywell Q-Flex

Input Range

Bias

Scale factor

Threshold and resolution

Bandwidth

Noise
0 to 10 Hz
10 to 500 Hz

RSS bias and scale factor
one-year repeatability

Operating temperature

accelerometer performance specifications.

±20 g

<20 mg

2.75 mA/g ±1.8%

<5 pg

<200 Hz

20 pg RMS
200 pg RMS

1 mg

-40 to 1600C

TABLE 2.4 BEI Gyrochip II performance specifications.

Input range

Full range output (nominal)

Scale factor, scale factor cali-
bration

Scale factor over temperature
(dev. from 22*C)

Bias calibration (at 22C)

Short term bias stability (100 s)

Bandwidth

Output noise (DC to 100 Hz)

Operating temperature

±500/s

0 to +5 VDC

30 mV/(0/s), ±2 % of
value

<0.06%/0 C

+2.5 ±0.045 VDC

<0.05 0/s

>50 Hz

<0.05 /s/(Hz)1/2

-400 C to +850C

Because the inertial measurements lose accuracy over time, an independent method,

known as global metrology, is used for first-order corrections to the state. The global

metrology system works in a manner similar to the Global Positioning System. Five bea-

cons that transmit ultrasound pulses are placed around the test space. Each SPHERES unit
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has four ultrasound receivers mounted on each of six of its faces. By measuring the time

of flight for ultrasound pulses to travel from the beacons to the receivers (and hence the

range), the SPHERE is able to determine its position and orientation. The sequence goes

as follows. At a set frequency between 0 and 5 Hz (usually 2 Hz), a "master" satellite

requests a global metrology reading by sending out a pulse from an infrared transmitter.

The beacons detect this pulse and send out their ultrasound pulses in a predefined

sequence. First there is a 5 millisecond delay, then the five beacons transmit pulses one at

a time, with 20 millisecond delays in between. Since the SPHERES also have infrared

receivers that detect the initial infrared pulse by the master, and they know the timing of

the ultrasound pulse transmissions, they are able to determine the time of flight of the

pulses, and hence the range between receiver-beacon pairs. They are then able to compute

position and attitude from this data, since they know the positions of the beacons. Since

there are uncertainties in the global measurements, they are combined, using Kalman fil-

tering, with the state that is estimated from the inertial measurements, to yield the new

state. For a detailed explanation of the algorithms used to determine position and attitude

from global metrology, see [HilstadB, 2002].

The intensity of the ultrasonic transmitters and the sensitivity of the receivers depend on

angle. As we move away from the direction in which the transmitter or receiver is point-

ing, the intensity or sensitivity decreases, as shown in Figure 2.3 for the transmitter, and

Figure 2.4 for the receiver. Each ultrasound emission is actually a series of pulses, with

the initial ones being of lower intensities. Since the SPHERES ultrasound detection cir-

cuitry uses threshold-based detection, off-angle measurements yield time-of-flight values

that are too large. To negate this effect, the flight code applies a correction based on cali-

brations of the transmitters and receivers. The intensity of received pulses also decreases

with distance between the transmitter and receiver, so the correction takes this into

account as well. After the correction, individual distance measurements from transmitter

to receiver are believed to be accurate to ±3 mm [HilstadA, 2002].
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Figure 2.3 Ultrasonic transmitter intensity angle depen-
dence.

Figure 2.4 Ultrasonic receiver sensitivity angle depen-
dence.

2.4.5 Avionics

A schematic of the SPHERES avionics is provided in Figure 2.5. A Sundance SMT375

board, featuring a Texas Instruments TMS320C6701 digital signal processor, runs the

SPHERES flight code, including all guest investigator algorithms. It interfaces with a

motherboard that provides electronics for communications, interfacing with sensors, and

digital 1/0. The DSP communicates with the motherboard by way of TIM40 standard

communications ports and a global bus. The motherboard has a Xilinx Spartan II field-

programmable gate array (FPGA) that provides support for local sensors (accelerometers
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Motherboard

Figure 2.5 SPHERES avionics.'

1. Reproduced from SPHERES CDR presentation, Feb. 15, 2002 [Miller, 2002].

and rate gyros) and global metrology. The FPGA has 12 infrared receiver and 24 ultra-

sound receiver input channels, as well as six 12-bit A/D channels. The FPGA calculates

the distances from ultrasound beacons to receivers based on the times that inputs are

received. The digital 1/0 on the FPGA consists of twelve outputs to control the propulsion

solenoid valves, two general outputs (used to enable an LED and reset a watchdog timer),

as well as two general inputs (used to detect low battery signals and to detect external

ports).

2.4.6 Propulsion

The SPHERE controls its state by firing its thrusters. The thrust comes from expelling

CO2 gas, supplied from a liquid propellant tank, through machined nozzles. The thrusters

are actuated by electric solenoids that control micro-valves. They operate in a binary fash-

ion: they are either on or off. There are non-linear transients at the start and end of a pulse,

when the thrust is ramping up to or down from its nominal value. A pressure regulator

ensures that the pressure of the gas reaching the nozzles is some constant value that can be
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set between 0 to 50 psig at the start of a test, providing for stable thrust throughout a test.

A single CO 2 tank lasts for approximately 10 minutes of normal operations. Since the

thrusters can only operate at one nominal force level (0.2 N at 50 psig), they are pulse-

width modulated to achieve a greater range of average forces. When a thruster that is off

is commanded on, the electric solenoids must have voltage applied to them for approxi-

mately 6 ms before the valve will open. No thrust is observed during this time. Therefore,

the minimum commanded pulse width is set at 5 ms in the software. Once a valve begins

to open, it takes approximately 1.1 ms for the thrust to reach its nominal value. Since the

thruster interrupt runs at 1 KHz, the pulse width resolution is 1 ms (ie. we can choose

when to turn off the thrust to within 1 ms).

2.5 Summary

This chapter provided an overview of the SPHERES testbed, with particular attention paid

to those areas that are of most importance to the GFLOPS SPHERES Simulator. First, the

basic control architectures that can be tested with SPHERES were outlined. Then, the

main features of each of the subsystems of a SPHERES unit were described. This infor-

mation is essential for understanding Chapter 4, which will discuss how the subsystems

were modeled and/or implemented in the GFLOPS SPHERES Simulator.
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GFLOPS

3.1 Introduction

This chapter introduces the Generalized FLight Operations Processing Simulator

(GFLOPS). It begins by describing the hardware for this real-time testbed, then moves on

to the software. The software includes both the real-time operating system that is used, as

well as real-time middleware that was designed to facilitate the development of spacecraft

flight software and simulations. This real-time middleware is known as the GFLOPS

Rapid Real-Time Development Environment (GRRDE).

The Generalized FLight Operations Processing Simulator (GFLOPS) is a testbed for the

simulation of distributed systems, especially space systems. GFLOPS was originally

developed as the doctoral thesis work of Enright [Enright, 2002], and is now available for

more general use in the MIT Space Systems Laboratory. The usefulness of the GFLOPS

testbed has been well demonstrated with previous studies. The most extensive project

captured the behavior of the United States Air Force's TechSat 21 distributed aperture

radar satellite system. The spacecraft software in this simulation included orbit control,

attitude control, and radar processing, while the simulator software included dynamics,

radar, sensor, and actuator simulation. This project validated the hardware and software

that make up the GFLOPS testbed.

45
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3.2 Hardware

The GFLOPS hardware consists of eight PowerCore-6750 single-board computers manu-

factured by Force Computers. The IBM PowerPC 750 processors on these boards run at

400 MHz and have access to 256 MB of RAM each. They are interconnected by 100

MBps Ethernet, with a 3Com SuperStack 100Base T switch. There are up to 3 support

personal computers (PCs) that can communicate with this embedded hardware. This

allows for simulation monitoring from PCs, sending of commands to the embedded hard-

ware, and loading and debugging of programs. The hardware architecture is depicted in

Figure 3.1.

Embedded side

8 single-board computers

G S E

Network

3 support
PCs

PC side

Figure 3.1 GFLOPS Hardware.

3.3 OSE Real-Time Operating System

A real-time system is one that must complete activities and respond to external events

while meeting timing requirements. A hard real-time task is one that must be completed
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before its deadline, or severe consequences can arise. For example, an automatic pilot

system for an aircraft must update control actions at a minimum rate in order to maintain

stability. Soft real-time tasks do not bring drastic consequences if a deadline is missed,

but performance is degraded. For example, a DVD player should update the movie frame

at a specified rate. If it misses a few frames, the movie quality will suffer, but there will

not be any greater consequences. Many PC applications with which we are familiar are

not real-time. While it is desirable to produce a result as quickly as possible, there are no

ill effects if it takes a bit longer than expected. An example might be a compiler: we wish

the program to be compiled quickly, but it does not really matter if it takes a few seconds

longer than expected.

A real-time operating system (RTOS) is one that is designed to host real-time applications.

It provides timing functions, as well as mechanisms for scheduling processes and switch-

ing between them. The GFLOPS testbed employs the OSE RTOS by ENEA OSE Sys-

tems, which is well suited to distributed real-time systems. OSE provides two types of

kernels: a real-time kernel than runs directly on embedded systems, and a soft kernel that

emulates the OSE operating system on a host PC. This allows a system to be distributed

across embedded hardware and desktop PCs. OSE comes with a real-time interface

known as Illuminator that facilitates loading and monitoring of applications.

Several different types of processes are available in OSE. It allows for both static pro-

cesses, which are created only when an application is loaded and exist until it is killed, and

dynamic processes, which can be created or killed by program code at any time. Static or

dynamic processes will all be of one of the following types:

e Interrupt processes are triggered when there is a hardware interrupt or a
specific software event (such as the sending of a signal to the interrupt pro-
cess).

. Timer interrupt processes run at a preset interval.

- Prioritized processes run as an infinite loop that continues to execute until
the process is interrupted.
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Background processes run whenever no other processes have control of the
processor.

A block is a higher-level object for organizing programs. It consists of a number of pro-

cesses and a memory pool that they use. The memory on a board can be partitioned into

segments, with each segment providing the address space for the pools of one or more

blocks. These associations are depicted in Figure 3.2.

Block Block Block

Prcssoes sJ Prcss

PrjesPrcessjj ocss

Pool Pool Po

Segment Segment

Figure 3.2 Relationship between processes, blocks, memory pools and memory segments.

In OSE, interprocess communication occurs through message passing. These interprocess

messages are known as signals. A signal's type is specified by its signal number. In order

to transmit a signal, the sending process must find the process identifier of the destination

process, allocate memory for the signal, set its signal number, and fill the buffer with data.

Each process has an input queue into which incoming signals are placed. The programmer

can choose to selectively receive incoming messages with particular signal numbers. In

addition, processes can have a redirection table that redirects some subset of incoming sig-
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nals to other processes. OSE has directory services that provide the opportunity to register

services, obtain their process IDs, and subscribe for notification of changes. In this way, a

process that wishes to communicate with a particular type of service can find it in the

directory if that process has registered itself. The scenario is depicted in Figure 3.3.

Directory Service
Proc ID Name
65458 "magnetometer"

1. Register 65302 "startracker" 2. Look-up

Process A 3. Pomncaerocess B
3. Communicate

Figure 3.3 OSE Name Service.

More information regarding the OSE RTOS can be obtained from the OSE User Manuals

[ENEA, 1998].

3.4 GRRDE

The GFLOPS Rapid Real-Time Development Environment (GRRDE) extends the ser-

vices of the OSE real-time operating system. One of the most important functions of this

real-time middleware is to enhance interprocess communication. However, it also pro-

motes program organization and provides an object oriented interface to many OSE enti-

ties, such as processes and signals. This organization into objects simplifies coding,

because we need only to search through the definition of an object's class to find all the

related functions. Also, extra functions provided with the GRRDE objects make coding

and debugging more efficient.
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Other facilities that GRRDE provides include simulation tools, timers, synchronization

objects, random number generators, and atomic objects. Atomic objects are guaranteed to

be accessible for read/write operations by only one process at a time. A priority ceiling

protocol is used to avoid priority inversion when using atomic objects [Enright, 2002].

Figure 3.4 displays the process for reading or writing to an atomic object.

Wait if Lock Read/Write Unlock
Read/ locked

Write
Atomic object

Figure 3.4 Read/Write to atomic object.

Another facility provided by GRRDE is time synchronization. This synchronizes proces-

sor clocks on each computer. This is necessary since there can be drift between the clocks

on different boards and a calculation on one board could depend on a time-value sent from

another.

Functions for performing endian conversion are also provided. This is necessary because

the embedded hardware is big endian, while the PCs used to visualize simulations are little

endian.

3.4.1 Contracts

Interprocess communication is extended with contracts. These are agreements between

two processes to deliver information from one process to the other. This delivery can be

periodic or aperiodic. Periodic contracts result in the delivery of information at a set rate

and are best suited to continuously varying state information. Aperiodic contracts, which

result in the delivery of information only when the associated variable changes, are useful

for infrequently changing information.
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Central to the concept of contracts is the notion of the dispatch function. A dispatch func-

tion fills up a signal with the relevant information and sends it to the destination process.

Each contract is associated with a specific dispatch function when the contract is created.

Contracts can be set up by the destination process ("pull" contract) or the source process

("push" contract).

Several parameters are specified when creating a contract. We must identify the desired

dispatch function, the source and sink processes, the period, the activation time (ie. there

can be a delay before starting the contract) and the contract duration.

Two GRRDE processes manage contract creation and execution. These are the message

negotiator and message dispatcher, respectively. Contract requests, modifications, and

Timern

Message Message
Negotiator Dispatcher

Dispatch function Stt info0' Destination

Block Process Block

Contract request

Redirection table

Figure 3.5 Periodic contract setup and dispatching.

service availability queries are sent to the message negotiator of the source block. The

message dispatcher handles the execution of contracts by calling the dispatch function at

the appropriate times. For periodic contracts, a timer notifies the message dispatcher to

dispatch the contract at the correct times. The full sequence is shown in Figure 3.5. Dis-

patching of aperiodic contracts is handled differently, as evidenced in Figure 3.6. For
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+Aperiodic dispatch fxn. o

Periodic dispatch fxn.

vperiodic dispatch fxn.

Process
1

Memory Pool

Figure 3.6 Dispatching of aperiodic contracts.

these, the relevant variables take the form of flagged atomic objects. This special type of

atomic object has a flag that gets toggled between zero and one whenever it is written to

(1). The object then sends a signal to the message dispatcher to notify it that one of the

flagged atomic objects has changed value (2). The message dispatcher does not know

which object has changed, or which dispatch function accesses that object, so it calls all

aperiodic dispatch functions (3). By comparing the flags of the atomic objects that it ref-

erences with their values at the last dispatch, each dispatch function can determine

whether information has changed and, if so, send the information (4).

Contracts simplify simulation development by separating the distribution of information

from its creation. This allows for easier design, faster implementation, cleaner code and

quicker debugging.

3.4.2 GRRDE Module Structure

By organizing communication between modules into a common framework, GRRDE

allows for easier and more efficient simulation module development. User processes con-

tain the code that accomplishes the desired tasks set forth by the developer when conceiv-
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ing the module. They are supported by a number of GRRDE processes. Some of these

processes are provided, while others that must be present have to be coded by the devel-

oper. The message negotiator and message dispatcher, explained above, are provided

automatically and are not modified by the programmer. Two processes that must be coded

by the developer, but that play specific roles within the GRRDE module framework, are

the block manager and input arbiter. The block manager is the only process that is auto-

matically started when a module is run. It can be used to start the other processes, set up

or reset contracts, initialize global variables, and look up other processes or blocks. The

input arbiter receives signals and either routes them to the appropriate user process, or

extracts the data from the signal and saves it in the appropriate global variable. Finally,

the block process, which is automatically created, redirects GRRDE signals that it

receives to GRRDE processes within the block. For example, new contract requests and

contract modification requests are redirected to the message negotiator. All signals that

are not specified in the table are redirected to the input arbiter.

3.5 Summary

This chapter provided a quick introduction to GFLOPS. It began with a description of the

hardware, then went into the software in greater detail. The main features of OSE, the

real-time operating system used for GFLOPS, were explained. Then, the GFLOPS Rapid

Real-Time Development Environment was addressed, and the ways in which it simplifies

interprocess communication and program organization were discussed. The topics dis-

cussed in this chapter help to understand Chapter 4, which details the design of the simula-

tion modules.
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Chapter 4

SIMULATOR ARCHITECTURE AND
MODULES

4.1 Introduction

This chapter describes the GFLOPS SPHERES Simulator in detail. It begins with some

insight into the objectives that drove the design of the simulator. It then discusses each of

the three main simulation modules in turn. These are the dynamics, metrology and

thruster simulators. For each of these, the functions that the module performs are

explained and the interactions with other modules are outlined. Next, the SPHERES flight

software module is covered. We see how the SPHERES interrupts were converted into

OSE processes and we learn of the changes to SPHERES code that were necessary to

allow it to run in the GFLOPS environment. Two applications that allow the user to mon-

itor simulations as they proceed are dealt with next. These are the 3-D viewer and a pro-

gram that simulates the user interface of the SPHERES laptop. The communications

manager is a module that can be used to filter the communications between the SPHERES

and the simulated laptop, which is necessary since there is a limited bandwidth. Finally,

methods for investigating the resource usage of the SPHERES code, both in terms of pro-

cessor utilization and memory usage, are discussed.

4.2 Design Objectives

Maximizing the usefulness of the GFLOPS SPHERES Simulator required some high-

level objectives. First, as much as possible, the simulator had to be adaptable to
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SPHERES hardware changes. The primary reason for this was that the final flight hard-

ware was not fully designed when the simulator was developed. Therefore, the simulator

could not be constrained to precise hardware specifications. This adaptability was

afforded by placing constants that describe the hardware (eg. force output of a thruster),

into a single file, instead of hard-coding these constants into the logic of the modules.

Thus, as the new specifications become available, they can simply replace the old ones in

the constants file.

The simulator also had to remain adaptable to changes of the SPHERES software since the

SPHERES flight code will be modified frequently, even in between tests onboard the

International Space Station. In order to achieve this objective, changes needed to adapt

pre-existing SPHERES code to the GFLOPS testbed (eg. for communications between

satellites) had to be implemented in a way that would be transparent at the level of the

guest scientist control code. That is, we wanted to have to replace code with OSE function

calls only in the lowest-level SPHERES functions. Then, when the Standard Control

Interface is used, the same guest scientist algorithm can be compiled successfully for the

GSS or for the actual SPHERES hardware. The guest scientist need not be aware of the

contents of the low-level functions.

Another design objective was to make sure that the simulator was capable of handling any

control architecture (eg. leader-follower, master/slave). The simulator modules (the

thruster, dynamics and metrology simulators) were designed in a very generic way and do

not limit this flexibility. The main requirement for achieving different formation flying

architectures was to allow for communications between the satellites themselves, and

between the satellites and the simulated laptop.

Modularity was also considered a very desirable trait. Separating functions such as

thruster, dynamics and metrology simulation into different modules increased the likeli-

hood that changes or improvements to the simulator would be constrained to a small sec-

tion of code. For example, if we wanted to improve the modelling of thrusters, then we
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would only need to modify the thruster simulator. This increased the maintainability of

the simulator. Thorough commenting and documentation was also carried out in order to

facilitate maintenance by others.

Other objectives included closely maintaining the timing characteristics of the flight code

and making it possible to investigate flight code processor utilization. In addition, we

wished to utilize the GRRDE toolset to simplify and speed up development of the simula-

tor.

Figure 4.1 shows the general architecture of the GFLOPS SPHERES Simulator. Details

Figure 4.1 Simulation Architecture.

about each of the elements of the simulator are given in the following sections.

4.3 Dynamics Simulator

The dynamics simulator's primary function is to propagates the state of the SPHERES. It

receives forces and torques from the thruster simulator and provides state information to
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the metrology simulator. It can handle collisions between two SPHERES, or between a

SPHERE and a wall. It can also accomodate docking between two SPHERES, where the

units stick together after the dock. In addition, the user can choose to log a history of the

forces and torques acting on a SPHERE, or he can apply a disturbance force or torque to

the SPHERE. These capabilities will now be described in more detail.

4.3.1 State Propagation

The dynamics simulator propagates the states of all satellites. Thirteen variables are prop-

agated for each SPHERE: three for position, three for velocity, four that make up the

quaternion that describes the satellite's orientation in the global frame, and three for rota-

tional velocity about each of the satellites body axes. The SPHERE's acceleration and

angular acceleration are also contained in six other variables; these are simply updated

when thrusters are turned on or off.

To solve the equations of dynamics of the SPHERE, a public domain function for the

numerical solution of systems of first order ordinary differential equations with initial con-

ditions is used. Named Dverk, it employs a Runge-Kutta algorithm based on Verner's fifth

and sixth order pair of formulae and attempts to keep the global error proportional to a

specified tolerance. To tailor this solver to the problem at hand, the relevant first order

equations had to be specified. The equations for position and velocity are as follows:

-= v (4.1)

= (4.2)
m

where m is the mass of the SPHERES unit and F is the force exerted on it. Inside the

function that contains the first order equations, and which is called repeatedly by Dverk

with different values for the time argument, the force on the SPHERE is converted from

the body frame to the global frame. This ensures that the global frame force values are
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kept accurate, which is important because if the SPHERE is spinning, then the force vec-

tor, while constant in the body frame, is rotating in the global frame.

The rates of change of the quaternion elements are:

d 1E

t 2

1 (E -W) (4.4)

The rate of change of angular velocity about the body axes are:

= (I) (T-wx(Io)) (4.5)

where w is the angular velocity vector, I is the inertia matrix of the satellite and T rep-

resents the torques about the body axes. The forces and torques acting on the SPHERE are

sent to the dynamics simulator from the thruster simulator. They will be further discussed

in Section 4.5.

The SPHERE's state must be re-propagated each time the force or torque acting on it

changes.. If thruster states were constant for long periods of time (eg. a second), the most

computationally efficient method of updating the state would be to propagate the dynam-

ics far into the future, and use an interpolation function to obtain intermediate values.

However, since the SPHERE's control frequency is 10 Hz and different thrusters turn off

at different times, we would be repropagating frequently anyway, so there would not be

much point in interpolating between propagations (it would only complicate the code).

Therefore, we do not use interpolation, and we propagate the state up to the current time

whenever the thruster states change. In addition, the state is automatically propgagated if

the thruster states haven't changed in the last 5ms. Given the relatively slow motion of a
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SPHERE, this update rate is sufficient to achieve accurate metrology simulation. Thus,

the state is always between 0 and 5 ms old.

4.3.2 Dynamics Simulator Features

Arbitrary Offset of SPHERE Center of Mass

A feature of the dynamics simulator is that an arbitrary offset of the SPHERE's center of

mass from its geometric center can be specified. We should note that it is the position and

velocity of the center of mass that get propagated. Thus, since the SPHERE requires

knowledge of the position and velocity of its geometric center, conversions are made

before sending values to the metrology simulator, as follows:

T = cm + !' (4.6)

7V= -cm + ( X + '=cm + 0 (4.7)

a = acm + o x i'+ o x (e x ') + 2w x '+ a' = acm + Wx ' + (0x (Wx ') (4.8)

where the subscript cm refers to the state of the center of mass of the SPHERE, and P', V

and Z' refer to the relative position, velocity and acceleration of the SPHERE's geometric

center with respect to its center of mass, in the body frame ( V and Z' are zero).

Collisions

Collisions are checked for every 100 ms. By approximating their shape as spherical, we

can test for collisions between two units by checking whether the difference in their posi-

tions is less than two radii of a SPHERE. When a collision occurs, the SPHERES veloci-

ties are changed to reflect this. The magnitude of the component of the relative velocity of

approach that is parallel to the surface normal at the point of collision is multiplied by the

coefficient of restitution for two SPHERES, es, to obtain the magnitude of the relative

velocity of separation:
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I~f - n) - ( 2 f -n) = es (4.9)
(P1; -n) - (92i -n)

Note that e, is chosen arbitrarily. Here, n is a normal at the collision surface, and the sub-

scripts i andf denote conditions just prior to and just after the collision. The normal is an

approximation derived from the spherical approximation. Since the satellites have the

same mass, their changes in velocity will be equal in magnitude and opposite in direction

in order to conserve momentum. We do not capture rotational effects during collisions (ie.

angular momentum is not conserved). In addition to SPHERE-SPHERE collisions, a

check can be made to see whether the satellite has collided with a wall surrounding the test

space. If a collision has occurred, the component of the unit's velocity that is perpendicu-

lar to the wall is multiplied by -e,, where ew is the coefficient of restitution for a collision

between a SPHERE and a wall. This simulates a bounce off of the wall with some energy

loss.

Docking

If the user wishes to run an algorithm that tests docking between two SPHERES, the

dynamics simulator can be compiled to support docking. The user sets a vector that spec-

ifies the direction in body coordinates that points from the center of the SPHERE to the

middle of the docking port or panel (currently assumed to be the same vector for all

SPHERES). When a collision occurs between two SPHERES, the dynamics simulator

checks to see if the docking ports for the two SPHERES have come into contact. This is

done by checking the orientation of the two units and the proximity of their docking ports.

For them to have docked, the vectors pointing to their docking ports must be pointing in

opposite directions and their docking ports must be in close proximity. These relations are

expressed in the following inequalities,

acos((R 1u) - (R 2 c)) > n - (y0(4.10)
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I(Ti + pRu) - (12+ pR 2a)I <'( (4.11)

where R, is the rotation from SPHERE i's body frame coordinates to global frame coordi-

nates, a is the unit vector pointing towards the docking port in body coordinates, CD is an

angle representing the maximum angular offset of the docking ports, Ti is the position of

SPHERE i, p is the radius of a SPHERE, and ( is the maximum linear port offset.

When the above constraints are met, the SPHERES are considered to have docked. Since

it is assumed that the docking port will consist of velcro, once two SPHERES have docked

they remain together as a rigid body. The center of mass of the composite object, rccm , is

the average of the centers of mass of the two SPHERES, while conservation of momentum

gives the velocity of the combined center of mass, vccm

CCM =rcml + cm2 (4.12)

vcml + vcm2  (4.13)
Vccm 2

Angular momentum must also be conserved during the docking. This is done by consider-

ing the angular momentum about the location of the composite center of mass. Just prior

to the docking, this will be equal to the following (the angular momentum resulting from

the rotation of the units is ignored before the docking):

Hccm(i) =cml X Mcml + rcm2 X Mvcm2

where now Tcmi is the position of the SPHERE i's center of mass with respect to the

composite center of mass.

After the docking, the angular momentum will be due to the rotation of the composite

object about its center of mass:
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Hccm(f) = Ic - Hccm(i) (4.15)

where Ic is the inertia matrix of the composite object. The angular rates of the composite

object can be arrived at by multiplying both sides of equation 4.15 by Ic-. Since the rela-

tive orientations of the docked SPHERES cannot be known a priori, Ic must be determined

at the time of the docking by combining the moments of inertia of each of the SPHERES.

First, using the parallel axis theorem, each of their moments are determined about the

composite object's center of mass, shown here for SPHERE i:

I;=1 ,+ m(rfmiicmil - Ecmir Tmi) (4.16)

Next, they can be combined together after rotating them into the composite object's body

frame:

I = RI R-1 + R2 12R-1 (4.17)

Once docking has occured, the simulator propagates the position, velocity, orientation, and

angular velocity of the composite object. Since the positions of the docked SPHERES

with respect to the combined center of mass and their orientations with respect to that of

the composite object are known, the states of the SPHERES themselves can be calculated

with respect to the global frame. For position, velocity and acceleration, modified ver-

sions of equations 4.6, 4.7, and 4.8 are used, with the center of mass quantities replaced

with combined center of mass values:

T = cem +iF (4.18)

P = cem +O )Xr+X ' = PCcm + x ? (4.19)

a = accm + W x ? + 9 x (o x ?) + 2o x '+ ' = accm + x + x (x) (4.20)
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where P is now the original offset of the SPHERE's geometric center from its center of

mass plus the offset of the SPHERE's center of mass from the combined center of mass.

Because the docked SPHERES form a rigid body, the angular rate and acceleration can be

arrived at by simply rotating those of the composite object into the SPHERE'S body

frame.

Immediately after executing the dock, the dynamics simulator will send a signal to the

thruster simulator to notify it that docking has taken place. This is necessary because the

thruster simulator must recalculate the positions of thrusters with respect to the new center

of mass, the directions in which thrusters produce force in the new body frame, and the

torque produced by a unit force from a thruster. During the time between docking and

acknowledgment from the thruster simulator that these new values have been calculated,

the dynamics simulator ignores forces and torques sent from the thruster simulator. This is

to avoid having the docked SPHERES fly apart.

Force and Torque Recording

The dynamics simulator is capable of sending signals containing a log of the commanded

forces and torques acting on a SPHERE to other applications. Forces are specified in the

global frame, while the torques are expressed in the body frame. Each time a force or

torque is received from the thruster simulator, the data are saved and time-stamped. To

avoid excessive signal traffic, data are accumulated until they occupy the maximum OSE

signal size. Then the signal is sent to the requesting application.

User-Applied Disturbances

The dynamics simulator can apply arbitrary force and torque disturbances to the

SPHERES. The duration of the disturbance is specified in milliseconds. This time will be

rounded up to the next integral number of integration periods. Thus, the applied distur-

bance may persist for slightly longer than requested. The disturbance force and torque,

their duration, and the ID of the affected SPHERE are sent to the dynamics simulator in a

signal. Note that the magnitude and direction of the force or torque is constant for the
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entire duration of the disturbance. More complex disturbances would need to be coded

into the state propagation routines directly.

4.3.3 External Signals

The dynamics simulator receives several external signals, mostly commands from the user

or other modules:

- DYNSIMFORCETORQUEINPUT is sent by the thruster simulator
and contains the updated torques and forces acting on a SPHERE and that
SPHERE's ID.

- DYNSIMSETINITIALSTATE contains the thirteen variables that
make up the initial state of the SPHERE and is sent to the dynamics simula-
tor when a new satellite is added to the simulation.

- STARTSIMULATION starts the simulation by informing the dynamics
simulator to start propagating the satellites' states.

- DYNSIMDISTURBSPHERE causes a SPHERE to experience a distur-
bance force or torque for a specified length of time.

- DYNSIMREQTHRUSTSTATS is sent by applications that wish to
receive records of the force and torque history for all active SPHERES.

. DYNSIMSTOPTHRUSTSTATS stops the sending of force/torque
logs.

- DYNSIMRESETSIM resets the states of all SPHERES to their default
values and removes them from the simulation.

- DYNSIMDOCKINGACKNOWLEDGE is received from the thruster
simulator and signifies that the dynamics simulator no longer needs to ignore
force/torque signals sent for recently docked SPHERES.

Three dispatch functions are provided by the dynamics simulator:

e dyn-simfullstate sends a signal containing the values of the thirteen state
variables for the requested satellite.

" dynsimextendedstate sends the same information as dyn-simfullstate
along with the six acceleration variables.

- dyn-simallsatsstate is similar to dyn-sim extendedstate, but contains
the data for all satellites at once.

Each of these functions also send the time that has elapsed since the start of the simulation.
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4.4 Metrology Simulator

4.4.1 Metrology Simulation

The metrology simulator enables the SPHERES to receive Inertial Measurement Unit

(IMU) and global metrology readings. IMU readings contain the values from the three

single-axis rate gyros and the three-axis accelerometer. As soon as a SPHERE receives an

IMU reading, it asks for a new one. To ensure that the time between IMU readings is not

too small, the metrology simulator waits for 18 ms before fulfilling an IMU request (it is

not known what the actual time between received IMU measurements is for the SPHERES

hardware). The IMU readings sent to the SPHERE are in units of millivolts.

The metrology simulator models the non-ideal characteristics of the accelerometer and

gyros. These parameters were specified in Table 2.3 and Table 2.4 respectively. If the

acceleration or angular rate is outside of the input range, the measurement saturates at the

extremity of the range. The accelerometer resolution is also modeled, so that the output of

the accelerometer can only be a multiple of 5 pg.

Noise is added according to the values given in the tables, with the assumption that no

noise exists outside of the bandwidths listed. The noise entries in the tables are given as

square roots of power spectral densities. These can be used to determine the noise mea-

sured in bandwidth B as follows [Fish, 1994]:

eRMS = EB 2  (4.21)

where E is the root of the power spectral density in bandwidth B. The root mean square

value of the noise is eRMS. Noise is added to the signals using a GRRDE normal random

number generator with a mean of zero and a stardard deviation of eRMS. The resulting val-

ues, in rad/s or m/s2, are converted to millivolts according to the following equation:

V = (S + e)(ScaleFactor) + Bias
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where V is the resulting voltage, S is the value of acceleration or angular rate received

from the dynamics simulator, e is the noise added to the signal, ScaleFactor is the scale

factor of the device in millivolts/unit, and Bias is the bias of the device in millivolts.

Currently, the metrology simulator is compliant with the global metrology system for the

prototype SPHERES. The metrology simulator starts a new global metrology transmit

cycle at a set period, nominally every 153 ms. In contrast, with the flight SPHERES, the

"master" SPHERE will create an infrared flash to request a new global metrology cycle.

With the real prototype SPHERES, the CPU would request a global metrology reading by

notifying the metrology board (the Tattletale8), which would return the data once it has

been acquired. In the simulation, instead of communicating with the Tattletale, the

SPHERE requests global metrology data from the metrology simulator. At the start of

each cycle, the metrology simulator checks which SPHERES units have requested global

metrology data. After the initial 5ms delay (see Section 2.4.4), the distances from each

transmitter to each receiver on the SPHERE are computed and saved. This is done for a

different transmitter every 20ms. After all beacons have been considered, the completed

measurement is sent to the SPHERE. These delays make the simulated measurements and

timing representative of the actual system.

The distance measurements must be modified to account for the actual behavior of the

hardware. As explained in Section 2.4.4, the times-of-flight measured by the global

metrology system depend on the distance and relative orientation between transmitter and

receiver. A modified version of the function correctgGlobal from the SPHERES

flight software is called from the metrology simulator to apply these corrections. The

function is the same as in the flight software, except that the opposite corrections are

applied to simulate the physical effects that are corrected in the flight software. With this

reverse correction applied by the metrology simulator, the distances are expected to be

close to those that would be measured in the real system. Of course, these values can only

be as accurate as the calibration that was used to create the correctgGlobal func-

tion. However, even with a perfect calibration, the distances that the SPHERE calculates
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after calling correctgGlobal would not be perfect. In order to perform the correc-

tion, the SPHERE needs to estimate the transmitter angle (0t in Figure 4.2) and the

t

f Or

Figure 4.2 Receiver and transmitter angle.

receiver angle, r, for each beacon-receiver pair. The SPHERE estimates these angles

using the uncorrected distance measurements, so there will always be some error in the

angles that are arrived at, and hence in the distance correction.

4.4.2 External Signals

The metrology simulator receives several external signals:

- DYNSIMALLSATSSTATE contains the state updates from the
dynamics simulator. These are sent every millisecond. Because the dynam-
ics simulator can take as long as 5 ms to update the state for a satellite, con-
secutive signals often contain duplicate information. This is not a problem.

- SPHSENSORSIMGMREQUEST contains a global metrology
request form a SPHERE.

- SPHSENSORSIMIMUREQUEST contains an IMU request from a
SPHERE.

4.5 Thruster Simulator

The thruster simulator module is sent THRUSTSIG signals from the SPHERES in the

simulation every time they change the combination of thrusters that are activated. The
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THRUSTSIG signal contains a bit-packed integer that indicates whether each thruster is

on or off. The simulator models the force profile of a thruster as shown in Figure 4.3.

Actual Thrust Profile Simulated Thrust Profile
Force Force

HOFF OFF

66 ms

Time Time

ON ON

Figure 4.3 Actual and simulated thrust profiles.

A thruster takes 6 ms to open. This is due to the fact that voltage must be applied for this

minimum amount of time before the the valve will begin opening. Once the valve starts

to open, it takes approximately 1.1 ms' for the force to reach its nominal value of 0.2 N.

While this transient behavior is depicted in the left side of the figure as a linear increase in

thrust, it is in fact non-linear. There is also some transient behavior as the valve closes. To

simplify the representation of the thrust profile, the simulated profile ignores the tran-

sients. After the 6 ms delay, the force takes its nominal value, and it goes immediately to

zero when a thruster is commanded off. For the linear profile in the left side of the figure,

if the ramp up and ramp down time are equal, then the right profile will have the same area

under the curve, or same impulse. The thruster simulator keeps a record of the last com-

manded thruster states for each satellite, the time of these commands, and the current

thruster states. During the 6 ms opening delay, the current and commanded states will dif-

fer.

The main thruster simulator process runs every millisecond and performs a variety of

tasks. First, it checks for unprocessed THRUSTSIG signals waiting in its signal queue.

It processes them all and updates the record of current thruster states. Second, the simula-

1. This value of 1.1 ms was obtained by Simon Nolet, SPHERES team member and MIT SSL graduate stu-
dent, in email correspondence with hardware manufacturers.



SIMULATOR ARCHITECTURE AND MODULES

tor checks whether the valve opening delay has just expired for any thrusters and, if so,

records the change. If the thruster states have changed for a SPHERE, either from a new

command or from a delay expiring, new force and torque values are sent to the dynamics

simulator. Normally distributed noise can be added to the output of a thruster. The forces

about the center of mass in the body frame are computed as follows:

N

F = ( (Thi)di (4.23)

In this equation, N is the number of thrusters per SPHERE, Th; is the current thrust output

of thruster i, and di is a unit thrust in the body frame.

Since the thruster positions and the thrust vectors are known, we can compute the torques

about the body axes that arise from a unit force from each thruster:

Ti = Rix di (4.24)

Here, Ti is the torque that results when thruster i produces a unit force, while R; is the

position of thruster i with respect to the center of mass of the SPHERE. With N thrusters,

the total torque is given by:

N

S= (Thi)Ti (4.25)

When a docking between SPHERES is sensed by the dynamics simulator, it sends a signal

to notify the thruster simulator. The signal contains the IDs of the affected units, the posi-

tions of their geometric centers with respect to the new center of mass, and the quaternions

representing their orientations in the new body frame. The thruster simulator recalculates

equations 4.23 and 4.24 so that thruster firings for each of the docked SPHERES are now

converted into forces and torques specified in the new body frame. And when sending the
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forces and torques of one of the docked SPHERES to the dynamics simulator, the thruster

simulator adds the values that are due to the thrusters from both docked SPHERES.

4.6 SPHERE Module

The SPHERE module encapsulates the SPHERES flight code. The primary goal in

designing this module was to minimize differences between simulation code and actual

flight code. However, the SPHERE module is running on different hardware and a differ-

ent operating system than in the actual system, so it was impossible to make the code iden-

tical. Low-level calls that access hardware could not be left unchanged in the simulation.

In particular, instead of using wireless communications to communicate with other units

or the laptop application, the SPHERE module must communicate using OSE signals.

However, the goal of the GSS was not to test the communications hardware. It was meant

to verify the guest investigator formation flying algorithms. These will almost certainly

contain satellite-to-satellite (STS) and satellite-to-laptop (STL) communications, but as

long as the information arrives at the destination, we need not be concerned with the exact

transmission method. Furthermore, through careful design of the SPHERE module, we

ensured that the timing characteristics of communications and other functions are similar

to those in the real system.

4.6.1 SPHERE Module Processes

As explained in Section 2.4.2, the SPHERES flight code is partitioned into four principal

sections. There are two timer-interrupts (the thruster actuator and controller), an event-

driven interrupt (for communications) and some background processing. Correspond-

ingly, there are four main elements of the SPHERE module. At first glance, the logical

choice would have been to replace the thruster and controller sections with OSE timer-

interrupt processes, and the communications section with an OSE software interrupt pro-

cess that gets awakened when it receives a signal. However, interrupt processes in OSE

cannot send or receive signals from processes that are not part of the same block. Since

the thruster actuator must send thrust signals to the thruster simulator, and the communica-
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tions interrupt must communicate with several other modules, these could not be coded as

OSE timer-interrupts. Furthermore, interrupts have higher priority than any other process

in OSE. Thus, the controller, which must be at a lower priority than the other two, could

not exist as a timer-interrupt either.

Thruster Actuator

Instead of an interrupt-based solution, the thruster actuator was implemented as a dispatch

function named "SPHEREsendthrusts". The dispatch function increments counters that

keep track of time, propellant usage and battery usage, asks for a new global metrology

reading every second, and checks whether each thruster should be on or off. The code for

the dispatch function is taken straight from the original code for the propulsion interrupt.

The only substantial difference is that, instead of writing the thruster commands to a hard-

ware port, it writes them to a signal that gets sent to the thruster simulator. A push con-

tract between the thruster actuator and the thruster simulator ensures that thrust values can

be updated every millisecond, just as in the flight code. However, the simulator is only

notified when the thruster states change. If the thruster settings remain constant, we do

not send updates to the simulator.

Communications Process

The communications interrupt routine inputs received communications data into global

arrays so that the data can be accessed by other processes. It was coded as a prioritized

process that is enabled whenever it receives a signal, just as the actual communications

interrupt wakes up whenever incoming data is available. Minor adaptations were made to

the code. For example, instead of reading from a hardware device, communications mes-

sages are received via OSE signals. Nonetheless, the data gets put in the same arrays and

the timing characteristics are comparable.
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Controller

The controller process is extremely simple. It starts a timer that sends stimulus signals to

the process at 50 Hz. Each time this wrapper process receives one of these signals, it exe-

cutes the flight version of the controller code.

Background Processing

The background processing from the flight code was put into an OSE background process.

This code receives data packets from the ground laptop, transmits packets to the ground

and other satellites, and calls the state determination and housekeeping routines. Some of

the commands that can be sent to a SPHERE do not make sense in the simulation. For

example, a watchdog timer in the flight code periodically checks to see if the processor is

still running. If not, it will reset the processor. This capability is not reflected in the simu-

lation since is not needed to evaluate guest scientist code. Therefore, there is no RESET

command that causes the watchdog timer to automatically reset the processor, even though

there is in the actual SPHERES system.

4.6.2 Communications

While the physical communications links are different from the operational system, the

communications protocols are not. The only difference between simulation and flight sys-

tems is that the low-level reads and writes to hardware were replaced with the receiving or

sending of signals. The formatting of messages into packets for transmission as single

bytes remains unchanged. This includes the calculation of checksums and the use of a

token ring protocol. While there is no real need to send a message as several bytes in the

simulation, or to compute checksums since there will be no bit errors (although this could

be simulated), it is desirable to do so since it keeps the timing behavior similar. If mes-

sages were sent as a single signal, the relative processing time between the four software

sections could change. Furthermore, confining adaptations to a few low-level functions

ensured that few changes are necessary when flight code is updated. Another characteris-

tic of communications that was represented is that when one SPHERE sends a packet, all
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other satellites will receive it and must determine from the packet header whether it was

meant for them. This maintains the same relative communications processing loads

between separate satellites.

4.6.3 Modifications to SPHERES Code

A useful feature of the simulator is the capability of providing the flight code with perfect

knowledge of the SPHERE's state. This can be accomplished by receiving the state

directly from the dynamics simulator, bypassing the metrology simulator. This allows us

to investigate the best-case performance of formation flying algorithms. Perfect state

knowledge eliminates the ambiguity between poor performance due to a flawed algorithm

and due to sensor limitations.

Other modifications to flight code did not offer any benefits, but were unavoidable to

allow for compatibility with the GSS. First, in the SPHERES flight code, the programmer

must explicitly instruct the operating system when interrupts may be preempted by higher

priority interrupts. This is called nesting of interrupts. By default, this feature is disabled

in the flight system. However, to ensure accurate thruster pulse-width resolution, the pro-

pulsion interrupt must be able to interrupt the controller. Thus, a call to a function called

NESTINT is made at the start of the controller interrupt, and a call to UNNEST is made

at the end. In the GSS, these calls are unnecessary since nesting of interrupts occurs auto-

matically because the interrupts are actually coded as prioritized processes. The message

dispatcher, which calls the thruster actuator, runs at a higher priority than the controller, so

preemption is automatic. Furthermore, the flight versions of the NESTINT and

UNNEST calls contain assembly language routines that are not compatible with

GFLOPS. The GFLOPS SPHERES Simulator redefines these functions as "dummy" rou-

tines. This enables guest investigator algorithms to be compatible with both the GSS and

the SPHERES hardware.

The function that collects metrology data was rewritten. For the prototype SPHERES, the

function tt8_get collects metrology data from individual bytes sent from the Tattletale 8
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processor. However, in the simulation, a metrology reading is returned in full in one sig-

nal. This was done to simplify communications between the metrology simulator and the

SPHERE module, and to avoid tying the design of the metrology simulator to the

SPHERES code. Thus, tt8_get was adapted to handle the new data format.

A problem with the SPHERES flight code is that various pointers exist that point to spe-

cific parts of memory as defined in the file main.h. These include the addresses of various

registers that do not exist in the SPHERE module (eg. for communications ports, flash

memory, etc.). If these non-existent registers were written to, the simulation would

behave unpredictably and would probably crash. To alleviate this problem, while not

modifying references to these registers in the SPHERES flight code, these pointers were

reset to point to memory that is dynamically allocated when the SPHERE module starts.

The writes to memory can still occur, but they will have no effect other than to change the

values held in these dummy registers. Many of these registers control secondary systems

such as LED indicators, so accurate implementation is not required. Using dummy regis-

ters allows us to minimize modifications to guest scientist code, ensuring that the flight

and simulation code remain compatible.

As mentioned earlier, communications had to be modified to make them compatible with

OSE interprocess communications. In particular, the function sendcom(int port,

unsigned char outchar) which writes data to the hardware output register, had

to be rewritten. The integer argument specifies the destination: the ground laptop, other

SPHERES, or the field programmable gate array (FPGA), while the second argument is a

single byte of data. Intersatellite communications are sent to all other satellites via OSE

signals, while STL communications are sent to all satellites, as well as the laptop applica-

tion running on a support PC. For communication with the FPGA, the modified function

checks the char argument and sends either a global metrology request to the metrology

simulator, an IMU request, or both. The input function getcom is unchanged since

incoming data is buffered in global arrays by the communications interrupt. The

getcom function simply accesses these arrays.
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Besides the modifications mentioned here, a number of small changes had to be made to

various header (.h) files. These modifications were necessary so that some of the flight

software files (written in C) could included by other GSS files (written in C++). These

changes do not affect the functioning of the SPHERES code in the simulation.

In order to allow the flight code to fit seamlessly into the simulation, some "wrapper" code

was needed. For example, the SPHERE needs to search for the process IDs of the com-

munications manager and of other units, so it can send signals to them. The wrapper code

also sends the initial state of the unit to the dynamics simulator. Furthermore, the timing

and priority of the processes are specified in the wrapper code. The wrapper code contains

the elements of the GRRDE module architecture, such as the block manager and input

arbiter.

4.7 Communications Manager

The communications manager module facilitates message passing between the SPHERES

module and the simulated laptop application. The communications manager exchanges

signals with a bridge application (named OSEbridge) running on an OSE soft kernel on

the support PC. To complete the final leg of the communications channel, a named pipe is

established between OSEbridge and the laptop program. A pipe is a section of shared

memory that Windows processes can use to communicate. OSEbridge parses information

between the formats needed for these two communications channels. OSEbridge supports

two pipes to PC applications, one to the 3-D viewer and another to the simulated laptop

command interface. The 3-D viewer draws SPHERE positions using truth data obtained

form the dynamics simulator.

OSEbridge also enables the automatic loading and starting of simulation modules upon

system start-up. The user puts the names of the software modules to load into a file and

OSEbridge sends these names to a process running on the embedded hardware, which then

loads and optionally starts the appropriate modules.
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The communications manager was needed as an intermediate step between the SPHERE

module and OSEbridge due to the limited communications bandwidth of OSEbridge. The

OSEbridge must compete for access to the CPU with all of the other PC applications,

including the 3-D viewer and the laptop command interface. Running OSEbridge at a

higher priority than these other applications resulted in very slow system performance.

However, when it was run at the same priority as these other processes, the time that it

spent waiting for its next chance to use the CPU was too great to support the real-time

communications between the SPHERES and the laptop command window. In testing it

was found that OSEbridge would sleep for up to 100 ms. This delay is unnacceptable

because when receiving a packet from the ground laptop (or from another SPHERE), the

SPHERE has a 4ms second maximum timeout in between bytes, after which it is assumed

that there has been a communications error and the rest of the packet is ignored. In order

to avoid timeout errors due to the delays experienced by OSEbridge, it was realized that

packets should be sent through OSEbridge in full, instead of as individual bytes. How-

ever, as already mentioned, a requirement of the simulator architecture was to avoid

changes to high-level SPHERES flight code. To preserve this objective and provide reli-

able communications with the laptop interface, an intermediary node was needed on the

communications path. This entity, the communications manager, allows signals to be sent

between itself and OSEbridge as whole packets, and between the SPHERE module and

itself as single bytes.

The communications manager is made up of two processes, the satellite-to-ground (STG)

and the ground-to-satellite (GI'S) communications managers. The STG communications

manager uses the SPHERES getpacket function to collect packets from the individ-

ual bytes sent by the SPHERES. Once a full packet is received, it sends it to OSEbridge as

one signal. Signals intended for the laptop are forwarded to the other SPHERES, mimick-

ing broadcast communication. The other SPHERES must receive and discard these pack-

ets. The GTS communications manager receives packet signals from the laptop, breaks

them up into bytes and sends them the SPHERES.
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The communications manager filters SPHERES telemetry that is forwarded to the laptop.

This filtering is necessary because with several SPHERES in the simulation, the OSE-

bridge communications bandwidth gets used up. When the communications manager

receives a telemetry packet from a SPHERE, it checks its type (eg. master position, slave

angular rate), and compares it to the filtering rules. At compile time, the user can choose

to filter (ie. not send) all, none, or some fraction of each type of telemetry message. How-

ever, the signals will still get passed on to the other SPHERES (which will discard them

since they are meant for the ground laptop). Command and token messages are not fil-

tered. Messages passing in the other direction, from the laptop to the SPHERE, are never

filtered.

4.8 Simulation Viewer

Running simulations can be visualized using a 3-D viewer developed for the GFLOPS

SPHERES Simulator. The viewer uses OpenGL graphics libraries and shows the motion

of SPHERES units in the test space. A screen-shot of the viewer is provided in Figure 4.4.

The viewer receives state updates from the dynamics simulator every 100 ms. These are

delivered by a standard GRRDE message contract. Thus, it can display the motion of

SPHERES at a rate of 10 frames/sec. Lighting helps provide a sense of perspective.

Ultrasound beacons are drawn as cylinders with a protruding line denoting their pointing

directions. Thus, one can track where the SPHERES are with respect to the test space.

The user can choose from several preset views or he can manually alter the viewpoint.

Three modes exist for scene navigation. Zooming moves the viewpoint closer or farther

from the image along the line of sight. Flying moves the viewpoint perpendicular to the

line of sight. Rotating rotates the viewpoint around the image. Each of these scene navi-

gations are executed with the mouse.

Live simulations can be viewed in real-time. They can also be recorded for later playback

by choosing to log the satellite state data to a text file. Thus, with a copy of the viewer and

a simulation log, guest investigators can visualize the performance of their algorithms
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Figure 4.4 SPHERES viewer.

remotely. Because a timer ensures that data is read from the log at the same rate as it was

written, playback speed is insensitive to computer performance.

The viewer also allows the user to send disturbance signals to the dynamics simulator, to

request that force and torque histories be sent from the dynamics simulator and saved to

file, and to reset the simulation.

4.9 Simulated SPHERES Laptop GUI

An application was created to simulate the functioning of the laptop that communicates

with the SPHERES. The simulated laptop interface is shown below in Figure 4.5. This

application displays telemetry and debug information from the SPHERES and the user can

choose from a list of commands to send to a SPHERE. The appearance of this application

could be altered to track changes in the flight version. Alternatively, using the code for the

1---unletictj - V. W.'
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Figure 4.5 Simulated SPHERES Laptop GUI.

simulated GUI as a guide, the final flight GUI could be adapted for communications with

the GSS.

The core logic that processes communications to and from SPHERES was adapted from a

version of the laptop application that has been used with the prototype hardware. This was

done to ensure consistent creation and processing of packets. In particular, because the

data received from the units is saved in the same format, the telemetry created during test-

ing on the GFLOPS testbed can be reduced and analyzed using MATLAB scripts created

for flight telemetry. Several parts of the application logic required modification. For

example, since communications between the laptop and the communications manager use

full packets, instead of individual bytes, these differences are reflected in some low-level

functions.
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4.10 CPU Load Profiler

The OSE Illuminator debugger allows users to measure CPU utilization. A continuously

updating graph of load percentages provides a good summary of CPU processing time, as

shown in Figure 4.6. Another option is to do a process level load measurement, where the

roC

Eft PEOMM
Name Value/Id Ue oa

I.jII 10.34.0.105 OSE Delta PowerPC krn-7501R2.4.1 Not Connected

Iji 10.34.0.102 OSE Delta PowerPC krn-750IR2.4.1 Connected

EjI rad@bransfield:osebridge.exe(241) Not Connected
Ilji 10.34.0.103 OSE Delta PowerPC krn-750IR2.4.1 Not Connected

Figure 4.6 CPU load measurement.

load for each process is overlayed on a color-coded graph. The output window for process

level load measument is given in Figure 4.7. Alternatively, the data can be displayed and

saved as a text listing.

The profiler measures the relative processing needs of the processes in the system. This

can be used to analyze the effects of design decisions. The processing requirements of the

thruster dispatch function are not expected to vary with different control algorithms,

assuming the Standard Control Interface (see Section 2.4.2) is used. The communication

process' processing needs will vary with the amount of traffic, but are is not expected to
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Figure 4.7 Process level load measurement.

make up a significant portion of the processing. The greatest amount of variability is

likely to occur with the controller process, since this code will change substantially from

test to test. There could also be large differences in background processing requirements.

If the Direct Control Interface is employed, the processor utilization of each process could

vary significantly for different guest scientist code. With the Custom Control Interface it

is not possible to compare one set of code to another, as there could be a completely differ-

ent set of processes, but we can still observe the absolute load on the processor.

Since the simulator hardware and operating system are not the same as the flight versions,

the flight processor utilization may vary from our measurements. In order to draw conclu-

sions about performance on the flight hardware, we need to be able to compare the proces-

sors in the two systems. The SPHERES flight hardware features a Texas Instruments

digital signal processor, the TMS320C6701, that runs the flight software. Since this is a

DSP, it is optimized for vector or parallel computations. For this reason, it has eight func-

tional units that can perform calculations simultaneously [TI, 2000]. The C6701 has four

fixed-/floating-point arithmetic logic units (ALUs), two fixed-point ALUs, and two fixed-
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/floating-point multipliers. The ALUs perform 32-bit calculations, while the multipliers

have 16-bit inputs and 32-bit outputs. Running at 167 MHz, the TMS320C6701 takes 6 ns

to perform a cycle. With the six floating-point units operating in parallel, a theoretical

maximum performance of 1 x 109 floating-point operations per second (FLOPS) is possi-

ble (six operations in 6 ns). However, this maximum performance would only be

approached for problems that can exploit the parallel processing throughput of the DSP

(ie. those that allow six floating-point calculations to be made in parallel). This is com-

mon in DSP applications, where there may be signals coming in from twelve or more

channels, but it is not the case for the SPHERES testbed. The majority of calculations will

be too simple to break up into six pieces, and the result of one calculation will often be

needed before the next can start. For this reason, it is not expected that the theoretical

limit of 1 x 109 FLOPS will be approached on the SPHERES hardware.

The GFLOPS testbed relies on a more general purpose processor, the IBM PowerPC 750,

running at 400 MHz. This processor has two fixed point units and one floating point unit

[IBM, 2001]. The floating point unit is able to perform a single-precision (32-bit) multi-

ply-add operation in one cycle. A multiply-add operation is a ternary operation of the

form:

a±bc (4.26)

Thus, since a multiply-add accounts for two floating point operations, and the processor is

running at 400 MHz, the theoretical peak performance of a GFLOPS processor is 800

MFLOPS.

Although GFLOPS will never perform at 800 MFLOPS, it is likely to be closer to its limit

than the SPHERES DSP to its own, since the SPHERES processor requires higher paral-

lelism in the computation to make the most of its resources. Despite the lower peak per-

formance of the GFLOPS processors, we expect that they could have a higher effective

performance when running SPHERES code. To obtain a quantitative comparison of the

speeds of the processors would require measuring the running time of SPHERES code on
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both. Even if we cannot draw conclusions from the running time on the GFLOPS hard-

ware, we can expect that the relative processing time of each process will be similar. For

example, if the controller process is using most of the processing power in the simulator,

we expect to see the same behavior if the code were run on SPHERES.

Another issue that must be considered when attempting to compare processor utilization is

the fact that time delays take the same amount of time on any processor. For example, the

timeout that occurs when a SPHERE is waiting for a communications byte from another

SPHERE that does not arrive (further explored in Section 5.2.2), will take 4 ms no matter

what type of processor is being used. In the case of STS communications being received

in the controller process, the majority of this time will be counted towards CPU utilization

by the controller process (since it only gets interrupted by the thruster and communica-

tions interrupts, which do not take much processing time). Hence, we cannot directly con-

vert processor utilization times using a multiplication factor, since the factor would

depend on the amount of communications timeouts in the code. One solution would be to

estimate the amount of processor utilization that is due to time delays on the GFLOPS sys-

tem, subtract this amount, then use a factor (assuming we have done a calibration) to pre-

dict the utilization due to the rest of the code on the SPHERES hardware, and finally add

the timing delays back in.

4.11 Memory Usage

The GSS is also tasked with investigating memory usage by SPHERES code. Flight code

must not use more memory than is available from the SPHERES hardware. While the

GFLOPS processors have access to 256 MB of RAM, the SPHERES avionics have only

16 MB. Thus, limitting the amount of memory available to the SPHERE module would

make the simulator more representative of the target system.

There are several ways that memory is stored for a computer program. Global and static

variables are stored for as long as a program runs. Local variables are allocated from the

stack when a function is called. The heap is used for dynamic memory allocation (mem-
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ory that is allocated only at run-time). SPHERES flight code makes extensive use of each

of these types of memory allocation. In addition to storage of program variables, the pro-

gram execution code must also be stored in RAM

When a process is created in OSE, the size of the stack is specified. Therefore, we can

limit the stack memory available to each SPHERES process. However, this is not repre-

sentative of the situation that actually occurs with the SPHERES flight system. Here, the

total memory available is shared between all interrupts.

In OSE, there is one heap for each memory segment. Because all SPHERES processes are

part of the same block, they share the same memory segment and therefore the same heap.

Furthermore, since the other OSE or GRRDE processes that use the same memory seg-

ment do not allocate memory dynamically, all of the memory allocated from the heap

belongs to SPHERES processes.

One method for verifying that the SPHERES code does not use more than 16 MB would

be to estimate the amount of storage needed for non-dynamic memory, then bound the size

of the heap so that the total memory never exceeds 16 MB. Limiting the size of the heap

would result in the SPHERE module crashing if the heap fills up. Another option would

be to directly track dynamic memory inside the dynamic memory allocation and dealloca-

tion functions. The amount of global and static memory could be easily determined. Esti-

mating the amount of stack memory needed would entail summing the maximum

requirements for each interrupt. This could be done by determining at which point in each

process the most local memory is needed (for all levels of the function call stack). To

determine the size of the executable flight code, we could examine the compiled memory

image (by getting a member of the SPHERES team to build the code).

4.12 Summary

This chapter gave an detailed account of the GFLOPS SPHERES Simulator. The objec-

tives explained at the start of the chapter helped to understand the reasoning behind many
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of the design decisions that were later outlined. The three simulator modules were

described with emphasis on their roles, their features, and their interfaces. The SPHERE

module was presented next, and care was taken to compare its design and functioning to

that of the flight code. The adaptations that had to be made to SPHERES code to allow it

to run in the simulator were listed and their effect on the simulator's accuracy were ana-

lyzed. It was discussed how the communications manager helps alleviate bandwidth prob-

lems for communications between the embedded hardware and the support PC. The 3-D

viewer and the simulated laptop, two simulation monitoring applications that run on the

PC, were also introduced. Finally, methods for measuring processor load and memory

usage were outlined. We saw that determining processor utilization is easily done with

tools provided by OSE, while memory estimation mostly has to be done manually by ana-

lyzing code.

The next chapter will demonstrate the use of the simulator for a set of representative sce-

narios. The results discussed in that chapter will allow us to guage the usefulness and

accuracy of the simulator.
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SIMULATION RESULTS

5.1 Introduction

This chapter presents the results of several simulations that illustrate the performance of

the GFLOPS SPHERES Simulator. A leader-follower simulation demonstrates several of

the capabilities of the GSS, including inter-SPHERE communications, CPU utilization

measurement, and force recording. A collision test and a passive docking test show the

simulator's abilities in these areas. A cooperative docking test on the GSS is used to com-

pare the motion observed with that obtained with the same control code on the SPHERES

air table.

5.2 Leader-Follower Simulation

In order to test the intersatellite communications capabilities of the GFLOPS SPHERES

Simulator, a simulation scenario was developed that involved a "leader" SPHERE execut-

ing a predetermined profile, while a "follower" SPHERE attempted to mimic the motion

of the leader (with an offset to avoid collisions). The leader transmitted its state to the fol-

lower at a rate of 10 Hz and the follower used this (minus an offset of 30 cm) as its target

state. The predetermined profile took the form of a square of 40 cm side length parallel to

the XY plane. The leader was commanded to remain at each corner of the square for 10

seconds. No noise was added to either the thruster firings or the metrology readings.
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The Standard Control Interface was used for this simulation. The custom code placed in

the function processmaneuverlist is listed in Appendix B. It should be noted that

the function propagate-state from the SPHERES flight code, used to update the

state every time an IMU measurement is received, was modified to take into account

acceleration due to thruster firings. A record is kept listing the time each thruster has been

on since the last IMU update. This is used to find the average force exerted on the

SPHERE by its thrusters. This modification was done to obtain good results, since accel-

erometer measurements were not being used.

5.2.1 Motion Observed:

1 . 1 1 1 1 1 I

1.25 1.3 1.35 1.4 1.45 1.5
X (M)

1.55 1.6 1.65 1.7 1.75

Figure 5.1 Leader trajectory.

The leader's trajectory is plotted in Figure 5.1. We see that the leader traced out a clean

square, with some oscillation at the corners. The oscillations are primarily due to inaccu-
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1 1.05 1.1 1.15 1.2
X (M)

1.25 1.3 1.35 1.4 1.45

Figure 5.2 Follower trajectory.

racies in the state propagation that the SPHERE performs in between global metrology

updates. Refinement of control parameters could also help to eliminate some of the over-

shoot. The follower's trajectory, in Figure 5.2, was significantly worse. The edges of the

square are not straight, and the oscillations at the corners are larger. One might wonder

why the follower's path is not identical to that of the leader, since it was controlling to the

leader's state. The reason for this is that the leader was controlling to a target state that

differs from its actual state. Therefore, the leader and follower were controlling to differ-

ent target states. Any deviations from the desired trajectory were transmitted to the fol-

lower as its target state and were amplified in the follower. This is especially clear in

Figure 5.3, which shows the positions of both the leader and follower along the x-axis

with respect to time. We see that at the end of the plot, the leader overshot its final target

state and oscillated before settling down. This overshoot and oscillation was magnified in

the follower. A further reason for the poorer quality of the follower's trajectory is that the
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160 180 200
Time (s)

220 240 260

Figure 5.3 Time history of leader and follower position along x-axis (offset subtracted out).

leader's estimated state was not equal to its actual state. Recall the discussion in

Section 4.4 of the fact that the SPHERE's position determination from global metrology

measurements is never perfect, even when no noise is added to the measurements. There-

fore, any errors in state estimation were also transmitted to the follower as its target state.

This can be seen clearly at the start of the plot, where the leader made an initial adjustment

because a slight error in its position estimate caused it to believe that it was not at the

desired starting point. The follower, which had to deal with its own position estimation

error, as well as that of the leader, had a harder time controlling to the desired state.

5.2.2 CPU Utilization

The CPU utilization characteristics for the leader and follower are shown in Figure 5.4,

with the utilization broken down by process. These measurements were done using the
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CPU Load by Process
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Figure 5.4 Leader and follower CPU loading comparison.

Profiler application that comes with OSE Illuminator, as described in Section 4.10. One

notices that adding up the percentages for each SPHERE results in a total slightly less than

100%. This is due to the fact that there were other GRRDE and OSE processes executing

that are not listed in the figure. We see that the thruster interrupt and communications pro-

cess do not utilize much processing time. The interesting comparison is between the con-

troller processes. While the leader's controller process required only 0.2% of the available

processing time, the follower's utilized almost 20%, or 100 times more. This is explained

by the fact that the follower received communications packets from the leader, while the

leader did not. When extracting data from the arrays that hold communications data, there

is a 4ms timeout. In other words, the follower keeps on extracting data from the array

until such time that the array is continuously empty for 4ms. This is done because the

communications process could be placing data into the array at the same time that the con-

troller is extracting it. The timeout is meant to ensure that all of the data for a particular

message will be received during the same pass through the controller code. The controller

process was executing at a rate of 50Hz, corresponding to 20ms between consecutive acti-
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vations. Therefore, the 4ms accounts for the 20% CPU load of the controller process.

Any free time was used by background processing. Again, the majority of this processor

utilization was due to communications timeouts.

5.2.3 Force History

For a separate run, where the same desired trajectory was used, the leader's force history

was recorded in order to demonstrate the force and torque recording capabilities of the

simulator. For this run, in order to obtain cleaner data, the leader was provided with per-

fect state information from the dynamics simulator. The force history is shown in

0.5
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0.1

0
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-0.58
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Figure 5.5 Force history for leader tracing out a square.

Figure 5.5. At the scale of this figure, most of the thruster firings appear on top of each

other, giving the appearance of a long pulse, when they are all in fact very short pulses.
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We can recognize the thruster firings associated with each of the sides of the square. The

SPHERE started off by moving in the +Y direction, then in the +X direction, followed by

-Y and -X. For each side, there was an acceleration period, followed by a deceleration,

and some further thrusts that damped out any oscillations.

5.3 SPHERE-SPHERE Collision Simulation

A simple collision test was done with two SPHERES moving towards each other at an

angle. No control was used for this test (ie. no thrusters were fired). Since their docking

ports were not facing each other, they were expected to collide and bounce off of each

other. Because the coefficient of restitution for SPHERE-SPHERE collisions was set at

0.5, the units were expected to have relative velocities of separation of half the magnitude

of their relative velocity of approach. The motion observed during the test is shown in

Figure 5.6. The SPHERES started at the bottom of the figure and moved upwards. They

-0.5 0 0.5 1
X (Mn)

1.5 2 2.5

Figure 5.6 Motion for collision between two SPHERES.
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collided when their centers were 20 cm apart, equal to two radii of the SPHERES. The

units then fly apart with the expected change in their velocities.

5.4 Passive Docking Simulation

In order to test the docking capabilities of the GFLOPS SPHERES simulation, a simple

test was conducted with two SPHERES moving towards each other with their docking

ports facing. The SPHERES began with a large position offset along the X axis, as well as

a 5 cm offset along the Y axis. They were given initial velocities parallel to the X axis

(one of +5 cm/s, the other -50 cm/s). Again, no control was used for this test. Since they

were offset along the Y axis, we expected the docked SPHERES to rotate about the Z axis

due to conservation of angular momentum. In Figure 5.7, we see the X axis motion. The

XI

1.5-

0.5-

0-

-0.5 -

2 3 4 5 6 8
Time (s)

Figure 5.7 Motion along X axis for docking SPHERES.

SPHERE represented by the blue trace moved towards the other at a higher velocity. Once
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Figure 5.8 Motion along Y axis for docking SPHERES.

they collided, they stuck together with a distance of 20 cm between them. Conservation of

momentum dictated that the faster moving SPHERE slowed down, while the other sped up

by the same amount. Figure 5.8 depicts the Y axis motion of the SPHERES. After the

collision, conservation of angular momentum resulted in rotation about the Z axis, which

is reflected in the oscillating Y positions. The oscillations cannot be seen in Figure 5.7

because the time scale is much shorter than in Figure 5.8.

5.5 Cooperative Docking Simulation

A form of cooperative docking was tested with the GFLOPS SPHERES Simulator. It

involved a leader satellite that was attempting to remain in one spot and was sending its

state to a follower satellite. The follower, which started off with an initial offset in its ori-

entation and in its position along the Y-axis, was supposed to dock with the leader. It was

to do this by first rotating 900 about its Z-axis, then eliminating the difference in their
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positions. Both the rotation and the translation parallel to the Y-axis were designed to take

the form of a raised cosine. A raised cosine is a function of the form:

f(t) = f(to)+A 2 cosw(t-to) (5.1)

Figure 5.9 shows the shape that is expected when a raised cosine is used to reach a new

0.8o-

0.6

0.4

0.2

0

0 1 2 3 4 5 6 7

Figure 5.9 Raised cosine.

final value.

The same test had also been run on the MIT SSL air table in December 2000. The same

code was used for the GSS test, to ensure that metrology processing and control of the

SPHERE were handled identically. The motion of the follower for the air table and the

GSS test is summarized in three figures. The SPHERE's internal state estimates were

used as the data for these plots, because this is what was available for the air table test.

For all previous plots in this chapter, truth data from the dynamics simulator was used.
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Figure 5.10 shows the initial Z-axis rotation. Although the rotation on the air table had a
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Figure 5.10 Comparison of Z-axis rotation for air table and GSS.

slightly larger overshoot, the curves are quite close to each other.

Figure 5.11 shows the motion parallel to the Y-axis as a function of time for both tests.

Again, the curves are similar although, towards the end of the air table test, the SPHERE

was unable to get a good global metrology measurement, which explains the horizontal

line at the end of that test. The fact that the other SPHERE did not have this trouble indi-

cates that the metrology simulator did not exclude enough global metrology measure-

ments. This was essentially due to the fact that the maximum acceptable receiver angle

was set to be too large. The discrete "stepped" appearance of the plots is due to the fact

that the SPHERE's estimate of its position was only updated when it received a global

metrology measurement. The fact that there are more steps in the GSS plot is further indi-

cation that the metrology simulator was providing too many good global metrology mea-

surements.
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Figure 5.11 Comparison of motion parallel to Y-axis for air table and GSS.
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Figure 5.12 Comparison of XY plane motion for air table and GSS.
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Figure 5.12 shows the motion parallel to the XY plane for both tests. The favorable global

metrology measurements explain why the GFLOPS data is cleaner than the air table data.

Their paths do show the same trends though. The oscillation at the end of GSS test is

quite large because the follower was repeatedly bouncing off of the leader (their docking

ports were not aligned).

5.6 Summary

This chapter presented some results of simulations that were run on the GFLOPS testbed.

A leader-follower square profile simulation demonstrated several of the capabilities of the

GSS, including inter-SPHERE communications, measurement of CPU utilization, and

force recording. A simple collision between SPHERES and a passive docking simulation

proved the ability of the GSS to detect and simulate collisions and docks. A direct com-

parison between cooperative docking motion obtained with the same control code on the

air table and the GSS provided evidence of the usefulness of the simulation functions of

the GSS.
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Chapter 6

CONCLUSIONS

This thesis presented the GFLOPS SPHERES Simulator (GSS). This chapter begins by

summarizing the main conclusions that were drawn in the previous chapters. It then ana-

lyzes the usefulness of the GSS with respect to the three control interfaces. Finally, it pre-

sents some suggestions for future work on the GSS.

6.1 Summary

6.1.1 SPHERES

The SPHERES testbed will allow for verification of satellite formation flight, autonomy

and autonomous rendezvous and docking algorithms designed by external, "guest" scien-

tists. SPHERES will operate in zero-gravity inside the International Space Station (ISS),

an environment whose characteristics cannot be accurately reconstructed in the laboratory

on Earth. There will be only 24 hours of flight time on ISS, which puts an onus on the

SPHERES team to present the astronauts with flight code that will run correctly the first

time.

There are six SPHERES subsystems: power, software, communications, metrology, avion-

ics and propulsion. Of these six, software is the only one whose design and operation will

vary for different guest scientist algorithms. It is also the only one that cannot be fully
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tested on the laboratory air table, since some control algorithms cannot be tested with only

three degrees of freedom.

6.1.2 GFLOPS

The GFLOPS testbed is an excellent simulation environment for SPHERES. It features 8

networked, embedded computers running the OSE real-time operating system. Loading

separate programs onto different boards mimics the flight system, where separate pro-

grams are loaded onto different SPHERES. Because OSE was designed for distributed

applications, implementing communications between SPHERES was relatively easy.

GFLOPS is a real-time testbed, so it is well suited to simulating a real-time system such as

SPHERES. The SPHERES code runs with the same timing characteristics as in the flight

system, so problems related to timing or synchronization can be discovered through simu-

lation on the GSS. Also, the capability of measuring processor utilization can be very

valuable for measuring and comparing the efficiency of guest scientist algorithms.

GFLOPS is further enhanced by the GFLOPS Rapid Real-Time Development Environ-

ment (GRRDE). Because GRRDE was designed to aid development of spacecraft flight

code and simulation of distributed satellite systems, its features eased the development

and testing of the GSS. Most notably, GRRDE helped in establishing communications

links between software modules via contracts. Tools provided by GRRDE, such as atomic

objects, were found to be useful, and the GRRDE module structure helped organize soft-

ware modules.

6.1.3 GFLOPS SPHERES Simulator

The GSS solves the problem of testing SPHERES flight code in a zero-gravity, 6 DOF

environment. By compiling flight code into SPHERE modules that can be run on the

GFLOPS testbed, it allows testing with multiple SPHERES of guest scientist algorithms

for formation flight, autonomy and docking. The GSS models thruster and metrology
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characteristics, and propagates the dynamics of SPHERES units. It can handle collisions

and docking between SPHERES, as well as user-applied disturbance forces.

Users can monitor the progress of simulations with a 3-D viewer and can receive teleme-

try or send commands to the SPHERES. Results of simulations can be saved and played

back in the 3-D viewer at a later time. The OSE real-time operating system provides tools

to analyze the processor utilization of SPHERES flight code.

6.1.4 Simulation Results

A leader-follower simulation was run, where the leader traced out a square profile and the

follower attempted to execute the same profile by controlling to the leader's state (with

some offset). This test demonstrated thruster, dynamics and metrology simulation as well

as satellite-to-satellite (STS) communications. It further allowed us to test measurement

of CPU utilization, yielding the interesting result that the follower's controller interrupt

used much more processor time than the leader's, since it spent time waiting for state data

to arrive from the master.

A collision simulation showcased the dynamics simulator's ability to handle SPHERE-

SPHERE collisions. A passive docking simulation, where one SPHERE simply ran into

the other, demonstrated the dynamics simulator's ability to detect and simulate docking,

including conservation of linear and angular momentum. Results of tests of a cooperative

docking algorithm on the MIT SSL air table and in the GFLOPS SPHERES Simulator

were compared. The motion of the SPHERES was relatively similar, but the data indi-

cated that measurement reception could be better modelled in the metrology simulator.
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6.2 Suitability of the Simulator for the Control Interfaces

6.2.1 Standard Control Interface

The GFLOPS SPHERES Simulator is best suited to the Standard Control Interface. If a

guest scientist places a list of maneuvers into the Standard Control Interface, they can be

compiled and run with no modifications.

6.2.2 Direct Control Interface

The Direct Control Interface can be accomodated by the GSS. Since the controller pro-

cess calls the SPHERES control code without modification, any changes to the control

interrupt can be incorporated. Changes to the background processing can be accomo-

dated, but would require some effort. Because background processing in the SPHERES

flight code exists in the main function in the file main.c, along with various commands

executed prior to the background processing loop that are not compatible with the

GFLOPS testbed, the background processing code has to be manually inserted into the

background process. However, this is generally not too difficult and consists of cutting

and pasting code. It is not expected that guest scientists would make changes to the pro-

pulsion interrupt or the communications interrupt, since these perform lower-level func-

tions that should be common to all guest scientist algorithms. Changes to these interrupts

are possible, though they would have to be made manually in the SPHERES wrapper

code.

The cooperative docking simulation (Section 5.5) provided a good test of the adaptability

of the GSS. Because the control code for the algorithm was 1.5 years old, it did not follow

the Standard Control Interface. The majority of global variables had different names or

did not correspond to variables in the Standard Control Interface. Therefore, the coopera-

tive docking simulation was an example of a use of the Direct Control Interface. Further

complicating matters, metrology processing was handled entirely differently and differ-

ences in hardware configurations (eg. numbering of thrusters) were present.
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The time spent modifying the SPHERE module wrapper code to accomodate the coopera-

tive docking simulation was logged. A total of 4.5 hours was spent getting the SPHERE

module to correctly compile. For someone with less familiarity with the GSS, the time

required would have been much longer. The differences in metrology also required some

changes to the metrology simulator, which are not included in the 4.5 hours. Furthermore,

several days were spent debugging problems that arose.

The cooperative docking simulation is an extreme example of the use of the Direct Con-

trol Interface, due to the magnitude of the deviation from the Standard Control Interface.

Nonetheless, it illustrates the fact that testing code that does not conform to the Standard

Control Interface can pose some serious challenges.

6.2.3 Custom Control Interface

The GSS is not well suited to the Custom Control Interface. This interface has essentially

no rules associated with it, so it is not difficult to see that the GSS, running on different

hardware with a different operating system, cannot have the flexibility to easily incorpo-

rate Custom Control Interface code. That is not to say that custom code cannot be simu-

lated on the GFLOPS testbed. But it would require considerable effort to change such

things as the number, type, and purpose of the processes that exist in the SPHERE module,

and to debug problems that arise. To do so would require in-depth knowledge of OSE,

GRRDE, and the GSS.

6.3 Future Work

All of the main elements of the GFLOPS SPHERES Simulator could be improved to some

extent. There are features missing that would improve the accuracy or usability of the

simulator. These areas for future work will now be discussed.
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6.3.1 Dynamics Simulator

One inaccuracy in the dynamics simulator is that it does not take into account the decrease

in total mass of a SPHERE due to decreasing propellant. Propellant accounts for approxi-

mately 5% of a SPHERE's total mass [Miller, 2002]. The amount of propellant used could

be kept track of by the thruster simulator, since it knows when thrusters are turned on or

off. This information could be sent to the dynamics simulator, which would incorporate

this effect into the state propagation.

The dynamics simulator has some deficiencies related to collisions and docking. These

both work fine up until the point that two SPHERES dock. After that point, if there is a

third SPHERE present in the simulation, the simulator is not capable of handling a dock or

collision between this third SPHERE and one of the others that are already docked. None-

theless, this could easily be implemented.

6.3.2 Metrology Simulator

The detail to which the metrology simulator represents global metrology signals could be

improved. In particular, the metrology simulator currently sends distances for all beacon-

receiver pairs for which the transmitter and receiver angles are both less than 900. How-

ever, hardware testing has shown that measurements are often not received for angles

greater than 600. If enough detailed hardware calibration were done, we could character-

ize the dependence of measurement reception on transmitter angle, receiver angle, and

distance, and build a probabilistic model. Doing this with some preexisting data was

explored, but there was not enough variety in distances and angles to yield a useful cali-

bration. Data was only available with for a SPHERE in the middle of the laboratory test

space, at orientations that differed by 900. Since the locations of the receivers are symetric

for 900 rotations, the new orientations yielded no new data.

An issue that is not addressed in the metrology simulator is that of loss of global metrol-

ogy measurements due to body blockage. Body blockage occurs when one SPHERE is
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directly in the path between a beacon and one of the other SPHERE's receivers. In such a

case, that measurement should not be sent, since it would not be received in practice. This

capability would not be difficult to implement. Since the positions of all SPHERES are

known, the perpendicular distance between each SPHERE and the line connecting a bea-

con to a receiver could be easily calculated. Then, we could determine if this distance is

less than the radius of a SPHERE. If so, blockage would occur for that beacon-receiver

pair.

A further area in which the operation of the metrology simulator could be improved is in

the way that it returns measurements. In the actual SPHERES flight code, the CPU

receives IMU and global metrology measurements in the same way as STS or STL com-

munications. The data arrives as individual bytes in the communications interrupt. This is

not the way that it happens in the simulation. Here, each complete IMU or global metrol-

ogy measurement is sent in an OSE signal to the SPHERE background process. Changing

this to be compatible with the format expected by unmodified SPHERES flight code

would require some effort, but could clearly be done.

6.3.3 Thruster Simulator

For the thruster simulator, better models of the thrusters could be achieved. Currently, the

nominal thrust level for each thruster on each SPHERE is assumed to be the same. This is

not accurate, because slight differences in machining the thruster nozzles result in differ-

ences in the thrust produced from each nozzle. It could be valuable to be able to set the

thrust level for each thruster independently. Another issue that has not been addressed is

encountered when two SPHERES dock together. Some of the thrusters on the docking

panels will be directly facing or touching the other SPHERE. How does this affect the net

thrust experienced by the docked SPHERES?
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6.3.4 Communications Manager

For both STS and STL communications, there is a maximum bit rate of 19.2 kbps that is

set by the communications hardware [Otero, 2000]. For STL communications, the GSS is

not able to support this rate. However, STS communications on the GFLOPS testbed can

occur at 100Mbps. To make STS communications more representative of the actual hard-

ware, it could be possible to limit the communications bandwidth. This could consist of

keeping a moving average of the rate being achieved by the currently transmitting

SPHERE. If sending the next byte would make the average communications rate higher

than the maximum, then we would wait before sending this byte. To avoid changes to the

SPHERES flight code, this new functionality should reside in a different module. The

most obvious place to put it would be in the communications manager. That would mean

routing STS communications, in addition to STL communications, through this module,

which should not be a problem.

6.3.5 3-D Viewer

The 3D viewer is well suited for playback of short simulations. However, for longer sim-

ulations, of 10 minutes duration for example, the viewer is missing some features that

would be beneficial. Often, there is one short fraction of the simulation that is of greater

interest than the rest. An example is docking, where the few seconds leading up to the

dock might be the most interesting. If one wants to analyze these few seconds in detail,

from different angles and zoom factors, it is clearly not convenient to have to replay the

entire 10 minutes of the simuation just to see these important few seconds multiple times.

One would expect to have a "pause" button and a "play" button that allow the user to stop

the playback, view the scene form different vantage points, then start it again when

desired. In addition, a "slider" control that allows one to move to any point in the simula-

tion by moving the slider forwards or backward would be very useful. Another possible

improvement includes drawing the global frame axes to help the user visualize the test

space orientation. Furthermore, it could be useful to have an optional "trace" function that

leaves small dots along the path traced out by the SPHERE, to allow for visualization of
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the path. Finally, adding some identification marks on the panels of the SPHERES, in

order to discern their orientations, would be helpful. This would be especially true for

docking, where one wants to be able to identify their docking ports. All of these sugges-

tions could be implemented fairly easily.

6.3.6 CPU Utilization

As mentioned in Section 4.10, we cannot draw any conclusions about the absolute proces-

sor utilization on the flight hardware DSP unless some type of calibration is performed

with the same code on the GFLOPS processors and the DSP. Even then, much care would

have to be taken in attempting to makes conclusions about DSP processor utilization.

However, the insight gained in making the calibration could be quite valuable. For exam-

ple, consider the case of an algorithm for formation flying, docking, or some type of

autonomy, that can only be tested in a 6 DOF environment. We could not test it on the

MIT SSL air table and might not be able to tell if the algorithm can run safely within the

constraints of the DSP's performance. This might also be the case for an algorithm that

we can test in 3 DOF, but which breaks down into much simpler calculations in this envi-

ronment.

Benchmarking has been performed before with the GFLOPS testbed to determine the rela-

tive running time of various floating point computations. The technique commonly used

is to perform the same calculation a large number of times (say 100000), and then com-

pute the average time for the calculation. This technique could be easily extended to mea-

sure the running time of a longer algorithm, such as the routine used to determine the

SPHERE'S state from global metrology measurements. Performing the same benchmark

on the GFLOPS and SPHERES hardware would yield some insight into the relationship

between processor utilization on the two systems.
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Appendix A

GFLOPS SPHERES SIMULATOR
SOURCE CODE

A.1 Dynamics Simulator

A.1.1 Sphpropagator.h
#iffndef _SPH_PROPAGATOR_
#define _SPHPROPAGATOR.

#include <siglib.h>
#include "sph-intobject.h"
#include "Spheresconstants.h"

class CPropagator:public CIntObject
public:

CPropagatoro;
void Rezero (;
void SetDisturbance(double dForce[3], double dTorque[3], int iDuration);
bool IsDisturbanceOn (;
void ZeroDisturbance (;
void ZeroTorques (;
void ZeroForces (;

void SetInvMass(double dInvMass);
void SetInertia(double dI[3][3]);
void GetInertia(double dI[3][3]);
void GetInvInertia(double dI[3] [3]);
void SetPrincipalInertia(double * dI);
bool InertialsSet (;

void SetGCState(double dState(STATELENGTH]);
void SetCMState (double dState [STATELENGTH]);
void GetState(double dState[STATELENGTH]);
void GetCMExtendedState (double dState[EXTENDEDSTATELENGTH]);
void GetExtendedState (double dState [EXTENDEDSTATELENGTH]);
void GetPosition(double dPos[3]);
void GetPosVel(double dPos[3], double dVel[3]);

void InterpToTime (double t);
void InterpToTime(struct TimePair *tp);
void SetTorqueThrust(double dTorque[31, double dThrust[3], double dTime);
void GetForceFramThrusters (double dForce[31);
int IntegrateToTime(double dTime);

/ /Debug Methods
int GetNumLoops (;

protected:
//eta, epsilon(0,1,2), omega(0,1,2), pos(0,1,2), vel(0,1,2)
double dXl[STATELENGTH];
double dX2 [STATE.LENGTH];
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double dX-out [STATELENGTH];

//Constant pointers to first elements of the various components of the state
double *const nupdQuat;
double *const nupdRate;
double *const ntpdPos;
double *const n.pdVel;

double dWorstTol;
double ntdws[l4] [STATELENGTH];
double mdC[24];

double r.dI[3] [3];
double n-dInvI[3] [3];
double nudInvMass;

//Position of the geometric center relative to the center of mass (in body frame coordinates)
double utdGCpos[3];

//3 body frame torques (x, y, z)
double nudBodyTorque [3];
//3 body frame translational forces (x, y, z)
double mudBodyForce[3];
//3 inertial frame translational forces (x, y, z)
double nLdInert ialForce[ 3 ] ;
//Disturbance force commanded from 3-D viewer application
double hnudDistForce[3];
//Disturbance torque commanded from 3-D viewer application
double nu.dDistTorque[3];
double nidDisturbStartTime;
double nLdDisturbDuration;
bool nLbDisturbanceOn;

void normQ(double* dX);

int CombinedDerivFunc(int *neqn, double *t,double *X, double * Xprime);
int Integrate(bool bFromNow=false);
void ConvertThrustToInertialFrame (;
void CalcInvIO;

//Debug Info
int iNumLoops;

private:
};

#endif

A.1.2 Sph-propagator.cpp
#include "sph-propagator.h"

#include <math.h>
#include <string.h>

#ifndef __NEED_TP_DEFN_
#define _NEEDTPDEFN_
#endif
#include "gflpobt-conv.h"
#include "quickvectors.h"

////////CPropagator//////////////////////////

* Constructor
*/

CPropagator::CPropagator()
//Initializer list to initialize constant pointers

:ntpdQuat (&dX out (SIMQUAT_1] ) , mpdRate (&dXout (SILRATEX]), utpdPos (&dXout (SIMPOSX]),
ntpdVel (&dX-out [SIMLVEL_.X]) {

int i;
ntdInvMass = INV_MASS;

//Make posvel all zero



APPENDIX A 115

//Need a valid initial quaternion: eta=l, epsilon=0;
for (i=0; i<STATELENGTH; i++)

dXl[i]=0.0;
dX2[i]=0.0;
dXout[i]=0.0;

dXl [SIM-QUAT_1]=1.;
dX2 [SIM-QUAT-1]=1.;
dX-out [SIMQUAT_1]=1.;

//Number of state elements
iN=STATELENGTH;
iNw=STATELENGTH;

//Initialize the inertia matrix
int j;
for (i=0;i<3;i++)

for (j=0;j<3;j++)

utdI[i] [j]=0.0;
nudInvI[i] [j]=0.0;

nudI [0] [0 ]=INERTIAXX;
utdI [l] [l =INERTIALYY;
utdI [2] [2]=INERTIAZZ;
CalcInvI();

for (i=0; i<3; i++) {
nLdBodyTorque [i]=0 .;
nudBodyForce [ i ]=0 . ;
iLdInertialForce [i] =0.;

ZeroDisturbance (;
nudDisturbStartTime = 0.0;
nudDisturbDuration = 0.0;

//Set position of geometric center w.r.t center of mass in body frame coordinates
nudGCpos[ =0] -CMPOSX;
nudGCpos [l] = -CMPOSY;
nu.dGcpos [2] = -CM-POSZ;

//Set things up for integrator
dWorstTol=0.;
X)dot=(DerivFunc) &CPropagator::CombinedDerivFunc;

/*
* Set 3x3 inertia matrix of satellite
*/

void CPropagator::SetInertia(double dI[3] [3])

memcpy(nLdI,dI,sizeof (double) *9);
CalcInvI (;

/*
* Calculate the inverse of the 3x3 inertia matrix
* WARNING: ASSUMES I is diagonal
*/

void CPropagator::CalcInvI()

SFLOAT sfInvI[3][3], sfTempI[3][3], sfIndex[3][3], sfScaling[3][3];
SFIX sfRow[3][3];
siglib.numerixSMXInverse((SFLOAT*)nndI, (SFLOAT*)sfInvI, (SFLOAT*)sfTempI, (SFLOAT*) sf Index,

(SFIX*)sfRow, (SFLOAT*)sfScaling, 3);
int i, j;
for(i=0; i<3; i++) {

for (j=0; j<3; j++) {
uudInvI[i] [j] = sfInvIli [j];
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/*
* Get copy of 3x3 inertia matrix of satellite
*/

void CPropagator::GetInertia(double dI[3][3])

memcpy(dI,ntdI,sizeof(utdI));

/*
* Set full state of satellite
* CAREFUL: This sets the center of mass state directly.
* It does not take into account the difference in

position between CM and geometric center.
*/

void CPropagator::SetCMState(double dState[STATELENGTH])

normQ(&dState[SIMQUAT_1] );
memcpy(dX2,dState,sizeof(dX2));
memcpy(dX_out,dState, sizeof(dX~out));

/*
* Set full state of satellite by specifying coordinates of the geometric center.
*/

void CPropagator::SetGCState(double dState[STATELENGTH])
SetCMState (dState);

//Now overwrite the posvel info to take into account CM offset
double dTemp[3];
quatrotate_out (nt.pdQuat, nrLdGCpos, dTemp);
dX2[SIMPOSX] = dX.out[SIMPOSX] = dState[SIM_.POSX] - dTemp[O];
dX2[SIMPOSY] = dX-out[SIMPOSY] = dState[SIMPOS_Y] - dTemp[l];
dX2[SIMPOSZ] = dX-out(SIMPOSZ] = dState[SIMPOSZ] - dTemp[2];

//Take into account that the body frame is a rotating reference frame.
double wxr[3];
crossProduct(nLpdRate, nudGCpos, wxr);
quatrotateout(utpdQuat, wxr, dTemp);
dX2[SIMVELX] = dXout(SIMCVEL_X] = dState[SIMVEL_X] - dTemp[O];
dX2[SIMVELY] = dX.out[SIM_VEL_Y] = dState[SIMVEL_Y] - dTemp[l];
dX2[SIMVELZ] = dX-out[SIMVEL-Z) = dState[SIMVEL_Z] - dTemp[2];

/*
* Interpolate the state vector to time t, starting from time dT1
* RESULT:dTout set to t
* dX_out interpolated up to time t

*1

void CPropagator::InterpToTime(double t)

dT.out=t;
double dTemp-t-int=dT2-dTl;
intrp_ (&iN, &dTl, dxl, &dTout, dXout, &dTemp-t-int, &iNw, nudws [0]);
normQ(&dX-out(SIMQUATl1]);

void CPropagator::InterpToTime(struct TimePair * tp)

InterpToTime(tp2dbl (tp));

/*

* Propagates the state vector from time dT2 to dTime
* Will not integrate if dTime < dT2
*/

int CPropagator: :IntegrateToTime (double dTime)
if (dTime > dT2) {

dDelta-t = dTime - dT2;
Integrate(false);
return 0;

else return 1;
}
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/*
* Propagates the state vector from time dTl to dT2 = dTl + dDelta_t
* PARAMETERS:bFromNow= true(reintegrate for rest of same timestep)
* = false(integrate next timestep)
*/

int CPropagator: :Integrate (bool bFromNow)

//Make sure thrust takes into account current orientation of sphere
//iInd=l;
double doldCurTime; //time from which we are integrating from
double dCurTol=dTol;//current error tolerance that integrator is trying to maintain

if (bFromNow)
//Reintegrate for rest of same timestep
dTl=dTout;
memcpy(dXl, dX.out, sizeof (dX1) );
memcpy(dX2, dXout, sizeof (dX2));
//Account for weird convergence behaviour
iInd=l;
memset (nt.dws [01, 0, sizeof (ntdws));
memset (nLdC, 0, si zeof (ndC) ) ;
//mdC[6]=MAXINTFCNEVALS;
nudC[21=0.;//HMINORBIT;
dOldCurTime=dTout;

else

//Integrate next step
dTl=dT2;
dT2=dTl+dDelta-t;
memcpy(dXl,dX2,sizeof(dXl));
//Account for weird convergence behaviour
iInd=l;
memset (mdws [0 ] , 0, sizeof (nudws));
memset (n.dC, 0, sizeof (utdC) ) ;
//ntdC[6]=MAXINTFCNEVALS;
nLdC [21=0. ; //HMINORBIT;
dOldCurTime=dTl;
dT-out=dT2;

if (ntbDisturbanceOn && dTl >= nudDisturbStartTime + nLdDisturbDuration) ZeroDisturbance (;

//move X2 (of prev step) to Xl
//memcpy(dXl,dX2,sizeof(dXl));
//integrate
bool bWorking=true;
iNumLoops = 0;
while (bWorking)

dverk_(&iN, Xdot, &dTl, dX2, &dT2, &dCurTol, &iInd, nLdC, &iNw, mudws (0]);
iNumLoops++;

if (iInd==RKERROR-ERRREQ)

//Retry with higher TOL. Rather ad hoc
dTl=dOldCurTime;
dCurTol *= 10.;
dWorstTol=dCurTol;
memcpy(dX2,dXl,sizeof(dXl));
iInd=l;
memset(utdws[0] ,0,sizeof(utdws));
//memset (ntdC,0,sizeof (ntdC));
/ /utdC [61 =MAXINT_FCNEVALS;
//m.tdC[21=0.;
memset (nedws [0 1 , 0, si zeof (ntdws));

else

bWorking=false;

/ /dTl=dT2-dDeltat;
dTl=dOldCurTime;



118 APPENDIX A

if (bFromNow)
{
/ / InterpToTime (dOldCurTime);

else

//dX2 is copied instead of dX1 to cover the case that intrp_ is never used
memcpy(dX.out,dX2,sizeof(dX2));

normQ(&dX.out[SIMQUAT1] ) ;//added 10/22/2002
return iInd;

/*

* Used to find the derivatives of the 13 state variables.
* PARAMETERS:X= current state vector
* RESULT:X-prime= set to derivative of X
*/

int CPropagator::CombinedDerivFunc(int *neqn, double *t,double *X, double * X-prime)
double dDistOn = 0.0;
//Must use >= and <= instead of > and < or will crash
if (mubDisturbanceOn) {

dDistOn = 1.0;

//ROC for quaternion (notation for euler parameters)
//eta-dot
X-prime(SIMQUAT_1]=-

.5* (X[SIMQUAT2] *X[SIMRATEX]+X[SIMQUAT_3] *X[SIMRATE_Y]+X[SIMQUAT_4] *X(SIM_RATE_

//epsilon-dot
X-prime [SIMQUAT_2]= . 5* (X [SIMQUAT1] *X [SIMRATEX] -

X [SIM_QUAT_4] *X [SIMRATEY]+X [SIM_QUAT_3] *X[SIMRATEZ]);
X-prime [SIMQUAT3 =. 5* (X[SIMQUAT_4] *X (SIK_RATE_X]+X [SIMQUAT1] *X[SIMRATEY] -

X[SIMQUAT_2 ] *X[SIMRATEZ]);
X_prime [SIM_QUAT_4]=.5*(-

X[SIM-QUAT_3]*X[SIM_RATE_X]+X[SIMQUAT_2]*X[SIMRATEY]+X[SIMCQUATl]*X[SIMRATEZ]);

//Rate of change of angular velocity
double dTemp[3], dTemp2[3];
siglibnumerixSMXMultiply( (SFLOAT*)nudI, (SFLOAT*) (&X[SIMRATEX]), (SFLOAT*)dTemp, 3, 3, 1);

crossProduct(&X[SIMRATEX], dTemp, dTemp2);
int i;
for (i=0; i<3; i++) {

dTemp[i] = nudBodyTorque[TORQUEX+i] + dDiston*nmdDistTorque[i] - dTemp2[i];

siglib-numerixSMXMultiply( (SFLOAT* )nLdInvI, (SFLOAT*) dTemp, (SFLOAT*) (&Xprime [SIMRATE_X]), 3, 3,
1);

//Rate of change of position
X-prime [SIMPOSX]=X [SIMVELX];
X_prime[SIMPOS-Y]=X[SIM_VELY];
X-prime(SIMPOSZ]=X[SIMVELZ];

//Rate of change of velocity
quat-rotate-out (&X [SIMQUATl] , nLdBodyForce, nudInertialForce);
X_prime [SIMVEL_X] =nLdInvMass* (mdInert ialForce[ THRUST_X] + dDistOn*ntdDistForce[0]);
X_prime [SIM_VEL_YI =ntdInvMass* (ntdInert ialForce [THRUST_Y] + dDistOn*nLdDistForce[1]);
X_prime [SIM_VEL_Z ] =rrLdInvMass* (nLdInert ialForce [THRUST_Z ] + dDistOn*ntdDistForce [2]);

return 0;

/*

* Normalize the quaternion part of a state vector.
* PARAMETERS:X= state vector

void CPropagator::normQ(double* dX)

double dNorm=l./sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dx[21+dX[3]*dX[3]);
if (dX[0] < 0.0) {

dX[0] *= -dNorm;
dX[l] *= -dNorm;
dX[2] *= -dNorm;
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dX[3] -dNorm;
}
else

dX[0] *= dNorm;
dX[l] *= dNorm;
dX[2] *= dNorm;
dX[3] *= dNorm;

}
}

/*
* Check if the inertia has been set.
* RETURNS:true if the Ixx component of the inertia matrix > 0.
*/
bool CPropagator: :InertiaIsSet ()
{

//return (vect.mag3 (utdI)>.O);
return nudI [0] [0]>.0;

}

* Set principal inertia values
* PARAMETERS:dI= 3 element array containing principal inertia values
*/

void CPropagator: :SetPrincipalInertia (double dI [3])

nu-dI[0][(0]=dI [0];
nLdI [1] [1]=dI [1] ;
nLdI[2] [2]=dI[2];

}

/*
* 3 body frame angular forces and 3 body frame translational forces
* dTime: time at which these forces and torques are applied
*/

void CPropagator::SetTorqueThrust (double dTorque[3], double dThrust[3], double dTime)
{

//First propagate the state up to now
IntegrateToTime (dTime);

//Now save the torque/thrust values so they can be taken into account
//for the next integration

for (nt i=0; i<3; i++) (
nLdBodyTorque [i] = dTorque [i];
nudBodyForce[i] = dThrusti];

#ifdef ONE_G
nudBodyTorque [TORQUEX] = 0.;
mdBodyTorque [TORQUEY] = 0.;
mdBodyForce[THRUST_Z] = 0.;

#endif
}

* Updates the mdInertialForce array to take into account the new body orientation
* Since the thrust set in SetTorqueThrust(...) is a body frame thrust but the SPHERE
* might be rotating.
*/

void CPropagator::ConvertThrustToInertialFrame()
quat-rotate..out (mtpdQuat ,ntdBodyForce, nLdInertialForce);

/*

* Returns the position of the geometric center of sphere.
* Rgc = Rcm + R(cm -> gc)
* whereRgc= position of geometric center
* Rcm =position of center of mass
* R(cm -> gc)= vector from cm to gc
*/

void CPropagator::GetPosition(double dPos[3])

//Rotate R(cm -> gc) from body frame coordinates into inertial coordinates
quat-rotate-out(updQuat, nudGCpos, dPos);
dPos[0] += dXout[SIMPOSX] ;
dPos(l1 += dX..out[SIM-POSY];
dPos[2] += dX-out(SIM-POSZ];
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* Vgc = Vcm + wxr +Vrel
* whereVrel = 0
*/

void CPropagator::GetPosVel (double dPos[3], double dVel[3])

GetPosition(dPos);
//Compute wxr and rotate out of body frame

double wxr[3];
crossProduct(nt.pdRate, mdGCpos, wxr);
quatrotateout(ntpdQuat, wxr, dVel);
dVel[0] += dX-outSIM_VEL_X];
dVel[l] += dX-out[SIM_VEL_Y];
dVel[2] += dX-out(SIM_VELZ];

/*
* Get full state of satellite (13 variables)
*/

void CPropagator: :GetState(double dState[STATELENGTH])

memcpy(dState, dXout, STATELENGTH*sizeof (double));
//Overwrite center of mass state info with geometric center state info

GetPosVel (dState+SIM_POSX, dState+SIMVELX);

* Get extended state of satellite (19 variables)
* But with the position and velocity of the center of mass
* Full state plus acceleration and angular acceleration
*/

void CPropagator: :GetCMExtendedState (double dState (EXTENDEDSTATE_LENGTH])

double dDistOn = 0.0;
//dT2 is the time at which the current state is valid
//Must use >= and <= instead of > and < or will crash
if (nrbDisturbanceOn) {

dDistOn = 1.0;

memcpy(dState, dXout, STATELENGTH*sizeof (double));
ConvertThrustToInertialFrame (;
dState (SIM_ACCX]=ntdInvMass* (LdInertialForce [THRUSTX] + dDistOn*ntdDistForce [01);
dState[SIMCACCY] =ndInvMass* (ntdInertialForce [THRUSTY] + dDistOn*LdDistForce [11);
dState [SIM_ACC_Z]=ntdlnvMass* (ntdInertialForce [THRUST_Z] + dDistOn*ntdDistForce [2]);

double dTemp[3], dTemp2[3];
siglibnumerixSMXMultiply( (SFLOAT*)ntdI, (SFLOAT*) (&dX-out [SIMRATE_X]), (SFLOAT*) dTemp, 3, 3, 1);
crossProduct (&dX-out [SIMRATEX], dTemp, dTemp2);
int i;
for (i=0; i<3; i++)

dTemp(i] = ntdBodyTorque[TORQUEX+i] + dDistOn*mLdDistTorque[i] - dTemp2(i];

siglibnumerixSMXMultiply ( (SFLOAT*)nudInvI, (SFLOAT*) dTemp, (SFLOAT*) (&dState [SIM_ACCANGX]), 3,
3, 1);

/*

* Get extended state of satellite (19 variables)
* Full state plus acceleration and angular acceleration
*/

void CPropagator::GetExtendedState(double dState[EXTENDEDSTATELENGTH])

int i;
double dTemp[3], dTemp2[3];
GetCMExtendedState (dState);

//Overwrite composite object center of mass state info with
//SPHERE geometric center state info.

GetPosVel (dState+SIMPOS__X, dState+SIM_VEL_X);

//Add extra terms to linear acceleration
//w x (w x r) term
double wxr[3], wxwxr[3], wDotxr[3];
crossProduct(ntpdRate, mdGCpos, wxr);



APPENDIX A 121

crossProduct(mtpdRate, wxr, wxwxr);
quat-rotateout(mpdQuat, wxwxr, dTemp);

//wdot x r term
crossProduct (&dState [SIMLACCANG-X], utdGCpos, wDotxr);
quatrotateout (nupdQuat, wDotxr, dTemp2);
for (i=0; i<3; i++) (

dState[SIM-ACCX+il += dTemp[i] + dTemp2[i];

/*
* Rezero all relevant propagator variables, so that the propagator is
* in the same state as when first initialized.
*/

void CPropagator::Rezero()
int i;
for (i=0; i<STATE_LENGTH; i++)

dXl(i] = 0.;
dX2[i] = 0.;
dXout[i] = 0.;

dXl[SIM-QUAT_1] = 1.;
dX2[SIMQUAT_.1] = 1.;
dX-out[SIl-QUATl] = 1.;

for (i=0; i<3; i++) {
nudBodyForce~i] = 0.;
nLdBodyTorque [i] = 0.;
nLdInertialForce[i] = 0.;

int CPropagator::GetNumLoops() {
return iNumLoops;

void CPropagator::SetDisturbance(double dForce[3], double dTorque[3], int iDuration)
if (vectjnag3(dForce) + vectjnag3(dTorque) > 0.0) nubDisturbanceOn = true;
for (int i=0; i<3; i++) {

iidDistForce[i] = dForce[i];
nudDistTorque[i] = dTorque[i];

#ifdef ONE_G
nudDistTorque(O] = 0.;
nudDistTorque[l] = 0.;
nLdDistForce[2l = 0.;

#endif
//iDuration is in milliseconds
//Disturbance starts at end of last integration period.
nudDisturbStartTime = dT2;
ni.dDisturbDuration = ((double) iDuration)/1000.0;

void CPropagator: :ZeroDisturbance()
nLbDisturbanceOn = false;
nudDisturbDuration = 0.0;
for (nt i=0; i<3; i++) {

nuldDistForce[i] = 0.0;
nudDistTorque[i] 0.0;

bool CPropagator: :IsDisturbanceOn ()
return nLbDisturbanceOn;

void CPropagator: :GetInvInertia (double dInvI[3][3])
for (nt i=0; i<3; i++) {

for (int j=0; j<3; j++) {
dInvIi] i[j] = mudInvIi] i[j];

}
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void CPropagator::ZeroTorques()
for (nt i = 0; i<3; i++) {

mdBodyTorque[i] = 0.0;

void CPropagator::ZeroForces()
for (int i = 0; i<3; i++)

nudBodyForce[i] = 0.0;
nudInertialForce[i] = 0.0;

void CPropagator::SetInvMass(double dInvMass)
mndInvMass = dInvMass;

A.1.3 Sph docking-propagator.h
#ifndef _SPHDOCKINGPROPAGATOR_
#define _SPHDOCKINGPROPAGATOR_

#include "sph-propagator.h"

class CDockingPropagator:public CPropagator
public:

CDockingPropagator();

double nudPosWRTComposite[3];
double nL-dQuatWRTComposite[4];

//Functions overridden from CPropagator
void Set InitialGCState (double dState [STATELENGTH]);
void GetState(double dState[STATELENGTH]);
void GetExtendedState (double dState [EXTENDED.STATELENGTH]);
void GetPosition(double dPos[3]);
void GetPosVel(double dPos[3], double dVel[3]);
void Get PosVelAccel (double dPos(3], double dVel[3], double dAccel[31);

//New functions
void SetQuatWRTComposite(double dQuat[4]);
void SetCMPosWRTComposite(double dPos(3]);
void GetQuatWRTComposite(double dQuat[4]);
void GetCMPosWRTComposite(double dPos[3]);
void CombineQuaternions(double dQl[4], double dQ2[4], double dQNew[4]);

};

#endif

A.1.4 Sph docking-propagator.cpp
#include "sphdockingpropagator.h"

#include <math.h>
#include <string.h>

#ifndef _NEED_TP_DEFN_
#define _NEED_TP_DEFN_
#endif
#include "gflp_obtconv.h"
#include "quick_vectors.h"

////////CDockingPropagator//////////////////////////

/*
* Constructor
*/

CDockingPropagator::CDockingPropagator() {
int i;

//Initially the SPHERE is the composite object, so the quaternion is (1, 0, 0, 0).
mdQuatWRTComposite[0] = 1.0;
nLdQuatWRTComposite[l] = 0.0;
nLdQuatWRTComposite[2] = 0.0;
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rt.dQuatWRTComposite[3] = 0.0;

//Initially the SPHERE is the composite object, so the position of the geometric
//center w.r.t the center of mass of the composite object is just the difference
//between the g.c. and c. of m. of the SPHERE.
for (i0; i<3; i++) {

n-dPosWRTComposite[i] = uLdGCpos[i];

/*
* This function sets the quaternion that expresses the orientation of the SPHERE
* with respect to the composite object body coordinates frame of reference.
*/

void CDockingPropagator:: SetQuatWRTComposite (double dQuat[4])
normQ(dQuat);
for (nt i=0; i<4; i++)

nLdQuatWRTComposite(i] = dQuat(i];

/*
* This function sets position of the SPHERE's
* geometric center in the composite object body coordinates frame of reference.
*/

void CDockingPropagator: :SetCMPosWRTComposite (double dPos [3])
double dTemp[3];
quatrotateout (ntdQuatWRTComposite, mcdGCpos, dTemp);
for (nt i=O; i<3; i++) {

nLdPosWRTComposite(i] = dPos(i] + dTemp[i];

void CDockingPropagator::GetQuatWRTComposite(double dQuat[4])
for (nt i=0; i<4; i++) {

dQuat[i] = uLdQuatWRTComposite(i];

}

void CDockingPropagator: :GetCMPosWRTComposite (double dPos [3])
for (nt i=0; i<3; i++) {

dPos[i] = nudPosWRTComposite[i];

/*
* This function is used when the initial state of a SPHERE is sent from the
* SPHERE module. Do not use when SPHERE is already active.
*/

void CDockingPropagator: :SetInitialGCState (double dState[STATELENGTH])
SetCMState (dState);

I/Now overwrite the posvel info to take into account CM offset
double dTemp[3];
quatrotateout (ntpdQuat, ndPosWRTComposite, dTemp);
dX2[SIM-POSX] = dXout[SI_..POSX] = dState(SIMPOSX] - dTemp[O];
dX2[SIM-POSY] = dXLout[SIM.LPOSY] = dState(SIM_POS_Y] - dTemp[l];
dX2[SIMPOSZ] = dXKout[SIPOSZ] = dState[SIMPOSZ] - dTemp[2];

//Don't worry about fact that velocity is different because of center of mass offset

/*

* Returns the position of the geometric center of sphere in the global frame.
* Rgc = Rcm + R(cm -> gc)
* whereRgc= position of geometric center
* Rcm =center of mass of composite object
* R(cm -> gc)= vector from cm to gc
*/

void CDockingPropagator: :GetPosition (double dPos[3])

//Rotate R(cm -> gc) from body frame coordinates into inertial coordinates
quatrotateout (&dX-out [SIIQUAT_1], nudPosWRTComposite, dPos);
dPos[0] += dX-out[SIM-POSX];
dPos[l] += dX.out[SIM-POSY] ;
dPos[2] += dX-out[SINPOSZ];

}
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/*
* Vgc = Vcm + wxr +Vrel
* whereVrel = 0
*/

void CDockingPropagator: :GetPosVel (double dPos [3], double dVel [3])

GetPosition(dPos);
//Compute wxr and rotate out of body frame

double wxr[3];
crossProduct(mSpdRate, nudPosWRTComposite, wxr);
quatrotateout(mpdQuat, wxr, dVel);
dVel[0] += dXout[SIM_VEL_X];
dVel[l] += dX2out[SIM-VEL_Y];
dVel[21 += dX.out[SIMVELZ];

/*

* Get full state of satellite (13 variables)
*/

void CDockingPropagator: :GetState(double dState(STATELENGTH])

memcpy(dState, dXout, STATELENGTH*sizeof (double));
//Overwrite composite object center of mass state info with
//SPHERE geometric center state info.

GetPosVel (dState+SIM_POS_X, dState+SIMVEL_X);

/*

* Get extended state of satellite (19 variables)
* Full state plus acceleration and angular acceleration
* Always gives you the state of the geometric center of the SPHERE.
*/

void CDockingPropagator: :GetExtendedState (double dState [EXTENDEDSTATELENGTH)

int i;
double dTemp[3], dTemp2[3], dStateTemp[EXTENDEDSTATELENGTH];
GetCMExtendedState (dState);
//Need the state saved in temp variable for angular equations below
GetCMExtendedState (dStateTemp);

//Overwrite composite object center of mass state info with
//SPHERE geometric center state info.

GetPosVel (dState+SIMPOS_X, dState+SIMVEL_X);

//Add extra terms to linear acceleration
//w x (w x r) term
double wxr[3], wxwxr[3], wDotxr[3];
crossProduct(npdRate, nLdPosWRTComposite, wxr);
crossProduct (nupdRate, wxr, wxwxr);
quat-rotate-out(ntpdQuat, wxwxr, dTemp);

//wdot x r term
crossProduct (&dState (SIMACCANGX], utdPosWRTComposite, wDotxr);
quat-rotate-out (rtdQuat, wDotxr, dTemp2);
for (i=O; i<3; i++) {

dState[SIMACCX+i] += dTemp[i] + dTemp2[i];

//Figure out angular information
//Quaternion
CombineQuaternions (ntpdQuat, nLdQuatWRTComposite, &dState (SIMQUAT_1] );

//Angular rates
quat-rotate-in(nLdQuatWRTComposite, &dStateTemp(SIMRATE_X], &dState[SIMRATE_X]);

//Angular accelerations
quatrotatein(mdQuatWRTComposite, &dStateTemp[SIMACCANG_X], &dState[SIMACCANG_X]);

/*
* Combine two quaternions representing successive angular displacements, to yield a composite

* quaternion representing the composite rotation.
*/

void CDockingPropagator::CombineQuaternions(double dQ1[4], double dQ2[4], double dQNew[4]){
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dQNew[0] = dQl[0]*dQ2[0] - (dQl[l]*dQ2(1] + dQl[2]*dQ2[2] + dQl[3]*dQ2[3]);
dQNew[l1] = dQ2[0]*dQl[1] + dQl[0]*dQ2[l] - dQl[3]*dQ2[2] + dQl[2]*dQ2[3];
dQNew[2] = dQ2[0]*dQl[2] + dQl[0]*dQ2[2] + dQl[3]*dQ2[1] - dQl[l]*dQ2[3];
dQNew[3] = dQ2[0]*dQl[3] + dQl[0]*dQ2[31 - dQl[2]*dQ2[1] + dQll]*dQ2[2];

A.1.5 Sph-dynamicssimnew.h
#ifndef _SPH_DYNAMICSSINEW_
#def ine _SPHDYNAMICSSIM_NEW__

#include "Spheres-includes.h"
#include "sphpropagator.h"
#include "sphdocking-propagator.h"
#include "Spheres-constants.h"
#include "sph.dynamics-sim.sig"

void DbgPrintState (double dState[STATELENGTH], double dTime);
void DbgPrintExtendedState (double dState[EXTENDEDSTATELENGTH], double dTime);
void FillThrustSig(stDynSimForceTrqInput* p-stTorqueThrust, double dTorqueThrust[6], int iDbgSCId);
void CheckCollisionsWithWalls (CDockingPropagator& cProp) ;
void CheckSphereCollisions (CDockingPropagator cProp (NUMSATS], CTimerTrigger* cTimer);
void FillExtendedState(CDockingPropagator* cProp, stDynSimExtendedState* stExtendedState, int i, double

dTime);
void DockSpheres(CDockingPropagator* cPropO, CDockingPropagator* cPropl);
void TranslateInertiaMatrix(double dI[3][3], double dNewI[3](3], double dR[3], double dMass);
void RotateInertiaMatrix(double dI[3][3], double dNewI[3][3], double dQuat[4]);

#endif

A.1.6 Sph-dynamics simnew.cpp
#include "sphdynamicssimnew.h"

#include "SpheresNames.h"
#include "gflp_obt-conv.h"
#include "Spheres-test-functions.h"
#include "q.h"//Need q.h so don't get errors in globals.h
#include "globals.h"
#include <float.h>
#include "quick_vectors.h"
#include "gflops-sim.h"
#include "sph.thrustersim.sig"
#include <siglib.h>

#define MAIN_PROCPRIORITY20
#define INPUTARBITERPRIORITY11

#define _prefix "dynamsiuL"
char _ainProcName [ = "dynamics-sim";
char _testerProcName ] ="dynamics-sintester";
char _blockName[]= "dynamics-simblock";

const doubleINTEGRATETOL=l.e-10; //Used by the integrator to make sure it is staying
//within an acceptable error bounds.

double MAXUPDATETIME= 5.Oe-3; //Max time between state updates in seconds.
//Not constant so that can change for debug run.

int TIMESTEP= 1; //Simulator interrupt time.
//Not constant so can debug without filling

stack
//with heartbeat signals.

const double STATEDUMPTIMESTEP=l.; //Time between successive dumps of the state to the screen
bool STATE_DUMP= false;//True if dumping state to the screen
bool DEBUGRUN= false;//Affects simulator interrup time.
bool PRINTTHRUSTS= false;//True if printing each thrust to the screen
bool DOCKINGACTIVE= true;

double DOCKINGPORTVECTOR [3];
//g.bDocked[i] [j] = true if i and j have docked, false otherwise
//g.bDocked[i] [i] = true if i has docked with another satellite
bool g.bDocked[3] [3];
//After dock, ignore thrusts until thrust sim acknowledges receipt of docking notification.
//This way we know that it is not sending forces or torques that are not w.r.t. new docked
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//configuration, so the docked SPHERES won't fly apart.
bool g_bIgnoreThrusts [NUMSATS];

//aoExtendedState~i] holds the 19 updated state variables for satellite i
ATOMICOBJ(stDynSimExtendedState, CAtomicExtendedState, DEFAULTCEILING);
CAtomicExtendedState aoExtendedState[NUMSATS];

double dMaxTxPos[3];
double dMinTxPos [3];

double dSimStartTime = 0.0;

extern "C"(
OSENTRYPOINT (dyn-sim);
OSENTRYPOINT (dyn-sinttester);
OSENTRYPOINT (dyn-sininput-arbiter);
OSENTRYPOINT (dyn_sinblkmgr);

/*====================Dispatch Functions ======================*/
//Full state dispatch function

u32 dfcn_12_SendFullState(PROCESS prDest, int argc, char* argv, u32 nFlagBitMask)

union SIGNAL * sig;
stDynSimExtendedState stExtendedState;
aoExtendedState[argc] .Read(&stExtendedState);
sig=alloc (sizeof (stDynSimFullState), DYNSIMFULLSTATE);

((stDynSimFullState *) sig)->iSCId=htonl(argc);
((stDynSimFullState *) sig) ->bActive=htonb(stExtendedState.bActive);
((stDynSimFullState *) sig) ->dTimestamp=htond (stExtendedState. dTimestamp - dSimStartTime);
for (nt i=O; i<STATELENGTH; i++) {

(((stDynSimFullState *) sig) ->dState) [i]=htond(stExtendedState.dState[i]);

send(&sig,prDest);
return 0;

//Extended state dispatch function
u32 dfcn_12_SendExtendedState(PROCESS prDest, int argc, char* argv, u32 nFlagBitMask)

union SIGNAL * sig;
stDynSimExtendedState stExtendedState;
aoExtendedState [argc] . Read(&stExtendedState);
sig=alloc(sizeof(stDynSimExtendedState), DYN_SIM_EXTENDEDSTATE);

((stDynSimExtendedState *) sig)->iSCId=htonl(argc);
((stDynSimExtendedState *) sig) ->bActive=htonb(stExtendedState.bActive);
((stDynSimExtendedState *) sig) ->dTimestamp=htond(stExtendedState.dTimestamp - dSimStartTime);
for (nt i=0; i<EXTENDEDSTATELENGTH; i++) {

(((stDynSimExtendedState *) sig)->dState)[i]=htond(stExtendedState.dState i]);

send(&sig,prDest);
return 0;

//Dispatch function which sends extended state for all satellites

//whether active or not.
u32 dfcn_12_SendAllStateInfo(PROCESS prDest, int argc, char* argv, u32 nFlagBitMask)

union SIGNAL * sig;
stDynSimExtendedState stExtendedState;
int i,j;
sig=alloc (sizeof (stDynSimAllSatsState) ,DYN_SIMALLSATSSTATE);

for (i=0; i<NUMSATS; i++)

aoExtendedState[i].Read(&stExtendedState);
for (j=0;j<EXTENDEDSTATE_LENGTH;j++) {

(((stDynSimAllSatsState *) sig) ->dState) (i] [j]=htond(stExtendedState.dState[j]);

(((stDynSimAllSatsState *) sig) ->bActive) [i]=htonb(stExtendedState.bActive);

struct TimePair tpTime;
rtcget_time (&tpTime);
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((stDynSimAllSatsState *) sig)->dTimestamnp=htond(tp2dbl (&tpTime) - dSimStartTime);

send(&sig,prDest);
return 0;

/*======== ========= =========Classes ============================*/
//Derived block initializer

class CModuleInit: public CBlockLlInit{
public:

CModuleInit(char * sProcPrefix=NULL);
void StartBlock();

protected:
PROCESS nmainproc_;
PROCESS mntesterproc_;
PROCESS nutime_starterproc_;

};

CModuleInit: :CModuleInit (char * sProcPrefix) : CBlockLlInit(sProcPrefix)

//Input arbiter name
int i, j;
char buf [80];
sprintf (buf , "%sinput_arbiter ", sProcPref ix);

//Set up processes
uminput-arbiter_=create.process (OSPRIPROC, buf, dynsint.inputarbiter, 1000,

INPUTARBITERPRIORITY, 0, 0, NULL, 0, 0);
mmuainproc_=createprocess (OSPRIPROC, JnainProcName, dyn-sim, 24000, MAINPROC_PRIORITY,

0, 0, NULL, 0, 0);
nmtesterproc_=createprocess (OSPRI_PROC, _testerProcName, dyn_sinttester, 8000,

MAINPROC.PRIORITY, 0,0,NULL,0,0);
utblockproc_=InstallRedirTable (_blockName);

//Register Services
CSigWrap cSig;
cSig.Alloc(sizeof(NSAddServiceRequest)+strlen(_mainProcName), NSADDSERVICE_REQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", _mainProcName);
cSig.SendFrom(tblockproc_,nspid_);

//Initialize Variables
//Make sure there is time to print out debug info if on a debug run
//Set bigger timestep for debug run so stack doesn't get filled with heartbeat signals

if (DEBUGRUN) {
MAXUPDATETIME = 5.0; //ie. seconds
if (LONGTIMESTEP)

TIMESTEP = 1000;

//Set state to zeroes except make a valid quaternion (eta = 1)
stDynSimExtendedState stExtendedState;
for (i=0; i<EXTENDED_STATELENGTH; i++) {

stExtendedState.dState(i] = 0.0;

stExtendedState.dState[SIM-QUAT1] = 1.0;
for (i=0; i<NUMSATS; i++) (

stExtendedState.dTimestamp = 0.;
stExtendedState.bActive = false;
aoExtendedState [i . Write (&stExtendedState);

//Find max and min positions of transmitters along each axis.
//Used to determine locations of walls.
for (i = 0; i<3; i++) (

dMaxTxPos i] = DBLMIN;
dMinTxPos(i] = DBLMAX;

for (int tx = 0; tx<NUM_TX; tx++)
for (int i = 0; i<3; i++) {

if (TX-POS[tx][i]/100.0 > daxTxPos(i])
dMaxTxPos[i] = TXPOStx](i]/100.0;

if (TXPOS[tx][i]/100.0 < dNinTxPos[i])
dMinTxPos[i] = TX_POS[txJ[i]/l00.0;

}
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//Fill up vector that points to docking port in body frame
for(i=O; i<3; i++) {

DOCKINGPORTVECTOR[i] = CONSTDOCKINGPORTVECTOR[i];

//Fill up docked matrix (no SPHERES docked at start)
for (i=0; i<3; i++) {

gjbIgnoreThrusts i] = false;
for (j=O; j<3; j++) {

g~bDocked[i] [j] = false;

//Make dispatch functions visible to other modules
InstallDispatchFcn ("dynsimnfullstate", false, & (dfcn_12_SendFullState));
InstallDispatchFcn ("dynsitmextendedstate", false, &(dfcn_12_SendExtendedState));
InstallDispatchFcn ( "dynsixallsats-state", false, & (dfcn_12_SendAllStateInfo));

//Seed random number generator
time-t rnd-seed;
time(&rnd_seed);
CRandGen: :SetSeed(rnd-seed);

void CModuleInit::StartBlock()

//Start Base Block Processes
CBlockLlInit::StartBlock(;
start (nmain-proc_);

// start (mtesterproc.);
start (minputarbiter_);

OSPROCESS (dyn-sim) {
int i, j, nMissed=0, nTicks=0;

//Variables for thrust stats
bool bSendThrustStats = false;
int iNumThrustEntries = 0;
CSigWrap cThrustStatsSig;
PROCESS prThrustStatsDest = 0;

CDockingPropagator cProp [NUM-SATS];
bool bStarted = false;//whether the sim has started
struct TimePair tpTime;
double dCurrentTime = 0.0, dLastCollisionCheckTime =
double dTemp [STATE.LENGTH];
double dExtTemp[EXTENDED_STATE_LENGTH];
double dTorque(3], dForce[3], dInertialForce[3];
int iDuration;
stDynSimExtendedState stExtendedState;
int iSatID, iSatO, iSatl;
CSigWrap cSig;
CTimerTrigger cTimer(TIMESTEP, MAIN_PROC_PRIORITY);

for (;;) (

cSig.Receive((SIGSELECT *)_anysig);
rtc-gettime (&tpTime);
dCurrentTime=tp2dbl (&tpTime);
switch (cSig.GetSigNoo)

0.0, dLastStateDumpTime = 0.0;

case HRTBTTICKSIG:
if ((dCurrentTime - dLastCollisionCheckTime) > MAX_COLLISIONCHECKTIME) {

//Check for collisions (or dockings) between SPHERES
CheckSphereCollisions (cProp, &cTimer);
dLastCollisionCheckTime = dCurrentTime;

}
for (i=0; i<NUMSATS; i++) {

//Only integrate if satellite i is active
if (cProp[i].bActive) {

//Only integrate if the data is greater than MAXUPDATE_TIME seconds old
if ((dCurrentTime - cProp[i].GetCurTime()) > MAXUPDATETIME) {

CheckCollisionsWithWalls (cProp Ci]);
cProp [i] . IntegrateToTime (dCurrentTime);

//Save state info
FillExtendedState (cProp, &stExtendedState, i, dCurrentTime);
aoExtendedState[i].Write(&stExtendedState);

/ /
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cSig.FreeBuf();
break; / /HRTBTTICKSIG

case DYN-SIM-FORCETORQUEINPUT://From thruster sim
//Find which SPHERE its for
iSatID = ntohl ( ((stDynSimForceTrqInput *) cSig.pBuf) ->iSCId);
//Could be ignoring thrusts if just docked
if (cProp[iSatID].bActive && !g_bIgnoreThrusts[iSatID]) {

for (i=0; i<3; i++) {
dTorque [i] = ntohd( ((stDynSimForceTrqInput *) cSig.pBuf) ->dTorque) [i]);
dForce [i] = ntohd (stDynSimForceTrqInput *) cSig.pBuf) ->dForce) i]);

cProp [iSatID] . SetTorqueThrust (dTorque, dForce, dCurrentTime);
//Save state info since we integrated in SetTorqueThrust()

FillExtendedState (cProp, &stExtendedState, iSatID, dCurrentTime);
aoExtendedState [iSatID] .Write (&stExtendedState);

//If we are sending thrust data to the 3-D viewer
if (bSendThrustStats) (

(((stDynSimThrustStats*) cThrustStatsSig.pBuf) ->chSatID) [iNumThrustEntries] =

(unsigned char)iSatID;
(((stDynSimThrustStats*)cThrustStatsSig.pBuf)->dTime) [iNumThrustEntries] =

htond (dCurrentTime);
//Rotate force into global frame
quat-rotateout (&stExtendedState . dState [SIMQUAT-1], dForce, dInertialForce);
for (i=O; i<3; i++) (

(((stDynSimThrustStats*) cThrustStatsSig.pBuf) ->fForce) [iNumThrustEntries] [i]
= htonf((float)dInertialForce[i]);

( ( (stDynSimThrustStats*) cThrustStatsSig.pBuf ) ->fTorque) [iNumThrustEn-
tries][i] = htonf((float)dTorque[i]);

iNumThrustEntries++;
if (iNumThrustEntries == THRUST_ENTRIESPERSIG) {

//64 KB (max sig. size) reached -> send to requesting application
dbgprintf("Sending thrust stats to osebridge\n");
cThrustStatsSig.Send(prThrustStatsDest);
cThrustStatsSig.Alloc (sizeof (stDynSimThrustStats) ,DYN_SIM_THRUSTSTATS);
iNumThrustEntries = 0;

else dbgprintf("%s%i\n", "Thrust sent for sat that is not active. Sat: ", iSatID);

break; / /DYNSIM_FORCETORQUEINPUT

case DYNSIMSET_INITIALSTATE://Initial state is sent when SPHERE joins sim
iSatID = ntohl(((stDynSimFullState *) cSig.pBuf)->iSCId);
dbgprintf("%s%i\n", "Prop got initial state for sat: ", iSatID);
if (iSatID < NUM_SATS && iSatID >= 0) {

cProp[iSatID].bActive = true;
for (i=0; i<STATELENGTH; i++)

dTemp[i] = ntohd((((stDynSimFullState *) cSig.pBuf)->dState) [i]);

cProp [iSatID] . SetlnitialGCState (dTemp);
cProp[iSatID] .SetTolerance(INTEGRATE_TOL);

//Set forces to zero in case they are non-zero from previous sim
cProp[iSatID] .ZeroTorques(;
cProp[iSatID].ZeroForces();
cProp[iSatID] .ZeroDisturbance(;
if (bStarted) {

//Do stuff that would get done upon sim start if simulation hadn't started yet
cProp~iSatID] .SetTime(&tpTime);
//Update State Info
FillExtendedState(cProp, &stExtendedState, iSatID, cProp[iSatID].GetCur-

Time());

aoExtendedState [iSatID] .Write (&stExtendedState);
}

break; / /DYNSIMSET_INITIAL_STATE

case STARTSIMULATION:
//Start the propagator

if (!bStarted) (
dSimStartTime = tp2dbl (&tpTime);
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dbgprintf("%s%f\n", "Sim started at time: ", tp2dbl(&tpTime));
for (i=0;i<NUM.SATS;i++)

if (cProp[i].bActive)

cProp[i] .SetTime(&tpTime);
//Update State Info

FillExtendedState (cProp, &stExtendedState, i, cProp(il .GetCurTime ();
aoExtendedState[i].Write(&stExtendedState);

cTimer.Start(;
bStarted=true;

break; / /STARTSIMULATION

case DYN_SIMDISTURBSPHERE:
iSatID = ntohl ( ( (stDynSimDisturbSphere*)cSig.pBuf) ->iSat);
dbgprintf("Dyn sim got disturbance input for SPHERE %i\n", iSatID);
if (cProp[iSatID).bActive) (

iDuration = ntohl ( ( (stDynSimDisturbSphere*)cSig.pBuf) ->iDuration);
for (i=O; i<3; i++) {

dForce[i] = ntohd((((stDynSimDisturbSphere*)cSig.pBuf)->dForce) [i]);
dTorque[i] = ntohd( ( ((stDynSimDisturbSphere*)cSig.pBuf) ->dTorque) [i]);

dbgprintf("duration: %i mag force: %f mag torque: %f\n", iDuration,
vectnag3 (dForce), vect_jnag3 (dTorque));
cProp [iSatID] .SetDisturbance (dForce, dTorque, iDuration);

break;

case DYNSIMREQ_THRUST_STATS:

if (cThrustStatsSig.pBuf != NIL)
cThrustStatsSig. FreeBuf (;

prThrustStatsDest = cSig.Sendero;
bSendThrustStats = true;
cThrustStatsSig.Alloc(sizeof (stDynSimThrustStats) ,DYNSIMTHRUST_STATS);
iNumThrustEntries = 0;
break;

case DYN_SIM_STOPTHRUSTSTATS:
bSendThrustStats = false;
if (cThrustStatsSig.pBuf 1= NIL)

cThrustStatsSig.FreeBuf (;

break;

case DYNSIM_FLUSHTHRUSTSTATS:

if (bSendThrustStats) (
dbgprintf("Sending rest of thrust stats to osebridge\n");
cThrustStatsSig.Send(prThrustStatsDest);
cThrustStatsSig.Alloc(sizeof (stDynSimThrustStats) , DYN_SIM_THRUSTSTATS);
iNumThrustEntries = 0;

break;

case DYNSIMDOCKINGACKNOWLEDGE:
iSatO = ntohl( (( (stAcknowledgeDock*) cSig.pBuf) ->iSCId) [0]);
iSatl = ntohl ( ( ( (stAcknowledgeDock*) cSig.pBuf) ->iSCId) (1]);
g-bIgnoreThrusts[iSatO] = false;
g-bIgnoreThrusts(iSatl] = false;
dbgprintf("Dynamics simulator no longer ignoring thrusts after dock for SPHERES %i, %i\n",

iSatO, iSatl);
break;

case 0:
case DYNSIMRESET_SIM:

//Rezero the simulation
for (i=0;i<NUMSATS;i++) {

// cProp[i].Rezeroo;
cProp(i].bActive = false;
//Fill up docked matrix
FillExtendedState (cProp, &stExtendedState, i, cProp [i] .GetCurTime ());
aoExtendedState[i].Write(&stExtendedState);
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//Undock any docked satellites
for (i=0; i<3; i++) {

for (j=0; j<3; j++) {
g.bDocked[i] [j] = false;

break;//REZERO SIMULATION

default:
break;

}//switch statement
cSig.FreeBuf (;

}//end for loop
1//end dyn.sim process

OSPROCESS (dyn-s inLinput-arbiter)

PROCESS mainproc_;
hunt (_xnainProcName, 0, &main-proc_, NULL);

CSigWrap cSig;
for (;;) (

cSig.Receive((SIGSELECT *)_anysig);
switch(cSig.GetSigNo()

case 0:
case DYN_SIMRESET_SIM:
case DYN_SIMFORCE_TORQUEINPUT:
case DYN_SIMSETINITIALSTATE:
case START_SIMULATION:
case DYN_SIM_DISTURBSPHERE:
case DYN_SIMSTOP_THRUST_STATS:
case DYNSIMCFLUSH_THRUST_STATS:
case DYN_SINDOCKINGACKNOWLEDGE:

cSig.Send(main-proc_);
break;

case DYNSIM_REQTHRUSTSTATS:
cSig.SendFrom(cSig. Sender(, main-proc_);
break;

default:
cSig.FreeBuf (;
break;

OSPROCESS (dyn-sinLblkngr) {
REGISTERBLOCKVARS (;

CModuleInit cInitializer(_prefix);
cInitializer.StartBlock();

stop(currentprocess 0);

//This process is only used for testing.
//Doesn't run during real simulation runs.
OSPROCESS (dynsinttester)

PROCESS mainproc_;
hunt (_;nainProcName, 0, &main-proc_, NULL);

for (;;)

stop(current.process 0);
}

* Checks if the SPHERE is colliding with a wall and, if so, bounces the SPHERE off the wall.

void CheckCollisionsWithWalls (CDockingPropagator& cProp)
int i, k;
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double *dPos, *dVel;
double dNormal[3], dTemp[3], dState[STATELENGTH];
//Get state info and set up pointers to position and velocity arrays
cProp.GetState(dState);
dPos = &dState[SIM_POSX];
dVel = &dState[SIM-VELX];
for (i=0; i<3; i++) {

if (dPos[i] > dMaxTxPos[i]) {//ie. outside wall
for (k=0; k<3; k++) (

//Wall normal pointing into experiment space
dNormal[k] = (k == i)? -1.0 : 0.0;

//Reverse the component of velocity that is perpendicular to wall
scale-vect3((-1.0 - COEFF_OF_RESTITUTION)*vect-dot3(dVel, dNormal), dNormal, dTemp);
suntvect3(dVel, dTemp, dVel);
//Move the SPHERE away from wall
dPos[i] = dMaxTxPos[i] - 0.01;

//CAN'T MAKE THIS CALL WITH CDOCKINGPROPAGATOR! I!!!!!! ! ! ! ! !!!!!!!!!!
cProp.SetGCState(dState);

else
if (dPos(i] < dMinTxPos[i]) {//ie. outside wall

for (k=0; k<3; k++) {
//Wall normal pointing into experiment space
dNormal[k] = (k == i)? 1.0 : 0.0;

}
//Reverse the component of velocity that is perpendicular to wall
scale-vect3 ((-1.0 - COEFFOFRESTITUTION) *vect_dot3 (dVel, dNormal), dNormal, dTemp);
sumvect3(dVel, dTemp, dVel);
//Move the SPHERE away from wall
dPos[i] = dMinTxPos[i] + 0.01;

//CAN'T MAKE THIS CALL WITH CDOCKINGPROPAGATOR! ! I!!!!!!!!!!!!!!!!!!
cProp.SetGCState(dState);

//Assumes there are only 3 satellites! ! !I ! ! ! ! ! ! ! I!! ! ! !I!! ! ! ! ! !!!!! ! !!! !
/*

* For all 3 satellites, checks if any of them are colliding, and bounces them off each other.
* If docking is active, checks if any SPHERES have docked together.
*/

void CheckSphereCollisions (CDockingPropagator cProp(NUMSATS], CTimerTrigger* cTimer)
int i, j, ind;
double dState[NUMLSATS][STATELENGTH], dPosDiff[3], dTemp[3], dVelChange[3], dPosChange[3];
double *dPos[NUMSATS];
double *dVel [NUMSATS];

//Get state info and set up pointers to position and velocity arrays
for (i=0; i<NUMSATS; i++) {

cProp[i].GetState(dState[i]);
dPos[i] = &dState[i][SIMPOSX];
dVel[i] = &dState[i][SIMVELX];

//Check each pair of satellites for collisions
for (i=0; i<3; i++) {

if (i==2) j=0;
else j=i+l;
//only check if both satellites are active and not already docked together
if (cProp[i].bActive && cProp[j].bActive && gbDocked(i][j] == false)

diff.vect3(dPos(i], dPos[j], dPosDiff);
if (vectmag3(dPosDiff) < 2.0*RADIUS) { //ie. two SPHERES have collided

if (DOCKINGACTIVE) f//check if they have docked
//Check if SPHERES have proper orientation (docking vectors antiparallel)
double dDocki[3], dDockj[3];
quat-rotate-out(&dStatei](SIM.QUAT_1], DOCKINGPORTVECTOR, dDocki);
quat.rotate-out (&dState [j] (SIMQUAT_1] , DOCKINGPORTVECTOR, dDockj);
if(acos(vect-dot3(dDocki, dDockj))*RAD2DEG > 180.0 - DOCKINGOFFSETANG)

//Check if docking ports close enough
double dDockDiff[3];
for (ind=0; ind<3; ind++)

dDockDiff[ind] = (dState[i](SIMPOS_X+ind] + RADIUS*dDocki~ind]) -
(dState j][SIM_POS_X+ind] + RADIUS*dDockj[ind]);

if (vectjnag3(dDockDiff) < DOCKING_OFFSET_LIN)

_mw-
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dbgprintf("Docking occured between SPHERES %i and %i\n", i, j);
g_bDocked[il [i] = g.bDocked[i] Ij] = g-bDocked C] [i] = gbDockedj] [jI] =

true;

//Execute dock
DockSpheres(&cProp[i], &cProp[j]);

//Notify thruster simulator of the docking
//First find the thruster sim process
CProcessWrap cThrustSimProc;
if (cThrustSimProc.NSGetPid(_thrustSimName) ==0) (//found process

CSigWrap cSig;
cSig.Alloc (sizeof (stNotifyDock), THRUSTSIMDOCKING_NOTIFICATION);
((stNotifyDock*) cSig.pBuf)->iSCId[0] = htonl(i);
((stNotifyDock*) cSig.pBuf)->iSCId[l] = htonl(j);
double dPos[2] [3], dQuat[2] [4];
cProp[i] .GetCMPosWRTComposite(&dPos [01 [0]);
cProp[i] .GetQuatWRTComposite(&dQuat [0] [0]);
cProp[j].GetCMPosWRTComposite(&dPos[l] [0]);
cProp [j] .GetQuatWRTComposite(&dQuat [l] [0]);
for (ind=0; ind<3; ind++) {

(((stNotifyDock*) cSig.pBuf)->dPosWRTComposite) [0] [ind] =
htond(dPos[0][ind]);

(((stNotifyDock*) cSig.pBuf) ->dPosWRTComposite) [1] [ind] =
htond(dPos[l][ind]);

for (ind=0; ind<4; ind++) {
(((stNotifyDock*) cSig.pBuf) ->dQuatWRTComposite) (0 1[ind] =

htond(dQuat[O] [ind]);
(((stNotifyDock*) cSig.pBuf)->dQuatWRTComposite) [1][ind] =

htond(dQuatfl] [ind]);

cSig.Send(cThrustSimProc.GetPid ();
g.bIgnoreThrusts i] = g-bIgnoreThrusts[j] = true;

else dbgprintf("Dyn sim couldn't find thruster sim to notify of dock-
ing\n");

else dbgprintf("angles not close enough\n");

}
if (!g-bDocked[i])[jl)

if (vectnmg3(dPosDiff) > 0.0)
unitvect3 (dPosDiff, dTemp);
//Relative velocity of approach (perpendicular to normal at collision surface)
double dVelDiff = vect.dot3(dVel[i], dTemp) - vect-dot3(dVel[j], dTemp);
//Use coefficient of restitution to get relative velocity of separation
scale-vect3 (-dVelDif f * (1 + COEFFOFRESTITUTION) /2. 0, dTemp, dVelChange);
sumvect3(dVelfi], dVelChange, dVel[i]);
diff-vect3(dVel j], dVelChange, dVel[jL]);

else
//Random number generator
CRandGen cRandomNum;
//Use normal distribution
cRandomNum. SetType (RANDJ4ODENORMAL);
dTemp[O] = 0.0;
dTemp[l] = 0.0;
dTemp[2] = 1.0;

//Move them apart so they don't collide right away again
scale-vect3((2.0*RADIUS - vect-mag3(dPosDiff)) / 2.0 + 0.01, dTemp, dPosChange);
sunmvect3 (dPos [i], dPosChange, dPos [i]);
dif fvect3 (dPos i], dPosChange, dPos [i]);
cProp[i] .SetGCState(dState[i]);
cProp[j] .SetGCState(dState[j]);

}

void FillExtendedState(CDockingPropagator* cProp, stDynSimExtendedState* stExtendedState, int i, double
dTime) {

if (i >= 0 && i < NUMSATS) {
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cProp i] .GetExtendedState(stExtendedState->dState);
stExtendedState->iSCId = i;
stExtendedState->bActive = cProp[i].bActive;
stExtendedState->dTimestamp = dTime;

else
dbgprintf("Attempted to access non-existent propagator object in FillExtendedState(\n");

void DockSpheres(CDockingPropagator* cProp0, CDockingPropagator* cPropl)
int i, j;
double dCMState [2] [EXTENDEDSTATELENGTH], dState [2] [EXTENDEDSTATELENGTH];
CDockingPropagator* cProp[2];
cProp[0] = cProp0;
cProp[l] = cPropl;
for (i=0; i<2; i++)
//Get initial state
cProp[i]->GetExtendedState(&dState[i][0]);
//Find initial center of mass state
cProp[i]->GetCMExtendedState(&dCMState[i] [0]);

double dNewState [STATELENGTH];
for(i=0; i<3; i++) {

//Center of mass is average of the two centers of masses of the SPHERES
dNewState[SIM_POS_X+i] = (dCMState[0][SIMPOSX+i] + dCMState[l] [SIM_POSX+i])/2.0;
//Since masses of 2 SPHERES are equal, velocity of composite center of mass is equal
//to average of initial velocities.
dNewState[SIMVEL_X+il = (dCMState[0] [SIM1-VEL_X+i] + dCMState[l] [SIMVELX+i]) /2.0;

//Choose the new quaternion of the composite object to be equal to the global frame,
//since we can choose it arbitrarily
dNewState[SIMLQUAT_1] = 1.0;
dNewState[SIMQUAT_2] = 0.0;
dNewState[SIM-QUAT_3] = 0.0;
dNewState[SIMCQUAT-4] = 0.0;
double dAngMomentum[2] [3], dPosWRTNewCM[2] [3];
for (i=O; i<2; i++) (

//Have to change if the quaternion of the new object is not chosen as global frame
cProp[i] ->SetQuatWRTComposite(&dState[i] [SIM_QUATl]);

//Find position of SPHERE w.r.t. composite center of mass
diff_vect3 (&dState[i] [SIMPOSX], &dNewState[SIMPOS_X], dPosWRTNewCM[i]);
cProp[i] ->SetCMPosWRTComposite (dPosWRTNewCM[i]);
//Find angular momentum about instantaneous center of mass in global frame
//Angular momentum = r x mv
crossProduct (dPosWRTNewCM[i], &dState[i] [SIMVEL_X], dAngMomentum[i]);
scale-vect3 (MASS, dAngMomentum[i], dAngMomentum[i]);

//Find sum of angular momentum
double dTotalAngMom[3];
suntvect3 (dAngMomentum[0], dAngMomentum[E1], dTotalAngMom);

double dI[2][3][3];
for(i=0; i<2; i++)

//Find new inertia matrix
//Translate inertia matrix to the new center of mass of composite object
cProp[i]->GetInertia(dI[i]);
Trans lateInert iaMatrix (dI [ i ], dI[i], dPosWRTNewCM[i], MASS);
//Rotate inertia matrix so that it's expressed w.r.t. new quaternion
RotateInertiaMatrix (dl [i), dI [i], &dState[i] [SIMQUATl]);

double dNewI[3][3], dInvI[3][3];
for (i=0; i<3; i++) {

for (j=0; j<3; j++)
dNewI[i] [j] = dI[0] [i] (j] + dI[1] i] [j];

//Set new inertia matrix
cProp[0]->SetInertia(dNewI);
cProp[l] ->SetInertia(dNewI);

cProp[0]->GetInvInertia(dInvI);
//Find angular rates from angular momentum and inertia matrix since H = Iw
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siglib-numerixSMXMultiply((SFLOAT*)dInvI, (SFLOAT*)dTotalAngMom, (SFLOAT*)&dNewState[SIMRATEX],
3, 3, 1);

for (i=0; i<2; i++) {
cProp[i] ->SetCMState(dNewState);
//Set new inverse mass
cProp[i]->SetInvMass(1.0/ (2.0*MASS));
//Zero disturbances so they don't fly apart
cProp[i]->ZeroDisturbanceo;
//Zero torques and forces so they don't fly apart
cProp [i] ->ZeroTorques (;
cProp[i]->ZeroForces (;

}

* This function takes an inertia matrix specified about the center of mass
* of an object of mass dMass and replaces it with the inertia matrix of that object
* specified about another point at a displacement of -dR. ie. dR points from the new
* point to the original center of mass
*/

void TranslateInertiaMatrix(double dI[3][3], double dNewI[3][3], double dR[3], double dMass)
int i, j;
double dTemp[3][3];
siglibnumerix_SMXMultiply( (SFLOAT*)dR, (SFLOAT*)dR, (SFLOAT*)dTemp, 3, 1, 3);
double dIdentity[3][3];
double dMagR = vect_;nag3 (dR);
for (i=0; i<3; i++) {

for (j=0; j<3; j++) {
if (i==j) (

dIdentity[i][j] = dMagR;

else
dIdentity[i][j] = 0.0;

(i=0; i<3; i++) {
for (j=0; j<3; j++)

dNewI[i][j] = dI[i][i] + dMass*(dIdentity[i] [j] - dTemp[i] Cj]);

/*
* This function takes an inertia matrix and specifies it about a new frame
* of reference. The quaternion that specifies the rotation from the **NEW**
* frame of reference to the **OLD** frame of reference is given by dQuat.
*/

void RotateInertiaMatrix(double dI[3][3], double dNewI[3][3], double dQuat[4])
register double a=dQuat[l];
register double b=dQuat[2];
register double g=dQuat[3];
register double d=dQuat[0];

double dR[3][3], dRt[3][3], dTemp[3][3];

dR[0][0] = 1.-2.*(b*b+g*g);
dR[0][1] = 2.*(a*b+g*d);
dR[0][2] = 2.*(a*g-b*d);

dR[1][0] = 2.*(a*b-g*d);
dR[l] [1] = l.-2.*(a*a+g*g);
dR[l] [2] = 2.*(b*g+a*d);

dR[2][0] = 2.*(a*g+b*d);
dR[2][1] = 2.*(b*g-a*d);
dR[2] [2] = l.-2.*(a*a+b*b);

transpose(dR, dRt);
siglib-numerixSMXMultiply((SFLOAT*)dRt, (SFLOAT*)dI, (SFLOAT*)dTemp, 3, 3, 3);
siglib-numerix-SMX~ultiply((SFLOAT*)dTemp, (SFLOAT*)dR, (SFLOAT*)dNewI, 3, 3, 3);

for

{
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A.1.7 Sph-dynamics sim.sig
//GFLOPS SIGNAL DEFINITION FILE

//Service Name(s) :dynamics-sim#
//Creator:ADBR 10/26/2001

#ifndef __DYN_SIMSIGS_
#def ine _DYNSIMSIGS

//Some standard includes
#include "ose.h"
#include "osetypes.h"
#include "Spheres-constants.h"

/*========PASTE DEFINES HERE==========================* /
#define DYNSIMIFULLSTATE ( 100001 ) /* !-SIGNO( stDynSimFullState )-! */
#define DYNSIM_FORCETORQUEINPUT ( 100002 ) /* !-SIGNO( stDynSimTorqThrInput )-! */
#define STARTSIMULATION ( 100003 ) /* !-SIGNO( SIGSELECT )-! */
#define DYN_SIM_SETINITIAL_STATE ( 100004 ) /* !-SIGNO( stDynSimFullState )-! */
#define DYN_SIMALL_SATS_STATE ( 100005 ) /* !-SIGNO( stDynSimAllSatsState )-! */
#define DYN_SIM.EXTENDEDSTATE ( 100006 ) /* !-SIGNO( stDynSimExtendedState )-! */
#define DYNSIM_DISTURBSPHERE ( 100007 ) /* !-SIGNO( stDynSimDisturbSphere )-! */
#define DYNSIM_RESET_SIM ( 100008 ) /* !-SIGNO( SIGSELECT )-! */
#define DYNSIM_REQTHRUSTSTATS ( 100009 ) /* !-SIGNO( SIGSELECT )-! */
#define DYN_SINSTOPTHRUSTSTATS ( 100010 ) /* !-SIGNO( SIGSELECT )-! */
#define DYN_SIMFLUSHTHRUSTSTATS ( 100011 ) /* !-SIGNO( SIGSELECT )-! */
#define DYN_SIM_THRUSTSTATS ( 100012 ) /* 1-SIGNO( stDynSimThrustStats )-! */
#define DYNSI1_DOCKINGACKNOWLEDGE ( 100013 ) /* I-SIGNO( stAcknowledgeDock )-! */

//Define the structures used by service signals
typedef struct _stDynSimFullState

SIGSELECT sigNo;
int iSCId;
double dTimestamp;
double dState [STATE_LENGTH];
bool bActive;

} stDynSimFullState;

typedef struct _stDynSimExtendedState
SIGSELECT sigNo;
int iSCId;
double dTimestamp;
double dState [EXTENDED_STATELENGTH];

bool bActive;
} stDynSimExtendedState;

typedef struct _stDynSimAllSatsState
SIGSELECT sigNo;
double dTimestamp;
double dState (NUM_SATS] [EXTENDEDSTATELENGTH;
bool bActive[NUMSATS];

} stDynSimAllSatsState;

typedef struct _stDynSimForceTrqInput {
SIGSELECT sigNo;
int iSCId;
double dTorque[3];
double dForce[3];

} stDynSimForceTrqInput;

typedef struct _stDynSimDisturbSphere {
SIGSELECT sigNo;
int iSat;
double dForce[3];
double dTorque[3];
int iDuration;

} stDynSimDisturbSphere;

#define THRUST_ENTRIES_PERSIG 248
typedef struct _stDynSimThrustStats {

SIGSELECT sigNo;
unsigned char chSatID[THRUST_ENTRIESPERSIG];
double dTime [THRUSTENTRIESPERSIG];
float fForce[THRUSTENTRIESPERSIG] [3];
float fTorque [THRUSTENTRIESPERSIG] [3];
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} stDynSimThrustStats;

typedef struct _stAcknowledgeDock {
SIGSELECT sigNo;
int iSCId[2];

} stAcknowledgeDock;

#endif

A.2 Metrology Simulator

A.2.1 Sph_sensorsim.h
#ifndef _SPHSENSORSIMJ.-
#define __SPHSENSORSIM-

#define SPHEREGREY

#include "Spheres.includes.h"
#include "SpheresDefines.h"
#include "quick_vectors.h"
#include "gflp-obt-conv.h"
#include "q.h"//Need q.h so don't get errors in globals.h
#include "globals.h"
#include "pads.h"
#include "Sphere-properties.h"
#include "Spheres-constants.h"
#include "Spheres-Names.h"
#include "sph.dynamics.sim.sig"
#include "sphsensorsim.sig"
#include "Spherestestfunctions.h"
#include "curvefitdata.h"
#include "gflops-sim.h"

#define IN2CM 2.54
#define CM2IN 0.3937008

void attitudevectorsglobal(int tx,
double *state,
double txAng [NUM-FACE],
double rxAng [NUMFACE]);

int correct-gGlobal(double txAng[NUMLFACE], double rxAng[NUMFACE], float fDistance[NUM_FACE][NUM RX);

#endif

A.2.2 Sphsensorsim.cpp
#include "sphsensorsim.h"

#define MAIN_PROC_PRIORITY20
#define INPUTARBITER_PRIORITY11

#define STATEUPDATE_RATEl

#define _prefix "sensor_sinL_"
char _ainProcName[]= "sensorsim";
char _testerProcName[]="sensorsintester";
char _blockName[]= "sensorsinLblock";

bool DEBUGRUN= false;
bool NOISEON= false;

//Global variables declared in globals.h
extern float SIDE_VEC[NUkFACE] [3];
extern float RXPOS(NUMFACE][NUMRXI[3];

//aoExtendedState[i] holds the 19 updated state variables for satellite i
ATOMICOBJ (stDynSimExtendedState, CAtomicExtendedState, DEFAULTCEI LING);
CAtomicExtendedState aoExtendedState[NUMSATS];

//This holds the transmitter to receiver distance values.
//It gets overwritten with each new global metrology request.
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float gfDistance[NUMSATS] [NULTX] [NUM_FACE] [NUM_RX];

extern "C"{
OSENTRYPOINT (sensor-sim);
OSENTRYPOINT (sensorsinLtester);
OSENTRYPOINT (sensor.sim-inputarbiter);
OSENTRYPOINT (sensor-sintblk_mgr);

//Function for computing distances between beacons and receivers
void ComputeGlobalMetrologyData(int tx, int iSCId);

/*======================Dispatch Functions-======================*/
//IMU dispatch function
//Can be used instead of sending individual IMU requests

u32 dfcn_12_SendIMUrawData(PROCESS prDest, int argc, char* argv, u32 nFlagBitMask)

int i;
union SIGNAL * sig;
stDynSimExtendedState stExtendedState;
aoExtendedState[argc] .Read(&stExtendedState);
sig=alloc(sizeof(stSensorSimIMUdata), SPHSENSORSIMIMURAW);

//Could add noise later
(((stSensorSimIMUdata *) sig) ->iIMUdata) [X_ACCEL]=htonl(int) (((float) (100.0*stExtended-

State.dState [SIMACC_X]) ) * (float)CONV_X_ACCEL + gBias[XACCEL]);
(((stSensorSimIMUdata *) sig)->iIMUdata) [Y_ACCEL]=htonl(int) (((float) (100.0*stExtended-

State. dState [SIMACCY] ) ) * (float) CONV_Y_ACCEL + gBias [YACCEL]);
(((stSensorSimIMUdata *) sig)->iIMUdata) [Z_ACCEL]=htonl(int) (((float) (100.0*stExtended-

State.dState[SIM_ACCZ] )) * (float)CONVZACCEL + gBias[ZACCEL]);
(((stSensorSimIMUdata *) sig)->iIMUdata) [XGYRO]=htonl(int) (((float)stExtended-

State.dState (SIMRATEX]) * (float)CONVXGYRO + gBias [XGYRO]);
(((stSensorSimIMUdata *) sig) ->iIMUdata) (Y_-GYRO]=htonl(int) (((float)stExtended-

State.dState [SIM_RATEY] )* (float)CONVY_GYRO + gBias[YGYRO]);
(((stSensorSimIMUdata *) sig)->iIMUdata) [ZGYRO]=htonl(int) (((float)stExtended-

State.dState[SIMRATE_Z]) * (float)CONV_Z_GYRO + gBias[ZGYRO]);
send(&sig,prDest);
return 0;

/*============= ==============Classes-============================*/
//Derived block initializer

class CModuleInit: public CBlockLlInit(
public:

CModuleInit(char * sProcPrefix=NULL);
void StartBlock();

protected:
PROCESS ntLnainproc_;
PROCESS nLtesterproc_;

1;

CModuleInit: :CModuleInit(char * sProcPrefix) : CBlockLlInit(sProcPrefix)

//Input arbiter name
char buf[80];
sprintf(buf, "%sinput-arbiter", sProcPrefix);

//Set up processes
m~inputarbiter_=create-process (OSPRIPROC, buf, sensorsinuinputarbiter, 1000,

INPUTARBITERPRIORITY, O,0,NULL,0,0);
mnainproc_=create-process(OSPRI_PROC, _jnainProcName, sensorsim, 16000, MAIN_PROC_PRIORITY, 0,

0,NULL,0,0);
nLtester_proc_=create-process (OSPRIPROC, _testerProcName, sensor-sinLtester, 16000,

MAINPROCPRIORITY, 0,0,NULL,0,0);
nLblock_proc_=InstallRedirTable (blockName);

//Register Services
CSigWrap cSig;
cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (_jnainProcName), NS_ADD_SERVICEREQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", _rnainProcName);
cSig. SendFrom(nublock-proc_, nspid_);

//Make dispatch functions visible to other modules
InstallDispatchFcn ("sphsensorsintIMUraw", false, &(dfcnl2_SendIMUrawData));
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//Seed random number generator with system clock time
time-t rnd.seed;
time(&rnc..seed);
CRandGen: :SetSeed(rnd-seed);

void CModuleInit: :StartBlock()

//Start Base Block Processes
CBlockLlInit::StartBlocko;
start (naiinproc_);

/ / start (nLtester.proc_);
start (ninputarbiter_);

OSPROCESS(sensorsim) {
int i, sc;
int tx, face, rx;
int iCounter = 0;
bool bIMURequested [NUMSATS], bGMRequested [NUMSATS], bGMReqOnTime [NUMLSATS];
double dLastIMURequested[NUM_.SATS];//Time of the last IMU request
double dLastIMUsend (NUMSATSI;
PROCESS prSpheres(NUMSATS];

//Initialization
for (sc=0; sc<NUM_SATS; sc++)

bGMRequested[sc] = false;
bGMReqOnTime[sc] = false;
bIMURequested[sc] = false;
dLastIMURequested[sc] = 0.;
dLastIMUsend[sc] = 0.;

//Random number generator
CRandGen cGyroNoise, cAccelNoise;

//Use normal distribution
cGyroNoise. SetType (RANDODESNORMAL);
cGyroNoise. Set Param(O .0, GYRO_NOISE_RMS_DEG*DEG2RAD);
cAccelNoise. SetType (RANDMODESNORMAL);
cAccelNoise.SetParam(0.0, ACCELNOISERMS);

stDynSimExtendedState stExtendedState;
double dAccel[3], dRate[3], dTemp;
struct TimePair tpTime;
double dCurrentTime = 0.0;

CSigWrap cSig, cGlobMetSig, cIMUsig;
CTimerTrigger cTimer (1, MAINPROC-PRIORITY);
cTimer.Starto;
for (;;) (

cSig.Receive( (SIGSELECT *)_anysig);
rtc-get-time (&tpTime);
dCurrentTime = tp2dbl(&tpTime);
switch (cSig.GetSigNoo)
{
case HRTBTTICK_SIG:

//IMU timing
for(sc=0; sc<NU_SATS; sc++) {

if(bIMURequested[sc] && (dCurrentTime - dLastIMUsend[sc] >= IMUDELAY)) {
bIMURequested(sc] = false;

aoExtendedState[sci.Read(&stExtendedState);
for (i=0; i<3; i++) {

dAccel[i] = 100.0*stExtendedState.dState[SIACCX+i];//Now in cm/s^2
dRate[i] = stExtendedState.dState[SIKRATE_X+i];

//Input thresholds for accelerometer and gyros
if (fabs(dAccel(i]) > ACCELRANGE) dAccelti) *= ACCELRANGE/fabs(dAccel[il);
if (fabs(dRate[i]) > GYRORANGEDEG*DEG2RAD) dRatefi] =

GYRORANGEDEG*DEG2RAD/fabs(dRate [i]);
//Noise for accelerometer and gyros

dAccel[i] += ((int)NOISEON) *cAccelNoise.Rand();
dRate[i] += ((int)NOISON)*cGyroNoise.Rando;

//Accelerometer resolution
dTemp = fmod(dAccel[i], ACCELRESOLUTION);
if (dTemp == 0.0);
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else
if (dTemp<(ACCELRESOLUTION/2.0)) dAccel[i] -= dTemp;
else dAccel~i] += ACCELRESOLUTION - dTemp;

//Send the IMU reading to the SPHERE
cIMUsig.Alloc (sizeof (stSensorSimIMUdata), SPHSENSORSIMIMU_RAW);
(((stSensorSimIMUdata *) cIMUsig.pBuf) ->iIMU

data) [XACCEL]=htonl(int) (((float)dAccel[0])*(float)CONVX.ACCEL + gBias[XACCEL]);
(((stSensorSimIMUdata *) cIMUsig.pBuf) ->iIMU-

data) [YACCEL]=htonl(int) (((float)dAccel[1])*(float)CONVYACCEL + gBias[YACCEL]);
(((stSensorSimIMUdata *) cIMUsig.pBuf)->iIMU-

data) [ZACCEL]=htonl (int) (((float)dAccel[2] ) * (float)CONVZACCEL + gBias([Z_ACCEL]);
(((stSensorSimIMUdata *) cIMUsig.pBuf)->iIMU-

data) [XGYRO]=htonl(int) (((float)dRate[0])*(float)CONVXGYRO + gBias[XGYRO]);
(((stSensorSimIMUdata *) cIMUsig.pBuf) ->iIMU-

data) [YGYRO]=htonl(int) (((float)dRate[1])*(float)CONVYGYRO + gBias[YGYRO]);
(((stSensorSimIMUdata *) cIMUsig.pBuf)->iIMU-

data) [ZGYRO]=htonl(int) (((float)dRate[2])*(float)CONVZ_GYRO + gBias[Z_GYRO]);
cIMUsig.Send(prSpheres[sc]);
dLastIMUsend[sc] = dCurrentTime;

//Global Metrology timing
iCounter++;
if (iCounter == IRPERIOD)

//A new global metrology cycle is beginning.
//If a satellite has requested GM information on time, it will receive it.
iCounter = 0;
for (sc=0; sc<NUM_SATS; sc++) {

if (bGMRequested[sc]) {
bGMReqOnTime~sc] = true;
bGMRequested[sc] = false;

for (tx = 0; tx < NUMTX; tx++) {
//There is a 5 ms delay after the IRPERIOD starts.
//Then there are 20 ms delays between when each transmitter transmits
if (iCounter == 5 + 20*tx) {

for (sc=0; sc<NUMSATS; sc++) {
if(bGMReqOnTime[sc]) {

ComputeGlobalMetrologyData(tx, sc);

if (iCounter == 5 + 20*NUMhTX) {
//The last transmitter has finished transmitting for this cycle.
//Send out global metrology information to those satellites that requested it.
for (sc=O; sc<NUMSATS; sc++) {

if (bGMReqOnTime [sc]) {
cGlobMetSig.Alloc (sizeof (stSensorSimGMdata), SPHSENSORSIMGMDATA);
for (tx=0; tx<NUM-LTX; tx++) {

for (face = 0; face<NUMFACE; face++)
for (rx=0; rx<NUMRX; rx++) (

(((stSensorSimGMdata*)cGlobMetSig.pBuf)->fDis-
tance) [tx] [face] [rx] = htonf (g_fDistance [sc] [tx] [face] [rx]);

cGlobMetSig.Send(prSpheres[sc]);
bGMReqOnTime[sc] = false;

break;

case SPH_SENSORSIMGMREQUEST:
sc = ntohl ( ((stGlobMetRequest*)cSig.pBuf) ->iSCId);

//Remember the process id so we can send the sensor info back
prSpheres[sc] = cSig.Sendero;
bGMRequested[sc] = true;
break;
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case SPHSENSOR_SIM-INREQUEST:
sc = ntohl ( ( (stIMURequest*)cSig.pBuf) ->iSCId);

//Remember the process id so we can send the sensor info back
prSpheres[sc] = cSig.Sendero;
if (!bIMURequested[sc]) (

dLastIMURequested[sc] = dCurrentTime;

bIMURequested(sc] = true;
break;

default:
break;

1//switch statement
cSig.FreeBuf 0;

}//end for loop
1//end sensorsim process

OSPROCESS (sensorsintinputarbiter)

PROCESS main-proc_;
hunt (_nainProcName, 0, &main-proc, NULL);

int iSat, iInd;
stDynSimExtendedState stExtendedState;
CSigWrap cSig;
struct TimePair tpTime;
double dCurrentTime = 0.0, dLastIMUtime=0.0;
rtc-get-time (&tpTime);
dCurrentTime = tp2dbl(&tpTime);
dLastIMUtime=dCurrentTime;
for (;;) {

cSig.Receive( (SIGSELECT *)_anysig);
switch(cSig.GetSigNo()

case DYN_SIM-ALLSATSSTATE:
for (iSat=0; iSat<NUMSATS; iSat++) {

stExtendedState. dTimestamp = ntohd ( ((stDynSimAllSatsState*) cSig.pBuf) ->dTimestamp);
for (iInd=O; iInd<EXTENDEDSTATELENGTH; iInd++) (

stExtendedState.dState[iInd] = ntohd(((((stDynSimAllSatsState*)cSig.pBuf)-
>dState)[iSat])[iInd]);

//Save state information to global atomic object
aoExtendedState[iSat] .Write(&stExtendedState);

cSig.FreeBuf (;
break;

case SPHSENSORSIMGMREQUEST:
cSig.SendFrom(cSig.Sendero, main-proc_);
break;

case SPHSENSORSIMIMUREQUEST:
cSig.SendFrom(cSig.Sendero, main.proc_);
break;

default:
cSig.FreeBuf (;
break;

OSPROCESS(sensorsinLblk_mgr) {
REGISTERBLOCKVARS( ;

CModuleInit cInitializer(_prefix);
cInitializer.StartBlock();

PROCESS blockproc_;
hunt (blockName,0,&blockproc,,NULL);

//Find dynamics sim process
CProcessWrap cDynSimProcess;
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BOOL bFoundName=FALSE;
do

if (cDynSimProcess.NSGetPid(_dynamicsSimName) ==0)
//found

bFoundName=TRUE;

else
{

delay(500); // wait for processes to register.

while (bFoundName==FALSE);

//Set up contract to get state information for all SPHERES from dynamics sim.
CContractClient cStateContract;
cStateContract.CreateByName(0, block-proc_, false, STATEUPDATERATE,

0, TTLNEVEREXPIRE, "dynsintall_sats_state", 0, NULL);

cStateContract . SetSourceByName (dynamicsSimName);
int iStatus = cStateContract.Starto;
if (iStatus == 0) dbgprintf("%s\n", "State contract started in sensor sim");
else dbgprintf("%s\n", "State contract could not start in sensor sim");

stop(current-process ();

/*
* This function is used to compute the distances between transmitters and receivers.
* It is used for global metrology.
*/

void ComputeGlobalMetrologyData(int tx, int iSCId)
int i, face, rx;
double dRxPosInertialWRTsphOrigin[3];
double txAng [NUM_FACE], rxAng [NUMFACE];

double dTemp[3];
stDynSimExtendedState stExtendedState;
aoExtendedState [iSCId] .Read(&stExtendedState);
//Compute angles.
attitude-vectors-global(tx, stExtendedState.dState, txAng, rxAng);
for (face=0; face<NUIFACE; face++ ) {

for (rx=0; rx<NUM_RX; rx++ ) {
for (i = 0; i<3; i++) {

dTemp[i] = (double)RXPOS[face] [rx] [i];

//Rotate receiver position w.r.t. SPHERE geometric center into global frame.
quat-rotate-out (&stExtendedState. dState [SIMQUATl], dTemp, &dRxPosInertialWRTsphOri-

gin[0]);

//Find distance
for (i = 0; i<3; i++) {

dTemp[i] = TXPOS[tx] [i] - (dRxPosInertialWRTsphOrigin i] + stExtended-
State.dState[SIMPOSX + i]*100.);

//Only fill in distance if angles are within maximum values
if (RAD2DEG*txAng[face] <= MAXTXANGLE && RAD2DEG*rxAng[face] <= MAXRXANGLE) {

g_ffDistance[iSCId] [tx] [face] [rx] (float)sqrt(dTemp[0]*dTemp[0] + dTemp[l]*dTemp[1] +

dTemp[2]*dTemp[2]);

else g-fDistance[iSCId] [tx] [face] [rx] = -1.0;

//Correct measurements
correctgGlobal (txAng, rxAng, g-fDistance [iSCId] [tx]);

OSPROCESS(sensorsinmtester) {
PROCESS mainproc_;
hunt (jnainProcName, 0, &main-proc_, NULL);
PROCESS inputarb_;
hunt ("sensorsininputarbiter" 0, &input-arb_,NULL);

stop(current-process ();

- i

}
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/*
* This function is used to compute the transmitter and receiver angles.
* These are needed to apply the corrections in correct-gGlobal().
*/

void attitude-vectorsglobal(int tx,
double *state,
double txAng [NUNLFACE],
double rxAng[NUMFACE])

int face, i;
double temp;
double vecl[3], vec2[3], vec3(3], dGlobSideVecUnit[3), txVecGlo[3];

for (face=O; face<NUM-FACE; face++)
// initialize
temp = 0.0;

// vector from SPHERE center to center of face in global frame
for (i=0; i<3; i++) {

vecl[i] = (double)SIDEVEC(face][il;
}
quat-rotate-out (&state (SIMQUAT_] , vecl, vec2);
unit-vect3 (vec2, dGlobSideVecUnit);

// find vector to transmitter and its magnitude
for (i=O; i<3; i++) {

vecli] = TXPOS[tx][i] - state[SILPOSX + i]*100. - vec2[i];
temp += vecli]*vecl[i];

temp = sqrt(temp);

// normalize
for (i=0; i<3; i++) {

txVecGlo[i] = vecl[i]/temp;

// find receiver angles
for (i=O; i<3; i++) {

vecl(i] = (double)(RXPOS[face][1(]i] - RX-POS[face](0][il);
vec2[i] = (double) (RXPOS[face](2][il - RX.POS[face][0][i]);

crossProduct(vecl, vec2, vec3);
unitvect3(vec3, vecl);
quat-rotate-out(&state[SIMQUAT_1] , vecl, vec2);
//Make sure vec2 is pointing out from the SPHERE, by checking if it is pointing
//in roughly same direction as dGlobSideVecUnit
temp = dotProduct(dGlobSideVecUnit, vec2);
temp = safeArcCos(temp);
if (temp > PI/2) scale-vect3(-1.0, vec2, vec2);
temp = dotProduct(vec2, txVecGlo);
temp = safeArcCos(temp);
rxAng(face] = temp;

// find transmitter angles
temp = 0;
for (i=0; i<3; i++)

temp += TX.DIRtx](i]*txVecGlo(i];

// use -temp because txVecGlo is pointing in the wrong direction by 180 degrees
txAng[facel = safeArcCos(-temp);

/*

* This function is used to modify the distance measurements between beacons and receivers.
* The distances measured depend on transmitter angle, receiver angle, and distance.
* The correction applied by the SPHERE is applied here in reverse, to simulate the
* physical effects (the SPHERE is trying to correct out these physical effects).
*/

int correct.gGlobal(double txAng(NUMFACE], double rxAng[NUNFACE], float fDistance[NUMFACE][NUNRXJ)

int face, ang_indexlo, angindex.hi, dist-index-lo, dist-indexhi, i;
float ang-index, dist-index, ang_indexfrac, distindexfrac;
floatcoeff[5], templ, temp2, x;
doubledumy;
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/* Each face - transmitter pair will have a unique correction equation. To get this equation, the
coefficients will be interpolated to the current postion */

for (face=0; face<NUMFACE ; face++

//This 'if' added to make sure don't use values outside of curve_fitdata range
float fMist = fDistance[face]l[]*CM2IN;
if(fDist > 15.3125 && fDist < 115.3125 && txAng[face]*RAD2DEG < 45.0)

/* Determine the floating point indecies into the equation matrix -- NOTE: These are depen-
dent

on the "spacing" of the data points. It assumes now that the tx angles were taken from
0-45

in 15 degree increments and the distances are from 15.3125 to 115.3125 in 10 in incre-

ments */
ang-index = (float) (txAng[face] *RAD2DEG/15.0);
dist-index = (fDistance[face][1]*CM2IN - 15.3125) / 10.0;

/* Get the index just above and below where we are and the fractional part (which repre-
sents where

we are between the points. */
ang_indexlo = (int) floor(ang-index);
ang-indexhi = (int) ceil (ang-index);
ang_index_frac = modf (ang-index, &dunmy);
dist-index-lo = (int) floor(dist-index);
dist-index-hi = (int)ceil(dist-index);
distindex_frac = modf (dist_index, &dummy);

/* Determine the coefficents */
for(i=0; i<5; i++)

// Interpolate along the lower angle line
templ = (curveFitData(ang-indexlo [dist-indexhi] [iI -

curveFitData(ang_indexlo] [dist_indexlo] [i]) * distindexfrac +
curveFitData (ang_indexlo] [dist_indexlo] [i];

// Interpolate along the upper angle line
temp2 = (curveFitData[ang_indexhi] [distindexhi ][i] -

curveFitData[ang-index-hi] [dist-indexlo] [i]) * distindex_frac +
curveFitData [ang-index-hi] [dist-indexlo] [i];

coeff [i] = (temp2-templ) *angindex frac+templ;

/* Correct the matrix entries */
for(i=0; i<NUMRX; i++)

x = (float) (rxAng[face]*RAD2DEG);
//In the flight code we would be subtracting here, not adding.
fDistance[face] [i] += coeff[0]*x*x*x*x + coeff [1] *x*x*x + coeff[2]*x*x + coeff[3]*x +

coeff[4];

return 0;

A.2.3 Sph sensor-sim.sig
//GFLOPS SIGNAL DEFINITION FILE
//Service Name(s):sensorsim#
//Creator:ADBR 11/21/2001

#ifndef _SENSORSIM_SIGS_
#define _SENSORSIMSIGS_

//Some standard includes
#include "ose.h"
#include "osetypes.h"

-== PASTE DEFINES HERE==========================*/
#define SPH_SENSOR_SIM_GMREQUEST ( 100201 ) /* !-SIGNO( stGlobMetRequest )-I */
#define SPHSENSORSIMIMUREQUEST ( 100202 ) /* !-SIGNO( stIMURequest )-! */

#define SPH.SENSORSIM_IMU_RAW ( 100203 ) /* I-SIGNO( stIMUdata )-! */

#define SPH_SENSORSI.._GMDATA ( 100204 ) /* !-SIGNO( stSensorSimGMdata )-! */
/*============== ================ ================ ================ */I
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//Define the structures used by service signals

typedef struct _stGlobMetRequest
SIGSELECT sigNo;
int iSCId;

} stGlobMetRequest;

typedef struct _stIMURequest
SIGSELECT sigNo;
int iSCId;

stIMURequest;

typedef struct _stSensorSinGMdata
SIGSELECT sigNo;
float fDistance[NUMTX] [NUMFACE] (NUMCRX];

} stSensorSimGMdata;

typedef struct _stSensorSimIMUdata
SIGSELECT sigNo;
int iIMUdata[IMURAWSIZE];

} stSensorSimIMUdata;

#endif

A.3 Thruster Simulator

A.3.1 Sph_thrustersimnew.h
#ifndef _SPH-THRUSTERSIN_
#define _SPHTHRUSTERSIM_

#include "Spheresconstants.h"
#include "sphthrustersim.sig"

void FillThrustSig(stThrustSig* p-stThrust, bool bIsThrustOn(NUM-THRUSTERS], int iDbgSCId);
void InitThruston(bool bThrust[NUMTHRUSTERS]);
void InitThrustof f (bool bThrust [NUMCTHRUSTERS]);
void SetThrusterMatrices (double dPosWRTCM[2] [3], double dQuatWRTCM[2] [4],

double dThrusterPositionCM[NUMSATS] [NUMhTHRUSTERS] [3],
double dForceDirection(NUMSATS] (NUMTHRUSTERS] [3],
double dTorqueMatrix[NUMSATS] [NUMTHRUSTERS] [3]);

#endif

A.3.2 Sphthrustersimnew.cpp
#include "sph-thruster-sinunew.h"
#include "sph-thruster-sim.sig"
#include "sphdynamics-sim.sig"
#include "Spherestestfunctions.h"

#include <siglib.h>
#include "Spheres-includes.h"
#include "Spheres-constants.h"
#include "SpheresNames.h"
#include "quickvectors.h"
#include "gflpobt-conv.h"
#include "gflops-sim.h"

#def ine MAINPROCPRIORITY20
#define INPUTARBITERPRIORITY11
#define DBG__THUSTSIGTIMESTEP1000

#define _prefix "thrustsint"
char _nainProcName[]= "thrustsim";
char _testerProcName [ ]="thrust.sinLtester";
char -blockName[]= "thrustsitblock";

1; //Simulator interrupt time.int TIMESTEP =
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//Not constant so can debug without filling
stack

//with heartbeat signals.

bool DEBUGRUN= false; //Affects TIMESTEP value
bool NOISEON= false; //True if adding noise to thrusters

extern "C"(
OSENTRYPOINT ( thrust-sim);
OSENTRYPOINT (thrust.s inLtes ter);
OSENTRYPOINT (thrust-siminput-arbiter);
OSENTRYPOINT (thrust-simblk.jngr);

//Directions in which thrusters point in SPHERE body frame.
const SFLOAT gdThrusterForceDirection[NUMTHRUSTERS][3] = {

(-1.0,0.0,0.0},
{ 1.0,0.0,0.0},
{ 0.0, 1.0,0.0),
{ 0.0, -1.0,0.0),
{ 0.0,0.0, -1.0),

0.0,0.0, 1.01,
0.0, -1.0,0.0},
0.0, 1.0,0.01,
0.0,0.0, -1.01,
0.0,0.0,1.0),

(-1.0,0.0,0.0),
1.0,0.0,0.0}

};

const double SMALLLEN = 0.01905;
const double BIGLEN = 0.080451;
//Positions of thrusters in SPHERE body frame.
SFLOAT gdThrusterPosition[NUMTHRUSTERS] [3] =

/* 1 * (SMALLLEN,-BIGLEN,-BIGLEN),
/* 2 */ (-SMALLLEN,-BIGLEN,-BIGLEN},

/* 3 */ {-BIGLEN,-SMALLLEN,-BIGLEN},
/* 4 */ {-BIGLEN,SMALLLEN,-BIGLEN},
/* 5 */ {BIGLEN,-BIGLEN,SMALLLEN},
/* 6 * /BIGLEN, -BIG.LEN, -SMALL_LEN},
/* 7 * {BIGLEN,SMALLLEN,BIGLEN),

/* 8 / {BIGLEN,-SMALLLEN,BIG_LEN),

/* 9 */ {-BIGLEN,BIGLEN,SMALLLEN),

/* 10 */(-BIG_LEN,BIG-LEN,-SMALL-LEN},

/* 11 */(SMALLLEN,BIGLEN,BIGLEN},

/* 12 */(-SMALLLEN,BIGLEN,BIGLEN},

};

//Used to read bit-packed thrust signal.
int giBit[] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 20481;

//Used to keep a record of current and commanded thrust values
// (needed for implementing valve opening delay)
typedef struct stThrustInfo_ {

//Whether the last command was for thrust on (true), or off (false)
bool bIsThrustCommanded [NUMTHRUSTERS];

//Whether that thrust command has been activated for this thruster
bool bIsCommandActivated (NUMTHRUSTERS];

//The first time that command was received
double dTimeFirstCommanded[NUMTHRUSTERS];

} stThrustInfo;
ATOMICOBJ(stThrustInfo, CAtomicThrustInfo, DEFAULTCEILING);
CAtomicThrustInfo aoThrustInfo[NUMSATS];

/*============================- Classes
//Derived block initializer

class CModuleInit: public CBlockLlInit(
public:

CModuleInit(char * sProcPrefix=NULL);
void StartBlock();

protected:
PROCESS njmainproc_;
PROCESS ntesterproc_;
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CModuleInit::CModuleInit(char * sProcPrefix) : CBlockLlInit(sProcPrefix)

//Input arbiter name
int i;
char buf[801;
sprintf(buf, "%sinputarbiter",sProcPrefix);

//Set up processes
nLinput-arbiter_=createprocess(OSPRIPROC, buf, thrustsinLinputarbiter, 1000,

INPUTJARBITERPRIORITY, 0, 0,NULL,0,0);
numain-proc_=createprocess(OSPRIPROC, _;nainProcName, thrustsim, 16000, MAINPROCPRIORITY, 0,

0,NULL,0,0);
n~tester-proc_=createprocess (OSPRIPROC, _testerProcName, thrustsinLtester, 8000,

MAINPROCPRIORITY, 0, 0,NULL,0,0);
nLblock-proc_=InstallRedirTable (_blockName);

//Register Services
CSigWrap cSig;
cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (_mainProcName), NS_ADDSERVICE_REQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", _mainProcName);
cSig.SendFrom(ntblock-proc_,ns-pid_);

//Initialize Variables
//Set bigger timestep for debug run so stack doesn't get filled with heartbeat signals

if (DEBUG.RUN && LONGTIMESTEP) {
TIMESTEP = 1000;

stThrustInfo stThrustStats;
for (i=0; i<NUMTHRUSTERS; i++) {

stThrustStats.blsThrustCommanded[i] = false;
stThrustStats.bIsConmandActivated[i] = true;
stThrustStats.dTimeFirstComianded[i] = 0.;

for (i=0; i<NUMSATS; i++) {
aoThrustInfo[i].Write(&stThrustStats);

//Seed random number generator with system clock time
time-t rnd-seed;
time(&rnd-seed);
CRandGen: :SetSeed(rndseed);

void CModuleInit: :StartBlock ()

//Start Base Block Processes
CBlockLlInit::StartBlocko;
start (nLmainproc_);
start (utinput_arbiter_);

// start (ntester-proc_);

void crossProductSFLOAT(const SFLOAT a[], const SFLOAT b[], SFLOAT result[])
result[0] = a[l]*b[2] - b[ll*a[2];
result[l] = a[21*b[0] - b[2]*a[0];
result[2] = a[0]*b[l] - b[0]*a[l];

//MAIN THRUSTER SIM PROCESS
OSPROCESS(thrustsim) {

//Find dynamics simulator in name service
CProcessWrap cDynSimProcess;
BOOL bFoundName=FALSE;
do

if (cDynSimProcess.NSGetPid(_dynamicsSimName)==0) {
//Propagators found

bFoundName=TRUE;

else

delay(500); // wait for processes to register.
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while (bFoundName==FALSE);

//Random number generator
CRandGen cRandomNum;

//Use normal distribution
cRandomNum. SetType (RANDMODENORMAL);

int sc, i, j, scDock;
//Torque about x,y,z body frame axes resulting from unit force from thruster i

SFLOAT dTorqueMatrix [NUM_SATS] (NUMTHRUSTERS] [3];
//Positions of thrusters w.r.t. the center of mass

SFLOAT dThrusterPositionCMNUM_SATS] [NUMTHRUSTERS] (3];
//Directions in which forces from thrusters act

SFLOAT dForceDirection[NUM_SATS] [NUM_THRUSTERS] [3];
//Compute new thruster position matrix to take into account
//center of mass offset.
//Also initialize torque matrix.

for (sc=0; sc<NUMSATS; sc++) {
for (i=0; i<NUM_THRUSTERS; i++) {

dThrusterPositionCM(sc] [i] (0] = g-dThrusterPosition[i] [0] - (SFLOAT)CMPOS
dThrusterPositionCM(sc] [i] [1] = g-dThrusterPosition[i] [1] - (SFLOAT) CMPOS
dThrusterPositionCM[sc] [i] [2] = g-dThrusterPosition[i] [2] - (SFLOAT)CM_POS _Z;
for (j=0; j<3; j++) (

dForceDirection[sc] [i] [j] = g-dThrusterForceDirection[ i] j];

crossProductSFLOAT(dThrusterPositionCM[sc] Ci], dForceDirection[sc] [i], dTorqueMa-
trix(sc] [i]);

//To start, no SPHERES are docked
bool bDocked(NUM_.SATS] [NUMSATS];
for (i=0; i<NTMSATS; i++) {

for (j=0; j<NUMSATS; j++) {
bDocked[i][j] = false;

int iSCId, iNumMissedDL = 0, iScO, iScl;
double dPosWRTCM[2] [3], dQuatWRTCM[2] [4];
bool bTemp, bFoundChange [NUMSATS], bMissedDeadline [NUMSATS];
stThrustInfo stThrustStats;
struct TimePair tpTime;
double dCurrentTime, dWaitPeriod;
SFLOAT dThrusterForces(NUMTHRUSTERS], dForce(NUMSATS] (3], dTorque[NUM_SATS] [3];
double dTotalTorque[3], dTotalForce[3];
//Initialize these to zero since they hold the last force/torque calculated
for (sc=0; sc<NUM_SATS; sc++) {

for (i=0; i<3; i++) {
dForce(sc] [i] = 0.0;
dTorque[sc] [i] = 0.0;

const SIGSELECT nonThrustSigs[]={2, HRTBTTICKSIG, THRUSTSIMDOCKING_NOTIFICATION);
const SIGSELECT thrustSig[]=(1, THRUSTSIG};
CSigWrap cSig, cSendForceTrqSig;
CTimerTrigger cTimer(TIMESTEP, MAINPROC_PRIORITY);
cTimer.Starto;
for (;;) {

cSig.Receive((SIGSELECT *)nonThrustSigs);
switch (cSig.GetSigNoO)
{
case THRUSTSIMDOCKINGNOTIFICATION:

dbgprintf("Thruster sim got docking notification from
iScO = ntohl((((stNotifyDock*)cSig.pBuf)->iSCId) [0]);
iScl = ntohl( ( ( (stNotifyDock*)cSig.pBuf)->iSCId) [1]);
//Make sure we have valid unit IDs
if (iScO >= 0 && iScO < NUMSATS && iScl >= 0 && iScl

bDocked[iScO] [iScl] = bDocked[iScl] [iScO] = true;
for (i=0; i<2; i++) {

dynamics simulator\n");

< NUMSATS) (

for (j=0; j<3; j++) {
dPosWRTCM[i] [] = ntohd((((stNotifyDock*)cSig.pBuf) ->dPosWRTCompos-

ite) [i](j);

for (j=0; j<4; j++){
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dQuatWRTCM[i][j] = ntohd((((stNotifyDock*)cSig.pBuf)->dQuatWRTCompos-
ite) [i] [j]);

//Reset thruster position matrix, thruster direction matrix and torque matrix
SetThrusterMatrices (dPosWRTCM, dQuatWRTCM, dThrusterPositionCM, dForceDirection,
dTorqueMatrix);
cSig.FreeBuf ();
//Need to send a sig to acknowledge dock, because dyn sim is ignoring forces and
torques
//until it knows they are being specified for combined object
cSig.Alloc (sizeof (stAcknowledgeDock), DYNSIMDOCKINGACKNOWLEDGE);
(M(stAcknowledgeDock*) cSig.pBuf)->iSCId) [0] = htonl(iScO);
(((stAcknowledgeDock*) cSig.pBuf) ->iSCId) [1] = htonl(iScl);
cSig.Send(cDynSimProcess.GetPid());

else
dbgprintf("Thruster sim got dock notification for invalid SPHERES\n");
cSig.FreeBuf();

break;

case HRTBTTICKSIG:
cSig.FreeBuf (;
rtcget.time (&tpTime);
dCurrentTime=tp2dbl (&tpTime);
for(i=0; i<NUMSATS; i++) {

bFoundChangei] = false;
bMissedDeadline[i = false;

//Check if there are any unprocessed thrust signals waiting in the queue
cSig.ReceiveWTO((OSTIME)0, (SIGSELECT *)thrustSig);
while (cSig.pBuf) {

//Record the thrust changes implied by this thrust signal
iSCId = ntohl ( ( (stThrustSig*)cSig.pBuf) ->iSCId);
if (bMissedDeadline[iSCId])

iNumMissedDL++;
if(fmod((double)iNumMissedDL, 50.) == 0.)

dbgprintf ("Thruster simulator missed 50 deadlines**************\n")

if (DEBUG-RUN) dbgprintf ("%s%i%s%f\n", "Thrust sim got thrust for sat: ", iSCId,
time ", dCurrentTime);
aoThrustInfoCiSCId].Read(&stThrustStats);
for (i=0; i<NULTHRUSTERS; i++) {

bTemp = ntohl( ( (stThrustSig*)cSig.pBuf)->iThrust) & giBit [i];
//Check if the command for this thruster has changed since last time

if (!(bTemp == stThrustStats.bIsThrustComanded~i])) {
bFoundChange[iSCId] = true;
stThrustStats.bIsThrustConmmanded~i] = bTemp;
stThrustStats.dTimeFirstCommandedi] = dCurrentTime;
//Make sure don't send two signals when there is either no delay before

vation
//or there is not difference in the two thrust levels.
if (bTemp) {//Newly turned on thruster

if (THRUSTERONDELAY == 0.0) {
stThrustStats.bIsCommandActivated[i] = true;

else
stThrustStats.bIsCommandActivated[i] = false;

" at

acti-

else (//Newly turned off thruster
if (THRUSTEROFFDELAY == 0.0)

stThrustStats.bIsConnxandActivatedCi] = true;
}
else

stThrustStats.bIsConmandActivated[i] = false;

}

aoThrustInfo[iSCId] .Write(&stThrustStats);

cSig.FreeBuf 0;
cSig.ReceiveWTO((OSTIME)0, (SIGSELECT *)thrustSig);
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bMissedDeadline[iSCId] = true;
}//end while loop

//Check if the delay time for any thrust changes (ON->OFF, OFF->ON) has just passed
//If so apply the change

for (sc=O; sc<NUMSATS; sc++) {
aoThrustInfosc] .Read(&stThrustStats);
for (i=0; i<NUMTHRUSTERS; i++) (

//Check if the latest command for this thruster has not been applied yet
if (stThrustStats.bIsCommandActivated[i] == false) {

if (stThrustStats.bIsThrustCommandedi]) { //Latest command: ON
dWaitPeriod = THRUSTERONDELAY;
if (DEBUGRUN && LONGTIMESTEP) {

dWaitPeriod = 5. * ((double) DBGTHRUSTSIGTIMESTEP) /1000.;

else //Latest command: OFF
dWaitPeriod = THRUSTEROFFDELAY;
//If more than the wait period has passed, apply this command

if (dCurrentTime - stThrustStats.dTimeFirstCommanded[i] >= dWaitPeriod) {
bFoundChange~sc] = true;
stThrustStats.bIsCommandActivated[i] = true;

}//end for thruster
//Calculate new thrust and torque

if (bFoundChange[sc]) (
for (i=0; i<NUMTHRUSTERS; i++)

if (stThrustStats.bIsThrustCommanded[il)
//Case where last command is ON

if (stThrustStats.bIsCommandActivated[i])
dThrusterForcesi] = (SFLOAT)1.0;

else
dThrusterForces(i] = (SFLOAT)0.0;

else
//Case where last command is OFF

if (stThrustStats.blsCommandActivated~i])
dThrusterForces[i] = (SFLOAT)0.0;

else
dThrusterForces[i = (SFLOAT)1.0;

//Apply noise if the noise is on
dThrusterForces[i] *= (SFLOAT) (THRUST + ((dou-

ble) (int ) NOISEON) *THRUSTNOISE_LEVEL*THRUST*cRandomNum. Rand ();

if (DEBUGRUN) {
dbgprintf("%s%i%s%f\n", "Thrust sent for sat: ", sc, " at time ", dCurrent-

Time);
for (i=0; i<NUM_THRUSTERS; i++) {

if (dThrusterForces~i] > 0.)
dbgprintf("%s%i%s%f\n", "Thruster ", i, ": ", dThrusterForcesi]);

dbgprintf("\n");

//Compute torque/thrust in body frame
siglibnumerixSMX~ultiply ( (SFLOAT * ) dThrusterForces, (SFLOAT *) dForceDirec-

tion[scldForce~sc], (SFIX)l, (SFIX)NUMTHRUSTERS, (SFIX)3);
siglib-numerixSMXMultiply ( (SFLOAT * ) dThrusterForces, (SFLOAT *) dTorqueMa-

trix[sc] ,dTorque(sc], (SFIX)l, (SFIX)NUMTHRUSTERS, (SFIX)3);
//We must also send signals for all sats docked with this one
for (scDock=0; scDock<sc; scDock++) {

if (bDocked~sc] (scDock]) bFoundChange scDock] = true;

}//end if (bFoundChange[sc])
aoThrustInfo[sc].Write(&stThrustStats);

}//end for sc
//Send new forces and torques to dyn sim if there were changes
for (sc=0; sc<NUMSATS; sc++) {

if (bFoundChange[sc]) (
//Send torque/thrust signal to dynamics simulator

cSendForceTrqSig .Alloc (sizeof (stDynSimForceTrqInput),
DYNSIM_FORCETORQUEINPUT);

((stDynSimForceTrqInput*) cSendForceTrqSig.pBuf)->iSCId = htonl(sc);
for (i=0; i<3; i++) {

dTotalTorque[i] = dTorque[sc][i];
dTotalForce~i] = dForce[sc][i];
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//If docked with another SPHERE, send force/torque resulting form that one too
for (scDock=O; scDock<NUKSATS; scDock++) (

if (sc != scDock && bDocked[sc] (scDock])
for (i=0; i<3; i++) {

dTotalTorque (i) += dTorque [scDock] [i];
dTotalForce [i] += dForce [scDock] [i];

//Fill up signal
for (i=0; i<3; i++)

(((stDynSimForceTrqInput*) cSendForceTrqSig.pBuf) ->dForce) [i] = htond(dTotal-
Force~i]);

(((stDynSimForceTrqInput*) cSendForceTrqSig.pBuf)->dTorque) [i] = htond(dTo-
talTorque[i]);

//Send to dynamics sim
cSendForceTrqSig. Send(cDynSimProcess .GetPid( );

}//end if (bFoundChange[sc])
}//end for sc
break;//end of case HRTBTTICKSIG

default:
dbgprintf("Thrust sim got unexpected sig %i\n", cSig.GetSigNoo);
cSig.FreeBuf (;
break;

}//end switch
}//end for loop

}//end dyn.sim process

OSPROCESS (thrust-sinminputarbiter)

PROCESS main.proc_;
hunt (_;ainProcName, 0, &min-proc_, NULL);

struct TimePair tpTime;
CSigWrap cSig;
for (;;) (

cSig. Receive( (SIGSELECT *)_anysig);
rtc.get.time (&tpTime);
double dCurrentTime=tp2dbl (&tpTime);
switch(cSig.GetSigNo()

case THRUSTSIG:
if (DEBUGRUN) dbgprintf("%s%f\n", "Thrust sim got thrust in inputarb at time: ", dCur-

rentTime);
cSig.Send(main-proc_);
break;

case THRUST-SIMDOCKING_NOTIFICATION:
cSig. Send (main-proc_);
break;

default:
cSig.FreeBuf (;
break;

OSPROCESS(thrustsinblkMgr)
REGISTERBLOCKVARS (;

CModuleInit cInitializer(_prefix);
cInitializer.StartBlock();
stop(currentprocess 0);

//This process is only used during test runs.
OSPROCESS(thrustsinLtester) {

for (;;)

stop(currentprocess 0);
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void SetThrusterMatrices (double dPosWRTCM[2] [3], double dQuatWRTCM[2] [4],
double dThrusterPositionCM[NUMSATS] [NUMTHRUSTERS] [3],
double dForceDirection [NUM_SATS] [NUMTHRUSTERS] [3],
double dTorqueMatrix[NUMSATS] (NUMTHRUSTERS] [3])

for (nt sc=O; sc<2; sc++) {
for (int i=0; i<NUMTHRUSTERS; i++)

//Rotate thruster position and direction into composite object body frame
quat-rotateout (&dQuatWRTCM[sc] [0], (double*) g-dThrusterPosit ion[ i], dThrusterPosi-

tionCM[sc] [i]);
quat-rotate-out (&dQuatWRTCM[sc] [0], (double*) gdThrusterForceDirection[ i ], dForceDirec-

tion[sc] [il);
for (int j=0; j<3; j++)

//Add SPHERE geometric center offset to thruster position
dThrusterPositionCM[sc] [i] Ci] += (SFLOAT)dPosWRTCM[sc] [j];

crossProductSFLOAT(dThrusterPositionCM~sc][i], dForceDirection[sc][i], dTorqueMa-
trix[sc] [i]);

/*=====================Testing Functions-======================*/

void FillThrustSig(stThrustSig* p-stThrust, bool bIsThrustOn[NUM_THRUSTERS], int iDbgSCId)
int i;
int iThrust = 0;
p-stThrust->iSCId = htonl (iDbgSCId);
for (i=0; i<NUM_THRUSTERS; i++ ) {

if (bIsThruston~i]) iThrust += giBit[i];

p-stThrust->iThrust = htonl(iThrust);

void InitThrustOn(bool bThrust[NUMTHRUSTERS])
for (int i=0; i<NUMKTHRUSTERS; i++ ) {

bThrustCi] = false;

bThrust0] = true;
bThrust[6] = true;

void InitThrustOff(bool bThrust[NUMTHRUSTERS])
for (int i=0; i<NUMTHRUSTERS; i++

bThrust[i] = false;

A.3.3 Sph_thrustersim.sig
//GFLOPS SIGNAL DEFINITION FILE
//Service Name(s) :thruster_sim#
//Creator:ADBR 11/02/2001

#ifndef __THRUSTSIMSIGS_
#define _THRUST_SIM__SIGS_

//Some standard includes
#include "ose.h"
#include "osetypes.h"
#include "Spheresconstants.h"

PASTE DEFINES HERE==========================*/
#define THRUSTSIG ( 100101 ) /* I-SIGNO( stThrustSig )-! */
#define THRUSTSIMDOCKINGNOTIFICATION ( 100102 ) /* !-SIGNO( stNotifyDock )-I */

//Define the structures used by service signals

typedef struct _stThrustSig {
SIGSELECT sigNo;
int iSCId;
int iThrust;
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} stThrustSig;

typedef struct _stNotifyDock
SIGSELECT sigNo;
int iSCId[2];
double dPosWRTComposite[2] [3];
double dQuatWRTComposite[2] [4];

} stNotifyDock;

#endi f

A.4 SPHERE Module

A.4.1 Sphere.h
#ifndef _SPHERE_H__
#define _SPHEREH_

void PrintDebugInfo (;
void DbgPrintExtendedState(;
void SetActuatorMatrixo;

#endif

A.4.2 Sphere.cpp
#include "SPHERE.H"
#include "dbgprintf.h"

#include "SpheresDefines.h"
#include "Spheresincludes.h"
#include "Spheres.Names.h"
#include "Spheres.constants.h"
#include "SPHERE-globals.h"
#include "Spheres-testfunctions.cpp"
#include "gflopssim.h"
#include "gflpobtconv.h"
#include "packet.h"
#include "sph-thrustersim.sig"
#include "sph.sensorsim.sig"
#include "sphdynamics.sim. sig"
#include "SPHERE.sig"
#include "comm.h"

//Files needed to be aware of the functions that are called
//from this file but which were compiled in the SphereCode.o object

#include "SphereFunctionDeclarations.h"
#include "control.h"

#define CONTROLLERPRIORITY20
#define COMM_PRIORITY 19
#define INPUTARBITER_PRIORITY11
#define CONTROLLERTIMESTEP ( (int) 1000. /CTRLRATE)

#define _prefix "SPHERE."

char ia.buf [80], ctrl.buf [80], conmmbuf [80J, tester.buf [80], bg-buf [80], blk.buf [80];

bool DEBUG_RUN = false;
bool TESTRUN = false;
#ifdef SINGLESPHERE
bool USESENSORSIM=false;
#else
bool USESENSOR-SIM=false;
#endif
bool USEINU = true;
bool USEIMUWITHDYNSIM=false;
const doubleSTATE_DUMPTIMESTEP=0.001;//Time between successive dumps of the state to the screen
bool STATEDUMP = true;//True if dumping state to the screen
#ifdef SINGLE_SPHERE
bool SEND_THRUSTS=false;
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#else
bool SENDTHRUSTS=true;
#endif

//Needed so comnn functions can send signals to sensor sim
PROCESS prSensorSim = 0;
PROCESS prBackground = 0;
PROCESS prLaptop = 0;
PROCESS prSpheres [NUMSATS];

//This global variable is used by control-attitudeSimon
float gMass = MASS;
//This global variable is used by control_attitudeSimon
int gPWMIN = PW_MIN;
//This global variable is used by SLAVE in processnmaneuverlist.c
float fMSdiff[] = (30.0, 0.0, 0.01;
float gfRealState[STATELENGTH];

typedef struct _stIMUreading (
int iIMUdataIMURAWSIZE];

} stIMUreading;

typedef struct _stGMreading {
float fDistance[NUM_TX] [NUMFACE] [NUMRX];

stGMreading;

//Need to declare these globals so that we can see them in this file
//Originally declared mostly in globals.h

extern volatile int gTimeOutCounter;
extern int gSPHERETime;
extern int gBatTime;
extern int gGlobalTime;
extern int gThrusters [NUMTHRUSTERS];
extern int gTankTime;
extern int gThrusterOnTime;
extern int gBiasReady;
extern int gGlobalPeriod;
extern int gfInitPosition;
extern struct queue gSTG-tel_q_out;
extern struct queue gSTG-tel_q_in;
extern struct queue gSTGcomuq_out;
extern struct queue gSTGconaTL-qin;
extern struct queue gSTStel_qout;
extern struct queue gSTS-tel.q.in;
extern struct queue gSTSconLqout;
extern struct queue gSTS-conmLq..in;
extern chargInConmn[NUPORTS] [IN_COMM_MAX];
extern int gInCommSize[NUM.PORTS];
extern int gInTop[NULPORTS];
extern int gInBot[NUMPORTS];
extern int gManeuverNum;
extern int gfGlobalMux0, gfGlobalMuxl;
extern int gWdogonoff;
extern int gWdog;
extern int gThrustersUsed[12];
extern float gActuatorMatrix[STATELENGTH+1] [13];
extern int gfGotGlobal;

//These are declared in SphereCode.c
extern int gIMUdataFlag;
extern int gGMdataFlag;
extern stIMUreading g-stIMUreading;
extern stGMreading gstGMreading;

extern float* gState;
extern float* gStateTarget;
extern float* gStateError;
extern float gCoymand[6];//Originally declared in maneuverlist.h
extern float** gBody2Glo;
extern float D2RAD;
extern float RAD2D;
extern float SPEED_OFSOUND;
extern float CONVGLOBAL;

//MAKE SURE THESE DON'T CHANGE IN GLOBALS.H!!
#define TT8_RATE4000000.0// TT8 counter rate (Hz)
#define TEMP_C22.3 // Temperature in Celcius
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#define PI 3.14159265358979 //3238462643383...

//aoExtendedState holds the most recent state update for this satellite
//(if getting state updates from the dynamics simulator)

ATOMICOBJ (stDynSimExtendedState, CAtomicExtendedState, DEFAULTCEILING);
CAtomicExtendedState aoExtendedState;

void FillGStateo;
void FixPointers (;

extern "C"(
OSENTRYPOINT (CONTROLLER);
OSENTRYPOINT (COMM);
OSENTRYPOINT (BACKGROUND);
OSENTRYPOINT(SPHEREtester);
OSENTRYPOINT (SPHEREinput-arbiter);
OSENTRYPOINT (SPHEREblkJngr);

/*=====================Dispatch Functions-======================*/
//Sends the thrust to the thruster simulator
//Adapted from prop.c

#define GLOBAL_BIT 0x20000
u32 dfcn_12_SendThrusts(PROCESS prDest, int argc, char* argv, u32 nFl

/* assign local variables */
// static int prop-count = 0;

static int padscount = 0;
// static int padsreport = 0;

int i;
int thrust-bit[12] = (BITO, BIT1, BIT2, BIT3, BIT4, BITS,

BIT6, BIT7, BIT8, BIT9, BIT10, BIT11);

agBitMask)

int thrust-temp = 0;
static int last-thrust-temp = 0;//ADDED BY ADBR
int MuxData;

gTimeOutCounter ++;
gSPHERETime ++;
gBatTime ++;

/* reset watchdog */
gWdog-on-of f ^= 1;
gWdog = gWdogonoff * WDOG_ADDR;

/* setup Global Metrology MUXes */
MuxData = (gfGlobalMuxO * BIT12) + (gfGlobalMuxl * BIT13);

padscount++;
if (pads.count == gGlobalPeriod)
{

senctcom (WRCOMM1, 'Y');
pads.count = 0;

/* turn thrusters off for global metrology */
if (false)//*PortAIn & GLOBALBIT)
{

// send packet to ground every time the global bit
// becomes enables
if (!gGlobalTime)
{

gGlobalTime = TRUE;
send-telemetry(GROUND, gSPHERETime, 7, (unsigned char *) "SAT1 IR");

}
thrust-temp = 0;

else

gGlobalTime = FALSE;

if (SEND_THRUSTS && (gfInitPosition == 0 IUSESENSORSIM)) {//SLIGHT CHANGE BY ADBR
/* activate appropriate thrusters */
for (i=0; i<= 11; i++)
{

if (gThrusters[i] > 0)/* if thurster has time left */

155
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thrusttemp += thrust.bitli];/* Bet pin for that thruster */
gThrusters[i] -- ; * decrement the duration value */
gTankTime ++; // [ms] cumulative thruster ontime since tank change

// track thruster ontime since last PADS state propagation stage
gThrustersUsed[i] ++;

// *PortAOut = thrust-temp | gWdog I MCU_ON I MuxData;

if (thrusttemp 1= lastthrust-temp) {
last-thrust-temp = thrusttemp;
union SIGNAL * sig;
sig=alloc(sizeof(stThrustSig), THRUSTSIG);
((stThrustSig *) sig)->iSCId=htonl(iSpacecraftIdNum);
((stThrustSig *) sig)->iThrust = htonl(thrust-temp);
send(&sig,prDest);

return 0;

/*======== ========= =========Classes-============================*/
//Derived block initializer

class CModuleInit: public CBlockLlInit(
public:

CModuleInit (char * sProcPrefix=NULL);
void StartBlock (;
void StartProcs (;

protected:
PROCESS rncontroller_;
PROCESS rqAcomL;
PROCESS mbackground_;
PROCESS ctesterproc_;

};

CModuleInit: :CModuleInit (char * sProcPrefix) : CBlockLlInit(sProcPref ix)

//Process names
int i;
sprintf (ia-buf, "%s%i",_-sphInputArbName, iSpacecraftIdNum);
sprintf (ctrl-buf, "%s%i",._sphControllerName, iSpacecraftIdNum);
sprintf (conubuf, "%s%i", _sphConmName, iSpacecraftIdNum);
sprintf (tester-buf, "%s%i",._sphTesterProcName, iSpacecraftIdNum);
sprintf (bgbuf, "%s%i", _sphBackgroundName, iSpacecraftIdNum);
sprintf (blk-buf, "%s%i ", _sphBlockName, iSpacecraftIdNum);

//Set up processes
rinputarbiter_=createprocess(OSPRIPROC, iabuf, SPHERE_input-arbiter, 1000,

INPUT.ARBITERPRIORITY, 0,0,NULL,0,0);

mcontroller_=create-process(OSPRI_PROC, ctrl_buf, CONTROLLER, 16000, CONTROLLER.PRIORITY, 0, 0,
NULL, 0,0);

ccomm_=createprocess (OSPRIPROC, commbuf, COMM, 4000 , COMMPRIORITY, 0,0 , NULL, 0, 0);
mtesterproc_=createprocess(OSPRIPROC, testerbuf, SPHERE-tester, 8000, CONTROLLERPRIORITY, 0,

0, NULL,0,0);
nLbackground_=createprocess (OSBGPROC, bgbuf, BACKGROUND, 16000, CONTROLLERPRIORITY, 0, 0 , NULL, 0, 0);
m.blockproc_=InstallRedirTable(blk-buf);

//Register Services
CSigWrap cSig;
cSig.Alloc(sizeof(NSAddServiceRequest)+strlen(blk-buf), NS_)ADDSERVICE_REQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf)->tag,"%s", blkjbuf);
cSig. SendFrom (nLblock-proc_, ns-pid_;

cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (bgbuf), NSADDSERVICEREQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf)->tag,"%s", bgbuf);
cSig. SendFrom (lbackground, nspid_) ;

cSig.Alloc(sizeof(NSAddServiceRequest)+strlen(ctrl_buf), NSADDSERVICEREQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", ctrl_buf);
cSig.SendFrom(mcontroller_,nspid.);

#ifdef USING_COMMPROC
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cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (conanLbuf), NS_ADD_SERVICE_REQUEST);
sprintf ( ((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", commtbuf);
cSig. SendFrom (ntconL, nspid_);

#endif
//Initialize variables

stDynSimExtendedState stExtendedState;
for (i = 0; i<EXTENDEDSTATELENGTH; i++)

stExtendedState.dState(i] = 0.;

stExtendedState.dState(SIMQUAT_1] = 1.; //Creates a valid quaternion
aoExtendedState.Write(&stExtendedState);

//Initialize SPHERE globals
gBiasReady = 1;
gTankTime = 0; // assume all thrusters off upon boot
gBatTime = 10; // assume lOms startup time for unit
// initialize global geometric constants
D2RAD = PI/180.0;
RAD2D = 180.0/PI;

// initialize all queues
ii t-q(&gSTGtel-q_out);
init-q(&gSTGtel_q-in);
ii t-q(&gSTGconuLq_in);
init-q(&gSTGconmnLqout);
ii tq(&gSTS-tel-q-out);
init.q(&gSTS-telsq-in);
ii t_q(&gSTScomntq_in);
init_q(&gSTS_conmtq_out);

for (i=O; i<NUMSATS; i++) {
prSpheres [i] = 0;

// initalize Global Matrix Conversion Factor
SPEEDOFSOUND = sqrt(l.40*287.0*(TEMPC+273.14))*100;
CONVGLOBAL = SPEEDOFSOUND/TT8_RATE;

InstallDispatchFcn ("SPHEREsend-thrusts", false, &(dfcn_12_SendThrusts));

//Seed random number generator with system clock time
timet rnd-seed;
time(&rnd-seed);
CRandGen: :SetSeed(rnd_seed);

void CModuleInit::StartProcs()

if (TEST_RUN) start (ntLtester-proc_);
start (nLcontroller_);

#i fdef USING_COMMPROC
start (mncomnt);

#endif
start (ntbackground_);
start (ntinputarbiter_);

void CModuleInit::StartBlock()

CBlockLlInit::StartBlocko;

/*
* This is the controller interrupt.
*/

OSPROCESS (CONTROLLER)
CTimerTrigger cTimer (CONTROLLERTIMESTEP, CONTROLLER_PRIORITY);
cTimer.Starto;
CSigWrap cSig;
const SIGSELECT _ctrlSigs[]={l, HRTBTTICK-SIG);
for (;;) (

cSig.Receive( (SIGSELECT *)_ctrlSigs);
switch (cSig.GetSigNoO)

case HRTBTTICK_SIG:
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if (ITESTRUN) DoControl();
break;

default:
break;

}//switch statement
cSig.FreeBuf C);

}//end for loop
}//end controller process

/* c-int03

* This is the communications interrupt It takes the place of cint03 in the SPHERES
* flight code. There were some modifications made to allow it to work in OSE.

*/
OSPROCESS (COMM)

volatile int
volatile int
volatile int

data;
stat;
uart-num;

//reset interrupt control register
stat = *POLL1;

*INT_ENABLE1 = (-stat & INFIFONOTEMPTY);

*INTENABLE1 = INFIFO_NOTEMPTY;
*MASTER_INT1 = 0;

*MASTERINT1 = 2;

*ledPtrl = 1;

CSigWrap cSig;
const SIGSELECT _co=mSigs[]=(2, STSBYTE, STGBYTE};
for (;;) (

// get data from hardware FIFO
//data = *RdFIFO;

cSig.Receive( (SIGSELECT *)_commSigs);
data = ((stSphereByte *) cSig.pBuf)->data;
//clear upper bytes to get RAW data

// data = data & LOWBYTE;

//determine hardware SOURCE from upper byte
uart-num = data & UARTREAD;
switch (cSig.GetSigNoo)

case STGBYTE:
gInCoxn[1][gInBot[1]] = data;/* put data in buffer */
gInComnSize[l] ++;/* increase data size */
gInBot[l] ++;
if (gInBot[l] >= INCOMM_MAX) gInBot[l] = 0;/* increase
break;

case STSBYTE:
gInComm[2] [gInBot[2]] = data;/* put data in buffer */

gInComnSize[2] ++;/* increase data size */
gInBot[2] ++;
if (gInBot[2] >= INCOMM_4AX) gInBot[2] = 0;/* increase
break;

}//end switch
cSig.FreeBuf (;
*ledPtrl = 0;

}//end for

data pointer */

data pointer */

* The background process performs the background processing that occurs in the infinite
* loop in the main.c file in the SPHERES flight code.

OSPROCESS (BACKGROUND)
int i;
const SIGSELECT _sensorSigs[]={2, SPHSENSORSIMIMU_RAW, SPHSENSORSIMGMDATA};

CSigWrap cSig;
for (;;) {

//As in main.c
rcvpackets (GROUND);
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processrcvd-data (;
xmit-packets (;

//The metrology information arrives here since the metrology sim does
//not send it as packets to the communications interrupt.
//Copy sensor information so tt8_get() can see it
cSig.ReceiveWTO( (OSTIME) 0, (SIGSELECT *)_sensorSigs);
while (cSig.pBuf) {

switch (cSig.GetSigNoo)

case SPH_SENSORSIMIMURAW:
for (i = 0; i<IMU_.RAWSIZE; i++) {

g-stIMUreading.iIMUdata[i] = ntohl((((stSensorSimINUdata*)cSig.pBuf)->iIMU-
data) [i]);

//Set the flag to NEWDATA so that the tt8_get() function knows there is new data.
if (USEIMU && (USESENSORSIM | USEIMJWITHDYNSIM)) gIMUdataFlag = NEWDATA;
break;

case SPH_SENSORSIM_.GM_DATA:
for (int tx = 0; tx<NUM_TX; tx++)

for (nt face = 0; face<NUMFACE; face++)
for (nt rx = 0; rx<NUMRX; rx++) {

g-stGMreading. fDistance [tx] C face] [rx] = ntohf ( ( ( (stSensorSiniGM-
data*)cSig.pBuf)->fDistance) [tx] [face] [rx]);

//Set the flag to NEWDATA so that the tt8.get() function knows there is new data.
if (USESENSORSIM) gGMdataFlag = NEW_DATA;
break;

default:
break;

}//switch statement
cSig.FreeBuf 0;
cSig.ReceiveWTO((OSTIME)0, (SIGSELECT *)_sensorSigs);

}//end while loop

//As in main.c
pads (;
housekeeping (;

}//end for loop
}//end background process

OS_PROCESS (SPHERE_inputarbiter)

PROCESS background-proc;
hunt (bg.buf, 0 ,&background-proc ,NULL);
PROCESS controller-proc;
hunt (ctrlbuf , 0, &controller-proc, NULL);

int i, iSCId;
stDynSimExtendedState stExtendedState;
CSigWrap cSig;

for (;;) {
cSig.Receive((SIGSELECT *)_anysig);
switch(cSig.GetSigNoo)

//Uncorrupted state info coming from the dynamics simulator
case DYNSIMEXTENDEDSTATE:

for (i = 0; i<EXTENDEDSTATELENGTH; i++)
stExtendedState.dState[i = ntohd((((stDynSimExtendedState*)cSig.pBuf)->dState) Ci]);

//Multiply by 100.0 to convert from [m] to Ccm]
for (i = 0; i<3; i++) {

stExtendedState.dState[SIMyPOSX + i] *= 100.;
stExtendedState.dState[SIM-VELX + i] * 100.;
stExtendedState.dState[SIM-ACCX + i] * 100.;

aoExtendedState . Write (&stExtendedState);

//When not using metrology sim we need to fill up gState[]
if (!USE_SENSOR.SIM) {
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//Fill up gState[] global variable (for SPHERE code)
FillGStateo;

//Fill up gBody2Glo global variable (for SPHERE code)
body.toglobal (gBody2Glo, gState);

cSig.FreeBuf (;
break;

//When another SPHERE notifies us it has joined the simulation
case SPHERE_NOTIFICATION:

iSCId = ntohl(((stSphereNotification*)cSig.pBuf)->iSCId);
prSpheres[iSCId] = cSig.Sender();
dbgprintf("SPHERE %i notified by SPHERE %i with pid %i\n", iSpacecraftIdNum, iSCId,

prSpheres[iSCId]);
cSig.FreeBuf (;
break;

//When the laptop application notifies us it exists (no longer used)
case LAPTOPNOTIFICATION:

prLaptop = cSig.Sender();
dbgprintf("SPHERE %i notified by
cSig.FreeBuf (;
break;

//When the comm manager notifies
case COMM_YANAGER_NOTIFICATION:

//The comm manager is the laptop
prLaptop = cSig.Sender(;
dbgprintf("SPHERE %i notified by
cSig.FreeBuf();
break;

LAPTOP with pid %i\n", iSpacecraftIdNum, prLaptop);

us it has joined the simulation

as far as the SPHERE is concerned.

Comn Manager with pid %i\n", iSpacecraftIdNum, prLaptop);

def ault:
cSig.FreeBuf();
break;

OSPROCESS(SPHEREblkmgr)
int i;
CSigWrap cSig;

REGISTER.BLOCKVARS();

CModuleInit cInitializer(_prefix);
cInitializer.StartBlock();

//Wait until the relevant processes are
CProcessWrap cDynSimProcess, cThrustSimProc,
BOOL bFoundName=false;
do

found
cSensorSimProc;

if (cDynSimProcess.NSGetPid(_dynamicsSimName)==0 && cThrustSimProc.NSGet-
Pid(_thrustSimName)==0 && cSensorSimProc.NSGetPid(_sensorSimName) == 0) {

bFoundName=true;
if (USESENSORSIM)

prSensorSim = cSensorSimProc.GetPid(;

else

delay(500); // wait for processes to register.

while (bFoundName==false);

PROCESS msgneg_;
char msg~negname [80];
sprintf(msg_neg_name, "%s%s", _prefix, "msgneg");
hunt (msg-neg-name, 0, &msgneg, NULL);

PROCESS blockproc;
hunt (blkbuf, 0, &block-proc,NULL);
PROCESS backgroundproc;
hunt (bg-buf, 0, &backgroundproc,NULL);
prBackground = background_proc;

160

}



APPENDIX A 161

double dInitialState(STATELENGTH];
InitState(dInitialState);

//Set initial state
#ifdef SINGLE_SPHERE

dInitialState[SIMQUAT_1] = cos(PI/2.0);
dInitialState[SIMQUAT_2] = 0.0;
dInitialState[SIM_QUAT_3] = 0.0;
dInitialState[SIMQUAT_4] = sin(PI/2.0);

#endif
#ifdef MASTER

dInitialState[SIM-POSX] = 1.15 + fMSdiff[0]/2.0/100.0;
dInitialState[SIM-POSY] = 1.15 + fMSdiff[1]/2.0/100.0;
dInitialState[SIM-POSZ] = 1.15 + fMSdiff[2]/2.0/100.0;

#endif
#ifdef SLAVE

dInitialStateSIMPOSX] = 1.15 - fMSdiff[0]/2.0/100.0;
dInitialState[SIM-POSY] = 1.15 - fMSdiff[1]/2.0/100.0;
dInitialStateSI -POSZ] = 1.15 - fMSdiff[2]/2.0/100.0;

#endif

//Send initial state to simulator.
//Should eventually move to a GUI.

cSig.Alloc (sizeof (stDynSimFullState), DYNSIMSET_INITIALSTATE);
((stDynSimFullState*) cSig.pBuf)->iSCId = htonl(iSpacecraftIdNum);
for (i=0; i<STATELLENGTH; i++ ) (

(((stDynSimFullState*) cSig.pBuf) ->dState) [i] = htond(dInitialState[i]);

cSig.Send(cDynSimProcess.GetPid());

//Start the simulator.
//Should eventually move to a GUI.

cSig.Alloc(sizeof(SIGSELECT), STARTSIMULATION);
cSig.Send(cDynSimProcess.GetPid( );

//Start Contracts
CContractClient cStateContract, cThrustContract, cSensorContractIMU, cSensorContractGM;
int iStatus;

//DYNAMICS SIX CONTRACT
cStateContract.CreateByName(0, block.proc, false, 500, 0,

TTLNEVEREXPIRE, "dynsintextendedstate", iSpacecraftIdNum, NULL);
cStateContract . SetSourceByName (dynamicsSimName);
iStatus = cStateContract.Start(;
if (iStatus == 0) dbgprintf("%s\n", "Dynamics sim contract started in SPHERE");
else dbgprintf("%s\n", "Dynamics sim contract could not start in SPHERE");

//THRUSTER CONTRACT

//The period is set at 0 because it will get rounded up to 1
cThrustContract.CreateByName (msgneg_, cThrustSimProc.GetPid(), false, 0, "SPHERE.send.thrusts");
iStatus = cThrustContract.Start(;
if (iStatus == 0) dbgprintf("%s\n", "Thruster contract started in SPHERE");
else dbgprintf("%s\n", "Thruster contract could not start in SPHERE");

//Make sure all the variables for the SPHERES code are initialized
global-init (;
buffer-init();
FixPointers (;
SetActuatorMatrixo;

for (i=0; i<EXTENDEDSTATELENGTH; i++)

gStateTarget[i] = 0.;
}
gStateTarget [POSX] = 100. 0*dInitialState[SIMLCPOS_X];
gStateTarget[POSY] = 100.0*dInitialState[SIMPOSY];
gStateTarget [POS_Z] = 100.0*dInitialState[SIMPOSZ];
gStateTarget(QUAT_4] = 1.0;

//Have SPHERE start off with perfect state knowledge
stDynSimExtendedState stExtendedState;
for (i=0; i<STATELENGTH; i++) {

stExtendedState.dState[i] = dInitialState[i];
}
for (i=STATELENGTH; i<EXTENDED_-STATE_LENGTH; i++) {

stExtendedState.dState[i] = 0.0;
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for(i=0; i<3; i++) {
stExtendedState.dState[SIMPOS_X+i] *= 100.0;
stExtendedState.dState[SIMVELX+i] *= 100.0;
stExtendedState.dState[SIMACC_X+i] *= 100.0;

aoExtendedState.Write(&stExtendedState);
FillGState C);
bodyto-global (gBody2Glo, gState);
//Need this otherwise MASTER doesn't send position telemetry to SLAVE
if(!USESENSORSIM) gfGotGlobal = 1;

//Start processes in this module
cInitializer.StartProcs();

//Find communications manager processes
PROCESS STSconmLproc;
PROCESS STGcoun.tproc;
char _STSproc-name [80];
char _STGprocname [80];
sprintf (STS-procname, "%s%i",_sphSTSComName, iSpacecraftIdNum);
sprintf (_STG_procname, "%s%i",_sphSTGCommName, iSpacecraftIdNum);

//Find STS comm process for this SPHERE
hunt(_STSprocname,0,&STSconmtmproc,NULL);
//Find STG comm process for this SPHERE
hunt (_STGprocname, 0, &STGcommproc ,NULL);

//Find comm manager and notify it that we exist
CProcessWrap cConvnManager;
if (cCommManager.NSGetPid(_STGConManagerName)==0) {//Found comm manager proc

prLaptop = cCommManager.GetPid(;
if (cCommNanager.NSGetPid(_CommManagerBlockName)==0) {//Found comm mgr block proc

dbgprintf ("SPHERE %i found comm manager with PID %i\n", iSpacecraftIdNum, prLaptop);
cSig.Alloc(sizeof(stSphereNotification), SPHERE_NOTIFICATION);
((stSphereNotification*) cSig.pBuf)->iSCId = htonl(iSpacecraftIdNum);
cSig. SendFrom(STGconmLproc, cComnManager.GetPid();

//Look for SPHERES that already exist, and send notification to them so they know we exist
char _SPHERE-name[80];
CProcessWrap cSPHERES [NUMSATS];
for (i=0; i<NUMSATS; i++) (

if (i 1= iSpacecraftIdNum)
sprintf (_SPHERE_name, "%s%i-,_sphSTSCommName, i);
if (cSPHERES[i) .NSGetPid(_SPHERE-name)==0) {//Found STS comm proc on other SPHERE

prSpheres[i] = cSPHERES[i].GetPid(;
sprintf(_SPHEREname, "%s%i",_sphBlockName, i);
if (cSPHERES[i] .NSGetPid(_SPHEREname)==0) {//Found block proc on other SPHERE

dbgprintf ("SPHERE %i found SPHERE %i with PID %i\n", iSpacecraftIdNum, i,
prSpheres[i]);

cSig.Alloc(sizeof (stSphereNotification), SPHERE_NOTIFICATION);
((stSphereNotification*) cSig.pBuf)->iSCId = htonl(iSpacecraftIdNum);
cSig.SendFrom(STSconmuLproc, cSPHERES[i].GetPid();

}

stop(currentprocess ();

OSPROCESS(SPHEREtester) {
stop(current.process 0);

* Fills up the gState vector so that it is ready for the SPHERE code.
* Uses the state info saved in aoExtendedState
*/

void FillGState()
stDynSimExtendedState stExtendedState;
aoExtendedState.Read(&stExtendedState);
gState[QUATl] = (float) stExtendedState. dState [SIMQUAT_2];

4
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gState[QUAT_2] = (float)stExtendedState.dState[SIH-QUAT_3];
gState[QUAT_3] = (float)stExtendedState.dState(SIHQUAT_4];
gState[QUAT_4] = (float)stExtendedState.dState[SIM-QUAT_1];
gState[RATEX] = (float)stExtendedState.dState[SIMl-RATE_X];
gState[RATE_Y] = (float)stExtendedState.dState[SIM-RATEY];
gState[RATEZ] = (float)stExtendedState.dState[SIL-RATEZ];
gState[POS_X] = (float) stExtendedState.dState [SIM-POSX];
gState[POSY] = (float)stExtendedState.dState[SIM-POSY];
gState[POS_Z] = (float)stExtendedState.dState[SIMPOSZ];
gState[VEL_X] = (float)stExtendedState.dState[SIM-VELX];
gState[VELY] = (float)stExtendedState.dState[SIM-VELY];
gState[VELZ] = (float)stExtendedState.dState[SIM-VELZ];
gState[ACC_X] = (float)stExtendedState.dState[SIMACCX];
gState[ACCY] = (float)stExtendedState.dState[SIM-ACCY] ;
gState[ACCZ] = (float)stExtendedState.dState[SIMACCZ];
gState[ACCANGX] = (float)stExtendedState.dState[SIMACCANGX];
gState[ACCANGY] = (float) stExtendedState.dState [SIMACCANGY];
gState[ACCANGZ] = (float)stExtendedState.dState[SIMACCANG.Z];

* This function fills up the actuator matrix.
* Filling it up here ensures that we have the same mass as the dynamics sim.
*/

void SetActuatorMatrix() {
double CON = 1.0/(MASS*2.0);
// actuator dynamics B matrix: xdot=Ax+Bu (note:
for (nt i=0; i<STATELENGTH+l; i++) {

for (int j=0; j<NUM_THRUSTERS + 1; j++)
gActuatorMatrixi][j] = 0.0;

gActuatorMatrix [4]
gActuatorMatrix [41
gActuatorMatrix[4]
gActuatorMatrix [4]

gActuatorMatrix [5]
gActuatorMatrix[5]
gActuatorMatrix [5]
gActuatorMatrix [5]

single offset array)

[1]= -CON;
[21 = +CON;
[111= -CON;
[121= +CON;

[31 = +CON;
[41= -CON;
[71= -CON;
[8]= +CON;

gActuatorMatrix[6] [51= -CON;
gActuatorMatrix [6] [61= +CON;
gActuatorMatrix[6] [91= -CON;
gActuatorMatrix[6] [101= +CON;

A.4.3 SphereCode.c
/*

* Include files needed to build the code that actually runs on
* the real SPHERES (ie. SPHERES flight code).
*/

// library includes
#include "dbgprintf.h"
#include "SpheresDefines.h"
#include "SpheresDummyFunctions.c"

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<math.h>
"main.h"
"globals.h"
"errors.h"
"telemetry.h"
"packet.h"
"q.h"
"blinkLED.h"
"nrutil.h"

#include "coon.h"
#include "pads.h"
#include "pads-imu.h"
#include "connands.h"
#include "control.h"
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// include maneuver list:
#include "maneuverlist.c"

// properties specific to each sphere
#include "sphereproperties.h"

// source file includes
#include "blinkLED.c"
#include "spheres_;math.c"
#include "math-spheres . c"
#include "commDummyFunctions.c"
#include "q.c"
#include "packet.c"
#include "pads.c"
#include "telemetry.c"
#include "spheres-init.c"
#include "process_rcvd_data. c"
#include "housekeeping.c"
#include "control.c"

//These two flags signify whether the sat has received new metrology data
int gIMUdataFlag = OLDDATA;
int gGMdataFlag = OLDDATA;

//These two structs are used to hold metrology readings
typedef struct _stIMUreading (

int iIMjdata[IMURAWSIZE];
} stIMUreading;
typedef struct _stGMreading

float fDistance [NUMTX] [NUMFACE] [NUMRX];
} stGMreading;
stIMUreading gstIMUreading;
stGMreading gstGMreading;

//This function replaces the tt8_get() function in pads.c
//It is necessary since the metrology sim doesn't send metrology
//information as communications packet, but instead as OSE signal.
int tt8_get() (

int count, tx, rx, face;
int got-imu;
int got-global;

static int muxcount=0;

// initialize return variables
got-imu = 4;
got-global = 8;

if (gIMUdataFlag == NEWDATA)
for (count = 0; count < IMURAWSIZE; count++)

gIMU_raw[count] = g-stIMUreading. iIMUdata [count];

gIMUdataFlag = OLDDATA;
got-imu = GOTIMU;

} // end get IMU data

if (gGMdataFlag == NEWDATA)
for (tx = 0; tx < NUMTX; tx++)

for (face = 0; face < NUMFACE; face++)

for (rx = 0; rx < NUMRX; rx++)

gGlobal [tx] [face] [rx] = (g-stGMreading. fDistance[ tx] [face] [rx] < DISTMAX) ?
g-stGMreading.fDistance[tx] [face] [rx] : 0.0;

for (tx = 0; tx < NUMTX; tx++)

for (rx = 0; rx < NUMRX; rx++)

if (gfGlobalMuxO)
gGlobal[tx] [0] (rx] = 0.0;
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else
gGlobal[tx]2]([rx] = 0.0;

if (gfGlobalMuxl)
gGlobal[tx][3][rx] = 0.0;

else
gGlobal[tx](5][rx] = 0.0;

} //end for rx
) / end for tx

// swap MUX values... in the future some good algorithm will choose which
// receivers to look at, but for now we just interchange them each time we get
// a matrix

if (gfGotGlobal)
{

gfGlobalMux0 = 1;
gfGlobalMuxl = 1;

else
{

muxcount++;
if (mux-count==3)

gfGlobal{uxo 1;
gfGlobalMuxl 1;
mux-count = 0;

}

gGMdataFlag = OLD_DATA;
got-global = GOTGLOBAL;

} // end get GM data
return (got-imu + got-global);

}

A.4.4 SPHERE.sig
//GFLOPS SIGNAL DEFINITION FILE
//Service Name(s):SPHERE#
//Creator:ADBR 02/04/2002

#ifndef _SPHERESIGS_
#define _SPHERE_SIGS__

//Some standard includes
#include "ose.h"
#include "osetypes.h"

-== = PASTE DEFINES HERE==========================* /
#define STSBYTE ( 100301 ) /* !-SIGNO( stSphereByte)-! */
#define STG.BYTE ( 100302 ) /* !-SIGNO( stSphereByte)-I */
#define SPHERENOTIFICATION ( 100303 ) /* !-SIGNO(stSphereNotification)-! */
#define LAPTOPNOTIFICATION ( 100304 ) /* !-SIGNO(stSphereNotification)-i */
#define COMMJ(ANAGERNOTIFICATION ( 100305 ) /* !-SIGNO(stSphereNotification)- */
#define PACKET ( 100306 ) /* !-SIGNO(stPacket)-! */

//Define the structures used by service signals

typedef struct _stSphereByte
SIGSELECT sigNo;
unsigned char data;

I stSphereByte;

typedef struct _stSphereNotification
SIGSELECT sigNo;
int iSCId;

} stSphereNotification;

typedef struct _stPacket {
SIGSELECT sigNo;
unsigned char packet[l];

} stPacket;

#endif
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A.4.5 SPHEREFixPointers.cpp
#include "malloc.h"

//FROM MAIN.H

/* interrupts constants */
extern volatile int *INTENABLEl;
extern volatile int *MASTERINTl;
extern volatile int *POLLl;

/* register constants */
extern volatile int *OUTENABLE;
extern volatile int *ledPtrO;
extern volatile int *ledPtrl;
extern volatile int *PortAIn;
extern volatile int *PortAOut;
extern volatile int *PortBIn;
extern volatile int *PortBOut;
extern volatile int *FlashLock;

/* FIFO constants */
extern volatile int
extern volatile int
extern
extern
extern
extern
extern
extern
extern

/ /FROM
extern
extern
extern

volatile int
volatile int
volatile
volatile
volatile
volatile
volatile

GLOBALS.H
volatile
volatile
volatile

int
int
int
int
int

*FIFOstat;
*EnableFIFOStrobe;
*FIFOStrobeDir;
*SwapFIFOStrobe0l;
*FIFOStrobe3Funct;
*RdFIFO;

*WrFIFO;

*ResetRdFIFO;
*ResetWrFIFO;

int * TANKADDR;
int * BATADDR;
int * TEMPADDR;

* This function resets irrelevant SPHERES flight code pointers to
* point to dynamically allocated memory. So when a write to one
* of these pointers occurs, it is not a write to a random place
* in memory. This prevents the program from crashing.
*/

void FixPointers()
/* interrupts constants */
INTENABLE1= (int *)xmalloc(sizeof(int));
MASTERINT1= (int *)malloc(sizeof(int));
POLL1 = (int *)malloc(sizeof(int));

/* register constants */
OUTENABLE = (int*)malloc(sizeof(int));
ledPtrO = (int*)malloc(sizeof(int));
ledPtrl
PortAIn
PortAOut
PortBIn
PortBOut
FlashLock

= (int*)malloc(sizeof(int));
= (int*)malloc(sizeof(int));
= (int*)malloc(sizeof(int));
= (int*)malloc(sizeof(int));
= (int*)malloc(sizeof(int));
= (int*)malloc(sizeof(int));

/* FIFO constants */
FIFOstat =

EnableFIFOStrobe =
FIFOStrobeDir =
SwapFIFOStrobe0l
FIFOStrobe3Funct =
RdFIFO =

WrFIFO =

ResetRdFIFO =

ResetWrFIFO =

int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));
int*)malloc(sizeof(int));

// unlatched copy!

//FROM GLOBALS.H

TANKADDR = (int*)malloc(sizeof(int));
BAT-DDR = (int*)malloc(sizeof(int));
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TEMPADDR = (int*)malloc(sizeof(int));

}

A.5 Communications Manager

A.5.1 Sphcomm._manager.h
#ifndef __SPHCOMMCHANAGER__
#define _SPHCOMMLNANAGER_

#include "Spheres_includes.h"
#include "SpheresNames.h"
#include "Spheres-constants.h"
#include "packet.h"
#include "errors.h"
#include "SPHERE. sig"
#include "telemetry.h"
#include "pads.h"

#define MAIN_PROCPRIORITY20
#define INPUTARBITER_PRIORITY11

#define _prefix "conrjngr_"

bool DEBUGRUN= false;

extern "C"(
OSENTRYPOINT(STGcovmnLnanager);
OSENTRYPOINT(GTScorajnanager);
OSENTRYPOINT (comungr.input-arbiter);
OSENTRYPOINT (conungr..blkjngr);

}

/*============= ==============Classes-============================*/
//Derived block initializer

class CHoduleInit: public CBlockLlInit{
public:

CHoduleInit(char * sProcPrefix=NULL);
void StartBlock();

protected:
PROCESS nLSTG-proc.;
PROCESS utGTSproc_;

} ;

Functions-============================*/
bool FilterTelemetry (unsigned char type);
void InitializeFilter (;
void FilterType(unsigned char type, int iRatio);

#endif

A.5.2 Sph-comm-manager.cpp
#include "sph-com-nanager.h"

#define FILTERSIZE256
#defineFILTERALL-1
#define FILTER_NONE-2

/*=====================Global Variables-======================* /
PROCESS prSpheres [NUISATS];
PROCESS prLaptop = 0;
int g-iFilterRatioFILTERSIZE];
int g.iFilterCountFILTER_SIZE];

/*======================Initializers-======================*/
CModuleInit::CXoduleInit(char * sProcPrefix) : CBlockLlInit(sProcPrefix)
{

//Input arbiter name
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int i;
char buf [80];
sprintf(buf, "%sinput.arbiter", sProcPref ix);

//Set up processes
m-input-arbiter_ = create-process(OSPRIPROC, buf, comn mgrinputarbiter, 1000,

INPUTARBITER_PRIORITY, 0, 0, NULL, 0, 0);
mSTG-proc_ = create-process(OSPRIPROC, _STG_ConmManagerName, STGcommmanager, 8000,

MAINPROCPRIORITY, 0, 0, NULL, 0, 0);
rGTS-proc_ = createprocess(OS_PRI_PROC, _GTS_CommManagerName, GTSconmmanager, 8000,

MAINPROCPRIORITY, 0, 0, NULL, 0, 0);
mblock-proc_ = InstallRedirTable (_CommManagerBlockName);

//Register Services
CSigWrap cSig;
cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (_STGCommManagerName), NSADDSERVICEREQUEST);
sprintf(((struct NSAddServiceRequest *) cSig.pBuf)->tag,"%s", _STGCommManagerName);
cSig. SendFrom(mSTG.proc, ns-pid_);
cSig.Alloc (sizeof (NSAddServiceRequest) +strlen (_GTS_CommManagerName), NS_ADD_SERVICEREQUEST);
sprintf (((struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", _GTS_CommManagerName);
cSig.SendFrom(mGTSproc_,ns-pid_);
cSig.Alloc(sizeof(NSAddServiceRequest)+strlen(_CommanagerBlockName), NSADDSERVICEREQUEST);
sprintf ( ( (struct NSAddServiceRequest *) cSig.pBuf) ->tag, "%s", _CommanagerBlockName);
cSig. SendFrom(m-blockproc_, nspid_);

//Initialization
for (i0; i<NUMSATS; i++) {

prSpheres(i] = 0;

InitializeFiltero;

void CModuleInit::StartBlock()

//Start Base Block Processes
CBlockLlInit::StartBlocko;
start (mSTG.proc-);
start (mGTS-proc_);
start (tinputarbiter_) ;

/*=======================- Processes-======================*/

/*
* This process receives the bytes that make up a packet from the SPHERES, then
* forwards the full packets to the laptop application running on a PC.
*/

OSPROCESS (STGconmtanager) {
unsigned char to, from, type, size, data (MAXPACKET], packet [MAXPACKET+HEADERSIZE];
unsigned int time, result;

bool bFilter;
for (;;) {

bFilter = false;
result get-packet (GROUND, &to, &from, &type, &time, &size, data);
if (result == 0) (//Good packet

//Filter telemetry
if (type == TELEMETRY)

bFilter = FilterTelemetry(data[0]);

if (!bFilter) {
//Send to ground
result = create-packet(to, from, type, time, size, data, packet);
if (result == 0) {

send-packet(STGSENDCOMM, packet, size);

else if (result == TIMEOUTERROR)
dbgprintf ("Comm manager had timeout error on STG receive\n");

I//end for loop
I//end STGcommLmanager process
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* This process receives full packets from the laptop application running on a PC,
* and sends the individual bytes to each SPHERE.
*/

OS_PROCESS (GTScorunLanager) {
int i, sc, size;

const SIGSELECT _packet[]={l, PACKET);
CSigWrap cSig, cSendSig;
for (;;) (

cSig.Receive( (SIGSELECT *)-packet);
size = (int)(((stPacket *) cSig.pBuf)->packet[6]);
for (i=0; i<size+HEADER_SIZE; i++) {

for (sc=O; sc<NUMSATS; sc++)
if (prSpheres~sc] != 0) {

cSendSig.Alloc (sizeof (stSphereByte), STGBYTE);
((stSphereByte *) cSendSig.pBuf) ->data = ((stPacket *) cSig.pBuf) ->packet [i];
cSendSig.Send(prSpheres[sc]);

cSig.FreeBuf();
}//end for loop

}//end GTSconuLmanager process

OSPROCESS (comn ngr-inputarbiter)

int iSCId;

CSigWrap cSig;
for (;;) (

cSig.Receive( (SIGSELECT *)_anysig);
switch(cSig.GetSigNo ()

//When a SPHERE lets us know it has entered the simulation.
case SPHERENOTIFICATION:

iSCId = ntohl ( ( (stSphereNotification*)cSig.pBuf) ->iSCId);
prSpheres(iSCId] = cSig.Sender();
dbgprintf ("Coma manager notified by SPHERE %i with pid %i\n", iSCId, prSpheres[iSCId]);
cSig.FreeBuf (;
break;

//When the laptop application lets us know it exists.
case LAPTOP_NOTIFICATION:

prLaptop = cSig.Sender(;
dbgprintf ("Comm manager notified by LAPTOP with pid %i\n", prLaptop);
cSig.FreeBuf 0;
break;

default:
cSig.FreeBuf();
break;

OSPROCESS (commngrblkjngr)
int i;
CSigWrap cSig;

REGISTER-BLOCKVARS( ;

CModuleInit cInitializer(_prefix);
cInitializer.StartBlock();

//Find stg conu manager process since that's the PID the Sphere needs to know
PROCESS STGcomaLproc;
hunt (LSTG.ConnManagerName, 0, &STGcomntproc, NULL);

//Look for SPHERES that already exist, and send notification
//to them so they know we exist

char _SPHERE-name[80];
CProcessWrap cSPHERES [NUSATS];
for (i=0; i<NUM-SATS; i++) {
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sprintf (_SPHEREname, "%s%i" , _sphSTGComName, i);
if (cSPHERES[i] .NSGetPid(_SPHEREname)==0) (//Found SPHERE STG comm proc

prSpheres[i] = cSPHERES(i].GetPid();
sprintf (_SPHERE-name, "%s%i",_sphBlockName, i);
if (cSPHERES [i] .NSGetPid(_SPHEREname) ==O) {/ /Found block proc

dbgprintf ("Comm manager found SPHERE %i with PID %i\n", i, prSpheresfi]);
cSig.Alloc (sizeof (stSphereNotification), COMJMANAGERNOTIFICATION);
cSig. SendFrom(STGconmmproc, cSPHERES [i] .GetPid ());

stop(currentprocess ();

void InitializeFilter()
for (int i=0; i<FILTERSIZE; i++)

g_iFilterRatio[i] = FILTERNONE;
g_iFilterCount[i] = 0;

FilterType(RAWMASTER, FILTERALL);

FilterType (DATAGLOBAL, FILTERALL);

FilterType(DATABIAS, FILTERALL);

FilterType(DATAIMU_RAW, FILTERALL);

FilterType (GLOBALROW, FILTERALL);

FilterType (THRUSTERON, FILTERALL);

FilterType(Oxl, FILTERALL); //RESETDATA

FilterType(Ox12, FILTERALL); //LOW_.BAT
FilterType(Ox13, FILTERALL); //LOWTANK

FilterType(Oxl4, FILTERALL); //TANK_DATA

FilterType(ANGSLAVE, 9);
FilterType(POSSLAVE, 9);
FilterType(ACCSLAVE, 9);
FilterType(RAWSLAVE, 9);
FilterType(BIASSLAVE, 9);
FilterType (ANGNASTER, 9);

FilterType(POSMASTER, 9);

FilterType (ACCMASTER, 9);

FilterType(RAWNASTER, 9);
FilterType(BIAS_MASTER, 9);

void FilterType (unsigned char type, int iRatio)
if ((int) type < 256 && (int) type >= 0)

g_iFilterRatio[(int)type] = iRatio;
g.iFilterCount[(int)type] = 0;

bool FilterTelemetry (unsigned char type)
if ((int)type < FILTERSIZE && (int)type >= 0)

if (g_iFilterRatio[(int)type] == FILTERALL) return true;
if (giFilterRatio[(int)type] == FILTERNONE) return false;
if (giFilterCount [ (int) type] >= giFilterRatio[ (int) type])

g-iFilterCount[(int)type] = 0;
return false;

else
g-iFilterCount [ (int) type]++;
return true;

else return false;

A.6 General Simulation Files

A.6.1 SpheresNames.h
#ifndef _SPHERESNAMES_
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#define _SPHERESNAMES_

#include "SpheresDefines.h"

const SIGSELECT -anysig[]=(0);
const SIGSELECT _tick[]=(1, HRTBTTICK-SIG};

const char-dynamicsSimName[]="dynamics.sim";
const char-thrustSimName(]="thrust-sim";
const charsensorSimName[]="sensorsim";

char _sphControllerName[]="SPHERE_controller";
char _sphCommName [] = "SPHERE-comm";
char _sphThrustersName[]="SPHERE_thrusters";
char _sphBackgroundName [] = "SPHEREjbackground";
char _sphInputArbName[]="SPHERE-inputArbiter";
char _sphTesterProcName [ ]= "SPHERE-tester";
char _sphBlockName[]= "SPHEREblock";

#i fdef USINGCOMPROC
char _sphSTSCommName[]="SPHEREcomm";
char _sphSTGCommName[]="SPHEREcom";
#else
char _sphSTSCounName[]="SPHERE_controller"; //_sphConName
char _sphSTGCommName[]="SPHEREbackground"; //_sphBackgroundName
#endif

char _STG.CoumManagerName [ = "STGcozmn_.anager_";
char _GTS_ConmManagerName ]="GTSconmumanager_ ";
char _CommManagerBlockName []="covntmgrblock";

#endif

A.6.2 Spheresconstants.h
#ifndef __SPHERES_CONSTANTS_
#def ine _SPHERESCONSTANTS_

#include "Spheres-constants-global.h"
#include <math.h>

const bool LONGTIMESTEP = true;

//SPHERE MODULE

const double CTRLRATE=50.;//rate at which DoControl() is run in Hz
const int PWNIN=5; //min pulse width in seconds

//can't make const since used as non-constant arg in functions
const double PW.AX=l. / (CTRLRATE/5.); //max pulse width in seconds

//SENSOR SIM

const doubleMAX_TX_ANGLE=90.; //max tx angle at which metrology reading is received
const doubleMAX_RXANGLE=100.; //max rx angle at which metrology reading is received
const doubleIMUDELAY=18.e-3;//Should be about 20ms or less
const intIR_PERIOD= 153; //period between IR transmit cycles
const doubleGYRONOISERMS-DEG=0.5;//Root mean square of noise in gyros (in degrees)
const doubleACCELNOISERMS=9.81*((20.0e-6)*sqrt(10.0) + (200.0e-6)*sqrt(490.0));
const doubleGYRO_RANGE_DEG=50.0;//Gyros can read inputs from -50.0 to 50.0 deg/s
const doubleACCELRANGE=9.81*20.0;//(m/s^2) Accelerometer can read inputs from -20g to 20g
const doubleACCEL_RESOLUTION=9.81*5.0E-6;//(m/s^2) Threshold and resolution of accelerometers

//THRUSTER SIMULATOR
#define NUMTHRUSTERS12
const double PRESSURE=45.0;
const double THRUST = 0.0033*PRESSURE - 0.0049;//0.24;//thrust of a single thruster in N
const double THRUST_NOISELEVEL=0.01;//thrust noise as a fraction of comanded thrust
const double THRUSTERONDELAY=6.0e-3;//delay between thrust ON comand and thrust output due to sole-

noid delay
const double THRUSTEROFFDELAY=0.Oe-3; //delay between thrust OFF comand and thrust change due to sole-

noid delay

#define ONE_G
//#define CUSTOMSIM

//DYNAMICS SIMULATOR
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#ifdef CUSTOMCSIM
const double MASS=3.5;//The mass of a Spheres satellite in kg
const double INERTIA_ZZ =0.014;
#else
#ifdef ONE_G
const double MASS=5.5299;//The mass of a Spheres satellite in kg
const double INERTIAZZ =0.0311;
#else
const double MASS=3.4447;//The mass of a Spheres satellite in kg
const double INERTIAZZ =0.0190;
#endif
#endif
const double INVMASS=1./MASS;//The inverse of the mass of a Spheres satellite
const double INERTIAXX =0.0204;//Rotational inertias assuming uniform mass distribution
const double INERTIA_YY =0.0170;
const double RADIUS=0.1;//Approximate radius of Sphere in meters
const double COEFFOF_RESTITUTION=0.5;//Coefficient of restitution for collisions
const double MAXCOLLISIONCHECKTIME=0.1;//Time between checks to see if sats have collided

//Center of mass coordinates in the body frame
const double CMPOSX=0.0;
const double CM_POS_Y=0.0;
const double CMPOSZ=0.0;

//Docking constants
const double CONST-DOCKING_PORTVECTOR[]={1.0, 0.0, 0.0};//vector in body frame pointing in direction

of docking port
const double DOCKINGOFFSET_.ANG=10.0;//Max angular offset in docking port vectors for successful dock

(deg)
const double DOCKINGOFFSETLIN=0.1;//Max linear offset between center of docking ports for successful

dock (m)

//Indices in torque/thrust vector in propagator
#define TORQUE_XO
#define TORQUE_Yl
#define TORQUEZ2
#define THRUST_XO
#define THRUST_Yl
#define THRUSTZ2

// indices into state vector
#define SIMPOSX 0
#define SIMHPOSY 1
#define SIM_POS_Z 2
#define SIMVELX 3
#define SIMVELY 4
#define SIM_VELZ 5
#define SIMQUAT_1 6
#define SIM_QUAT_2 7
#define SIMQUAT_3 8
#define SIM-QUAT_4 9
#define SIM-RATEJX 10
#define SIM-RATEY 11
#define SIMRATEZ 12
#define STATE_LENGTH 13
// extended state variables
#define SIM_ACCX 13
#define SIM_ACCY 14
#define SIMACCZ 15
#define SIM_ACCANG_X 16
#define SIMACCANGY 17
#define SIM_ACCANGZ 18
#define EXTENDEDSTATE_LENGTH 19

#endif

A.6.3 Sphere-globals.h
//This file is needed so that these indices can be included in SPHERE.cpp
//without running into problems with the rest of the contents
//of globals.h or main.h

#ifndef _SPHEREGLOBALSH_
#define _SPHEREGLOBALSH_

#include "Spheresconstants-global.h"
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// indices into state vector
#define POS_X 1
#define POSY 2
#define POSZ 3
#define VEL_X 4
#define VEL_Y 5
#define VELZ 6
#define QUAT_1 7
#define QUAT_2 8
#define QUAT_3 9
#define QUAT_4 10
#define RATEX 11
#define RATE_Y 12
#define RATEZ 13
#define STATELENGTH 13

// extended state variables
#define ACCX 14
#define ACCY 15
#define ACCZ 16
#define ACCANG_X 17
#define ACCANGY 18
#define ACCANGZ 19
#define EXTENDEDSTATELENGTH 19

#define NUMTX5 // number of transmitters
#define NUM_FACE6 // number of receiver faces
#define NUMRX3 // number of receivers per face
#define NUMTP4 // number of L boards per iteration (2 fixed, 2 muxed)
#define IMURAWSIZE6// number of raw analog readings from IMU

// indices into control comnand vector
#define CMDLINEARXO
#define CMDLINEARYl
#define CMD_LINEAR_Z2
#define CMDANGULARX3
#define CMD_ANGULA._Y4
#define CMDANGULARZ5

/* global bit definitions */
#define BIT01
#define BIT12
#define BIT24
#define BIT38
#define BIT416
#define BIT532
#define BIT664
#define BIT7128
#define BIT8256
#define BIT9512
#define BIT101024
#define BIT112048
#define BIT124096
#define BIT138192
#define BIT1416384
#define BIT1532768

#define WDOGADDR16384

#endif
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Appendix B

FLIGHT CODE FOR SIMULATIONS

B.1 Leader-Follower Square Prorile

B.1.1 Maneuverlist.c

#include "maneuverlist.h"

// maneuvers
#include "Docs\new.arrays\maneuvers\freeze-position2d.c"
#include "Docs\new. arrays\maneuvers\cosine2d. c"

// controllers
#include "control-position_PD.c"
#include "controlattitude.c"

// mixers
#include "mixsimple . c

// terminators
#include "Docs\new.arrays\terminators\terminate-timed.c"

extern int gPW._IN;

void process.;naneuverlist (int cManeuverElapsed,
int *cManeuverConditionMet,

int *fManeuverDone,
int *fTestDone)

{
float fMoveTime = 10.0;
float fStayTime = 10.0;

switch (gTestNum)

case 1:
#ifndef SLAVE

switch (gManeuverNum)

case 1: // hold position 5 seconds
freezeposition2d(gStateError, cManeuverElapsed, RELATIVE, 0.0);
controlpositionPD(O.25, 0.25);
gConwnand[CMDLINEARLZ] = 0.0;
mix.simple (gPWNIN);
terminatetimed(fManeuverDone, caneuverElapsed, 5.0);
break;

case 2: // translate 40 cm +Y in fMoveTime seconds
cosine2d(gStateError, cManeuverElapsed, f~aneuverDone, ABSOLUTE, 0.0, 40.0, 0.0,

fMoveTime);
controlposition-PD(0 .25, 0.25);
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gConmand[CMD-LINEAR-Z] = 0.0;
mixsimple (gPW.IN);
break;

case 3: // hold position fStayTime seconds
freezeposition2d(gStateError, cManeuverElapsed, ABSOLUTE, 0.0);
control-positionPD(0.25, 0.25);
gCormmand(CMDLINEARZ] = 0.0;
mix.simple (gPWMIN);
terminate_timed(fManeuverDone, cManeuverElapsed, fStayTime);
break;

case 4: // translate 40 cm +X in fMoveTime seconds
cosine2d(gStateError, cHaneuverElapsed, fManeuverDone, ABSOLUTE,

fMoveTime);
controlposition_PD(O.25, 0.25);
gCommand[CMD-LINEARZ] = 0.0;
mix.simple (gPWMIN);
break;

case 5: // hold position fStayTime seconds
freeze-position2d(gStateError, cManeuverElapsed, ABSOLUTE, 0.0);
controlpositionPD(0.25, 0.25);
gConand[CMDLINEARZ] = 0.0;
mixsimple (gPWMIN);
terminate_timed ( fManeuverDone, cManeuverElapsed, f StayTime);
break;

case 6: // translate 40 cm -Y in fMoveTime seconds
cosine2d(gStateError, cManeuverElapsed, fManeuverDone, ABSOLUTE,

fMoveTime);
controlpositionPD(0.25, 0.25);
gCommand(CMDLINEARZ] = 0.0;
mix-simple (gPW-MIN);
break;

case 7: // hold position fStayTime seconds
freeze-position2d(gStateError, cManeuverElapsed, ABSOLUTE, 0.0);
control_positionPD(0.25, 0.25);
gCommand[CMD_LINEARZ] = 0.0;
mix.simple (gPW_.IIN);
terminatetimed(fManeuverDone, cManeuverElapsed, fStayTime);
break;

case 8: // translate 40 cm -X in fMoveTime seconds
cosine2d(gStateError, cManeuverElapsed, fManeuverDone, ABSOLUTE,

fMoveTime);
controlpositionPD(0.25, 0.25);
gConmand[CMDLINEARZ] = 0.0;
mix.simple (gPWMIN);
break;

default:// hold end position indefinitely
freeze-position2d(gStateError, cManeuverElapsed, ABSOLUTE, 0.0);
controlpositionPD(0.25, 0.25);
gCommand[CMDLINEARZ] = 0.0;
mixsimple (gPWMIN);
// no termination

#endif
#ifdef SLAVE

finderror(gStateError, gState, gStateTarget);
controlposition_PD(O.25, 0.25);
gCommand [CMDLINEARZ] = 0.0;
mixsimple (gPWMIN);

#endif
break;

default:

break;

40.0, 0.0, 0.0,

0.0, -40.0, 0.0,

-40.0, 0.0, 0.0,
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B.2 Docking Simulation

Note: This controller interrupt code was written by various members of the SPHERES

team. It was used by the author of this thesis with permission in order to perform the

docking simulation. Some changes were made by the author to reflect hardware changes

that occured since the code was originally run on SPHERES.

B.2.1 Leader Controller Interrupt Code
/*

* Control.c

Control interrupt handler to determine thruster control.
* - assumes that function runs on 50 Hz interrupt.

* Mark Hilstadl999/11/24 - created file (z-axis rate control)
* Alice Liu 2000/01/05 - modified file
* Mark and Alice 2000/02/10 - overhaul for Feb flight (three-axis D/PD control)
* mark and Alice 2000/02/27 - changed modulation scheme.
* Mark and Alice2000/03/03 - added position control.
* Mark Hilstad2000/03/20 - added control modes

*/

#include "control.h"
#include <math.h>

#define LEDTIME 25

extern int USESENSOR.SIM;

/ ***************************************************************************/
void c_int02()

// controller control variables
static int controlcount = 0;
static int timecount = 0;
static int wait-count = 0;
static int led-count = 0;
static float t = 0.0;

// conmand variables
static floatang-z-ref, rate_z_ref, posx-ref, vel-x-ref, pos-y-ref, vel-y.ref;
static floatstarty;
floatcmd_ang_z, cmdposx, cmdglox, cmd-pos-y, cmdglo_y;
floatvxp, vxn, vyp, vyn, uzp, uzn;
floatu[12];
floattemp;
floatmaxu;
floatscale;

// support variables
char debug[13];
int i;

/** * first make sure that we have a conmiand from ground *
if (!gBiasReady)

// blink led to make sure its working
ledcount ++;
if (ledcount <= 2*LED_TIME) *ledPtr0 = 1;
else if (leC~count <= 4*LED_TIME) *ledPtr0 = 0;
else led-count = 0;

return;

/ ********* ** **************************** ****************/
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// blink led to make sure its working
led-count ++;
if (led-count <= LEDTIME) *ledPtrO = 1;
else if (led-count <= 2*LED_TIME) *ledPtrO = 0;
else led-count = 0;

NESTINT (;

// start integrating data //
if (USESENSOR.SIM == 1) tt8_integrate(5);

/* now process the control modes */

// run the controller at the reduced rate //
control-count++;
if (control_count == 50 / CONTFREQ)// runs at 10 Hz

// while we don't get a command hold in position
if (CONTROLMODE == -1)

if (wait-count < 100)

// do nothing first 10 seconds
waitcount ++;
pos-x-ref = stateGLO[POS-X];
vel-x-ref = stateGLO[VELX];
pos.y-ref = stateGLOPOS_Y];
vel_y_ref = state_GLO(VEL_Y];
ang_z_ref = state_IMU[ANG_Z];
ratez_ref= state_IMU[RATE_Z];

else

// then hold at last position
vel-xref = 0.0;
vel-y-ref = 0.0;
angz.ref = 0.0;
ratez-ref= 0.0;

// if in 'joystick mode' don't do any control
else if (CONTROLMODE == CONTROLMODE_0)

if (time.count < 20)

// hold for the first 2 seconds, then enter mode
time-count ++;
vel-xref = 0.0;
vel-y-ref = 0.0;
ang_z-ref = 0.0;
rate-z-ref= 0.0;
ttSstsang(state_IMU, IMU_ANG_OFF);
tt8_sts-pos(stateGLO, GLOPOSOFF);

else

// send data to SLAVE
tt8_stsang(stateIMU, IMU_ANG);
tt8_sts-pos(stateGLO, GLOPOS);

// otherwise increase the time and run autonomous routine
else if (CONTROLMODE == CONTROLMODEl)

// increment time counter until it gets too high //
if (time-count < 10000)

time-count ++;

// will stay in position until final translation
vel-x.ref = 0.0;
velyref = 0.0;
ang_z_ref = 0.0;
rate-z-ref = 0.0;

// send off command for 5 seconds
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if (time-count < 50)

// send data to SLAVE
tt8_stsang(stateIMU, IMANGOFF);
tt8_sts-pos (stateGLO, GLO_POSOFF);

// send on comand next, for 20 seconds
else if (timecount < 250)

// send data to SLAVE
tt8_stsang(state-IMU, IMU.ANG);
tt8_sts-pos(stateGLO, GLOPOS);

// next do translation maneuver
else if (time-count == 250)

// dbgprintf("Master starting translation maneuver\n");
// after 25 seconds translate in opposite direction while docked

/ / posxref -= 30;

else

// send data to SLAVE
tt8stsang(state_IMU, IMU_ANG);
tt8_stspos(stateGLO, GLO_POS);

// PD controller, figure out thruster conmands
cmdangz = (CONTRATEZ * KDANG * (rate_z_ref - stateIMU[RATEZ])) +

(CONTANGZ * KPANG * (ang-z-ref - stateIMU[ANGZ] ));

cmdglox = (CONT_VELX * KDPOS * (vel-xref - stateGLO[VELX])) +
(CONTPOSX * KPPOS * (pos-x.ref - stateGLO [POS_X]));

cmdglo.y = (CONTVELY * KDPOS * (vel_y_ref - stateGLO[VELY])) +
(CONTPOSY * KPPOS * (pos-y_ref - stateGLO[POSY] ));

// Change commands to body frame
cmetposx =ROT[0] [0]*cmc~glox + ROT[1](0]*cmdgloy;
cmd-pos-y = ROT[0] [11*cmcglo-x + ROT[l] [1]*cdgloy;

// determine thrusters required to answer command about each body axis.
// 'uxp' means pulse commanded about the x axis in the positive direction.

// x-axis
// translation
if (cmetposx > 0)

vxp = cmd-pos-x;
vxn = 0;

else// cmd-posx < 0

vxp = 0;
vxn = -cmdposx;

// y-axis
// translation
if (cmetpos-y > 0)

vyp = cmc-posy;
vyn = 0;

else// cmdtpos-y < 0

vyp = 0;
vyn = -cmetposy;

I

// z-axis
/ rotation
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if (cmd-angz > 0)

uzp = cmd-angz;
uzn = 0;

else // cmd-ang-z < 0

uzp = 0;
uzn = -cmd-ang-z;

// each thruster has a command component from each axis [Nm]
// X_rot Y_rot Zrot trans
u[0] = uzn + vxn;
u[l = uzp + vxp;
u[2] = uzn + vyp;
u[3] = uzp + vyn;
u[4] = uzp;
u[5] = uzn;
u[6] = uzn + vyn;
u[7] = uzp + vyp;
u[8] = uzn;
u[9] = uzp;
u[10] = uzp + vxn;
u[ll] = uzn + vxp;

// cancel opposing thursters
for (i = 0; i < 6; i++)

temp = uC2*i] - u[2*i + 1];
if (temp >= 0)

u[2*i] = temp;
u[2*i+l] = 0;

else

u[2*i] = 0;
u[2*i+l] = -temp;

// find maximum thruster command
maxu = u[0];
for (i = 1;i < 12;i++)

if (u[i] > maxu)
maxu = u[i];

// scale thruster vector to preserve direction
if (maxu > CMDSAT)

scale = 1.05*CMDSAT/maxu;
else

scale = 1;

// set thruster on-times
for (i = 0;i < 12;i++)

// thruster on-time in integer milliseconds
u~i] = scale*u[i];

if (u~i] < CMD_DB)
thrustersei] = 0;

else
thrusters(i] = (int) 1000*((u[i]-CMD_DB)*PWSLOPE+PWMIN);

// reset for next iteration
control-count = 0;

UN_NESTO;
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B.2.2 Follower Controller Interrupt Code
/*

* Control.c

* Control interrupt handler to determine thruster control.
* - assumes that function runs on 50 Hz interrupt.

* Mark Hilstad 1999/11/24 - created file (z-axis rate control)
* Alice Liu 2000/01/05 - modified file
* Mark and Alice 2000/02/10 - overhaul for Feb flight (three-axis D/PD control)

*/

#include <math.h>
#include "control.h"

#define LEDTIME25

/*****************************************************/

void cint02()

// controller control variables
static int control_count = 0;
static int timecount = 0;
static int waitcount = 0;
static int led-count = 0;

// rotation & translation command variables
static float A, A2;
static float V, V2;
static float W, W2;
static float T, T2;
static float t = 0.0;
static float startang;
static float start-y;
static float start..mas;

// connand variables
static floatangz.ref, rate-z-ref, pos_x_ref, vel_xref, pos.y-ref, velyref;
floatcmdangz, cmd_posx, cmd-glox, cmd_posy, cmdgloy;
floatvxp, vxn, vyp, vyn, uzp, uzn;
floatu[12];
floattemp;
floatmaxu;
floatscale;

// support variables
int i;

/************* first make sure that we have a command from ground*********/
if (!gBiasReady)

// blink led to make sure its working
led_count ++;
if (led_count <= 2*LED_TIME) *ledPtro = 1;
else if (led-count <= 4*LED_TIME) *ledPtrO = 0;
else led-count = 0;

return;

/********************************** **************************** /

// blink led to make sure its working
led-count ++;
if (ledcount <= LED_TIME) *ledPtrO = 1;
else if (led-count <= 2*LED_TIME) *ledPtrO = 0;
else led-count = 0;

NESTINT (;

// to STS communications
rcvpacket(SAT1);
processconmand(;

// start integrating data //
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if (USESENSOR_SIM == 1) tt8_integrate(5);

/* now process the control modes */

// run the controller at the reduced rate //
control_count++;
if (control-count == 50 / CONTFREQ)// runs at 10 Hz

// while we don't get a conand hold in position
if (CONTROL_MODE == -1)

if (wait-count < 100)

// do nothing first 10 seconds
wait-count ++;
posxref = stateGLO[POSX];
vel.x-ref = stateGLO[VELX];
posy-ref = stateGLO(POSY];
velyref = stateGLO[VELY];
ang-z-ref = stateIMU[ANGZ];
rate_z_ref= stateIMU(RATEZ];

else

// then hold at last position
vel-x.ref = 0.0;
vel.y-ref = 0.0;
ang_z_ref = -PI/2;
rate-z-ref= 0.0;

// if in 'joystick mode' -- follow MASTER
else if ((CONTROLMODE == IMUANGOFF) (CONTROL_MODE == GLOPOSOFF))

// hold while the command is to be off
vel-xref = 0.0;
vely.ref = 0.0;
ang.zref = -PI/2;
rate-z-ref= 0.0;

// send telemetry data to ground
tt8_stsang(state_IMU, stateMASTER);

tt8-sts-pos (stateGLO, stateMASTER);

else if ((CONTROLMODE == IMUANG) | (CONTROLMODE == GLOPOS))

if (time-count < 100000)
time-count ++;

// first do the 90 degree rotation, give it 10 seconds
if (time-count == 1)

start.ang = -PI/2;
t = 0.0;

A2 = -PI/2;
V2 = -15.0 * D2RAD;
W2 = PI * V2 / A2;

T2 = A2/V2;

else if (timecount < 100)

if (t < T2)

ang_z_ref = startang + A2 * (1 - cos(W2*t)) / 2.0;
rate.z-ref = A2 * W2 * sin(W2*t) / 2.0;
t += DT;

else

ang-z_ref = start-ang + A2;
rate-z-ref = 0.0;

// now translate towards the master, we have 15 seconds, try to do it in 10
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else if (time-count == 100)

t = 0.0;

start-y = stateGLO[POSY];
startjnas = stateMASTER[POSY];

A = startJmas - start_y - 21.0;
T = 10.0;
W = PI / T;

else if (time-count < 250)

if (t < T)

// initial translation path for slave to join master
posy-ref = start.y + A * (1 - cos(W*t)) / 2.0;
vely_ref = A * W * sin(W*t) / 2.0;

// account for when the master moves
pos-yref+= 0.5 * (state_MASTER[POSY] - startmas);

// the x-direction should always be the same
posxref = stateJASTER[POS_X];
vel-xref = stateMASTERVELX];

t += DT;

else

// stay docked to the master
posyref = stateMASTER[POSY] - 21.0;
vel-y-ref = 0.0;

// the x-direction should always be the same
posxref = stateNASTER[POSX];
vel-x-ref = stateMASTER[VEL_X];

else if (timecount == 250)

// stay docked to the master
posy-ref = state_MASTER[POSY] - 21.0;
vel-y-ref = 0.0;

// and translate in x direction
posxref = state_GLO[POSX] - 30;
velxref = 0.0;

// send telemetry data to ground
ttS_stsang(state_IMU, state_4ASTER);
tt8-sts-pos(stateGLO, state_-MASTER);

// PD controller, figure out thruster commands
cmd-angz =(CONTRATE_Z * KDANG * (rate_z-ref - state_IMU[RATEZ])) +

(CONT_.ANGZ * KP.ANG * (ang.zref - state_IMU[ANGZ] ));
cmd-glox = (CONTVEL_X * KDPOS * (vel-xref - state-GLO[VELX])) +

(CONTPOSX * KPPOS * (posx.ref - stateGLO[POSX]));

cmdgloy = (CONTVEL_.Y * KD_POS* (vel-y_ref - stateGLO[VEL_Y])) +
(CONTPOSY * KPPOS * (posyyref - stateGLO[POS_Y]));

// Change commands to body frame
cmd-pos-x = ROT[0][0]*cmd-glo.x + ROT[l][0]*cmdgloy;
cmd-pos-y = ROT[0][1]*cmd-glo x + ROT[1][1]*cmdgloy;

// determine thrusters required to answer comnand about each body axis.
// 'uxp' means pulse conmanded about the x axis in the positive direction.

// x-axis
// translation
if (cmd-posx > 0)

vxp = cmd-pos.x;
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vxn = 0;

else// cmdpos-x < 0

vxp = 0;
vxn = -cmd-pos-x;

// y-axis
// translation
if (cmd-pos-y > 0)

vyp = cmd-pos-y;
vyn = 0;

else// cmdpos-y < 0

vyp = 0;
vyn = -cmd-posy;

// z-axis
// rotation
if (cmdrang-z > 0)

uzp = cmd_ang-z;
uzn = 0;

else // cmdang-z < 0

uzp = 0;
uzn = -cmdang-z;

// each thruster has a command component from each axis (Nm]
// Xrot Y_rot Zrot trans
u[01 = uzn + vxn;
u[1] = uzp + vxp;
u[2] = uzn + vyp;
u[3] = uzp + vyn;
u(4] = uzp;
u[5] = uzn;
u(6] = uzn + vyn;
u[7] = uzp + vyp;
u[8] = uzn;
u[9] = uzp;
u[10] = uzp + vxn;
u[11] = uzn + vxp;

// cancel opposing thursters
for (i = 0; i < 6; i++)

temp = u[2*i] - u[2*i + 1];
if (temp >= 0)

u(2*i] = temp;
u[2*i+l = 0;

else

u[2*i] = 0;
u[2*i+l = -temp;

// find maximum thruster command
maxu = u[0];
for (i = 1;i < 12;i++)

if (u[i] > maxu)
maxu = u~i];

// scale thruster vector to preserve direction
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if (maxu > CMDSAT)
scale = 1.05*CMDSAT/maxu;

else
scale = 1;

// set thruster on-times
for (i = O;i < 12;i++)

// thruster on-time in integer milliseconds
u[i] = scale*u[i];

if (u i] < CMDDB)
thrusters[i] = 0;

else
thrusters[i] = (int) 1000*( (u[i]-CMDDB)*PWSLOPE+PW_MIN);

// reset for next iteration
control-count = 0;

UNNESTO;
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