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ABSTRACT

This thesis has two parts. The first part studies the spectrum of a family
of growing trees, we show that the eigenvalues of the adjacency matrix and
~ Laplacian matrix have high multiplicities. As the trees grow, the graphs of
those eigenvalues approach a piecewise-constant “Cantor function”, which is
different from the corresponding properties of the infinite tree. The second part
studies the effect of “widely spaced” modifications on the spectrum of some
type of structured matrices. We show that by applying those modifications,
new eigenvectors that are localized near the components that correspond to the
modified rows appear. By knowing the approximate form of those eigenvectors,
we also determine a very close (and simple) approximation to the eigenvalues,
and then we show that this approximation is indeed the limit as the matrix
grows.
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1 Introduction

1.1 Spectrum of a type of growing trees

A tree is an attractive and deceptively simple graph. It has no loops, so the
path connecting node i to node j is unique. A systematic construction can
ensure that all interior nodes have the same degree k£ and all boundary nodes
have degree 1. This finite tree is a subgraph of an infinite homogeneous tree. As
the tree grows, it is natural to expect important properties (like the eigenvalues
of the adjacency matrix A or the Laplacian L) to approach the corresponding
properties of the infinite tree. In our case this doesn’t happen.

In this thesis, we compute the eigenvalues of A for a growing family of trees,
and find an entirely different limit. Repeated eigenvalues occur with astonishing
multiplicities. The spectral distribution function looks like a singular Cantor
function, constant almost everywhere but nevertheless increasing continuously
from Apin = —2vVk — 1 t0 Aoz = 2vk — 1. We will see that everything depends
on the boundary condition.

We also compute the eigenvalues of L and show that the most frequently
repeated eigenvalue A = 1 approaches a constant fraction of the number of
nodes.

We are grateful to the referee of our paper on this subject for pointing out
Gutman’s important paper [6] on the characteristic polynomials of a wide class
of growing trees (including ours). Where our construction grows the new tree
T, from the boundary of 7,_;, Gutman connects d, copies of T, to a new root
vertex. Heilmann and Lieb [7] studied these trees with d, independent of r
(and with valuable applications to physical chemistry). Our trees appear in
this alternative construction by choosing d; = k and d, = k—1 for r > 1, which
constitutes a new special case of independent interest. We also construct the

eigenvectors of A.




1.2 Localized eigenvectors from widely spaced matrix

modifications

This part is about the eigenvalues and eigenvectors of familiar structured ma-
trices, after changes in a small number of entries. The actual changes need not
be small, so we refer to them as modifications rather than perturbations. The
number of changes is small relative to the size of the matrix, because the modi-
fications are required to be “widely spaced”. They occur in entries that are far
apart. They produce new eigenvectors that are localized near the components
that correspond to the modified rows. By knowing the approximate form of
those eigenvectors, we also determine a very close (and simple) approximation
to the eigenvalues.

Imagine a large number of nodes around a circle. Edges go only to the two
neighbors of every node. Each row of the adjacency matrix A of this cyclic
graph has two 1’s. The matrix is a circulant with 1’s on the first subdiagonal
and superdiagonal, coming from the neighbors to the left and right. Now add
a few edges going “across” the circle, so that the nodes involved are widely
spaced. The modified graph has an adjacency matrix (symmetric if the added
edges are undirected, but this is not required) with 1 in the ¢,j entry when an
edge connects node ¢ to node j. A typical example of our work is to find the
“new” eigenvalues and eigenvectors of this modified matrix.

Professor Gilbert Strang mentioned in SIAM News (April 2000) the simplest
case of this example. Only one undirected edge crosses the circle, from node 7
to a distant node j. This added edge modifies A by setting a;; = aj; = 1, in

other words by a widely spaced submatrix with entries from

B =
10

The two new 1’s in the modified matrix are far from the main diagonal. The




two new eigenvalues are almost ezactly /5 and —/5. The corresponding eigen-

vectors show a sum or difference of two spikes, as in Figure 1.1, centered at the
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Figure 1.1: The eigenvectors for the maximal and minimal eigenvalues of the
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adjacency matrix of a 200-node cycle with an edge added between nodes 7 = 45

and j = 120

positions ¢ and j connected by the “shortcut edge”. The remaining eigenvalues
stay in the interval [—2, 2] that contains all eigenvalues of the original A. Their
eigenvectors still oscillate like the original eigenvectors, but orthogonality to the
new ones produces the pinching that is illustrated by Figure 1.2.

This brief report in STAM News brought suggested proofs from three friends,
Beresford Parlett and Bill Trench and Jackie Shen. All three approaches are
different! Shen connected the problem to the theory of perturbed Schrodinger
operators, and we believe that our work can be seen as a small contribution
(possibly not new) to that established theory. In the first section of this thesis,
we study the case when the original matrix is the tridiagonal adjacency matrix

of a linear chain, and we find the following formula linking the (nearly exact)
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Figure 1.2: A typical eigenvector corresponding to an eigenvalue in the range

of [—2, 2] for the perturbed adjacency matrix.

new eigenvalues A to the eigenvalues y of B:

A =sign(p) /4 + p?

The rank two perturbation from one undirected edge and

B =
10

has 4 = 1 and —1, confirming that A = v/5 and —/5. In the two localized
eigenvectors, the heights of the “spikes” are given by the eigenvectors of B. We
also determine the ratio ¢t between neighboring entries near the spikes (a smaller
t means a sharper spike and a more localized eigenvector). This pattern extends
to any widely spaced modification by a nonsingular B.

Later sections of the thesis extend the theory beyond a string of nodes and
its particular adjacency matrix A. We mention that a circle of nodes would

give the same results. We also show that when the underlying matrix is a

10




general symmetric toeplitz matrix or the adjacency matrix of a 2-dimensional
grid, a widely spaced modification will also produce localized eigenvector and
we will deduce the equation that can be used to determine the special eigenvalue
corresponding to localized eigenvectors.

The work in the first part of the thesis appeared in [9] and [10], and we
are preparing another paper [13] that will include most of the work in the
second part of the thesis. The author of this thesis took the lead in numerical
experiments and their mathematical analysis, and Professor Strang took the lead

in writing the papers which are reproduced in this thesis with added materials.

11



2 Spectrum of a type of growing trees

The tree we study here has degree k at all interior nodes and degree 1 at

boundary nodes. First, let’s explain in detail how the trees can be constructed.

2.1 Tree construction

Choose any degree k > 2. The tree 77 has a central node zo with k£ edges going
out to nodes 1, Zs, . .., Tx. The tree Tp has k—1 new edges going out from each
of those k nodes (previously boundary nodes, now interior nodes). There are

k(k — 1) new boundary nodes. Figure 2.1 shows the first two trees for k = 3.

Figure 2.1: The trees T} and T, with B; =3 and B, = 6 boundary nodes

After r steps, the tree T, of radius r will have B, = k(k —1)""! boundary

nodes. The number of interior nodes is:
_ k(k—1)r—1—-2
N k—2

The total number of nodes (boundary plus interior, so one more term in the

l+k+k(k—1) 4 +k(k—1)"2

sum) is given by the same expression with 7 in place of r — 1:
k(k—1)"—2

N, = N(k,r) = =——>

12




The number of interior nodes at stage r is the number /V,_; of all nodes at stage
r — 1. Boundary nodes outnumber interior nodes for large r by roughly & : 1.
The excluded case k = 2 is degenerate but very familiar (and important).
The tree T, becomes simply a linear chain of 2+ 1 nodes, two on the boundary
and 2r — 1 inside. It is well known that the characteristic polynomial of such
a linear chain is Up11(3z) where U,(z) = sin((n + 1)6)/sin(), 6 = cos™(z)
is the Chebyshev polynomial of the second kind of degree n (See for example

7]). Thus, the eigenvalues of T, are 2cos(:2%), k = 1,2,...,2r + 1. We will
2r+2

see those same cosines in the degree k£ construction, but now the eigenvalues
will be repeated with high multiplicity.

First, let’s look at the adjacency matrix of 7.

2.2 The adjacency matrix of T,

The N, by N, adjacency matrix of T, has a;; = 1 if an edge connects node ¢ to
node j. In the absence of such an edge a;; = 0 (in particular a; = 0). With
k = 3 the matrices for the trees T} and 75 have orders N; = 4 and N, = 10:

A C
and A, = v

1 1)

00
A
00 cr 0
00

_ = = O

1
0
0
0

The key to our analysis will be this recursive form of the adjacency matrix,
so we go carefully. The zero block on the diagonal of A, represents no edges
between boundary nodes of the tree. The rectangular block C, represents edges
connecting interior nodes to boundary nodes. Thus C; is an N,_; by B, matrix,
but its only nonzeros will be in a submatrix D,. This submatrix indicates the

new edges connecting B,_; previous boundary nodes to B, new boundary nodes.

13



In our example with k¥ = 3, the matrix D, has B; = 3 rows (nodes 1,2,3) and
B, = 6 columns (nodes 4,5,6,7,8,9):

0 110000

Cz= and D2: 0 0110060
D,

000011

The k — 1 ones in each row of D, represent the k£ — 1 new edges going out from
each of the earlier boundary points. The symmetry of the adjacency matrix
ensures that its remaining block must be C¥ .

For any k£ and r, the adjacency matrices of the trees have this same recursive
form. We need to indicate the shapes of all submatrices, so our counts of

eigenvalues and eigenvectors are consistent. Recall that B, = k(k —1)""! :

A1 C,
Adjacency matrix: A, = CTl N,_1+ B, =N,
" (N, xN;)
. 0
Interior to boundary: C, = Ny_o+ B,_1=N,_;
r (Nr—l)(B'r)

Old boundary to new boundary:

1 ... 1 ]

1 ... 1 .
D, = k — 1 ones in each row.
] Lo Y m

2.2.1 The eigenvalues of the adjacency matrix

We began our study with a MATLAB computation of the eigenvalues of A,.
The result of a typical experiment plot(sort(eig(A))) is shown in Figure 2.2.

14




The eigenvalues are plotted in increasing order, from A; to Ajs34. The features
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Figure 2.2: The eigenvalues A; < Ay < .- < Ay, of the adjacency matrix for
k=3,r=9, N, = 1534. There are 512 zero eigenvalues.

of this graph caught our attention immediately. Actually Henrik Eriksson did
the first experiment in joint work [3] on models for “small-world” graphs. Those
graphs are partly structured and partly random, following the experiments of
Watts and Strogatz [14], [15], [16]. Those are not trees! And the eigenvalues
do not look at all like those in Figure 2.2.

For the tree we have a piecewise-constant eigenvalue distribution that re-
minds us of a Cantor singular function. We will prove that this is indeed the
limit as » — oo. The zero eigenvalue in Figure 2.2 is repeated 512 times out

1

of N, = 1534 eigenvalues, and this fraction approaches 3 as 1 — co. For de-

gree k this limiting fraction is %—‘_22%2 Almost all the eigenvalues have the form
A = 2vk — 1 cos( 1), and for each © we will find the asymptotic fraction with
this constant value. Those fractions add to 1. (In Cantor’s famous “middle
thirds” construction, the function is constant on one interval of length %, two

intervals of length %, four of length %, co.yand >0 2;—,:1 = 1. Our limiting

15




functions are different.)

One notices that the eigenvalues occur in plus-minus pairs. This is true
whenever the graph is a tree. A diagonal similarity verifies that A, is similar
to —A,, as Ahmed Sourour pointed out to us. (The diagonal matrix D has
entries d;; = +1 or —1 according to whether node 7 is an even or odd distance
from node 0. Then D™'A,D = —A, and —) is an eigenvalue when X is an
eigenvalue.) The book by Godsil [5] goes much more deeply into the algebra
that connects matrices (and polynomials) that come from graphs.

Another family of trees, closely related to our T,, starts from two nodes
(thus a single edge instead of a single node). The graph with » = 1 connects
k — 1 new nodes to each node (thus n = 2k). At every stage we add k — 1 edges
to every boundary node, as before. The analysis of this family of trees, and the
asymptotic fraction of eigenvalues given by A = 2k — 1 cos(™™), will be the
same.

We must emphasize that this piecewise-constant Cantor distribution is not
the spectral distribution for the infinite homogeneous tree. The infinite case is
linked to beautiful mathematics [4] of group representations, and there are no
boundary nodes of degree one to produce a singular limit. The valuable book
[1] by Fan Chung connects these eigenvalues to other properties of the graph.

For our trees, the diameter (maximum distance between nodes) is explicit:

N,
Diameter D = 2r, so D = 2log, 3

The average distance between nodes can also be computed (averaged over all

pairs):
average distance 2(N: +2)° lo Ne+2 10N + 14
ver 1 = —
& N,(N, —1) 8273 3N,
» 10 10
~2log, ot — — D — 22
%273 73 3

This logarithmic growth is also seen for random graphs and small-world graphs,

but with entirely different eigenvalues.

16




To find the eigenvalues of the adjacency matrix A,, we first study its char-

acteristic polynomial P,()):

P(\) = det(A, — AI)

A1 =X C,
= det
cr -\

(2.2.1)

A=A+ X71C.CF 0
= det
cT -

= (=\)B det(A,_, — M + A"1C,CT)

The size of I is N, or N,_; or B,, indicated by its position. From the structure
of C;, we have:

0 0 0 0 0
e
D, 0 D,DT 0 (k-1)I

The k — 1 ones in each row of D, immediately give D, DT = (k — 1)I (of order

B,_1). So we have a recursive structure
P.(\) = (—)\)B’ det(A,_1 — AT + )\_IC’TC,T)

— (_)‘)Br det AT—Z — A C,._l (2.2.2)
i —(A— (k= 1A VI

r—1
This recursion is the key, if we can solve a more general problem: Find an

expression for

A =M C,
! J (2.2.3)

cr —wl

flr, A, w) = det [

P.(])) is the special case where w = A. So an explicit expression for f(r, A, \)

yields the characteristic polynomial of A,.

17



To compute (2.2.3), we follow the same steps that led from (2.2.1) to (2.2.2).

The backward recursive expression from r to » — 1 becomes:
frhw) =(=w)s fr—1, A= (k—1w™) (2.2.4)
Three things are worth noticing in the recursion (2.2.4):

1. B, = k(k—1)""! is an even number for r > 2. Thus (—\)% = \F".

2. The third argument of f(n, A, ¢,+1-,) follows a recursive relation ¢q, =
A= (k—1)g;t,, with ¢ = \.

3. The backward recursion for f stops at radius r = 1, where

A1 1.1
1 —w 0 ... 0
F(1, A w) = det . = (1) WF 1 Ow — k)
| 1 0 0 ... —w|

Now our characteristic polynomial P,(}) is

Fr A 0) = AP f(r — 1, X, ¢2(N))
=g f(r — 2,2, 43(N))
Continuing the recursion we obtain
F 00 =g g (1N )
= (-1l g g2 (Mg — k)

So if we could find an expression for g,, then we have the characteristic poly-

(2.2.5)

nomial.

To do this, let p; = A and py = gopy; = A2 — (k — 1). The relation satisfied
by pn = qnpn-1 is:

Pn=(A—(k—1)g;}))pn1
= (A= (k—1)Pr2y,

n—1

= Apn—1— (k= 1)pp_s

18




These polynomials p, () of degree n are the coefficients in the generating func-

tion

t )‘) an

From the recursive relation, we have

pn+1tn = )\pntn - (k - 1)pn—1tn

1 00 00
+1 __ -1
= '{ nE:O pn+1t" = A nEZO pnt" - t(k' - 1) niO pn_ltn

S 1(gt,0) — 1) = Ag(t, ) — (k— gt )
1
1— X+ (k—1)22

Fix ), and solve 1 — At + (k — 1)t? = 0 for the two roots

= g(t, )=

—4(k—-1) A= A2 —4(k—-1)
20k — 1) and f = 20k — 1)
So we have
1 1 1 1 X
t, ) = - _ = Z
9(t,A) (k—l)(a—ﬁ)(t—a t—ﬂ) (k—l nz_; a;a)
The coefficient of ¢" is
1 1 1

(ﬂn+1 - a,n+1)

= k—D(@-5)

Returning to the characteristic polynomial,

r kpr_
BO=IEAN = (P G-

Br—B,_1_By_1—By_ k(k—2
= p; py B P (Ap, — kp,_y)
So all the eigenvalues are roots of p, (1 < n < r) or roots of /\pr — kp,_;1.
The n roots of p,(\) come from o™t = gnt1:

(A + \/B‘T‘l(k_—l))n+1 =(\— \/m)nﬂ

A2 —4(k—1) j2mm
= e¢'n+l 1<m<n
A2 —4(k—-1)

19



(m = 0 is excluded because that will make /A2 — 4(k — 1) zero, but this term

appears in the denominator of p,). Solving for A, the roots of p,(\) are now

A=2Vk - 1cos(n7r:11) 1<m<n (2.2.7)

So the eigenvalues of A, are cosines with 1 < m < n < r, multiplied by
2v/k — 1 (which is a crucial number for k-regular graphs), plus the roots of
Ap, — kpr,_1. Those r + 1 roots only account for a negligible portion of the N,
eigenvalues for large 7. _

We take a closer look at the eigenvalues of the adjacency matrix. The roots
of pare A\ =2vk —1 cos(%), 1 < m < r. The following table illustrates the

pattern of the appearance of new eigenvalues:

radius | roots of p, new terms number of new terms
r=1 |2vk—1cos(TF) | m=1 ©(2)
r=2 | 2vk—1cos(") | m=1,2 ©(3)
r=3 |2vk—1cos(2) | m=1,3 ©(4)
r=4 | 2vVk —1cos(™®) | m=1,2,3,4 | o(5)
r=5 | 2vk—1cos(Z2) | m=1,5 ©(6)

¢ is the Euler Totient Function, so that ¢(r + 1) counts the positive integers
m < r+1 that are relatively prime to 7+ 1. These correspond to the new angles
7t and new cosines.

Thus each new p, brings us ¢(r + 1) new eigenvalues. (The other roots of
p, are repeats of old eigenvalues — the numbers m and r 4+ 1 have a common
factor and the angle 7% was seen earlier.) The total number of eigenvalues is

N, =B, +1I, =1+ % ((k—1)" — 1). Now we can study their multiplicity:

20




1. cos(%) appears in the roots of p1, p3, ..., Pant1, - - ., S0 its multiplicity is

hl (7') - (Br - B'r—l) + (B’I'—2 - Br—3) +---+ (Br—2n - Br—2n—1) +...
= k(k=2)[(k—=1)24+ (k-1 4+(k—-1)"C+...]

(2.2.8)
Asymptotically this is
E—1)"
hl(r) ] k(k—2)# as T — 00
. ) s () (k=2)? .
This zero eigenvalue accounts for a fraction Ne = GhoDrT of all eigen-
values. For k = 3, this fraction is 1. '
2. cos(3) and cos(%") appear in the roots of p,, ps, ps, ..., so their multi-
plicity is
hZ(T) = (Br—l - Br—2) + (B'r—4 - Br—5) + (Br—7 - Br—s) + ...
= k(k=2)[k-1)"+ (-1 +(k-1)""+...]
(k—1)
~ k(k—z)m as T — 00
This accounts for a fraction h;g) = (k(ﬁ)zs,)il of all eigenvalues. For k = 3,

this fraction is %
3. Each of the ¢(n + 1) new zeros brought in by p, appears in the roots of
Dny Don+1, P3n+2, - --- Following the same steps, its multiplicity is asymp-

totically
(k= 1)
- 1)n+1 -1

hn(r)zk(k—Z)(k as 7 — 00

k—2)2

This is a fraction (D #1-T

of all eigenvalues of A,. For k = 3, this

. . 1
fraction is 7.

The fractions we get here agree with the distribution of eigenvalues from
direct calculation, as shown in the graph. To verify the asymptotic result, we

now sum all the fractions multiplied by ¢ (and hope that their sum is 1).

21



An important property of Euler’s Totient Function is that

AW LA

=7~ 1—ap? for |z| <1

n=1

Substitute z = X5 and recall that ¢(1) = 1:

—__p(n) k-1
Z(k—l)"—l_(k—2)2

n=1

Then the sum of fractions multiplied by ¢(n) is

= p(n)(k - 2) p(1)(k = 2)*
Z k_l)n_l ==Y -G Tpror !

n=

So all eigenvalues of A, are asymptotically accounted for as r — oo.
The zero eigenvalue of T has largest multiplicity. According to (2.2.8), this

multiplicity satisfies
h]_(’f') = h1(r — 2) + k(k - 2)(k - 1)T_2

Johnson and Leal Duarte [8] have connected this maximum multiplicity to the
minimum number P(7;) of disjoint paths that cover all vertices of T,. To apply
their theory to our graphs, we want to show that this path count P(7;) satisfies
the same recursion as hy(r).

Start from the tree T,_,. Then 7T,_; has B,_; = k(k — 1)"~2 new nodes.
Each of those nodes grows k — 1 new edges in 7}, so we have B,_; small stars.
Each star (one node in 7,_; and k£ — 1 new nodes in T}) is easily covered by
k — 2 disjoint paths. (One path has three nodes and the others have only one;
these optimal covering paths are pathetically short.) Therefore this path count
P(T;) increases from P(T,_,) in the same way that h;(r — 2) increases to hy(r).
It is easy to check equality for r = 0,1, 2.

We still have to confirm that our count is the minimum number of disjoint

paths that cover 7,. The main theorem in [8] establishes in several steps that
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maximum multiplicity = minimum path count.

There the multiplicities refer to gl symmetric matrices that have ai;; = 0 when
no edge connects nodes i and J (@ # 7). Our path count agrees with the
maximum multiplicity for one particular matrix in this family (the adjacency
matrix A;). But if another matrix in the family had an eigenvalue of higher
multiplicity, or if our path count were not minimal, the equation rabove will be
violated.

We turn now to the eigenvectors.

2.2.2 The null space of the adjacency matrix

The nullspace of A4, contains the eigenvectors with eigenvalue A = 0. Denote
this space by E,(0). We solve Arz = 0 to find the interior components z, and

boundary components z, of these eigenvectors:

AT:L' _ Ar—l Cr Z; _ 0

Cg 0 Ty 0
There will be two orthogonal subspaces of eigenvectors, those concentrated en-
tirely at the boundary (with z; = 0) and those not concentrated at the boundary

1. Eigenvectors at the boundary: If z; = 0, then we need Crzy = 0. The

vector z;, has B, components and the matrix C, has rank B,_;:

So B, —B,_; eigenvectors come from the equation C,z;, = 0 which reduces
to D,z = 0:
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[1 ... 1 Ty 0

‘D'f'xb frmend =
Tp k-1 0

I I N A

Each row of D, corresponds to the k¥ — 1 boundary nodes that come from
an interior node. The one equation coming from a typical row has k — 1

terms:

Ty + Too+ -+ Tpr—1=0

This has k£ — 2 independent solutions as illustrated in Figure 2.3.

1 1 1
imemaledge | | e SR ERE
-1 0 2

Figure 2.3: Boundary eigenvectors for A = 0 in the case k =3 and k =4

The boundary edges are “fluttering” and there is no movement in the

interior. Again, the number of these eigenvectors is

By — By =k(k—1)"" —k(k—1)"? = k(k — 2)(k — 1)

2. Eigenvectors not concentrated at the boundary. If z; # 0, then the interior

components z; solve
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A2 C_ ii 0 0
Ar_liL‘i + Crl'b = 2 Tl i + = (229)
CrT_l 0 Tip Dr.'Eb 0

Ti;
CTzi =0 D7 = DTz =0 (2.2.10)
Tip

From the second equation, we have

1
Tip1 0

T

DTJJib: = =z =0

Ziop, ]  |0]

1

The first equation now reduces to A, _,z; = 0 and C’;F_lm,-i + D,z = 0,
which means that z;; is in the null space of A,_5 and for each such z;;, we
can uniquely solve for a z, that is orthogonal to the boundary eigenvectors.
This gives us yet another recursion! We get B,_»,— B, _3 direct eigenvectors
here, plus the null space of A,_4. So the dimension of the nullspace E,(0),

which counts the eigenvectors of A, for A = 0, is:
(B — By—1) + (Br—g — B;—3) + (By—a — Br_5) +. ..

This agrees with the number h,(r) of zero eigenvalues A = cos % in Section

2.2.1.
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2.2.3 The eigenspaces of the adjacency matrix

For the eigenspace E,()), with eigenvalue X # 0, we solve (4, — M)z = 0 to

find the eigenvectors:

As =M Gy | |2
(A4 ~A)z= | il =o (2.2.11)
OT .y Tp

T

This gives us two equations:
(Ary — M)z + Crzpy =0 (2.2.12)
CTo; — Azy =0 (2.2.13)
Multiply (2.2.13) by C; to find

CTCE‘.'I?Z — /\C'Txb =0

0 0 (2.2.14)
= Cyxp= A" Z;
0 (k—1)I
Substitute (2.2.14) into (2.2.12):
Ao — A Cr
(A'r—l — A+ T, = ? ! Tr; = 0
0 (k—1)A'I CT, —(O—(k—1A I
(2.2.15)

So z; is the solution of (2.2.15) while z; is uniquely decided by z; through
(2.2.14).

Not surprisingly, we see that the matrix in (2.2.15) is actually the same as
the matrix we get when calculating eigenvalues. This backward recursion can be
carried on as long as the term in the lower right corner of the matrix is nonzero.

If the eigenvalue \ results from p,(\) = 0, we will hit a zero at the (n —1)th

step of the backward recursion. At that point, the equation is

Ar—n — Al Cr—n—H Yi -0
CrT—n-i—l 0 Yp

26




1. If y; = 0, we have Cr_,4+1y, = 0. This produces B, 1 — B,_, boundary

eigenvectors.

2. Ify; # 0, let y; = [ys;  ya)T, following the similar procedures in the null
space calculation, we have yi = 0, (A,_,-1 — A)y;; = 0 and C,_,y;; +
Cr—n+1Ys = 0. Thus, y;; is the eigenvector of A,_,_, with eigenvalue )
and for each such y;;, we can uniquely solve for a y, that is orthogonal to

the boundary eigenvectors. This gives us another recursion.

From the recursion, the number of eigenvectors is:

(B'r—n+1 - Br—n) + (Br—2n - Br—2n—1) + (Br—3n—1 - Br—3n—2) +...

= k(k=-2)[k-1)" T+ k-2 (k-1 24 ]
(k—1)

A l<:(lc—2)(k_1)m_1_1 as T — 00

This agrees with the multiplicity of the eigenvalue A computed in Section 2.2.1.

2.3 Change of boundary condition

We could increase the degree of the boundary nodes by connecting them to
other boundary nodes. At present the degree is 1, and two possibilities have

natural interest:

A. Connect each boundary node to the other k¥ — 2 boundary nodes that go out
from the same interior node. Then each boundary node has degree k — 1.

The degree in the interior is still &.

B. Stack up £ copies of the original graph, and identify the boundary nodes.
This reduces each stack of £ boundary nodes, all of degree 1, to a single

node of degree k. The graph becomes k-regular.

These graphs are not trees. In both cases, we can again find a recursion

for the eigenvalues. The piecewise-constant “Cantor distributions” are shown
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Figure 2.4: The eigenvalues of the adjacency matrix for k = 3,7 =9, V, = 1534
with boundary degree 2 (case A). |

in Figures 2.4 and 2.5. The eigenvalue A = —1 is now repeated most frequently
in Figure 2.4, because the zero block in A, (no connections between boundary
nodes) is replaced by a nearly full block. This block is the all-ones matrix,
minus the identity. So A = —1 is a multiple eigenvalue.

Another way to convert the trees in Figure 2.1 into 3-regular graphs is to
connect the boundary nodes by an outer loop. New edges will connect nodes
1231inT;and 456789 4 in T,. The recursion is gone because the new
edges are shortcuts between different branches of the tree.

Figure 2.6 shows the eigenvalues for this “tree plus outer loop”. The limiting
distribution as 7 — oo was found by McKay [11], and it is repeated for the partly
random graphs discussed in [3]. Our great multiplicities have sadly disappeared.
The limiting distribution is no longer singular.

Now we return to our trees with the original boundary conditions, and we

look at the Laplacian matrix of 7.
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Figure 2.5: The eigenvalues of the adjacency matrix for k = 3, r =9, N, = 3066

with boundary degree 3 (case B).

2.4 The Laplacian matrix of 7T,

The N, by N, Laplacian matrix L, satisfies the relationship L, = H, — A, where

H, is a diagonal matrix that has h; equal to the degree of node 7. Then the

sum along each row of L is zero. With & = 3 the Laplacian matrices for the

trees T; and T3 have orders N; = 4 and Ny, = 10:

3
-1
-1
-1

L

-1
1
0
0

-1
0
1
0

-1
0
0
1

3[-A, -0y

and L, =
o

This recursive relationship between L, and A,, the Laplacian matrix and

the adjacency matrix, is key to our analysis of the Laplacian matrix. Similar

to what we have shown in Section 2.2, the identity block on the diagonal of L,

represents no edges between boundary nodes of the tree. The rectangular block
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Figure 2.6: The eigenvalues of the adjacency matrix for k = 3, » =9, N, = 1534

with an outer loop.

C, represents edges connecting interior nodes to boundary nodes.
For any k£ and r, the Laplacian matrices of the trees have this same recursive

form. We will use this to compute the characteristic polynomial of L,.

2.4.1 The eigenvalues of the Laplacian matrix

The result of a typical experiment plot(sort(eig(L))) is shown in Figure 2.7. The
eigenvalues are plotted in increasing order, from A; to Ajs34. Not surprisingly,
here we have again a piecewise-constant eigenvalue distribution that resembles
a Cantor singular function. The eigenvalue 1 in Figure 2.7 is repeated 410 times
out of N, = 1534 eigenvalues, and we will show that this fraction approaches
L asr — oo.

To find the eigenvalues of the Laplacian matrix L,, we first study its char-

30




6 -
st |
oL o

p——
3t .
F ]
-
ok o
4
-
*
1 e ]
J
C—
o 200 200 00 P 1000 1200 100 1600

Figure 2.7: The eigenvalues A\; < Ay < --- < Ay, of the Laplacian matrix for
k=3,r=9, N, = 1534. There are 410 ones.

acteristic polynomial P,(\):

P.(\) = det(\] - L,)

A+ ()‘ - k)I C:
= det
cr A—=1DI
_ (2.4.1)
A +(A—-k)I-(O-1"tC.CT 0
= det
cT A=DI

= A -1 det(A,_1 + (A= K)I - (A-1)"'C.CT)

The size of I is N, or N,_; or B,, indicated by its position.
Recall from Section 2.2.1

c,cf:{o 0 ]
0 (k—1)I
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So we have a recursive structure
B(A) = (A =1)5 det(A,_; + (A — k) — (A —1)"LC,CT)

A s+ (A =k)I Cry (2.4.2)
cT A~k —(k—1)(A=1)"1T

We see immediately that P,()) in equation (2.4.2) is the special case f(r k—
A;1—2) with f defined in (2.2.3). So an explicit expression for f(r,k—X,1—))
will give us the characteristic polynomial of L,.

Using the recursive formula (2.2.4), we find that the third argument of
F(n, k=X, Gry1-n) (1 < n < r) follows a recursive relation g, = k—A—(k-1)G1,,
with ¢; = 1—A. And the backward recursion for f stops at radius n = 1, where

(k=N 1 1 ... 1
f( k= A\ w)=det ! w00 = (=) wF Y ((k = Nw — k)
1 0 0 ... —w]

Now our characteristic polynomial P,()) is

f(?",k—)\,]. -A) = (1 _)‘)Brf(’r_ 17k~)‘aq~2()‘))
=37 G =2,k =X\ &(N)

Continuing the recursion we obtain

Firk=X1=2) =g . g% f(1,k - A, G)

= (—1)F1BrgBr B Lk _ i _ k (2.4.3)
—( 1) 7 92 vy 214y (( )‘)QT )

So if we could find an expression for §,, then we have the characteristic poly-
nomial.

To do this, we use the similar technique we used in section 2.2.1. Let Do =
Lpi=1-A and p» = G2p1 = (k — A)(1 — X\) — (k — 1). The relation satisfied
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by Pn = GnPn-1 is:

Bn = (k= X = (k = )@;11)pns
= (k—A— (k- 1225, ,

Dn—1

= (k= N)pn-1— (k = 1)Pn—2

These polynomials 5, () of degree n are the coefficients in the generating func-

tion
o0
3t =D (M)t
n=0
From the recursive relation, we have

Pr1t" = (k — A)Pat™ — (k — 1)pp_1t"

= %Zﬁnﬂt"*l = (k=)D put" =tk = 1) Poat™
n=1 n=1

%(é(t, A= (1=Nt=1) = (k-2 A) - 1) — (k= 1)tg(t, A)
14+ (1- k)t
1— (k= A+ (k—1)t2

=
= g(t,\) =

Fix ), and solve 1 — (k — A\)t + (k — 1)t? = 0 for the two roots

k= A+ (k-2 —4(k-1)
“= 20k — 1)

and g

k= X— (k- X)?—4(k—-1)
- 2(k — 1)

So we have

y 1+ (1-k)t 1 1. I4+(1—k)t 1g=t" lat"
1N = G e-pa 8 G- @B F  ala

The coeflicient of t" is

1 1 1 1 1
G—Da-p g wm) t R 50

ﬁ "‘()\) = ﬂn an
Returning to the characteristic polynomial,

33

e e P e »oae m ey e e - e e e e vawms s = e ner wr mmr m s e —————yE——. JE——




B\ =f(rk—X\1-)) = p”lB’(g—f)B’-l(@)BM (P — g = Ry

p2 ﬁr—l p'r
=g Py P LTI (ke — N, — kBr)
(2.4.4)

So almost all the eigenvalues are roots of p, (1 < n < r). A smaller set of
eigenvalues, asymptotically a zero fraction, are roots of the extra factor (k —
Nbr — kpr-1.

We take a closer look at eigenvalue A = 1 of the Laplacian matrix. By
numerical experiment, 1 has the largest multiplicity among all the eigenvalues.
Notice that when A = 1, the recursion for p,(1) is Pp41(1) = (k — 1)(p.(1) —
Pn—1(1)) with initial conditions po(1) = 1 and p;(1) = 0. The sequence p,(1)

then proceeds as

1 0 —(k=-1) —-(k-1%* —(k-1**k-2 —(k-13k-3)
— (k—1)*(k*—5k+5) —(k—1)*k—2)(k—4)

For degree k¥ = 3, we will hit the first zero after $,(1) at p5(1). Then
the sequence repeats itself with a different constant factor and we hit additional
zeros at Po(1) and every Pan41. Similarly, for k = 4, we will get zeros at Pgn11(1).
For k£ > 4, it is easy to prove from the recursion that the magnitude of the
sequence Pp,(1) will increase geometrically and there are no more zeros after
p(1). |

Thus, when the degree is k = 3, the multiplicity of A =1 is

hi(r) = (Br — Br-1) + (Br—a — Br_s) + -+ - + (Br—an — Br_an—1) + . ..

= 32242 S0 )
(2.4.5)

As the trees grow, this is asymptotically

4
hi(r) = 52’ as T — 00
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This accounts for a fraction h}v—(:) = % of all eigenvalues. Similarly, when k = 4,
the multiplicity of A = 1 is %3’ asymptotically and this accounts for a fraction
o of all eigenvalues.

For k > 4, the multiplicity of A = 1 is just B, — B,_, = k(k—2)(k—1)"2
and this accounts for a fraction ( ',2%?)2 of all eigenvalues.

We turn now to the eigenvectors.

2.4.2 The eigenspace of the Laplacian matrix

We look first at the eigenvectors with eigenvalue A = 1. Denote this space by
E.(1). We solve (I = L)z = 0 to find the interior component z; and boundary

component z; of these eigenvectors:

A —(k-1DI C, ; 0
I—L)z= |11 Tl
C,rT 0 Ty 0
There will be two orthogonal subspaces of eigenvectors, those concentrated en-
tirely at the boundary (with z; = 0) and those not concentrated at the boundary

1. Eigenvectors at the boundary: If the interior part z; = 0, then we need
C,xy = 0. This is exactly the same equation we studied in section 2.2.2,
and we know from there that B, — B,_, = k(k — 2)(k — 1)"~2 number of

independent eigenvectors come from here.

For trees that have degree k& > 4, the multiplicity of A =1 is B, — B,_4,
and we have found all eigenvectors. For trees with degree £ = 3 or 4,

there is an additional set of eigenvectors.

2. If z; # 0 then the interior components z; separate into z;; (the interior of

the interior) and z;, (the interior that is adjacent to the boundary):

35

——— L TOTEITRES ©B M eemenweoTmmRRE SRR T T T ryweem c pe rem o ome I ST



(A1 — (k=)D +C S
r—1 — - Z; rTp =
' or (k= DI| |z
(2.4.6)
Clei=o D] Y DTz =0 (2.4.7)
Tip

From the second equation, we have x;; = 0:

1
Zip1 0

Dy = : =| | =2zs=0

| ZivB,_, | _OJ

1

The first equation in ( 2.4.6) now reduces to (A,—o — (k — 1))z; = 0
which means that z;; is in the eigenspace of A,_» with eigenvalue k — 1,
which we have studied in section 2.2.2. Then for each such z;;, the second
part of ( 2.4.6) becomes CT ,x; + D,x, = 0. This produces a unique z,

that is orthogonal to the boundary eigenvectors.

For the eigenspace F,()\), with eigenvalue \ # 1, we solve (A — L,)z = 0 to

find the eigenvectors:

(M — L)z =
Tp

Ar—l + ()‘ - k)I C"'
cT A=1I

x] —0 (2.4.8)

This gives us two equations:
(A1 + A=k Dz; + Crzy, =0 (2.4.9)
CTai+ (A~ 1)z, =0 (2.4.10)
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Multiply (2.4.10) by C, to find

CTC,TJTZ + (/\ - I)C,-:Eb =0

e (I R (2.4.11)
0 (k-1)I
Substitute (2.4.11) into (2.4.9):
0 0
(A1 + (A= k) + [O Ch—1)(r - l)ll} )zi
(2.4.12)
A+ 0-Rr Crs Y
B Cfy  G=R-Gk-DO-D7)

So z; is the solution of (2.4.12) while z; is uniquely decided by z; through
(2.4.11).

Not surprisingly, we see that the matrix in (2.4.12) is actually the same as
the matrix we get when calculating eigenvalues. This backward recursion can be
carried on as long as the term in the lower right corner of the matrix is nonzero.

If the eigenvalue A results from p,(A) = 0, we will hit a zero at the (n —1)th

step of the backward recursion. At that point, the equation is

Arn+ A=k Crnpi| |ui _0
Clni 0 Yo

1. If y; =0, we have C,_p4+1y = 0. This produces B,_,;1 — B,_, boundary

eigenvectors.

2. Ify; #0, let y; = [yi;  yi]T, Following the earlier steps in calculating the

eigenspace F,(1), we have

Yis =0, (Ar—p1 + (A= k))yii = 0 and Cr_pysi + Dr—pa1yp = 0
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If kK — ) is an eigenvalue of A,_,_1, yi; will be in the eigenspace of A,_,_;
with eigenvalue k— A. For each such y;;, we can uniquely solve for a y, that
is orthogonal to the boundary eigenvectors. If £ — X is not an eigenvalue of

A,_,_1, we have y;; = 0 which reduces back to the boundary eigenvector

case.

Our conclusion flows directly from our introduction: The spectrum associ-
ated with a growing family of trees can be remarkable. The Laplacian matrix
shares the property of high multiplicities with the adjacency matrix, which was
worked out earlier in full detail. It remains an open problem to describe the
(perhaps generalized) infinite graph whose spectrum agrees with the limit from

the sequence of finite graphs.
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3 Effects of widely spaced modification on the

spectrum

Let A be the adjacency matrix of an n-node linear chain, so A is a tridiagonal
matrix with 1’s on the first sub-diagonal and super-diagonal. The modification
of A will be governed by an M by M matrix B, which needs not be symmetric.
We choose M widely spaced indices 1 € r; < ... € rpy < n; the differences
between these indices all exceed a number L > 1. Then the (4, j) entry of B
is added to the (r;,7;) entry of A. By a terrible abuse of notation, we call the
modified matrix A + B.

It is well known that the spectrum of A concentrates in the interval [—2, 2]
and all of its eigenvectors are widely spread in the sense that the £2 norm of
any eigenvector with £* norm 1 diverges as n approaches infinity. We find that
with a widely spaced modification of this form, new isolated eigenvalues with
localized eigenvector emerge. Our problem is to estimate the “new” eigenvalues

and eigenvectors after the modification:
(A+ B)z = Xz (3.0.13)

First, let’s take a look at the simplest case when B is just a 1 by 1 matrix,

i.e., a single real number.

3.1 Single point modification

Choose an index 1 <« r < n, modify the (r,7) entry of A by adding a real
number b there, and let A be the resulted matrix. So A = A + bE,,, where E;;
is the matrix with 1 at (7, 7) entry and 0 elsewhere.

Figure 3.1 shows the spectrum and the localized eigenvector corresponding
to the isolated eigenvalue. As we can see, this eigenvector decays very fast and

centers at the position of the modification. By looking at the logplot of the
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The localized eigenvector

1 r T —

Figure 3.1: The spectrum of A and the eigenvector corresponding to the isolated

eigenvalue. n =100, = 50,b =3

eigenvector in figure 3.2, we can see that it is exponentially decaying with a
constant exponent. The irregular curves at the two ends are due to round-off
errors.

Following this observation, we assume the eigenvector is a spike centered at
r with z, = 1. The “spike ratio” between neighboring entries is denoted by ¢,
with |t| < 1. Then the j-th component of this eigenvector is t~". Substitute
this form of z into equation (3.0.13), and let R = Az — Az be the residual.

There are 3 cases for the entries of R:

1. For nodes other than 1, r and n, there is no contribution from B and it

is not at the boundary,
Ri=x; 1 +xj1— Mgy =t "It + % — ).
2. For node r, the entry has an extra term from B,
R =z, 14+bx, +T,01 — Az, =2t +b— A
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Figure 3.2: logplot of the localized eigenvector

3. For boundary nodes j = 1,n, the degrees of these two nodes are 1, and
we have Ry =" 2 - \"" ! R, =71 — )"

For z to be an exact eigenvector, R has to be zero, which means that all
the R;’s in the cases above have to be zero. But there we have four equations
with only two unknowns ¢ and A, which in general does not have a solution. To
overcome this difficulty, we notice that since [¢{| < 1 and 1 < r < n, the two
boundary residuals will be of order ¢t*, L = min{r — 1,n — 7}, which decays
exponentially as L goes to infinity. Thus, for L >> 1, we can treat those 2 terms
as approximation errors and focus on annihilating other terms in the residual,

this gives us a system of equations
1
A=t+- and A=2+b (3.1.1)
with the constraint |¢t| < 1. Equation (3.1.1) has a unique solution

t = 1(—b+ sign(b)v4 + b2)
A = sign(b)v4 + b2

(3.1.2)

41



Keep in mind that the vector z constructed this way is only an approximation
to a real eigenvector since the residual terms are not zero at boundary nodes.
But when L is large, the residual term will be very small, and we will prove later
on that there is indeed a pair of eigenvalue and eigenvector that is very close to
the ones we constructed. Going back to the numerical experiment we showed
in figure 3.1, the magnitude of modification b is 3, the eigenvalue predicted by
our construction is v/13, and the actual eigenvalue calculated using MATLAB
is the same as our prediction up to 15 digits.

If instead of a finite linear chain, we consider an infinite linear chain with
nodes numbered from —oo to co and a single point modification at (0, 0) entry,
then it is obvious from the arguments above that the same construction will
produce an exact pair of eigenvalue and eigenvector. In this case, we can also
show that the eigenvector we constructed is the only £-finite eigenvector for
the system (the following approach is suggested by Prof. David Ingerman).

For any eigenvector = that is £2-finite, let f(y) be z’s Fourier transform,

fly) = Z e ™.

n=—00o

The eigenvector equation Az = Az can be rewritten as
Tp_1 + Tns1 + 06(N)T, = ATy, (3.1.3)

where §(n) is the discrete Dirac Delta function. Applying Fourier transform on
both sides of (3.1.3), we get

fly) = B\TZZ(’)——CW' (3.1.4)
By the inverse Fourier transform formula, we know that
1 2w .
Tn = oo i f(y)e™ dy. (3.1.5)

42




Plugging (3.1.4) into (3.1.5), and setting n = 0, we get
1 [ bzo dy

Iog = — .
2 J, —e W —eW

(3.1.6)

Ty can’t be zero since f(y) will be zero otherwise. By cancelling out z, and

making the variable substitution z = €, (3.1.6) becomes

1 bdz

— — =1. 3.1.
2me Jor Az — 22 -1 (3.17)

The integral in (3.1.7) is the contour integral on the unit circle S1. The two

poles of the integrand are z; = (A 4+ /X2 —4)/2 and z, = (A — VX2 — 4)/2. If
|Al < 4, the integral in (3.1.6) diverges. So we must have |A| > 4. Notice that
21 and 2, are a pair of reciprocals, and only one of them is inside the unit circle.

The pole that is inside the unit circle has the form
1
z= 5()\ — sign(A)V A2 — 4).

Using Cauchy’s integral formula, we get

1 bdz _ b
2mi Jo1 Az — 22— 1 sign(A\)V/A2—4

(3.1.8)

Substituting (3.1.8) into (3.1.7) and solving the equation, we get
A =sign(b)Vv4 + b2 (3.1.9)

Substituting (3.1.9) into the inverse Fourier transform formula (3.1.5), we get
T, = zot™ with ¢ defined as in (3.1.2), which is the same as our construction in
(3.2.1). This shows that the eigenvector we constructed is the unique localized

eigenvector of A.

3.2 The general case: rank M modifications

Now let’s turn to the general case. From what we have seen in the single point

case, it is natural to expect that there will also be spiked eigenvectors here, and
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indeed that is the case. But now, instead of one spike, we usually have several
spikes of different heights. A typical localized eigenvector with three spikes and
its logplot are shown in figure 3.3. Note that the logplot is the logplot of the

absolute value of the original eigenvector.

0.6

T T T T T T T T T
041 4

0.2f

! I L ) ) L L | 1
20 40 60 B8O 100 120 140 160 180 200

L 1 1 L I 1 L 1 A
[} 20 40 60 80 100 120 140 160 180 200

Figure 3.3: the localized eigenvector with 3 spikes and its logplot

To find out what the new eigenvalues and eigenvectors are, we construct a
vector x that is now a sum of M spikes. Suppose the spike centered at the ri-th
entry of x has height hy, and the spike ratio for all the spikes is denoted by t.
Then the j-th component of z has the form

M

zj=y threlh (3.2.1)

k=1
Substitute (3.2.1) into equation (3.0.13) and let the residual R = (A + B)z —
Az. Intuitively, for x to be close to a real eigenvector, ||R|| needs to be small.
Following similar arguments as in section 3.1, we can divide the entries of R

into three categories.
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1. For nodes j other than ry,7,..., 75 and the boundary nodes,

1
Rj = (t + ;).’IJJ - /\IEj. (322)

2. For nodes rx, 1 < k < M, the spike centered at 7, contributes 2th; +
(Bh)g — Ahy to the residual. All other spikes contribute a small number
which is of order t¥ to the residual, since by our assumption, they are all

well separated with distance at least L. Thus, we have

R,, = 2thy + (Bh)y — Ay, + O(t1). (3.2.3)

3. For boundary nodes j = 1 or n, every spike contributes O(t*) to the

residual and we have

R;=0(@Y), j=1,n. (3.2.4)

Since [t| < 1, when L > 1, t¥ is a very small number. Suppose we ignore
all errors of order ¢ and set all the R;’s to be zero, then equation (3.2.3) says
that the vector h of spike heights is an eigenvector of B. If that eigenvector has

an eigenvalue 4, equations (3.2.2) and (3.2.3) become

1
2BHp=A=t+. (3.2.5)

Equation (3.2.5) is exactly the same system of equations we have in (3.1.1)

with b replaced by p. From there, we know the unique solution to (3.2.5) is

t= (—p+sign(p) 4+ 12)
A = sign(u) /4 + u2.

Equation (3.2.6) is the (approximate) relation between the new eigenvalue

(3.2.6)

A of A+ B and the eigenvalue u of B. Our next goal is to prove that the error

in (3.2.6) is of the same order ¢tL as the terms that were dropped.
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First we will prove it for the easier case when B is a symmetric matrix. In
this case, the modified matrix A = A + B will also be symmetric and we can

bound the eigenvalue using the following easy estimate:

Theorem 3.3.1 Let A be an n by n hermitian matriz. For any real number Ao

and any unit vector xo, let R = Azg — Aoz, then there is an eigenvalue A of A

satisfying [\ — Mol < [IR].

Proof: If )\ is an eigenvalue of A, then the theorem is proved. Assume Ay
is not an eigenvalue of A. Let 0 = ||(A — XoI)7!||. We know that o~! is the
smallest singular value of A — AoI. Since A is hermitian, this means that o lis

the smallest distance between )¢ and eigenvalues of A. We have
1 = [lzo]| = [I(4 = XI)™'R| < o|R|.

Thus, o~ < ||R||. O

In our problem, we already showed that for A in (3.2.6) and & in (3.2.1), the
norm of the residual ||R|| = ||Az — Az|| is of order t£. So by Theorem 3.3.1,
there is an actual eigenvalue of A that’s within O(t%) distance of .

Now we can state the result for the non-symmetric case.

Theorem 3.3.2 If pu is a simple non-zero real eigenvalue of the M by M matriz
B, with eigenvector h of norm one, then X in (8.2.6) and x in (3.2.1) are within
O(t%) distance of an ezact eigenvalue-eigenvector pair for the modified matriz

A+ B, where t is defined in (3.2.6).

To prove this theorem, we need the following lemma:

Lemma 3.3.1 Let A and E be two n by n matrices, and let Ny and Ng be
the mazimum of the absolute values of the entries of A and E respectively.
Assume Ng < Na. Then for matriz B= A+ E, we have | det(B) — det(A)| <
n}(2” — 1)N% ' Ng.
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Proof: Using the formula for matrix determinants (see for example [12, p.
214]), we know that

det(A+ F) =
3.2.7
Z(—l)” ™ (a1r(1) + €1n(1)) (@2n(2) + €20(2)) - ** (@nr(n) + Enn(n))s (3:27)
where the summation here is taken over all n! permutations of {1,2, ..., n} and

p(m) denotes the parity of permutation 7.

Each term in the summation in (3.2.7) can be expanded into the sum of 2"
products, with exactly one product that does not involve entries from E. The
sum of this product gives the determinant of A. For all the other products, we
can bound them by N%~'Ng, and there are n!(2” — 1) of them. Thus, we have
| det(B) — det(A4)| < n!(2" — 1)N; ™' Ng. O

Now we can prove Theorem 3.3.2.

Proof of Theorem 3.3.2: To prove this theorem, let’s study the eigenvector
equation (3.0.13) carefully. Since we applied a modification matrix B to A at M
widely spaced indices 1 K 1 K 72 K - -+ K 1)y < n, the eigenvector equation
(3.0.13) can be divided naturally into M + 2 parts. The first M + 1 parts do

not involve matrix B, each of which corresponds to an equation of the form

_ - [ Ty, ]
1 —)x 1
z"i
1 —x 1 *
—0, (3.2.8)
1 - 1) [Tt
) "L Trip J

where ¢ varies from 0 to M. To simplify our discussion, we added two indices
ro = 0 and 7p41 = n+ 1. We also let the eigenvector z be 0 at those two
imaginary indices 79 and rps41, i.e., £op = Zn41 = 0 (z by itself is only a length

n vector).
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The only part that involves B is the following equation:

x'rl $T1—1 + x’l’1+1
x Try—1 + Tryt1
B-Xo) | "+ T =0 (3.2.9)
_ITM_ _'I'ET'M—I + xT'M-I-l_
If we can express z,,_; and z,,4; in terms of z,,,..., z,,, and plug that in

(3.2.9), this will effectively convert the problem of finding the eigenvalues of an
n by n matrix to a root-finding problem based on an M by M matrix. Since
M is fixed and is far smaller than n, this will help us to bound the actual
eigenvalue.

To accomplish that, we will use the first M + 1 equations. Let A; be the
(rig1 —1; — 1) by (riy1 —r; + 1) matrix in (3.2.8). Simple calculation shows that

A; can be decomposed into the following form:

1 -2 1 1 [1 -t 1 -t |
1 =X 1 1 —t 1 -t
i 1 -x 1) | 1 -t | 1 —t7
‘ (3.2.10)
where t satisfies the quadratic equation
t2—X+1=0. (3.2.11)

The first matrix on the righthand side of (3.2.10) is of size (r;t; — 7 — 1) by
(riy1 — 7;) and the second matrix is of size (rj41 — 75) by (rix1 — 7 +1).

Substituting decomposition (3.2.10) into (3.2.8), we have

(1 —t 11 @ —t 'z |
1 —t Tpoaq — 7 T,
o "2 <o (3.2.12)
B 1 _t_ __xfi+1—1—t_1$ri+1_
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Solving (3.2.12), we get

Tri+1 — t_lx'r,‘+2 = t_l(l"r,‘ - t_lzri+1)1
Tri42 — t—1$Ti+3 = t—2(.'L'1-,‘- - t—lmri+1)7 (3 9 13)

-1 _ 4= (rig1—ri—1) -1
Trigi—1 — t Lrign = t ' (xTi -t :I;Ti+1)‘

Multiplying the k-th equation in (3.2.13) by ¢"+:~"~1=* and adding all of them

up, we get
1‘1;+1—’r'i—2
TN g =t ey, =TT (g, — 7 ) Z =% (3.2.14)
k=0
We can solve z,,.1 from (3.2.14),
$ri+1—ri—1 _ t—(r,~+1—ri—1) t—1¢1

Ty, +

Trit1 = trit1—7i — p—(riy1—7i) triv1—ri — —(rig1—rs) Lrig- (3'2'15)

Substituting (3.2.15) into the last equation in (3.2.13) and solving for z,,,, 1,
we get

+— t—l tTi+1—7'i—1 _ t—("'i+1—7'i_1)

Trip-1 = Friti—ri — t—("'i+l-"'i)$ri + trivi—Ti — ¢—(Tig1—1y) Tria- (3.2.16)

To simplify our notation, let 1(¢,n) = t~"—¢". Using this new notation, (3.2.15)
and (3.2.16) can be written as

Y(t, i1 — 1 — 1) N P(t, 1)

. = - N o 7
ot Y(t, Tipr — T3) i Y(t, rip1 — ,,.i)z it1 (3.2.17)
and
,(/}(t’ 1) w(ta Tig1 — T3 — 1)
T Yt — ) - 2.1
Tripa-1 Y(t, T — ri)-’r . T DG i — 1) Tr,py (3.2.18)

Before proceeding to study (3.2.9), we make some observations here. The
quadratic equation (3.2.11) has two roots which are a pair of reciprocals. Since

¥(t,n) = —y(t7',n) and all the terms in (3.2.17) and (3.2.18) involve pairs of
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1’s, it makes no difference which root we choose. Without loss of generality, we

choose the root

t— %()\ _ sign(\)V\2 —4). (3.2.19)

Notice that when X is real with |A] > 2, ¢ will be a real number that lies in
(—1,1), and as n gets big, ¥(1,n) = t7"(1 — t**) approaches ¢t™". Using this
approximation, we have
P(t,n—1) = D(1 — 20y
P(t,n) t=(1 — ")

— t(]. _ tZ(n—l))(l + t2n + t4'n, + .. ) (3220)
=t — (1 _ tZ)t2n—1 4 O(t4n)
and
P(E,1) -t
Y(t,n) (1 -t
(3.2.21)

="t —)A+ "+t + )
="t — t) + O(t*").
So when |t| < 1 and n > 1, ¢(¢,n — 1)/1(t,n) is approximately ¢ with error
O(t?™) and ¥(t, 1)/ (¢, n) is approximately 0 with error O(z").
Let’s return to (3.2.9). Substituting (3.2.17) and (3.2.18) into (3.2.9), we
get

(B — M+ A(\)z, =0, (3.2.22)

where z, = (2,,,- -+ , %, )7 is a subvector of eigenvector z and A(]) is a sym-

metric tridiagonal M by M matrix of the following form:

1/}(t,’l‘1—1) + '!ﬂ(t,rz—'f‘l—ﬂ ’l,l)(t,l)
¢(t,T1) 1/1(t,T2—T1) 1/)(t,'r2—7'1)
A()\) — 1/}!15,1) ¢(t,T2—T1—1) + w(t,T:;—’I‘Qﬂ ’([)(t,l)

P(t,ra—r1) P(t,ra—r1) P(t,rs—r2) P(t,rz—r2)
(3.2.23)
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A is a function of A because ¢ is a function of A defined as in (3.2.19). When
|A| > 2, we have [t()\)| < 1. Recall that we assumed all the indices to be widely
separated, i.e., the minimum distance between any two adjacent indices, L, is

far greater than one. Using the approximations (3.2.20) and (3.2.21), we get

2t O(t?F)  Of(th)

A | 2 ] L o) og'”) 0'(_tL) | eaz

2t O(t") O(t?*)]

So when |A| > 2, the difference between A(A) and 2¢7 is an M by M symmetric
tridiagonal matrix Q(A) = A(\) — 2¢I whose non-zero entries are all of order t*
or lower.

Let’s consider the M by M matrix B — Al + A(}) in (3.2.22). The determi-
nant of this matrix, p(A\) = det(B— Al +A())), is a function of A, and the roots
of p()) correspond to the eigenvalues of the matrix A. Let o and ¢y be defined
by (3.2.6). To prove that there is an eigenvalue of A within O(t%) distance of
Ap is equivalent to proving that one root of p(}) is within O(¢f) distance of g
for sufficiently large L. To simplify our discussion, from now on, we will assume
u is a positive simple eigenvalue of B. The case when p is a negative simple
eigenvalue of B is exactly the same.

From (3.2.5) we know that Ag — 2¢(X¢) = p. Since we assumed p is a simple
eigenvalue of B, p is separated from other eigenvalues of B. Let §; be the
minimal distance between p and any other eigenvalue of B. Let do = 1— [t()o)]-
Since both #(1) and A — 2¢()\) = v/AZ — 4 are continuous functions of ), we can
always choose a small enough positive constant ¢ such that for A € (A\g—4, Ag+9),
the distance between v/A2 — 4 and any other eigenvalue of B is at least §; /2,
and [t(A)] < 1—42/2.

Recall that all the entries of Q()) are of order #(A\)¥ or lower, using this

fact and Lemma 3.3.1, and since M!(2™ — 1)N3~! is a fixed constant once B
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is chosen, we know that there exist two constants C' and L; such that for any
A€ (Ao — 8, +9) and for all L > Ly,

|p(A) — det(B — VA2 — 4I)| < Ct(\)~. (3.2.25)

Since \g = \/p? + 4, and p is an eigenvalue of B, det(B — /A3 — 4I) = 0.
Substituting this into (3.2.25), we have |p(X\o)| < Ct¥ which is arbitrarily close

to 0 as L gets large.
Rewrite (3.2.25) as

det(B — VA2 — 4I) — Ct(\)* < p(\) < det(B — VA2 — 4I) + Ct(N). (3.2.26)

Consider the function p;(A) = det(B — /A% — 4I). Let {1, 2, ..., uam} be the
set of eigenvalues of B with y; = p. We know that

p1(A) = H(.Uz - VA2 —4).

=1

Let v = v/A2 — 4, then v()\¢) = p. Since p is a simple eigenvalue of B,

M - —
apl _ H _ l/) 0 Hi:%(ll/l'z V)
is non-zero at v(Ay) = p.
o _ A
X VAT —4

is also non-zero at \g. By the chain rule of differentiation, g} ()) is non-zero at
Xo- Without loss of generality, assume p|()g) > 0. Recall that ¢()) is defined
in (3.2.19), so

, 1 A 1
—— < ——
‘e 2 X2—-47 2

is also non-zero at Ag. Since p;(A) and /() are smooth functions, there exists
a 83 < 0 such that for A in (Ag — 3, Ao + 93), p1(A) is bounded from below by a

positive constant 8, and |#'())| is bounded from above by a positive constant &.
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Let v = sup{ t(A) | A € (Ag — 83, Ao + d3)}. Since d3 < 6 and from the way §
is chosen, we know v € (0,1). Function LyL~! and ¢} approach 0 as L goes to

infinity. Thus, there exists a constant L, > L; such that for any L > L,

and

For any L > Ly, Let ¢ = 2Ct§/0 < &5. Let f1()) = pi(\) + Ct(A\)L, then
fi(ho) = Ct§ > 0. For X in (Ag — 83, Ao + d3) and L > Lo,

A = pr(2) — LN T (N)

>0 — ECLyE ! (3.2.27)
6 @0
So
Ao
fl(/\o—f)zfl(/\o)— f{()\)d/\
Ao—e€
< Cty — ge =0

Since fi(Ag) > 0 and fi;(Ao — €) < 0, By the continuity of f;, there exists
a A1 € (Ao — € Ag) such that f1(\;) = 0. Similar argument shows that for
f2(A) = p1(A) — Ct(A)E, there exists a Ay € (X, Ao + €) such that f,();) = 0.
From (3.2.26), we know p();) < 0 and p()2) > 0, so there exists a X in (A, Ag) C
(Ao — €, Ao + €) such that p(\) = 0. This is the eigenvalue we are looking for.
Since |A — Ao| < €, which is of order t§, we conclude that for sufficiently large
L, the distance of Ao from a real eigenvalue of A4 is of order t&.

The other part of the theorem is to prove that there is an eigenvector &
corresponding to the actual eigenvalue ) such that 7 is within O(t}) distance of =

defined by (3.2.1). Let H be the one dimensional eigenspace of B corresponding
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to eigenvalue u, and let H* be the orthogonal complement of H. Since p

is a simple eigenvalue of B, we know that for any non-zero vector § in H +

(B — p)B #0. Let
64 = min{||(B — )6l | 6 € H, 18]l = 1}. (3.2.28)

Note that 4, is a positive constant.

Let Z be an eigenvector of A corresponding to eigenvalue ), and let & be
the subvector {Z,,...,&,,}7 of . We normalize # by letting ||A|| = 1. Let
= m and t = t(S\). Since the difference between )\ and )\ is of order
tL and the derivatives of t(\) and /A2 — 4 do not vanish at \o, it is clear that
fi and £ are within O(t}) distance of p and t, respectively. Recall that all the
non-zero entries of the tridiagonal matrix Q(\) = A(X) — 2¢t(A)I are of order
t(A)E or lower, so [|())| is of order ¢(A\)%. Thus there exist two constants C
and Ly > L, such that for any L > Ls, |i — p| < C1tL, [t —to| < Cit§, Ly* < 1
and [|Q(N)| < CytE.

For any L > L3,

L-1
[BL—tE| = |f —to] Y Ftb™ < | — to] LY"
; (3.2.29)

< |t —to) < CutE.

This implies that & < (C; + 1)t} for L > L. Let C; = C1(C1 + 1), then for
L> Ls, |QN)]|| < Ci#" < Catd.
There exist two unique vectors o € H and 8 € H* such that h=a+0.
For any L > Lj, from (3.2.22), we have
0=I(B—X+AMN)A| = [I(B = m)h+QN)hl

=||(B - wa+ (B = p)f + (1 — Bk — QMN)A|
> 34181l = |n— Al = 12V
> 64181l = (C1 + Ca)t-

(3.2.30)
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From (3.2.30) we know

(Cl + Cz)t(l,’

Il < =

(3.2.31)

Recall that z’s construction in (3.2.1) is based on a norm 1 eigenvector of B
corresponding to eigenvalue . Since the eigenspace H is of dimension 1, without
loss of generality, we can always assume /||| = h (otherwise just multiply #

by —1 to make that true). Thus,

Ih =Rl < llh = ol + 18]

= (1= laf) + 118 (3.2.32)
L
<2 < AALAE

Denote the constant 2(C; + C3)/d4 by Cs.
Recall that we computed in (3.2.17) that

Y(t,rigr — 1 — 1)3% i P(t,1) 5
Yt i — 1) Pt i — )Y

In the same way, we can solve for other terms between indices r; and Tit1, and

Trig1 =

the result is

. Y(t,rigr —ri — k) _ Yt k)
Lri+k = Tr, + Triy1s
+k Y(t, rip1 — 1) Yt i — i)

where 0 < k <r1jyy — 150

(3.2.33)

The eigenvector we constructed in (3.2.1) is a combination of M spikes, i.e.,

M
=) (3.2.34)
=1
where the j-th entry of spike u; is

U5 = hitkj_ril. (3235)
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From (3.2.33), we know that the actual eigenvector Z can also be written as a

combination of M spikes:

M
P=Y w, (3.2.36)
=1

where the j-th entry of w; has the following form:

qp(t’”(grri__lrjljl;nl)ﬁi, rii1 SJST
S e M P°F PYORECEL)
0. Otherwise

Since

M M M
o=l = > = S will < 3 lhus = will (32.39)
=1 i=1 i=1

it is clear that if each of the ||u; — w;| is of order ¢, then ||z — Z|| is of order
tL. Without loss of generality, we look at |lu; — ws||. Substituting (3.2.35) and

(3.2.37) into vector norm formula, we get

llur — wi |
t z) ; = Y(E, 2 — 1) 5 |5 N
=) (t5"h + g - 22 P pY? g =" R)2,
Z T Z( ) Z( )
(3.2.39)

From (3.2.32), we know that
|hy — hy| < ||h — h|| < Cstd (3.2.40)

for L. > Ls. Also notice that for sufficiently large n and for any 0 < k < n,

v|i'""“ B 1/,({, k) | tn+k t~3n—k
Y(t,n) 1—¢2n

tn+k

< = < 2tn+k
1—¢n

(3.2.41)

o6




Using (3.2.29), (3.2.40) and (3.2.41), the first term in the righthand side of
(3.2.39) can be bounded in the following way for some constant C; and all
L > L31

Tzl(trl—ihl _ ’9[}({7 Z) B1)2

i=1 ’ Tﬁ({, 7‘1)
T1 o
< 22[(t61—ih1 - 571—1'}7,1)2 + ({rl—ihl _ i’rl—iﬁl)2 + (frl—'iizl _ ’I,b(f, 1,) BI)Z]
= Y(E,m)
ri—1 . r1—1 - 1 .
< 2CH3E D (i9) + 2CHEE YO P 8P Y
=0 i=0 i=1
< 20T (') + 20360 Y " AF +8(Ca+ 1282y "%
=0 =0 i=0
= C4tgL.
(3.2.42)

The second term in the righthand side of (3.2.39) can be bounded in exactly

the same way, and we have

L i—r P(t,re —14) z o 2L
Z (tO lhl - mhl) < C5t0 . (3243)
i=r1+1 ’

For the third term in the righthand side of (3.2.39), we get

D (T h)? <R 3 = Cotdt (3.2.44)
i=r2+1 i=0

for a constant Cs = 1/(1 — ¢2). Combining (3.2.42), (3.2.43) and (3.2.44), we
get

lus — wi]|? < (Cy + Cs + Cg)t2L. (3.2.45)

This implies that ||u; —ws|| is of order 5. The same is true for all the |ju; — w;||,

i=1,..., M. Thus, we conclude that ||Z — z|| is of order ¢J. O

Remark 1: When B is a diagonal matrix, simple arguments show that the

bound in (3.2.25) can be improved to O(£(A)?£). This in turn will translate to
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a O(#2F) bound for the eigenvalue. The eigenvector bound will remain to be
O(t%) due to some O(t) terms in (3.2.39).
Remark 2: The condition that p is a real number is not necessary. Our
construction and estimation bound remain valid as long as the spike ratio ¢ has
norm less than one. This is true for any u outside the [—2i, 2] line segment in
the complex plane. The formulas for ¢ and ) still apply. Take B = [ %3] as
an example. The two eigenvalues of B are +3i. If we apply a widely spaced
modification governed by matrix B to-A, experiments show that A will have
two isolated eigenvalues that are approximately £+/5i. One of the two localized
eigenvectors is also very close to our construction with kA = [1,4] and ¢t = (v/5 —
3)i/2 (the other localized eigenvector is just this one’s complex conjugate).

In Theorem 3.3.2, the underlying matrix is the adjacency matrix of an n-
node linear chain. Similar conclusions can be drawn when the underlying matrix
is the adjacency matrix of an n-node cifcle. The difference between these two

cases are that in the n-node circle case, the A()) in (3.2.22) has the form

A(A) =
ptntri—rar) + P(t,ra—r1—1) P(t,1) 0 e 0 ¥(t,1)
Y(t,n+tri—rpm+1) P(t,ra—r1) P(t,ra—r1) P(t,ntri—ra+1)
P(t,1) Y(t,ra—r1—1) + p(t,ra—re—1) »(t,1) e 0 0

P(t,ra—r1) Y(t,r2—r1) P(trs—r2)  Y(tra—ra)

i.e., it has a similar circular structure as the adjacency matrix of an n-node
circle.

Repeat the arguments in the proof of Theorem (3.3.2) with this new A(A),
and in the same way, we can prove that the A and z in (3.2.6) and (3.2.1) are
within O(tF) distance of a pair of eigenvalue and eigenvector of the modified

matrix.
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3.3 Beyond tridiagonal matrices

Let’s now turn to some other cases where the original matrix is no longer a
tridiagonal matrix.

First, let’s consider the case when the original matrix is an n by n symmetric
toeplitz matrix A = Toeplitz{0,a1,...,a4,0,...,0}, i.e., a toeplitz matrix with
(0,a1,...,a4,0,...,0) as its first row. We apply a rank one modification to A
by choosing an index 1 <« r < n and changing the (r,7) entry of A from 0 to
to b, and denote the modiﬁed matrix by A. Numerical experiments tell us that
with a rank one modification like this, one isolated eigenvalue will appear in A’s
spectrum together with a localized eigenvector. Figure 3.4 shows a typical ex-

ample of the localized eigenvector of a modified toeplitz matrix. In this example,

Eigenvector Logplot of the eigenvector
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Figure 3.4: Localized eigenvector of a modified toeplitz matrix

the underlying matrix is a 200 by 200 toeplitz matrix Toeplitz{0, 1,1,0,...,0},
r =100 and b = 1. Using MATLAB, we computed the new isolated eigenvalue
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to be
A= 4.05956284882943. (3.3.1)

In figure 3.4, the plot on the left is the plot of the localized eigenvector and
the plot on the right is the logplot of that localized eigenvector. Comparing
to figure 3.2, we notice here that even though the eigenvector still has the
shape of a spike, the spike ratio is no longer a constant near the position of the
modification. As it turns out, for ¢ > 2, the localized eigenvector of a modified
symmetric toeplitz matrix of this form is approximately the sum of ¢ different
spikes with different weights and different spike ratios.

Take ¢ = 2 as an example, and to simplify our discussion, assume our matrix
is an infinite matrix with index numbered from —oo to oo (as we will see, if the
matrix is finite, by our construction, the boundary terms will be of order t* or
lower, and are of little importance to us). Suppose the infinite matrix A has
all ones on the first and second sub-diagonal and super-diagonal, and all zeros
on the main diagonal. We apply a unit modification (b = 1) on the (0,0) entry
of A, and denote the localized eigenvector and the corresponding eigenvalue of
the modified matrix A by z and ) respectively. Based on numerical experiment
results, we assume z is the sum of two different spikes both centered at 0. So

o = eyt 4 oyt (3.3.2)

where ¢, and ¢, are the spike ratios of the two spikes respectively, ¢; and ¢y
represent the weights on the two spikes. We normalize z by letting zq = 1,

which is equivalent to
cp+c=1. (3.3.3)

Now consider the eigenvector equation (3.0.13). When considered entry-wisely,

equation (3.0.13) can be written as

(Aa:)k = )\Jik (334)
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for arbitrary integer k. Substituting (3.3.2) into (3.3.4), we get the following
three cases corresponding to different values of k (since both Az and z are

symmetric with respect to & = 0, we only considered the cases when k > 0):
1. For £ > 2, we have

ety 2 4 coth 2+ ey th T 4 eoth T 4 o th T 4+ Coth T+ ¢t 2 etk +?
= My th + coth).
(3.3.5)

Rewrite (3.3.5) into the following form:

ety 2L+t 4+ 8+ 1] — M) + oth 2(L+ by + 3 + 12 — A2) = 0.

(3.3.6)
It is clear that (3.3.6) will be satisfied if
I+t +8 +t] - M2 =0 (3.3.7)
and
1+t +t5+t5 — X2 = 0. (3.3.8)

2. For k£ =1, we have

cit1 +cota + 1+ Clt% + Cgtg + Clt% + Cztg = )\(Cltl + Cztz). (339)

3. For k =0, we have

2(city + eata + crtt +cptd) +1= ), (3.3.10)

These are all the cases. Notice that in order to satisfy them, we need to satisfy
the four equations (3.3.7), (3.3.8), (3.3.9) and (3.3.10). Those four equations

together with the normality constraint (3.3.3) form a system of five equations.
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There are exactly five unknowns here which are A, t1, ¢, ¢1 and ¢,. So this sys-
tem of equations can be solved. Using MATLAB, we get the following solution

to this system:

)\ = 4.05956284889808, t; = —0.37994846989306, t; = 0.89676509565825

¢ = 0.088390260956474, ¢, = 0.91160973904353
(3.3.11)

Comparing with (3.3.1), we can see that the A we computed here agrees with the
numerical experiment results up to ten digits. This shows that our conjecture
(3.3.2) about the structure of the localized eigenvector is correct.

Notice that since |ta| > |ti|, when k is big, cot5 will dominate ¢;t§. This
explains the seemingly single spike appearance in the logplot in figure 3.4.

Now we consider the general case where the underlying matrix A is an infi-
nite symmetric toeplitz matrix with ai,as,...,a, on the first ¢ sub and super
diagonals and zero elsewhere. Based on our experiment results, we conjecture
that in this case, the localized eigenvector z of A is the sum of ¢ spikes with

different weights and spike ratios, i.e.,

q
ze =Y cit)! (3.3.12)
Jj=1
with the normality constraint
q
Y e=1 (3.3.13)
j=1

To see that, let’s again consider the entry-wise eigenvector equation (3.3.4).

For k > ¢, substituting (3.3.12) into (3.3.4), we get

q q q
Z Z a;Cj (tf_i + t?-‘-i) = Z Cjtf. (3314)
j=1

i=1 j=1
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Equation (3.3.14) will be satisfied if the following ¢ equations can all be satisfied:

q
Y a(t +17) - A =0, (3.3.15)
i=1

where j varies from 1 to q.

We get ¢ more equations by substituting (3.3.12) into (3.3.4) for k =
0,1,...,q—1.

The 2¢ equations here together with the normality constraint equation (3.3.13)
provide us with a system of 2¢ + 1 equations. This matches with the number of
unknowns we have: #;,...,%g,¢1,...,¢q A. Thus, except some degenerate cases.
this system can be solved. This proves that our conjecture about the structure

of the localized eigenvector is correct.

Remark 1: Even though the system of equations can be solved numerically
given values of (aj, ..., a,), in general there is no closed form solution since that

will involve solving a polynomial equation of degree higher than five.

Remark 2: A vector constructed this way (sum of spikes) is an exact eigenvec-
tor when A is an infinite matrix. When A is finite, it will only be an approxi-
mation to an actual eigenvector with a residual error of order ¥, where ¢ is the

largest of the absolute values of spike ratios.

Now that we know the structure of the localized eigenvector for a sin-
gle point modification, it is not hard to generalize it to an arbitrary widely
spaced modification. Let’s consider the infinite symmetric toeplitz matrix A =
Toeplitz{0, ay,...,a,,0,...}. Denote the localized eigenvector of A after a single
point modification of magnitude b at index r by Zrp, assume T, is normalized
in the sense that the r-th entry of . is 1. From what we have shown, we know
that z,; is the sum of ¢ spikes that are all centered at r. Let the eigenvalue

corresponding to z,; be A, and the largest of the absolute values of spike ratios
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of z,, be t,. Pick M widely spaced indices fl KL 1y K -+ K 1. The minimal
distance between two adjacent indices, L, satisfies L > ¢ > 1. Modify matrix
A at the selected indices by an M by M matrix B to get matrix A. Let p be
a simple eigenvalue of B with corresponding eigenvector h. We will show that
when z = M. hiz,. ,, || Az — \,z|| is of order tZ. Since [t,| < 1and L > 1,t;
is a very small number. This suggests that (A, z) is close to a pair of eigenvalue
and eigenvector of A.

To see this, notice that for k& not equal to one of the selected indices, the
entry-wise eigenvector equation (3.3.4) is satisfied exactly by the definition of

z,,. For k equals to one of the indices r;, equation (3.3.4) becomes
h,'(A.’L‘”,u)” + (Bh)l = )‘Mh’t + O(tﬁ) (3316)

The O(t%) term comes from the other M —1 vectors zr, , with j 7 4, since their
contributions at index r; are all of order tﬁ. Recall from the definition of h that
(Bh); = ph;. Substituting this into (3.3.16) and cancelling out h;, we get the

following equation
(AZp, e + 1= Ay + O(). (3.3.17)

By the definition of z,, , we know that (Az,, ,)r,+4 = A, So (3.3.17) is satisfied
up to an error term of O(¢};). This proved what we wanted to show.

Figure 3.5 shows a localized eigenvector of a modified 400 by 400 toeplitz
matrix A = Toeplitz{0,1,1,1,0,...,0}. The modification matrix B is a 3 by
3 random matrix. As we can see, the plot shows clearly three spikes centered
at different positions. We also know now that each spike in the figure is a
combination of three spikes centered at the same position with different weights
and spike ratios.

Let’s go back to the single point modification case. Another way to calculate
the new isolated eigenvalue is to again use the Fourier transform technique.

Without loss of generality, let’s assume the magnitude of the modification b = 1.
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0.25

Figure 3.5: Localized eigenvector of a modified toeplitz matrix with 3 spikes

Let z be an L2-finite eigenvector of the modified matrix A, and let A be the

corresponding eigenvalue.

The eigenvector equation (3.0.13) can be written as

q

AT, = z ak(Tn—k + Tnik) + 6(n)T,.
k=1

Let f(y) be z’s Fourier transform,

fly) = Z Tpe™ "™,

n=-—0o

. Applying Fourier transform to (3.3.18), we get

q
M @) =D af(y)(e™ + ) +
k=1

which is equivalent to

Ty
A=>"1_ ap(e*v 4 eiky)’

fly) =
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(3.3.18)

(3.3.19)

(3.3.20)



Using the inverse Fourier transform formula (3.1.5), and applying it to zy, we

get

1 [ Zo dy
= _ — 3.3.21
7 / N = S k(e + ) (3321)

Note that = can’t be zero, otherwise x will be a zero vector by (3.1.5). Can-
celling out z, and using the substitution z = e, we get the following integral

equation

1 277t dz
S =1. .3.22
271 /51 Azd — 31 ag(29tk 4 z97F) (3:322)

The solutions of the integral equation (3.3.22) correspond to the eigenvalues
of A whose corresponding eigenvectors are localized.

In general, there is no closed form solution to (3.3.22) for ¢ > 2. The simplest
case is ¢ = 2. In this case, the contour integral in (3.3.22) can be computed and
(3.3.22) can be simplified to

2 2
+
v/v2 — 209 + a2 — 16aZ2  vy/v? + 2a,v + a? — 1643
1 2 1 2

—1=0, (3.3.23)

where v = \/4az\ + af + 8a.

This can be further converted to a 6-th order polynomial which does not have
a closed form solution. If we apply (3.3.23) to our example with a; = ap =1,
using MATLAB, we find the numerical solution to be A = 4.05956284889808,
which, not surprisingly, is exactly the same as the solution in (3.3.11).

Another type of structured matrices that we considered is the adjacency
matrix of a regular 2D grid. Suppose we have an M by N 2D regular grid
G, with an edge connecting node (¢,j) with node (k,!) if and only if i = &
and |j — 1] = lor |t —k| =1 and j = I. The adjacency matrix A is an
MN by MN symmetric matrix such that node (7, j) in G is represented by the
((# — 1)N + j)—th row and column in A. Numerical experiment tells us that a

single point modification, when applied to a node (3, ) with 1 < 7 < M and
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1 < j < N, also produces localized eigenvector which doesn’t exist previously.
Figure 3.6 shows one example of this. In this example, the dimension of the grid
is 30 by 30. A single point modification of magnitude 1 is applied to the node
(16, 15) (so for the adjacency matrix A, A(465,465) was changed from 0 to 1).
The 3D-plot is drawn using MATLAB’s “surf” function. The eigenvector shown
in figure 3.6 corresponds to the largest eigenvalue of the modified matrix A. As
we can see, this is a localized eigenvector in the shape of a 2D-spike. From the

logplot on the right, it is clear that the spike ratio is no longer a constant.

Localized eigenvector Logplot of the localized eigenvector

Figure 3.6: Localized eigenvector of the modified adjacency matrix of a 2D grid

For this case, we don’t have a conjecture on the structure of the localized
eigenvector, but we can still estimate the eigenvalue that corresponds to any
localized eigenvector. To do that, we once again use the Fourier transform
technique. Consider the case when G is an infinite 2D grid. Define the vector
space Vg to be the space of all mappings from nodes of G to R, and let u; ;

be the value of node (7,j) under mapping (vector) u. Note that our previous
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way of defining the adjacency matrix for G does not work any more since N is
now infinite. So we will use the operator definition of the adjacency matrix of
a graph (see for example [1]), i.e., A is seen as an operator that maps Vg to
Vg, Au = v, such that v; ; is the weighted sum of all uy’s, where the weight is
the weight of the edge connecting node (¢,7) to (k,l). In our case, the weight
is either one or zero depending on whether the two nodes are connected or not.
Apply a unit modification on G by adding a weight one edge connecting node
(0,0) to itself. Let z be a localized eigenvector of the modified adjacency matrix
A with eigenvalue . By definition, z and ) satisfies the following difference

equation
Ti—1j + Tisy + Tigo1 + Tiger +0(59)Ti; = Az, (3.3.24)

where 6(i,7) is a two-variable delta function that equals one if and only if
1 = j = 0 and zero otherwise.

Let f(y, z) be the two dimensional Fourier transform of z, so

o0 (o]
fl,2)= Y D ape®r), (3.3.25)

k=—o0l=—00

Applying Fourier transform on both sides of (3.3.24), we get

Zoyo
= - —2 . —, 3.3.2
f(y’ Z) )\ _ e—zy _ ezy _ e—zz —_ e’LZ ( 6)

Using the inverse 2D Fourier transform formula
2 27
Tk = —1—2/ ' Fy, 2)e'+) dy dz (3.3.27)
@m)2Jo Jo

on o and cancelling out zgg, we get the following integral equation for the

eigenvalue A:

1 2m 2w 1
(2m)? /o 0 A—e W —eW —e iz —¢i dydz = 1. (3.3.28)
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By using the result in (3.1.8), (3.3.28) can be simplified to
1o 1

2m Jo m_ e~ — eiv)2 — 4

Notice that e + e~ = 2cosy. Let u = cosy and we get
1 /1 du

7)o JA— DO - 2w - 0)

Equation (3.3.30) is an integral equation that involves an elliptic integral which

dy =1. (3.3.29)

=1 (3.3.30)

in general does not have a closed form solution. Using the software package
PARI/GP (see [2]), we are able to calculate numerically the integral in (3.3.29).
A plot of the integral is shown in figure 3.7. The dashed horizontal line in
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Figure 3.7: Plot of the integral in (3.3.29)

figure 3.7 is the y = 27 line whose intersection with the main curve is the
solution to (3.3.29). Using PARI/GP, we calculated the solution to be X\ =
4.000111576954677619.

From the numerical result of the integral in (3.3.20), we can also extrapolate
out the special eigenvalue corresponding to each magnitude of modifications.

Figure 3.8 shows a plot of their relationship.
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Figure 3.8: Localized eigenvalue of an infinite 2D grid under different magni-

tudes of modifications

Similar reasonings also apply to the adjacency matrix of higher-dimensional
grids or other types of structured regular graphs. In all the cases we investigated,
with widely spaced modifications, new localized eigenvectors appear. But in
general there is no closed form solution for the special eigenvalues corresponding

to those localized eigenvectors.
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