
Krylov Subspace Methods for Simultaneous

Primal-Dual Solutions and Superconvergent

Functional Estimates

by

James Lu

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Sept 2002

© James Lu, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Ii

Author ............

Certified by.....

Accepted by....

j;,

......... *- -- -- -- -- -- . .... ...
Department of Aeronautics and Astronautics

August 23, 2002

(9 David L. Darmofal
Associate Professor

Thesis Supervisor

...........................

Edward M. Greitzer
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

AERO

-J

MASCUET ' NSTITUTEOF TECHNOLOGY

SEP 1 0 2003

LIBRARIES



1A



Krylov Subspace Methods for Simultaneous Primal-Dual

Solutions and Superconvergent Functional Estimates

by

James Lu
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requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis is concerned with the iterative solution of non-symmetric linear (primal)
systems and the dual systems associated with functional outputs of interest. The
main goal of the work is to arrive at efficient Krylov subspace implementations for the
situation where both primal and dual solutions are needed and accurate predictions
for the functional outputs are desired.

A functional-output convergence result in the context of Krylov subspace methods
is given. It is shown that with an appropriate choice of the starting shadow vector,
methods based on the nonsymmetric Lanczos process obtain iterates giving super-
convergent functional estimates. Furthermore, the adjoint solution may be obtained
simultaneously with essentially no extra computational cost. The proposed method-
ology is demonstrated by the construction of a modified superconvergent variant of
the QMR method.

The class of Krylov subspace methods based on Arnoldi process is also examined.
Although by itself, superconvergence is not naturally present in the Arnoldi process,
primal and dual problems may be coupled in a manner that allows for superconver-
gence. In particular, the proposed methodology is demonstrated by the construction
of a primal-dual coupled superconvergent variant of the GMRES method.

Numerical experiments support the claim of superconvergence and demonstrate
the viability of the proposed approaches.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor
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Chapter 1

Introduction

The need for the solution of nonsymmetric linear systems arises in a large variety of

situations. Among those is an important class that arise from the numerical solution

of partial differential equations (PDEs) modelling physical problems. For PDEs that

result from engineering analysis and design optimization, the principal quantities of

interest are often functional-outputs of the solution. With appropriate linearization of

the governing equation and the functional output, one often encounters linear systems

for the primal variable x of the form :

Ax = b, (1.1)

and the principal quantity of interest is a linear functional of the form,

JP(x) = gTx. (1.2)

Associated with the functional output of interest, one can consider the adjoint vector

y which is the solution to

A Ty =g, (1.3)

11



and the associated dual functional,

Jdu(y) bTy. (1.4)

With the primal and dual functional defined as in (1.2) and (1.4), we have the fol-

lowing equivalence,

Jpr(A-lb) =Jdu(A-Tg) (1.5)

The adjoint solution has found a multitude of uses in engineering computational

simulations. For instance, the adjoint can be employed in design optimization to

efficiently calculate the gradients of the outputs with respect to the control factors

(Jameson [25], Reuther, Jameson and Alonso [34], Giles and Pierce [21], Elliot and

Peraire [12], Anderson and Venkatakrishnan [3]). Furthermore, the adjoint solution

can be used to estimate and control errors in functional outputs of computational

simulations (Becker and Rannacher [6], Peraire and Patera [32], Giles and Pierce

[33], Venditti and Darmofal [46, 47, 45]). Motivated by the numerous uses of the

adjoint solution, this thesis is concerned with the situation where solutions for both

the primal and dual problem are required.

The main contributions of this thesis are twofold. Firstly, the simultaneous iter-

ation of both the primal and dual problems is demonstrated to have the benefit of

superconvergence. Secondly, efficient implementations of coupled primal-dual solu-

tions are presented.

Chapter 2 presents the underlying theory of Krylov subspace methods and de-

velops the concept of superconvergent functional estimates in the context of itera-

tive solution of linear systems. In Chapter 3, the nonsymmetric Lanczos process is

presented where it is demonstrated that the dual solution may be simultaneously

obtained with little additional computational costs and superconvergence may be

brought out naturally; a modified superconvergent variant of the quasi-minimal resid-

12



ual method is presented. Finally, in Chapter 4, the Arnoldi process for constructing

orthogonal bases is combined with superconvergence ideas to construct a smoothly

converging primal-dual coupled superconvergent variant of the generalized minimal

residual method.

13
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Chapter 2

Functional-output Convergence

Results

2.1 Krylov Subspace Methods

In Sect. 2.1.1 the general subspace correction framework is described. Several Krylov

subspace methods are shown to lie in this framework, allowing the functional-output

convergence for those methods to be analyzed in a unified way, given in Sect. 2.2.

2.1.1 Subspace Correction Framework

Consider a sequence of nested finite-dimensional correction and test subspaces,

{} = CO C C1 C ... C CN,

{0} =To 7'T1 -. C TN, (2.1)

with the dimensions indexed by the subscripts. A subspace correction iterative

method for the primal linear system (1.1) obtains iterates x, satisfying

15



Xn = X0 + cn, en C Cn,

r,"(xn) I t, Vt C Tn, (2.2)

where x 0 is the initial guess and

rPr(xn) = b - Axn. (2.3)

Krylov subspace methods lie in the general framework of subspace correction, limited

mostly to cases Cn = KCn(rpr, A), where

Kn(r r, A) = span{rpr, Arpr, ... , A" nrr}, (2.4)

with an exception to this rule being GMERR [49]. We now describe a few commonly

used Krylov subspace methods that fit well into the subspace correction framework.

2.1.2 Methods Based on Arnoldi Process

The Arnoldi process generates an orthonormal basis of Kn(rpr, A) with the disad-

vantage of entailing linearly growing memory and computational costs per itera-

tion. Amongst Krylov subspace methods, the most reknown are the Full Orthogonal

Method (FOM) [36] and the more stable Generalized Minimal Residual Method (GM-

RES) [38]. Let us consider applying FOM and GMRES to the primal linear system

(1.1). Table 2.1 summarizes the well-known properties of FOM and GMRES [11] in

the framework of (2.2). We note that the GMRES selection of subspaces is equivalent

to minimizing the residual in the case when Xn = XO + Cn, Cn E En(r r, A).

16



FOM | GMRES
Cn Cn(rpr, A) Kn(rpr, A)
Wn IKn(rpr, A) ACn(rpr, A)

Table 2.1: Subspaces for FOM and GMRES

BiCG| QMR
Cn Kn(rA) rn(rI, A)

Tn K(wi, AT) Un(Wi, pr, AT)

Table 2.2: Subspaces for BiCG and QMR

2.1.3 Methods Based on Lanczos Process

Krylov subspace methods based on the non-symmetric Lanczos process requires two

starting vectors. Applied to the primal linear system (1.1), this class of method is

started by taking rpr and an arbitrary initial shadow vector w1 , the only require-

ment being wror : 0. Biorthogonal bases for two Krylov subspaces are gener-

ated, although only one of which is explicitly used in constructing the iterates xn.

The best-known methods based on the Lanczos process are Biconjugate Gradients

(BiCG) [13] and more stable Quasi-Minimal Residual method (QMR) [18]. For the

primal linear system (1.1), Table 2.2 summarizes the corresponding subspaces. Note

that u n(wi, fgpr AT) = range(Wn+ 1D- 1i(Or l)-'Ln) is a n-dimensional subspace of

Kn+ 1 (wi, AT) and Wn+1, Dn+1, Or , Ln are matrices in the notation of [19]. Many

transpose-free variants of BiCG and QMR have been constructed [16], some of which

will be discussed later.

2.2 Adjoint Analysis

For the iterative solution of the linear system (1.1), we have the following a priori

error norm estimate,

17



X - xnJ| < ||A "||||rf p l. (2.5)

The above estimate is optimal in the sense that no higher exponent on the residual

norm is possible. Thus, in general the norm of the solution error and arbitrary output

functionals are expected to converge at a rate no higher than that of the residual.

Under the special circumstances that certain functionals of the approximate solution

converge at orders of the residual norm higher than that given by the global error

estimate (2.5), those quantities are said to be superconverging. In particular, an iter-

ative method is defined to be superconvergent if the superconvergence phenomenon

can be demonstrated for arbitrary linear systems and linear functionals. This usage of

the term superconvergence is a carry over of a concept usually used in contexts such

Galerkin finite element methods to describe the convergence of functional estimates

[1, 48]. Note that this phenomenon is distinct from superconvergence as used in [8]

to loosely describe the faster residual convergence when certain projected solutions

are used as initial guess. The question of whether an iterative procedure is super-

convergent may be settled using adjoint analysis. Denote Y as an arbitrary adjoint

approximation and jdu the corresponding dual residual defined by

-du = g - ATy. (2.6)

The error in the functional-output provided by a primal iterate xn may be written

as,

JPr (x) - Jpr (X,) - Trpr + auT (A-lrP). (2.7)

Using the triangle inequality and taking the infimum over all Y, it follows that the

error in the functional output provided by the primal iterates is bounded by the

18



following :

J<du frP pr \

JPr() _ pr(xa)| _ n +ynrr| ,) (2.8)

where (min denotes the smallest singular value of A, satisfying

o'min = min . (2.9)
z'z ||(2z||

As an immediate consequence, for general subspace correction methods (2.2),

jpr (X) 11dul p1rr

JPr() _ Pr(xn)| min j. (2.10)
Y ET, Omin

The above bound suggests that the convergence of functional estimates provided by

subspace correction methods is controlled by the residual norm of the primal iterates

as well as the closeness of approximation the sequence of test spaces for the primal

problem, T, provide for the adjoint solution.

2.2.1 Krylov Subspace Output Convergence Results

In this section, functional-output convergence results for the Krylov methods of

Sect. 2.1 and Sect. 2.2 are obtained by applying the bound (2.10).

FOM In the FOM approach, the bound (2.10) gives,

||fdul jrFO
M ,pr

Jpr (X) - Jpr (xmr)| in . .1
y9EKn(r pA) Omin

Thus, for FOM iterates the functional convergence rate can be determined by the

approximation of the dual problem over the nested subspaces ICAn(rr, A)

19



Ilf"1 E= min f|g - AT yl. (1
n YE/c.(rprA)

The above minimization problem is equivalent to the orthogonality condition,

(2.13)

The fact that (2.13) implies (2.12) may be shown by the following argument. Denote

yn as the minimizer corresponding to the minimal residual of (2.12) and Y to be an

arbitrary vector in Kn(rpr, A). Then, we have

||g - ATy 2 = |ig - AT[(y - yn) + yn]||2

= ||g - AT yn|| 2 - 2(g - ATyn, A T (y - yn))

+ ||A T (y - y)||2. (2.14)

By the orthogonality condition (2.13), the middle term of the above expression is

zero. Hence, yn is the minimizer :

(2.15)Jig - A Ty|| 2 ;> |g - AT yn|| 2 Vy E IKn(rpr, A).

(2.12) is equivalent to solving the dual problem within the framework of a family of

generalized minimum error (GMERR) methods as described by Weiss [49]. Specifi-

cally, a GMERR method applied to the dual system finds iterates yGMERR within the

Krylov subspaces generated by A,

yMERR c yo + ACn(po, A), (2.16)

20
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where po is an arbitrary starting vector and yGMERR is chosen so that the error norm

is minimized,

||Y - YGMERR min y - Y1.
FEyo+AKn (po,A)

In a manner similar to (2.14), it may be shown that the minimization property (2.17)

is equivalent to the error orthogonality condition,

- yGMERR n ACn(po, A), (2.18)

and hence to the residual orthogonality condition,

g - ATYGMERR I n(po, A). (2.19)

Therefore, with the identification po = ATrpr and yo = 0, the approximation problem

(2.12) is the same as (2.17). The convergence of GMERR for arbitrary po has not

been shown. For the case that po = g, it is known that the subspaces lcn(po, A)

form a sequence of convergent approximations for the adjoint solution if and only if

A is normal [10]. In fact, unless A is normal and rp related to g in some way, the

convergence of (2.12) is expected to be poor. Hence, functional estimates obtained

from FOM iterates are expected to converge at a rate no higher than that of the

residual norm.

GMRES For GMRES, the functional error bound (2.10) is:

|Jpr(X) - Jpr(XGMRES) < mi
F EAKn (r r,A)

fdu 1rG M RES,pr
1in

0~min

Analogous to the FOM case discussed above, for GMRES iterates the convergence

21
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rate of functional estimates is controlled by :

| Ijdul = min ||g - A T'y. (2.21)
n EArn,(rprA)

In general, the above is not an improvement over (2.12). Hence, the conclusion is

also that the functional estimates obtained from GMRES iterates is only linearly

convergent with the residual norm.

BiCG For bi-conjugate gradients, the functional error bound is,

1dul j BiCG,pr

Jpr(X) - Jpr (xiCG ) (2.22)
9EKn(wi,AT) 07min

If GMRES is applied to the dual problem (1.3) with the zero vector as the initial

guess, the dual residual norm is minimized,

1r GM RES,du min g - A T y. (2.23)
n ~ yE)n(g,AT)

Hence, if the test space for BiCG is started with wi = g, we have the following bound,

jr GMRES,du TBiCG,pr
Jpr(X) - Jpr(X BiCG) < n I flrn 11. (2.24)

nmin

If A is relatively well-behaved so that the eigenvalue convergence bound is descriptive,

irG MEd converges to zero at a rate bounded by |lrniCG,pr||. This shows that

BiCG with wi = g is superconvergent at double the residual convergence rate for the

functional (1.2). For other choices of test space starting vectors, for example wi = rPr

as is almost always used in implemenetations, superconvergence for Jpr does not hold.

Numerical evidence for this behavior is shown in a future paper [29].

22



QMR Finally, we examine the convergence bound for QMR,

||fdu"||||IrQMR,pr

Jpr(X) - Jpr(xQMR A n . (2.25)
inElin(win'prAT) Omin

Similar to the BiCG case, QMR is not superconvergent if the starting shadow vector

for the non-symmetric Lanczos process wi = g. Convergence of functional esti-

mates is expected to improve significantly if wi = g, as can be seen in some of

the numerical examples presented in Chapter 3. Also in Chapter 3, a metric for

quasi-residual minimization is chosen with demonstrated improved output conver-

gence. Viewed in the framework introduced here, this is equivalent to modifying the

subspace Un(g, DPr, AT) through the choice of Or.
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Chapter 3

Simultaneous Primal-Dual

Superconvergent QMR

In this chapter, the QMR algorithm is discussed in detail with the view towards im-

plementation, building on the more abstract description given in the previous chapter.

Firstly, the underlying non-symmetric Lanczos process is presented, showing how the

left shadow vector wi may be chosen arbitrarily. Then, it is shown that besides

the improved functional convergence as already demonstrated, choosing wi = g has

the additional advantage that the dual solution may be obtained simultaneously and

at little extra cost using the same Lanczos process. Lastly, based on the adjoint

analysis already presented, an approach to further improve functional convergence is

developed.

3.1 Nonsymmetric Lanczos Process

The nonsymmetric Lanczos process constructs biorthogonal and A-orthogonal basis

vectors of Krylov subspaces which are then used in methods such as QMR. That is,
it constructs vectors vj's and w3 's that satisfy the biorthogonality condition

25



wTvn = , m n, (3.1)
0, m # n.

and vectors pj and qj that satisfy the A-orthogonality condition

qmApn ={,m (3.2)

0, m #n.

We use the Lanczos process based on coupled two-term recurrences rather than that

based on three-term recursions as used in [18] since even though they are mathemat-

ically equivalent, the former is numerically more robust than the latter, as observed

in [19]. Also, to simplfy matters the look-ahead process [17] is not included.

* Initialization

- Normalize initial vectors vi and wi.

- Set po = = 0, o = pi = 1=, n =.

* At iteration n

1. If en-1 = 0, stop. Otherwise compute 6n = w n. If 6n =, then stop.

2. Update

Pn = vn -p ( no/En-1),

q- = w - qn- 1 (pn 6n/En-1) (3.3)

3. Compute

26



An = nq Apni

#n =En/6n.

=APn - vn~n, Pn+1 = ||E n+1||,

= ATqn - Wn3n,

(3.4)

(3.5)En+1 = Hin+1||.

4. If Pn+1 = 0 or (n+1 = 0, then stop. Else, update

vn+ 1

wn+ 1

= vn+1/Pn+1,

= wn+I/n+1- (3.6)

The result of the above iteration may be summarized compactly. Firstly, we introduce

the notation

S- Vn ],

... Wn,

..Pn]I,

qi q2 - -qn. (3.7)

Then, it may be seen from the Lanczos process that the above satisfies

Vn = PnUn,

27
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vn+1

wn+ 1

Vn Vi V 2

Wn wi W2

Pn [P1 P2

Qn



W = QFJ-Un]Pn,

APn

ATQn

where the matrices r', Un and Ln are defined as

En = diag(71, 2 , ... ,7),

Un =

1 (2t52/61

0 1

0 0

0

363/62

1

0

0

#1 0 0

P2 02

0 p3

0 0

0

#3

p4

0

0

0

0

~n 6n/en-

0 1

0

0

0

0

the scalars (j, 6j, ej, pj are constants defined in the Lanczos process, and the constants

yj satisfy the relation

j = 1,

ryJ- {; 1Pj/~j

(3.12)
1 < J < n.

28
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= Wn+irn'iLnrn, (3.8)

(3.9)

0

(3.10)

(3.11)

On

Pn+1



In the next section, we give a brief description of how QMR uses the Lanczos process

to generate iterates that approximate the linear system (1.1).

3.2 Conventional QMR

At each iteration, QMR seeks an iterate xgr within the Krylov subspace

xn E xO + span{r r, Ar r, A 2r r, ... ,An r pr).

With the initial vector taken to be the normalized initial residual, v1

Pi = ||r r||, it may be seen from the Lanczos process that

span{vi, v 2 ,.-. , vn} = span{r r, Ar r, A 2r pr, -.. , A 1 pr}spa IIV2 V 01 7 0 A ro I-

(3.13)

r r

(3.14)

Hence, from (3.13) xgr may be written as

xn = xO + VnUnZn, (3.15)

where the matrices Vn, Un are defined in (3.7) and (3.10) respectively and the vector

z, is yet to be determined. Using the identities given in (3.8), it may be seen that

rr - b -Axn

r pr0 -Vn±iLnZn. (3.16)

Using the fact that vi = ror/pi, and introducing an (n+ 1) x (n + 1) diagonal weight

matrix n,"

29



f = diag(opr, ,pr ,pr n Aa~ 1 2 Wn+l (3.17)

(3.16) may be written as

pr =Vn+1 (pr) - +1 _ QPr L(z) (3.18)

Finally, zn is chosen so that the 2-norm of the quasi-residual is minimized

zn= arg min piWpre n+1 _ QPrJLz . (3.19)

Since the matrix Ln has a bidiagonal structure, the above minimization may be done

recursively, essentially performing QR decomposition of L, using successive Givens

rotations.

The original QMR algorithm is formulated with a diagonal weighting matrix Qn

and convergence has been shown for arbitrary weights opr 0 [18]. Extension of the

weight matrix to block diagonal form having upper triangular blocks has also been

done [41]. However, in practice the weight matrix is usually set to unity owing to

the lack of a better choice. Moreover, in practice the two starting vectors are usually

taken to be the same and the fact that the same Lanczos iteration contains a dual

problem is not utilized. The desire of not using AT partly led to the development of

transpose-free variants of QMR [14, 20].

3.3 Modifications for Simultaneous Dual Solution

With modifications to the conventional QMR algorithm, the solution of the dual prob-

lem may be found simultaneously with the primal problem using the same Lanczos

process. Firstly, we observe that (3.8) implies not only

30



but also

(3.20)AVn = Vn+1LnUn,

ATWn = Wn+l1ri LnUTn. (3.21)

This suggests taking the normalized shadow starting vector wi for the Lanczos process

to be

gW1 1-, i gfl* (3.22)

It may be observed that in the Lanczos process, given a certain vi, the choice of

wi is arbitrary so long as wTv1 / 0. Only in rare circumstances will the non-

orthogonality condition not be satisfied. Note that this is a departure from the

standard implementation of QMR, which chooses the starting vector for the Lanczos

iteration to be wi = vi.

Similar to the primal iterates, we seek iterates for the dual problem of the form

yn = Wnrn-lUn rnkn, (3.23)

where the vector kn is yet to be determined. Then, the dual residual rdu is of the

form

r " = g - Ty

31



Wn+1 (~du -1 diuen+1 -- iduf-i L k (3.24)

where the dual weight parameter matrix f" has been introduced. Analogous to

the approach of QMR for the primal problem, kn is sought to minimize the 2-norm

quasi-residual :

= arg min 1wue±n+1 - ndur- 1 L L'k . (3.25)

Note that the term r- 1 LL'f in (3.24) is the analog of Ln in (3.16). In fact,

#1 0 ... 0

2 02 --- 0

PnL F r = 0 '. 0 , (3.26)

0 . G On

0 ... 0 n+1

and comparison with Ln defined in (3.11) shows that F-- Lrn is just Ln with the

replacement pj - (. Thus, the adjoint iterates yn may be obtained from the Lanczos

vectors with the same procedure as the standard QMR method for the primal problem

by replacing vj -+ wj, pj -+ q and pj -+ (j.

3.4 Preconditioning and Superconvergence

For Krylov subspace methods, preconditioning is often necessary for fast and robust

convergence. In this section, a superconvergence strategy for the preconditioned sys-

tem is presented. It is shown that same strategy may be applied to both the primal

and the dual system.

With the use of preconditioners Mi and M 2 , the primal problem (1.1) effectively

becomes

32



A Mi-AMi1 ,

x' = M2x,

b' = M-b. (3.27)

The value of the primal linear functional is required to be invariant under the pre-

conditioning transformation, that is,

JP(x) = gTx=g'Tx (3.28)

thereby obtaining the expression for g',

= M2Tg. (3.29)

Then, the adjoint for the preconditioned system, y', is just the solution to

A y' = g'.

From (3.30), it may be verified that

y'= Mfy.

Furthermore, from (3.30) and (3.27),

bTy =b'Ty'.
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Equation (3.31) shows that the adjoint for the original system (1.3) may be recovered

from that of the preconditioned system by simply multiplying with the matrix MI T

at the end of the iterations. In what follows, we will work exclusively with the

preconditioned systems.

As a means of improving the output superconvergence, we seek to minimize

(y'n+1)Tr' (3.33)

where y'+1 is an estimate of the adjoint available at the (n + 1)th iteration and r'

is the primal residual at the nth iteration, both for the preconditioned system. Note

that the check mark on y'+ is used to differentiate the adjoint estimates that we

use to determine weight parameters and the adjoint estimates carried forward in our

simultaneous primal-dual method.

The above provides a natural scaling for the QMR weight parameters. Specifically,

by letting,

(3.34)

then,

(y'n+1)Tr' pr (in+1)T ]i v 2 - 1 vn+1 (Ppre(n+1) _ rLz)
1V V2 Vn\ n 1 I e n

= (y'+1)Tvi - (yn+1 Tvn+ 1 j ) ( \pre (n+1) _ gprInzn

= p1 re (n+1) _ gpr Lnz . (3.35)

Thus, with the o as chosen in (3.34), the linear error term (3.33) in the linear

functional is approximately equal to the sum of the entries of the primal quasi-residual.

By selecting zn to minimize this weighted primal quasi-residual, the primal iterates
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obtained from our modified QMR approach should more accurately approximate the

linear functional.

However, the scheme as described above could suffer from non-recursivity because

at each iteration n, all weights opr, 1 j < n must be updated and all prior vectors

might need to be stored. To maintain recursivity, we introduce a truncated approxi-

mation to the adjoint, Sn+1, where the index i is an approximation parameter. We

define yn+1 as

_( + 1)Tvi + ((Y+2)Tv +i+n+ n+1
ifn+1 wT W T V2  W 2 + * W T Wn+1

1 viW2 2ivn+1

(3.36)

where we take Yj to be the adjoint iterate from the standard QMR algorithm. Al-

though other choices may be thought of, using this truncated approximation, we

have

(yi ,n+1) -- V )T Ivy. (3.37)

Associated with a certain choice of i is the storage needed for the i vectors [Pi ... pi]
each of the dimension of problem size. However, no extra computational work is

required. For the numerical experiments considered here, a small i (~ 3) works well

enough.

With yS',n+1 as defined in (3.37), we take the weight parameters to be

prT

(-/ )Tv. (3.38)

A similar strategy of weight parameter determination may be done for the dual prob-

lem. Analogous to (3.38), we take the dual weights to be
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Sdu - w, ITJ \Z1~j/
(3.39)

where similarly, X', is the primal solution estimate obtained at iteration n using the

QMR method.

It is to be noted that although (3.38) and (3.39) imply forming the QMR iterates

X', and Y' and performing inner products for the calculation of each weight, this

is not necessary. Instead, they are equivalently but cheaply calculated from scalars

obtained in the i Lanczos iterations ahead of the current primal and dual iterates.

3.5 Algorithm Implementation

In this section, an implementation of the superconvergent simultaneous primal-dual

QMR (SSQMR) method is described. The Lanczos iteration is carried i steps ahead

of both the primal and dual iterates. Compared to conventional QMR, it requires a

constant extra storage of two sets of vectors P = [Pi P2 ... pi] and Q = [qi q 2 ... qj]

where each vector is of the same size as b. Additionally, three sets of i scalars need

to be stored : 8 = [#1#32 -.- - i p = [P1 P2 -.- Pi] and ( = [ 12 -]. After

convergence by some criteria, the primal and dual solutions for the original systems

are recovered by observing (3.27) and (3.31). The algorithm for SSQMR is given

below; MATLAB code is given in Appendix A.

Algorithm with Lanczos Forward Index i

* Initialization

- Set initial guesses to be the zero vector : x p = xd" = 0.

- Let pi = |IM-lbl, vi = M-b/pi. Let (1 = ||MgTg||, w1 = M2g/1.

- Check that wTvi # 0, otherwise restart.

- Set po = qO = d = d d"= 0.
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- Set cp' = c o = 1, _I = pr u =0, ,pr =du 1.

- Set wcpr = w_c" = 1, wpr = wdu = 0, wr = wrgu -1.

- Initialize vector storage P = [Pi P2 ... pi] and Q = [qi q2 ... qj], scalar

storage 3 = [#1# 2 ... i], P = (P1 P2 ... pi] and = [ j 12 ... -

- Set counter values for weight parameter accumulation :

ko = 1

FOR h = 1 : i DO

m(h) = 2 - h

END

eFOR n = 1, 2,13, - -- , DO

1. If E, = 0 or &= 0, stop. Otherwise, compute 6, = w Tv.

2. Update counter kn = (kn mod i) + 1. Update vectors

pn= vn - Pn_1 (n 6 n/En_.1),

qn= w - qn_1 (pn6n/en_1 ). (3.40)

Store P(:, kn) = pn, Q(:, kn) = qn.

3. Compute fP, = A(M2 Pn) and i = M-Tqn. Update En = qTPn, and set

3 n = En/ 6 n.

Update

vn+1

wn+1

= Mi-n - 3nVn,

= M 2 T(ATn) - #nwn. (3.41)

Update Pn+1 = |Ijn+1||, En+1 = ||na+1||- Store 8(kn) = #3, p(kn) = pn,

If Pn+1 # 0 and (n+1 0 0, update
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= vn+1/Pn+1,

= wn+1/ n+1.

Pn+1 pr

-r n~n r - V1 + (Wpr)2

n+1 du

wCu 7 n-
1 ± (Wjdu)2'

5 
-adu 

22d 6n (W-Cn__)

5. Weight parameters wpr-j+ 1 and w +1 calculation

FOR h 1: i DO

IF m(h) = 1 THEN

wqpr (h) - n w _dpr(h) = 0, WXpr (h) - 0

wqdu (h) - on,wd du(h) 0,wxdu(h) 0

END

IF 1 < m(h) < i THEN

IF n o 1 THEN wqpr(h) -_ pr(h)

)2w-dPr(h) - wr~W-qpr (h) + wdPr(h) (-9rWCp

wzXPr (h) - w _pr (h) + wdpr(h)

IF n o 1 THEN w-qdu(h) = _(Pn6n/ni)wqdu(h)

w ddu (h) - nd W qlu (h) + w ddu (h) (w u w Cdu)

wxdu(h) = wjdu(h) + wddu(h)

END

IF m(h) = i - 1 THEN
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vn+1

wn+1

4. Update

(3.42)

WIprn

pr
WJ

7 n
r n ( -nr2
-rin-1 nr

du (3.43)



m(h) = 2 - i

on-i+1 = -E-a(h)

o+= wXpr(h)

END

END

6. IF n > i THEN

,pr wn-i+1 P((kn mod i) + 1)

_ icnii/((kn mod i) + 1)
1

1 + (z'O_ )2
( (L- yl -1Pr 2

pr nn

- - 3((kn mod i) + 1)(cr _)2

pr_ P(:, (k, mod i) + 1) +

x i+ dn-_
pr

Wn-i+1(((kn mod i) + 1)

Uic u ii((k mod i) + 1)
1

1 + (9du_)2

du ((kn mod i) + 1)(cu i) 2

77n ((kn mod i) + 1)(cdu , 2

= du iQ(:, (k mod i) + 1) + odu c du
x" _1+ d )" Cn-i

n-=l ± -i

du = du
n-z n-i+1

END

7. FOR h = 1: i DO
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n-i

d pr
Xni

x p

pr
n-i

,gdu.

du
77n-i

d du

x "u

(3.44)
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m(h) = m(h) + 1

END

* Obtain primal and dual solutions for the original systems

Primal solution = (M 2 ) x",

Dual solution = (M 1)~Tx. (3.45)

3.6 Numerical Experiments

The proposed method with weight parameters determined using equations (3.38) and

(3.39) is denoted as Superconvergent Simultaneous QMR (SSQMR). The method

which solves both the primal and the dual problem but with all weight parameters set

to unity is denoted as Simultaneous QMR (SQMR). The conventional QMR method

has unity weights and initial vectors are chosen to be the same : wi = vi. QMR is

separately applied to the primal and dual problems and the results are compared to

SSQMR and SQMR.

For all the examples shown here, the Lanczos forward index i for SSQMR is taken

to be 3, since this has been shown to give good results. Also, the initial guesses x'0

and y' for all the methods are chosen to be the zero vector. No convergence criteria is

used; rather, the number of iteration steps is specified in each case. The test problems

are not excessively large so that the solutions for the linear systems are available up

to level of round-off.

3.6.1 Example 1

In this example, we consider the second order finite difference discretization on a

51 x 51 grid of

V 2 U exp- (x+2) 2 -(y-1/2) 2 , E E [0, 1] x [0, 1],
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U = 0, (3.46)

resulting in the matrix A with 12205 non-zero elements. The linear functional is the

discretized approximation of

j j u(x, y) sin(7rx) sin(7ry)dxdy. (3.47)

The left and right preconditioners were obtained from the incomplete LU factorization

of A using a drop tolerance of 2 x 10-2, resulting in L and U having 12059 and 12057

non-zero elements respectively.

From Figure 3-1 it may be seen that the primal and dual functional estimates

obtained using standard QMR converge at roughly the same rate as the respective

residual norms, showing that it is not superconvergent. SQMR obtains better func-

tional estimates as a result of the better choice of starting vectors. In fact, the method

appears to exhibit superconvergence. However, the behavior is not very consistent.

On the other hand, SSQMR obtains functional estimates that are consistently super-

converging at twice the order of residual convergence and improvement in functional

estimates over SQMR is clearly seen.

3.6.2 Example 2

In this example, the linear system considered is one arising from a first order back-

ward Euler implicit scheme for solving a first order upwind discretization of the two-

dimensional compressible flow Euler equations using the NASA Langley unstructured

flow solver FUN2D [2]. The specific problem is the transonic flow around the NACA

0012 airfoil (freestream Mach number of 0.8 and 1.25 degrees angle of attack). The

mesh is composed of 1980 triangular elements with 990 nodes. The linear output is

the airfoil drag functional linearized about the current iterate.

The matrix A has 108532 non-zero entries. The left and right preconditioners were

obtained from the incomplete LU factorization of A using a drop tolerance of 10-2,

41



resulting in L and U having 88253 and 93588 non-zero elements respectively. Again,

from Figure 3-2 we observe that the functional error convergence slopes of SSQMR are

roughly twice that of conventional QMR, confirming the prediction made regarding

superconvergence. In this example, the functional error of SQMR is close to that of

SSQMR, showing that the unity parameter happens to be quite a good choice in this

case. Still, SSQMR consistently gives better functional estimates than SQMR.
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Chapter 4

Coupled Primal-Dual

Superconvergent GMRES

GMRES [38] has found widespread use because of its robustness and its residual min-

imization property. However, as demonstrated in Chapter 2, it is not superconvergent

since the sequence of test spaces T do not approximate the adjoint well.

A way to make the adjoint Krylov subspace available is to iterate the dual problem

in parallel with the primal. However, taking the adjoint Krylov subspace as the test

space for the primal problem could result in the loss of desirable properties such as

smooth, robust residual convergence. Hence, the approach proposed here is to use the

same test space as conventional GMRES, but seek the norm-minimizing primal iterate

within the correction space whose residual is orthogonal to the adjoint approximation

of the previous iteration. In this way, the smooth residual convergence behavior of

GMRES is largely retained while attaining superconvergence. The same strategy

described above for the primal problem is also applied to the adjoint.

In the following section, a primal-dual coupling strategy is proposed. Then, casting

the Krylov subspace constrained minimization problem in the form of Arnoldi vectors,

it is shown how the modification for superconvergence involves solving an equality

constrained least squares problem. Finally, an algorithm implementation for the

coupled superconvergent GMRES (CSGMRES) is given.
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4.1 Coupling Strategy for Superconvergence

Consider the primal and dual system, (1.1) and (1.3). Applied to the primal and dual

problem, GMRES at every iteration count n solves the n-dimensional linear least

squares problems for the respective iterates,

x GMRESyn

GMRES
Yn

= arg min b - A

= arg min g - ATy1,
SgECdu

(4.1)

where the correction spaces for the primal and dual problems are

Cn" yo + Cn(ror, A), C" = XO + KCn(ro", A T). (4.2)

The proposed approach is a constrained minimization statement. That is, it locates

minimizers,

= arg min b -

arg min ||g -
ycECu

A fl, s.t. (b - Ak)TY MRES

ATY11, s.t. (g - ATy)Tx CSMRES - o.

4.2 Arnoldi Process and Equality Constraint

Arnoldi process applied to each of the primal and dual problem produces orthonormal

basis vectors of the respective Krylov subspaces, V = [vi, v 2 , - , vn] and Wn

[wi, w 2, - - , wn] satisfying the relations
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AVn

ATW, (4.4)

where Np, NH" are the (n + 1) x n upper Hessenberg matrices associated with the

primal and dual Arnoldi process respectively. Since the nth primal and dual iterate

are in the respective subspaces, they may be written in the form

Xn = X0 + Vnkn,

Yn = Yo + WnIn. (4.5)

Using (4.4) it is evident that with the iterates denoted as above, the residuals are

r P r Vn+1(/1pren+1 - HPrks)

rdu = Wn+1(Odue n+1 _ ")du, (4.6)

where #pr = |lrf||, #du = lrd"l|. Since the columns of Vn+1 and Wn+1 are orthonor-

mal, the GMRES iterates may be chosen with

kGMRES = arg min /pr en+1 PrkH
k

I GMRES = argmin odue n+1 - fiduq. (4.7)

Let us now look at the problem of determining kn, In for CSGMRES strategy, (4.3).

Define the n x 1 vectors pn and qn by
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pn (HPr) TVT 1 nSGMRES

(du) T T 1 xCSMRES (4.8)

and define the scalars cn, d, as

cn = (yCSMRES T rp, d (XCSMRES Tr du (4.9)

Then, the CSGMRES strategy is equivalent to the respective n-dimensional least

squares problem with a one-dimensional constraint,

kCSGMRES argmin pr en+1 _ HPrk s.t. pTk
k 1

iCSGMRES = a d +1 _ fdulH st Tl (4u1.

n ar min 1e n . .qn d

4.2.1 Algorithm Implementation

A number of different methods exist to solve the equality constrained least squares

(LSE) problems (4.10) [27, 22, 23, 28]. However, we note that our LSE problems have

certain features. Firstly, the matrices Npr and Hf" are upper Hessenberg matrices,

therefore it is simple to perform QR factorization using successive Givens rotations,

as is done in Saad's original implementation of GMRES [38]. Moreover, we note that

while the vectors pn, qn and scalars cn, d. may be quite different at each iteration,

the matrices Npr and HN" are merely updated by appending columns. Therefore,

it is desirable to implement the successive LSE problems (4.10) based on successive

Givens rotations of matrices Hpr and fi"d and then make the necessary adjustments

to enforce the equality constraints.
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In [24], a method of solving LSE was derived using the method of Lagrange mul-

tipliers. Specifically, the primal LSE problem is equivalent to solving the extended

system

(f5Pr) T Rpr

T
pn 7]

k[

A I #pr (fPrT) en+

cn I.

The first step is to solve the unconstrained least-squares problem for k",

(H Pr) T Npr k's = #pr (pr)T en+1 (4.12)

which may be done in the usual manner of QR decomposition by succesive Givens

rotations on f,
n I

Rpr

L 0

(4.13)

where Rr is n x n and upper triangular. Also, the right hand side of (4.12) transforms

to

Qr#Pre =
Spr[7I (4.14)

where sPr is an n x 1 vector and the last entry of the above vector is ignored, hence

not shown. k" is then obtained by,

k's Rpr s ". (4.15)
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Then, writing

k_ =k + zr, (4.16)

the problem (4.11) is equivalent to determining zr. It may be seen that the equation

of the first block row of (4.11) is automatically satisfied if zgr is of the form zpr = jprA,

where jPr satisfies the equation

[(fnpr) T flpr]I j pr - n (4.17)

The value for A is determined by the equation

PjPA = cn - pT k. (4.18)

After some algebraic manipulations,

tp, (4.19)

where tgr is defined as

tpr -= (Rpr
T

pn. (4.20)

4.2.2 CSGMRES Algorithm

* Initialization
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- Obtain initial guesses x0 and yo. Compute

x' = M 2 xo, y =Myo.

- Compute initial preconditioned residuals

r' pr Mj(b - Axo), r'du M T (gATyo).

- Let #pr = |r'Pr||, #d" - r'jd"f|. Normalize : = rr/MPr, wi = r' d"/du.

.FOR n = 1, 2,3, --- , DO

- Primal Arnoldi

in = M-'AM21vn.

HPr(i, n) = (i'n, vi), i = 1, 2, . - ,n.

= - P" NP(i, n)vi

HP(n + 1, n) =|1

vn+1 = Yn+ 1 /NPr(n + 1, n).

- Dual Arnoldi

*n = M-T ATM 7 Twn.

du (i , n) ( nwi), i= 1, 2, n.

*n+1 = n -"i"( n~w

H an(n+ 1,n) = ||*n+1||-

wn+1= *n+1/Iu(n + 1, n).

- Primal LSE

= (NPr)T(VT 1 y1), c, = #pry/y

Obtain Qp, RPr with a Givens rotation on Hp.

Obtain sPr from (QPr) Tprei.

k= RPi/
-T

n, n = R ) fp
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k ' ks + (cnT ',.'Rpr tpr.

- Dual LSE

g_ -(dnu)T (Wx'u_) dj = uw&'/_.

Obtain Qd", Rdu with a Givens rotation on Hdu.

Obtain sdu from (Qdu)Tdue1.

-1 I 
-T

1n = R T " s, t u R u

1 - s + (dni (R " t)".

- Form iterates

y' = yo + wnln.

* Obtain solutions to original systems

x = M2 Xn7,

= M-Ty .

4.3 Numerical Experiments

CSGMRES is applied to the same preconditioned primal and dual problems as those

given in Sect. 3.6.1 and Sect. 3.6.2.

4.3.1 Example 1

From Figure 4-1, it is seen that both the primal and dual iterates provide functional

estimates that initially appear to converge faster than the respective residual norms,

indicating that the test spaces provide good approximations to the corresponding dual

problem. This may be seen as a consequence of the problem matrix being symmetric.

However, GMRES is clearly not superconvergent and CSGMRES iterates provide

significantly better functional output estimates. Also, note that after the few initial

iterations, the residual norms of GMRES and CSGMRES exhibit very similar residual

convergence behavior.
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4.3.2 Example 2

The results of this example are shown in Figure 4-2. It can be seen that the conver-

gence of functional estimates obtained from conventional GMRES iterates is linear in

the respective residuals. Again, the improvement in functional estimates provided by

CSGMRES iterates is apparent, while the smooth residual norm convergence behavior

is maintained.
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Figure 4-1: Plots from CSGMRES Example 1 : Poisson problem
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Figure 4-2: Plots from CSGMRES Example 2 : Euler flow
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Chapter 5

Conclusions and Future Work

Using adjoint analysis, the convergence of functional estimates using iterates obtained

from several Krylov subspace methods is studied. Analysis shows that for methods

based on the non-symmetric Lanczos process, an appropriate choice of the initial

shadow vector allows the attainment of superconvergence for a chosen functional out-

put. Moreover, this choice allows for the simultaneous solution of the dual problem

associated with the output. A superconvergent QMR for primal-dual solutions is

constructed and demonstrated to be a viable approach. Krylov methods based on

the Arnoldi process are shown to lack superconvergence. However, with appropriate

coupling of primal and dual problems, superconvergent variants may be constructed.

The viability of such an approach is demonstrated by the construction of a supercon-

vergent variant of GMRES.

The potential benefits of the proposed simultaneous primal-dual strategy to the

general nonlinear setting remains a topic for further research.
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Appendix A

SSQMR MATLAB code

function

[flag,pr soln, du soln,prres-norm,du res-normpr-func est,du func-est]

= SSQMR(A,b,g,iter,i,M1,M2)

b-norm = norm(b);

g-norm = norm(g);

x-pr = zeros(length(b),1);

x-du = zeros(length(b),1);

v = M1\b;

rho = norm(v); 10

v = v/rho;

w = M2'\g;

zeta = norm(w);

w = w/zeta;

p = zeros(length(b),1);

q = zeros(length(b),1);

d-pr = zeros(length(b),1);

d-du = zeros(length(b),1);

c-pr = 1; 20
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c-du = 1;

epsilon = 1;

theta-pr = 0;

theta-du = 0;

eta-pr = -1;

eta-du = -1;

w-c-pr = 1;

w-c_du = 1;

w-theta-pr = 0;

w-theta-du 0; 30

w-eta-pr -1;

w-eta-du = -1

k = 0;

for h = 1: i

m(h) = 2 -h;

end

for n 1 iter

delta =w'*v; 40

if abs(delta) < le-14 abs(epsilon) < le-14

flag = 1

break

end

k = mod(k,i) + 1;

p = v - p*(zeta*delta/epsilon);

q = w - q*(rho*delta/epsilon);

P(:,k) = p; 50
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Q(:,k) q;

p-tilde = A*(M2\p);

q-tilde = M1'\q;

epsilonI = q-tilde'*p-tilde;

beta = epsilon1/delta;

v-tilde = M1\p-tilde - beta*v;

w-tilde M2'\(A'*q-tilde) - beta*w;

BETA(k) = beta;

RHO(k) = rho;

ZETA(k) = zeta; 60

rhol = norm(v-tilde);

zetal = norm(w-tilde);

v = vtilde/rhol;

w w-tilde/zetal;

w-theta-prl = rho/(w-c-pr*beta);

w-c-pr1 = 1/sqrt(1+(w-theta-pr1)^2);

w-eta-pr = - weta-pr* (rho*(w-c-prl) ^2)/(beta* (w-c-pr) 2);

w-theta-dul = zeta/(w-c du*beta);

w-c-dul 1/sqrt(1+(w-theta-dul)^2);

w-eta-du - w-eta-du* (zeta*(w-c-dul) ^2)/(beta* (w-c-du) ^2); 70

for h = 1 i

if m(h) == 1

w-q-pr(h) delta; w-d-pr(h) = 0; w-x-pr(h) = 0;

w-q-du(h) = delta; w_d-du(h) = 0; w-x-du(h) = 0;

end

if (1 <=m(h)) & (m(h) < i )

if n ~= 1

w-q-pr(h) = -(zeta*delta/epsilon)*w-q-pr(h); 80
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end

w-d-pr(h) = weta-pr*w-q-pr(h) + w-d-pr(h)*(w-theta-pr*w-c-prl)^2;

w-x-pr(h) w-x-pr(h) + w-d-pr(h);

if n ~= 1

w-q-du(h) = -(rho*delta/epsilon)*w-q-du(h);

end

w-d-du(h) = weta-du*w-q-du(h) + w-d-du(h)*(w-theta-du*w-c-dul)^2;

w-x-du(h) = w.x-du(h) + w-d-du(h);

end

90

if m(h) == i-1

m(h) = 2-i;

omega-prl = w-x-du(h);

omega-dul = w-x-pr(h);

end

end

rho = rhol;

zeta = zetal;

epsilon = epsilon1; 100

w-c-pr = wcprl;

w-c-du w_c_dul;

w-theta-pr = wtheta-prl;

w-theta-du = wtheta-dul;

if n == i-I

omega-pr = omega-prl;

omega-du = omega-dul;

end
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if n >= i

theta-prl = omega-prl*RHO(mod(k,i)+1)/(omega-pr*c-pr*BETA(mod(k,i)+1));

c-prl = 1/sqrt(1+(theta-prl)^2);

eta-pr = - eta-pr*RHO(mod(k,i)+1)*(c-prl)^2/(BETA(mod(k,i)+1)*(c-pr)^2);

d-pr = eta-pr*P(:,mod(k,i)+1) + (theta-pr*c-pr1)^2*d-pr;

x-pr = xpr + d-pr;

omega-pr = omega-prl;

theta-pr = theta-prl;

c-pr = c-prl;

120

theta-dul = omega-dul*ZETA(mod(k,i)+ 1)/(omega-du*c-du*BETA(mod(k,i)+1));

c-dul = 1/sqrt(1+(theta-dul)^2);

eta-du = - eta-du*ZETA(mod(k,i)+1)*(c-du1)^2/(BETA(mod(k,i)+1)*(c-du)^2);

d-du = eta-du*Q(:,mod(k,i)+1) + (theta-du*c-dul)^2*d-du;

x-du = x-du + ddu;

omega-du = omega-dul;

theta-du = thetadul;

c-du = cdul;

pr-soln = M2\x-pr; 130

du-soln = M1'\x-du;

pr-res-norm(n-i+1) norm(b-A*pr-soln)/b-norm;

du-res-norm(n-i+1) = norm(g-A '*dusoin)/g-norm;

pr-func-est(n-i+1) = g'*pr-soln;

du-func-est(n-i+1) = b'*dusoin;

end

for h = 1 : i

m(h) = m(h)+1;

end 140
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end

flag = 0;
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Appendix B

CSGMRES MATLAB code

function

[pr soln, du soln,pr-res-norm,du res-norm,prifunc-est,du func est]

= CSGMRES(A,b,g,iter,M1,M2)

b-norm = norm(b);

g-norm = norm(g);

precond-b = Ml\b;

precond-g M2' \g;

beta-pr = norm(precond-b);

beta-du = norm(precondg);

V(:,1) = precond-b/beta-pr;

W(:,1) = precond-g/beta-du;

for n = 1 : iter

u =M1\(A*(M2\V(:,n)));

v M2'\(A'*(M1'\W(:,n)));

for i = 1 : n

H-pr(i,n) = V(:,i) '*u;

u = u - H-pr(i,n)*V(:,i);
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H-du(i,n) = W(:,i)'*v;

V = v - H-du(i,n)*W(:,i);

end

H-pr(n+1,n) = norm(u);

V(:,n+1) = u/H-pr(n+1,n);

H-du(n+1,n) = norm(v);

W(:,n+1) = v/Hdu(n+1,n);

el = zeros(n+1,1);

e1(1) = 1;

if n == 1

p = Hpr'*V'*g;

k = p'\g'*precond-b;

q = Hdu'*W'*b;

1 = q'\b'*precond-g;

[Q-pr,R-pr] qr(H-pr);

[Q-du,R-du] qr(Hdu);

else

p = H-pr'*(V'*y);

[Q-pr,R-pr,k] = Ise(Q-pr,R-pr,H-pr,beta-pr*el,p,y'*precond-b);

q = H-du'*W'*x;

[Q-du,R-du,1] = Ise(Q-du,R-du, H_du, beta-du*el,q,x'*precond-g);

end

x =V(:,:n)*k;

y =W(:,1:n)*;

pr-soln = M2\x;

du-soln = M1'\y;
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pr-res-norm(n) norm(b-A*pr-soln)/b-norm;

du-res-norm(n) = norm(g-A'*dusoln)/gnorm;

prifunc-est(n) = g'*pr-soln;

duifunc-est(n) = b'*du-soln;

end

60

function [Q,R,k] = lse(Q,R,H,beta-el,p,c)

[m,n] = size(H);

R(m,n-1)=O;

Q(m,m)=1;

[Q,R] = qrinsert(Q,R,n,H(:,n));

s = Q'*beta-el;

k-Is = R\s;

t = 70

k = kIs + ((c-p'*k_ls)/norm(t)^2)*(R\t);
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