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Abstract

Autonomous Marine Vehicles (AMVs) provide an efficient and cost-effective platform to accomplish a
variety of maritime tasks ranging from scientific data collection to underwater mine sniffing. Because
of the multirole capabilities of these vessels, military establishments around the world have expressed
interest in using AMVs to close the gap in mission performance and enhance mission capabilities. In
order to be a viable alternative to the current operating methods, AMV military missions involving
intelligence or surveillance/reconnaissance would need to be present on site for very long periods of
time to cover large areas. However, currently, mission duration is greatly limited by available on-
board power supplies. Typically, endurance of autonomous marine vehicles can be improved in three
ways: through 1) drag minimization, 2) highly efficient means of propulsion, and 3) the real-time
extraction of energy from natural sources.

The goal of this work is to investigate a simple mechanical system to provide AMVs with all
three of these attributes. The proposed system is based on a Vertically Sculling Hydrofoil (VSH)
architecture, in which a horizontal wing of high aspect ratio plunges and pitches in the vertical
plane. The wing provides lift to extract the hull of the vehicle to reduce wetted-surface friction
drag and wave drag. The oscillation of the wing provides an efficient means of propulsion for the
vessel in a way similar to birds or fish. Finally, energy can be extracted from an incoming flow
by modulating the wing’s incidence and damping the resulting heaving motion with an electric
generator to produce power. When fitted on an autonomous marine vehicle, such a system could
not only serve as a thruster but also as a means of replenishing the vehicle’s power supplies to carry
out long-endurance missions.

For a deeply submerged flapping wing, the unsteady loads are identical to the loads generated by
a wing flapping in the air. However, when the VSH wing approaches the free surface, the problem
of determining the unsteady loads is greatly complicated as a transfer of momentum between the
foil and the water surface coexists. Additional drag and lift-reducing forces emanate from this free
surface influence. To characterize vertically sculling hydrodynamics, a two-dimensional unsteady
panel method code was devised allowing for the calculation of the unsteady loads exerted by a
heaving and pitching foil with the influence of a free surface. Using this computational tool, a series
of calculations were carried out to predict the optimal foil motion in order to achieve maximum
efficiency for propulsion and power extraction. Based on the results, design recommendations are
given for a VSH system.
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Chapter 1

Introduction

1.1 Introduction-Project Motivation

Research and use of Autonomous Marine Vehicles (AMVs) have been expanding in recent years
as they provide an efficient and cost-effective platform to accomplish a variety of maritime tasks.
Whether operating on the ocean surface or underwater, such vessels are a desirable alternative to
carrying out missions that would otherwise require a large investment in manpower and equipment.
They also provide an attractive means of performing hazardous tasks and can operate in regions
into which no manned underwater vessel or remotely operated vehicle can penetrate (e.g. ALTEX
Arctic mission).

The vital source of energy, raw materials, nutrients, and climatic clues provided by the oceans
can be surveyed and monitored with these autonomous vessels with minimal human intervention
and logistic support. In fact, with approximately 150 AMVs designed around the world in nearly 40
years of development [16], the scientific and industrial community has clearly realized the benefits

of using such platforms for:

e pollution detection and other environmental surveys

seabed mapping

L J

pelagic fisheries surveys
e undersea search and survey

e communication and navigation aids

Because of the multirole capabilities of these vessels, the military around the world has also

expressed interest in using AMVs in an effort to close the gap in mission performance and enhance
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mission capabilities [34]. Kongsberg Simrad AS, for example, is currently working on a military
Autonomous Underwater Vehicle (AUV) prototype called HUGIN 1000 for the Royal Norwegian
Navy to perform mine countermeasure and rapid environmental assessment operations. In the United
States, MIT Sea Grant’s Autonomous Underwater Vehicle’s Lab is developing a low-cost AUV called
CETUS™ for underwater intervention and sea mine warfare.

Although most of the applications stated above are feasible with the available technology, for
many other applications to become reality, certain technological challenges still need to be overcome.
For intelligence, surveillance/reconnaissance missions (e.g. harbor security) or long-duration data
sampling, AMVs would need to be present on site for very long periods of time (sometimes months)
to cover large areas, in order to be a viable alternative to the current operating methods. However,
mission duration is greatly limited by available on-board power supplies and means of improving
duration are actively sought.

Improvement of the long-endurance capabilities of autonomous marine vehicles can typically be

achieved in three ways:
1. Through drag minimization of the vehicle’s hull and other appendages.
2. Through the investigation of highly efficient means of propulsion.
3. Through the real-time extraction of energy from natural sources.

The goal of this work is to investigate a simple mechanical system based on a Vertically Sculling
Hydrofoil (VSH) architecture that can provide an autonomous marine vehicle with all three of these

attributes.

1.2 VSH Description

A Vertically Sculling Hydrofoil is essentially a system composed of a rigid wing of high aspect ratio
(hydrofoil) positioned horizontally and undergoing pitching and heaving oscillations in the vertical

plane.

1. The horizontal placement of the hydrofoil provides high lift-to-drag capabilities to the marine
vehicle to extract its hull from the water, thus reducing wetted-surface friction drag and wave

drag generated by the hull.

2. The oscillating motion of the hydrofoil produces thrust in a way similar to birds or fish.
Much theoretical work claims that propulsive efficiencies rivaling with that of propellers can

be achieved with flapping propulsion.
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3. Finally, energy can be extracted from an incoming flow by modulating the wing’s incidence
and damping the resulting heaving motion with an electric generator to produce power. One
could imagine the scenario where the autonomous marine vehicle surfs the waves and extracts

energy from the flowstream to recharge its power supplies.

When fitted on an AMV, such a system could not only serve as a thruster but also as a means of
replenishing the vehicle’s power supplies to carry out long-endurance missions.

The VSH architecture has multiple advantages over conventional systems for both propulsion
and power extraction. From a mechanical standpoint, it can be designed to have few moving parts,
thus reducing manufacturing/assembly costs and the likelihood of failing. In fact, if only propulsion
is of interest, one could imagine a simple design involving no mechanical linkage to the foil with an
offset mass on a motor inducing an oscillating motion on the hydrofoil.

Although this architecture has multiple benefits for an AMV, one of its major drawback stems
from the fact that the hydrofoil operates in the vicinity of the water surface where the effects of
free-surface induced drag are most significant. To assess the potential and the viability of such a
system for the proposed application, it would be desirable to accurately characterize and quantify

these effects.

1.3 Previous Work

1.3.1 Theoretical and Experimental Work

Numerous theoretical and experimental investigations pertaining to flapping-wing propulsion and
flapping-wing flight have been completed throughout the years in an attempt to understand and
mimic both fishlike swimming and avian flight.

Knoller and Betz were the first to provide scientific theories relating to thrust generation of a
heaving airfoil in independent studies in 1909 and 1912 [22], [5]. Although a flurry of unsteady
aerodynamic theories and experimental investigations followed from that point on, it was not until
1935 that Theodorsen, von Kdrmén and Sears, provided the ground work for many flapping-foil
propulsion mathematical models. In 1936, Garrick [11] applied Theodorsen’s [31] linear, inviscid
unsteady aerodynamics theory to derive compact expressions for the thrust force generated by a flat
plate undergoing harmonic oscillations. Garrick found that the efficiency of a heaving and plunging
airfoil approaches unity as the motion frequency approaches zero. He also found that thrust was
proportional to the square of the frequency.

In 1970, Lighthill investigated lunate tail propulsion and derived formulas for the thrust and effi-
ciency of a thuniform swimmer. In his work, Lighthill proposed a proportional feathering parameter

© corresponding to the ratio of slopes between the effective angle-of-attack of the tail and the angle
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formed by the caudal fin trail and the swimming path of the fish. Lighthill calculated that values of
O between 0.6 and 0.8 yielded optimal combinations of leading-edge suction and hydromechanical
efficiency [24],[30].

In 1981, Delaurier and Harris {7] carried out experiments on oscillating-wing propulsion to serve
as a data base for future experimental and theoretical work. Their experiments were limited to
small amplitude flapping and corroborated Garrick’s theoretical work. Later that year, McKinney
and Delaurier [26] conducted a series of experimental tests on an oscillating-wing windmill. They
determined that this wingmill system, as they termed it, could achieve efficiencies comparable to
those of conventional windmill designs.

More recently, Triantafyllou et al. [32], [33] focused on the wake dynamics of large-amplitude
oscillating foils and found conditions leading to optimal thrust production. They determined that
the thrust coefficient was nearly a linear function of the Strouhal®’ number St,, and that it should
be between 0.25 and 0.35 for optimal efficiency. Their definition of the Strouhal number is St, =
fA/Ux, where A is the width of the wake taken to be equal to the maximum excursion of the foil’s
trailing edge, f is the frequency of motion in Hertz, and Uy is the average forward velocity. An
optimal Strouhal number, however, does not give any indication of the optimal frequency, simply
because frequency and motion amplitude can be varied to fix the Strouhal number.

With the advent of Micro Air Vehicles (MAV), Hall & Hall [13] devised a three-dimensional vortex
lattice model to investigate the power requirements for flapping flight. They computed an optimal
circulation distribution along the span of a flapping wing that simultaneously provides thrust and
lift. They showed the existence of optimum flapping amplitudes and frequencies.

Lately, Jones and Platzer [18], [19], performed extensive numerical investigations on flapping-
foil systems using a non-linear, deforming wake model to compute the unsteady flow about an
airfoil undergoing pitch and plunge motions. They investigated the influence of interference effects
on flapping-wing propulsion and looked at various configurations involving multiple airfoils with the
intent of developing a MAV [17]. A preferred configuration where two airfoils work in opposed plunge
was identified, and it was shown through numerical and experimental tests that high efficiencies could
be attained.

Jones, Davis and Platzer {20] also looked at flapping-foil power generators or wingmills. For a
prescribed maximum effective angle-of-attack, optimal plunge velocities and optimal ratios between
the heaving and frequency of motion were identified. Although an experimental setup was designed,

no results are currently available.

1The Strouhal number is used to characterize the structure of wakes and is essentially the ratio of unsteady to
inertial forces
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Figure 1-1: Two-view of the Preposterous Pogo Foil.

1.3.2 VSH Vehicle Concepts

Until now, VSH propulsion vehicles have been designed and built mostly for recreational purposes.

Parker MacCready [25] designed and built two experimental human-powered hydrofoil boats
with flapping-wing propulsion in the mid 1980s. In his first boat called the Mutiny on the Boundary
Layer, the pilot sat on a standard bike frame linked to catamaran hulls for flotation before take-
off. A complex mechanism pushed a wing/strut assembly up and down as the rider pedaled to
generate lift and thrust. The Mutiny on the Boundary Layer did not prove efficient, with propulsive
efficiencies on the order of 40% and an average speed of 3m/s, but it did accomplish the goal of flying
while achieving flapping-wing propulsion. MacCready claims that the low propulsive efficiencies were
mainly due to mechanical friction in moving parts and suboptimal wing angles during the flapping
cycle. Specifications pertaining to the craft are summarized in Table 1.1 along with estimated
Reynolds number and Froude number based on the chord. _

Later in 1993, MacCready experimented with a boat similar to the the Mutiny on the Boundary
Layer, but mechanically much simpler, which he called the Preposterous Pogo Foil (see Figure 1-1).
This boat had few moving parts (< 10), and the heaving motion of the foil was accomplished by
the pilot bending at the knees. The first tests; however, showed that the craft was more limited by
control problems than by excessive power requirements.

Recently, Alexander Sahlin unveiled the Trampofoil® in Sweden, a vehicle similar to the Pogo
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Mutiny Trampofoil ®)

Mass, m 50kg 12kg
Wing span, b 2.0m 2.8Tm
Wing mean chord, ¢ 0.12m 0.15m
Stall velocity, V, N/A 2.5m/s
Maximum velocity, Viax N/A 5.5m/s
Cruise velocity, V, 3.2m/s 3—4dm/s
Estimated Froude number, Fr, 2.9 3.3
Estimated depth of foil, d 0.5¢—2.0¢ 0.5c—2.0c

Table 1.1: Specifications for the Mutiny and the Trampofoil ®

Foil in the way it operates. By hopping on a footplate rigidly attached to the wing, the pilot
induces an oscillating motion on the wing which propels the craft. Unlike the Pogo Foil, the Tram-
pofoil® does not have any hulls or moving parts. Maximum speeds of 5.5m/s with stall speeds of
2.5m/s have been recorded with the Trampofoil ® but no information regarding the efficiency of the
device could be found. The specifications for the craft are summarized in Table 1.1. Figure 1-2

shows the Trampofoil® and its operation.

1.4 Statement of Project Objectives

Although a lot of theoretical and experimental investigations have been done in the field of flapping-
wing propulsion and power extraction, no attention has been paid to the interference effects of a free
surface on a foil flapping below the water. Also, all theories and experimental work described above
draw on sinusoidally plunging and heaving foil motions without considering if a more complex motion
might be more efficient from either a propulsion or power extraction standpoint. The objectives of

this work are thus twofold:

1. To devise an unsteady computer-based engineering analysis tool to characterize Vertically
Sculling Hydrodynamics. The tool should permit the calculation of the unsteady loads im-
parted on a foil undergoing arbitrarily specified motions in the presence of the ocean’s free

wave surface.

2. To use this computational tool to identify a preferred functional mode for regenerative power
extraction and propulsion. The functional mode encompasses describing the optimal foil mo-
tions and the relevant flow parameters associated with unsteady hydrodynamics (i.e. Froude

number, depth of the foil from the free surface, etc...).

The present document is organized in the following manner. In Chapter 2 a theoretical model

based on inviscid, incompressible, unsteady aerodynamics for a two-dimensional VSH system is
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Figure 1-2: The inventor of the Trampofoil ® riding the craft.

presented. In Chapter 3 a numerical implementation of the model is described in great detail for
anyone who wishes to reproduce the computer-based tool. Testing of this tool on various cases is
carried out in Chapter 4. Finally, computed VSH results are presented in Chapter 5 and design
recommendations for a generic VSH system are made based on the computed results. Conclusions

and recommendations for future work are given in Chapter 6.
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Chapter 2

Vertical Sculling Hydrodynamic
Model

The goal of this section is to formulate a mathematical model for a Vertical Sculling Hydrodynamic
(VSH) system. A system composed of a two-dimensional foil moving in a flow of constant velocity
Us and undergoing periodic heaving h(t) and pitching €(¢) motions below the surface of a body
of water is considered. The governing equations of the flow are described and various assumptions
about the system are made. From these assumptions, a flowfield idealization of the VSH system
using vortex and source sheets is presented. Finally, a solution procedure for the flowfield unknowns

is described.

2.1 Fluid Flow Governing Equations

In order to derive a model of the flowfield describing the Vertical Sculling Hydrodynamic system,

the underlying fundamental physical principles of fluid dynamics must first be evoked.

2.1.1 Continuity Equation

The first physical principle is that mass is conserved throughout the flow. For a compressible,

unsteady fluid moving around an airfoil fixed in space, the conservation of mass is given by:

op
—8?+V-(pV)_0
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Figure 2-1: Flow regions in a high Reynolds number flow.

Where p and V are respectively the scalar density field and the total vector velocity field. These

fields are a function of both space and time and are given in two-dimensional cartesian space by:

A\

i

Uz, 2,t) i+ W(z,z,1t) k

p = pz,2,1)

Incompressible Flow

If the flow is assumed to be incompressible, the scalar density field is then invariant in both space

and time and the continuity equation reduces to,
V-V=0 (2.1)

Irrotational Flow

For a solid body immersed in a real flow, dissipative transport phenomena of viscosity leads to the
creation of thin boundary layers and narrow wakes in the fluid domain (see Figure 2-1). In these
regions, shear stresses induce rotational flow. Outside of these regions on the other hand, the flow
is barely affected by the viscosity of the fluid and can be considered to be irrotational. Although
vorticity { exists in boundary layers and wake regions of the flow, a good approximation of the
overall flowfield can be made through the irrotational flow assumption for flows where the inertial
effects dominate the viscous effects. For an irrotational flow, the curl of the total vector velocity

field is zero,

(=VxV=0 (2.2)
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and there exists a total scalar velocity potential ®, such that the total vector velocity field is given

by the gradient of this scalar function:

Laplace Equation

From these considerations, by substituting (2.3) into (2.1), the continuity equation reduces to the

Laplace equation, which in two-dimensional cartesian space is given by:

o0 0%

Vo = (3= + —5;-2—) =0 (2.4)

Since the Laplacian is a linear operator, the superposition principle can be used to decompose
the total velocity potential ® into a velocity potential due to the free stream flow and a perturbation

potential .

D =¢oo +¢ (2.5)

Taking the gradient of (2.5), the total vector velocity field may be expressed as,
V =V + v = (Ut + Weok) + (ui + wk) (2.6)

2.1.2 Conservation of Momentum

The second physical principle is that the fluid is governed by Newton’s second law. Conservation of

momentum for an inviscid incompressible fluid is given by the Euler equation:

ov _Vp
79—t‘+V~VV— ) +f (2.7)

where f is a body force. If the body force is assumed to be conservative, then f derives from a

potential FE such that,
f=-VE (2.8)

The gravitational acceleration can be included in the momentum equation by selecting a potential

E = gz, where g is the gravitational constant and the z axis points upwards.
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Unsteady Bernoulli Equation

Rewriting (2.7) in terms of the total velocity potential leads to the unsteady Bernoulli equation,

o® 2, P _ 3_<I’ 2, P —
V(5 + (Vo) +p+gz)—o 5 (Ve + gz = o) (2.9)

If an arbitrary point and a reference point are considered in the flow where conditions are chosen
such that ®,, = const., the pressure p at any point in the flow can be calculated from the velocity

potential by:

0%
Poo —P= P+ g(Vfl’)? + pyz (2.10)

The momentum equation thus connects the velocity potential to the pressure. This is useful to
determine the pressure distribution on the body surface to allow for a calculation of the aerodynamic

forces and moments.

2.1.3 Flow Equation Summary

From these explanations we see that in the case of an inviscid, incompressible and irrotational fluid,
the conservation of mass reduces to the Laplace equation which is the governing equation for the
velocity potential. It is an elliptic differential equation that results in a boundary-value problem.
By prescribing appropriate boundary conditions to represent the flow, one can thus solve for the
velocity potential.

Once the velocity potential is known, Bernoulli’s equation, which is a consequence of the conser-

vation of momentum, is used to calculate aerodynamic loads.

2.2 VSH Model Assumptions

Certain assumptions about the VSH system need to be made to come up with an appropriate

mathematical model.

2.2.1 Perfect Fluid Assumption

The first assumption is that the ratio between the inertial and viscous forces in the fluid is expected
to be high since the kinematic viscosity of water is very small (v = 1.0 x 107m?/s) . For such
flows where the Reynolds number is high (Re >> 1), viscous terms can be neglected from the
momentum equation and irrotationality of the flow is assumed outside the immediate neighborhood

of streamlined bodies present in the flow. Also, water is assumed to be an incompressible fluid. From
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these considerations, the flow resulting from a wing undergoing a plunging and pitching motion below

the surface of a body of water is governed by the Laplace equation (2.4).

2.2.2 Foil Shape Assumption

The shape of the foil is assumed to have little influence on the inviscid unsteady loads, and is
therefore modeled by a flat plate. As shown by K.D. Jones and M.F. Platzer in [18], this is a valid
assumption for the range of frequencies considered in this study. Also, since the flow is governed
by the Laplace equation, the effects of the foil shape can easily be incorporated into the model by

linear superposition if deemed necessary.

2.2.3 Foil Motion Assumption

Small amplitudes relative to the foil chord are assumed in the various degrees of freedom. Further-
more, the motion of the airfoil is assumed to be periodic in time with period T in the heaving and
pitching degrees of freedom. By limiting the model to small amplitudes with periodic motion the
VSH model can be linearized, greatly simplifying the theoretical model and allowing for the use
of Fourier decomposition to represent the time dependent flow unknowns. Also, the frequencies at

which the foil flaps are assumed to be within the range of low-frequencies observed in cetaceans.

2.2.4 Wake Assumption

It is assumed that the wake behind the foil does not roll up and is not convected in the flow.
From our previous small amplitude considerations, shed vorticity behind the airfoil is assumed to
be accurately modeled by a non-deforming, planar wake. Although, physically, the wake behind the
airfoil rolls up, it has been shown by numerous investigators {13}, [19] that this roll up effect has
very little influence on the unsteady loads imparted on the foil and can be safely neglected for the

range of frequencies and flapping amplitudes considered in this study.

2.2.5 Free Surface Assumption

The wing of the VSH system is assumed to operate below the water surface at a depth where
the deformation of the free surface significantly perturbs the flowfield around the foil and its wake
resulting in wave resistance effects.

Since the deformation of the free surface is not known a priori and changes in time, the resulting
boundary condition is greatly complicated. To keep the complexity of the model within reasonable
bounds, wave motions are assumed to be sufficiently small to linearize the free surface wave boundary

condition and a planar free surface sheet is adopted to represent the wave induced effects [28],[21].
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Figure 2-2: VSH flowfield idealization by means of vortex and source sheets.

Also, the floor bed is assumed deep enough not to affect the water surface, allowing deep water wave

theory to be applicable.

2.3 VSH Flowfield Idealization

2.3.1 Flowfield Modeling Using Vortex and Source Sheets

As a result of applying the perfect fluid assumption, the flowfield may be represented by vortex
and source sheets to account for the various elements perturbing the flow [21],[4],[1]. As depicted in
Figure 2-2 and following the fore mentioned assumptions, the foil is modeled as a flat plate and is
represented by a sheet of bound vorticity of unknown strength v per unit length. The wake behind
the foil is represented by a sheet of shed vorticity v*. Finally, we introduce the free surface effects
of the body of water in which the VSH system is immersed by means of a source sheet of source

strength distribution ¢° per unit length.

2.3.2 Boundary Conditions in Time Domain

To solve for the the flowfield unknowns, U = {y%,+y%,¢*}, various conditions must be imposed on
the boundaries of the fluid domain to ensure that a unique solution to Laplace’s equation for our

particular engineering problem will be found:

e a kinematic boundary condition of zero normal flow is imposed on the foil. This condition

enforces the foil to be a streamline of the flow.
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Figure 2-3: Chordline of the foil undergoing heaving and pitching displacements. All quantities positive, as
shown.
s a circulation-fixing Kutta condition at the trailing edge of the foil is imposed for the flow to

have physical meaning.

o a dynamic boundary condition is imposed on the wake sheet to relate the wake vortex distri-

bution to the total foil circulation.

e a free surface boundary condition is enforced on the source sheet representing the surface of

water.

Kinematic Boundary Condition

For a foil moving in a flow of constant velocity V = V& , the kinematic boundary condition on the
body’s surface is such that the perpendicular component of the fluid velocity is fixed by the body’s
motion. Fluid particles in the vicinity of the body must thus share the body’s normal motion. If the
surface of a body is defined by a function F(z, z,t) = 0, then the boundary condition at the surface

is given by:

DF OF
-7 =5 TV VF=0 (2.11)

Physically, equation (2.11) states that the fluid particles on the surface of the body move with
velocity V such that F’ remains zero.

Referring to Figure 2-3, the instantaneous small displacement of the chordline of a two-dimensional
chordwise-rigid foil undergoing heaving (h) and pitching () oscillations in a frame of reference mov-

ing with the foil is given by:
2Mz,t) = —h(t) — (& — Tr0t)0(F) (2.12)

Where z,.,; is the pitching axis location.
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Introducing the expression of the camberline F = z — z® = 0 into equation (2.11) yields for the

total velocity W normal to the camberline of the foil,

ol . :
W= 5= —h(t) — (x — Trot)0(t) — UO(L) (2.13)

Now, assuming that the horizontal perturbation velocity is small compared to the freestream
velocity (%‘f << Us), and recalling that the vertical freestream velocity component Wy is zero, the

boundary condition on the foil reduces to:
w®(z,t) = —h(t) — (& — Trot)B(t) — Uooh(t) (2.14)

From potential flow theory {21}, the time dependent vertical induced velocity w due to the vortex

and source sheets at a point z on the foil is expressed as:

_cl ) . 1 e 1 4
w(:c,O,t)—Er-/O m_gdf 2‘”/c e d£+27r/_ooq(§’t)(x-§)2+d2d§

(2.15)

For the foil to be a streamline of the flow, the velocity normal to the camberline of the foil of a
fluid particle must equate the vertical velocity induced by the vortex and source sheet distributions.
In other words, the vortex and source strengths of the singularity distributions must be adjusted
appropriately for this condition to be satisfied. The kinematic boundary condition of zero normal

flow thus translates into:
w(z,0,t) = w*(z,t) (2.16)

Kutta Condition

In addition to satisfying the kinematic boundary condition, the vorticity distribution must also
satisfy the Kutta condition. The Kutta condition introduces a circulation-fixing relation by making
sure that the flow leaves the foil’s sharp trailing edge smoothly and that the velocity there is finite.

For the steady case, this condition translates into having the vorticity at the trailing edge vanish
(v(c) = 0). In the unsteady case, the Kutta condition is that no pressure discontinuity exists at the
trailing edge (Ap(c) = 0). This makes physical sense since the wake that emanates from the trailing
edge of the foil is usually very thin and cannot support a pressure difference. From the unsteady

Bernoulli equation (2.10) the pressure jump Ap across a vortex sheet in terms of the total velocity

37



potential is,
0 P
o e+ (L, — @)

0 P
p&ASO*F §(<I)uT ‘+‘<I)l.,)((puz ~<D11)

Ap=p —p, =

20 o0 4y
L

Where @, and ®;_ respectively correspond to the z-derivative of the total velocity potential on the
upper surface and on the lower surface of the sheet.

Assuming that the z-component of the perturbation velocity v = %‘5 is small compared to the
free stream velocity Uy,, one may write a linearized form of the pressure jump across the vortex
sheet representing the foil and its wake:

8 )
Ap =~ p(aAcp-{-Uoo%Acp) (2.17)

By definition, the vortex sheet strength + is equal to the jump in tangential velocity on the vortex

sheet:

AV

- (2.18)

and the pressure jump at position z along the vortex sheet written in terms of the vorticity distri-

bution is:

Bp(e.t) = g [ 2600 + Uit (2.19)

Evaluating (2.19) at the foil’s trailing edge (z = c¢) yields for the linearized unsteady Kutta

condition,

8 C
oa /O Y(E,1)dE + pUns(c,8) = 0 (2.20)

Dynamic Wake Boundary Condition

Since the vorticity in the wake v is a direct consequence of a change in the bound vorticity v,
the shed vorticity distribution can be expressed in terms of the the total foil circulation I'*. This is
done by using Kelvin’s circulation theorem which states that in the potential flow region the angular

momentum cannot change, and thus the total circulation I' around a fluid curve enclosing the foil
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and its wake is conserved,

Dbr or or

Q2o g - 2.21
Dt 3t+0053: 0 (2.21)

The total circulation I' around a fluid curve enclosing the foil and a wake of length (z — ¢) is

expressed in terms of the foil and wake running circulations by:

P =T%4+Tv = ]0 (€ 0de + [ (e (2.22)

Taking the substantial derivative of (2.22) and setting it to zero gives an expression relating the

foil and wake vorticity distribution unknowns. This condition reduces the number of unknowns from

{7*,7v*,q°} to just {v*,¢°}.

Free Surface Boundary Condition

To account for the free surface effects in the model a boundary condition describing the two-
dimensional behavior of surface wave motion must be enforced on the source sheet representing
the water surface. Since the relative wave height is assumed to be small, a planar source sheet is
used to represent the mean ocean surface. It is relevant to point out that this surface does not move
with the surface waves but that the deformation of the free surface is taken into account by changing
the source strength distribution ¢*(z,t).

The linear progressive wave model boundary condition is given by Katz and Plotkin [21} in terms

of the perturbation potential ¢ below:

%B%p(x, d,t) " Op(z,d,t)
g Oz? Oz o

0 (2.23)

Where d is the depth of the foil relative to the water’s undisturbed surface. Introducing the Froude-
number F, = U2, /g which is defined as the ratio of the inertial force to the gravitational force, the

boundary condition in terms of perturbation velocities is,

Tr% u(z,d,t) +w(z,d, t) =0 (2.24)

Note that in the limiting case where the Froude number is set to zero, the free surface boundary
condition describes a rigid wall (w(z,d,t) = 0). Ground/anti-ground effects can thus easily be

incorporated into the model by setting the Froude number to zero.
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Figure 2-4: Leading edge, pivot point and trailing edge trace of the foil undergoing a complex motion described
by seven Fourier coefficients. The Fourier coefficients in this example are: hg =0, hy = 0.3, ha =
0.05, 6 =0, 6, =5, 82 =2 and ¢1 = 135.

2.4 Flowfield Solution Methodology

2.4.1 Fourier Expansion Approach

The flowfield is fully determined by solving Laplace’s equation subject to the boundary conditions
defined above. Since Laplace’s equation is linear and the various boundary conditions have all been
linearized, a way to solve for the unsteady flowfield is to describe the foil motion and the singularity
distributions as Fourier expansions and use linear superposition to reconstruct the time-dependent

unknown distributions.

Foil Motion Description

The first step involves describing an arbitrary periodic foil motion with frequency w by using a

Fourier expansion,

P P
h(t) — Z ]’inei(nwt+¢n) , g(t) — z éneinwt (2.25)
n=0 n=0

Where n is referred to as the mode, and ¢, is a heaving phase lead with the pitching motion for
mode n. Using expressions (2.25), any foil motion can be described by carefully selecting P Fourier
coefficients h,, 0,, ¢n € R. As an example, Figure 2-4 shows one period of a complex foil motion

obtained with seven Fourier coefficients.
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Singularity Distribution Description
Likewise, the singularity distributions are expressed as Fourier expansions:
P P P
21) = 3@ 70t = 3 AR@E™ (@) = D @@t (226)
n=0 n=0 n=0

Where 42, 4% and ¢ are complex functions of the spatial coordinate z, thus allowing for phase
differences between the motion and the resulting flowfield.

Using this approach, the boundary conditions are rewritten in the frequency domain, and enforced
on the surfaces of the fluid region. For every mode n = 0, 1... P, the singularity unknowns are solved
for and the time-dependent singularity distributions are reconstructed by summing over the modes

using equation (2.26).

2.4.2 Boundary Conditions in Frequency Domain

The various boundary conditions on the fluid domain surfaces are rewritten in the frequency domain

by means of the Fourier descriptions (2.25) and (2.26) introduced above.

Kinematic Boundary Condition

Substituting the fore mentioned Fourier expansions for the foil motion and the singularity distribu-

tions in equation (2.16) results in the kinematic boundary condition for a given mode n.

0 = inwﬁn(x)ei¢" + (z’nw(x — Tpot) + Uoo)én
+ 21 /o p (55) dg
+ “71 / (2) de
+ —/ (5) ? 24 42 ¢ (2.27)
Unsteady Kutta Condition

Evaluating (2.19) at the trailing edge (z = ¢), results in the following expression for every mode n.

inw /0 ()4 +Unon(c) = 0 (2.28)

Te

n
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Finally, the linearized unsteady Kutta condition is given by:

fnle) = L (2.29)

For the steady case where n = 0, we find that the vorticity at the trailing edge vanishes.

Dynamic Boundary Condition

Substituting equation (2.22) into (2.21) and making use of the Fourier expansions for the foil motion

and singularity distributions as defined per (2.25) and (2.26), one obtains for the Kelvin condition,

P

3 <inwf‘f, + inw / ’ A(€)dE + Uw&,’f(z))em‘”t =0 (2.30)

n=0

Where f‘g is the total foil circulation for a given mode n. Eliminating time and taking the derivative

with respect to z of (2.30) allows one to find a solution for 4 (x),

My (z)

Uoo ox

+ iy (z) =0 — 32(z) = C e~ nws/Uso (2.31)

where C is a constant found by substituting (2.31), evaluated at the trailing edge (z = ¢), into (2.30).

Finally, introducing a dimensionless reduced frequency, k = wec/2U, gives the following expression?

for the wake vorticity distribution in terms of the foil circulation for a mode n:
—inw &

’?:f(l’) — = I\z e2inke—in(wm/Uoo) (232)
oo

Free Surface Boundary Condition

Likewise, the free surface boundary condition {2.24) is rewritten in terms of the Fourier coeflicients.

INote that (2.32) evaluated at the trailing edge leads to result (2.29)

42



Chapter 3

Numerical Implementation of

Model

In Chapter 2 a mathematical model of the Vertically Sculling Hydrodynamic system was described.
A methodology for finding the unknown properties of the flowfleld by means of a Fourier expansion
approach was also introduced. The object of this chapter is to describe the numerical implementation
of the Fourier approach to obtain a solution for the singularity distributions and evaluate the loads

imparted on the foil.

3.1 Numerical Solution Outline

The numerical sohition to the unsteady flow is obtained through a five-step process:

1. The user provides information about the geometry of the fluid domain, the motion of the foil

as well as the flow conditions at which the unsteady loads need to be evaluated.

2. From the user inputs, the lengths of the foil, wake and the free surface are defined and the
fluid boundaries are discretized into panels of linearly-varying strengths. A description of the

discretization process is given in Section 3.3.

3. The velocities induced by the various panels representing the boundaries of the flow are deter-

mined from the geometry. Section 3.4 and Appendix 6.2 explain how this process is done.

4. For all modes n chosen to represent the motion, the boundary conditions described in Chapter
2 are enforced and a matrix system is setup for the flow. A solution to the unsteady flow for

a mode n is obtained.
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User Input Variable Units

Number of panels N,M,L none
Number of periods in the wake N none
Motion amplitudes for mode n hn, On units of .5
Motion phase for mode n bn rads
Motion reduced frequency k none
Chord length c units of £,
Depth of foil d units of £y
Froude number based on the chord F'r. none

Table 3.1: User inputs for the numerical solution to the VSH flow.

5. From the solution of the flowfield, postprocessing of the flow unknowns is carried out to

calculate unsteady loads. Section 3.6 describes how the loads are calculated.

3.2 User Inputs

The motion of the foil is prescribed by the user through a set of Fourier coefficients and the frequency
of motion. Information about the geometry of the system and the flow conditions at which the loads
need to be estimated is also provided by the user and is summarized in Table 3.2. From the Froude

number based on the foil’s chord Fr, the Froude number F, is calculated,
Fr=c F7'c2 (3.1)

Note that in the code, the incoming flow velocity is assumed to be 1m/s and the gravitational

constant is g = 1m/s2.

3.3 Discretization of the Geometry

The first step to the numerical calculation involves discretizing the vortex and source sheets into
panels of lengths Az; = (x;4+1 —x;). The continuous vortex and source distributions are respectively
approximated by a collection of panels of linearly varying vorticity and source strengths.

Figure 3-1 shows the nomenclature used for the discretization of the foil, wake and free surface
regions. The foil of chord ¢ is discretized using IV panels connected by NV + 1 nodes. The wake of
length L, is discretized using M — N panels and the free surface source sheet, whose length is L, is
discretized with L — M — N panels. There are L panels in all to discretize the geometry. A control
point i is placed on the foil and free surface panels where boundary conditions need to be enforced.
There are Q control points in all. In what follows, index 7 refers to a control point and index j refers

to a panel node.
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Figure 3-1: Discretization of the foil, wake and free surface regions.

3.3.1 Foil Discretization
Foil Panel Distribution

From thin airfoil theory, it is clear by looking at the analytical solution for the vorticity distribution
along a flat plate that the gradient of the vorticity rapidly varies near the edges of the plate. In order
to numerically capture this rapidly varying gradient in vorticity it is necessary to refine the mesh
of the foil near the leading and trailing edges. A full-cosine spacing method which concentrates the
nodes near the leading and trailing edges is thus adopted for the foil. For a foil of chord ¢ divided
into N panels, the x station of a panel node j is found by using the following cosine spacing formula.:

G=Dn

~ (3.2)

x5y = —;—(1 - cosﬂj) with §; =

Foil Control Point Location

Since the kinematic boundary condition of zero normal flow needs to be satisfied on the foil, a control
point is positioned on every foil panels. The control points are positioned at the center of each foil

panels where the induced velocity is not singular [27].

3.3.2 Wake Discretization
‘Wake Panel Distribution

The foil deposits vorticity in the wake in the vicinity of the trailing edge. The wake paneling must
therefore be refined in that zone in order to fully capture the physics of the flow (i.e. in order for the

wake to correctly influence the foil and vice-versa). Also, since the influence of a vortex on a field
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point at some distance r diminishes as 1/r, the wake panels far downstream will have a negligible
effect on the foil and the panel discretization in that zone can be sparse.

From these considerations a half-cosine discretization for the wake is chosen. Since the wake
begins at the foil's trailing edge, the panel node index j runs from N + 1 to M + 1. For a wake of
length L divided into M — N panels, the z coordinate of the j th panel node is given by,

(j - (N + 1))7r

2(M — N) (3:3)

Ty =zN4 +L, (1 - cosﬁj) with g; =

Wake Length

In order to compare loads obtained for different frequencies of the motion, the length of the wake
L must be adjusted to capture a fixed number of periods n, of the motion. The length of the wake

is made proportional to the period T of the motion according to the following formula:

L, =n,UxT (3.4)

3.3.3 Free Surface Discretization
Free Surface Panel Distribution

The free surface sheet panel is discretized using a constant panel distribution. The number of panels
used to discretize the free surface is set by the user and must be such that the free surface panel
length is always less than the depth of submergence of the foil to ensure the accuracy of the numerical

method.

Free Surface Length

To compare loads obtained for varying Froude numbers Fy., or F,, the length of the free surface L,
is adjusted to capture a fixed amount of wave periods. This is done by setting the length of the free
surface proportional to F,. In the case of a zero Froude number to account for ground effect, the
length of the free surface is set to be equal to some constant C chosen by the user. The value of
this constant depends on the height of the foil relative to the ground/anti-ground surface, and on

the number of panels used for discretization.

Free Surface Control Point Location

Figure 3-2 shows the influence of the position of the free surface control point in obtaining accurate
numerical results. Since the free surface boundary condition has terms involving both the vertical

induced velocity and the first derivative of the horizontal induced velocity, the control point needs
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Figure 3-2: Source strength distributions obtained with the control points located at: (A) 40% of panel length,
and at (B) 50% of panel length.

to be located at a position on the panel where both of these induced quantities will be seen by the
control point. Numerical investigations have shown that positioning the control point at 40% of
the free surface panel length gives satisfactory results when the Froude number F, is different from
zero. When the Froude number is set to zero by the user to model ground/anti-ground interference

effects, the best results have been obtained with the control point positioned at the panel midpoint.

3.4 Panel Induced Velocities

In seeking a numerical solution to the flow, the continuous sheets are approximated by a collection
of panels of linearly-varying strength. The perturbation velocities induced by these panels at some
control point i in the domain are evaluated in Appendix A and are represented in a format suitable for
computer manipulation by means of influence coefficients a;j, bi;. Induced velocities are evaluated
by scanning the panels and summing their influences. As an example, the z-component of the

velocity induced by N panels of linearly-varying vorticity is given by:

N+1
w(z,2) = Y (3.5)
Fj=1

For the VSH problem, the z and z-components of the velocity at a control point ¢ for a mode

n are obtained by summing the velocities induced by the foil, the wake vortex sheets and the free
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surface source sheet:

N+1 M+1 L+2

IS T 2a ~w T As

Un, = Z aij’)/nj + Z aza':l/Ynl + Z bzanm (36)
j=1 I=N+2 m=M+2
N+1 M+1 L+2

A o z sa z ~w z 28

Wn, = Z A Vn; T Z @i} Yn, + Z bim ., (3.7)
j=1 I=N+2 m=M+2

where af; is the z-component of the perturbation velocity evaluated at the i ** control point due
to a unit strength vortex distribution on the j** panel. Likewise, b%, is the z-component of the
perturbation velocity at control point ¢ due to a unit strength source distribution on the m th panel.

As seen previously, the vorticity distribution shed into the wake is a function of the foil circulation

and is given by equation (2.32),

W f\a e?’inke—in(wz/Uoo)

U "

Yr (2) =

In the discrete version of this equation, 4 evaluated at a panel node of coordinate x; is approx-

imated by:
. N+1
n A —nw _ ) N
Aoy = A () = gy €mERTn V=) 3 7 it (3:8)
o0 j=l

where, ', the total foil circulation, is calculated by means of (3.9),

A c N s8 448 N+1
fo = [~ (B an = 3 o, 59)
0 =1 i
Since the computational model uses panels with piecewise linear-vorticity distributions, ¢; simply
corresponds to the j ** component of the trapezoidal rule weight vector.

Using the discrete expression of the wake vorticity (3.8), equations for the induced velocities are

rewritten in terms on the bound vorticity and the source strength unknowns:

N+1 L+2

i, = Z d5Ae. + Z bE G5 (3.10)
i=1 m=M+2
N+1 L+2

e, = > dZAR 4+ Y bEdl (3.11)
j=1 m=M+2
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where the effects of the wake panels are lumped into a new influence coefficient d;;. For every control

point ¢ = 1..IV on the foil, d;; is given by:

M+1
dj=ag+ Y. azl(_(;"w ""@’f'wzl/Uw)) ¢; forall i€ll,N] (3.12)
I=N+2 *©

3.5 Residual Formulation

The discretized boundary conditions are expressed in residual form, and a matrix system is setup

to solve for the flowfield unknowns.

3.5.1 Definition of Residuals
Foil Kinematic Boundary Condition Residual

For every mode n, a residual for the boundary condition of zero normal flow on the foil is defined

for the control points 7 = 1..V:

N+1 L+2

Yo divm, Y bimdnn (3.13)

j=1 m=M+2
+ Uooén + Z.n‘"’i;'vvw.eiqsn + in‘-‘)én(ﬂ:i - ITOt) =0

it

R?Li (’?’7’11 b (jnm 1 é’l’La iln)

Unsteady Kutta Condition Residual

From (2.29) and (3.9) the discretized form of the unsteady Kutta condition written in residual form

becomes:

R; =45 ¢ =
nieni1 = Tnnvgr T (2anN+1 + Uoo) Z -77“3

(3.14)

Free Surface Boundary Condition Residual

The boundary condition on the free surface in residual form for a control point i running from

(N+1)— Q=(L—- M+ N) is given for a mode n by:

N+1 L+2

Ry (4e ,d5.) = (Z Az Vny + z brmqnm) (3.15)
m=M+2
N+1 L+2
+ deﬂiﬁ > bimtn, =0
m=M+2

where d*  and b  are respectively the first derivatives of the vortex and the source influence
Tij Zirm

coefficients in the z-direction as described in Appendix A.
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The free surface boundary condition provides (@ — N) = (L — M) equations. Yet, with (L — M)
panels on the free surface (L — M + 1) source strengths are unknown, and one more equation is
necessary to obtain a determined system. For the flow to be physical, two upstream end conditions
are imposed. The vertical velocity of the free surface far upstream of the foil (for the first free surface

control point i = NV + 1} is set to zero and its derivative with respect to z is also set to zero.

N+1 L+2
R;ﬁwl = Wi=N+1 = Z d7v+1j5’fij + Z b7V+lm Gnm =0 (3.16)
=1 m=M+2
ow N+1 L+2
2 — N .
Brnen = Oz i= - Z Gy ¥ny T Z bentim Grm =0 (3.17)
i=N+1 ©
j=1 m=M+2

Note that through this approach the first upstream residual substitutes the previous free surface
boundary condition evaluated at control point ¢ = IV + 1, and the second residual introduces the

(L — M + 1) *" equation necessary in obtaining a determined system.

Prescribed Motion Residual

To prescribe the motion of the foil two more residuals are introduced. The values of iznspec and
én spec are defined by the user to prescribe the motion.

R = hy—hn,.=0 (3.18)

R = 0,-0,,. = (3.19)
Total Residual
Finally, a total residual vector R, is defined,

o opolT
R={R, , Bi_y..» Boo RiL., . B2, R, RO} (3.20)

3.5.2 System Matrix Setup

The derivatives of the residuals with respect to the flowfield unknowns and prescribed motion are
evaluated to form a matrix [BRn / aun] and a direct application of Newton’s method is used to solve

for the unknowns U, = (¥, g% 1T. The solution is obtained with one inversion of a matrix.

U, = —[0RJOUn) " Ron , Up = Un + Uy, (3.21)
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AN+1)x(N+1) B(nvtyx(L-m+1) Cv1yx(2)
[ORn/OUn] = | Dp-msnxv+1) Br-menx@w-—min Far-minyxe (3.22)
Geyx(N+1) Heyw-—m+1 I2)x(2)

A few explanations are given on the submatrices:

A Matrix

Matrix A contains the derivatives of the foil residual terms with respect to the vortex strength

unknowns as well as the Kutta condition. The size of this matrix is (N +1) x (N +1).

31?“1 31?‘1] ?R“]
o5t 3 o R
on o L
oA o9y I %11

A - . . .
ory om  om
R S /%

ORN 41 RN 11 1

B o

B Matrix

Matrix B contains the derivatives of the foil residual terms with respect to the source strength

unknowns as well as the Kutta condition. The size of this matrix is (N + 1) x (L — M + 1).

om om o om
¥m+2  Odm+s G +2
om o om o om
Admi2  Odmya B4L +2
B = . . .
(?RGM ) aAR“M BARO‘N
AGm 42 o 9dry dry2
ORY ORN 41
Odrr+2 Tt T AL +2

C Matrix

Matrix C contains the derivatives of the foil residual terms with respect to the foil motion. The size

of this matrix is (NV + 1) x (2).
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Bhn 86,

or; oRy

Bhn [e12
C= .

ORY  ORY

Shy 80,

D Matrix

Matrix D contains the derivatives of the free surface residual terms with respect to the vortex
strength unknowns. The first two lines of this matrix represent the free surface upstream end

conditions. The size of this matrix is (L — M +1) x (N +1).

L ORG

I R o

2 2

oRgGE  aRFE AR

¥ T Pm,

D=| 9Fues ORN.s ORi4
L hE -

M R 941

org : ORg

M OYN 11

E Matrix

Matrix E contains the derivatives of the free surface residual terms with respect to the source
strength unknowns. Just like matrix D, the first two lines of E account for the far upstream end

conditions. The size of this matrix is (L — M 4+ 1) x (L — M + 1).

achdl aRendl 8Reﬂd1

N+1 N+1 N1

A +2 AGm+3 tt 56L+22

AR ORYE, AR

3671;4+2 BGri3 o G y2

E = aRNiZ B8Ry ¢y ORY 4y
OGr 42 tee 4L +1 9§42

] 3
| om L em

Arst2 9Gr+2

F, G, H Matrices

Matrices F, G and H contain zeros and are respectively of sizes (L — M +1) x 2, 2 x (N 4+ 1), and
2x(L—M+1).
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I Matrix

Matrix I is a (2 x 2) identity matrix containing the prescribed motion information.

AR AR: 1 0
I J— 6h’nspec aenspec —
= 4 B 1
OR, OR, 0 1
a0 a6

Mgpec Mapec

3.6 Post processing - Load Evaluation

Now that the flowfield unknowns U, have been determined by solving the system of equations defined
per (3.21), period averaged loads generated by the foil motion can be evaluated.

From U,,, the pressure jump across the foil for every mode can be obtained by means of the
linearized form of the unsteady Bernoulli equation introduced in Chapter 2 (c.f. equation 2.17).
To determine the pressure jump, however, the potential jump across the sheet representing the foil

must first be calculated.

By definition, the potential jump is the running sum of the vorticity distribution along the sheet

representing the foil,

A1) = 228 o Ap(e 1) = / " e tyde (3.23)

The potential jump evaluated at a panel node 7 € {1..N + 1] on the foil is approximated by,

j-1 J
Yo T m ~a
Agp. =~ E ( ""“ ’“)Axk: E cKin, (3.24)
k=1 k=1

and the pressure jump evaluated at j is,

J
Apy, = p {inw > eAs, + U, } (3.25)

k=1

From 3.25, the time-dependent pressure jump is reconstructed. Recalling that « is complex, only

the real part of the function is kept,

P
Ap? =R {Z AP, ei"wt} (3.26)
n=0
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3.6.1 Vertical Force - Lift

The vertical force is simply calculated by integrating the pressure jump across the foil vortex sheet,

N N+1
¢ ApG gy + Apf
:/O Ap*(z,t)dz ~ E (—p’il—z—pz)Aa:i: E c; Ap§ (3.27)
i=1 j=1

and the average vertical force over one period of the motion is found by calculating,

2w fw

F, = F,(t) dt (3.28)

g =

27r0

3.6.2 Horizontal force - Thrust

To calculate the horizontal force, our approach follows the one taken by von Kdrman and Burgers
[35], where the period-averaged horizontal force is derived by means of the horizontal projection
of the vertical force F,(t) and the leading edge suction force. Assuming small amplitudes, the

time-dependent horizontal force! is given by Garrick [11] as:
F(t) = 7pS(t)® — 0(t)Fx(t) (3-29)

where S, the leading edge suction velocity, is a function of the foil vorticity distribution v* and is

found for a flat plate by using the relation:

S(t) = hm’y x t)\/( — S(z,t) §,t)f dé (3.30)

Note that the value of S is finite since 4* is infinite in the order of % at the leading edge (z = 0).
Getting rid of the time dependency and integrating by part yields for the leading edge suction

velocity at some position x in the vicinity of the leading edge,

s = L [ sntenSae
: {[ (s)\/—] 2 [ 2 e} (331)

INote that although the z-axis is defined as being positive to the right, F; > 0 corresponds to a thrust force.
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Numerically, equation (3.31) evaluated at a node point j > 1 can be approximated by,

. . 2 2 2 23
Snas) = S, 7 5 fy;\/; - Zl (32, =)\ = (3.32)
but unlike the analytical expression, the numerical value of (3.32) is singular as z; approaches 0.
To remedy this situation, the value of the leading edge suction velocity is calculated at various
panel nodes in the vicinity of the leading edge, and the value ot the leading edge is obtained by
interpolation. The value of the leading edge suction velocity is reconstructed in the time domain,
and equation (3.29) is used to obtain the time-dependent horizontal force. The period averaged

horizontal force is then calculated.

3.6.3 Pitching Moment

The pitching moment about the pitching axis location z,,: is simply evaluated by:

My(t), = = —/0 (T — Zror)Ap(z, t) da
Y /Apg, + Ap?
& Z (H'—Qz‘) (xi — Trot)Ax; (3.33)
i=1

and the period-averaged pitching moment is found by calculating:

. w 27 [w
My, = o /0 My(t),. dt

3.6.4 Motion Power

The power necessary in maintaining the motion of the foil is the contribution of the rate of work

done by the pitching and heaving motions:
P(t) = —(F(t) h(t) = My, (2) 6(2)) (3.34)

and the averaged power over one cycle of the motion is:

ﬁ w 2 /w
=5 ) PO (3.35)
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3.6.5 Coeflicient Form

The hydrodynamic loads defined above are presented in non-dimensional form using standard co-
efficient definitions with Z,.;% as the reference length. For the horizontal and vertical forces the

corresponding coefficients have the form:

Cr = 1/2/)I;§o€ref = 1/2p§§og"‘€f (3.3
and for the moment coeflicient about a pitching location x,,
Cnm, = -—gy—m"‘— (3.37)
ot 1/2pUZ82,
Finally, the power coefficient is defined by,
P (3.38)

Cp B 1/2PU§oeref

3.6.6 Efficiency Calculation

From the calculated forces, and the rate at which work is done in maintaining the foil oscillation,

propulsive and power extracting efficiencies can be calculated.

Propulsive Efficiency

A common measure of propulsive efficiency is the Froude efficiency and is defined as the ratio of the
net thrust power to the net shaft power provided by an external source to move the foil:

My = 2 =

<1 (3.39)

Q|a

If no losses occur in the process of tranforming mechanical input to thrust, then the ideal thrust
efficiency is 1. Note that for negative values of C; and positive Cp, the efficiency can be negative.

This coresponds to the case where work is needed to move the foil but only drag is generated.

Power Extraction Efficiency

In the case of a power extracting system such as a windmill for example, efficiency is typically defined

as the inverse of the propulsive efficiency:

C,

2¢,.5 is implied by the input ¢, d and hn
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Chapter 4

Model Validation

Chapter 3 covered the numerical aspect of the VSH computational tool. A series of computer tool
validations need to be performed in order to ensure that the results it predicts are correct. The code
validation process is carried out in two steps:

The first step involves showing that the code gives valid results in the case of infinite depth flow
where the ocean free surface effect is negligible. Calculations involving both stationary and unsteady
foil motions are performed and compared to available analytical results.

The second step involves validating the code with the influence of the free surface effect. Although
drag predictions are available for a stationary hydrofoil below the surface of water, the author was
unable to find results in the literature on the loads imparted on a moving foil with the effect of a
free surface. It is hoped at this stage that the former validations are sufficient to prove that the
code will predict correct trends and values in the case of the foil undergoing unsteady motion with

the free surface effect.

4.1 Infinite Depth Flows

4.1.1 Steady Flow Validation

The very first validation involves comparing the computed result for the lift per unit area of a flat
plate at a given angle-of-attack to the analytical solution given by thin airfoil theory. From thin
airfoil theory, the running circulation across a flat plate of chord ¢ is found to be [23]:

c—z
Y (z) = 200U

(4.1)

From Figure 4-1, one sees that the computed vorticity distribution along the airfoil is in excellent
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Figure 4-1: Comparison of computed and analytical results for the vy-distribution on a flat plate. (N = 50 panels
on the airfoil).

agreement with the analytical result. This first validation ensures that the y-distribution calculation
is done properly.
4.1.2 Unsteady Flow Validation

Vertical Forces

Theodorsen [31] derived expressions for the unsteady lift and moment acting on a two-dimensional
flat plate in a constant velocity flow. He showed that the unsteady lift of a flat plate undergoing

small amplitude harmonic oscillations can be decomposed into two parts :
L=L,.+ L, (4.2)

Where L. is the non-circulatory or apparent mass effect of the lift and corresponds to the part of
the lift resulting from flow acceleration effects. L is the circulatory part of the lift arising from the
circulation I'* around the foil. Using the nomenclature introduced in this work, the circulatory and
non-circulatory parts of the lift are respectively defined by Theodorsen as [31],[6]:

Lue = 0% [ Usby 4+ (§ = 2ron)ls |

Lc = 71'p(]ooc [ Uooel + hl + (320 - xrot)él ] C(k) (43)
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Figure 4-2: Comparision of computed and analytical results for the lift deficiency function C(k).(N =50, M =
200 panels, n,, = 30)
In the circulatory lift, the complex function C(k) = F + iGG accounts for the effects of the shed
wake on the unsteady foil and is known as Theodorsen’s lift deficiency function or lift-reduction
factor. This function is given in terms of Hankel functions H with the reduced frequency k as an

argument by:

__ HP®
HP (k) +iHP (k)

(4.4)

Comparison between the analytical expression of Theodorsen and the values computed by the
panel method code for the absolute value ([C(k)| = vF2 + G?) and argument (tan"!(G/F)) of the
lift deficiency function C(k) is shown in Figure 4-2 and gives a good indication of the validity of the
computed unsteady lift.

Horizontal Forces

Garrick extended Theodorsen’s aeroelastic theory by including the horizontal aerodynamic loads on
an airfoil undergoing harmonic plunging and pitching motions. Garrick [11], [12] has shown in his

work that the period averaged horizontal force coefficient, or thrust coefficient! can be expressed as:

Cy = 1k*(Cia + Cin + Cie) (4.5)

! As pointed out by Jones, Platzer, and Davids in {20], the thrust formulation given by Garrick in [11] for a pitching
airfoil is incorrect. The correct formulation is found in reference {12]
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Figure 4-3: Comparison of computed and analytical results for the thrust coefficient in the case of: (A) a pure
heaving motion (B) a pure pitching motion around the foil's leading edge. (N = 50, M = 200

panels, n. = 30).

Where:

e C}, is the pitch contribution to the total thrust

e (yp is the plunge contribution to the total thrust

¢ (. is the cross-contribution to the total thrust

These coeflicients are respectively defined by Garrick as:

1 1 1 1 F 1 G
Cia = a2{(F2+G2) [ﬁ+(§—a)2]+(§—F)(§——a)—p—(§+a)?}
Cin = 4h%(F?+G?)
F G F*+G° 1 G F
Cie = 4ah{(ﬁ+§——:—)sm¢+[(F2+G2)(§—a)+i+%—§} cosqb} (4.6)

Note that Garrick uses a foil of chord 2b with b being the reference unit length. The leading edge

coordinate is z = —1 and the trailing edge coordinate is = 1. The coordinate z = a corresponds to

the location of the pivot point. With the nomenclature used in this work, @ = 2z,.0¢ Je—1, a =0y,

h = h; and ¢ = ¢,. Figure 4-3 shows that the computed results agree very well with the analytical

theory of Garrick.
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Figure 4-4: (A) Comparison of computed and theoretical results for the wave drag. (B) Comparison of computed
and analytical results for the normalized lift with free surface effect as a function of the Froude
number F'r. and various airfoil depths. (N = 40, M = 40, L = 300 panels).

4.2 Flows with Free Surface Effects

4.2.1 Steady Flow Validation
Wave Drag

For a foil moving below the surface of the water, a wave train originates from the pressure field
around it. The motion associated with this wave train represents a transfer of momentum from the
foil to the water and results in a lift-induced drag force known as wave drag. Although induced drag
usually stems from tip vortices on finite wings, lift-induced drag is present in two-dimensional flow
in proximity of the water surface because of this transfer of momentum. Results pertaining to the
lift/drag characteristics of a hydrofoil below the surface of the water at a depth d are available in
Hoérner [14]. Predictions for the wave drag as a function of the Froude number based on the depth
of submergence d are given in Figure 4-4 where the wave drag Dyave is defined as the ratio of the
foil drag and the square of the lift. Normalized with respect to the depth of submergence and the
foil chord,

d\ Cy
Dwave = (z) C_zz (47)

Note that since C, corresponds to the thrust, a minus sign is necessary in front of equation (4.7).

From Figure 4-4, one sees that the results predicted by the panel method code are in good agreement

with the theoretical model given by Hoérner.
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Lift
When a foil is deeply submerged it produces downwash in the same manner as the wing of an airplane.
However, as the foil approaches the free water surface the total circulation decreases resulting in a
loss of lift.

Results from Hoérner [15] pertaining to the lift coefficient of a hydrofoil in the proximity of
the water surface as a function of Froude number F., for various depth of submergence ratios are

presented in Figure 4-4-(B). Comparison to computed results is also shown.

4.2.2 Unsteady Flow Validation

Figure 4-5 shows the influence of the depth-to-chord ratio of the foil on the thrust coefficient as a
function of the reduced frequency. The results are given for a fixed Froude number based on the
chord equal to 3. As expected from looking at Figure 4-4, the thrust coeflicient decreases as the free
surface induced drag become more significant (for decreasing values of d/c). The unsteady results

in the presence of the free surface thus look reasonable.

62



Chapter 5

Computed Results and Design

Implications

Having validated the computational tool, we now turn to the problem of finding the optimal foil
motions for efficient propulsion and power extraction. However, before proceeding with the opti-
mization problem per se, we first look at some interesting computed results in an attempt to gain
some insight on the behavior of the VSH system. Similarly to the work of Jones and Platzer [19)
[18], the influence of the multiple design parameters are reviewed and conclusions pertaining to the
efficiency are drawn. Secondly, the optimization problem is described and results for the optimal foil
motions are presented and discussed. Finally, design recommendations for a generic VSH system

are made based on the optimization results.

5.1 Computed VSH Results

We first take a few ’slices’ in the large parameter space to shed some light on how the various design
parameters influence the unsteady loads and the efficiency of the VSH system. In this initial trade
space exploration, only pure harmonic oscillations are considered for the foil motion. The effects of
more complex motions on the performance of the system will be investigated in the optimization

problem in section 5.2.

5.1.1 Influence of Design Parameters on Loads and Efficiency
Influence of Reduced Frequency

Figure 5-1-(A) shows that for a heaving foil, C; increases monotonically with increasing reduced

frequency. Also, we remark that the efficiency increases monotonically with decreasing reduced
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Figure 5-1:

frequency, suggesting that maximum efficiencies can only be attained for small values of the thrust
coefficient. If small thrust coefficients are sufficient for practical applications, the model predicts
that very high propulsive efficiencies are possible. In practice, such high efficiencies are unattainable
once viscous forces on the foil are taken into account.

Recall that in the VSH model, the flow around the foil is assumed to be inviscid. Although
this assumption is valid around the foil, in its vicinity, however, there exists a thin boundary layer
that imparts viscous shear forces on the foil. Hall&Hall pointed out in {13} that for small reduced
frequencies, the effects of this viscous force can be added to the inviscid model by means of a quasi-
steady lift-drag correlation. For angles-of-attack away from stall and for moderate to large Reynolds
numbers, the drag coefficient of a two-dimensional foil is primarily a function of the lift coefficient,

and can be approximated by a quadratic function of the lift, such that:

Ca = Cio + Ca2(Ci — Cy,)* (5.1)

Where the constants Cyp, Cy2 and C), are found by interpolation (curve fit) of a foil drag polar.
To account for profile drag in what follows, the author has chosen to use a NACA 0012 foil
section. This section was chosen in particular because of its blunt leading edge, which is prone
to generating a large suction force and hence a large thrust coefficient. Using the computer code
XFOIL [8], a drag polar (see Appendix B) was generated for a Reynolds number of 0.5 x 10%, which
is in the realm of Reynolds numbers typical of the Trampofoil ®. For a NACA 0012 the following
values where found for the interpolation constants: Cyg = 0.0063, Cyz = 0.0112 and Cj, = 0.
Figure 5-1-(B) clearly shows that inclusion of the viscous profile drag has a detrimental effect
on the propulsive efficiency. In fact, when viscous effects are introduced in the model, the foil must

flap at higher frequencies to overcome the added drag to generate thrust, resulting in dramatically
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reduced efficiency.

Influence of Pitching DOF

In the case of a foil pitching about a ﬁxed axis, the model predicts that thrust is produced only at
high frequencies (k > 1), for both the viscous and the inviscid case (Figure 5-2-(A) and (B) ). From
these considerations, one may believe that the pitching degree of freedom does not bring any benefit
to the thrust producing mechanism at low-to-medium frequencies, and that it should be left out
altogether. However, when the pitching degree of freedom is added to the heaving motion, thrust
can actually be increased considerably for a given combination of parameters as inviscid losses are
alleviated through a better scheduling of the shed vortices. Also, the pitching degree of freedom

reduces profile drag stemming from excessive leading edge suction.

Influence of Pitching Axis Location

The pitching axis location of the foil can be set by the designer without impacting the efficiency of
the system. Although one may believe otherwise by looking at Figure 5-2(A), similar flowfields can
be obtained around the foil with different Fourier coefficients and pitching axis locations resulting
in identical efficiencies. For thin uncambered foils, the pitching axis location is chosen to be at the
quarter chord point (center of pressure) which is the point on the foil about which the aerodynamic

moment is zero.

Influence of Motion Phase

Once a pitching-axis location is set, the phase lead between the heaving and pitching motions plays

an important role on the efficiency of the VSH system. In Figure 5-3, C;, C}p and the propulsive
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Figure 5-4: Efficiency, Cz and power coefficient as a function of the phase angle ¢ in the case of power extraction.
(A) Inviscid results, (B) Viscous results (zrot = 0.25¢, h1 = 0.5¢, 6; = 20°, k = 0.1)

efficiency 7, are plotted as a function of the heaving phase lead ¢. The reduced frequency is held
constant at k = 0.25, with h; = 0.5¢ and 6; = 5°. The pitching axis location is placed at the
1/4-chord point.

Figure 5-3 shows that maximum propulsive efficiency is attained for nearly minimum values of C;
and Cp, which means that high efficiencies are only achievable with low thrust coefficients. From a
propulsion standpoint this is an unfortunate outcome if practical applications are to be considered.
Also, once the effects of viscosity are included (see Figure 5-3-(B)) the values of C; are reduced
even more. It should be noted from Figure 5-3 that maximum propulsive efficiency corresponds to
a phase lead of 90 — 130°.

In Figure 5-4, C;, Cp and the power-extraction efficiency ng are plotted as a function of the phase
with k = 0.1, Ay = 0.5¢ and #; = 20°. Once again, the foil is set to pitch around the 1/4-chord
axis. The plot of Figure 5-4 suggests that a phase angle in the range of 80° — 120° is optimal for
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maximum power-extraction efficiency.

Influence of Ground Effect

By setting the Froude parameter to zero, the influence of a ground plane on the loads can be
introduced in the model. Since d is defined as the depth of submergence, a positive value of d
actually corresponds to an anti-ground effect, and a negative value of d to a ground effect. The
efficiency along with the C, and C, of the system are plotted in Figure 5-5 as a function of the
depth-to-chord ratio for the propulsion (A) and power-extraction (B) configurations. Both np and

7E increase with diminishing d/c.

Influence of Free Surface Effect

The depth of submergence of the foil d relative to the water free surface greatly impacts the per-
formance of the VSH system. In Figure 5-6, the efficiency of the system is plotted as a function of
the depth of submergence ratio for various Froude numbers F'r.. Interestingly, for Froude numbers
Fr. between 1 and 2, the efficiencies for both the propulsion (A) and power-extraction (B) cases
increase significantly for corresponding depth-to-chord ratios of about 1.5 and 2.5. A closer look at
the flowfield for this specific case suggests that a constructive mechanism takes place between the
kinetic energy shed in the wake and the momentum transferred to the free surface.

In practice, it is unlikely that the VSH system would work at such low Froude numbers, as it

would require the hydrofoil to either advance very slowly® or to have a very large chord 2. In the

1For Fre to be equal to unity in the case of a hydrofoil with a mean chord of 0.15m, the hydrofoil would need to
advance at approximately 1.2m/s. Such a low speed would, in turn, limit the lift provided by the wing.

2With an advance speed of 4m/s, the chord of the hydrofoil would need to be a staggering ¢ =~ 1.6m for the Froude
number based on the chord to be equal to one.
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latter case, the resulting increase in the wetted area of the foil would translate in increased viscous

and form drag which in turn would nullify the efficiency gain of working at lower Froude numbers.

5.2 Foil Motion Optimization for Efficiency

The results presented in section 5.1 have helped identify the influence of the design parameters on
the unsteady loads generated by the foil. For the computed results to be of practical interest for
design, a quasi-steady lift-drag correlation was introduced in the model to account for viscous effects.
We now turn to the problem of determining a preferred foil motion in an attempt to achieve optimal

efficiency for propulsion and power extraction.

5.2.1 Optimization Problem Description

The optimization problem consists in finding a set of design parameters X that minimize an objective
function F subject to the constraints G(X). For the VSH problem, the parameters correspond to
the Fourier coefficients as well as the reduced frequency and phase shift necessary to describe the

motion. These design parameters are summarized in Table 5.1.

Objective Function

In the case of the propulsion problem, the power coefficient C, is chosen as the objective function
F to be minimized. Note that the efficiency is not chosen as the objective function for the simple
reason that maximum propulsive efficiency corresponds to a minimum value of the thrust coeflicient,
which is of little practical value from an engineering standpoint. In selecting a propulsor for a marine

vehicle, the engineer generally has an idea of the necessary thrust coefficient and proceeds to achieve
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Design Parameter, X LB UB

Heaving amplitude, hn Oc 0.5¢
Pitching amplitude, 6, 0°  20°
Heaving phase lead, ¢n 0°  360°

Motion reduced frequency, & 0 1

Table 5.1: Summary of the design parameters with upper (UB) and lower bounds (LB) for the foil motion
optimization problem.

maximum efficiency subject to the constant thrust constraint. By enforcing an equality constraint
G(X) that a prescribed thrust must be provided, the optimization problem translates into maximizing
the efficiency for a given thrust.

The power coefficient is also chosen as the objective function to be minimized in the case of
the power-extraction problem. This time, a negative thrust coefficient is prescribed as an equality
constraint to the optimization problem. Minimizing Cp with a negative prescribed C; will results

in a negative value of Cp, which in turn results in maximizing 7.

Parameter Bounds

From a design standpoint, the actuators used to drive the foil have limited travel amplitudes, and
bounds representing the maximum heaving and pitching amplitudes of travel must be set on the
design parameters describing the foil motion. Likewise, the frequency of motion might be limited by
the actuator dynamics and must thus be bounded. Table 5.1 summarizes the lower (LB) and upper
bounds (UB) on the design parameters used in this optimization problem. Note that these values

have been chosen arbitrarily and are purely for illustration purposes.

Constraints

As seen previously, an equality constraint specifying the thrust must be set for the results to be of
practical use. Since the foil motion is defined as a sum of Fourier coefficients, inequality constraints
must also be set on the total travel amplitudes h(t) and 8(t) to ensure that they do not violate the
maximum actuator displacement. The following inequality constraints were thus defined and added
to the optimization problem:

z2(t) £ hpaxr = 0.5¢

= (5.2)
8(t) < Omaz = 20°

Optimization Implementation

A Sequential Quadratic Programming (SQP) method was used to perform the optimizations. Im-

plementation was carried out in MATLAB® using the Optimization Toolbox application.
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The bounds set on the total amplitudes of travel of the foil, k4, and 0,45, define a limit in terms
of the maximum thrust and power that can be produced by the system. With the bounds specified
in this problem, propulsive efficiencies beyond 75% cannot be achieved for thrust coeflicients greater
than 0.25. Likewise, power coefficients greater than —0.07 are achieveable but with a significant
efficiency loss. Throughout the optimization process, the thrust coeflicient was thus varied between
0.01 — 0.25 for the propulsive case, and between 0.01 — 0.09 for the power-extraction problem. In all
cases, the following number of panels were used to discretize the foil, wake and free surface regions:

N = 30 on the foil, M = 250 and L. = 650.

5.2.2 Optimization Results
Optimal Foil Motion

What motion should the foil be undergoing in order to maximize propulsive and power-extraction
efficiency ? To answer this question, an increasing number of Fourier coefficients were progressively
introduced in the model to give the optimizer more degrees of freedom to describe the foil motion.
The initial optimization was carried out with just one Fourier coefficient and a reduced frequency
as the design parameters for the propulsive case. Since at least two degrees of freedom are necessary
to extract power, initial power-extraction optimizations were done with two Fourier coefficients and
a reduced frequency (hi,8;,k). As many as P = 5 modes were used in the optimization process,
resulting in a design vector of 26 parameters (25 Fourier amplitudes and 1 reduced frequency). Also,
to account for the free surface effect, a Froude number of Fr, = 3 and a depth-to-submergence ratio
of 0.6¢c were selected.

Figure 5-7 shows the efficiency of the system for the optimal foil motion in the case of propulsion
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(A) and power-extraction (B). The plots of Figure 5-7 (A) show that, as expected, the pitching
degree of freedom greatly enhances the efficiency of the system for the propulsive case. In fact,
people who have ridden the Trampofoil® all concur to saying that introduction of a pitching motion
noticeably augments its propelling characteristics. Interestingly enough, the results indicate that a
sinusoidal motion corresponds to the optimal solution for both power extraction (A) and propulsion
(B), and this, even though the optimizer could operate on 26 design parameters. In Figure 5-7
the optimal efficiencies found for P = 1,2,3,4 and 5 modes all yielded the same sinusoidal motion
solution.

As a "reality check”, the bounds on the design parameters were lifted. The idea behind perform-
ing a set of unbounded optimizations was to give the SQP method more freedom to find solutions
that might have been in otherwise unreachable areas of the design space because of the bounds. The
unbounded optimization results showed that for a prescribed thrust coefficient, optimal efficiency is
achieved through a very slow motion with large heaving amplitudes. The high efficiency resulting
from this quasi-steady motion can be explained by the fact that little kinetic energy is deposited in
the wake with a slowly moving foil. As the frequency of motion increases, so does the kinetic energy
lost in the flow, which in turn hinders the efficiency.

Despite the fact that the optimizer could operate on 26 design parameters, the optimal motion
was once again found to be sinusoidal. It can be concluded that harmonics of the motion higher
than n = 1 blow off energy into the flow and are not useful in increasing the propulsive nor the

power-extracting efficiency of the VSH system.

Free Surface Interference Effects

Having identified an optimal foil motion, propulsive and power-extraction efficiencies were calculated
for various combinations of Froude numbers, Fr. and depth of submergence ratios d/c to examine
the influence of the ocean free surface. To inspect a wide region of the design space, optimizations
were carried out with Fr. ranging from 1 to 6 and depth of submergence ratios of 1¢, 0.8¢ and 0.6c.
Also, since the optimal motion was found to be sinusoidal, all optimizations were conducted with
P =1 mode. From the optimization results, a set of efficiency plots were generated that are useful
for design. The plots pertaining to the propulsion problem are shown in Figure 5-8. Figure 5-9 shows
the results obtained for the power extraction problem. All optimization results are summarized in
Tables C.1 to D.18 in Appendices C and D.

For the range of computed Froude numbers, the effect of the free surface is seen to have a notable
influence on the propulsive efficiency of the system. For the case considered here, the computations
show that as much as 7% efficiency can be lost because of the free surface induced drag, at low

depths and Froude numbers.
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Likewise, the optimization results obtained for the case of power-extraction show that the power
coefficient is greatly hindered by the free surface. Intriguingly, for certain configurations of Froude
numbers and depths of submergence, the VSH system is unable to deliver power extraction perfor-
mances otherwise achievable at increased depths. Figure 5-9 (B) illustrates the case where a power
coefficient of —0.06 is accomplished at an infinite depth, but unrealizable for depths less or equal to

one chord length.

Difficulties Encountered

It must be noted that multiple difficulties were encountered while performing these optimizations.

The first difficulty arose from the design space becoming excessively large as more modes were
used to describe the foil motion. Finding the globally optimal solution thus became very challenging,
especially for the gradient-based optimization method used in this work. To prevent the method
from getting trapped into local minimums, the author had to use many randomly-chosen initial
vectors of design parameters X. Yet, even with this time-consuming approach, global optimality of
the solution is not guaranteed. One way to ensure that the solution is globally optimal might be
to use heuristic-based optimization techniques such as Simulated Annealing or Genetic Algorithms.
Implementation of the equality and inequality constraints with such techniques; however, is usually
difficult.

Also, the number of optimizations that could be carried out was contingent on the available time
and computing power. Although the panel method code only requires a couple of seconds® at most
to evaluate the unsteady loads on the foil, the optimization algorithm makes multiple calls to the

panel method code and computational times can rapidly become very large.

5.3 VSH Design Implications

The optimization results provide useful indications for the design of a VSH system. Let us review
the influence of the elements influencing the performance of the VSH system and look at ways of

improving its efficiency.
5.3.1 Interference Effects

Free Surface Effect

The free surface is seen to influence the efficiency of the system for depths less than or equal to

approximately 5c for the propulsive case (cf Figure 5-6). In the energy-extracting case, the foil

3(Calculations were performed on a Pentium I1I-750MHz workstation.
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needs to operate at a depth greater than 5¢ not to be affected by the free surface induced drag.
This suggests that the loss of efficiency (1, or 7,.) due to the free surface effect can be regained or

improved in two ways:
¢ By increasing the depth of the foil so as to limit the influence of the free surface induced drag.

¢ By increasing the Froude number based on the chord.

Increasing the depth of submergence of the foil is easily done, but care must be taken not to
introduce too much friction drag with excessively long struts connecting the body of the vehicle to
the foil. Even if the struts are well designed so as to minimize drag, their lengths will also be limited
by weight and structural issues.

Increasing the Froude number based on the chord is done by either advancing at higher velocity
U, or by reducing the foil’s chord length. In the latter case, design considerations, such as the
minimum lift that must be provided to support the vehicle weight, or the minimum power that must

be extracted from the flow, will affect the size of the foil’s chord and a trade off must be sought.

Ground Effect/Multiple Foil Configurations

The investigations of section 5.1.1 clearly indicate that substantial increases in efficiency can be
attained by operating in ground effect. In fact, birds are known to take advantage of ground
plane effect by flying low over water. For the VSH system, ground effect can be reproduced by
introducing a second foil to create an mirror image of the first foil. A configuration similar to the
one investigated by Jones and Platzer [19] where two wings work in an opposed-plunge configuration
(biplane arrangement) might be a solution to regaining the lost efficiency of working in the free
surface effect. It remains to be seen if the addition of a second hydrofoil introduces too much

viscous drag.

5.3.2 Dynamic Foil Stall

All results given thus far make no mention of foil stalling. In a real flow, the effective angle-of-attack
of the foil will likely reach values where stalling occurs, thus placing a threshold on the maximum
achievable thrust and extracted power. The effective angle-of-attack is calculated at the 3/4-chord
point of the foil and is given by the following expression:

il (%Tc - mrot)a.

ae=0+—+

U U (5.3)

Figures 5-10 and 5-11 give the mazimum effective angle-of-attack seen by the foil for the optimal

motions of Figures 5-8 and 5-9. From the NACA 0012 drag polar (Appendix B), the static stall
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angle-of-attack is seen to correspond to approximately 14° for the Reynolds number considered in
this study.

In selecting an operating point, the designer will want to make sure the maximum effective angle-
of-attack a.,,,, does not exceed the static stall angle-of-attack by too much. Luckily, dynamic stalls
are usually more tolerant than static stalls, so even if the effective angle-of-attack of the foil is close
to its static stall value, it is unlikely that the foil will stall for that value.

Predicting dynamic stall is one of the key elements that will allow to push the performance
envelope of flapping-wing systems. Unfortunately precise analysis of dynamic stall is extremely
difficult. There exist semi-empirical methods of determining the dynamic stall characteristics of
a particular foil section based on static data. The method of Erickson and Reding [10},[9] is an
example of such a method to determine dynamic stall characteristics for foils oscillating in pitch at

low reduced frequencies.

5.3.3 Other Considerations

All mechanical losses as well as the mass and inertia of the wing have been ignored and inclusion
of these terms in the model will further diminish the overall efficiency of the system. However,
nature shows that it may be possible to overcome most of the inertial energy requirements needed
to accelerate the mass of the wing by adding springs to the flapping mechanism to create a tuned
harmonic oscillator. In fact, it is believed that insects employ such techniques to generate highly

efficient flapping flight [2].
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Chapter 6

Summary, Conclusions and

Recommendations for Future Work

6.1 Summary

To provide an Autonomous Marine Vehicle with improved endurance, a simple mechanical system
based on a Vertically Sculling Hydrofoil was studied. A computer-based tool allowing for the compu-
tation of the unsteady loads exerted on a two-dimensional heaving and pitching foil in the presence
of free surface effects was devised. With the use of this tool, a series of investigations were carried
out to understand how the various VSH design parameters influence the loads and the efficiency of
the system. A set of optimizations were conducted to find the ideal foil motion in order to maximize
the VSH system’s efficiency. From the investigations and the optimization results, it was found that
a sinusoidal foil motion is optimal for both propulsion and power extraction in the case of a symmet-
rical foil. Finally, the influence of the free surface effect on the efficiency of the system was studied.
The results show that the free surface greatly impacts the efficiency of the system for foil depths of
approximately 5 chord lengths for the case of propulsion and for depths greater than 5 chord lengths
for power extraction. Design recommendations to limit the effect of free surface induced drag were

provided.

6.2 Future Work

Various recommendations can be made for future work on this project. First of all, the capabilities
of the computer tool can be enhanced in the following ways to help in the design of efficient VSH

systems:
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e Nature suggests that interference effects between multiple wings may be a highly efficient
approach to flapping flight (e.g. dragonflies). Among others, experiments by Jones [19], and
Schmidt|29] also suggest that this is the case. It would therefore be valuable to enhance the
computational tool so as to allow the modeling of multiple foil configurations and assess the

resulting interference effects.

e As stated previously, use of spring mechanisms may be another approach to increase the
propulsive and power extraction efficiencies of the VSH system. The addition of a dynamics
module to the current computational tool could be made to quantify the benefits of using such

spring mechanisms.

e Since the wing is assumed to be of high aspect ratio, so as to limit the finite-span induced
drag, a two-dimensional computational tool was developed. If the wing’s aspect ratio is to be
constrained, the high aspect ratio assumption might fail and means of computing the three
dimensional flow around the hydrofoil may prove necessary. A vortex lattice tool similar to
the one developed by Hall & Hall [13] may be a way of achieving this. In fact, the Fourier
solution technique presented in this work could be implemented on such a tool. Finally, with
a three dimensional tool, the influence of all types of wing planforms on the unsteady loads

could be investigated.
Secondly, further optimizations and VSH experiments may be achieved. These include:

e Looking at heuristic-based methods for the optimization of the foil motion to ensure global
optimality of the solution. Because of the large design space, finding the optimal solution
was rendered difficult as the SQP algorithm got trapped in multiple local minima. Also,
optimizations were only carried out for a symmetrical foil section and it would be interesting

to see if the optimal foil motion changes with cambered foil sections.

e Designing a VSH system to conduct a series of experiments to acquire data and correlate this
experimental data with results given by the computational tool. Ways of acquiring data may
be done with tow tank tests or with a remote control vehicle testbed with adequate on board

instrumentation for performance assessment.
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Appendix A

Analytic Panel Integrals

In this section, we lay the foundations for the numerical method described in Chapter 3. As seen
in Chapter 2, unsteady loads imparted on the foil can be determined by finding the variation of
vorticity v along a foil and its wake by satisfying a set of boundary conditions. In order to find the
~-distribution, one must be able to describe the velocity induced by a singularity distribution. For
numerical considerations, a discrete analog to the velocity induced by a continuous distribution is
sought.

The continuous vorticity or source distributions are approximated by a set of discrete singular-
ity panels of linearly varying strength. Integrals relating the induced velocities to the singularity

strengths are evaluated for a panel and an influence coeflicient matrix is build.

A.1 Panel Influence Formulation

The two dimensional inviscid flow around the foil can be represented as an analytical function of

the complex argument x =z + 12 = ret? :

F(x) = F(z +i2) = p(, 2) + (2, 2) (A1)

Where F(x) is the complex stream function and ¢ and 1, the perturbation potential and stream
functions are real functions of r and 2. From elementary potential flows the complex stream function

for a point source of strength g is given by,

4 . q
p+iYp = 27rlnr+127r0 (A.2)
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And for a point vortex of strength v, the complex stream function is,

, Y .
= —— —1 .
@+ 1 27r9+227r nr (A.3)

Combining the two singularities allows one to write the complex stream function for a complex

source of strength o = q + vy

Z X = g+vy In(z + iz) (A.4)

prw =gy 27

Instead of using discrete source or vortices to approximate a continuous singularity distribution,
one may consider using a two-dimensional panel of length As = [Ax| = |x2 — x1]. The complex
stream function for such a panel, evaluated at a conirol point xg, is obtained by integrating the

point source complex stream function over the length of the panel.

A X2
Flx) =9+ = 35 [ ol0In(x=xo)dx (4.5)
X1

Assuming a linearly varying complex source distribution o(x) on the panel, as depicted per

Figure A-1 yields,

a(x) =01(X"’A;X) +02(X;;1) (A.6)

Substitution of (A.6) into (A.5) gives for the complex stream function,

tip = =22 [ {(o1xa = o2x1) In(x - x0) + (02 — o)X In(x — x0) Jdx (A7)
(7] —ZWAXQ . 1X2 2X1 X — Xo 02 — 01)XIKX — Xo X .
. 1 As

<P+'”J’=8—7TA—X2 [ (Xz"Xl)(01(2X0+X1—3X2)—02(2X0—3X1+Xz))

- 2(xo— Xl)(Uz(Xl — Xxo) +o1(xo + X1 — 2X2)) In(x1 — Xo)

+ 2(x2— Xo)(C’l(m — Xo) +o2(x0 — 2x1 + Xz)) In(x2 — Xo) } (A.8)

The velocity field in the complex plane is obtained by differentiating the complex stream function

with respect to xo,

w—iw =~ (o + i) (A.9)
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Figure A-1: Panel of linearly varying complex source distribution.

After differentiating and regrouping the o, and o9 terms, one obtains,

1 As

[ U1{(Xz —x1) + (x2 - Xo)(lﬂ(m — Xo) — In(xz2 — Xo))}
+ oz{(xl —x2) + (xo = x1)(In(x — x0) — In(xz — xO>)} } (A.10)

As seen in Chapter 1, the second derivative of the complex stream function with respect to z is
necessary in order to introduce the fluid free surface effects in our model. Deriving the velocity field

in the complex plane with respect to the complex variable yo yields,

d? du ow u Ow
—_— ) = —— — i — o — ALl
d2X0 (cp + ’L’l,b) Bl‘o ! aCL‘o ¢ 62’0 620 ( )
From the two-dimensional expression of the continuity equation in cartesian space,
u Ow Ou ow
— 1 2PV =0 - = = Al2
P ( B0 azo) dro 0z (A.12)
Also, for an irrotational fluid the vorticity ¢ is equal to zero yielding,
Sw  Ou Jw ou
C (6:1:0 820) axo aZO (A 13)

Using equations (A.12) and (A.13), the acceleration field in the complex plane finally becomes,

2
d%xo0

) ou  Ow
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& As [ (Oe=x) = (o = x1) (1m0 = xo) = Ilx2 ~ x0))
d4x ; [m{ }

D) 0(‘10 1/)) 271_ AX2 XO _ Xl

N 02{ (x1 = x2) + (xo — XQ)(IH(XI — o) — In(x2 — Xo)) } } (A.15)

Xo — X2

The induced velocities and their derivatives can be rewritten in a more compact form for computer

implementation as,

d .
d—xo(cp +ip) = 01C1(x0) + 72C2(x0)
= (‘h + i’Y1)(A1 +iB) + (g2 + i’Yz)(Az + iBg) (A.lﬁ)
d2
%(w +ip) = a1C1(x0) + 92C5(x0)
= (@ +im)(A] +iBy) + (g2 +172)(A; +iB3) (A.17)

Where the complex influence coefficients C1, Cy, Cy and Cj are given by:
1 2

CI(XO) = Al—l-iBl

= 27TAASX—2 {(XZ —x1) + (x2 — XO)(IH(XI —xo0) — In{x2 — XO))} (A.18)
C2(XO) = A2 + iBg

= QWAASX_2 {(Xl —x2) + (xo — X1)(1n(X1 —x0) — In(x2 — Xo))} (A.19)
Ci(xo) = A}+iBj

As (x2 —x1) — (xo — xl)(ln(X1 —x0) — In(x2 — Xo))

- 2 Ax> { Yo — X1 } (A.20)
Cy(x0) = Aj+iB;

s (ba—xe)+ e - Xz)(ln(xl - Xo) = In(xz — XO)) -

B 27TAX2{ X0 — X2 } ( : )

Finally, the = and z-components of the panel-induced velocities are obtained by respectively taking

the real part and imaginary part of (A.9). The induced velocities can further be decomposed into
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velocities due to the source singularity ¢ and the vortex singularity ~.

w(zo,20) = Re(01C) +02Cs) = Re ((q1 +im)(Ar +iB1) + (g2 + iva)(As + z'Bg))

(1 Re(C) + @2 Re(C2)) + (= 1 Im(C1) = 72 Im(Ca))

= ul+u (A.22)

w(zg,z0) = —Im(01C1 + 02C2)

( —q1 Im(C1) — g2 Im(Cg)) + ( —v1 Re(C1) — 72 Re(Cg))

= wl+uw (A.23)

Likewise, separating real and imaginary parts of (A.14) and regrouping terms induced by the source

and vortex singularity yields for the acceleration field,

Ju

3.1’0

(9.’1:0

(0, 20)

(IO, ZO)

% Re(01C] + 02CY%)

1 '] 7 1 ! /2
(a1 Re(Cy) + g2 Re(C3) ) + 5| — 71 Im(Cy) — 72 Im(C3)
2 2

ou?  ouY

- .24
Ozg + Oxg (A-24)

1
-3 Im(01C] + 02C5%)

1 1 , ,
—5 (a1 Im(C}) + g Im(C5)) — 5 (1 Re(C}) + 12 Re(C3))
owd  ow?

The above formulae have been derived for the case of a single panel, where the velocity induced

by this panel is calculated at a control point xp. If two or more panels are to be considered, the

velocity induced by these panels at point xg is now the sum of the influences of the various panels.

Generalizing to a panel j of node coordinates x; and x;4+1 yields for the functions C;, C1, C2 and
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C}, evaluated at a control point xo,:

As
Cy; = P {(Xj+1 - Xj) + (X;H—l - X01)<1n(Xj - X0;) — ln(Xj+l - XOi))} (A.26)
2rAx
As
Crj = z{&j—Xﬂﬂ+%Xm—Xﬁ<muj—XmY*mWﬂJ—XmO} (A.27)
2mAx
As @Hﬂ—Xﬁ—%Xm—Xﬂ(mQj—Xm)—hﬂM+1—Xm)
i = 2 { )} (A-28)
7 2mAx X0, — X3
As (G = x5+1) + (X0, — Xj+1)(1n(Xj —xo0,) —In(x;+1 — xo0,)
Chy = : { )} (A.29)
J 2 Ay X0; — Xj+1

Finally, calling a® and a® the influence coefficients in the z and z directions respectively for the
vortex distribution v, and b%, b* the influence coefficients in the z and z directions respectively for
the source distribution g, one may construct the influence coefficient matriz for a given geometry
by scanning each panel and accumulating the influences.

The pseudo-code below shows the accumulation process for N panels:

D0 i = 1,N \\For every control point

DO j = 1,N \\Scan each panel

ax(i,j) = ax(i,j) - Im(C1(i,3))
ax(i,j+1) - Im(C2(i,j))

ax(i,j+1)

ax_x(i,j) = ax_x(i,j) + 0.5%Im(CL’(i,j))
ax_x(i,j+1) = ax_x(i,j+1) + 0.5+%Im(C2’(i,j))

az(i,j) = az(i,j) - Re(C1(i,j»)
az(i,j+1) - Re(C2(i,j))

az(i,j+1)

az_x{i,j) = az_z(i,j) - 0.5%Re(C1’(4,j))
az_x(i,j+1) = az_z(i,j+1) - 0.5%Re(C2’(i,j))

bx(i,j) = bx(i,j) + Re(C1(i,j))
bx(i,j+1) = bx(i,j+1) + Re(C2(i,j))

bx_x(i,j) = bx_x(i,j) - 0.5%Re(C1’(i,j))
bx_x(i,j+1) = bx_x(i,j*1) - 0.5¥Re(C2’(i,3))

bz(i,j) = bz(i,j) - Im(C1(i,j))
bz(i,j+1) = bz(i,j*1) - Im (C2(i,j))
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bz_x(i,j) = bz_x(i,3j) - 0.5xIm(C1°(i,j))
bz_x(i,j+1) = bz_x(i,j+1) - 0.5+Im (C2’(i,3))

END
END

The = and z-velocities induced at a control point ¢ by N panels of linearly varying vortex-

distribution are given by,

N#1 N41
uY = Z agvi, vV = Z ag;v; (A.30)
j=1 i=1

The z and z-velocities induced at a control point ¢ by N panels of linearly varying source-

distribution are given by,

N+1 N+1
ul = Z biq5 » V1 = Z b3;4; (A.31)
J=1 Jj=1

The first derivatives of the velocities induced at a control point ¢ by N panels of linearly varying

source-distribution are given by,

oyt N . gpd VAl .

j=1 i=1

The first derivatives of the velocities induced at a control point ¢ by N panels of linearly varying

vortex-distribution are given by,

our  NA guy Nt
3 - > oAt 9 > ek (A.33)
j=1 i=1
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Appendix B

NACA 0012 Drag Polar
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Figure B-2: Curve fit of the NACA 0012 foil section drag bucket by means of a quadratic function.
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Appendix C

Optimization Results - Propulsion

This section summarizes the optimization results for the propulsive case . In the tables presented
below, certain parameters are given to help in the design process and for comparison purposes with

other theories and flapping-foil results :

C

Zmaz

corresponds to the maximum lift coefficient experienced by the foil over a cycle of the optimal
motion. From the static stall characteristics of a given foil, the designer can gage whether the

foil is close to stalling or not.

Cr, s is the part of the thrust coefficient due to leading edge suction. This value is provided here
to help in the design process. To achieve large thrust coefficients, the designer will want to

select an airfoil that can reach high values of Cy, ., without flow separation.

Qe,.,. is the maximum effective angle-of-attack seen by the foil at the 3/4-chord point. It is given

by 1t/Use + (3/4¢ — Zrot) 6/Uso + 0

St, is the Strouhal number. It is defined as St, = fA/Uwo, where f is the frequency in Hertz of the
motion, A is the maximum excursion of the foil’s trailing edge, and Uy is the average forward
velocity. The Strouhal number is provided in this work for comparative purposes with other

results, such as the ones obtained by Triantafyllou [32],[33],(3]

© is the proportional feathering parameter introduced by Lighthill [24]. It is defined as ae,,,,, Us/ h.
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d/c Ce Cp Crmas Cries emas hi1 0 b1 k St e

oo 0.250 0.332 0.953 0.139 15.647 0.500 20.000 115.435 0.713 0.206 0.383
oo 0.240 0.317 0.918 0.133 15.108 0.500 20.000 115.486 0.702 0.203 0.376
oo 0.230 0.302 0.883 0.127 14.567 0.500 20.000 115.531 0.691 0.200 0.368
oo 0.220 0.287 0.847 0.120 14.023 0.500 20.000 115.565 0.680 0.196 0.360
co 0210 0.273 0.812 0.114 13.476 0.500 20.000 115.589 0.669 0.193 0.352
oo  0.200 0258 0.776 0.108 12,927 0.500 20.000 115.600 0.657 0.190 0.343
oo 0190 0.244 0.740 0.102 12.381 0.500 20.000 115.600 0.646 0.186 0.335
oo 0.180 0.230 0.704 0.096 11.833 0.500 20.000 115585 0.634 0.183 0.326
oo 0.170 0.216 0.668 0.090 11.282 0.500 20.000 115.556 0.622 0.180 0.317
oo 0.160 0.202 0.632 0.084 10.734 0.500 20.000 115.507 0.610 0.176 0.307
oo 0.150 0.18%8 0.595 0.078 10.188 0.500 20.000 115.443 0.598 0.173 0.298
oo 0.140 0.175 0.558 0.072 9.640 0.500 20.000 115.359 0.585 0.169 0.288
oo 0.130 0.161 0.521  0.067 9.100 0.500 20.000 115.253 0.572 0.166 0.278
oo 0.120 0.148 0.483 0.061 8.560 0.500 20.000 115.124 0.559 0.162 0.267
co 0.110 0.135 0.445 0.056 8.031 0.500 20.000 114.968 0.546 0.159 0.257
oo 0.100 0.122 0407 0.051 7.507 0.500 20.000 114.787 0.532 0.155 0.246
co  0.090 0.110 0.367 0.046 6.994 0.500 20.000 114.571 0.519 0.151 0.235
co 0.080 0.097 0.327 0.041 6.498 0.500 20.000 114.321 0.505 0.148 0.225
oo 0.070 0.085 0.287 0.037 6.020 0.500 20.000 114.032 0.491 0.144 0.214
oo 0.060 0.073 0.245 0.032 5.563 0.500 20.000 113.701 0.476 0.140 0.204
oo 0.050 0.061 0.203 0.028 5.140 0.500 20.000 113.322 0.461 0.136 0.195
co  0.040 0.050 0.159 0.025 4.751 0.500 20.000 112.892 0.446 0.132 0.186
oo 0.030 0.039 0.114 0.021 4.411 0.500 20.000 112.404 0.431 0.128 0.179
oo 0.020 0.028 0.084 0.015 3.739 0500 18.934 110.906 0.394 0.118 0.166
oo 0.010 0.017 0.068 0.008 2.613 0.500 16.200 107.782 0.324 0.099 0.141

Table C.1: Optimization results for d/c = oo
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d/C Cx Cp szlw CxLES Qe na h1 01 ¢1 k Sta e

1.000 0.250 0.331 0.982 0.119 15.377 0.500 20.000 112.307 0.675 0.201 0.398
1.000 0.240 0.317 0.947 0.113 14.873 0.500 20.000 112.346 0.665 0.198 0.390
1.000 0.230 0.302 0.911 0.107 14.365 0.500 20.000 112.383 0.655 0.195 0.383
1.000 0.220 0.287 0.876 0.102 13.868 0.500 20.000 112.389 0.645 0.192 0.375
1.000 0.210 0.272 0.840 0.096 13.368 0.500 20.000 112.396 0.634 0.189 0.368
1.000 0.200 0.258 0.804 0.091 12.860 0.500 20.000 112.410 0.624 0.186 0.360
1.000 0.190 0.244 0.768 0.085 12.354 0.500 20.000 112.408 0.613 0.183 0.352
1.000 0.180 0.230 0.732 0.080 11.852 0.500 20.000 112.386 0.603 0.180 0.343
1.000 0.170 0.216 0.695 0.075 11.353 0.500 20.000 112.354 0.592 0.176 0.335
1.000 0.160 0.202 0.658 0.070 10.850 0.500 20.000 112319 0.581 0.173 0.326
1.000 0.150 0.188 0.620 0.065 10.354 0.500 20.000 112.256 0.570 0.170 0.317
1.000 0.140 0.175 0.582 0.060 9.864 0.500 20.000 112.178 0.558 0.167 0.308
1.000 0.130 0.161 0.544 0.055 9.368 0.500 20.000 112.101 0.547 0.163 0.299
1.000 0.120 0.148 0.505 0.051 8.886 0.500 20.000 111.998 0.535 0.160 0.290
1.000 0.110 0.135 0.465 0.046 8.403 0.500 20.000 111.880 0.523 0.157 0.280
1.000 0.100 0.123 0.425 0.042 7.932 0.500 20.000 111.745 0.511 0.153 0.271
1.000 0.090 0.110 0.384 0.038 7.470 0.500 20.000 111.588 0.499 0.150 0.261
1.000 0.080 0.098 0.343 0.034 7.016 0.500 20.000 111.412 0.487 0.146 0.252
1.000 0.070 0.086 0.300 0.030 6.575 0.500 20.000 111.216 0.474 0.143 0.242
1.000 0.060 0.074 0.257 0.027 6.151 0.500 20.000 110.997 0.462 0.139 0.233
1.000 0.050 0.062 0.213 0.023 5.749 0.500 20.000 110.754 0.449 0.136 0.224
1.000 0.040 0.050 0.167 0.020 5.372 0.500 20.000 110486 0.435 0.132 0.215
1.000 0.030 0.039 0.137 0.015 4.681 0.500 19.086 109.390 0.404 0.123 0.202
1.000 0.020 0.028 0.113 0.010 3.769 0.500 17.422 107.580 0.358 0.110 0.184
1.000 0.010 0.017 0.08 0.005 2.740 0.500 15.127 105.110 0.301 0.093 0.159

Table C.2: Optimization results for Fr. = 1.0, d/c = 1.0
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d/c Cy Cp Coman Crres  Cemas h1 61 o1 k Sta ©
0.800 0.250 0.342 1.011 0.112 17.123 0.500 20.000 109.704 0.684 0.209 0.437
0.800 0.240 0.326 0.975 0.107 16594 0.500 20.000 109.767 0.674 0.206 0.430
0.800 0.230 0.311 0.938 0.101 16.062 0.500 20.000 109.830 0.664 0.203 0.422
0.800 0.220 0.296 0.902 0.096 15.532 0.500 20.000 109.886 0.653 0.199 0.415
0.800 0.210 0.281 0.865 0.091 14.998 0.500 20.000 109.936 0.643 0.196 0.407
0.800 0.200 0.266 0.827 0.085 14.462 0.500 20.000 109.980 0.633 0.193 0.399
0.800 0.190 0.251 0.790 0.080 13.922 0.500 20.000 110.018 0.622 0.190 0.391
0.800 0.180 0.237 0.752 0.075 13.380 0.500 20.000 110.048 0.611 0.186 0.382
0.800 0.170 0.222 0.714 0.070 12.842 0.500 20.000 110.071 0.600 0.183 0.373
0.800 0.160 0.208 0.675 0.066 12.299 0.500 20.000 110.086 0.589 0.179 0.364
0.800 0.150 0.194 0.637 0.061 11.752 0.500 20.000 110.094 0.578 0.176 0.355
0.800 0.140 0.180 0.598 0.056 11.211 0.500 20.000 110.090 0.566 0.172 0.346
0.800 0.130 0.166 0.558 0.052 10.668 0.500 20.000 110.078 0.555 0.169 0.336
0.800 0.120 0.152 0.518 0.048 10.122 0.500 20.000 110.059 0.543 0.165 0.325
0.800 0.110 0.139 0.477 0.043 9.582 0.500 20.000 110.026 0.531 0.162 0.315
0.800 0.100 0.126 0.436 0.039 9.041 0.500 20.000 109.984 0.519 0.158 0.304
0.800 0.090 0.113 0.394 0.035 8.505 0.500 20.000 109.929 0.506 0.154 0.293
0.800 0.080 0.100 0.351 0.032 7.975 0.500 20.000 109.863 0.493 0.151 0.282
0.800 0.070 0.088 0.308 0.028 7.450 0.500 20.000 109.783 0.480 0.147 0.271
0.800 0.060 0.075 0.264 0.025 6.935 0.500 20.000 109.689 0.467 0.143 0.259
0.800 0.050 0.063 0.218 0.022 6.436 0.500 20.000 109.581 0.453 0.139 0.248
0.800 0.040 0.061 0.172 0.019 5.956 0.500 20.000 109.456 0.439 0.135 0.237
0.800 0.030 0.040 0.133 0.015 5.322 0.500 19.526 108.893 0.416 0.128 0.223
0.800 0.020 0.029 0.110 0.010 4277 0500 17.816 107.183 0.369 0.114 0.202
0.800 0.010 0.018 0.084 0.005 3.100 0.500 15.464 104.827 0.310 0.097 0.175

Table C.3: Optimization results for Fr. = 1.0, d/c = 0.8
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0.600 0.250 0.363 1.052 0.107 20.907 0.500 20.000 106.219 0.722 0.228 0.505
0.600 0.240 0.346 1.013 0.102 20.288 0.500 20.000 106.353 0.712 0.224 0.498
0.600 0.230 0.330 0.974 0.097 19.667 0.500 20.000 106.472 0.701 0.221 0.490
0.600 0.220 0.314 0.935 0.092 19.038 0.500 20.000 106.599 0.690 0.217 0.482
0.600 0.210 0.298 0.896 0.087 18.408 0.500 20.000 106.724 0.679 0.213 0473
0.600 0.200 0.282 0.857 0.082 17.771 0.500 20.000 106.850 0.668 0.209 0.465
0.600 0.190 0.266 0.817 0.077 17.130 0.500 20.000 106.965 0.656 0.206 0.456
0.600 0.180 0.250 0.777 0.072 16.483 0.500 20.000 107.075 0.644 0.202 0.447
0.600 0.170 0.235 0.737 0.068 15.826 0.500 20.000 107.191 0.632 0.198 0.437
0.600 0.160 0.220 0.697 0.063 15.164 0.500 20.000 107.301 0.620 0.194 0.427
0.600 0.150 0.205 0.657 0.068 14.502 0.500 20.000 107.407 0.608 0.190 0.416
0.600 0.140 0.190 0.616 0.054 13.830 0.500 20.000 107.518 0.595 0.186 0.405
0.600 0.130 0.175 0.574 0.050 13.152 0.500 20.000 107.612 0.583 0.181 0.394
0.600 0.120 0.161 0.533 0.046 12.469 0.500 20.000 107.714 0.569 0.177 0.382
0.600 0.110 0.146 0.491 0.042 11.781 0.500 20.000 107.814 0.556 0.173 0.370
0.600 0.100 0.132 0.448 0.038 11.087 0.500 20.000 107.896 0.542 0.168 0.357
0.600 0.090 0.118 0.405 0.034 10.393 0.500 20.000 107.988 0.528 0.164 0.343
0.600 0.080 0.105 0.361 0.030 9.692 0.500 20.000 108.069 0.514 0.159 0.329
0.600 0.070 0.091 0.317 0.027 8.992 0.500 20.000 108.148 0.499 0.155 0.315
0.600 0.060 0.078 0.272 0.024 8.204 0.500 20.000 108.222 0.484 0.150 0.299
0.600 0.050 0.066 0.226 0.021 7.601 0.500 20.000 108.290 0.468 0.145 0.283
0.600 0.040 0.053 0.179 0.018 6.918 0.500 20.000 108.354 0.452 0.140 0.267
0.600 0.030 0.041 0.130 0.015 6.252 0.500 20.000 108.411 0.436 0.135 0.251
0.600 0.020 0.029 0.107 0.010 5.019 0.500 18.310 106.905 0.387 0.120 0.226
0.600 0.010 0.018 0.081 0.006 3.611 0.500 15.897 104.708 0.325 0.101 0.194
Table C.4: Optimization results for Frr, = 1.0, d/c = 0.6
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d/c Cy Cp Cimee Crips Cemas hy 64 ¢1 k St, ©
1.000 0.250 0.340 0.970 0.139 17.907 0.500 20.000 113.042 0.734 0.217 0.426
1.000 0.240 0324 0934 0.132 17.335 0.500 20.000 113.106 0.723 0.214 0.418
1.000 0.230 0.309 0.808 0.126 16.745 0.500 20.000 113.211 0.712 0.210 0410
1.000 0.220 0.294 0.862 0.120 16.167 0.500 20.000 113.254 0.701 0.207 0.403
1.000 0.210 0.279 0.826 0.114 15.581 0.500 20.000 113.305 0.689 0.203 0.395
1.000 0.200 0.265 0.789 0.108 14.987 0.500 20.000 113.358 0.678 0.200 0.386
1.000 0.190 0.250 0.753 0.101 14.396 0.500 20.000 113.396 0.666 0.196 0.377
1.000 0.180 0.235 0.716 0.095 13.801 0.500 20.000 113.425 0.654 0.193 0.369
1.000 0.170 0.221 0.679 0.090 13.201 0.500 20.000 113.442 0.641 0.189 0.359
1.000 0.160 0.207 0.641 0.084 12.596 0.500 20.000 113.449 0.629 0.185 0.350
1.000 0.150 0.193 0.604 0.078 11.992 0.500 20.000 113.443 0.616 0.182 0.340
1.000 0.140 0.179 0566 0.072 11.385 0.500 20.000 113.425 0.603 0.178 0.330
1.000 0.130 0.165 0.528 0.067 10.772 0.500 20.000 113.392 0.590 0.174 0.319
1.000 0.120 0.152 0.489 0.061 10.164 0.500 20.000 113.345 0.576 0.170 0.308
1.000 0.110 0.138 0.450 0.056 9.550 0.500 20.000 113.281 0.563 0.166 0.296
1.000 0.100 0.125 0.411 0.051 8.941 0.500 20.000 113.199 0.548 0.162 0.285
1.000 0.090 0.112 0.371 0.046 8.330 0.500 20.000 113.095 0.534 0.158 0.272
1.000 0.080 0.100 0.330 0.041 7.727 0.500 20.000 112.974 0.519 0.154 0.260
1.000 0.070 0.087 0.289 0.037 7.130 0.500 20.000 112.827 0.504 0.150 0.247
1.000 0.060 0.075 0.247 0.033 6.543 0.500 20.000 112.654 0.489 0.145 0.234
1.000 0.050 0.063 0.204 0.028 5970 0.500 20.000 112.452 0.473 0.141 0.221
1.000 0.040 0.051 0.160 0.025 5.421 0.500 20.000 112.214 0.456 0.136 0.207
1.000 0.030 0.039 0.115 0.021 4902 0.500 20.000 111.955 0.440 0.131 0.195
1.000 0.020 0.028 0.070 0.018 4.438 0.500 20.000 111.632 0.422 0.127 0.184
1.000 0.010 0.017 0.047 0.011 3.355 0.500 17.973 109.270 0.364 0.111 0.161

Table C.5: Optimization results for Fr, = 2.0, d/c = 1.0
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dfc Cy Cp Ciree Crrrs Oepan hi 61 1 k Sta e
0.800 0.250 0.345 0.980 0.141 19.006 0.500 20.000 112.554 0.7561 0.223 0.442
0.800 0.240 0.329 0.944 0.134 18403 0.500 20.000 112.652 0.740 0.220 0.434
0.800 0.230 0.314 0.907 0.128 17.796 0.500 20.000 112.743 0.729 0.216 0.426
0.800 0.220 0.299 0.870 0.122 17.181 0.500 20.000 112.836 0.717 0.213 0.418
0.800 0.210 0.284 0.832 0.115 16.572 0.500 20.000 112.883 0.705 0.209 0.410
0.800 0.200 0.269 0.795 0.109 15.945 0.500 20.000 112.965 0.693 0.205 0.401
0.800 0.190 0.254 0.758 0.103 15.318 0.500 20.000 113.038 0.681 0.202 0.393
0.800 0.180 0.239 0.721 0.097 14.699 0.500 20.000 113.064 0.669 0.198 0.384
0.800 0.170 0.224 0.683 0.091 14.060 0.500 20.000 113.120 0.656 0.194 0.374
0.800 0.160 0.210 0.645 0.085 13.420 0.500 20.000 113.153 0.643 0.190 0.364
0.800 0.150 0.196 0.607 0.079 12.773 0.500 20.000 113.176 0.630 0.186 0.354
0.800 0.140 0.182 0.569 0.074 12.128 0.500 20.000 113.187 0.616 0.182 0.343
0.800 0.130 0.168 0.530 0.068 11.475 0.500 20.000 113.185 0.603 0.178 0.332
0.800 0.120 0.154 0.491 0.063 10.816 0.500 20.000 113.170 0.589 0.174 0.321
0.800 0.110 0.140 0452 0.057 10.159 0.500 20.000 113.140 0.574 0.170 0.309
0.800 0.100 0.127 0.412 0.052 9.495 0.500 20.000 113.093 0.560 0.166 0.296
0.800 0.090 0.114 0.372 0.047 8.836 0.500 20.000 113.028 0.544 0.161 0.283
0.800 0.080 0.101 0.331 0.042 8175 0.500 20.000 112.942 0.529 0.157 0.270
0.800 0.070 0.088 0.290 0.038 7.517 0.500 20.000 112.833 0.513 0.152 0.256
0.800 0.060 0.075 0.247 0.033 6.868 0.500 20.000 112.697 0.497 0.148 0.241
0.800 0.050 0.063 0.204 0.029 6.233 0.500 20.000 112.530 0.480 0.143 0.227
0.800 0.040 0.051 0.161 0.025 5.617 0.500 20.000 112.335 0.463 0.138 0.212
0.800 0.030 0.040 0.116 0.022 5027 0500 20.000 112.108 0.445 0.133 0.197
0.800 0.020 0.028 0.071 0.018 4.495 0.500 20.000 111.815 0.426 0.128 0.184
0.800 0.010 0.017 0.045 0.011 3446 0.500 18.224 109.713 0.372 0.113 0.162

Table C.6: Optimization results for Fro = 2.0, d/e = 0.8
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d/C Cg; Cp szaz CILES Re ow h1 91 ¢1 k Sta e
0.600 0.250 0.352 0.993 0.145 20.696 0.500 20.000 112.160 0.781 0.233 0.463
0.600 0.240 0.336 0.956 0.139 20.043 0.500 20.000 112.297 0.769 0.229 0.455
0.600 0.230 0.321 0.918 0.132 19.387 0.500 20.000 112.421 0.758 0.226 0.447
0.600 0.220 0.305 0.880 0.126 18.727 0.500 20.000 112,530 0.745 0.222 0.439
0.600 0.210 0.289 0.842 0.119 18.057 0.500 20.000 112.647 0.733 0.218 0.430
0.600 0.200 0.274 0.804 0.113 17.382 0.500 20.000 112.753 0.720 0.214 0.421
0.600 0.190 0.259 0.765 0.107 16.697 0.500 20.000 112.860 0.708 0.210 0.412
0.600 0.180 0.244 0.727 0.101 16.007 0.500 20.000 112.950 0.694 0.206 0.402
0.600 0.170 0.229 0.689 0.095 15.316 0.500 20.000 113.028 0.681 0.202 0.393
0.600 0.160 0.214 0.650 0.089 14.616 0.500 20.000 113.103 0.667 0.197 0.382
0.600 0.150 0.199 0.611 0.083 13.908 0.500 20.000 113.167 0.6563 0.193 0.372
0.600 0.140 0.185 0.572 0.077 13.194 0.500 20.000 113.212 0.639 0.189 0.360
0.600 0.130 0.171 0.533 0.071 12.473 0.500 20.000 113.248 0.624 0.184 0.349
0.600 0.120 0.157 0.493 0.065 11.749 0.500 20.000 113.269 0.609 0.180 0.337
0.600 0.110 0.143 0.454 0.060 11.010 0.500 20.000 113.288 0.594 0.175 0.324
0.600 0.100 0.129 0.414 0.055 10.268 0.500 20.000 113.298 0.578 0.171 0.310
0.600 0.090 0.116 0.373 0.049 9.531 0.500 20.000 113.245 0.562 0.166 0.296
0.600 0.080 0.102 0.332 0.044 8.787 0.500 20.000 113.204 0.545 0.161 0.281
0.600 0.070 0.089 0.290 0.039 8.042 0.500 20.000 113.132 0.528 0.156 0.266
0.600 0.060 0.076 0.248 0.035 7.301 0.500 20.000 113.033 0.510 0.151 0.250
0.600 0.050 0.064 0.205 0.030 6.570 0.500 20.000 112.902 0.492 0.146 0.233
0.600 0.040 0.052 0.162 0.026 5.857 0.500 20.000 112.733 0.473 0.140 0.216
0.600 0.030 0.040 0.117 0.022 5170 0.500 20.000 112.529 0.453 0.135 0.199
0.600 0.020 0.028 0.073 0.019 4543 0.500 20.000 112.247 0.433 0.129 0.183
0.600 0.010 0.017 0.044 0.012 3.504 0.500 18.446 110.345 0.380 0.115 0.161

Table C.7: Optimization results for Fr. = 2.0, d/c = 0.6
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d/c Cx Cp sznz CiELES Ueox h1 91 ¢1 k Sta e
1.000 0.250 0.339 0.967 0.140 17.460 0.500 20.000 113.752 0.733 0.215 0.416
1.000 0.240 0.323 0.931 0.13¢ 16.892 0.500 20.000 113.826 0.722 0.212 0.409
1.000 0.230 0.308 0.895 0.127 16.321 0.500 20.000 113.892 0.711 0.209 0.401
1.000 0.220 0.293 0.859 0.121 15.745 0.500 20.000 113.953 0.699 0.205 0.393
1.000 0.210 0.278 0.823 0.115 15.167 0.500 20.000 113.999 0.688 0.202 0.385
1.000 0.200 0.264 0.786 0.109 14.584 0.500 20.000 114.040 0.676 0.198 0.377
1.000 0.190 0.249 0.750 0.102 13.997 0.500 20.000 114.071 0.664 0.195 0.368
1.000 0.180 0.235 0.713 0.096 13.406 0.500 20.000 114.092 0.652 0.191 0.359
1.000 0.170 0.220 0.676 0.090 12.816 0.500 20.000 114.103 0.640 0.187 0.350
1.000 0.160 0.206 0.639 0.085 12.222 0.500 20.000 114.101 0.628 0.184 0.340
1.000 0.150 0.192 0.602 0.079 11.622 0.500 20.000 114.088 0.615 0.180 0.330
1.000 0.140 0.178 0.564 0.073 11.025 0.500 20.000 114.057 0.602 0.176 0.320
1.000 0.130 0.165 0.526 0.068 10.426 0.500 20.000 114.011 0.589 0.173 0.309
1.000 0.120 0.151 0.488 0.062 9.823 0.500 20.000 113.949 0.575 0.169 0.298
1.000 0.110 0.138 0.449 0.057 9.226 0.500 20.000 113.867 0.561 0.165 0.287
1.000 0.100 0.125 0.409 0.052 8.627 0.500 20.000 113.763 0.547 0.161 0.275
1.000 0.090 0.112 0.370 0.047 8.033 0.500 20.000 113.637 0.533 0.157 0.263
1.000 0.080 0.099 0.329 0.042 7.447 0.500 20.000 113.485 0.518 0.153 0.251
1.000 0.070 0.087 0.288 0.037 6.868 0.500 20.000 113.305 0.503 0.148 0.238
1.000 0.060 0.074 0.246 0.033 6.303 0.500 20.000 113.094 0.488 0.144 0.226
1.000 0.050 0.062 0.203 0.029 5.758 0.500 20.000 112.843 0.472 0.140 0.213
1.000 0.040 0.051 0.160 0.025 5.236 0.500 20.000 112.557 0.455 0.135 0.201
1.000 0.030 0.039 0.115 0.021 4.751 0.506 20.000 112.239 0.439 0.131 0.189
1.000 0.020 0.028 0.070 0.018 4.328 0.500 20.000 111.841 0.421 0.126 0.179
1.000 0.010 0.017 0.049 0.010 3.212 0.500 17.764 109.232 0.359 0.109 0.156

Table C.8: Optimization results for Fre = 3.0, d/c = 1.0
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dfc Co  Cp Cui Crove @vw M o é E St, ©
0.800 0250 0.343 0.974 0.142 18.290 0500 20.000 113.436 0.746 0.220 0.428
0.800 0.240 0.327 0938 0.135 17.700 0.500 20.000 113.530 0.735 0.217 0.420
0.800 0230 0.312 0901 0129 17.108 0.500 20.000 113.611 0.724 0.213 0.413
0.800 0.220 0.297 0.865 0.123 16.507 0.500 20.000 113.696 0.712 0.209 0.405
0.800 0.210 0.282 0.828 0.116 15.906 0.500 20.000 113.761 0.701 0.206 0.396
0.800 0.200 0.267 0791 0110 15298 0.500 20.000 113.821 0.689 0.202 0.388
0.800 0.190 0252 0.754 0.104 14.685 0500 20.000 113.872 0.677 0.199 0.379
0.800 0.180 0.237 0.717 0.098 14.067 0.500 20.000 113.913 0.664 0.195 0.370
0.800 0.170 0.223 0.679 0.092 13.450 0.500 20.000 113.940 0.652 0.191 0.360
0.800 0.160 0.209 0.642 0086 12.826 0.500 20.000 113.965 0.639 0.187 0.351
0.800 0.150 0.194 0.604 0080 12.199 0500 20.000 113.969 0.626 0.183 0.340
0.800 0.140 0.180 0.566 0.074 11.564 0.500 20.000 113.965 0.612 0.180 0.330
0.800 0.130 0.167 0.527 0.069 10.933 0500 20.000 113.945 0599 0.176 0.319
0.800 0.120 0.153 0.489 0.063 10.298 0.500 20.000 113.903 0.585 0.172 0.308
0.800 0.110 0.139 0.450 0.058 9.660 0500 20.000 113.849 0.571 0.168 0.296
0.800 0.100 0.126 0.410 0.053 9.022 0500 20.000 113.773 0.556 0.163 0.283
0.800 0.090 0.113 0.370 0.047 8.388 0500 20.000 113.675 0.541 0.159 0.271
0.800 0.080 0.100 0.330 0.043 7.755 0.500 20.000 113.550 0.526 0.155 0.258
0.800 0.070 0.087 0.288 0.038 7.130 0.500 20.000 113.396 0.510 0.150 0.244
0.800 0.060 0.075 0.246 0.033 6518 0500 20.000 113.210 0.494 0.146 0.230
0.800 0.050 0.063 0.204 0.029 5925 0.500 20.000 112.986 0.477 0.141 0.217
0.800 0.040 0.051 0.160 0.025 5358 0500 20.000 112.718 0.460 0.137 0.203
0.800 0.030 0.039 0.116 0.022 4819 0500 20.000 112.422 0.443 0.132 0.190
0.800 0.020 0.028 0.070 0.019 4352 0500 20.000 112.029 0425 0.127 0.179
0.800 0.010 0.017 0.049 0.011 3.228 0500 17.840 109.509 0.363 0.110 0.155

Table C.9: Optimization results for Fr, = 3.0, d/c = 0.8
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d/C Cm Cp sz(w CICLES e os hl 01 ¢1 k Sta S}
0.600 0.250 0.348 0.984 0.146 19.544 0.500 20.000 113.240 0.770 0.227 0.443
0.600 0.240 0.333 0.947 0.139 18.907 0.500 20.000 113.383 0.758 0.224 0.435
0.600 0.230 0.317 0.909 0.133 18283 0.500 20.000 113.457 0.746 0.220 0.428
0.600 0.220 0.301 0.872 0.126 17.637 0.500 20.000 113.587 0.734 0.216 0.419
0.600 0.210 0.286 0.834 0.120 16.989 0.500 20.000 113.701 0.722 0.212 0411
0.600 0.200 0.271 0.796 0.114 16.360 0.500 20.000 113.732 0.710 0.209 0.402
0.600 0.190 0.256 0.758 0.107 15706 0.500 20.000 113.810 0.697 0.205 0.393
0.600 0.180 0.241 0.721 0.101 15.040 0.500 20.000 113.898 0.684 0.201 0.384
0.600 0.170 0.226 0.683 0.095 14.361 0.500 20.000 113.994 0.671 0.197 0.374
0.600 0.160 0.212 0.645 0.089 13.691 0.500 20.000 114.030 0.658 0.193 0.364
0.600 0.150 0.197 0.606 0.083 13.009 0.500 20.000 114.091 0.644 0.189 0.353
0.600 0.140 0.183 0.568 0.077 12325 0.500 20.000 114.125 0.630 0.184 0.342
0.600 0.130 0.169 0.529 0.071 11.636 0.500 20.000 114.134 0.616 0.180 0.330
0.600 0.120 0.155 0.490 0.066 10.945 0500 20.000 114.125 0.601 0.176 0.318
0.600 0.110 0.141 0.451 0.060 10.254 0.500 20.000 114.090 0.586 0.172 0.306
0.600 0.100 0.128 0.411 0.055 9.557 0.500 20.000 114.041 0.570 0.167 0.293
0.600 0.090 0.114 0.371 0.049 8.857 0.500 20.000 113.977 0.554 0.163 0.279
0.600 0.080 0.101 0.330 0.044 8.161 0.500 20.000 113.884 0.538 0.158 0.265
0.600 0.070 0.088 0.289 0.039 7.471 0.500 20.000 113.752 0.521 0.153 0.250
0.600 0.060 0.076 0.247 0.035 6.790 0.500 20.000 113.589 0.504 0.148 0.235
0.600 0.050 0.063 0.205 0.030 6.125 0.500 20.000 113.384 0.486 0.143 0.220
0.600 0.040 0.051 0.161 0.026 5.487 0.500 20.000 113.124 0.468 0.138 0.205
0.600 0.030 0.040 0.117 0.022 4.879 0.500 20.000 112.837 0.449 0.133 0.190
0.600 0.020 0.028 0.073 0.019 4.350 0.500 20.000 112.429 0.429 0.128 0.177
0.600 0.010 0.017 0.047 0.011 3.294 0500 18.147 110.155 0.372 0.112 0.155

Table C.10: Optimization results for Fr. = 3.0, d/c = 0.6
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d/c C, Cp Crmae CfCLEs (o PR hy 04 b1 k Ste O
1.000 0.250 0.338 0.966 0.141 17.293 0.500 20.000 114.033 0.732 0.215 0.412
1.000 0.240 0.323 0.930 0.134 16.725 0.500 20.000 114.103 0.721 0.211 0.405
1.000 0.230 0.308 0.894 0.128 16.157 0.500 20.000 114.159 0.710 0.208 0.397
1.000 0.220 0.293 0.858 0.121 15.583 0.500 20.000 114.221 0.699 0.204 0.389
1.000 0.210 0.278 0.822 0.115 15.008 0.500 20.000 114.268 0.687 0.201 0.381
1.000 0.200 0.264 0.786 0.109 14.428 0.500 20.000 114.304 0.676 0.197 0.373
1.000 0.190 0.249 0.749 0.103 13.845 0.500 20.000 114.329 0.664 0.194 0.364
1.000 0.180 0.234 0.713 0.097 13.2565 0.500 20.000 114.350 0.652 0.190 0.355
1.000 0.170 0.220 0.676 0.091 12.667 0.500 20.000 114.354 0.639 0.187 0.346
1.000 0.160 0.206 0.638 0.085 12.077 0.500 20.000 114.349 0.627 0.183 0.336
1.000 0.150 0.192 0.601 0.079 11.483 0.500 20.000 114.325 0.614 0.179 0.326
1.000 0.140 0.178 0.563 0.073 10.885 0.500 20.000 114.290 0.601 0.176 0.316
1.000 0.130 0.165 0.525 0.068 10.292 0.500 20.000 114.236 0.588 0.172 0.306
1.000 0.120 0.151 0.487 0.062 9.691 0.500 20.000 114.167 0.574 0.168 0.295
1.000 0.110 0.138 0.448 0.057 9.099 0.500 20.000 114.077 0.561 0.164 0.283
1.000 0.100 0.125 0.409 0.052 8.504 0.500 20.000 113.964 0.546 0.160 0.272
1.000 0.090 0.112 0.369 0.047 7.916 0.500 20.000 113.829 0.532 0.156 0.260
1.000 0.080 0.099 0.329 0.042 7.336 0.500 20.000 113.666 0.517 0.152 0.248
1.000 0.070 0.087 0.288 0.037 6.764 0.500 20.000 113.473 0.502 0.148 0.235
1.000 0.060 0.074 0.246 0.033 6.208 0.500 20.000 113.245 0.487 0.144 0.223
1.000 0.050 0.062 0.203 0.029 5.674 0.500 20.000 112.978 0.471 0.140 0.210
1.000 0.040 0.051 0.160 0.025 5.163 0.500 20.000 112.674 0.455 0.135 0.198
1.000 0.030 0.039 0.115 0.022 4.698 0500 20.000 112.319 0438 0.131 0.187
1.000 0.020 0.028 0.070 0.018 4291 0500 20.000 111.895 0.421 0.126 0.178
1.000 0.010 0.017 0.050 0.010 3.163 0.500 17.695 109.213 0.357 0.109 0.155

Table C.11: Optimization results for Fr, = 4.0, d/c = 1.0
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d/c Cs. Cp szm Cires  Qemus hi 61 1 k St, o
0.800 0.250 0.342 0.973 0.142 18.042 0.500 20.000 113.763 0.745 0.219 0.423
0.800 0.240 0.327 0936 0.136 17.456 0.500 20.000 113.846 0.733 0.215 0.416
0.800 0.230 0.311 0.900 0.129 16.860 0.500 20.000 113.940 0.722 0.212 0.408
0.800 0.220 0.296 0.863 0.123 16.270 0.500 20.000 114.004 0.711 0.208 0.400
0.800 0.210 0.281 0.827 0.117 15.667 0.500 20.000 114.086 0.699 0.205 0.391
0.800 0.200 0.266 0.790 0.111 15.066 0.500 20.000 114.139 0.687 0.201 0.383
0.800 0.190 0.252 0.753 0.104 14.455 0.500 20.000 114.195 0.675 0.198 0.374
0.800 0.180 0.237 0.716 0.098 13.845 0.500 20.000 114.224 0.663 0.194 0.365
0.800 0.170 0.223 0.678 0.092 13.235 0.500 20.000 114.228 0.650 0.190 0.355
0.800 0.160 0.208 0.641 0.086 12.617 0.500 20.000 114.246 0.637 0.186 0.346
0.800 0.150 0.194 0.603 0.080 11.997 0.500 20.000 114.244 0.624 0.183 0.336
0.800 0.140 0.180 0.565 0.075 11.368 0.500 20.000 114.233 0.611 0.179 0.325
0.800 0.130 0.166 0.527 0.069 10.744 0.500 20.000 114.197 0.597 0.175 0.314
0.800 0.120 0.153 0.488 0.063 10.111 0.500 20.000 114.160 0.583 0.171 0.303
0.800 0.110 0.139 0.449 0.058 9.481 0.500 20.000 114.093 0.569 0.167 0.291
0.800 0.100 0.126 0.410 0.053 8.855 0.500 20.000 113.996 0.554 0.163 0.279
0.800 0.090 0.113 0.370 0.048 8227 0.500 20.000 113.891 0.540 0.158 0.266
0.800 0.080 0.100 0.329 0.043 7.605 0.500 20.000 113.749 0.524 0.154 0.253
0.800 0.070 0.087 0.288 0.038 6.991 0.500 20.000 113.581 0.509 0.150 0.240
0.800 0.060 0.075 0.246 0.033 6.392 0.500 20.000 113.374 0.493 0.145 0.227
0.800 0.050 0.063 0.204 0.029 5.815 0.500 20.000 113.130 0.476 0.141 0.213
0.800 0.040 0.0561 0.160 0.025 5.266 0.500 20.000 112.834 0.459 0.136 0.200
0.800 0.030 0.039 0.115 0.022 4.752 0.500 20.000 112.499 0.442 0.131 0.188
0.800 0.020 0.028 0.070 0.019 4.306 0500 20.000 112.079 0.424 0.127 0.177
0.800 0.010 0.017 0.049 0.011 3.177 0.500 17.821 109.563 0.362 0.110 0.153

Table C.12: Optimization results for Fre. = 4.0, d/c = 0.8
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d/C Cs Cp sz“ CZ'LES Qepos h1 o b1 k St e
0.600 0.250 0.347 0.981 0.146 19.131 0.500 20.000 113.671 0.766 0.225 0.436
0.600 0.240 0.331 0.945 0.140 18.494 0.500 20.000 113.833 0.755 0.222 0.428
0.600 0.230 0.316 0.907 0.133 17.871 0.500 20.000 113.930 0.743 0.218 0.420
0.600 0.220 0.300 0.870 0.127 17.248 0.500 20.000 114.002 0.731 0.214 0.412
0.600 0.210 0.285 0.831 0.120 16.648 0.500 20.000 113.976 0.718 0.211 0.405
0.600 0.200 0.270 0.795 0.115 15.942 0.500 20.000 114.261 0.707 0.207 0.394
0.600 0.190 0.255 0.758 0.109 15.277 0.500 20.000 114.400 0.694 0.203 0.384
0.600 0.180 0.240 0.719 0.101 14.704 0.500 20.000 114.227 0.681 0.199 0.377
0.600 0.170 0.225 0.682 0.096 14.001 0.500 20.000 114.419 0.668 0.195 0.366
0.600 0.160 0.211 0.644 0.089 13.348 0.500 20.000 114.429 0.654 0.191 0.356
0.600 0.150 0.196 0.606 0.084 12.632 0.500 20.000 114.600 0.641 0.187 0.344
0.600 0.140 0.182 0.568 0.078 11.971 0.500 20.000 114.589 0.627 0.183 0.333
0.600 0.130 0.168 0.528 0.071 11.356 0.500 20.000 114.403 0.612 0.179 0.324
0.600 0.120 0.154 0.490 0.066 10.642 0.500 20.000 114.482 0.598 0.174 0.311
0.600 0.110 0.141 0.450 0.060 9.981 0.500 20.000 114.387 0.583 0.170 0.299
0.600 0.100 0.127 0.410 0.055 9.309 0.500 20.000 114.285 0.567 0.166 0.287
0.600 0.090 0.114 0.370 0.049 8.622 0.500 20.000 114.215 0.552 0.161 0.273
0.600 0.080 0.101 0.330 0.044 7.936 0.500 20.000 114.121 0.535 0.157 0.259
0.600 0.070 0.088 0.289 0.039 7.267 0.500 20.000 113.959 0.519 0.152 0.245
0.600 0.060 0.075 0.247 0.035 6.613 0.500 20.000 113.756 0.502 0.147 0.230
0.600 0.050 0.063 0.205 0.030 5968 0.500 20.000 113.537 0.484 0.143 0.215
0.600 0.040 0.0561 0.161 0.026 5.358 0.500 20.000 113.241 0.466 0.138 0.201
0.600 0.030 0.040 0.117 0.022 4.78 0.500 20.000 112.905 0.447 0.133 0.187
0.600 0.020 0.028 0.073 0.019 4.282 0.500 20.000 112.481 0428 0.127 0.175
0.600 0.010 0.017 0.051 0.011 3.137 0500 17.763 109.823 0.363 0.110 0.151

Table C.13: Optimization results for Fr. = 4.0, d/c = 0.6
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djc  Co  Cp,  Co.— Carps Oenwe I o, o1 k  St, ©
1.000 0250 0.338 0966 0.141 17171 0500 20.000 114.162 0.731 0.214 0.410
1.000 0240 0.323 0930 0.134 16.605 0500 20.000 114.230 0.720 0211 0.403
1.000 0230 0.308 0.8904 0.128 16.034 0500 20.000 114.294 0.709 0.207 0.395
1.000 0.220 0.293 0.858 0.121 15.465 0500 20.000 114.348 0.698 0204 0.387
1.000 0210 0278 0.822 0.115 14.891 0500 20.000 114.395 0.686 0.200 0.379
1.000 0.200 0.263 0.785 0.109 14.312 0.500 20.000 114.437 0.675 0.197 0.370
1.000 0.190 0249 0.749 0.103 13.732 0.500 20.000 114.459 0.663 0.193 0.362
1.000 0.180 0234 0.712 0.097 13.148 0.500 20.000 114.470 0.651 0.190 0.353
1.000 0.170 0.220 0.675 0.091 12.557 0500 20.000 114.484 0.638 0.186 0.343
1.000 0.160 0.206 0.638 0.085 11.972 0.500 20.000 114.472 0.626 0.183 0.334
1.000 0.150 0.192 0.601 0.079 11.382 0.500 20.000 114.445 0.613 0.179 0.324
1.000 0.140 0.178 0563 0.073 10.786 0.500 20.000 114.410 0.600 0.175 0.314
1.000 0.130 0.164 0525 0.068 10.196 0500 20.000 114.354 0.587 0.171 0.303
1.000 0.120 0.151 0.487 0.062 9.602 0500 20.000 114.277 0574 0.168 0.292
1.000 0.110 0.138 0.448 0.057 9.013 0500 20.000 114.184 0560 0.164 0.281
1.000 0.100 0.125 0.409 0.052 8422 0500 20.000 114.068 0.546 0.160 0.269
1.000 0.090 0.112 0369 0047 7.841 0500 20.000 113.926 0.531 0.156 0.258
1.000 0.080 0.099 0.329 0.042 7.266 0500 20.000 113.757 0.517 0.152 0.246
1.000 0.070 0.087 0.288 0.037 6701 0.500 20.000 113.556 0.502 0.148 0.233
1.000 0.060 0.074 0.246 0033 6.152 0500 20.000 113.320 0.486 0.144 0.221
1.000 0.050 0.062 0.203 0.029 5.625 0.500 20.000 113.043 0.471 0.139 0.209
1.000 0.040 0.051 0.160 0025 5127 0.500 20.000 112.719 0.454 0.135 0.197
1.000 0.030 0.039 0.115 0.022 4.669 0.500 20.000 112.355 0.438 0.130 0.186
1.000 0.020 0028 0.070 0018 4271 0500 20.000 111.919 0421 0.126 0.177
1.000 0.010 0.017 0.054 0.010 3.057 0500 17.374 108.916 0.351 0.107 0.152

Table C.14: Optimization results for Fr. = 5.0, d/c = 1.0
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djc  Cy  Cp, Co Cape Genee M o, b1 kE_ St, ©
0.800 0.250 0.3d2 0972 0.142 17.867 0.500 20.000 113.968 0.743 0.218 0.420
0.800 0.240 0.326 0.935 0.135 17.324 0.500 20.000 113.922 0.732 0215 0.413
0.800 0.230 0.311 0.899 0.129 16.696 0.500 20.000 114.120 0.721 0.211 0.404
0.800 0.220 0.296 0.862 0.123 16.117 0.500 20.000 114.153 0.709 0.208 0.397
0.800 0.210 0.281 0.826 0116 15533 0.500 20.000 114.187 0.697 0.204 0.389
0.800 0.200 0.266 0.789 0.110 14.933 0.500 20.000 114.244 0.686 0.200 0.380
0.800 0.190 0.251 0.752 0104 14.321 0.500 20.000 114.313 0.674 0.197 0.371
0.800 0.180 0.237 0.715 0.098 13.718 0.500 20.000 114.331 0.661 0.193 0.362
0.800 0.170 0.222 0.678 0.092 13.096 0.500 20.000 114.376 0.649 0.189 0.352
0.800 0.160 0.208 0.640 0.086 12492 0.500 20.000 114.362 0.636 0.186 0.343
0.800 0.150 0.194 0.603 0.080 11.867 0.500 20.000 114.382 0.623 0.182 0.333
0.800 0.140 0.180 0.565 0.074 11.244 0.500 20.000 114.367 0.610 0.178 0.322
0.800 0.130 0.166 0.526 0.069 10.620 0.500 20.000 114.339 0.596 0.174 0.311
0.800 0.120 0.152 0.488 0.063 10.006 0.500 20.000 114.258 0.582 0.170 0.300
0.800 0.110 0.139 0.449 0058 9.378 0500 20.000 114.197 0.568 0.166 0.288
0.800 0.100 0.126 0.409 0.053 8749 0.500 20.000 114.121 0.553 0.162 0.276
0.800 0.090 0.113 0.370 0.048 8.132 0.500 20.000 113.996 0.539 0.158 0.264
0.800 0.080 0.100 0.329 0043 7.516 0.500 20.000 113.853 0.523 0.154 0.251
0.800 0.070 0.087 0.288 0.038 6.913 0.500 20.000 113.669 0.508 0.149 0.238
0.800 0.060 0.075 0.246 0.033 6.323 0.500 20.000 113.455 0.492 0.145 0.224
0.800 0.050 0.063 0.203 0029 5756 0.500 20.000 113.196 0.475 0.141 0.211
0.800 0.040 0.051 0.160 0025 5217 0500 20.000 112.890 0.459 0.136 0.199
0.800 0.030 0.039 0.115 0022 4718 0.500 20.000 112.535 0.441 0.131 0.187
0.800 0.020 0.028 0.070 0.019 4.284 0.500 20.000 112.099 0423 0.126 0.177
0.800 0.010 0.017 0.051 0010 3.125 0.500 17.630 109.338 0.358 0.108 0.153

Table C.15: Optimization results for Fr. = 5.0, d/c = 0.8
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d/C C, Cp szm CCCLES Oeppon hq 61 ol k St, ©
0.600 0.250 0.346 0976 0.143 19.098 0.500 20.000 113.241 0.761 0.225 0.438
0.600 0.240 0.330 0.940 0.137 18.435 0.500 20.000 113.496 0.750 0.221 0.429
0.600 0.230 0.315 0.906 0.133 17.659 0.500 20.000 114.093 0.740 0.217 0.417
0.600 0.220 0.300 0.866 0.125 17.183 0.500 20.000 113.719 0.727 0.214 0.413
0.600 0.210 0.284 0.833 0.122 16.318 0.500 20.000 114.526 0.717 0.209 0.397
0.600 0.200 0.269 0.794 0.114 15.735 0.500 20.000 114.432 0.704 0.206 0.390
0.600 0.190 0.254 0.756 0.108 15.120 0.500 20.000 114.432 0.691 0.202 0.382
0.600 0.180 0.240 0.719 0.102 14.442 0500 20.000 114.596 0.679 0.198 0.371
0.600 0.170 0.225 0.683 0.097 13.726 0.500 20.000 114.842 0.666 0.194 0.360
0.600 0.160 0.210 0.644 0.090 13.113 0.500 20.000 114.743 0.653 0.190 0.351
0.600 0.150 0.196 0.605 0.083 12.492 0.500 20.000 114.635 0.639 0.186 0.342
0.600 0.140 0.182 0.567 0.077 11.829 0.500 20.000 114.646 0.625 0.182 0.331
0.600 0.130 0.168 0.528 0071 11.180 0.500 20.000 114.582 0.610 0.178 0.320
0.600 0.120 0.154 0.489 0.066 10.479 0.500 20.000 114.634 0.596 0.174 0.307
0.600 0.110 0.140 0.450 0.060 9.840 0.500 20.000 114.493 0.5381 0.169 0.296
0.600 0.100 0.127 0410 0.054 9.199 0.500 20.000 114.326 0.565 0.165 0.284
0.600 0.090 0.114 0.370 0.049 8.493 0.500 20.000 114.329 0.550 0.161 0.270
0.600 0.080 0.101 0.330 0.044 7.834 0.500 20.000 114.177 0.534 0.156 0.256
0.600 0.070 0.088 0.288 0.039 7.187 0.500 20.000 113.981 0.517 0.152 0.243
0.600 0.060 0.075 0.247 0.035 6.510 0.500 20.000 113.862 0.500 0.147 0.227
0.600 0.0560 0.063 0.2056 0.030 5.891 0.500 20.000 113.596 0.483 0.142 0.213
0.600 0.040 0.051 0.161 0.026 5.293 0.500 20.000 113.293 0.465 0.137 0.199
0.600 0.030 0.039 0.117 0.022 4.741 0.500 20.000 112.932 0.446 0.132 0.185
0.600 0.020 0.028 0.073 0.019 4.257 0.500 20.000 112.479 0.427 0.127 0.174
0.600 0.010 0.017 0.052 0.011 3.103 0.500 17.709 109.774 0.362 0.109 0.150

Table C.16: Optimization results for Fr. = 5.0, dfc = 0.6
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d/C CI Cp szaz CJ;LES (8 P3N hl 91 (}51 k Sta ©
1.000 0.250 0.338 0.965 0.140 17.080 0.500 20.000 114.252 0.730 0.213 0.409
1.000 0.240 0.323 0.929 0.134 16.522 0.500 20.000 114.301 0.719 0.210 0.401
1.000 0.230 0.308 0.893 0.128 15950 0.500 20.000 114.376 0.708 0.207 0.393
1.000 0.220 0.293 0.857 0.121 15.383 0.500 20.000 114.426 0.697 0.203 0.385
1.000 0.210 0.278 0.821 0.115 14.811 0.500 20.000 114.474 0.685 0.200 0.377
1.000 0.200 0.263 0.785 0.109 14.236 0.500 20.000 114.510 0.674 0.197 0.369
1.000 0.190 0.249 0.748 0.103 13.659 0.500 20.000 114.532 0.662 0.193 0.360
1.000 0.180 0.234 0.712 0.097 13.076 0.500 20.000 114.547 0.650 0.190 0.351
1.000 0.170 0.220 0.675 0.091 12.489 0.500 20.000 114.554 0.638 0.186 0.342
1.000 0.160 0.206 0.638 0.085 11.906 0.500 20.000 114.542 0.625 0.182 0.332
1.000 0.150 0.192 0.600 0.079 11.318 0.500 20.000 114.515 0.613 0.179 0.323
1.000 0.140 0.178 0.563 0.073 10.725 0.500 20.000 114.479 0.600 0.175 0.312
1.000 0.130 0.164 0525 0.068 10.139 0.500 20.000 114.419 0.586 0.171 0.302
1.000 0.120 0.151 0487 0.062 9.548 0.500 20.000 114.340 0.573 0.167 0.291
1.000 0.110 0.138 0.448 0.057 8.963 0.500 20.000 114.240 0.559 0.164 0.280
1.000 0.100 0.124 0409 0.052 8.374 0.500 20.000 114.125 0.545 0.160 0.268
1.000 0.090 0.112 0.369 0.047 7.797 0.500 20.000 113.979 0.531 0.156 0.256
1.000 0.080 0.099 0329 0.042 7.226 0.500 20.000 113.806 0.516 0.152 0.244
1.000 0.070 0.086 0.288 0.037 6.665 0.500 20.000 113.600 0.501 0.148 0.232
1.000 0.060 0074 0.246 0.033 6.121 0.500 20.000 113.359 0486 0.143 0.220
1.000 0.050 0.062 0.203 0.029 5.598 0.500 20.000 113.077 0470 0.139 0.208
1.000 0.040 0.051 0.160 0.025 5.105 0.500 20.000 112.746 0.454 0.135 0.196
1.000 0.030 0.039 0.115 0.021 4.653 0.500 20.000 112.373 0438 0.130 0.186
1.000 0.020 0.028 0.070 0.018 4.261 0.500 20.000 111.931 0421 0.126 0.177
1.000 0.010 0.017 0.040 0.015 3.613 0.500 19.579 111.485 0.395 0.118 0.160

Table C.17: Optimization results for Fr. = 6.0, d/c = 1.0
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d/C Cx Cp szu CZLES Qeae h1 01 ¢1 k Sta ©
0.800 0.250 0.341 0971 0.142 17.769 0.500 20.000 114.030 0.742 0.217 0418
0.800 0.240 0.326 0935 0.136 17.193 0.500 20.000 114.096 0.731 0.214 0411
0.800 0.230 0.311 0.898 0.129 16.633 0.500 20.000 114.089 0.719 0.211 0.404
0.800 0.220 0.296 0.862 0.123 15999 0.500 20.000 114.295 0.708 0.207 0.394
0.800 0.210 0.281 0.825 0.117 15.427 0.500 20.000 114.300 0.696 0.204 0.387
0.800 0.200 0.266 0.788 0.110 14.850 0.500 20.000 114.296 0.684 0.200 0.379
0.800 0.190 0.251 0.751 0.104 14.244 0.500 20.000 114.356 0.672 0.196 0.370
0.800 0.180 0.236 0.715 0.098 13.614 0.500 20.000 114.464 0.660 0.193 0.360
0.800 0.170 0.222 0.677 0.092 13.011 0.500 20.000 114460 0.648 0.189 0.351
0.800 0.160 0.208 0.640 0.086 12.407 0.500 20.000 114.451 0.635 0.185 0.341
0.800 0.150 0.194 0.602 0.080 11.792 0.500 20.000 114.450 0.622 0.182 0.331
0.800 0.140 0.180 0.564 0.074 11.168 0.500 20.000 114.448 0.609 0.178 0.320
0.800 0.130 0.166 0.526 0.069 10.542 0.500 20.000 114431 0.595 0.174 0.309
0.800 0.120 0.152 0.487 0.063 9.938 0.500 20.000 114.332 0.581 0.170 0.299
0.800 0.110 0.139 0449 0.058 9.312 0.500 20.000 114.270 0.567 0.166 0.287
0.800 0.100 0.125 0409 0.053 8.689 0.500 20.000 114.189 0.553 0.162 0.274
0.800 0.090 0.112 0.370 0.048 8.077 0.500 20.000 114.0568 0.538 0.158 0.262
0.800 0.080 0.100 0.329 0.043 7.467 0.500 20.000 113.905 0.523 0.153 0.249
0.800 0.070 0.087 0.288 0.038 6.868 0.500 20.000 113.718 0.507 0.149 0.236
0.800 0.060 0.075 0.246 0.033 6.285 0.500 20.000 113.494 0.491 0.145 0.223
0.800 0.050 0.063 0.203 0.029 5.724 0.500 20.000 113.229 0.475 0.140 0.210
0.800 0.040 0.051 0.160 0.025 5.191 0.500 20.000 112.917 0.458 0.136 0.198
0.800 0.030 0.039 0.115 0.022 4.699 0.500 20.000 112.551 0.441 0.131 0.186
0.800 0.020 0.028 0.070 0.019 4.271 0.500 20.000 112.109 0.423 0.126 0.176

Table C.18: Optimization results for Fr, = 6.0, d/c = 0.8
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Appendix D

Optimization Results - Power

*
Extraction

djc  C, Cy Co Corne Qo Ry o, o1 k St, ©

oo -0.010 -0.004 0.051 0.001 1.192 0.500 10.210 99.147 0.172 0.054 0.121
oo -0.020 -0.013 0.135 0.005 3.220 0500 16.681 104.988 (.279 0.087 0.202
oo -0.030 -0.023 0.205 0.011 4.798  0.500 20.000 107.849 0.331 0.103 0.253
oo -0.040 -0.032 0.270 0.012 5.469 0.500 20.000 106.706 0.313 0.098 0.305
oo -0.050 -0.040 0.339 0.014 6.215 0.500 20.000 105.409 0.294 0.093 0.369
oo -0.060 -0.048 0.416 0.018 7.036 0.500 20.000 103.907 0.274 0.088 0.448
oo -0.070 -0.056 0.503 0.023 7.939 0.500 20.000 102.151 0.253 0.083 0.548
o0 -0.080 -0.063 0.605 0.032 8.954 0.500 20.000 100.027 0.230 0.077 0.680
oo -0.090 -0.069 0.730 0.045 10.149 0.500 20.000 97.275 0.204 0.069 0.870

Table D.1: Optimization results for Fr. = 1.0, d/c = co
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djc  C. Gy Coil Corne Genn T A o1 r St. ©
1.000 -0.010 -0.004 0.050 0.001 1.224 0.500 10323 99.220 0.174 0.055 0.123
1.000 -0.020 -0.013 0.132 0.004 2971 0.500 15.752 103.920 0.260 0.082 0.199
1.000 -0.030 -0.022 0.200 0.008 4417 0.500 18.968 106.644 0.311 0.097 0.248
1.000 -0.040 -0.031 0.263 0.011 5.274 0.500 20.000 107.181 0.318 0.099 0.290
1.000 -0.050 -0.040 0.329 0.012 5.880 0.500 20.000 106.585 0.301 0.095 0.341
1.000 -0.060 -0.048 0.401 0.015 6.561 0.500 20.000 105.934 0.283 0.089 0.405
1.000 -0.070 -0.055 0478 0.019 7.327 0.500 20.000 105.190 0.264 0.084 0.485
1.000 -0.080 -0.061 0.563 0.024 8.180 0.500 20.000 104.333 0.244 0.078 0.586
1.000 -06.090 -0.067 0.659 0.031 9.144 0.500 20.000 103.415 0.221 0.072 0.721
Table D.2: Optimization results for Fro = 1.0, d/c = 1.0
djc  Co G G Corse Genn Wi A A k. St. ©
0.800 -0.010 -0.003 0.055 0.003 2360 0.465 14.452 104.282 0.272 0.079 0.163
0.800 -0.020 -0.013 0.130 0.004 3.167 0.500 16.332 104.735 0.269 0.084 0.205
0.800 -0.030 -0.022 0.197 0.009 4599 0.500 19.359 107.409 0.316 0.098 0.254
0.800 -0.040 -0.030 0.260 0.010 5.388 0.500 20.000 107.743 0.312 0.097 0.302
0.800 -0.050 -0.038 0.326 0.012 6.086 0.500 20.000 107.418 0.293 0.091 0.363
0.800 -0.060 -0.046 0.397 0.014 6.888 0.500 20.000 107.042 0.273 0.085 0.441
0.800 -0.070 -0.052 0474 0.018 7.794 0.500 20.000 106.624 0.251 0.079 0.542
0.800 -0.080 -0.057 0.559 0.024 8.820 0.500 20.000 106.149 0.227 0.072 0.677
0.800 -0.090 -0.060 0.654 0.031 9.999 0.500 20.000 105.617 0.201 0.064 0.867
Table D.3: Optimization results for Fr. = 1.0, d/c = 0.8
djc G, C, Choi Curme Genn M o 1 E St, ©
0.600 -0.010 -0.004 0.049 0.001 1.313 0.500 10.504 99.949 0.173 0.055 0.133
0.600 -0.020 -0.012 0.127 0.004 3.385 0.500 16.647 105.449 0.269 0.084 0.219
0.600 -0.030 -0.021 0.193 0.009 4.996 0.500 20.000 108.608 0.321 0.099 0.272
0.600 -0.040 -0.029 0.256 0010 5.799 0.500 20.000 108.623 0.298 0.092 0.339
0.600 -0.050 -0.036 0.323 0.012 6.766 0.500 20.000 108.635 0.274 0.085 0.431
0.600 -0.060 -0.042 0.395 0.015 7.890 0.500 20.000 108.638 0.248 0.077 0.555
0.600 -0.070 -0.046 0.475 0.019 9.182 0.500 20.000 108.629 0.219 0.068 0.731
0.600 -0.080 -0.048 0.564 0.025 10.692 0.500 20.000 108.476 0.187 0.058 0.997
0.600 -0.090 -0.046 0.669 0.035 12.488 0.500 20.000 108.387 0.150 0.046 1.455

Table D.4: Optimization results for Fr. = 1.0, d/e = 0.6
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d/c C, Cp sz” CILES Lo . hy 6, b1 k St, e
1.000 -0.010 -0.004 0.0560 0.001 1.441 0.500 11.994 101.784 0.204 0.064 0.124
1.000 -0.020 -0.013 0.139 0.008 3.712 0.500 18.728 108.396 0.318 0.098 0.204
1.000 -0.030 -0.022 0.205 0.011 4.812 0.500 20.000 109.198 0.325 0.100 0.259
1.000 -0.040 -0.031 0.269 0.012 5.667 0.500 20.000 108.450 0.302 0.093 0.327
1.000 -0.050 -0.038 0.340 0.014 6.643 0.500 20.000 107.609 0.278 0.087 0417
1.000 -0.060 -0.045 0.419 0.018 7.758 0.500 20.000 106.494 0.252 0.079 0.538
1.000 -0.070 -0.050 0.511 0.025 9.047 0.500 20.000 105.060 0.223 0.071 0.709
1.000 -0.080 -0.054 0.623 0.035 10.592 0.500 20.000 103.225 0.189 0.061 0.980
1.000 -0.090 -0.053 0.779 0.064 12.685 0.500 20.000 100.313 0.144 0.048 1.537

Table D.5: Optimization results for Fr. = 2.0, d/c = 1.0

d/C C, Cp C'zmu Crrps Ceman hi 01 " k St, ©
0.800 -0.010 -0.004 0.051 0.002 1.603 0.500 12,945 102.967 0.222 0.069 0.126
0.800 -0.020 -0.013 0.140 0.009 3.813 0.500 19.024 108.959 0.323 0.099 0.206
0.800 -0.030 -0.022 0.205 0.011 4.908 0.500 20.000 109.401 0.321 0.098 0.267
0.800 -0.040 -0.030 0.270 0.012 5.867 0.500 20.000 108.592 0.297 0.092 0.345
0.800 -0.050 -0.038 0.342 0.014 6.964 0.500 20.000 107.614 0.270 0.084 0.450
0.800 -0.060 -0.044 0.423 0.019 8.218 0.500 20.000 106.341 0.241 0.076 0.595
0.800 -0.070 -0.048 0.519 0.026 9.682 0.500 20.000 104.661 0.208 0.067 0.811
0.800 -0.080 -0.050 0.643 0.039 11.507 0.500 20.000 102.265 0.169 0.055 1.189
0.800 -0.090 -0.044 0.848 0.067 14.384 0.500 20.000 97.624 0.109 0.037 2.302

Table D.6: Optimization results for Fr. = 2.0, d/c = 0.8

dfe Cy Cp Coue Crins Ceman hy 61 &1 k Stq ©
0.600 -0.010 -0.004 0.050 0.002 1.562 0.500 12.725 102.912 0.216 0.068 0.126
0.600 -0.020 -0.013 0.140 0.009 3.947 0500 19.335 109.595 0.327 0.100 0.211
0.600 -0.030 -0.022 0.204 0.011 5.084 0500 20.000 109.618 0.316 0.097 0.281
0.600 -0.040 -0.030 0.270 0.012 6.210 0.500 20.000 108.610 0.288 0.08 0.377
0.600 -0.050 -0.037 0.345 0.015 7.496 0.500 20.000 107.365 0.2568 0.080 0.508
0.600 -0.060 -0.042 0432 0.021 8.986 0.500 20.000 105.676 0.224 0.071 0.701
0.600 -0.070 -0.045 0.540 0.030 10.785 0.500 20.000 103.300 0.184 0.060 1.021
0.600 -0.080 -0.044 0.700 0.050 13.298 0.500 20.000 99.321 0.131 0.044 1.767
0.600 -0.090 -0.030 0.856 0.075 16.028 0.285 19.976 90.187 0.137 0.030 3.429

Table D.7: Optimization results for Fr. = 2.0, d/¢c = 0.6
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d/C Cy Cp szal Crips  Cepus hi 04 1 k St, ©
1.000 -0.010 -0.004 0.050 0.001 1.429 0.500 11.826 101.400 0.201 0.063 0.124
1.000 -0.020 -0.013 0.138 0.008 3.663 0.500 18.446 107.770 0.312 0.096 0.205
1.000 -0.030 -0.022 0.205 0.011 4.831 0.500 20.000 108.751 0.326 0.100 0.259
1.000 -0.040 -0.031 0.270 0.012 5.658 0.500 20.000 107.769 0.304 0.095 0.325
1.000 -0.050 -0.039 0.341 0.014 6.595 0.500 20.000 106.591 0.281 0.088 0.410
1.000 -0.060 -0.046 0.420 0.018 7.642 0.500 20.000 105.162 0.256 0.082 0.521
1.000 -0.070 -0.052 0.512 0.025 8.833 0.500 20.000 103.318 0.229 0.074 0.674
1.000 -0.080 -0.056 0.623 0.035 10.232 ©0.500 20.000 100.860 0.198 0.065 0.903
1.000 -0.090 -0.058 0.776 0.053 12.040 0.500 20.000 97.077 0.159 0.064 1.322

Table D.8: Optimization results for Fr. = 3.0, d/c = 1.0

dfe Cy Cp Cree Crips oo hq 6 1 k St, e
0.800 -0.010 -0.004 0.051 0.002 1.628 0.500 13.019 102.893 0.224 0.070 0.127
0.800 -0.020 -0.013 0.138 0.008 3.739 0.500 18.642 108.094 0.315 0.097 0.207
0.800 -0.030 -0.022 0.205 0.011 4.903 0.500 20.000 108.819 0.323 0.100 0.265
0.800 -0.040 -0.031 0.270 0.012 5.802 0.500 20.000 107.745 0.300 0.093 0.338
0.800 -0.050 -0.038 0.342 0.014 6.815  0.500 20.000 106.423 0.275 0.087 0.432
0.800 -0.060 -0.045 0.423 0.019 7.953 0.500 20.000 104.805 0.249 0.079 0.558
0.800 -0.070 -0.051 0.518 0.026 9.252 0.500 20.000 102.646 0.219 0.071 0.736
0.800 -0.080 -0.054 0.638 0.038 10.804 0.500 20.000 99.670 0.185 0.062 1.017
0.800 -0.090 -0.054 0.820 0.062 12.975 0.500 20.000 94.477 0.140 0.049 1.622

Table D.9: Optimization results for Fr. = 3.0, d/c = 0.8

d/C Ca; Cp Zmaz CILES [0 P h] 01 ¢1 k Sta (<]
0.600 -0.010 -0.004 0.051 0.002 1.672 0.500 13.101 102.894 0.225 0.070 0.130
0.600 -0.020 -0.013 0.139 0.009 3.824 0.500 18.845 108.530 0.318 0.098 0.210
0.600 -0.030 -0.022 0.205 0.011 5.027 0.500 20.000 108.858 0.319 0.098 0.275
0.600 -0.040 -0.030 0.271 0.012 6.037 0.500 20.000 107.596 0.294 0.092 0.359
0.600 -0.050 -0.038 0.345 0.015 7.173 0.500 20.000 106.024 0.267 0.084 0.470
0.600 -0.060 -0.044 0.430 0.020 8.456 0.500 20.000 103.973 0.237 0.076 0.622
0.600 -0.070 -0.049 0.534 0.029 9.946 0.500 20.000 101.249 0.204 0.067 0.851
0.600 -0.080 -0.052 0.676 0.045 11.841 0.500 20.000 97.077 0.164 0.056 1.264
0.600 -0.090 -0.046 0.812 0.063 14.115 0.370 19.835 99.611 0.171 0.060 1.962

Table D.10: Optimization resuits for Fre = 3.0, d/c = 0.6
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dfe Comee Crres Cepas hi St, o
1.000 0.050  0.001 1.385  0.500 0.061 0.124
1.000 0.137 0.008 3.615 0.500 0.095 0.205
1.000 0.205 0.011 4.845 0.500 0.101 0.259
1.000 0.270  0.012 5.658 0.500 0.095 0.324
1.000 0.341 0.014 6.572 0.500 0.089 0.407
1.000 0.420 0.018 7.594 0.500 0.083 0.514
1.000 0.511 0.025 8.742 0.500 0.075 0.659
1.000 0.622 0.035 10.077 0.500 0.067 0.871
1.000 0.772  0.053 11.768 0.500 0.057 1.238

Table D.11: Optimization results for Fr. = 4.0, d/¢c = 1.0

d/C Zmaz C-’L'LES Yepmar hy Stq e
0.800 0.061 0.002 1.653 0.500 0.070 0.129
0.800 0.138 0.008 3.682 0.500 0.096 0.207
0.800 0.205 0.011 4.908 0.500 0.100 0.265
0.800 0.270  0.012 5.781 0.500 0.094 0.335
0.800 0.342 0.014 6.764 0.500 0.088 0.426
0.800 0.423 0.019 7.859 0.500 0.081 0.545
0.800 0.517 0.026 9.097 0.500 0.073 0.710
0.800 0.635 0.037 10.556 0.500 0.064 0.961
0.800 0.808 0.060 12.523 0.500 0.063 1.454

Table D.12: Optimization results for Fr. = 4.0, d/c = 0.8

d/C szuz CZL‘LES Ue oz hl Sta 9
0.600 0.051 0.002 1.652  0.500 0.070 0.128
0.600 0.137 0.008 3.739 0.500 0.095 0.211
0.600 0.205 0.011 5.017  0.500 0.099 0.273
0.600 0.271 0.012 5987 0.500 0.093 0.353
0.600 0344 0.015 7.070 0.500 0.086 0.457
0.600 0.429 0.020 8.288 0.500 0.078 0.598
0.600 0.531 0.029 9.684 0.500 0.070 0.802
0.600 0.668 0.044 11.410 0.500 0.060 1.146
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Table D.13: Optimization results for Fr. = 4.0, d/c = 0.6



djc  Cn Oy Coni Coine Genn Wi kK St. ©
1.000 -0.010 -0.004 0.050 0.001 1.376  0.500 0.193 0.061 0.125
1.000 -0.020 -0.013 0.137 0.007 3.570  0.500 0.303 0.094 0.206
1.000 -0.030 -0.022 0.205 0.011 4.850 0.500 0.326 0.101 0.259
1.000 -0.040 -0.031 0.270 0.012 5.655 0.500 0.305 0.095 0.324
1.000 -0.060 -0.039 0.341 0.014 6.558 0.500 0.283 0.089 0.405
1.000 -0.060 -0.046 0.420 0.018 7.568 0.500 0.259 0.083 0.510
1.000 -0.070 -0.053 0.511 0.025 8.696 0.500 0.233 0.076 0.651
1.000 -0.080 -0.058 0.621 0.035 10.005 0.500 0.204 0.068 0.855
1.000 -0.090 -0.061 0.770 0.052 11.648 0.500 0.169 0.058 1.202

Table D.14: Optimization results for F'r, = 5.0, d/c = 1.0

djc Cs C Coi Coome  Gonn k  St, ©
0.800 -0.010 -0.004 0.051 0.002 1.654 0.500 0.225 0.070 0.128
0.800 -0.020 -0.013 0.137 0.008 3.665 0.500 0.308 0.095 0.208
0.800 -0.030 -0.022 0.205 0.011 4.910 0.500 0.324 0.100 0.264
0.800 -0.040 -0.031 0.270 0.012 5.772 0.500 0.302 0.094 0.334
0.800 -0.050 -0.039 0.342 0014 6.739 0.500 0.278 0.088 0.423
0.800 -0.060 -0.046 0423 0.019 7.816 0.500 0.253 0.081 0.539
0.800 -0.070 -0.052 0.517 0.026 9.028 0.500 0.226 0.074 0.698
0.800 -0.080 -0.067 0.634 0.037 10.447 0.500 0.195 0.066 0.937
0.800 -0.090 -0.059 0.804 0.069 12.330 0.500 0.155 0.054 1.388

Table D.15: Optimization results for Fre = 5.0, d/c = 0.8

dJc Co Oy Coi Corne Gene T E St.  ©
0.600 -0.010 -0.004 0.050 0.001 1.448 0.500 0.200 0.063 0.126
0.600 -0.020 -0.013 0.137 0.008 3.700 0.500 0.306 0.095 0.211
0.600 -0.030 -0.022 0.205 0.011 5.011  0.500 0.321 0.099 0.273
0.600 -0.040 -0.031 0271 0.012 5.964 0.500 0.297 0.093 0.351
0.600 -0.050 -0.038 0.344 0.015 7.028 0.500 0.272 0.086 0.452
0.600 -0.060 -0.045 0429 0.020 8.211 0.500 0.244 0.079 0.587
0.600 -0.070 -0.051 0.530 0.028 9.567 0.500 0.214 0.071 0.781
0.600 -0.080 -0.055 0.664 0.043 11.228 0.500 0.178 0.061 1.100
0.600 -0.090 -0.052 0.957 0.088 14.351 0.500 0.116 0.043 2.159
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Table D.16: Optimization results for Fr. = 5.0, d/c = 0.6



d/c Cs Cp Cirae  Crips Oemas hy 6, o3} k Sta ©
1.000 -0.010 -0.004 0.052 0.002 1.803 0.500 13.627 103.242 0.236 0.074 0.133
1.000 -0.020 -0.013 0.137 0.007 3.592 0.500 18.070 107.044 0.305 0.094 0.206
1.000 -0.030 -0.022 0.205 0.011 4.852 0.500 20.000 108.367 0.327 0.101 0.259
1.000 -0.040 -0.031 0.270 0.012 5.653 0.500 20.000 107.244 0.305 0.095 0.323
1.000 -0.050 -0.039 0.341 0.014 6.550 0.500 20.000 105.897 0.283 0.090 0.404
1.000 -0.060 -0.046 0.420 0.018 7.551 0.500 20.000 104.218 0.260 0.083 0.508
1.000 -0.070 -0.053 0.511 0.025 8.670 0.500 20.000 102.145 0.234 0.077 0.647
1.000 -0.080 -0.058 0.621 0.035 9.963 0.500 20.000 99.410 0.205 0.069 0.847
1.000 -0.090 -0.061 0.769 0.052 11.582 0.500 20.000 95.321 0.171 0.059 1.183

Tabie D.17: Optimization results for Frc = 6.0, d/c = 1.0

dfe Ce Cp szm_ Cries Cemas hy 01 1 k St, e
0.800 -0.010 -0.004 0.050 0.001 1.386 0.500 11.450 100.833 0.194 0.061 0.125
0.800 -0.020 -0.013 0.137 0.008 3.651 0.500 18.222 107.296 0.307 0.095 0.208
0.800 -0.030 -0.022 0.205 0.011 4911 0.500 20.000 108.385 0.325 0.100 0.264
0.800 -0.040 -0.031 0.270 0.012 5767 0.500 20.000 107.164 0.302 0.095 0.333
0.800 -0.050 -0.039 0.342 0.014 6.724 0.500 20.000 105.692 0.279 0.088 0.421
0.800 -0.060 -0.046 0.423 0.019 7.791 0.500 20.000 103.827 0.254 0.082 0.535
0.800 -0.070 -0.052 0.517 0.026 8.988 0.500 20.000 101.487 0.227 0.075 0.691
0.800 -0.080 -0.057 0.633 0.037 10.389 0.500 20.000 98.335 0.196 0.066 0.924
0.800 -0.090 -0.059 0.801 0.058 12.234 0.500 20.000 93.214 0.157 0.055 1.356

Table D.18: Optimization results for Fro = 6.0, d/c = 0.8
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