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Abstract

Autonomous Marine Vehicles (AMVs) provide an efficient and cost-effective platform to accomplish a

variety of maritime tasks ranging from scientific data collection to underwater mine sniffing. Because

of the multirole capabilities of these vessels, military establishments around the world have expressed

interest in using AMVs to close the gap in mission performance and enhance mission capabilities. In

order to be a viable alternative to the current operating methods, AMV military missions involving
intelligence or surveillance/reconnaissance would need to be present on site for very long periods of

time to cover large areas. However, currently, mission duration is greatly limited by available on-

board power supplies. Typically, endurance of autonomous marine vehicles can be improved in three

ways: through 1) drag minimization, 2) highly efficient means of propulsion, and 3) the real-time
extraction of energy from natural sources.

The goal of this work is to investigate a simple mechanical system to provide AMVs with all

three of these attributes. The proposed system is based on a Vertically Sculling Hydrofoil (VSH)
architecture, in which a horizontal wing of high aspect ratio plunges and pitches in the vertical
plane. The wing provides lift to extract the hull of the vehicle to reduce wetted-surface friction
drag and wave drag. The oscillation of the wing provides an efficient means of propulsion for the
vessel in a way similar to birds or fish. Finally, energy can be extracted from an incoming flow

by modulating the wing's incidence and damping the resulting heaving motion with an electric

generator to produce power. When fitted on an autonomous marine vehicle, such a system could
not only serve as a thruster but also as a means of replenishing the vehicle's power supplies to carry

out long-endurance missions.
For a deeply submerged flapping wing, the unsteady loads are identical to the loads generated by

a wing flapping in the air. However, when the VSH wing approaches the free surface, the problem

of determining the unsteady loads is greatly complicated as a transfer of momentum between the
foil and the water surface coexists. Additional drag and lift-reducing forces emanate from this free
surface influence. To characterize vertically sculling hydrodynamics, a two-dimensional unsteady
panel method code was devised allowing for the calculation of the unsteady loads exerted by a

heaving and pitching foil with the influence of a free surface. Using this computational tool, a series

of calculations were carried out to predict the optimal foil motion in order to achieve maximum
efficiency for propulsion and power extraction. Based on the results, design recommendations are
given for a VSH system.

Thesis Supervisor: Professor Mark Drela
Title: Terry J. Kohler Professor of Fluid Dynamics

Thesis Supervisor: Professor Charles Boppe
Title: Senior Lecturer in Aeronautics and Astronautics

3



4



Contents

Abstract

List of Figures

List of Tables

Nomenclature

Acknowledgments

1 Introduction

1.1 Introduction-Project Motivation . . . . . . . . . . . . . . . . .

1.2 VSH Description . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3.1 Theoretical and Experimental Work . . . . . . . . . . .

1.3.2 VSH Vehicle Concepts . . . . . . . . . . . . . . . . . . .

1.4 Statement of Project Objectives . . . . . . . . . . . . . . . . . .

2 Vertical Sculling Hydrodynamic Model

2.1 Fluid Flow Governing Equations .

2.1.1 Continuity Equation . . . . . . .

2.1.2 Conservation of Momentum

2.1.3 Flow Equation Summary .

2.2 VSH Model Assumptions . . . . . . ..

2.2.1 Perfect Fluid Assumption . . .

2.2.2 Foil Shape Assumption . . . .

2.2.3 Foil Motion Assumption . . . .

2.2.4 Wake Assumption . . . . . . .

2.2.5 Free Surface Assumption . . .

5

3

10

13

15

22

23

. . . . . . . . . . . . 23

. . . . . . . . . . . . 24

. . . . . . . . . . . . 25

. . . . . . . . . . . . 25

. . . . . . . . . . . . 27

. . . . . . . . . . . . 28

30

30

30

32

33

33

33

34

34

34

34



2.3.1 Flowfield Modeling Using Vortex and Source Sheets . . . . . . . . . . . . . . 35

2.3.2 Boundary Conditions in Time Domain . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Flowfield Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Fourier Expansion Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Boundary Conditions in Frequency Domain . . . . . . . . . . . . . . . . . . . 41

3 Numerical Implementation of Model 43

3.1 Numerical Solution Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 User Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Discretization of the Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Foil Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Wake Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Free Surface Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Panel Induced Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Residual Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Definition of Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 System Matrix Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Post processing - Load Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Vertical Force - Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2 Horizontal force - Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.3 Pitching Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.4 Motion Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.5 Coefficient Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.6 Efficiency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Model Validation 57

4.1 Infinite Depth Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Steady Flow Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Unsteady Flow Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Flows with Free Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Steady Flow Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Unsteady Flow Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Computed Results and Design Implications 63

5.1 Computed VSH Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Influence of Design Parameters on Loads and Efficiency . . . . . . . . . . . . 63

6

2.3 VSH Flowfield Idealization 35



5.2 Foil Motion Optimization for Efficiency . . . .

5.2.1 Optimization Problem Description . . .

5.2.2 Optimization Results . . . . . . . . . . .

5.3 VSH Design Implications . . . . . . . . . . . .

5.3.1 Interference Effects . . . . . . . . . . . .

5.3.2 Dynamic Foil Stall . . . . . . . . . . . .

5.3.3 Other Considerations . . . . . . . . . .

6 Summary, Conclusions and Recommendations

6.1 Sum m ary . . . . . . . . . . . . . . . . . . . . .

6.2 Future W ork . . . . . . . . . . . . . . . . . . .

A Analytic Panel Integrals

A. 1 Panel Influence Formulation . . . . . . . . . . .

B NACA 0012 Drag Polar

C Optimization Results - Propulsion

D Optimization Results - Power Extraction

Bibliography

7

for Future Work

68

68

70

74

74

75

78

79

79

79

81

81

88

91

110

119

. . . . . . . . . .

. . . . . . . . . .



8



List of Figures

1-1 Two-view of the Preposterous Pogo Foil.. . . . . . . . . . . . . . . . . . . . . . . . . . 27

1-2 The inventor of the Trampofoil@ riding the craft. . . . . . . . . . . . . . . . . . . . . 29

2-1 Flow regions in a high Reynolds number flow. . . . . . . . . . . . . . . . . . . . . . . . 31

2-2 VSH flowfield idealization by means of vortex and source sheets. . . . . . . . . . . . . . 35

2-3 Chordline of the foil undergoing heaving and pitching displacements. All quantities posi-

tive, as show n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2-4 Leading edge, pivot point and trailing edge trace of the foil undergoing a complex motion

described by seven Fourier coefficients. The Fourier coefficients in this example are:

ho=O, hi =0.3, h2 =0.05, 0o=0, 01= 5, 02=2 and #1 =135. . . . . . . . . . . 40

3-1 Discretization of the foil, wake and free surface regions. . . . . . . . . . . . . . . . . . . 45

3-2 Source strength distributions obtained with the control points located at: (A) 40% of

panel length, and at (B) 50% of panel length. . . . . . . . . . . . . . . . . . . . . . . . 47

4-1 Comparison of computed and analytical results for the -y-distribution on a flat plate.

(N = 50 panels on the airfoil). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-2 Comparision of computed and analytical results for the lift deficiency function C(k).(N =

50, M = 200 panels, nT = 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-3 Comparison of computed and analytical results for the thrust coefficient in the case of:

(A) a pure heaving motion (B) a pure pitching motion around the foil's leading edge.

(N = 50, M = 200 panels, n, = 30). . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4-4 (A) Comparison of computed and theoretical results for the wave drag. (B) Comparison of

computed and analytical results for the normalized lift with free surface effect as a function

of the Froude number Frc and various airfoil depths. (N = 40, M = 40, L = 300 panels). 61

4-5 Influence of the depth-to-chord ratio on the thrust coefficient. (hi = 0.15c, Frc = 3.0,

nT = 30, N = 40, M = 200, L = 800 panels). . . . . . . . . . . . . . . . . . . . . . . 62

9



5-1 Efficiency, thrust and power coefficients as a function of the reduced frequency for a purely

heaving foil. (A) Inviscid results, (B) Viscous correction. (hi = 0.15c) . . . . . . . . . . 64

5-2 (A) Thrust coefficient as a function of the reduced frequency and the pitching axis location

for a purely pitching foil (9 = 50), (B) Comparison between inviscid and viscous results

for the thrust coefficient. (Xrot = 0.25c, 01 = 50) . . . . . . . . . . . . . . . . . . . . . 65

5-3 Efficiency, thrust and power coefficients as a function of the phase angle # for a propulsive

foil. (A) Inviscid results, (B) Viscous results. (Xrot = 0.25c, hi = 0.5c, 01 = 50, k = 0.25) 66

5-4 Efficiency, C. and power coefficient as a function of the phase angle # in the case of power

extraction. (A) Inviscid results, (B) Viscous results (Xrot = 0.25c, hi = 0.5c, 01 = 200,

k = 0 .1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5-5 (A) Influence of ground effect on propulsion (xrot = 0.25c, hi = 0.5c, 01 = 50, #1 =

1100, k = 0.25) (B) Influence of ground effect on power-extraction (Xrot = 0.25c,

hi = 0.5c, 01 = 200, #1 = 900, k = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . 67

5-6 (A) Influence of free surface on propulsion efficiency for various Froude numbers (xrot =

0.25c, hi = 0.5c, 01 = 50, #1 = 1100, k = 0.25) (B) Influence of free surface on power-

extraction efficiency for various Froude numbers. (Xrot = 0.25c, hi = 0.5c, 01 = 200,

#1 = 90', k = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5-7 (A) Optimal propulsive efficiency found for a foil motion described using P = 5 modes.

Comparison with the efficiency obtained for a purely heaving foil. (B) Optimal power

extraction efficiency found for a foil motion described using P = 5 modes. Comparison

with the efficiency obtained for a purely pitching foil. . . . . . . . . . . . . . . . . . . . 70

5-8 VSH design optimization results for the propulsive problem for Froude numbers based on

the chord varying between 1 and 6 and various depths of submergence ratios. . . . . . . 72

5-9 VSH design optimization results for the power extraction problem for Froude numbers

based on the chord varying between 1 and 6 and various depths of submergence ratios. 73

5-10 Maximum effective angle-of-attack see by the foil for the optimal propulsive motion. . 76

5-11 Maximum effective angle-of-attack see by the foil for the optimal power-extraction motion. 77

A-I Panel of linearly varying complex source distribution. . . . . . . . . . . . . . . . . . . . 83

B-1 Polar generated with XFOIL for the NACA 0012 foil section. . . . . . . . . . . . . . . . 89

B-2 Curve fit of the NACA 0012 foil section drag bucket by means of a quadratic function. . 90

10



11



List of Tables

1.1 Specifications for the Mutiny and the Trampofoil@ . . . . . . . . . . . . . . . . . . . .

3.1 User inputs for the numerical solution to the VSH flow. . . . . . . . . . . . . . . . . . .

5.1 Summary of the design parameters with upper (UB) and lower

motion optimization problem. . . . . . . . . . . . . . . . . . .

C.1 Optimization results for d/c = o0 . . . . . . .

C.2 Optimization results for

C.3

C.4

C.5

C.6

C.7

C.8

C.9

C.10

C.11

C.12

C.13

C.14

C.15

C.16

C.17

C.18

D.1

D.2

D.3

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Optimization results for

Frc = 1.0, d/c = 1.0

Frc = 1.0, d/c = 0.8

Frc = 1.0, d/c = 0.6

Frc = 2.0, d/c = 1.0

Frc = 2.0, d/c = 0.8

Frc = 2.0, d/c = 0.6

Fr, = 3.0, d/c = 1.0

Frc = 3.0, d/c = 0.8

Frc = 3.0, d/c = 0.6

Frc = 4.0, d/c = 1.0

Frc = 4.0, d/c = 0.8

Frc = 4.0, d/c = 0.6

Frc = 5.0, d/c = 1.0

Frc = 5.0, d/c = 0.8

Frc = 5.0, d/c = 0.6

Optimization results for Frc = 6.0, d/c = 1.0

Optimization results for Frc = 6.0, d/c = 0.8

Optimization results for Frc = 1.0, d/c = oo

Optimization results for Frc = 1.0, d/c = 1.0

Optimization results for Frc = 1.0, d/c = 0.8

bounds (LB) for the foil

69

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

111

12

28

44



D.4 Optimization results for Frc = 1.0, d/c = 0.6 . . . . . . . . . . . . . . . . . . . . . . . 111

D.5 Optimization results for Frc = 2.0, d/c = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 112

D.6 Optimization results for Frc = 2.0, d/c = 0.8 . . . . . . . . . . . . . . . . . . . . . . . 112

D.7 Optimization results for Frc = 2.0, d/c = 0.6 . . . . . . . . . . . . . . . . . . . . . . . 112

D.8 Optimization results for Frc = 3.0, d/c = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 113

D.9 Optimization results for Frc = 3.0, d/c = 0.8 . . . . . . . . . . . . . . . . . . . . . . . 113

D.10 Optimization results for Frc = 3.0, d/c = 0.6 . . . . . . . . . . . . . . . . . . . . . . . 113

D.11 Optimization results for Frc = 4.0, d/c = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 114

D.12 Optimization results for Frc = 4.0, d/c = 0.8 . . . . . . . . . . . . . . . . . . . . . . . 114

D.13 Optimization results for Frc = 4.0, d/c = 0.6 . . . . . . . . . . . . . . . . . . . . . . . 114

D.14 Optimization results for Frc = 5.0, d/c = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 115

D.15 Optimization results for Frc = 5.0, d/c = 0.8 . . . . . . . . . . . . . . . . . . . . . . . 115

D.16 Optimization results for Frc = 5.0, d/c = 0.6 . . . . . . . . . . . . . . . . . . . . . . . 115

D.17 Optimization results for Frc = 6.0, d/c = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 116

D.18 Optimization results for Frc = 6.0, d/c = 0.8 . . . . . . . . . . . . . . . . . . . . . . . 116

13



14



Nomenclature

Roman

aij vortex influence coefficient

A maximum excursion of the foil's trailing edge

bij source influence coefficient

ci weight vector component for numerical integration

c mean wing chord

C constant, lift deficiency function

Cdo drag polar interpolation constant

CQ2 drag polar interpolation constant

C, lift force coefficient

Cio drag polar interpolation constant

Cm moment coefficient, My/0.5pUo fe

C, total power coefficient, P/0.5pU3 ef

Cta pitch contribution to the total thrust coefficient

Cth plunge contribution to the total thrust coefficient

Ctc cross-contribution to the total thrust coefficient

CX vertical force coefficient, Fx/0.5pU ofref

CZ horizontal force coefficient, Fz/0.5pUoref

d depth of foil with respect to the free surface

dij influence coefficient

Dwave normalized wave drag, -(d/c)Cx/C2

f frequency in Hertz

F complex stream function, real part of lift deficiency function C

Fx horizontal force

Fz vertical force

T objective function

15



Fr second Froude number with fref as the characteristic length, U0/g

Frd first Froude number with d as the characteristic length, U,//gd

Frc first Froude number with c as the characteristic length, Um/gc

g gravitational acceleration

G imaginary part of lift deficiency function C

g constraint function

hmax maximum heave amplitude of travel

h, heaving motion Fourier coefficient

H Hankel function

V/zT

k reduced frequency, wc/2U

fref reference length

ln natural logarithm

L number of panels for free surface discretization

LC circulatory part of the lift

L NC non-circulatory part of the lift

L , free surface length

L. wake length

M number of panels for wake discretization

MV pitching moment

n harmonic number

nT number of periods in the wake

N number of panels on foil

p pressure

P power, maximum number of modes

q source distribution strength per unit length

Q number of control points

)z residual function

R the set of real numbers

Re Reynolds number, Uaoofref/v

S leading edge suction velocity

t time

T period

u x-component of perturbation velocity, &p/Ox

U unknown

16



U x-component of total velocity, 0<b/Ox

U11 x-component of free stream velocity

W z-component of total velocity, &CD/&z

WIC z-component of free stream velocity

w z-component of perturbation velocity, Orp/&z

x horizontal cartesian coordinate

Xrot horizontal pitching axis location

X vector of design parameters

z vertical cartesian coordinate

Greek

ae effective (aerodynamic) angle-of-attack

aex maximum effective angle-of-attack

# angle

x complex variable

Ax panel length

V Laplacian operator

v kinematic viscosity

rl, propulsive efficiency, Cx/C,

r/E power extraction efficiency, C,/CX

-y vorticity strength, running circulation

F total circulation

W circular frequency, 27rf

<P perturbation potential

<0 phase between plunge and pitch

<boQ freestream flow potential

<} total velocity potential

stream function

p freestream density

o- complex source strength

0 pitch angle

0
max maximum pitch angle

dummy integration variable

17



vorticity

Subscripts

)U upper surface

lower surface

mode n

()spec specified

)i control point index, panel index

)j foil and wake panel node index

()m free surface panel node index

first derivative w.r.t x

Superscripts

( )a foil

)S surface

(W wake

( ) amplitude at fixed mode

( ) period averaged value

( ) rate of change w.r.t time

Operators

R real part

imaginary part

D substantial derivative

Acronyms

ALTEX Atlantic Layer Tracking Experiment

AMV Autonomous Marine Vehicle

18



AUV Autonomous Underwater Vehicle

DOF Degree Of Freedom

LB Lower Bound

MAV Micro Air Vehicle

SQP Sequential Quadratic Programming

UB Upper Bound

VSH Vertically Sculling Hydrofoil, Vertically Sculling Hydrodynamics

19



20



21



Acknowledgments

I would like to thank Professor Charles Boppe for the support and guidance he has provided me

these past years at MIT. I also wish to thank him for his suggestions and the productive comments

he has made throughout this thesis. My gratitude also goes to Professor Mark Drela for giving

me the opportunity to do this research and for teaching me about the field of aerodynamics. His

insightful suggestions throughout this work have been very helpful. This project would not have

been possible without Tim Smith who has come forward with the idea of using Vertically Sculling

Hydrodynamics for the proposed application.

I am also indebted to Professor John Hansman for providing me with the opportunity to work

as a teaching assistant to fund my studies at MIT.

These last few years at MIT would not have been the same without the support of all my friends

here and abroad. It would be impractical to list all of you here, but you know who you are ! A big

thank you.

Finally, I wish to thank my family for all the moral support they've given me these last few years

away from home, while I've been in Michigan and in Massachusetts. Thank you for encouraging me

in all my endeavors.

22



Chapter 1

Introduction

1.1 Introduction-Project Motivation

Research and use of Autonomous Marine Vehicles (AMVs) have been expanding in recent years

as they provide an efficient and cost-effective platform to accomplish a variety of maritime tasks.

Whether operating on the ocean surface or underwater, such vessels are a desirable alternative to

carrying out missions that would otherwise require a large investment in manpower and equipment.

They also provide an attractive means of performing hazardous tasks and can operate in regions

into which no manned underwater vessel or remotely operated vehicle can penetrate (e.g. ALTEX

Arctic mission).

The vital source of energy, raw materials, nutrients, and climatic clues provided by the oceans

can be surveyed and monitored with these autonomous vessels with minimal human intervention

and logistic support. In fact, with approximately 150 AMVs designed around the world in nearly 40

years of development [16], the scientific and industrial community has clearly realized the benefits

of using such platforms for:

" pollution detection and other environmental surveys

" seabed mapping

" pelagic fisheries surveys

e undersea search and survey

" communication and navigation aids

Because of the multirole capabilities of these vessels, the military around the world has also

expressed interest in using AMVs in an effort to close the gap in mission performance and enhance
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mission capabilities [34). Kongsberg Simrad AS, for example, is currently working on a military

Autonomous Underwater Vehicle (AUV) prototype called HUGIN 1000 for the Royal Norwegian

Navy to perform mine countermeasure and rapid environmental assessment operations. In the United

States, MIT Sea Grant's Autonomous Underwater Vehicle's Lab is developing a low-cost AUV called

CETUSTM for underwater intervention and sea mine warfare.

Although most of the applications stated above are feasible with the available technology, for

many other applications to become reality, certain technological challenges still need to be overcome.

For intelligence, surveillance/reconnaissance missions (e.g. harbor security) or long-duration data

sampling, AMVs would need to be present on site for very long periods of time (sometimes months)

to cover large areas, in order to be a viable alternative to the current operating methods. However,

mission duration is greatly limited by available on-board power supplies and means of improving

duration are actively sought.

Improvement of the long-endurance capabilities of autonomous marine vehicles can typically be

achieved in three ways:

1. Through drag minimization of the vehicle's hull and other appendages.

2. Through the investigation of highly efficient means of propulsion.

3. Through the real-time extraction of energy from natural sources.

The goal of this work is to investigate a simple mechanical system based on a Vertically Sculling

Hydrofoil (VSH) architecture that can provide an autonomous marine vehicle with all three of these

attributes.

1.2 VSH Description

A Vertically Sculling Hydrofoil is essentially a system composed of a rigid wing of high aspect ratio

(hydrofoil) positioned horizontally and undergoing pitching and heaving oscillations in the vertical

plane.

1. The horizontal placement of the hydrofoil provides high lift-to-drag capabilities to the marine

vehicle to extract its hull from the water, thus reducing wetted-surface friction drag and wave

drag generated by the hull.

2. The oscillating motion of the hydrofoil produces thrust in a way similar to birds or fish.

Much theoretical work claims that propulsive efficiencies rivaling with that of propellers can

be achieved with flapping propulsion.
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3. Finally, energy can be extracted from an incoming flow by modulating the wing's incidence

and damping the resulting heaving motion with an electric generator to produce power. One

could imagine the scenario where the autonomous marine vehicle surfs the waves and extracts

energy from the flowstream to recharge its power supplies.

When fitted on an AMV, such a system could not only serve as a thruster but also as a means of

replenishing the vehicle's power supplies to carry out long-endurance missions.

The VSH architecture has multiple advantages over conventional systems for both propulsion

and power extraction. From a mechanical standpoint, it can be designed to have few moving parts,

thus reducing manufacturing/assembly costs and the likelihood of failing. In fact, if only propulsion

is of interest, one could imagine a simple design involving no mechanical linkage to the foil with an

offset mass on a motor inducing an oscillating motion on the hydrofoil.

Although this architecture has multiple benefits for an AMV, one of its major drawback stems

from the fact that the hydrofoil operates in the vicinity of the water surface where the effects of

free-surface induced drag are most significant. To assess the potential and the viability of such a

system for the proposed application, it would be desirable to accurately characterize and quantify

these effects.

1.3 Previous Work

1.3.1 Theoretical and Experimental Work

Numerous theoretical and experimental investigations pertaining to flapping-wing propulsion and

flapping-wing flight have been completed throughout the years in an attempt to understand and

mimic both fishlike swimming and avian flight.

Knoller and Betz were the first to provide scientific theories relating to thrust generation of a

heaving airfoil in independent studies in 1909 and 1912 [22], [5]. Although a flurry of unsteady

aerodynamic theories and experimental investigations followed from that point on, it was not until

1935 that Theodorsen, von Kirmin and Sears, provided the ground work for many flapping-foil

propulsion mathematical models. In 1936, Garrick [11] applied Theodorsen's [31] linear, inviscid

unsteady aerodynamics theory to derive compact expressions for the thrust force generated by a flat

plate undergoing harmonic oscillations. Garrick found that the efficiency of a heaving and plunging

airfoil approaches unity as the motion frequency approaches zero. He also found that thrust was

proportional to the square of the frequency.

In 1970, Lighthill investigated lunate tail propulsion and derived formulas for the thrust and effi-

ciency of a thuniform swimmer. In his work, Lighthill proposed a proportional feathering parameter

E corresponding to the ratio of slopes between the effective angle-of-attack of the tail and the angle
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formed by the caudal fin trail and the swimming path of the fish. Lighthill calculated that values of

e between 0.6 and 0.8 yielded optimal combinations of leading-edge suction and hydromechanical

efficiency [24],[30].

In 1981, Delaurier and Harris [7] carried out experiments on oscillating-wing propulsion to serve

as a data base for future experimental and theoretical work. Their experiments were limited to

small amplitude flapping and corroborated Garrick's theoretical work. Later that year, McKinney

and Delaurier [26] conducted a series of experimental tests on an oscillating-wing windmill. They

determined that this wingmill system, as they termed it, could achieve efficiencies comparable to

those of conventional windmill designs.

More recently, Triantafyllou et al. [32], [33] focused on the wake dynamics of large-amplitude

oscillating foils and found conditions leading to optimal thrust production. They determined that

the thrust coefficient was nearly a linear function of the Strouhal' number Sta, and that it should

be between 0.25 and 0.35 for optimal efficiency. Their definition of the Strouhal number is Sta =

fA/U,, where A is the width of the wake taken to be equal to the maximum excursion of the foil's

trailing edge, f is the frequency of motion in Hertz, and U, is the average forward velocity. An

optimal Strouhal number, however, does not give any indication of the optimal frequency, simply

because frequency and motion amplitude can be varied to fix the Strouhal number.

With the advent of Micro Air Vehicles (MAV), Hall & Hall [13] devised a three-dimensional vortex

lattice model to investigate the power requirements for flapping flight. They computed an optimal

circulation distribution along the span of a flapping wing that simultaneously provides thrust and

lift. They showed the existence of optimum flapping amplitudes and frequencies.

Lately, Jones and Platzer [18], [19], performed extensive numerical investigations on flapping-

foil systems using a non-linear, deforming wake model to compute the unsteady flow about an

airfoil undergoing pitch and plunge motions. They investigated the influence of interference effects

on flapping-wing propulsion and looked at various configurations involving multiple airfoils with the

intent of developing a MAV [17]. A preferred configuration where two airfoils work in opposed plunge

was identified, and it was shown through numerical and experimental tests that high efficiencies could

be attained.

Jones, Davis and Platzer [20] also looked at flapping-foil power generators or wingmills. For a

prescribed maximum effective angle-of-attack, optimal plunge velocities and optimal ratios between

the heaving and frequency of motion were identified. Although an experimental setup was designed,

no results are currently available.

1 The Strouhal number is used to characterize the structure of wakes and is essentially the ratio of unsteady to
inertial forces
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Figure 1-1: Two-view of the Preposterous Pogo Foil.

1.3.2 VSH Vehicle Concepts

Until now, VSH propulsion vehicles have been designed and built mostly for recreational purposes.

Parker MacCready [25] designed and built two experimental human-powered hydrofoil boats

with flapping-wing propulsion in the mid 1980s. In his first boat called the Mutiny on the Boundary

Layer, the pilot sat on a standard bike frame linked to catamaran hulls for flotation before take-

off. A complex mechanism pushed a wing/strut assembly up and down as the rider pedaled to

generate lift and thrust. The Mutiny on the Boundary Layer did not prove efficient, with propulsive

efficiencies on the order of 40% and an average speed of 3m/s, but it did accomplish the goal of flying

while achieving flapping-wing propulsion. MacCready claims that the low propulsive efficiencies were

mainly due to mechanical friction in moving parts and suboptimal wing angles during the flapping

cycle. Specifications pertaining to the craft are summarized in Table 1.1 along with estimated

Reynolds number and Froude number based on the chord.

Later in 1993, MacCready experimented with a boat similar to the the Mutiny on the Boundary

Layer, but mechanically much simpler, which he called the Preposterous Pogo Foil (see Figure 1-1).

This boat had few moving parts (< 10), and the heaving motion of the foil was accomplished by

the pilot bending at the knees. The first tests; however, showed that the craft was more limited by

control problems than by excessive power requirements.

Recently, Alexander Sahlin unveiled the Trampofoil@ in Sweden, a vehicle similar to the Pogo
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Mutiny Trampofoil@

Mass, m 50kg 12kg
Wing span, b 2.Om 2.87m
Wing mean chord, c 0.12m 0.15m

Stall velocity, V, N/A 2.5m/s

Maximum velocity, Vma. N/A 5.5m/s

Cruise velocity, V 3.2m/s 3 - 4m/s

Estimated Froude number, Frc 2.9 3.3
Estimated depth of foil, d 0.5c - 2.Oc 0.5c - 2.Oc

Table 1.1: Specifications for the Mutiny and the Trampofoil@

Foil in the way it operates. By hopping on a footplate rigidly attached to the wing, the pilot

induces an oscillating motion on the wing which propels the craft. Unlike the Pogo Foil, the Tram-

pofoil@ does not have any hulls or moving parts. Maximum speeds of 5.5m/s with stall speeds of

2.5m/s have been recorded with the Trampofoil® but no information regarding the efficiency of the

device could be found. The specifications for the craft are summarized in Table 1.1. Figure 1-2

shows the Trampofoil@ and its operation.

1.4 Statement of Project Objectives

Although a lot of theoretical and experimental investigations have been done in the field of flapping-

wing propulsion and power extraction, no attention has been paid to the interference effects of a free

surface on a foil flapping below the water. Also, all theories and experimental work described above

draw on sinusoidally plunging and heaving foil motions without considering if a more complex motion

might be more efficient from either a propulsion or power extraction standpoint. The objectives of

this work are thus twofold:

1. To devise an unsteady computer-based engineering analysis tool to characterize Vertically

Sculling Hydrodynamics. The tool should permit the calculation of the unsteady loads im-

parted on a foil undergoing arbitrarily specified motions in the presence of the ocean's free

wave surface.

2. To use this computational tool to identify a preferred functional mode for regenerative power

extraction and propulsion. The functional mode encompasses describing the optimal foil mo-

tions and the relevant flow parameters associated with unsteady hydrodynamics (i.e. Froude

number, depth of the foil from the free surface, etc...).

The present document is organized in the following manner. In Chapter 2 a theoretical model

based on inviscid, incompressible, unsteady aerodynamics for a two-dimensional VSH system is
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Figure 1-2: The inventor of the Trampofoil@ riding the craft.

presented. In Chapter 3 a numerical implementation of the model is described in great detail for

anyone who wishes to reproduce the computer-based tool. Testing of this tool on various cases is

carried out in Chapter 4. Finally, computed VSH results are presented in Chapter 5 and design

recommendations for a generic VSH system are made based on the computed results. Conclusions

and recommendations for future work are given in Chapter 6.
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Chapter 2

Vertical Sculling Hydrodynamic

Model

The goal of this section is to formulate a mathematical model for a Vertical Sculling Hydrodynamic

(VSH) system. A system composed of a two-dimensional foil moving in a flow of constant velocity

Uoo and undergoing periodic heaving h(t) and pitching 0(t) motions below the surface of a body

of water is considered. The governing equations of the flow are described and various assumptions

about the system are made. From these assumptions, a flowfield idealization of the VSH system

using vortex and source sheets is presented. Finally, a solution procedure for the flowfield unknowns

is described.

2.1 Fluid Flow Governing Equations

In order to derive a model of the flowfield describing the Vertical Sculling Hydrodynamic system,

the underlying fundamental physical principles of fluid dynamics must first be evoked.

2.1.1 Continuity Equation

The first physical principle is that mass is conserved throughout the flow. For a compressible,

unsteady fluid moving around an airfoil fixed in space, the conservation of mass is given by:

+ V - (pV) = 0
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Figure 2-1: Flow regions in a high Reynolds number flow.

Where p and V are respectively the scalar density field and the total vector velocity field. These

fields are a function of both space and time and are given in two-dimensional cartesian space by:

V = U(x, z, t) i + W(x, z, t)

p = p(x, z, t)

Incompressible Flow

If the flow is assumed to be incompressible, the scalar density field is then invariant in both space

and time and the continuity equation reduces to,

V-V=O (2.1)

Irrotational Flow

For a solid body immersed in a real flow, dissipative transport phenomena of viscosity leads to the

creation of thin boundary layers and narrow wakes in the fluid domain (see Figure 2-1). In these

regions, shear stresses induce rotational flow. Outside of these regions on the other hand, the flow

is barely affected by the viscosity of the fluid and can be considered to be irrotational. Although

vorticity ( exists in boundary layers and wake regions of the flow, a good approximation of the

overall flowfield can be made through the irrotational flow assumption for flows where the inertial

effects dominate the viscous effects. For an irrotational flow, the curl of the total vector velocity

field is zero,

V x V = 0 (2.2)
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and there exists a total scalar velocity potential 1, such that the total vector velocity field is given

by the gradient of this scalar function:

(2.3)V = V4D

Laplace Equation

From these considerations, by substituting (2.3) into (2.1), the continuity equation reduces to the

Laplace equation, which in two-dimensional cartesian space is given by:

V2 _=( + W2)=0 (2.4)

Since the Laplacian is a linear operator, the superposition principle can be used to decompose

the total velocity potential 4 into a velocity potential due to the free stream flow and a perturbation

potential <p.

o + <p (2.5)

Taking the gradient of (2.5), the total vector velocity field may be expressed as,

V = Vo +v = (Uoi+ Wok)+ (ui+fwk) (2.6)

2.1.2 Conservation of Momentum

The second physical principle is that the fluid is governed by Newton's second law. Conservation of

momentum for an inviscid incompressible fluid is given by the Euler equation:

+V -VV =P + f
at p

(2.7)

where f is a body force. If the body force is assumed to be conservative, then f derives from a

potential E such that,

f = -VE (2.8)

The gravitational acceleration can be included in the momentum equation by selecting a potential

E = gz, where g is the gravitational constant and the z axis points upwards.
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Unsteady Bernoulli Equation

Rewriting (2.7) in terms of the total velocity potential leads to the unsteady Bernoulli equation,

(Vb)2 + + gz) = 0 _- + (V.1) 2 + - + gz = C(t) (2.9)
at p at p

If an arbitrary point and a reference point are considered in the flow where conditions are chosen

such that Do. = const., the pressure p at any point in the flow can be calculated from the velocity

potential by:

Poo -p = p 0t II(Vk) 2 + pgz (2.10)

The momentum equation thus connects the velocity potential to the pressure. This is useful to

determine the pressure distribution on the body surface to allow for a calculation of the aerodynamic

forces and moments.

2.1.3 Flow Equation Summary

From these explanations we see that in the case of an inviscid, incompressible and irrotational fluid,

the conservation of mass reduces to the Laplace equation which is the governing equation for the

velocity potential. It is an elliptic differential equation that results in a boundary-value problem.

By prescribing appropriate boundary conditions to represent the flow, one can thus solve for the

velocity potential.

Once the velocity potential is known, Bernoulli's equation, which is a consequence of the conser-

vation of momentum, is used to calculate aerodynamic loads.

2.2 VSH Model Assumptions

Certain assumptions about the VSH system need to be made to come up with an appropriate

mathematical model.

2.2.1 Perfect Fluid Assumption

The first assumption is that the ratio between the inertial and viscous forces in the fluid is expected

to be high since the kinematic viscosity of water is very small (v ~ 1.0 x 10-m 2 /s) . For such

flows where the Reynolds number is high (Re >> 1), viscous terms can be neglected from the

momentum equation and irrotationality of the flow is assumed outside the immediate neighborhood

of streamlined bodies present in the flow. Also, water is assumed to be an incompressible fluid. From
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these considerations, the flow resulting from a wing undergoing a plunging and pitching motion below

the surface of a body of water is governed by the Laplace equation (2.4).

2.2.2 Foil Shape Assumption

The shape of the foil is assumed to have little influence on the inviscid unsteady loads, and is

therefore modeled by a flat plate. As shown by K.D. Jones and M.F. Platzer in [18], this is a valid

assumption for the range of frequencies considered in this study. Also, since the flow is governed

by the Laplace equation, the effects of the foil shape can easily be incorporated into the model by

linear superposition if deemed necessary.

2.2.3 Foil Motion Assumption

Small amplitudes relative to the foil chord are assumed in the various degrees of freedom. Further-

more, the motion of the airfoil is assumed to be periodic in time with period T in the heaving and

pitching degrees of freedom. By limiting the model to small amplitudes with periodic motion the

VSH model can be linearized, greatly simplifying the theoretical model and allowing for the use

of Fourier decomposition to represent the time dependent flow unknowns. Also, the frequencies at

which the foil flaps are assumed to be within the range of low-frequencies observed in cetaceans.

2.2.4 Wake Assumption

It is assumed that the wake behind the foil does not roll up and is not convected in the flow.

From our previous small amplitude considerations, shed vorticity behind the airfoil is assumed to

be accurately modeled by a non-deforming, planar wake. Although, physically, the wake behind the

airfoil rolls up, it has been shown by numerous investigators [13], [19] that this roll up effect has

very little influence on the unsteady loads imparted on the foil and can be safely neglected for the

range of frequencies and flapping amplitudes considered in this study.

2.2.5 Free Surface Assumption

The wing of the VSH system is assumed to operate below the water surface at a depth where

the deformation of the free surface significantly perturbs the flowfield around the foil and its wake

resulting in wave resistance effects.

Since the deformation of the free surface is not known a priori and changes in time, the resulting

boundary condition is greatly complicated. To keep the complexity of the model within reasonable

bounds, wave motions are assumed to be sufficiently small to linearize the free surface wave boundary

condition and a planar free surface sheet is adopted to represent the wave induced effects [28],[21].
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Figure 2-2: VSH flowfield idealization by means of vortex and source sheets.

Also, the floor bed is assumed deep enough not to affect the water surface, allowing deep water wave

theory to be applicable.

2.3 VSH Flowfield Idealization

2.3.1 Flowfield Modeling Using Vortex and Source Sheets

As a result of applying the perfect fluid assumption, the flowfield may be represented by vortex

and source sheets to account for the various elements perturbing the flow [21],[4],[1]. As depicted in

Figure 2-2 and following the fore mentioned assumptions, the foil is modeled as a flat plate and is

represented by a sheet of bound vorticity of unknown strength -y per unit length. The wake behind

the foil is represented by a sheet of shed vorticity -y". Finally, we introduce the free surface effects

of the body of water in which the VSH system is immersed by means of a source sheet of source

strength distribution qS per unit length.

2.3.2 Boundary Conditions in Time Domain

To solve for the the flowfield unknowns, U = {-y, 7 , qS }, various conditions must be imposed on

the boundaries of the fluid domain to ensure that a unique solution to Laplace's equation for our

particular engineering problem will be found:

* a kinematic boundary condition of zero normal flow is imposed on the foil. This condition

enforces the foil to be a streamline of the flow.
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Figure 2-3: Chordline of the foil undergoing heaving and pitching displacements. All quantities positive, as

shown.

ea circulation-fixing Kutta condition at the trailing edge of the foil is imposed for the flow to

have physical meaning.

* a dynamic boundary condition is imposed on the wake sheet to relate the wake vortex distri-

bution to the total foil circulation.

* a free surface boundary condition is enforced on the source sheet representing the surface of

water.

Kinematic Boundary Condition

For a foil moving in a flow of constant velocity V = V~b , the kinematic boundary condition on the

body's surface is such that the perpendicular component of the fluid velocity is fixed by the body's

motion. Fluid particles in the vicinity of the body must thus share the body's normal motion. If the

surface of a body is defined by a function F(x, z, t) =0, then the boundary condition at the surface

is given by:

DF _ F
Dt = + - VF= 0 (2.11)

Physically, equation (2.11) states that the fluid particles on the surface of the body move with

velocity V such that F remains zero.

Referring to Figure 2-3, the instantaneous small displacement of the chordline of a two-dimensional

chordwise-rigid foil undergoing heaving (h) and pitching (d) oscillations in a frame of reference mov-

ing with the foil is given by:

za(x, t) = -h(t) - (x -Xrot )0(t) (2.12)

Where Xrot is the pitching axis location.

36



Introducing the expression of the camberline F = z - z' = 0 into equation (2.11) yields for the

total velocity W normal to the camberline of the foil,

W -h(t) - (x - Xrot)#(t) - UO(t) (2.13)

Now, assuming that the horizontal perturbation velocity is small compared to the freestream

velocity (2 << Uoo), and recalling that the vertical freestream velocity component Woo is zero, the

boundary condition on the foil reduces to:

Wa(X, t) = -h(t) - (X - Xrot)W(t) - U 0 (t) (2.14)

From potential flow theory [21], the time dependent vertical induced velocity w due to the vortex

and source sheets at a point x on the foil is expressed as:

-1 474(, t 1 7((,t)) d
w(x,0,t) =d6 - -- (6t) d6 + -I q*(_, d<

27r 0 x - 6 2,7 c x - 6 2,r _o (X - 6)2 + d2

(2.15)

For the foil to be a streamline of the flow, the velocity normal to the camberline of the foil of a

fluid particle must equate the vertical velocity induced by the vortex and source sheet distributions.

In other words, the vortex and source strengths of the singularity distributions must be adjusted

appropriately for this condition to be satisfied. The kinematic boundary condition of zero normal

flow thus translates into:

w(x, 0, t) = wa(x, t) (2.16)

Kutta Condition

In addition to satisfying the kinematic boundary condition, the vorticity distribution must also

satisfy the Kutta condition. The Kutta condition introduces a circulation-fixing relation by making

sure that the flow leaves the foil's sharp trailing edge smoothly and that the velocity there is finite.

For the steady case, this condition translates into having the vorticity at the trailing edge vanish

(-y(c) = 0). In the unsteady case, the Kutta condition is that no pressure discontinuity exists at the

trailing edge (Ap(c) = 0). This makes physical sense since the wake that emanates from the trailing

edge of the foil is usually very thin and cannot support a pressure difference. Prom the unsteady

Bernoulli equation (2.10) the pressure jump Ap across a vortex sheet in terms of the total velocity
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potential is,

Where 4NL, and '1 i respectively correspond to the x-derivative of the total velocity potential on the

upper surface and on the lower surface of the sheet.

Assuming that the x-component of the perturbation velocity u = is small compared to the

free stream velocity Um, one may write a linearized form of the pressure jump across the vortex

sheet representing the foil and its wake:

at 2

Ap a p(Ap U+ e A ) (2.17)

at 2x

By definition, the vortex sheet strength y is equal to the jump in tangential velocity on the vortex

sheet:

y = (2.18)
Ox

and the pressure jump at position x along the vortex sheet written in terms of the vorticity distri-

bution is:

Ap(x, t) = p y( , t)d+ pUy(x, t) (2.19)

Evaluating (2.19) at the foil's trailing edge (x = c) yields for the linearized unsteady Kutta

condition,

p ] y((, t)d+± pU0 y(c, t) = 0 (2.20)

Dynamic Wake Boundary Condition

Since the vorticity in the wake vo' is a direct consequence of a change in the bound vorticity y ,

the shed vorticity distribution can be expressed in terms of the the total foil circulation . This is

done by using Kelvin's circulation theorem which states that in the potential flow region the angular

momentum cannot change, and thus the total circulation F around a fluid curve enclosing the foil
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and its wake is conserved,

Dt - + Uo- = 0 (2.21)
Dt Ot 00Ox

The total circulation F around a fluid curve enclosing the foil and a wake of length (x - c) is

expressed in terms of the foil and wake running circulations by:

p = pa + fr = _a( , t)d + j w(W, t)d (2.22)

Taking the substantial derivative of (2.22) and setting it to zero gives an expression relating the

foil and wake vorticity distribution unknowns. This condition reduces the number of unknowns from

{aa, I, q'} to just {y', q}.

Free Surface Boundary Condition

To account for the free surface effects in the model a boundary condition describing the two-

dimensional behavior of surface wave motion must be enforced on the source sheet representing

the water surface. Since the relative wave height is assumed to be small, a planar source sheet is

used to represent the mean ocean surface. It is relevant to point out that this surface does not move

with the surface waves but that the deformation of the free surface is taken into account by changing

the source strength distribution q' (x, t).

The linear progressive wave model boundary condition is given by Katz and Plotkin [21] in terms

of the perturbation potential p below:

U, 2 (x, d, t) Op(x, d, t)+ =-0 (2.23)
g Ox2  Oz

Where d is the depth of the foil relative to the water's undisturbed surface. Introducing the Froude-

number F, = U2/g which is defined as the ratio of the inertial force to the gravitational force, the

boundary condition in terms of perturbation velocities is,

O0 (2.24)Fr- u(x, d, t) + w(x, d, t) = 0 (.4

Note that in the limiting case where the Froude number is set to zero, the free surface boundary

condition describes a rigid wall (w(x, d, t) = 0). Ground/anti-ground effects can thus easily be

incorporated into the model by setting the Froude number to zero.
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Figure 2-4: Leading edge, pivot point and trailing edge trace of the foil undergoing a complex motion described
by seven Fourier coefficients. The Fourier coefficients in this example are: ho = 0, hi = 0.3, h 2 =
0.05, 0 = 0, 01 = 5, 02 = 2 and <pi = 135.

2.4 Flowfield Solution Methodology

2.4.1 Fourier Expansion Approach

The flowfield is fully determined by solving Laplace's equation subject to the boundary conditions

defined above. Since Laplace's equation is linear and the various boundary conditions have all been

linearized, a way to solve for the unsteady flowfield is to describe the foil motion and the singularity

distributions as Fourier expansions and use linear superposition to reconstruct the time-dependent

unknown distributions.

Foil Motion Description

The first step involves describing an arbitrary periodic foil motion with frequency w by using a

Fourier expansion,

P P

h(t) = Z jineunlt+) , 0(t) Z Onei"lw (2.25)
n=o n=o

Where n is referred to as the mode, and #, is a heaving phase lead with the pitching motion for

mode n. Using expressions (2.25), any foil motion can be described by carefully selecting P Fourier

coefficients hn, On, On E=- R. As an example, Figure 2-4 shows one period of a complex foil motion

obtained with seven Fourier coefficients.
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Singularity Distribution Description

Likewise, the singularity distributions are expressed as Fourier expansions:

P P P

y"(xt) = (X)inwt , -Y(x, t) = [ Z.)(x)ei"t , q 5(x, t) = E4 (x)ei"o (2.26)
n=O n=O n=O

Where 't, if and 4' are complex functions of the spatial coordinate x, thus allowing for phase

differences between the motion and the resulting flowfield.

Using this approach, the boundary conditions are rewritten in the frequency domain, and enforced

on the surfaces of the fluid region. For every mode n = 0, 1.. .P, the singularity unknowns are solved

for and the time-dependent singularity distributions are reconstructed by summing over the modes

using equation (2.26).

2.4.2 Boundary Conditions in Frequency Domain

The various boundary conditions on the fluid domain surfaces are rewritten in the frequency domain

by means of the Fourier descriptions (2.25) and (2.26) introduced above.

Kinematic Boundary Condition

Substituting the fore mentioned Fourier expansions for the foil motion and the singularity distribu-

tions in equation (2.16) results in the kinematic boundary condition for a given mode n.

0 = inwh,,(x)e'O" + (inw(x - xrot) + Uoo) n

-1 C ya()

27ri ex -

1 00 d
+ - 4"() d2  (2.27)

21r _ o (X - 6)2 + d2

Unsteady Kutta Condition

Evaluating (2.19) at the trailing edge (x = c), results in the following expression for every mode n.

inw in d6+ Uooi%(c) = 0 (2.28)

Pa
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Finally, the linearized unsteady Kutta condition is given by:

(2.29)
--inu

in (C) =Uoo n

For the steady case where n = 0, we find that the vorticity at the trailing edge vanishes.

Dynamic Boundary Condition

Substituting equation (2.22) into (2.21) and making use of the Fourier expansions for the foil motion

and singularity distributions as defined per (2.25) and (2.26), one obtains for the Kelvin condition,

(2.30)
P X

inwt'" + inw in ( )d + UOir (x) ei"wt = 0
n=O I

Where f' is the total foil circulation for a given mode n. Eliminating time and taking the derivative

with respect to x of (2.30) allows one to find a solution for inw(x),

U0oo (X + inwi4 (x) = 0 (x) = C e-inwx/U
09x

(2.31)

where C is a constant found by substituting (2.31), evaluated at the trailing edge (x = c), into (2.30).

Finally, introducing a dimensionless reduced frequency, k = wc/2Uoo gives the following expressioni

for the wake vorticity distribution in terms of the foil circulation for a mode n:

= Ux)=a e2inkein(wx/U,.) (2.32)

Free Surface Boundary Condition

Likewise, the free surface boundary condition (2.24) is rewritten in terms of the Fourier coefficients.

'Note that (2.32) evaluated at the trailing edge leads to result (2.29)
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Chapter 3

Numerical Implementation of

Model

In Chapter 2 a mathematical model of the Vertically Sculling Hydrodynamic system was described.

A methodology for finding the unknown properties of the flowfield by means of a Fourier expansion

approach was also introduced. The object of this chapter is to describe the numerical implementation

of the Fourier approach to obtain a solution for the singularity distributions and evaluate the loads

imparted on the foil.

3.1 Numerical Solution Outline

The numerical solution to the unsteady flow is obtained through a five-step process:

1. The user provides information about the geometry of the fluid domain, the motion of the foil

as well as the flow conditions at which the unsteady loads need to be evaluated.

2. From the user inputs, the lengths of the foil, wake and the free surface are defined and the

fluid boundaries are discretized into panels of linearly-varying strengths. A description of the

discretization process is given in Section 3.3.

3. The velocities induced by the various panels representing the boundaries of the flow are deter-

mined from the geometry. Section 3.4 and Appendix 6.2 explain how this process is done.

4. For all modes n chosen to represent the motion, the boundary conditions described in Chapter

2 are enforced and a matrix system is setup for the flow. A solution to the unsteady flow for

a mode n is obtained.
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User Input Variable Units

Number of panels N, M, L none

Number of periods in the wake nT none

Motion amplitudes for mode n hn, 6on units of fref
Motion phase for mode n <#n rads

Motion reduced frequency k none

Chord length c units of fref
Depth of foil d units of fef

Froude number based on the chord Frc none

Table 3.1: User inputs for the numerical solution to the VSH flow.

5. From the solution of the flowfield, postprocessing of the flow unknowns is carried out to

calculate unsteady loads. Section 3.6 describes how the loads are calculated.

3.2 User Inputs

The motion of the foil is prescribed by the user through a set of Fourier coefficients and the frequency

of motion. Information about the geometry of the system and the flow conditions at which the loads

need to be estimated is also provided by the user and is summarized in Table 3.2. From the Froude

number based on the foil's chord Frc the Froude number Fr is calculated,

F, = c Frc2  (3.1)

Note that in the code, the incoming flow velocity is assumed to be 1m/s and the gravitational

constant is g = lm/s 2 .

3.3 Discretization of the Geometry

The first step to the numerical calculation involves discretizing the vortex and source sheets into

panels of lengths Axi = (xi+ - xi). The continuous vortex and source distributions are respectively

approximated by a collection of panels of linearly varying vorticity and source strengths.

Figure 3-1 shows the nomenclature used for the discretization of the foil, wake and free surface

regions. The foil of chord c is discretized using N panels connected by N + 1 nodes. The wake of

length L. is discretized using M - N panels and the free surface source sheet, whose length is L,, is

discretized with L - M - N panels. There are L panels in all to discretize the geometry. A control

point i is placed on the foil and free surface panels where boundary conditions need to be enforced.

There are Q control points in all. In what follows, index i refers to a control point and index j refers

to a panel node.
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Figure 3-1: Discretization of the foil, wake and free surface regions.

3.3.1 Foil Discretization

Foil Panel Distribution

From thin airfoil theory, it is clear by looking at the analytical solution for the vorticity distribution

along a flat plate that the gradient of the vorticity rapidly varies near the edges of the plate. In order

to numerically capture this rapidly varying gradient in vorticity it is necessary to refine the mesh

of the foil near the leading and trailing edges. A full-cosine spacing method which concentrates the

nodes near the leading and trailing edges is thus adopted for the foil. For a foil of chord c divided

into N panels, the x station of a panel node j is found by using the following cosine spacing formula:

a c (j-1)ir
x3 1 - cos3) with = N (3.2)

Foil Control Point Location

Since the kinematic boundary condition of zero normal flow needs to be satisfied on the foil, a control

point is positioned on every foil panels. The control points are positioned at the center of each foil

panels where the induced velocity is not singular [27].

3.3.2 Wake Discretization

Wake Panel Distribution

The foil deposits vorticity in the wake in the vicinity of the trailing edge. The wake paneling must

therefore be refined in that zone in order to fully capture the physics of the flow (i.e. in order for the

wake to correctly influence the foil and vice-versa). Also, since the influence of a vortex on a field

45



- ~ -- -

point at some distance r diminishes as 1/r, the wake panels far downstream will have a negligible

effect on the foil and the panel discretization in that zone can be sparse.

From these considerations a half-cosine discretization for the wake is chosen. Since the wake

begins at the foil's trailing edge, the panel node index j runs from N + 1 to M + 1. For a wake of

length L, divided into M - N panels, the x coordinate of the 3j th panel node is given by,

w a (j - (N + 1))7r
i = ziv+1 + L, (1 - cos4j) with #j = 2(M - N) (3.3)

Wake Length

In order to compare loads obtained for different frequencies of the motion, the length of the wake

LW must be adjusted to capture a fixed number of periods n, of the motion. The length of the wake

is made proportional to the period T of the motion according to the following formula:

L. = nTUooT (3.4)

3.3.3 Free Surface Discretization

Free Surface Panel Distribution

The free surface sheet panel is discretized using a constant panel distribution. The number of panels

used to discretize the free surface is set by the user and must be such that the free surface panel

length is always less than the depth of submergence of the foil to ensure the accuracy of the numerical

method.

Free Surface Length

To compare loads obtained for varying Froude numbers Frc or Frd, the length of the free surface L,

is adjusted to capture a fixed amount of wave periods. This is done by setting the length of the free

surface proportional to Fr. In the case of a zero Froude number to account for ground effect, the

length of the free surface is set to be equal to some constant C chosen by the user. The value of

this constant depends on the height of the foil relative to the ground/anti-ground surface, and on

the number of panels used for discretization.

Free Surface Control Point Location

Figure 3-2 shows the influence of the position of the free surface control point in obtaining accurate

numerical results. Since the free surface boundary condition has terms involving both the vertical

induced velocity and the first derivative of the horizontal induced velocity, the control point needs
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Figure 3-2: Source strength distributions obtained with the control points located at: (A) 40% of panel length,
and at (B) 50% of panel length.

to be located at a position on the panel where both of these induced quantities will be seen by the

control point. Numerical investigations have shown that positioning the control point at 40% of

the free surface panel length gives satisfactory results when the Froude number T, is different from

zero. When the Froude number is set to zero by the user to model ground/anti-ground interference

effects, the best results have been obtained with the control point positioned at the panel midpoint.

3.4 Panel Induced Velocities

In seeking a numerical solution to the flow, the continuous sheets are approximated by a collection

of panels of linearly-varying strength. The perturbation velocities induced by these panels at some

control point i in the domain are evaluated in Appendix A and are represented in a format suitable for

computer manipulation by means of influence coefficients aij, bij. Induced velocities are evaluated

by scanning the panels and summing their influences. As an example, the z-component of the

velocity induced by N panels of linearly-varying vorticity is given by:

N+1

w(x, z) = [ afy (3.5)
j=1

For the VSH problem, the x and z-components of the velocity at a control point i for a mode

n are obtained by summing the velocities induced by the foil, the wake vortex sheets and the free

47



surface source sheet:

N+1 M+1 L+2

finr= E ax~7j~ + E ax~nw + 5 xq (3.6)
j=1 l=N+2 m=M+2

N+1 M+1 L+2

- j 5i im + nm~ (3.7)
j=1 L=N+2 m=M+2

where a-T is the x-component of the perturbation velocity evaluated at the i th control point due

to a unit strength vortex distribution on the j th panel. Likewise, bm is the x-component of the

perturbation velocity at control point i due to a unit strength source distribution on the m th panel.

As seen previously, the vorticity distribution shed into the wake is a function of the foil circulation

and is given by equation (2.32),

-inw Pa e2inke-in(wx/Uo)
U00

In the discrete version of this equation, i evaluated at a panel node of coordinate xj is approx-

imated by:

N+1

U0= ein(
2
k-wxj/U) c, (3.8)

j=1

where, ta , the total foil circulation, is calculated by means of (3.9),

c N a 4a N+1

gn = n il(d 2 aAy= ci, (3.9)
j=j

Since the computational model uses panels with piecewise linear-vorticity distributions, c, simply

corresponds to the j th component of the trapezoidal rule weight vector.

Using the discrete expression of the wake vorticity (3.8), equations for the induced velocities are

rewritten in terms on the bound vorticity and the source strength unknowns:

N+1 L+2

= 5 i + bim (3.10)
j=1 m=M+2

N+1 L+2

ns = dim + bimr (3.11)
j=1 m=M+2
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where the effects of the wake panels are lumped into a new influence coefficient dig. For every control

point i = 1..N on the foil, dij is given by:

M+1 .

dij = aij + E a (00
1=N+2

ein(2k-wx1/Uoo)) c3
for all i E [1, N]

3.5 Residual Formulation

The discretized boundary conditions are expressed in residual form, and a matrix system is setup

to solve for the flowfield unknowns.

3.5.1 Definition of Residuals

Foil Kinematic Boundary Condition Residual

For every mode n, a residual for the boundary condition of zero normal flow on the foil is defined

for the control points i = 1.N:

N+1 L+2

E dzigi + E bimnm
j=1 m=M+2

(3.13)

+ UoAn + inwhne i + inWOk(Xi - Xrot) = 0

Unsteady Kutta Condition Residual

From (2.29) and (3.9) the discretized form of the unsteady Kutta condition written in residual form

becomes:

R a
flL-N+1 YfN+l

. w N

(inwcN+1 + Ux0 ) ECy 0
j=1

Free Surface Boundary Condition Residual

The boundary condition on the free surface in residual form for a control point i running from

(N + 1) - Q = (L - M + N) is given for a mode n by:

N+1

r (Ed i , +
j=1

N+1

j=1

L+2

E
m=M+2

b 4 (3.15)

bz 4s = 0
L+2

m=M+2

where dx and bx. are respectively the first derivatives of the vortex and the source influence

coefficients in the x-direction as described in Appendix A.
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The free surface boundary condition provides (Q - N) = (L - M) equations. Yet, with (L - M)

panels on the free surface (L - M + 1) source strengths are unknown, and one more equation is

necessary to obtain a determined system. For the flow to be physical, two upstream end conditions

are imposed. The vertical velocity of the free surface far upstream of the foil (for the first free surface

control point i = N + 1) is set to zero and its derivative with respect to x is also set to zero.

N+1 L+2

Wi=N+ 1 Nlj N+1m m 0 (3.16)
j1 m=M+2

fs
2  O_ N+1 L+2

RN+1 OX i=N+1 = Z N+l. + m b l qnm = 0 (3.17)
j=1 m=M+2

Note that through this approach the first upstream residual substitutes the previous free surface

boundary condition evaluated at control point i = N + 1, and the second residual introduces the

(L - M + 1) th equation necessary in obtaining a determined system.

Prescribed Motion Residual

To prescribe the motion of the foil two more residuals are introduced. The values of hnp and

0 ,Sec are defined by the user to prescribe the motion.

Rn n h nspec =0 (3.18)

Ro 0 - spe= 0 (3.19)

Total Residual

Finally, a total residual vector R,, is defined,

~Rfa a Rs2 hS

3.5.2 System Matrix Setup

The derivatives of the residuals with respect to the flowfield unknowns and prescribed motion are

evaluated to form a matrix [&iRn/BUn] and a direct application of Newton's method is used to solve

for the unknowns U. = [i'n,, "m ]T. The solution is obtained with one inversion of a matrix.

6Un = - [a8Rn/Un] -'Rn , Un <- Un + oun (3.21)
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A(N+1)x (N+1)

D(L-M+1) x (N+1)

G( 2 ) x (N+1)

B(N+1)x(L -M+1)

E(L-M+1)x (L-M+1)

H( 2 ) x (L-M+1)

C(N+1)x (2)

F(L-M+1)x (2)

1(2) x (2)

A few explanations are given on the submatrices:

A Matrix

Matrix A contains the derivatives of the foil residual terms with respect to the vortex strength

unknowns as well as the Kutta condition. The size of this matrix is (N + 1) x (N + 1).

/

\

OR a

49RN+1
a;,a

,9RJ aR,
. . ...

2 RN N1

B Matrix

Matrix B contains the derivatives of the foil residual terms with

unknowns as well as the Kutta condition. The size of this matrix is

1
9
4M+2

aR2,

-
94M+2

aR 1+1
-94M+2

MOR+

a44M+ 3

' 9'

respect to the source strength

(N+1) x (L-M +1).

.9RJ
'' 4L+2

49R2

49RN+1
''' -94L+2

C Matrix

Matrix C contains the derivatives of the foil residual terms

of this matrix is (N + 1) x (2).

with respect to the foil motion. The size
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aa
ah, a8n

ahn a6n
0 0

D Matrix

Matrix D contains the derivatives of the free surface residual terms with respect to the vortex

strength unknowns. The first two lines of this matrix represent the free surface upstream end

conditions. The size of this matrix is (L - M + 1) x (N + 1).

,R e R ed R* Nen

NR*N N1 N+

D = R 92  
N + 2  eN 2

81 '' Big 89+1

aR% anR -Q
\ 0,1 .. . aN+1

E Matrix

Matrix E contains the derivatives of the free surface residual terms with respect to the source

strength unknowns. Just like matrix D, the first two lines of E account for the far upstream end

conditions. The size of this matrix is (L - M + 1) x (L - M + 1).

M nl Rend' aR end'

N+1 N+1 N

-9M+2 &M+3 ... 19L+2

i9R ed2 9 ed aR~4 ____
NR*N NI BRNI

0
M+2 19M+3 O.qL+2

E _RN+ 0RN+ 2  RN+2
(94M+2 ... aqL+l 194L+2

\94M+2 --- ... a4L+2

F, G, H Matrices

Matrices F, G and H contain zeros and are respectively of sizes (L - M + 1) x 2, 2 x (N + 1), and

2 x (L - M + 1).
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I Matrix

Matrix I is a (2 x 2) identity matrix containing the prescribed motion information.

( "&Rh aeRh - 1 01= ,.,e ao"
0 ~Pec _

8Rh R 0 180
nspec ab"nspec

3.6 Post processing - Load Evaluation

Now that the flowfield unknowns U, have been determined by solving the system of equations defined

per (3.21), period averaged loads generated by the foil motion can be evaluated.

From Us, the pressure jump across the foil for every mode can be obtained by means of the

linearized form of the unsteady Bernoulli equation introduced in Chapter 2 (c.f. equation 2.17).

To determine the pressure jump, however, the potential jump across the sheet representing the foil

must first be calculated.

By definition, the potential jump is the running sum of the vorticity distribution along the sheet

representing the foil,

y(x, t) = -+ Ap(x, t) = y(', t)d (3.23)

The potential jump evaluated at a panel node j E [1..N + 1] on the foil is approximated by,

j-1 -a aAAa ('Y~kIlk)xk Z a'~~ (3.24)
k=1 k=1

and the pressure jump evaluated at j is,

Apa ~p{ in> ckk + Uoo (3.25)
k=1

From 3.25, the time-dependent pressure jump is reconstructed. Recalling that -y is complex, only

the real part of the function is kept,

( P

n=o
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3.6.1 Vertical Force - Lift

The vertical force is simply calculated by integrating the pressure jump across the foil vortex sheet,

N N+1

Fz(t) = Ap"(x, t)dx ( =p 2 )Ax = c3 cjAp (3.27)

and the average vertical force over one period of the motion is found by calculating,

Fz = - Fz (t) dt (3.28)
27r 0

3.6.2 Horizontal force - Thrust

To calculate the horizontal force, our approach follows the one taken by von Kirmdn and Burgers

[35], where the period-averaged horizontal force is derived by means of the horizontal projection

of the vertical force Fz(t) and the leading edge suction force. Assuming small amplitudes, the

time-dependent horizontal force' is given by Garrick [11] as:

F (t) = 7rpS(t)
2 - O(t)Fz (t) (3.29)

where S, the leading edge suction velocity, is a function of the foil vorticity distribution -a and is

found for a flat plate by using the relation:

S(t) = lim ya(x, t) -+ S(x, t) = -j ( , t) d (3.30)
x-0 4( X 0

Note that the value of S is finite since ya is infinite in the order of 1 at the leading edge (x = 0).

Getting rid of the time dependency and integrating by part yields for the leading edge suction

velocity at some position x in the vicinity of the leading edge,

Sn (X) = a d

1 2 (n 3 - 2 d (-^.3)1)
= x 3 4 -d} (3.31)

Note that although the x-axis is defined as being positive to the right, Fx > 0 corresponds to a thrust force.
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Numerically, equation (3.31) evaluated at a node point j > 1 can be approximated by,

(3.32)Sn(x 3 ) = 5,3 - { Yi
- 1 1

but unlike the analytical expression, the numerical value of (3.32) is singular as xz approaches 0.

To remedy this situation, the value of the leading edge suction velocity is calculated at various

panel nodes in the vicinity of the leading edge, and the value at the leading edge is obtained by

interpolation. The value of the leading edge suction velocity is reconstructed in the time domain,

and equation (3.29) is used to obtain the time-dependent horizontal force. The period averaged

horizontal force is then calculated.

3.6.3 Pitching Moment

The pitching moment about the pitching axis location xrot is simply evaluated by:

MY(t) = - j(x - xrot)Ap(x, t) dx

(3.33)
S ( P +12 (> - Xrot)AXi

i= 1

and the period-averaged pitching moment is found by calculating:

r= o My(t)rt dt

3.6.4 Motion Power

The power necessary in maintaining the motion of the foil is the

done by the pitching and heaving motions:

contribution of the rate of work

and the averaged power over one cycle of the motion is:

P =
2rr J0
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3.6.5 Coefficient Form

The hydrodynamic loads defined above are presented in non-dimensional form using standard co-

efficient definitions with £ref
2 as the reference length. For the horizontal and vertical forces the

corresponding coefficients have the form:

C = /U Cr ' FZ (3.36)
1/2pU,2fre5 ' 1/2pU8e ref

and for the moment coefficient about a pitching location Xrot,

M
Cm = Y'rOt (3.37).*ot 1/2pU,2f5

Finally, the power coefficient is defined by,

C = (3.38)
S1/2pUO3tfref

3.6.6 Efficiency Calculation

From the calculated forces, and the rate at which work is done in maintaining the foil oscillation,

propulsive and power extracting efficiencies can be calculated.

Propulsive Efficiency

A common measure of propulsive efficiency is the Froude efficiency and is defined as the ratio of the

net thrust power to the net shaft power provided by an external source to move the foil:

Y, = - < 1 (3.39)
P C,

If no losses occur in the process of tranforming mechanical input to thrust, then the ideal thrust

efficiency is 1. Note that for negative values of Cx and positive C,, the efficiency can be negative.

This coresponds to the case where work is needed to move the foil but only drag is generated.

Power Extraction Efficiency

In the case of a power extracting system such as a windmill for example, efficiency is typically defined

as the inverse of the propulsive efficiency:

Pi= - =- < 1 (3.40)
E =FxU - C- -
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Chapter 4

Model Validation

Chapter 3 covered the numerical aspect of the VSH computational tool. A series of computer tool

validations need to be performed in order to ensure that the results it predicts are correct. The code

validation process is carried out in two steps:

The first step involves showing that the code gives valid results in the case of infinite depth flow

where the ocean free surface effect is negligible. Calculations involving both stationary and unsteady

foil motions are performed and compared to available analytical results.

The second step involves validating the code with the influence of the free surface effect. Although

drag predictions are available for a stationary hydrofoil below the surface of water, the author was

unable to find results in the literature on the loads imparted on a moving foil with the effect of a

free surface. It is hoped at this stage that the former validations are sufficient to prove that the

code will predict correct trends and values in the case of the foil undergoing unsteady motion with

the free surface effect.

4.1 Infinite Depth Flows

4.1.1 Steady Flow Validation

The very first validation involves comparing the computed result for the lift per unit area of a flat

plate at a given angle-of-attack to the analytical solution given by thin airfoil theory. From thin

airfoil theory, the running circulation across a flat plate of chord c is found to be [23]:

y"(x) 200UV cX (4.1)
V x

From Figure 4-1, one sees that the computed vorticity distribution along the airfoil is in excellent
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Figure 4-1: Comparison of computed and analytical results for the -y-distribution on a flat plate. (N = 50 panels
on the airfoil).

agreement with the analytical result. This first validation ensures that the -y-distribution calculation

is done properly.

4.1.2 Unsteady Flow Validation

Vertical Forces

Theodorsen [31] derived expressions for the unsteady lift and moment acting on a two-dimensional

flat plate in a constant velocity flow. He showed that the unsteady lift of a flat plate undergoing

small amplitude harmonic oscillations can be decomposed into two parts:

L = LNC + Lc (4.2)

Where LNC is the non-circulatory or apparent mass effect of the lift and corresponds to the part of

the lift resulting from flow acceleration effects. L. is the circulatory part of the lift arising from the

circulation la around the foil. Using the nomenclature introduced in this work, the circulatory and

non-circulatory parts of the lift are respectively defined by Theodorsen as [31],[6]:

LNC =±7rp- [Uo#+It1+(C - Xrot)#1

3c
L C = rpUooc Uoo'01 + hi + (- - zrot)#1 CQk) (4.3)
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Theodorsen's Lift Deficiency Function
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Figure 4-2: Comparision of computed and analytical results for the lift deficiency function C(k).(N = 50, M =
200 panels, nT = 30)

In the circulatory lift, the complex function C(k) = F + iG accounts for the effects of the shed

wake on the unsteady foil and is known as Theodorsen's lift deficiency function or lift-reduction

factor. This function is given in terms of Hankel functions H with the reduced frequency k as an

argument by:

H (2 )(k)
C(k) = F + iG = ± iH(2 )(k) (4.4)

Comparison between the analytical expression of Theodorsen and the values computed by the

panel method code for the absolute value (IC(k)| = v/F 2 + G2 ) and argument (tan-'(G/F)) of the

lift deficiency function C(k) is shown in Figure 4-2 and gives a good indication of the validity of the

computed unsteady lift.

Horizontal Forces

Garrick extended Theodorsen's aeroelastic theory by including the horizontal aerodynamic loads on

an airfoil undergoing harmonic plunging and pitching motions. Garrick [11], [12] has shown in his

work that the period averaged horizontal force coefficient, or thrust coefficient' can be expressed as:

Ct = rk 2 (Ctc + Cth + Ctc) (4.5)

1 As pointed out by Jones, Platzer, and Davids in [201, the thrust formulation given by Garrick in [11] for a pitching
airfoil is incorrect. The correct formulation is found in reference [12]
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Figure 4-3: Comparison of computed and analytical results for the thrust coefficient in the case of: (A) a pure
heaving motion (B) a pure pitching motion around the foil's leading edge. (N = 50, M 200
panels, nT = 30).

Where:

" Ct, is the pitch contribution to the total thrust

" Cth is the plunge contribution to the total thrust

" Ctc is the cross-contribution to the total thrust

These coefficients are respectively defined by Garrick as:

CtO = a2 (F2+ G2) + (- - a)2 + ( - F)(- -a) - ( + a)--
1k2 2 1 2 2 k2 2 k

Cth = 4h 2 (F 2 +G 2 )

Ctc = 4ah (-F2 + )sin 4 + (F2 + G2)(c - a) + - + Cos (4.6)2k 2 k 12 4 2k 21

Note that Garrick uses a foil of chord 2b with b being the reference unit length. The leading edge

coordinate is x = -1 and the trailing edge coordinate is x = 1. The coordinate x = a corresponds to

the location of the pivot point. With the nomenclature used in this work, a = 2xrot/c - 1, a = 01,

h = hi and # = #1. Figure 4-3 shows that the computed results agree very well with the analytical

theory of Garrick.
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Figure 4-4: (A) Comparison of computed and theoretical results for the wave drag. (B) Comparison of computed
and analytical results for the normalized lift with free surface effect as a function of the Froude
number Frc and various airfoil depths. (N = 40, M = 40, L = 300 panels).

4.2 Flows with Free Surface Effects

4.2.1 Steady Flow Validation

Wave Drag

For a foil moving below the surface of the water, a wave train originates from the pressure field

around it. The motion associated with this wave train represents a transfer of momentum from the

foil to the water and results in a lift-induced drag force known as wave drag. Although induced drag

usually stems from tip vortices on finite wings, lift-induced drag is present in two-dimensional flow

in proximity of the water surface because of this transfer of momentum. Results pertaining to the

lift/drag characteristics of a hydrofoil below the surface of the water at a depth d are available in

Hoerner [14]. Predictions for the wave drag as a function of the Froude number based on the depth

of submergence d are given in Figure 4-4 where the wave drag Dwave is defined as the ratio of the

foil drag and the square of the lift. Normalized with respect to the depth of submergence and the

foil chord,

(d) Cx
Dwave =- - -2 (4.7)

Note that since Cx corresponds to the thrust, a minus sign is necessary in front of equation (4.7).

From Figure 4-4, one sees that the results predicted by the panel method code are in good agreement

with the theoretical model given by Hoerner.
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Lift

When a foil is deeply submerged it produces downwash in the same manner as the wing of an airplane.

However, as the foil approaches the free water surface the total circulation decreases resulting in a

loss of lift.

Results from Ho~rner [15] pertaining to the lift coefficient of a hydrofoil in the proximity of

the water surface as a function of Froude number Frc for various depth of submergence ratios are

presented in Figure 4-4-(B). Comparison to computed results is also shown.

4.2.2 Unsteady Flow Validation

Figure 4-5 shows the influence of the depth-to-chord ratio of the foil on the thrust coefficient as a

function of the reduced frequency. The results are given for a fixed Froude number based on the

chord equal to 3. As expected from looking at Figure 4-4, the thrust coefficient decreases as the free

surface induced drag become more significant (for decreasing values of d/c). The unsteady results

in the presence of the free surface thus look reasonable.
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Chapter 5

Computed Results and Design

Implications

Having validated the computational tool, we now turn to the problem of finding the optimal foil

motions for efficient propulsion and power extraction. However, before proceeding with the opti-

mization problem per se, we first look at some interesting computed results in an attempt to gain

some insight on the behavior of the VSH system. Similarly to the work of Jones and Platzer [19]

[18], the influence of the multiple design parameters are reviewed and conclusions pertaining to the

efficiency are drawn. Secondly, the optimization problem is described and results for the optimal foil

motions are presented and discussed. Finally, design recommendations for a generic VSH system

are made based on the optimization results.

5.1 Computed VSH Results

We first take a few 'slices' in the large parameter space to shed some light on how the various design

parameters influence the unsteady loads and the efficiency of the VSH system. In this initial trade

space exploration, only pure harmonic oscillations are considered for the foil motion. The effects of

more complex motions on the performance of the system will be investigated in the optimization

problem in section 5.2.

5.1.1 Influence of Design Parameters on Loads and Efficiency

Influence of Reduced Frequency

Figure 5-1-(A) shows that for a heaving foil, C, increases monotonically with increasing reduced

frequency. Also, we remark that the efficiency increases monotonically with decreasing reduced
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Figure 5-1: Efficiency, thrust and power coefficients as a function of the reduced frequency for a purely heaving
foil. (A) Inviscid results, (B) Viscous correction. (hi = 0.15c)

frequency, suggesting that maximum efficiencies can only be attained for small values of the thrust

coefficient. If small thrust coefficients are sufficient for practical applications, the model predicts

that very high propulsive efficiencies are possible. In practice, such high efficiencies are unattainable

once viscous forces on the foil are taken into account.

Recall that in the VSH model, the flow around the foil is assumed to be inviscid. Although

this assumption is valid around the foil, in its vicinity, however, there exists a thin boundary layer

that imparts viscous shear forces on the foil. Hall&Hall pointed out in [13] that for small reduced

frequencies, the effects of this viscous force can be added to the inviscid model by means of a quasi-

steady lift-drag correlation. For angles-of-attack away from stall and for moderate to large Reynolds

numbers, the drag coefficient of a two-dimensional foil is primarily a function of the lift coefficient,

and can be approximated by a quadratic function of the lift, such that:

Cd ~ Cdo + Cd2(C - Clo)2 (5.1)

Where the constants Cdo, Cd2 and Ce are found by interpolation (curve fit) of a foil drag polar.

To account for profile drag in what follows, the author has chosen to use a NACA 0012 foil

section. This section was chosen in particular because of its blunt leading edge, which is prone

to generating a large suction force and hence a large thrust coefficient. Using the computer code

XFOIL [8], a drag polar (see Appendix B) was generated for a Reynolds number of 0.5 x 106, which

is in the realm of Reynolds numbers typical of the Trampofoil®. For a NACA 0012 the following

values where found for the interpolation constants: Cdo = 0.0063, Cd2 = 0.0112 and Cji = 0.

Figure 5-1-(B) clearly shows that inclusion of the viscous profile drag has a detrimental effect

on the propulsive efficiency. In fact, when viscous effects are introduced in the model, the foil must

flap at higher frequencies to overcome the added drag to generate thrust, resulting in dramatically
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purely pitching foil (0 = 50), (B) Comparison between inviscid and viscous results for the thrust
coefficient. (Xrot = 0.25c, 61 50)

reduced efficiency.

Influence of Pitching DOF

In the case of a foil pitching about a fixed axis, the model predicts that thrust is produced only at

high frequencies (k > 1), for both the viscous and the inviscid case (Figure 5-2-(A) and (B) ). From

these considerations, one may believe that the pitching degree of freedom does not bring any benefit

to the thrust producing mechanism at low--to-medium frequencies, and that it should be left out

altogether. However, when the pitching degree of freedom is added to the heaving motion, thrust

can actually be increased considerably for a given combination of parameters as inviscid losses are

alleviated through a better scheduling of the shed vortices. Also, the pitching degree of freedom

reduces profile drag stemming from excessive leading edge suction.

Influence of Pitching Axis Location

The pitching axis location of the foil can be set by the designer without impacting the efficiency of

the system. Although one may believe otherwise by looking at Figurre5-2(A), similar fiowfields can

be obtained around the foil with different Fourier coefficients and pitching axis locations resulting

in identical efficiencies. For thin uncambered foils, the pitching axis location is chosen to be at the

quarter chord point (center of pressure) which is the point on the foil about which the aerodynamic

moment is zero.

Influence of Motion Phase

Once a pitching-axis location is set, the phase lead between the heaving and pitching motions plays

an important role on the efficiency of the VSH system. In Figure 5-3, C2, C, and the propulsive
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efficiency q, are plotted as a function of the heaving phase lead #. The reduced frequency is held

constant at k = 0.25, with hi = 0.5c and 01 = 50*. The pitching axis location is placed at the

1/4-chord point.

Figure 5-3 shows that maximum propulsive efficiency is attained for nearly minimum values of C.

and C,, which means that high efficiencies are only achievable with low thrust coefficients. From a

propulsion standpoint this is an unfortunate outcome if practical applications are to be considered.

Also, once the effects of viscosity are included (see Figure 5-3-(B)) the values of C, are reduced

even more. It should be noted from Figure 5-3 that maximum propulsive efficiency corresponds to

a phase lead of 90 - 130*.

In Figure 5-4, C2, Cp and the power-extraction efficiency 7E are plotted as a function of the phase

with k = 0.1, hi = 0.5c and 01 = 20'. Once again, the foil is set to pitch around the 1/4-chord

axis. The plot of Figure 5-4 suggests that a phase angle in the range of 800 - 1200 is optimal for
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maximum power-extraction efficiency.

Influence of Ground Effect

By setting the Froude parameter to zero, the influence of a ground plane on the loads can be

introduced in the model. Since d is defined as the depth of submergence, a positive value of d

actually corresponds to an anti-ground effect, and a negative value of d to a ground effect. The

efficiency along with the C, and C, of the system are plotted in Figure 5-5 as a function of the

depth-to-chord ratio for the propulsion (A) and power-extraction (B) configurations. Both r/p and

r/E increase with diminishing d/c.

Influence of Free Surface Effect

The depth of submergence of the foil d relative to the water free surface greatly impacts the per-

formance of the VSH system. In Figure 5-6, the efficiency of the system is plotted as a function of

the depth of submergence ratio for various Froude numbers Frc. Interestingly, for Froude numbers

Frc between 1 and 2, the efficiencies for both the propulsion (A) and power-extraction (B) cases

increase significantly for corresponding depth-to-chord ratios of about 1.5 and 2.5. A closer look at

the flowfield for this specific case suggests that a constructive mechanism takes place between the

kinetic energy shed in the wake and the momentum transferred to the free surface.

In practice, it is unlikely that the VSH system would work at such low Froude numbers, as it

would require the hydrofoil to either advance very slowly' or to have a very large chord 2. In the

1 For Frc to be equal to unity in the case of a hydrofoil with a mean chord of 0.15m, the hydrofoil would need to
advance at approximately 1.2m/s. Such a low speed would, in turn, limit the lift provided by the wing.

2 With an advance speed of 4m/s, the chord of the hydrofoil would need to be a staggering c - 1.6m for the Froude
number based on the chord to be equal to one.

67



77P

25 3 3.5 4 45 s """N 1 15 2 25 3 35 4 45

depth/chord depth/chord

Figure 5-6: (A) Influence of free surface on propulsion efficiency for various Froude numbers (xrot = 0.25c,
hi = 0.5c, 01 = 5*, #1 = 110*, k = 0.25) (B) Influence of free surface on power-extraction
efficiency for various Froude numbers. (Xrot = 0.25c, hi = 0.5c, 01 = 200, #1 = 90*, k = 0.1)

latter case, the resulting increase in the wetted area of the foil would translate in increased viscous

and form drag which in turn would nullify the efficiency gain of working at lower Froude numbers.

5.2 Foil Motion Optimization for Efficiency

The results presented in section 5.1 have helped identify the influence of the design parameters on

the unsteady loads generated by the foil. For the computed results to be of practical interest for

design, a quasi-steady lift-drag correlation was introduced in the model to account for viscous effects.

We now turn to the problem of determining a preferred foil motion in an attempt to achieve optimal

efficiency for propulsion and power extraction.

5.2.1 Optimization Problem Description

The optimization problem consists in finding a set of design parameters X that minimize an objective

function F subject to the constraints g(X). For the VSH problem, the parameters correspond to

the Fourier coefficients as well as the reduced frequency and phase shift necessary to describe the

motion. These design parameters are summarized in Table 5.1.

Objective Function

In the case of the propulsion problem, the power coefficient C, is chosen as the objective function

F to be minimized. Note that the efficiency is not chosen as the objective function for the simple

reason that maximum propulsive efficiency corresponds to a minimum value of the thrust coefficient,

which is of little practical value from an engineering standpoint. In selecting a propulsor for a marine

vehicle, the engineer generally has an idea of the necessary thrust coefficient and proceeds to achieve
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Design Parameter, X LB UB

Heaving amplitude, h, Oc 0.5c
Pitching amplitude, 0, 0 200
Heaving phase lead, 4, 00 3600
Motion reduced frequency, k 0 1

Table 5.1: Summary of the design parameters with upper (UB) and lower bounds (LB) for the foil motion
optimization problem.

maximum efficiency subject to the constant thrust constraint. By enforcing an equality constraint

9(X) that a prescribed thrust must be provided, the optimization problem translates into maximizing

the efficiency for a given thrust.

The power coefficient is also chosen as the objective function to be minimized in the case of

the power-extraction problem. This time, a negative thrust coefficient is prescribed as an equality

constraint to the optimization problem. Minimizing C, with a negative prescribed C, will results

in a negative value of C,, which in turn results in maximizing '7.

Parameter Bounds

From a design standpoint, the actuators used to drive the foil have limited travel amplitudes, and

bounds representing the maximum heaving and pitching amplitudes of travel must be set on the

design parameters describing the foil motion. Likewise, the frequency of motion might be limited by

the actuator dynamics and must thus be bounded. Table 5.1 summarizes the lower (LB) and upper

bounds (UB) on the design parameters used in this optimization problem. Note that these values

have been chosen arbitrarily and are purely for illustration purposes.

Constraints

As seen previously, an equality constraint specifying the thrust must be set for the results to be of

practical use. Since the foil motion is defined as a sum of Fourier coefficients, inequality constraints

must also be set on the total travel amplitudes h(t) and 0(t) to ensure that they do not violate the

maximum actuator displacement. The following inequality constraints were thus defined and added

to the optimization problem:

z(t) hmax = 0.5c (5.2)

0(t) Omax = 200

Optimization Implementation

A Sequential Quadratic Programming (SQP) method was used to perform the optimizations. Im-

plementation was carried out in MATLAB@ using the Optimization Toolbox application.
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The bounds set on the total amplitudes of travel of the foil, hmax and Omax, define a limit in terms

of the maximum thrust and power that can be produced by the system. With the bounds specified

in this problem, propulsive efficiencies beyond 75% cannot be achieved for thrust coefficients greater

than 0.25. Likewise, power coefficients greater than -0.07 are achieveable but with a significant

efficiency loss. Throughout the optimization process, the thrust coefficient was thus varied between

0.01 - 0.25 for the propulsive case, and between 0.01 - 0.09 for the power-extraction problem. In all

cases, the following number of panels were used to discretize the foil, wake and free surface regions:

N = 30 on the foil, M = 250 and L = 650.

5.2.2 Optimization Results

Optimal Foil Motion

What motion should the foil be undergoing in order to maximize propulsive and power-extraction

efficiency ? To answer this question, an increasing number of Fourier coefficients were progressively

introduced in the model to give the optimizer more degrees of freedom to describe the foil motion.

The initial optimization was carried out with just one Fourier coefficient and a reduced frequency

as the design parameters for the propulsive case. Since at least two degrees of freedom are necessary

to extract power, initial power-extraction optimizations were done with two Fourier coefficients and

a reduced frequency (hi, 01, k). As many as P = 5 modes were used in the optimization process,

resulting in a design vector of 26 parameters (25 Fourier amplitudes and 1 reduced frequency). Also,

to account for the free surface effect, a Froude number of Frc = 3 and a depth-to-submergence ratio

of 0.6c were selected.

Figure 5-7 shows the efficiency of the system for the optimal foil motion in the case of propulsion
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(A) and power-extraction (B). The plots of Figure 5-7 (A) show that, as expected, the pitching

degree of freedom greatly enhances the efficiency of the system for the propulsive case. In fact,

people who have ridden the Trampofoil® all concur to saying that introduction of a pitching motion

noticeably augments its propelling characteristics. Interestingly enough, the results indicate that a

sinusoidal motion corresponds to the optimal solution for both power extraction (A) and propulsion

(B), and this, even though the optimizer could operate on 26 design parameters. In Figure 5-7

the optimal efficiencies found for P = 1, 2, 3, 4 and 5 modes all yielded the same sinusoidal motion

solution.

As a "reality check", the bounds on the design parameters were lifted. The idea behind perform-

ing a set of unbounded optimizations was to give the SQP method more freedom to find solutions

that might have been in otherwise unreachable areas of the design space because of the bounds. The

unbounded optimization results showed that for a prescribed thrust coefficient, optimal efficiency is

achieved through a very slow motion with large heaving amplitudes. The high efficiency resulting

from this quasi-steady motion can be explained by the fact that little kinetic energy is deposited in

the wake with a slowly moving foil. As the frequency of motion increases, so does the kinetic energy

lost in the flow, which in turn hinders the efficiency.

Despite the fact that the optimizer could operate on 26 design parameters, the optimal motion

was once again found to be sinusoidal. It can be concluded that harmonics of the motion higher

than n = 1 blow off energy into the flow and are not useful in increasing the propulsive nor the

power-extracting efficiency of the VSH system.

Free Surface Interference Effects

Having identified an optimal foil motion, propulsive and power-extraction efficiencies were calculated

for various combinations of Froude numbers, Frc and depth of submergence ratios d/c to examine

the influence of the ocean free surface. To inspect a wide region of the design space, optimizations

were carried out with Frc ranging from 1 to 6 and depth of submergence ratios of 1c, 0.8c and 0.6c.

Also, since the optimal motion was found to be sinusoidal, all optimizations were conducted with

P = 1 mode. From the optimization results, a set of efficiency plots were generated that are useful

for design. The plots pertaining to the propulsion problem are shown in Figure 5-8. Figure 5-9 shows

the results obtained for the power extraction problem. All optimization results are summarized in

Tables C.1 to D.18 in Appendices C and D.

For the range of computed Froude numbers, the effect of the free surface is seen to have a notable

influence on the propulsive efficiency of the system. For the case considered here, the computations

show that as much as 7% efficiency can be lost because of the free surface induced drag, at low

depths and Froude numbers.
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Figure 5-8: VSH design optimization results for the propulsive problem for Froude numbers based on the chord
varying between 1 and 6 and various depths of submergence ratios.
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Likewise, the optimization results obtained for the case of power-extraction show that the power

coefficient is greatly hindered by the free surface. Intriguingly, for certain configurations of Froude

numbers and depths of submergence, the VSH system is unable to deliver power extraction perfor-

mances otherwise achievable at increased depths. Figure 5-9 (B) illustrates the case where a power

coefficient of -0.06 is accomplished at an infinite depth, but unrealizable for depths less or equal to

one chord length.

Difficulties Encountered

It must be noted that multiple difficulties were encountered while performing these optimizations.

The first difficulty arose from the design space becoming excessively large as more modes were

used to describe the foil motion. Finding the globally optimal solution thus became very challenging,

especially for the gradient-based optimization method used in this work. To prevent the method

from getting trapped into local minimums, the author had to use many randomly-chosen initial

vectors of design parameters X. Yet, even with this time-consuming approach, global optimality of

the solution is not guaranteed. One way to ensure that the solution is globally optimal might be

to use heuristic-based optimization techniques such as Simulated Annealing or Genetic Algorithms.

Implementation of the equality and inequality constraints with such techniques; however, is usually

difficult.

Also, the number of optimizations that could be carried out was contingent on the available time

and computing power. Although the panel method code only requires a couple of seconds3 at most

to evaluate the unsteady loads on the foil, the optimization algorithm makes multiple calls to the

panel method code and computational times can rapidly become very large.

5.3 VSH Design Implications

The optimization results provide useful indications for the design of a VSH system. Let us review

the influence of the elements influencing the performance of the VSH system and look at ways of

improving its efficiency.

5.3.1 Interference Effects

Free Surface Effect

The free surface is seen to influence the efficiency of the system for depths less than or equal to

approximately 5c for the propulsive case (cf Figure 5-6). In the energy-extracting case, the foil

3 Calculations were performed on a Pentium III-750MHz workstation.
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needs to operate at a depth greater than 5c not to be affected by the free surface induced drag.

This suggests that the loss of efficiency (,q, or qE) due to the free surface effect can be regained or

improved in two ways:

" By increasing the depth of the foil so as to limit the influence of the free surface induced drag.

" By increasing the Froude number based on the chord.

Increasing the depth of submergence of the foil is easily done, but care must be taken not to

introduce too much friction drag with excessively long struts connecting the body of the vehicle to

the foil. Even if the struts are well designed so as to minimize drag, their lengths will also be limited

by weight and structural issues.

Increasing the Froude number based on the chord is done by either advancing at higher velocity

U,, or by reducing the foil's chord length. In the latter case, design considerations, such as the

minimum lift that must be provided to support the vehicle weight, or the minimum power that must

be extracted from the flow, will affect the size of the foil's chord and a trade off must be sought.

Ground Effect/Multiple Foil Configurations

The investigations of section 5.1.1 clearly indicate that substantial increases in efficiency can be

attained by operating in ground effect. In fact, birds are known to take advantage of ground

plane effect by flying low over water. For the VSH system, ground effect can be reproduced by

introducing a second foil to create an mirror image of the first foil. A configuration similar to the

one investigated by Jones and Platzer [19] where two wings work in an opposed-plunge configuration

(biplane arrangement) might be a solution to regaining the lost efficiency of working in the free

surface effect. It remains to be seen if the addition of a second hydrofoil introduces too much

viscous drag.

5.3.2 Dynamic Foil Stall

All results given thus far make no mention of foil stalling. In a real flow, the effective angle-of-attack

of the foil will likely reach values where stalling occurs, thus placing a threshold on the maximum

achievable thrust and extracted power. The effective angle-of-attack is calculated at the 3/4-chord

point of the foil and is given by the following expression:

h (Ic - XrOt)O 53
ae = 0 + + 0 (53)

Figures 5-10 and 5-11 give the maximum effective angle-of-attack seen by the foil for the optimal

motions of Figures 5-8 and 5-9. From the NACA 0012 drag polar (Appendix B), the static stall
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angle-of-attack is seen to correspond to approximately 140 for the Reynolds number considered in

this study.

In selecting an operating point, the designer will want to make sure the maximum effective angle-

of-attack ae,,. does not exceed the static stall angle-of-attack by too much. Luckily, dynamic stalls

are usually more tolerant than static stalls, so even if the effective angle-of-attack of the foil is close

to its static stall value, it is unlikely that the foil will stall for that value.

Predicting dynamic stall is one of the key elements that will allow to push the performance

envelope of flapping-wing systems. Unfortunately precise analysis of dynamic stall is extremely

difficult. There exist semi-empirical methods of determining the dynamic stall characteristics of

a particular foil section based on static data. The method of Erickson and Reding [10],[9] is an

example of such a method to determine dynamic stall characteristics for foils oscillating in pitch at

low reduced frequencies.

5.3.3 Other Considerations

All mechanical losses as well as the mass and inertia of the wing have been ignored and inclusion

of these terms in the model will further diminish the overall efficiency of the system. However,

nature shows that it may be possible to overcome most of the inertial energy requirements needed

to accelerate the mass of the wing by adding springs to the flapping mechanism to create a tuned

harmonic oscillator. In fact, it is believed that insects employ such techniques to generate highly

efficient flapping flight [2].
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Chapter 6

Summary, Conclusions and

Recommendations for Future Work

6.1 Summary

To provide an Autonomous Marine Vehicle with improved endurance, a simple mechanical system

based on a Vertically Sculling Hydrofoil was studied. A computer-based tool allowing for the compu-

tation of the unsteady loads exerted on a two-dimensional heaving and pitching foil in the presence

of free surface effects was devised. With the use of this tool, a series of investigations were carried

out to understand how the various VSH design parameters influence the loads and the efficiency of

the system. A set of optimizations were conducted to find the ideal foil motion in order to maximize

the VSH system's efficiency. From the investigations and the optimization results, it was found that

a sinusoidal foil motion is optimal for both propulsion and power extraction in the case of a symmet-

rical foil. Finally, the influence of the free surface effect on the efficiency of the system was studied.

The results show that the free surface greatly impacts the efficiency of the system for foil depths of

approximately 5 chord lengths for the case of propulsion and for depths greater than 5 chord lengths

for power extraction. Design recommendations to limit the effect of free surface induced drag were

provided.

6.2 Future Work

Various recommendations can be made for future work on this project. First of all, the capabilities

of the computer tool can be enhanced in the following ways to help in the design of efficient VSH

systems:
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* Nature suggests that interference effects between multiple wings may be a highly efficient

approach to flapping flight (e.g. dragonflies). Among others, experiments by Jones [19], and

Schmidt[29] also suggest that this is the case. It would therefore be valuable to enhance the

computational tool so as to allow the modeling of multiple foil configurations and assess the

resulting interference effects.

" As stated previously, use of spring mechanisms may be another approach to increase the

propulsive and power extraction efficiencies of the VSH system. The addition of a dynamics

module to the current computational tool could be made to quantify the benefits of using such

spring mechanisms.

" Since the wing is assumed to be of high aspect ratio, so as to limit the finite-span induced

drag, a two-dimensional computational tool was developed. If the wing's aspect ratio is to be

constrained, the high aspect ratio assumption might fail and means of computing the three

dimensional flow around the hydrofoil may prove necessary. A vortex lattice tool similar to

the one developed by Hall & Hall [13] may be a way of achieving this. In fact, the Fourier

solution technique presented in this work could be implemented on such a tool. Finally, with

a three dimensional tool, the influence of all types of wing planforms on the unsteady loads

could be investigated.

Secondly, further optimizations and VSH experiments may be achieved. These include:

" Looking at heuristic-based methods for the optimization of the foil motion to ensure global

optimality of the solution. Because of the large design space, finding the optimal solution

was rendered difficult as the SQP algorithm got trapped in multiple local minima. Also,

optimizations were only carried out for a symmetrical foil section and it would be interesting

to see if the optimal foil motion changes with cambered foil sections.

" Designing a VSH system to conduct a series of experiments to acquire data and correlate this

experimental data with results given by the computational tool. Ways of acquiring data may

be done with tow tank tests or with a remote control vehicle testbed with adequate on board

instrumentation for performance assessment.
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Appendix A

Analytic Panel Integrals

In this section, we lay the foundations for the numerical method described in Chapter 3. As seen

in Chapter 2, unsteady loads imparted on the foil can be determined by finding the variation of

vorticity y along a foil and its wake by satisfying a set of boundary conditions. In order to find the

y-distribution, one must be able to describe the velocity induced by a singularity distribution. For

numerical considerations, a discrete analog to the velocity induced by a continuous distribution is

sought.

The continuous vorticity or source distributions are approximated by a set of discrete singular-

ity panels of linearly varying strength. Integrals relating the induced velocities to the singularity

strengths are evaluated for a panel and an influence coefficient matrix is build.

A.1 Panel Influence Formulation

The two dimensional inviscid flow around the foil can be represented as an analytical function of

the complex argument x = x + iz = reiO -

F(x) = F(x + iz) = W(x, z) + iO(x, z) (A.1)

Where F(X) is the complex stream function and o and 0, the perturbation potential and stream

functions are real functions of x and z. From elementary potential flows the complex stream function

for a point source of strength q is given by,

o+iO:= rInr+i2r (A.2)
27r 27r
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And for a point vortex of strength -y, the complex stream function is,

(p+i= - -!+i-lnr (A.3)
27r 27r

Combining the two singularities allows one to write the complex stream function for a complex

source of strength r = q + iy

+ln(x + iz) (A.4)
27r 27r

Instead of using discrete source or vortices to approximate a continuous singularity distribution,

one may consider using a two-dimensional panel of length As = |Axi = |x2 - XiI. The complex

stream function for such a panel, evaluated at a control point xo, is obtained by integrating the

point source complex stream function over the length of the panel.

1 As sX
F(Xo) = y] + iV = 21 X o-(x) ln(x - xo)dx (A.5)

Assuming a linearly varying complex source distribution o-(x) on the panel, as depicted per

Figure A-1 yields,

( )(x) = U-1 + O-2 (A.6)

Substitution of (A.6) into (A.5) gives for the complex stream function,

W + iv = ( X2 (x2 - -2 x1) ln(x - xo) + (0-2 - ai)Xln(x - xo) dx (A.7)

1 As 1
W + si 2  (x2 - X1) (-1(2Xo + Xi - 3 X2) - 0-2( 2Xo - 3 x1 + X2)

8,7r A x2

-
2 (Xo - x1) (O2(x1 - Xo) + a-1(Xo + Xi - 2X2)) ln(X1 - Xo)

+ 2 (x2 - Xo) (o1(X2 - Xo) + U-2(Xo - 2 X1 + x2)) ln(X2 - xo) (A.8)

The velocity field in the complex plane is obtained by differentiating the complex stream function

with respect to Xo,

d
U - iW = ((P + io) (A.9)
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X plane

Figure A-1: Panel of linearly varying complex source distribution.

After differentiating and regrouping the ai and 0'2 terms, one obtains,

1 As
u-iw - 27rXI(T (X2 - X1) + (X2 - Xo)(ln(Xi - Xo) - ln(X2 - Xo)) }

+ 92 (X1 - X2) + (Xo - X1)(ln(X1 - X) - ln(X2 - XO) ) } I (A.10)

As seen in Chapter 1, the second derivative of the complex stream function with respect to x is

necessary in order to introduce the fluid free surface effects in our model. Deriving the velocity field

in the complex plane with respect to the complex variable Xo yields,

d2x i =

d2 X0 j X-o

OW au~ ew
- XO i - --x0 Ozo Ozo

From the two-dimensional expression of the continuity equation in cartesian space,

au w 0 -*

09xo azo

Also, for an irrotational fluid the vorticity ( is equal to zero yielding,

Using equations (A.12) and (A.13), the acceleration field in the complex plane finally becomes,

d2
(Wp -

Ou Ow
+ i) = 2 - 2i

OXO Oxo
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Ou Ow
Oxo 9zo

( - = 0-
09xo 9zo

(A.12)

OW Ou
aO az0

(A.13)

(A.14)



1 As

27r AX 2

+ U2{

(X2 - X1) - (Xo - X1) (ln(Xi - Xo) - ln(X2 - Xo))

X0 - Xi

(X1 - X2) + (Xo - X2) (ln(Xi - Xo) - ln(X2 - Xo))

Xo - X2 I (A.15)

The induced velocities and their derivatives can be rewritten in a more compact form for computer

implementation as,

d(+i@) = o1C1(Xo)+o 2C2(Xo)
dXo

= (qi+i7i)(A1+iB1)+(q2+i-y2)(A 2 +iB 2)

d2 1'(O
d2 X(+iO) = o1C'(Xo)+02C2(Xo)

= (qi + i1)(A' + iB') + (q2 + i72 )(A2 + iBI)

Where the complex influence coefficients C1, C', C2 and C2 are given by:

(A.16)

(A.17)

= A 1 +iB1
Asx2 

(X2
2,7rAX2

Xi) + (X2 - Xo)(ln(X1 - Xo) - ln(X2 -

= A 2 +iB 2

27rAX
2 (Xi - X2) + (Xo - X1)(ln(Xi - Xo) - ln(X2

=/ A'+iB'

As (X2 - X1)-

27xAX 2

SA'+iB'

As (X1 - X2) +

27AX 2

(Xo - X1)(ln(X1 - Xo)

Xo - Xi

- ln(X2 - Xo)) }

(Xo - X2) (ln(Xi - Xo) - ln(X2

Xo - X2

- Xo))

Finally, the x and z-components of the panel-induced velocities are obtained by respectively taking

the real part and imaginary part of (A.9). The induced velocities can further be decomposed into
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C1 (Xo)

C2(XO)

xo))} (A.18)

C1 (Xo)

-Xo))} (A.19)

C2(Xo)

(A.20)

(A.21)
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velocities due to the source singularity q and the vortex singularity y.

u(xo,zo) Re(oiC1 +2C2) = Re ((ql +i1yi)(A +iB1) + (q2 +iY 2 )(A 2 +iB 2 ))

(qi Re(C1) + q2 Re(C 2 )) + -Y1 Im(C1) - 72 Im(C 2 ))

= q* + Ut (A.22)

w(Xo, zo) -Im(Ol1C1 + 2C2)

qi Im(C1) - q2 Im(C 2 )) + -71 Re(C1) - 72 Re(C2 ))

wq + w7 (A.23)

Likewise, separating real and imaginary parts of (A.14) and regrouping terms induced by the source

and vortex singularity yields for the acceleration field,

(Xo, zo) = Re(oiC' + 0 2 C2)

= (qi Re(C) + q2 Re(C2)) + 71 Im(C) -72 Im(C2))

= + (A.24)
09X0 +&Xo

OW 1
(xo, zo) = 2 1m(o1C(±u2 C&)

= 1(q Im(C) + q2 Im(C2 )) - 1 Re(C;) +7 2 Re(CG))

= + (A.25)
Oxo Oxo

The above formulae have been derived for the case of a single panel, where the velocity induced

by this panel is calculated at a control point xo. If two or more panels are to be considered, the

velocity induced by these panels at point xo is now the sum of the influences of the various panels.

Generalizing to a panel j of node coordinates Xj and Xj+1 yields for the functions C 1, C', C2 and
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C2 evaluated at a control point xo,:

C - 2 {(Xj+1 - Xj) + (Xj +1 - Xo)(ln(Xj - Xo ) - ln(Xj+1 - Xoi)) (A.26)
27r AX

C2i - AS {(Xj - Xj+1) + (xo, - Xj)(ln(Xj - xo) - ln(Xj+1 - Xo0)) (A.27)
2,7rAX2

As (Xji+ - X3) - (Xoi - xj)(ln(xj - Xoj) - ln(Xj+1 - Xo)) (A.28)
j 27rAX2 Xj

As (Xj - X±i+) + (Xo - Xj+i)(ln(xj - Xo%) - ln(Xj+1 -Xo) (A.29)
2ij 27rAX 2 j _ Xj+1

Finally, calling a' and az the influence coefficients in the x and z directions respectively for the

vortex distribution y, and bx, bZ the influence coefficients in the x and z directions respectively for

the source distribution q, one may construct the influence coefficient matrix for a given geometry

by scanning each panel and accumulating the influences.

The pseudo-code below shows the accumulation process for N panels:

DO i = 1,N \\For every control point

DO j = 1,N \\Scan each panel

ax(i,j) = ax(i,j) - Im(C1(i,j))

ax(i,j+1) = ax(i,j+1) - Im(C2(i,j))

ax-x(i,j) = ax.x(i,j) + 0.5*Im(C1'(i,j))

ax-x(i,j+1) = ax-x(i,j+1) + 0.5*Im(C2'(i,j))

az(i,j) = az(i,j) - Re(C1(i,j))

az(i,j+1) = az(i,j+1) - Re(C2(i,j))

az-x(i,j) = az-z(i,j) - O.5*Re(C1'(i,j))

az-x(i,j+1) = az-z(i,j+1) - 0.5*Re(C2'(i,j))

bx(i,j) = bx(i,j) + Re(Ci(i,j))

bx(i,j+1) = bx(i,j+1) + Re(C2(i,j))

bx-x(i,j) = bx-x(i,j) - 0.5*Re(C1'(i,j))

bx-x(i,j+1) = bx-x(i,j+1) - 0.5*Re(C2'(i,j))

bz(i,j) = bz(i,j) - Im(C1(i,j))

bz(i,j+1) = bz(i,j+1) - Im (C2(i,j))
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bz-x(i,j) = bz.x(i,j) - 0.5*Im(C1'(i,j))

bz-x(i,j+1) = bz-x(i,j+1) - 0.5*Im (C2'(i,j))

END

END

The x and z-velocities induced at

distribution are given by,

a control point i by N panels of linearly varying vortex-

N+1 N+1

"Y= ax , v- = a-

j=1 j=1

(A.30)

The x and z-velocities induced

distribution are given by,

at a control point i by N panels of linearly varying source-

N+1 N+1

u b=b q , V= bz q
j=1 j=1

(A.31)

The first derivatives of the velocities induced at a control point i by N panels of linearly varying

source-distribution are given by,

OUq N+1 q N+1

S= bx q , -= b q
j=1 j=1

(A.32)

The first derivatives of the velocities induced at a control point i by N panels of linearly varying

vortex-distribution are given by,

09u N+1 x N+1

a ayj, =E a y
j=1 j=1

(A.33)
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Appendix B

NACA 0012 Drag Polar
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Figure B-2: Curve fit of the NACA 0012 foil section drag bucket by means of a quadratic function.
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Appendix C

Optimization Results - Propulsion

This section summarizes the optimization results for the propulsive case . In the tables presented

below, certain parameters are given to help in the design process and for comparison purposes with

other theories and flapping-foil results :

CZm, corresponds to the maximum lift coefficient experienced by the foil over a cycle of the optimal

motion. From the static stall characteristics of a given foil, the designer can gage whether the

foil is close to stalling or not.

CXLES is the part of the thrust coefficient due to leading edge suction. This value is provided here

to help in the design process. To achieve large thrust coefficients, the designer will want to

select an airfoil that can reach high values of CXLES without flow separation.

aemx is the maximum effective angle-of-attack seen by the foil at the 3/4-chord point. It is given

by h/U, + (3/4c - xot) 6/U 0 + 

Sta is the Strouhal number. It is defined as Sta = fA/U 0 , where f is the frequency in Hertz of the

motion, A is the maximum excursion of the foil's trailing edge, and U00 is the average forward

velocity. The Strouhal number is provided in this work for comparative purposes with other

results, such as the ones obtained by Triantafyllou [32],[33],[3]

E is the proportional feathering parameter introduced by Lighthill [24]. It is defined as a,,ae U0 0/h.
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cx Cp
0.250 0.332
0.240 0.317
0.230 0.302
0.220 0.287
0.210 0.273
0.200 0.258
0.190 0.244
0.180 0.230
0.170 0.216
0.160 0.202
0.150 0.188
0.140 0.175
0.130 0.161
0.120 0.148
0.110 0.135
0.100 0.122
0.090 0.110
0.080 0.097
0.070 0.085
0.060 0.073
0.050 0.061
0.040 0.050
0.030 0.039
0.020 0.028
0.010 0.017

Czmax
0.953
0.918
0.883
0.847
0.812
0.776
0.740
0.704
0.668
0.632
0.595
0.558
0.521
0.483
0.445
0.407
0.367
0.327
0.287
0.245
0.203
0.159
0.114
0.084
0.068

CILES

0.139
0.133
0.127
0.120
0.114
0.108
0.102
0.096
0.090
0.084
0.078
0.072
0.067
0.061
0.056
0.051
0.046
0.041
0.037
0.032
0.028
0.025
0.021
0.015
0.008

Oemax

15.647
15.108
14.567
14.023
13.476
12.927
12.381
11.833
11.282
10.734
10.188
9.640
9.100
8.560
8.031
7.507
6.994
6.498
6.020
5.563
5.140
4.751
4.411
3.739
2.613

h1 01

0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 18.934
0.500 16.200

#1 k
115.435 0.713
115.486 0.702
115.531 0.691
115.565 0.680
115.589 0.669
115.600 0.657
115.600 0.646
115.585 0.634
115.556 0.622
115.507 0.610
115.443 0.598
115.359 0.585
115.253 0.572
115.124 0.559
114.968 0.546
114.787 0.532
114.571 0.519
114.321 0.505
114.032 0.491
113.701 0.476
113.322 0.461
112.892 0.446
112.404 0.431
110.906 0.394
107.782 0.324

Sta E
0.206 0.383
0.203 0.376
0.200 0.368
0.196 0.360
0.193 0.352
0.190 0.343
0.186 0.335
0.183 0.326
0.180 0.317
0.176 0.307
0.173 0.298
0.169 0.288
0.166 0.278
0.162 0.267
0.159 0.257
0.155 0.246
0.151 0.235
0.148 0.225
0.144 0.214
0.140 0.204
0.136 0.195
0.132 0.186
0.128 0.179
0.118 0.166
0.099 0.141

Table C.: Optimization results for d/c = oo
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d/c
00
00

00
00

00

00
00
00

00
00

00

00

00

00

00

00

00

00

00
00
00
00
00
00
00



d/c C, CP,
1.000 0.250 0.331
1.000 0.240 0.317
1.000 0.230 0.302
1.000 0.220 0.287
1.000 0.210 0.272
1.000 0.200 0.258
1.000 0.190 0.244
1.000 0.180 0.230
1.000 0.170 0.216
1.000 0.160 0.202
1.000 0.150 0.188
1.000 0.140 0.175
1.000 0.130 0.161
1.000 0.120 0.148
1.000 0.110 0.135
1.000 0.100 0.123
1.000 0.090 0.110
1.000 0.080 0.098
1.000 0.070 0.086
1.000 0.060 0.074
1.000 0.050 0.062
1.000 0.040 0.050
1.000 0.030 0.039
1.000 0.020 0.028
1.000 0.010 0.017

Cz_ ax
0.982
0.947
0.911
0.876
0.840
0.804
0.768
0.732
0.695
0.658
0.620
0.582
0.544
0.505
0.465
0.425
0.384
0.343
0.300
0.257
0.213
0.167
0.137
0.113
0.086

C
CILES

0.119
0.113
0.107
0.102
0.096
0.091
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.051
0.046
0.042
0.038
0.034
0.030
0.027
0.023
0.020
0.015
0.010
0.005

aemax

15.377
14.873
14.365
13.868
13.368
12.860
12.354
11.852
11.353
10.850
10.354
9.864
9.368
8.886
8.403
7.932
7.470
7.016
6.575
6.151
5.749
5.372
4.681
3.769
2.740

h1 01 $1 k Sta 0
0.500 20.000 112.307 0.675 0.201 0.398
0.500 20.000 112.346 0.665 0.198 0.390
0.500 20.000 112.383 0.655 0.195 0.383
0.500 20.000 112.389 0.645 0.192 0.375
0.500 20.000 112.396 0.634 0.189 0.368
0.500 20.000 112.410 0.624 0.186 0.360
0.500 20.000 112.408 0.613 0.183 0.352
0.500 20.000 112.386 0.603 0.180 0.343
0.500 20.000 112.354 0.592 0.176 0.335
0.500 20.000 112.319 0.581 0.173 0.326
0.500 20.000 112.256 0.570 0.170 0.317
0.500 20.000 112.178 0.558 0.167 0.308
0.500 20.000 112.101 0.547 0.163 0.299
0.500 20.000 111.998 0.535 0.160 0.290
0.500 20.000 111.880 0.523 0.157 0.280
0.500 20.000 111.745 0.511 0.153 0.271
0.500 20.000 111.588 0.499 0.150 0.261
0.500 20.000 111.412 0.487 0.146 0.252
0.500 20.000 111.216 0.474 0.143 0.242
0.500 20.000 110.997 0.462 0.139 0.233
0.500 20.000 110.754 0.449 0.136 0.224
0.500 20.000 110.486 0.435 0.132 0.215
0.500 19.086 109.390 0.404 0.123 0.202
0.500 17.422 107.580 0.358 0.110 0.184
0.500 15.127 105.110 0.301 0.093 0.159

Table C.2: Optimization results for Frc = 1.0, d/c = 1.0
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d/c C, CP,
0.800 0.250 0.342
0.800 0.240 0.326
0.800 0.230 0.311
0.800 0.220 0.296
0.800 0.210 0.281
0.800 0.200 0.266
0.800 0.190 0.251
0.800 0.180 0.237
0.800 0.170 0.222
0.800 0.160 0.208
0.800 0.150 0.194
0.800 0.140 0.180
0.800 0.130 0.166
0.800 0.120 0.152
0.800 0.110 0.139
0.800 0.100 0.126
0.800 0.090 0.113
0.800 0.080 0.100
0.800 0.070 0.088
0.800 0.060 0.075
0.800 0.050 0.063
0.800 0.040 0.051
0.800 0.030 0.040
0.800 0.020 0.029
0.800 0.010 0.018

C0Z_,
1.011
0.975
0.938
0.902
0.865
0.827
0.790
0.752
0.714
0.675
0.637
0.598
0.558
0.518
0.477
0.436
0.394
0.351
0.308
0.264
0.218
0.172
0.133
0.110
0.084

CXLES

0.112
0.107
0.101
0.096
0.091
0.085
0.080
0.075
0.070
0.066
0.061
0.056
0.052
0.048
0.043
0.039
0.035
0.032
0.028
0.025
0.022
0.019
0.015
0.010
0.005

aemax

17.123
16.594
16.062
15.532
14.998
14.462
13.922
13.380
12.842
12.299
11.752
11.211
10.668
10.122
9.582
9.041
8.505
7.975
7.450
6.935
6.436
5.956
5.322
4.277
3.100

5 01 101 k
0.500 20.000 109.704 0.684
0.500 20.000 109.767 0.674
0.500 20.000 109.830 0.664
0.500 20.000 109.886 0.653
0.500 20.000 109.936 0.643
0.500 20.000 109.980 0.633
0.500 20.000 110.018 0.622
0.500 20.000 110.048 0.611
0.500 20.000 110.071 0.600
0.500 20.000 110.086 0.589
0.500 20.000 110.094 0.578
0.500 20.000 110.090 0.566
0.500 20.000 110.078 0.555
0.500 20.000 110.059 0.543
0.500 20.000 110.026 0.531
0.500 20.000 109.984 0.519
0.500 20.000 109.929 0.506
0.500 20.000 109.863 0.493
0.500 20.000 109.783 0.480
0.500 20.000 109.689 0.467
0.500 20.000 109.581 0.453
0.500 20.000 109.456 0.439
0.500 19.526 108.893 0.416
0.500 17.816 107.183 0.369
0.500 15.464 104.827 0.310

Sta
0.209 0.437
0.206 0.430
0.203 0.422
0.199 0.415
0.196 0.407
0.193 0.399
0.190 0.391
0.186 0.382
0.183 0.373
0.179 0.364
0.176 0.355
0.172 0.346
0.169 0.336
0.165 0.325
0.162 0.315
0.158 0.304
0.154 0.293
0.151 0.282
0.147 0.271
0.143 0.259
0.139 0.248
0.135 0.237
0.128 0.223
0.114 0.202
0.097 0.175

Table C.3: Optimization results for Frc = 1.0, d/c = 0.8
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d/c C, C
0.600 0.250 0.363
0.600 0.240 0.346
0.600 0.230 0.330
0.600 0.220 0.314
0.600 0.210 0.298
0.600 0.200 0.282
0.600 0.190 0.266
0.600 0.180 0.250
0.600 0.170 0.235
0.600 0.160 0.220
0.600 0.150 0.205
0.600 0.140 0.190
0.600 0.130 0.175
0.600 0.120 0.161
0.600 0.110 0.146
0.600 0.100 0.132
0.600 0.090 0.118
0.600 0.080 0.105
0.600 0.070 0.091
0.600 0.060 0.078
0.600 0.050 0.066
0.600 0.040 0.053
0.600 0.030 0.041
0.600 0.020 0.029
0.600 0.010 0.018

C,ax

1.052
1.013
0.974
0.935
0.896
0.857
0.817
0.777
0.737
0.697
0.657
0.616
0.574
0.533
0.491
0.448
0.405
0.361
0.317
0.272
0.226
0.179
0.130
0.107
0.081

C
CXLES

0.107
0.102
0.097
0.092
0.087
0.082
0.077
0.072
0.068
0.063
0.058
0.054
0.050
0.046
0.042
0.038
0.034
0.030
0.027
0.024
0.021
0.018
0.015
0.010
0.006

aemax

20.907
20.288
19.667
19.038
18.408
17.771
17.130
16.483
15.826
15.164
14.502
13.830
13.152
12.469
11.781
11.087
10.393
9.692
8.992
8.294
7.601
6.918
6.252
5.019
3.611

h1 61
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 18.310
0.500 15.897

#1 k Sta E
106.219 0.722 0.228 0.505
106.353 0.712 0.224 0.498
106.472 0.701 0.221 0.490
106.599 0.690 0.217 0.482
106.724 0.679 0.213 0.473
106.850 0.668 0.209 0.465
106.965 0.656 0.206 0.456
107.075 0.644 0.202 0.447
107.191 0.632 0.198 0.437
107.301 0.620 0.194 0.427
107.407 0.608 0.190 0.416
107.518 0.595 0.186 0.405
107.612 0.583 0.181 0.394
107.714 0.569 0.177 0.382
107.814 0.556 0.173 0.370
107.896 0.542 0.168 0.357
107.988 0.528 0.164 0.343
108.069 0.514 0.159 0.329
108.148 0.499 0.155 0.315
108.222 0.484 0.150 0.299
108.290 0.468 0.145 0.283
108.354 0.452 0.140 0.267
108.411 0.436 0.135 0.251
106.905 0.387 0.120 0.226
104.708 0.325 0.101 0.194

Table C.4: Optimization results for Frc = 1.0, d/c = 0.6

95



d/c C, C
1.000 0.250 0.340
1.000 0.240 0.324
1.000 0.230 0.309
1.000 0.220 0.294
1.000 0.210 0.279
1.000 0.200 0.265
1.000 0.190 0.250
1.000 0.180 0.235
1.000 0.170 0.221
1.000 0.160 0.207
1.000 0.150 0.193
1.000 0.140 0.179
1.000 0.130 0.165
1.000 0.120 0.152
1.000 0.110 0.138
1.000 0.100 0.125
1.000 0.090 0.112
1.000 0.080 0.100
1.000 0.070 0.087
1.000 0.060 0.075
1.000 0.050 0.063
1.000 0.040 0.051
1.000 0.030 0.039
1.000 0.020 0.028
1.000 0.010 0.017

C
CZa
0.970
0.934
0.898
0.862
0.826
0.789
0.753
0.716
0.679
0.641
0.604
0.566
0.528
0.489
0.450
0.411
0.371
0.330
0.289
0.247
0.204
0.160
0.115
0.070
0.047

CILES

0.139
0.132
0.126
0.120
0.114
0.108
0.101
0.095
0.090
0.084
0.078
0.072
0.067
0.061
0.056
0.051
0.046
0.041
0.037
0.033
0.028
0.025
0.021
0.018
0.011

Omax

17.907
17.335
16.745
16.167
15.581
14.987
14.396
13.801
13.201
12.596
11.992
11.385
10.772
10.164
9.550
8.941
8.330
7.727
7.130
6.543
5.970
5.421
4.902
4.438
3.355

hi 01 k Sta
0.500 20.000 113.042 0.734 0.217 0.426
0.500 20.000 113.106 0.723 0.214 0.418
0.500 20.000 113.211 0.712 0.210 0.410
0.500 20.000 113.254 0.701 0.207 0.403
0.500 20.000 113.305 0.689 0.203 0.395
0.500 20.000 113.358 0.678 0.200 0.386
0.500 20.000 113.396 0.666 0.196 0.377
0.500 20.000 113.425 0.654 0.193 0.369
0.500 20.000 113.442 0.641 0.189 0.359
0.500 20.000 113.449 0.629 0.185 0.350
0.500 20.000 113.443 0.616 0.182 0.340
0.500 20.000 113.425 0.603 0.178 0.330
0.500 20.000 113.392 0.590 0.174 0.319
0.500 20.000 113.345 0.576 0.170 0.308
0.500 20.000 113.281 0.563 0.166 0.296
0.500 20.000 113.199 0.548 0.162 0.285
0.500 20.000 113.095 0.534 0.158 0.272
0.500 20.000 112.974 0.519 0.154 0.260
0.500 20.000 112.827 0.504 0.150 0.247
0.500 20.000 112.654 0.489 0.145 0.234
0.500 20.000 112.452 0.473 0.141 0.221
0.500 20.000 112.214 0.456 0.136 0.207
0.500 20.000 111.955 0.440 0.131 0.195
0.500 20.000 111.632 0.422 0.127 0.184
0.500 17.973 109.270 0.364 0.111 0.161

Table C.5: Optimization results for Frc = 2.0, d/c = 1.0
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d/c C, C,
0.800 0.250 0.345
0.800 0.240 0.329
0.800 0.230 0.314
0.800 0.220 0.299
0.800 0.210 0.284
0.800 0.200 0.269
0.800 0.190 0.254
0.800 0.180 0.239
0.800 0.170 0.224
0.800 0.160 0.210
0.800 0.150 0.196
0.800 0.140 0.182
0.800 0.130 0.168
0.800 0.120 0.154
0.800 0.110 0.140
0.800 0.100 0.127
0.800 0.090 0.114
0.800 0.080 0.101
0.800 0.070 0.088
0.800 0.060 0.075
0.800 0.050 0.063
0.800 0.040 0.051
0.800 0.030 0.040
0.800 0.020 0.028
0.800 0.010 0.017

CZmax
0.980
0.944
0.907
0.870
0.832
0.795
0.758
0.721
0.683
0.645
0.607
0.569
0.530
0.491
0.452
0.412
0.372
0.331
0.290
0.247
0.204
0.161
0.116
0.071
0.045

CXLES
0.141
0.134
0.128
0.122
0.115
0.109
0.103
0.097
0.091
0.085
0.079
0.074
0.068
0.063
0.057
0.052
0.047
0.042
0.038
0.033
0.029
0.025
0.022
0.018
0.011

aemax

19.006
18.403
17.796
17.181
16.572
15.945
15.318
14.699
14.060
13.420
12.773
12.128
11.475
10.816
10.159
9.495
8.836
8.175
7.517
6.868
6.233
5.617
5.027
4.495
3.446

h1 01
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 18.224

#1 k Sta E
112.554 0.751 0.223 0.442
112.652 0.740 0.220 0.434
112.743 0.729 0.216 0.426
112.836 0.717 0.213 0.418
112.883 0.705 0.209 0.410
112.965 0.693 0.205 0.401
113.038 0.681 0.202 0.393
113.064 0.669 0.198 0.384
113.120 0.656 0.194 0.374
113.153 0.643 0.190 0.364
113.176 0.630 0.186 0.354
113.187 0.616 0.182 0.343
113.185 0.603 0.178 0.332
113.170 0.589 0.174 0.321
113.140 0.574 0.170 0.309
113.093 0.560 0.166 0.296
113.028 0.544 0.161 0.283
112.942 0.529 0.157 0.270
112.833 0.513 0.152 0.256
112.697 0.497 0.148 0.241
112.530 0.480 0.143 0.227
112.335 0.463 0.138 0.212
112.108 0.445 0.133 0.197
111.815 0.426 0.128 0.184
109.713 0.372 0.113 0.162

Table C.6: Optimization results for Frc = 2.0. d/c = 0.8
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C, Cp
0.250 0.352
0.240 0.336
0.230 0.321
0.220 0.305
0.210 0.289
0.200 0.274
0.190 0.259
0.180 0.244
0.170 0.229
0.160 0.214
0.150 0.199
0.140 0.185
0.130 0.171
0.120 0.157
0.110 0.143
0.100 0.129
0.090 0.116
0.080 0.102
0.070 0.089
0.060 0.076
0.050 0.064
0.040 0.052
0.030 0.040
0.020 0.028
0.010 0.017

CCZx
0.993
0.956
0.918
0.880
0.842
0.804
0.765
0.727
0.689
0.650
0.611
0.572
0.533
0.493
0.454
0.414
0.373
0.332
0.290
0.248
0.205
0.162
0.117
0.073
0.044

CILES
0.145
0.139
0.132
0.126
0.119
0.113
0.107
0.101
0.095
0.089
0.083
0.077
0.071
0.065
0.060
0.055
0.049
0.044
0.039
0.035
0.030
0.026
0.022
0.019
0.012

aemax

20.696
20.043
19.387
18.727
18.057
17.382
16.697
16.007
15.316
14.616
13.908
13.194
12.473
11.749
11.010
10.268
9.531
8.787
8.042
7.301
6.570
5.857
5.170
4.543
3.504

h1 01

0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 18.446

<1 k Sta E
112.160 0.781 0.233 0.463
112.297 0.769 0.229 0.455
112.421 0.758 0.226 0.447
112.530 0.745 0.222 0.439
112.647 0.733 0.218 0.430
112.753 0.720 0.214 0.421
112.860 0.708 0.210 0.412
112.950 0.694 0.206 0.402
113.028 0.681 0.202 0.393
113.103 0.667 0.197 0.382
113.167 0.653 0.193 0.372
113.212 0.639 0.189 0.360
113.248 0.624 0.184 0.349
113.269 0.609 0.180 0.337
113.288 0.594 0.175 0.324
113.298 0.578 0.171 0.310
113.245 0.562 0.166 0.296
113.204 0.545 0.161 0.281
113.132 0.528 0.156 0.266
113.033 0.510 0.151 0.250
112.902 0.492 0.146 0.233
112.733 0.473 0.140 0.216
112.529 0.453 0.135 0.199
112.247 0.433 0.129 0.183
110.345 0.380 0.115 0.161

Table C.7: Optimization results for Frc = 2.0, d/c = 0.6
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d/c
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600



d/c C, C,
1.000 0.250 0.339
1.000 0.240 0.323
1.000 0.230 0.308
1.000 0.220 0.293
1.000 0.210 0.278
1.000 0.200 0.264
1.000 0.190 0.249
1.000 0.180 0.235
1.000 0.170 0.220
1.000 0.160 0.206
1.000 0.150 0.192
1.000 0.140 0.178
1.000 0.130 0.165
1.000 0.120 0.151
1.000 0.110 0.138
1.000 0.100 0.125
1.000 0.090 0.112
1.000 0.080 0.099
1.000 0.070 0.087
1.000 0.060 0.074
1.000 0.050 0.062
1.000 0.040 0.051
1.000 0.030 0.039
1.000 0.020 0.028
1.000 0.010 0.017

Cz_.
0.967
0.931
0.895
0.859
0.823
0.786
0.750
0.713
0.676
0.639
0.602
0.564
0.526
0.488
0.449
0.409
0.370
0.329
0.288
0.246
0.203
0.160
0.115
0.070
0.049

C
CILES

0.140
0.134
0.127
0.121
0.115
0.109
0.102
0.096
0.090
0.085
0.079
0.073
0.068
0.062
0.057
0.052
0.047
0.042
0.037
0.033
0.029
0.025
0.021
0.018
0.010

aemax

17.460
16.892
16.321
15.745
15.167
14.584
13.997
13.406
12.816
12.222
11.622
11.025
10.426
9.823
9.226
8.627
8.033
7.447
6.868
6.303
5.758
5.236
4.751
4.328
3.212

h1 01 <1 k Sta 8

0.500 20.000 113.752 0.733 0.215 0.416
0.500 20.000 113.826 0.722 0.212 0.409
0.500 20.000 113.892 0.711 0.209 0.401
0.500 20.000 113.953 0.699 0.205 0.393
0.500 20.000 113.999 0.688 0.202 0.385
0.500 20.000 114.040 0.676 0.198 0.377
0.500 20.000 114.071 0.664 0.195 0.368
0.500 20.000 114.092 0.652 0.191 0.359
0.500 20.000 114.103 0.640 0.187 0.350
0.500 20.000 114.101 0.628 0.184 0.340
0.500 20.000 114.088 0.615 0.180 0.330
0.500 20.000 114.057 0.602 0.176 0.320
0.500 20.000 114.011 0.589 0.173 0.309
0.500 20.000 113.949 0.575 0.169 0.298
0.500 20.000 113.867 0.561 0.165 0.287
0.500 20.000 113.763 0.547 0.161 0.275
0.500 20.000 113.637 0.533 0.157 0.263
0.500 20.000 113.485 0.518 0.153 0.251
0.500 20.000 113.305 0.503 0.148 0.238
0.500 20.000 113.094 0.488 0.144 0.226
0.500 20.000 112.843 0.472 0.140 0.213
0.500 20.000 112.557 0.455 0.135 0.201
0.500 20.000 112.239 0.439 0.131 0.189
0.500 20.000 111.841 0.421 0.126 0.179
0.500 17.764 109.232 0.359 0.109 0.156

Table C.8: Optimization results for Frc = 3.0, d/c = 1.0
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d/c C--
0.800 0.250
0.800 0.240
0.800 0.230
0.800 0.220
0.800 0.210
0.800 0.200
0.800 0.190
0.800 0.180
0.800 0.170
0.800 0.160
0.800 0.150
0.800 0.140
0.800 0.130
0.800 0.120
0.800 0.110
0.800 0.100
0.800 0.090
0.800 0.080
0.800 0.070
0.800 0.060
0.800 0.050
0.800 0.040
0.800 0.030
0.800 0.020
0.800 0.010

Cp
0.343
0.327
0.312
0.297
0.282
0.267
0.252
0.237
0.223
0.209
0.194
0.180
0.167
0.153
0.139
0.126
0.113
0.100
0.087
0.075
0.063
0.051
0.039
0.028
0.017

CZma

0.974
0.938
0.901
0.865
0.828
0.791
0.754
0.717
0.679
0.642
0.604
0.566
0.527
0.489
0.450
0.410
0.370
0.330
0.288
0.246
0.204
0.160
0.116
0.070
0.049

C
CILES

0.142
0.135
0.129
0.123
0.116
0.110
0.104
0.098
0.092
0.086
0.080
0.074
0.069
0.063
0.058
0.053
0.047
0.043
0.038
0.033
0.029
0.025
0.022
0.019
0.011

ax 

18.290
17.700
17.108
16.507
15.906
15.298
14.685
14.067
13.450
12.826
12.199
11.564
10.933
10.298
9.660
9.022
8.388
7.755
7.130
6.518
5.925
5.358
4.819
4.352
3.228

hi k
0.500 20.000 113.436 0.746
0.500 20.000 113.530 0.735
0.500 20.000 113.611 0.724
0.500 20.000 113.696 0.712
0.500 20.000 113.761 0.701
0.500 20.000 113.821 0.689
0.500 20.000 113.872 0.677
0.500 20.000 113.913 0.664
0.500 20.000 113.940 0.652
0.500 20.000 113.965 0.639
0.500 20.000 113.969 0.626
0.500 20.000 113.965 0.612
0.500 20.000 113.945 0.599
0.500 20.000 113.903 0.585
0.500 20.000 113.849 0.571
0.500 20.000 113.773 0.556
0.500 20.000 113.675 0.541
0.500 20.000 113.550 0.526
0.500 20.000 113.396 0.510
0.500 20.000 113.210 0.494
0.500 20.000 112.986 0.477
0.500 20.000 112.718 0.460
0.500 20.000 112.422 0.443
0.500 20.000 112.029 0.425
0.500 17.840 109.509 0.363

Sta E)
0.220 0.428
0.217 0.420
0.213 0.413
0.209 0.405
0.206 0.396
0.202 0.388
0.199 0.379
0.195 0.370
0.191 0.360
0.187 0.351
0.183 0.340
0.180 0.330
0.176 0.319
0.172 0.308
0.168 0.296
0.163 0.283
0.159 0.271
0.155 0.258
0.150 0.244
0.146 0.230
0.141 0.217
0.137 0.203
0.132 0.190
0.127 0.179
0.110 0.155

Table C.9: Optimization results for Frc = 3.0, d/c = 0.8

100



Cx Cp
0.250 0.348
0.240 0.333
0.230 0.317
0.220 0.301
0.210 0.286
0.200 0.271
0.190 0.256
0.180 0.241
0.170 0.226
0.160 0.212
0.150 0.197
0.140 0.183
0.130 0.169
0.120 0.155
0.110 0.141
0.100 0.128
0.090 0.114
0.080 0.101
0.070 0.088
0.060 0.076
0.050 0.063
0.040 0.051
0.030 0.040
0.020 0.028
0.010 0.017

CZ,_a
0.984
0.947
0.909
0.872
0.834
0.796
0.758
0.721
0.683
0.645
0.606
0.568
0.529
0.490
0.451
0.411
0.371
0.330
0.289
0.247
0.205
0.161
0.117
0.073
0.047

C
CXLES

0.146
0.139
0.133
0.126
0.120
0.114
0.107
0.101
0.095
0.089
0.083
0.077
0.071
0.066
0.060
0.055
0.049
0.044
0.039
0.035
0.030
0.026
0.022
0.019
0.011

Oemax hi 01

19.544 0.500 20.000
18.907 0.500 20.000
18.283 0.500 20.000
17.637 0.500 20.000
16.989 0.500 20.000
16.360 0.500 20.000
15.706 0.500 20.000
15.040 0.500 20.000
14.361 0.500 20.000
13.691 0.500 20.000
13.009 0.500 20.000
12.325 0.500 20.000
11.636 0.500 20.000
10.945 0.500 20.000
10.254 0.500 20.000
9.557 0.500 20.000
8.857 0.500 20.000
8.161 0.500 20.000
7.471 0.500 20.000
6.790 0.500 20.000
6.125 0.500 20.000
5.487 0.500 20.000
4.879 0.500 20.000
4.350 0.500 20.000
3.294 0.500 18.147

k Sta e
113.240 0.770 0.227 0.443
113.383 0.758 0.224 0.435
113.457 0.746 0.220 0.428
113.587 0.734 0.216 0.419
113.701 0.722 0.212 0.411
113.732 0.710 0.209 0.402
113.810 0.697 0.205 0.393
113.898 0.684 0.201 0.384
113.994 0.671 0.197 0.374
114.030 0.658 0.193 0.364
114.091 0.644 0.189 0.353
114.125 0.630 0.184 0.342
114.134 0.616 0.180 0.330
114.125 0.601 0.176 0.318
114.090 0.586 0.172 0.306
114.041 0.570 0.167 0.293
113.977 0.554 0.163 0.279
113.884 0.538 0.158 0.265
113.752 0.521 0.153 0.250
113.589 0.504 0.148 0.235
113.384 0.486 0.143 0.220
113.124 0.468 0.138 0.205
112.837 0.449 0.133 0.190
112.429 0.429 0.128 0.177
110.155 0.372 0.112 0.155

Table C.10: Optimization results for Frc = 3.0, d/c = 0.6
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d/c
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600



d/c C, C
1.000 0.250 0.338
1.000 0.240 0.323
1.000 0.230 0.308
1.000 0.220 0.293
1.000 0.210 0.278
1.000 0.200 0.264
1.000 0.190 0.249
1.000 0.180 0.234
1.000 0.170 0.220
1.000 0.160 0.206
1.000 0.150 0.192
1.000 0.140 0.178
1.000 0.130 0.165
1.000 0.120 0.151
1.000 0.110 0.138
1.000 0.100 0.125
1.000 0.090 0.112
1.000 0.080 0.099
1.000 0.070 0.087
1.000 0.060 0.074
1.000 0.050 0.062
1.000 0.040 0.051
1.000 0.030 0.039
1.000 0.020 0.028
1.000 0.010 0.017

C
Czma
0.966
0.930
0.894
0.858
0.822
0.786
0.749
0.713
0.676
0.638
0.601
0.563
0.525
0.487
0.448
0.409
0.369
0.329
0.288
0.246
0.203
0.160
0.115
0.070
0.050

CXLES

0.141
0.134
0.128
0.121
0.115
0.109
0.103
0.097
0.091
0.085
0.079
0.073
0.068
0.062
0.057
0.052
0.047
0.042
0.037
0.033
0.029
0.025
0.022
0.018
0.010

amax

17.293
16.725
16.157
15.583
15.008
14.428
13.845
13.255
12.667
12.077
11.483
10.885
10.292
9.691
9.099
8.504
7.916
7.336
6.764
6.208
5.674
5.163
4.698
4.291
3.163

hi 01
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 17.695

01 k Sta E)
114.033 0.732 0.215 0.412
114.103 0.721 0.211 0.405
114.159 0.710 0.208 0.397
114.221 0.699 0.204 0.389
114.268 0.687 0.201 0.381
114.304 0.676 0.197 0.373
114.329 0.664 0.194 0.364
114.350 0.652 0.190 0.355
114.354 0.639 0.187 0.346
114.349 0.627 0.183 0.336
114.325 0.614 0.179 0.326
114.290 0.601 0.176 0.316
114.236 0.588 0.172 0.306
114.167 0.574 0.168 0.295
114.077 0.561 0.164 0.283
113.964 0.546 0.160 0.272
113.829 0.532 0.156 0.260
113.666 0.517 0.152 0.248
113.473 0.502 0.148 0.235
113.245 0.487 0.144 0.223
112.978 0.471 0.140 0.210
112.674 0.455 0.135 0.198
112.319 0.438 0.131 0.187
111.895 0.421 0.126 0.178
109.213 0.357 0.109 0.155

Table C.11: Optimization results for Frc = 4.0, d/c = 1.0
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d/c C, C,
0.800 0.250 0.342
0.800 0.240 0.327
0.800 0.230 0.311
0.800 0.220 0.296
0.800 0.210 0.281
0.800 0.200 0.266
0.800 0.190 0.252
0.800 0.180 0.237
0.800 0.170 0.223
0.800 0.160 0.208
0.800 0.150 0.194
0.800 0.140 0.180
0.800 0.130 0.166
0.800 0.120 0.153
0.800 0.110 0.139
0.800 0.100 0.126
0.800 0.090 0.113
0.800 0.080 0.100
0.800 0.070 0.087
0.800 0.060 0.075
0.800 0.050 0.063
0.800 0.040 0.051
0.800 0.030 0.039
0.800 0.020 0.028
0.800 0.010 0.017

C
0
zmaa

0.973
0.936
0.900
0.863
0.827
0.790
0.753
0.716
0.678
0.641
0.603
0.565
0.527
0.488
0.449
0.410
0.370
0.329
0.288
0.246
0.204
0.160
0.115
0.070
0.049

C
CXLES

0.142
0.136
0.129
0.123
0.117
0.111
0.104
0.098
0.092
0.086
0.080
0.075
0.069
0.063
0.058
0.053
0.048
0.043
0.038
0.033
0.029
0.025
0.022
0.019
0.011

aemax
18.042
17.456
16.860
16.270
15.667
15.066
14.455
13.845
13.235
12.617
11.997
11.368
10.744
10.111
9.481
8.855
8.227
7.605
6.991
6.392
5.815
5.266
4.752
4.306
3.177

h0 20
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 17.821

01i k Sta E
113.763 0.745 0.219 0.423
113.846 0.733 0.215 0.416
113.940 0.722 0.212 0.408
114.004 0.711 0.208 0.400
114.086 0.699 0.205 0.391
114.139 0.687 0.201 0.383
114.195 0.675 0.198 0.374
114.224 0.663 0.194 0.365
114.228 0.650 0.190 0.355
114.246 0.637 0.186 0.346
114.244 0.624 0.183 0.336
114.233 0.611 0.179 0.325
114.197 0.597 0.175 0.314
114.160 0.583 0.171 0.303
114.093 0.569 0.167 0.291
113.996 0.554 0.163 0.279
113.891 0.540 0.158 0.266
113.749 0.524 0.154 0.253
113.581 0.509 0.150 0.240
113.374 0.493 0.145 0.227
113.130 0.476 0.141 0.213
112.834 0.459 0.136 0.200
112.499 0.442 0.131 0.188
112.079 0.424 0.127 0.177
109.563 0.362 0.110 0.153

Table C.12: Optimization results for Frc = 4.0, d/c = 0.8
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C, CP
0.250 0.347
0.240 0.331
0.230 0.316
0.220 0.300
0.210 0.285
0.200 0.270
0.190 0.255
0.180 0.240
0.170 0.225
0.160 0.211
0.150 0.196
0.140 0.182
0.130 0.168
0.120 0.154
0.110 0.141
0.100 0.127
0.090 0.114
0.080 0.101
0.070 0.088
0.060 0.075
0.050 0.063
0.040 0.051
0.030 0.040
0.020 0.028
0.010 0.017

CZa
0.981
0.945
0.907
0.870
0.831
0.795
0.758
0.719
0.682
0.644
0.606
0.568
0.528
0.490
0.450
0.410
0.370
0.330
0.289
0.247
0.205
0.161
0.117
0.073
0.051

CILES
0.146
0.140
0.133
0.127
0.120
0.115
0.109
0.101
0.096
0.089
0.084
0.078
0.071
0.066
0.060
0.055
0.049
0.044
0.039
0.035
0.030
0.026
0.022
0.019
0.011

aemax

19.131
18.494
17.871
17.248
16.648
15.942
15.277
14.704
14.001
13.348
12.632
11.971
11.356
10.642
9.981
9.309
8.622
7.936
7.267
6.613
5.968
5.358
4.786
4.282
3.137

05 201
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 17.763

1 k Sta
113.671 0.766 0.225 0.436
113.833 0.755 0.222 0.428
113.930 0.743 0.218 0.420
114.002 0.731 0.214 0.412
113.976 0.718 0.211 0.405
114.261 0.707 0.207 0.394
114.400 0.694 0.203 0.384
114.227 0.681 0.199 0.377
114.419 0.668 0.195 0.366
114.429 0.654 0.191 0.356
114.600 0.641 0.187 0.344
114.589 0.627 0.183 0.333
114.403 0.612 0.179 0.324
114.482 0.598 0.174 0.311
114.387 0.583 0.170 0.299
114.285 0.567 0.166 0.287
114.215 0.552 0.161 0.273
114.121 0.535 0.157 0.259
113.959 0.519 0.152 0.245
113.756 0.502 0.147 0.230
113.537 0.484 0.143 0.215
113.241 0.466 0.138 0.201
112.905 0.447 0.133 0.187
112.481 0.428 0.127 0.175
109.823 0.363 0.110 0.151

Table C.13: Optimization results for Frc = 4.0, d/c = 0.6
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d/c
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600



d/c C, CP,
1.000 0.250 0.338
1.000 0.240 0.323
1.000 0.230 0.308
1.000 0.220 0.293
1.000 0.210 0.278
1.000 0.200 0.263
1.000 0.190 0.249
1.000 0.180 0.234
1.000 0.170 0.220
1.000 0.160 0.206
1.000 0.150 0.192
1.000 0.140 0.178
1.000 0.130 0.164
1.000 0.120 0.151
1.000 0.110 0.138
1.000 0.100 0.125
1.000 0.090 0.112
1.000 0.080 0.099
1.000 0.070 0.087
1.000 0.060 0.074
1.000 0.050 0.062
1.000 0.040 0.051
1.000 0.030 0.039
1.000 0.020 0.028
1.000 0.010 0.017

CZ a

0.966
0.930
0.894
0.858
0.822
0.785
0.749
0.712
0.675
0.638
0.601
0.563
0.525
0.487
0.448
0.409
0.369
0.329
0.288
0.246
0.203
0.160
0.115
0.070
0.054

CXLES

0.141
0.134
0.128
0.121
0.115
0.109
0.103
0.097
0.091
0.085
0.079
0.073
0.068
0.062
0.057
0.052
0.047
0.042
0.037
0.033
0.029
0.025
0.022
0.018
0.010

amax

17.171
16.605
16.034
15.465
14.891
14.312
13.732
13.148
12.557
11.972
11.382
10.786
10.196
9.602
9.013
8.422
7.841
7.266
6.701
6.152
5.625
5.127
4.669
4.271
3.057

h1 01 <1 k Sta 0
0.500 20.000 114.162 0.731 0.214 0.410
0.500 20.000 114.230 0.720 0.211 0.403
0.500 20.000 114.294 0.709 0.207 0.395
0.500 20.000 114.348 0.698 0.204 0.387
0.500 20.000 114.395 0.686 0.200 0.379
0.500 20.000 114.437 0.675 0.197 0.370
0.500 20.000 114.459 0.663 0.193 0.362
0.500 20.000 114.470 0.651 0.190 0.353
0.500 20.000 114.484 0.638 0.186 0.343
0.500 20.000 114.472 0.626 0.183 0.334
0.500 20.000 114.445 0.613 0.179 0.324
0.500 20.000 114.410 0.600 0.175 0.314
0.500 20.000 114.354 0.587 0.171 0.303
0.500 20.000 114.277 0.574 0.168 0.292
0.500 20.000 114.184 0.560 0.164 0.281
0.500 20.000 114.068 0.546 0.160 0.269
0.500 20.000 113.926 0.531 0.156 0.258
0.500 20.000 113.757 0.517 0.152 0.246
0.500 20.000 113.556 0.502 0.148 0.233
0.500 20.000 113.320 0.486 0.144 0.221
0.500 20.000 113.043 0.471 0.139 0.209
0.500 20.000 112.719 0.454 0.135 0.197
0.500 20.000 112.355 0.438 0.130 0.186
0.500 20.000 111.919 0.421 0.126 0.177
0.500 17.374 108.916 0.351 0.107 0.152

Table C.14: Optimization results for Frc = 5.0, d/c = 1.0
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dic C, Cp Czm_
0.800 0.250 0.342 0.972
0.800 0.240 0.326 0.935
0.800 0.230 0.311 0.899
0.800 0.220 0.296 0.862
0.800 0.210 0.281 0.826
0.800 0.200 0.266 0.789
0.800 0.190 0.251 0.752
0.800 0.180 0.237 0.715
0.800 0.170 0.222 0.678
0.800 0.160 0.208 0.640
0.800 0.150 0.194 0.603
0.800 0.140 0.180 0.565
0.800 0.130 0.166 0.526
0.800 0.120 0.152 0.488
0.800 0.110 0.139 0.449
0.800 0.100 0.126 0.409
0.800 0.090 0.113 0.370
0.800 0.080 0.100 0.329
0.800 0.070 0.087 0.288
0.800 0.060 0.075 0.246
0.800 0.050 0.063 0.203
0.800 0.040 0.051 0.160
0.800 0.030 0.039 0.115
0.800 0.020 0.028 0.070
0.800 0.010 0.017 0.051

C
CILES

0.142
0.135
0.129
0.123
0.116
0.110
0.104
0.098
0.092
0.086
0.080
0.074
0.069
0.063
0.058
0.053
0.048
0.043
0.038
0.033
0.029
0.025
0.022
0.019
0.010

aemax

17.867
17.324
16.696
16.117
15.533
14.933
14.321
13.718
13.096
12.492
11.867
11.244
10.620
10.006
9.378
8.749
8.132
7.516
6.913
6.323
5.756
5.217
4.718
4.284
3.125

h1 01 #1 k Sta 0
0.500 20.000 113.968 0.743 0.218 0.420
0.500 20.000 113.922 0.732 0.215 0.413
0.500 20.000 114.120 0.721 0.211 0.404
0.500 20.000 114.153 0.709 0.208 0.397
0.500 20.000 114.187 0.697 0.204 0.389
0.500 20.000 114.244 0.686 0.200 0.380
0.500 20.000 114.313 0.674 0.197 0.371
0.500 20.000 114.331 0.661 0.193 0.362
0.500 20.000 114.376 0.649 0.189 0.352
0.500 20.000 114.362 0.636 0.186 0.343
0.500 20.000 114.382 0.623 0.182 0.333
0.500 20.000 114.367 0.610 0.178 0.322
0.500 20.000 114.339 0.596 0.174 0.311
0.500 20.000 114.258 0.582 0.170 0.300
0.500 20.000 114.197 0.568 0.166 0.288
0.500 20.000 114.121 0.553 0.162 0.276
0.500 20.000 113.996 0.539 0.158 0.264
0.500 20.000 113.853 0.523 0.154 0.251
0.500 20.000 113.669 0.508 0.149 0.238
0.500 20.000 113.455 0.492 0.145 0.224
0.500 20.000 113.196 0.475 0.141 0.211
0.500 20.000 112.890 0.459 0.136 0.199
0.500 20.000 112.535 0.441 0.131 0.187
0.500 20.000 112.099 0.423 0.126 0.177
0.500 17.630 109.338 0.358 0.108 0.153

Table C.15: Optimization results for Frc = 5.0, d/c = 0.8
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d/c C, C,
0.600 0.250 0.346
0.600 0.240 0.330
0.600 0.230 0.315
0.600 0.220 0.300
0.600 0.210 0.284
0.600 0.200 0.269
0.600 0.190 0.254
0.600 0.180 0.240
0.600 0.170 0.225
0.600 0.160 0.210
0.600 0.150 0.196
0.600 0.140 0.182
0.600 0.130 0.168
0.600 0.120 0.154
0.600 0.110 0.140
0.600 0.100 0.127
0.600 0.090 0.114
0.600 0.080 0.101
0.600 0.070 0.088
0.600 0.060 0.075
0.600 0.050 0.063
0.600 0.040 0.051
0.600 0.030 0.039
0.600 0.020 0.028
0.600 0.010 0.017

C C
CZa
0.976
0.940
0.906
0.866
0.833
0.794
0.756
0.719
0.683
0.644
0.605
0.567
0.528
0.489
0.450
0.410
0.370
0.330
0.288
0.247
0.205
0.161
0.117
0.073
0.052

CXLES

0.143
0.137
0.133
0.125
0.122
0.114
0.108
0.102
0.097
0.090
0.083
0.077
0.071
0.066
0.060
0.054
0.049
0.044
0.039
0.035
0.030
0.026
0.022
0.019
0.011

amax

19.098
18.435
17.659
17.183
16.318
15.735
15.120
14.442
13.726
13.113
12.492
11.829
11.180
10.479
9.840
9.199
8.493
7.834
7.187
6.510
5.891
5.293
4.741
4.257
3.103

h1 01 #1 k Sta 0
0.500 20.000 113.241 0.761 0.225 0.438
0.500 20.000 113.496 0.750 0.221 0.429
0.500 20.000 114.093 0.740 0.217 0.417
0.500 20.000 113.719 0.727 0.214 0.413
0.500 20.000 114.526 0.717 0.209 0.397
0.500 20.000 114.432 0.704 0.206 0.390
0.500 20.000 114.432 0.691 0.202 0.382
0.500 20.000 114.596 0.679 0.198 0.371
0.500 20.000 114.842 0.666 0.194 0.360
0.500 20.000 114.743 0.653 0.190 0.351
0.500 20.000 114.635 0.639 0.186 0.342
0.500 20.000 114.646 0.625 0.182 0.331
0.500 20.000 114.582 0.610 0.178 0.320
0.500 20.000 114.634 0.596 0.174 0.307
0.500 20.000 114.493 0.581 0.169 0.296
0.500 20.000 114.326 0.565 0.165 0.284
0.500 20.000 114.329 0.550 0.161 0.270
0.500 20.000 114.177 0.534 0.156 0.256
0.500 20.000 113.981 0.517 0.152 0.243
0.500 20.000 113.862 0.500 0.147 0.227
0.500 20.000 113.596 0.483 0.142 0.213
0.500 20.000 113.293 0.465 0.137 0.199
0.500 20.000 112.932 0.446 0.132 0.185
0.500 20.000 112.479 0.427 0.127 0.174
0.500 17.709 109.774 0.362 0.109 0.150

Table C.16: Optimization results for Frc = 5.0, d/c = 0.6
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C, Cp
0.250 0.338
0.240 0.323
0.230 0.308
0.220 0.293
0.210 0.278
0.200 0.263
0.190 0.249
0.180 0.234
0.170 0.220
0.160 0.206
0.150 0.192
0.140 0.178
0.130 0.164
0.120 0.151
0.110 0.138
0.100 0.124
0.090 0.112
0.080 0.099
0.070 0.086
0.060 0.074
0.050 0.062
0.040 0.051
0.030 0.039
0.020 0.028
0.010 0.017

C0 ,_a
0.965
0.929
0.893
0.857
0.821
0.785
0.748
0.712
0.675
0.638
0.600
0.563
0.525
0.487
0.448
0.409
0.369
0.329
0.288
0.246
0.203
0.160
0.115
0.070
0.040

C
CXLES

0.140
0.134
0.128
0.121
0.115
0.109
0.103
0.097
0.091
0.085
0.079
0.073
0.068
0.062
0.057
0.052
0.047
0.042
0.037
0.033
0.029
0.025
0.021
0.018
0.015

Oemax

17.080
16.522
15.950
15.383
14.811
14.236
13.659
13.076
12.489
11.906
11.318
10.725
10.139
9.548
8.963
8.374
7.797
7.226
6.665
6.121
5.598
5.105
4.653
4.261
3.613

h1 01 $1 k Sta E
0.500 20.000 114.252 0.730 0.213 0.409
0.500 20.000 114.301 0.719 0.210 0.401
0.500 20.000 114.376 0.708 0.207 0.393
0.500 20.000 114.426 0.697 0.203 0.385
0.500 20.000 114.474 0.685 0.200 0.377
0.500 20.000 114.510 0.674 0.197 0.369
0.500 20.000 114.532 0.662 0.193 0.360
0.500 20.000 114.547 0.650 0.190 0.351
0.500 20.000 114.554 0.638 0.186 0.342
0.500 20.000 114.542 0.625 0.182 0.332
0.500 20.000 114.515 0.613 0.179 0.323
0.500 20.000 114.479 0.600 0.175 0.312
0.500 20.000 114.419 0.586 0.171 0.302
0.500 20.000 114.340 0.573 0.167 0.291
0.500 20.000 114.240 0.559 0.164 0.280
0.500 20.000 114.125 0.545 0.160 0.268
0.500 20.000 113.979 0.531 0.156 0.256
0.500 20.000 113.806 0.516 0.152 0.244
0.500 20.000 113.600 0.501 0.148 0.232
0.500 20.000 113.359 0.486 0.143 0.220
0.500 20.000 113.077 0.470 0.139 0.208
0.500 20.000 112.746 0.454 0.135 0.196
0.500 20.000 112.373 0.438 0.130 0.186
0.500 20.000 111.931 0.421 0.126 0.177
0.500 19.579 111.485 0.395 0.118 0.160

Table C.17: Optimization results for Frc = 6.0, d/c = 1.0
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d/c
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000



d/c C, CP,
0.800 0.250 0.341
0.800 0.240 0.326
0.800 0.230 0.311
0.800 0.220 0.296
0.800 0.210 0.281
0.800 0.200 0.266
0.800 0.190 0.251
0.800 0.180 0.236
0.800 0.170 0.222
0.800 0.160 0.208
0.800 0.150 0.194
0.800 0.140 0.180
0.800 0.130 0.166
0.800 0.120 0.152
0.800 0.110 0.139
0.800 0.100 0.125
0.800 0.090 0.112
0.800 0.080 0.100
0.800 0.070 0.087
0.800 0.060 0.075
0.800 0.050 0.063
0.800 0.040 0.051
0.800 0.030 0.039
0.800 0.020 0.028

CZ_.'
0.971
0.935
0.898
0.862
0.825
0.788
0.751
0.715
0.677
0.640
0.602
0.564
0.526
0.487
0.449
0.409
0.370
0.329
0.288
0.246
0.203
0.160
0.115
0.070

CXLES

0.142
0.136
0.129
0.123
0.117
0.110
0.104
0.098
0.092
0.086
0.080
0.074
0.069
0.063
0.058
0.053
0.048
0.043
0.038
0.033
0.029
0.025
0.022
0.019

aemax

17.769
17.193
16.633
15.999
15.427
14.850
14.244
13.614
13.011
12.407
11.792
11.168
10.542
9.938
9.312
8.689
8.077
7.467
6.868
6.285
5.724
5.191
4.699
4.271

05 2000 k Sta E
0.500 20.000 114.030 0.742 0.217 0.418
0.500 20.000 114.096 0.731 0.214 0.411
0.500 20.000 114.089 0.719 0.211 0.404
0.500 20.000 114.295 0.708 0.207 0.394
0.500 20.000 114.300 0.696 0.204 0.387
0.500 20.000 114.296 0.684 0.200 0.379
0.500 20.000 114.356 0.672 0.196 0.370
0.500 20.000 114.464 0.660 0.193 0.360
0.500 20.000 114.460 0.648 0.189 0.351
0.500 20.000 114.451 0.635 0.185 0.341
0.500 20.000 114.450 0.622 0.182 0.331
0.500 20.000 114.448 0.609 0.178 0.320
0.500 20.000 114.431 0.595 0.174 0.309
0.500 20.000 114.332 0.581 0.170 0.299
0.500 20.000 114.270 0.567 0.166 0.287
0.500 20.000 114.189 0.553 0.162 0.274
0.500 20.000 114.058 0.538 0.158 0.262
0.500 20.000 113.905 0.523 0.153 0.249
0.500 20.000 113.718 0.507 0.149 0.236
0.500 20.000 113.494 0.491 0.145 0.223
0.500 20.000 113.229 0.475 0.140 0.210
0.500 20.000 112.917 0.458 0.136 0.198
0.500 20.000 112.551 0.441 0.131 0.186
0.500 20.000 112.109 0.423 0.126 0.176

Table C.18: Optimization results for Frc = 6.0, d/c = 0.8
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Appendix D

Optimization Results - Power

Extraction

d/c C, C, CZax CXLES aemax h1  01 $1 k Sta E
00 -0.010 -0.004 0.051 0.001 1.192 0.500 10.210 99.147 0.172 0.054 0.121
oo -0.020 -0.013 0.135 0.005 3.220 0.500 16.681 104.988 0.279 0.087 0.202
0o -0.030 -0.023 0.205 0.011 4.798 0.500 20.000 107.849 0.331 0.103 0.253
oo -0.040 -0.032 0.270 0.012 5.469 0.500 20.000 106.706 0.313 0.098 0.305
oo -0.050 -0.040 0.339 0.014 6.215 0.500 20.000 105.409 0.294 0.093 0.369
oc -0.060 -0.048 0.416 0.018 7.036 0.500 20.000 103.907 0.274 0.088 0.448
00 -0.070 -0.056 0.503 0.023 7.939 0.500 20.000 102.151 0.253 0.083 0.548
oo -0.080 -0.063 0.605 0.032 8.954 0.500 20.000 100.027 0.230 0.077 0.680
oo -0.090 -0.069 0.730 0.045 10.149 0.500 20.000 97.275 0.204 0.069 0.870

Table D.1: Optimization results for Frc = 1.0, d/c = oo
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d/c Cx C, Czma CILES aemax h 1  01 k Sta 0
1.000 -0.010 -0.004 0.050 0.001 1.224 0.500 10.323 99.220 0.174 0.055 0.123
1.000 -0.020 -0.013 0.132 0.004 2.971 0.500 15.752 103.920 0.260 0.082 0.199
1.000 -0.030 -0.022 0.200 0.008 4.417 0.500 18.968 106.644 0.311 0.097 0.248
1.000 -0.040 -0.031 0.263 0.011 5.274 0.500 20.000 107.181 0.318 0.099 0.290
1.000 -0.050 -0.040 0.329 0.012 5.880 0.500 20.000 106.585 0.301 0.095 0.341
1.000 -0.060 -0.048 0.401 0.015 6.561 0.500 20.000 105.934 0.283 0.089 0.405
1.000 -0.070 -0.055 0.478 0.019 7.327 0.500 20.000 105.190 0.264 0.084 0.485
1.000 -0.080 -0.061 0.563 0.024 8.180 0.500 20.000 104.333 0.244 0.078 0.586
1.000 -0.090 -0.067 0.659 0.031 9.144 0.500 20.000 103.415 0.221 0.072 0.721

Table D.2: Optimization results for Frc = 1.0, d/c = 1.0

d/c Cx Cp C
zma

0.800 -0.010 -0.003 0.055
0.800 -0.020 -0.013 0.130
0.800 -0.030 -0.022 0.197
0.800 -0.040 -0.030 0.260
0.800 -0.050 -0.038 0.326
0.800 -0.060 -0.046 0.397
0.800 -0.070 -0.052 0.474
0.800 -0.080 -0.057 0.559
0.800 -0.090 -0.060 0.654

C
CXLES

0.003
0.004
0.009
0.010
0.012
0.014
0.018
0.024
0.031

aemax

2.360
3.167
4.599
5.388
6.086
6.888
7.794
8.820
9.999

hi 01 0~1 k Sta 0
0.465 14.452 104.282 0.272 0.079 0.163
0.500 16.332 104.735 0.269 0.084 0.205
0.500 19.359 107.409 0.316 0.098 0.254
0.500 20.000 107.743 0.312 0.097 0.302
0.500 20.000 107.418 0.293 0.091 0.363
0.500 20.000 107.042 0.273 0.085 0.441
0.500 20.000 106.624 0.251 0.079 0.542
0.500 20.000 106.149 0.227 0.072 0.677
0.500 20.000 105.617 0.201 0.064 0.867

Table D.3: Optimization results for Frc = 1.0, d/c = 0.8

d/c C., C
0.600 -0.010 -0.004
0.600 -0.020 -0.012
0.600 -0.030 -0.021
0.600 -0.040 -0.029
0.600 -0.050 -0.036
0.600 -0.060 -0.042
0.600 -0.070 -0.046
0.600 -0.080 -0.048
0.600 -0.090 -0.046

CZa
0.049
0.127
0.193
0.256
0.323
0.395
0.475
0.564
0.669

CXLES
0.001
0.004
0.009
0.010
0.012
0.015
0.019
0.025
0.035

aemax

1.313
3.385
4.996
5.799
6.766
7.890
9.182
10.692
12.488

h 0101k St
0.500 10.504 99.949 0.173 0.055 0.133
0.500 16.647 105.449 0.269 0.084 0.219
0.500 20.000 108.608 0.321 0.099 0.272
0.500 20.000 108.623 0.298 0.092 0.339
0.500 20.000 108.635 0.274 0.085 0.431
0.500 20.000 108.638 0.248 0.077 0.555
0.500 20.000 108.629 0.219 0.068 0.731
0.500 20.000 108.476 0.187 0.058 0.997
0.500 20.000 108.387 0.150 0.046 1.455

Table D.4: Optimization results for Frc = 1.0, d/c = 0.6
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dic Cx C Cma CXLES emax h1 01 k Sta 0
1.000 -0.010 -0.004 0.050 0.001 1.441 0.500 11.994 101.784 0.204 0.064 0.124
1.000 -0.020 -0.013 0.139 0.008 3.712 0.500 18.728 108.396 0.318 0.098 0.204
1.000 -0.030 -0.022 0.205 0.011 4.812 0.500 20.000 109.198 0.325 0.100 0.259
1.000 -0.040 -0.031 0.269 0.012 5.667 0.500 20.000 108.450 0.302 0.093 0.327
1.000 -0.050 -0.038 0.340 0.014 6.643 0.500 20.000 107.609 0.278 0.087 0.417
1.000 -0.060 -0.045 0.419 0.018 7.758 0.500 20.000 106.494 0.252 0.079 0.538
1.000 -0.070 -0.050 0.511 0.025 9.047 0.500 20.000 105.060 0.223 0.071 0.709
1.000 -0.080 -0.054 0.623 0.035 10.592 0.500 20.000 103.225 0.189 0.061 0.980
1.000 -0.090 -0.053 0.779 0.054 12.685 0.500 20.000 100.313 0.144 0.048 1.537

Table D.5: Optimization results for Frc = 2.0, d/c = 1.0

d/c C, Cp Czma
0.800 -0.010 -0.004 0.051
0.800 -0.020 -0.013 0.140
0.800 -0.030 -0.022 0.205
0.800 -0.040 -0.030 0.270
0.800 -0.050 -0.038 0.342
0.800 -0.060 -0.044 0.423
0.800 -0.070 -0.048 0.519
0.800 -0.080 -0.050 0.643
0.800 -0.090 -0.044 0.848

CXLES

0.002
0.009
0.011
0.012
0.014
0.019
0.026
0.039
0.067

aemax

1.603
3.813
4.908
5.867
6.964
8.218
9.682
11.507
14.384

h1 01 $1 k Sta 0
0.500 12.945 102.967 0.222 0.069 0.126
0.500 19.024 108.959 0.323 0.099 0.206
0.500 20.000 109.401 0.321 0.098 0.267
0.500 20.000 108.592 0.297 0.092 0.345
0.500 20.000 107.614 0.270 0.084 0.450
0.500 20.000 106.341 0.241 0.076 0.595
0.500 20.000 104.661 0.208 0.067 0.811
0.500 20.000 102.265 0.169 0.055 1.189
0.500 20.000 97.624 0.109 0.037 2.302

Table D.6: Optimization results for Frc = 2.0, d/c = 0.8

d/c Cx C, Czma
0.600 -0.010 -0.004 0.050
0.600 -0.020 -0.013 0.140
0.600 -0.030 -0.022 0.204
0.600 -0.040 -0.030 0.270
0.600 -0.050 -0.037 0.345
0.600 -0.060 -0.042 0.432
0.600 -0.070 -0.045 0.540
0.600 -0.080 -0.044 0.700
0.600 -0.090 -0.030 0.856

C
CXLES

0.002
0.009
0.011
0.012
0.015
0.021
0.030
0.050
0.075

cemax h1  01
1.562 0.500 12.725
3.947 0.500 19.335
5.084 0.500 20.000
6.210 0.500 20.000
7.496 0.500 20.000
8.986 0.500 20.000
10.785 0.500 20.000
13.298 0.500 20.000
16.028 0.285 19.976

$1 k Sta E
102.912 0.216 0.068 0.126
109.595 0.327 0.100 0.211
109.618 0.316 0.097 0.281
108.610 0.288 0.089 0.377
107.365 0.258 0.080 0.508
105.676 0.224 0.071 0.701
103.300 0.184 0.060 1.021
99.321 0.131 0.044 1.767
90.187 0.137 0.030 3.429

Table D.7: Optimization results for Frc = 2.0, d/c = 0.6
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dic C, C, Czai CLES aemax h1  01 01 k Sta E
1.000 -0.010 -0.004 0.050 0.001 1.429 0.500 11.826 101.400 0.201 0.063 0.124
1.000 -0.020 -0.013 0.138 0.008 3.663 0.500 18.446 107.770 0.312 0.096 0.205
1.000 -0.030 -0.022 0.205 0.011 4.831 0.500 20.000 108.751 0.326 0.100 0.259
1.000 -0.040 -0.031 0.270 0.012 5.658 0.500 20.000 107.769 0.304 0.095 0.325
1.000 -0.050 -0.039 0.341 0.014 6.595 0.500 20.000 106.591 0.281 0.088 0.410
1.000 -0.060 -0.046 0.420 0.018 7.642 0.500 20.000 105.162 0.256 0.082 0.521
1.000 -0.070 -0.052 0.512 0.025 8.833 0.500 20.000 103.318 0.229 0.074 0.674
1.000 -0.080 -0.056 0.623 0.035 10.232 0.500 20.000 100.860 0.198 0.065 0.903
1.000 -0.090 -0.058 0.776 0.053 12.040 0.500 20.000 97.077 0.159 0.054 1.322

Table D.8: Optimization results for Frc = 3.0, d/c = 1.0

d/c C, Cp Czax CXLES aemax hi 0 0 k Sta E
0.800 -0.010 -0.004 0.051 0.002 1.628 0.500 13.019 102.893 0.224 0.070 0.127
0.800 -0.020 -0.013 0.138 0.008 3.739 0.500 18.642 108.094 0.315 0.097 0.207
0.800 -0.030 -0.022 0.205 0.011 4.903 0.500 20.000 108.819 0.323 0.100 0.265
0.800 -0.040 -0.031 0.270 0.012 5.802 0.500 20.000 107.745 0.300 0.093 0.338
0.800 -0.050 -0.038 0.342 0.014 6.815 0.500 20.000 106.423 0.275 0.087 0.432
0.800 -0.060 -0.045 0.423 0.019 7.953 0.500 20.000 104.805 0.249 0.079 0.558
0.800 -0.070 -0.051 0.518 0.026 9.252 0.500 20.000 102.646 0.219 0.071 0.736
0.800 -0.080 -0.054 0.638 0.038 10.804 0.500 20.000 99.670 0.185 0.062 1.017
0.800 -0.090 -0.054 0.820 0.062 12.975 0.500 20.000 94.477 0.140 0.049 1.622

Table D.9: Optimization results for Frc = 3.0, d/c = 0.8

d/c C Cp Cz_ CXLES aemax hi 01 01 k Sta E
0.600 -0.010 -0.004 0.051 0.002 1.672 0.500 13.101 102.894 0.225 0.070 0.130
0.600 -0.020 -0.013 0.139 0.009 3.824 0.500 18.845 108.530 0.318 0.098 0.210
0.600 -0.030 -0.022 0.205 0.011 5.027 0.500 20.000 108.858 0.319 0.098 0.275
0.600 -0.040 -0.030 0.271 0.012 6.037 0.500 20.000 107.596 0.294 0.092 0.359
0.600 -0.050 -0.038 0.345 0.015 7.173 0.500 20.000 106.024 0.267 0.084 0.470
0.600 -0.060 -0.044 0.430 0.020 8.456 0.500 20.000 103.973 0.237 0.076 0.622
0.600 -0.070 -0.049 0.534 0.029 9.946 0.500 20.000 101.249 0.204 0.067 0.851
0.600 -0.080 -0.052 0.676 0.045 11.841 0.500 20.000 97.077 0.164 0.056 1.264
0.600 -0.090 -0.046 0.812 0.063 14.115 0.370 19.835 99.611 0.171 0.050 1.962

Table D.10: Optimization results for Frc = 3.0, d/c = 0.6
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d/c C, Cp Czm_. CXLES 0'emax h1  01 k Sta e
1.000 -0.010 -0.004 0.050 0.001 1.385 0.500 11.491 100.903 0.195 0.061 0.124
1.000 -0.020 -0.013 0.137 0.008 3.615 0.500 18.205 107.331 0.307 0.095 0.205
1.000 -0.030 -0.022 0.205 0.011 4.845 0.500 20.000 108.534 0.326 0.101 0.259
1.000 -0.040 -0.031 0.270 0.012 5.658 0.500 20.000 107.468 0.305 0.095 0.324
1.000 -0.050 -0.039 0.341 0.014 6.572 0.500 20.000 106.191 0.282 0.089 0.407
1.000 -0.060 -0.046 0.420 0.018 7.594 0.500 20.000 104.610 0.258 0.083 0.514
1.000 -0.070 -0.052 0.511 0.025 8.742 0.500 20.000 102.635 0.232 0.075 0.659
1.000 -0.080 -0.057 0.622 0.035 10.077 0.500 20.000 99.999 0.202 0.067 0.871
1.000 -0.090 -0.060 0.772 0.053 11.768 0.500 20.000 96.001 0.166 0.057 1.238

Table D.L: Optimization results for Frc 4.0, d/c 1.0

dic C, C, CZz CXLES aemax h1  01 $1 k Sta 9
0.800 -0.010 -0.004 0.051 0.002 1.653 0.500 13.044 102.780 0.224 0.070 0.129
0.800 -0.020 -0.013 0.138 0.008 3.682 0.500 18.380 107.615 0.310 0.096 0.207
0.800 -0.030 -0.022 0.205 0.011 4.908 0.500 20.000 108.570 0.324 0.100 0.265
0.800 -0.040 -0.031 0.270 0.012 5.781 0.500 20.000 107.412 0.301 0.094 0.335
0.800 -0.050 -0.039 0.342 0.014 6.764 0.500 20.000 105.999 0.277 0.088 0.426
0.800 -0.060 -0.046 0.423 0.019 7.859 0.500 20.000 104.207 0.252 0.081 0.545
0.800 -0.070 -0.052 0.517 0.026 9.097 0.500 20.000 101.938 0.224 0.073 0.710
0.800 -0.080 -0.056 0.635 0.037 10.556 0.500 20.000 98.855 0.192 0.064 0.961
0.800 -0.090 -0.057 0.808 0.060 12.523 0.500 20.000 93.675 0.150 0.053 1.454

Table D.12: Optimization results for Frc = 4.0, d/c = 0.8

d/c Cx Cp CZma CXLES aemax h 1  01 k Sta 9
0.600 -0.010 -0.004 0.051 0.002 1.652 0.500 13.092 102.956 0.225 0.070 0.128
0.600 -0.020 -0.013 0.137 0.008 3.739 0.500 18.439 107.764 0.309 0.095 0.211
0.600 -0.030 -0.022 0.205 0.011 5.017 0.500 20.000 108.580 0.320 0.099 0.273
0.600 -0.040 -0.030 0.271 0.012 5.987 0.500 20.000 107.229 0.296 0.093 0.353
0.600 -0.050 -0.038 0.344 0.015 7.070 0.500 20.000 105.577 0.270 0.086 0.457
0.600 -0.060 -0.045 0.429 0.020 8.288 0.500 20.000 103.448 0.242 0.078 0.598
0.600 -0.070 -0.050 0.531 0.029 9.684 0.500 20.000 100.636 0.211 0.070 0.802
0.600 -0.080 -0.054 0.668 0.044 11.410 0.500 20.000 96.518 0.174 0.060 1.146

Table D.13: Optimization results for Frc = 4.0, d/c = 0.6
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d/c Cx C, Cz_,. CXLES aemax hi 91

1.000 -0.010 -0.004 0.050 0.001 1.376 0.500 11.385
1.000 -0.020 -0.013 0.137 0.007 3.570 0.500 17.999
1.000 -0.030 -0.022 0.205 0.011 4.850 0.500 20.000
1.000 -0.040 -0.031 0.270 0.012 5.655 0.500 20.000
1.000 -0.050 -0.039 0.341 0.014 6.558 0.500 20.000
1.000 -0.060 -0.046 0.420 0.018 7.568 0.500 20.000
1.000 -0.070 -0.053 0.511 0.025 8.696 0.500 20.000
1.000 -0.080 -0.058 0.621 0.035 10.005 0.500 20.000
1.000 -0.090 -0.061 0.770 0.052 11.648 0.500 20.000

k Sta E
100.708 0.193 0.061 0.125
106.997 0.303 0.094 0.206
108.427 0.326 0.101 0.259
107.321 0.305 0.095 0.324
105.998 0.283 0.089 0.405
104.345 0.259 0.083 0.510
102.320 0.233 0.076 0.651
99.600 0.204 0.068 0.855
95.532 0.169 0.058 1.202

Table D.14: Optimization results for Frc = 5.0, d/c = 1.0

d/c C, Cp Czax CXLES aemax h1  01 $1 k Sta E
0.800 -0.010 -0.004 0.051 0.002 1.654 0.500 13.084 102.848 0.225 0.070 0.128
0.800 -0.020 -0.013 0.137 0.008 3.665 0.500 18.281 107.395 0.308 0.095 0.208
0.800 -0.030 -0.022 0.205 0.011 4.910 0.500 20.000 108.453 0.324 0.100 0.264
0.800 -0.040 -0.031 0.270 0.012 5.772 0.500 20.000 107.252 0.302 0.094 0.334
0.800 -0.050 -0.039 0.342 0.014 6.739 0.500 20.000 105.797 0.278 0.088 0.423
0.800 -0.060 -0.046 0.423 0.019 7.816 0.500 20.000 103.954 0.253 0.081 0.539
0.800 -0.070 -0.052 0.517 0.026 9.028 0.500 20.000 101.637 0.226 0.074 0.698
0.800 -0.080 -0.057 0.634 0.037 10.447 0.500 20.000 98.502 0.195 0.066 0.937
0.800 -0.090 -0.059 0.804 0.059 12.330 0.500 20.000 93.350 0.155 0.054 1.388

Table D.15: Optimization results for Frc = 5.0, d/c 0.8

d/c Cx Cp Czmx CXLES aemax h1  01 #1 k Sta E
0.600 -0.010 -0.004 0.050 0.001 1.448 0.500 11.816 101.338 0.200 0.063 0.126
0.600 -0.020 -0.013 0.137 0.008 3.700 0.500 18.290 107.515 0.306 0.095 0.211
0.600 -0.030 -0.022 0.205 0.011 5.011 0.500 20.000 108.448 0.321 0.099 0.273
0.600 -0.040 -0.031 0.271 0.012 5.964 0.500 20.000 107.062 0.297 0.093 0.351
0.600 -0.050 -0.038 0.344 0.015 7.028 0.500 20.000 105.328 0.272 0.086 0.452
0.600 -0.060 -0.045 0.429 0.020 8.211 0.500 20.000 103.196 0.244 0.079 0.587
0.600 -0.070 -0.051 0.530 0.028 9.567 0.500 20.000 100.381 0.214 0.071 0.781
0.600 -0.080 -0.055 0.664 0.043 11.228 0.500 20.000 96.305 0.178 0.061 1.100
0.600 -0.090 -0.052 0.957 0.088 14.351 0.500 20.000 84.284 0.116 0.043 2.159

Table D.16: Optimization results for Frc = 5.0, d/c = 0.6
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d/c Cx 0 p C, mC x CXLES aemax h1  01
1.000 -0.010 -0.004 0.052 0.002 1.803 0.500 13.627
1.000 -0.020 -0.013 0.137 0.007 3.592 0.500 18.070
1.000 -0.030 -0.022 0.205 0.011 4.852 0.500 20.000
1.000 -0.040 -0.031 0.270 0.012 5.653 0.500 20.000
1.000 -0.050 -0.039 0.341 0.014 6.550 0.500 20.000
1.000 -0.060 -0.046 0.420 0.018 7.551 0.500 20.000
1.000 -0.070 -0.053 0.511 0.025 8.670 0.500 20.000
1.000 -0.080 -0.058 0.621 0.035 9.963 0.500 20.000
1.000 -0.090 -0.061 0.769 0.052 11.582 0.500 20.000

$1 k Sta E
103.242 0.236 0.074 0.133
107.044 0.305 0.094 0.206
108.367 0.327 0.101 0.259
107.244 0.305 0.095 0.323
105.897 0.283 0.090 0.404
104.218 0.260 0.083 0.508
102.145 0.234 0.077 0.647
99.410 0.205 0.069 0.847
95.321 0.171 0.059 1.183

Table D.17: Optimization results for Frc = 6.0, d/c = 1.0

d/c C, C, Czma
0.800 -0.010 -0.004 0.050
0.800 -0.020 -0.013 0.137
0.800 -0.030 -0.022 0.205
0.800 -0.040 -0.031 0.270
0.800 -0.050 -0.039 0.342
0.800 -0.060 -0.046 0.423
0.800 -0.070 -0.052 0.517
0.800 -0.080 -0.057 0.633
0.800 -0.090 -0.059 0.801

CXLES
0.001
0.008
0.011
0.012
0.014
0.019
0.026
0.037
0.058

Oemax

1.386
3.651
4.911
5.767
6.724
7.791
8.988
10.389
12.234

h1 01
0.500 11.450
0.500 18.222
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000
0.500 20.000

01 k Sta E
100.833 0.194 0.061 0.125
107.296 0.307 0.095 0.208
108.385 0.325 0.100 0.264
107.164 0.302 0.095 0.333
105.692 0.279 0.088 0.421
103.827 0.254 0.082 0.535
101.487 0.227 0.075 0.691
98.335 0.196 0.066 0.924
93.214 0.157 0.055 1.356

Table D.18: Optimization results for Frc = 6.0, d/c = 0.8
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