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Abstract

All intelligence relies on search — for example, the search for an intelligent agent’s next
action. Search is only likely to succeed in resource-bounded agents if they have already
been biased towards finding the right answer. In artificial agents, the primary source of bias
is engineering.

This dissertation describes an approach, Behavior-Oriented Design (BOD) for engi-
neering complex agents. A complex agent is one that must arbitrate between potentially
conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based
and hybrid architectures for agents, and the object oriented approach to software engineer-
ing.

The primary contributions of this dissertation are:

1. The BOD architecture: a modular architecture with each module providing special-
ized representations to facilitate learning. This includes one pre-specified module
and representation for action selection or behavior arbitration. The specialized rep-
resentation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack
Hierarchical (POSH) reactive plans.

2. The BOD development process: an iterative process that alternately scales the agent’s
capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the
component representations. This ongoing process for controlling complexity not
only provides bias for the behaving agent, but also facilitates its maintenance and
extendibility.

The secondary contributions of this dissertation include two implementations of POSH
action selection, a procedure for identifying useful idioms in agent architectures and us-
ing them to distribute knowledge across agent paradigms, several examples of applying
BOD idioms to established architectures, an analysis and comparison of the attributes and
design trends of a large number of agent architectures, a comparison of biological (partic-
ularly mammalian) intelligence to artificial agent architectures, a novel model of primate
transitive inference, and many other examples of BOD agents and BOD development.

Thesis Supervisor: Lynn Andrea Stein
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

Intelligence relies on search — particularly, the search an agent makes when it chooses its
next act. Search is only likely to succeed in resource-bounded agents if they have already
been biased towards finding the right answer. In artificial agents, the primary source of bias
is engineering. Thus engineering is the key to artificial intelligence.

This dissertation describes an approach, Behavior-Oriented Design (BOD) for engi-
neering complex agents. A complex agent is one that must arbitrate between potentially
conflicting goals or behaviors. Common examples include autonomous robots and virtual
reality characters, but the problems are shared by many Al systems, such as intelligent
tutors, monitors or environments. Behavior-oriented design builds on work in behavior-
based and hybrid architectures for agents, and the object oriented approach to software
engineering.

This chapter describes the contributions of this dissertation, first at a high level, then in
more detail. There is a preliminary introduction to Behavior-Oriented Design, an argument
about the importance of design in artificial intelligence (Al), and an explanation of the
forms of evidence provided in this dissertation. Finally, there is a chapter-level description
of the rest of the dissertation, including road maps for readers with various interests, and
an description of its core motivations.

1.1 Contributions
The primary contributions of this dissertation are:

1. the BOD architecture, and

2. the BOD development process.

The BOD architecture consists of adaptive modules with specialized representations
to facilitate learning. This includes one pre-specified module and representation for action
selection, the arbitration between the expressed behavior of the other modules. The special-

ized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack
Hierarchical (POSH) reactive plans.
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The BOD development process is iterative: it alternately scales the agent’s capabilities
then optimizes the agent for simplicity, exploiting tradeoffs between the component repre-
sentations. This ongoing process for controlling complexity not only provides bias for the
behaving agent, but also facilitates its maintenance and extendibility. BOD provides rules
for:

¢ The initial decomposition of the agent into modules and plans. This decomposition
is based on anticipated adaptive state requirements.

¢ The iterative improvement of the agents design. These rules take the form of heuris-
tics for simplifying the agent, and recognizing when the current decomposition is
faulty. Due to BOD’s modularity, new decompositions (even switching intelligence
between modules and plans) can be achieved with minimal disruption.

Secondary contributions of this dissertation include: an analysis and comparison of the
attributes and design trends of a large number of agent architectures, two implementations
of POSH action selection, a procedure for identifying useful idioms in agent architectures
and using them distribute knowledge across paradigms, several examples of applying BOD
idioms to established architectures, a comparison of biological (particularly mammalian)
intelligence to artificial agent architectures, a novel model of primate transitive inference,
and many other examples of BOD agents and BOD development.

In the analysis of design trends (Chapter 3), I conclude that intelligence for complex
agents requires the following three features:

e modularity, a decomposition of intelligence to simplify the agent’s design,

e structured control, a way to focus attention and arbitrate between modules to bring
coherence to the agent’s behavior, and

e environment monitoring, a low-computation means to change the focus of the agent’s
attention.

In the biological comparison (Chapter 11) I show that mammalian intelligence also shares
these features. These features provide the basis of the BOD architecture.

1.2 Behavior-Oriented Design (BOD)

Behavior-Oriented Design is a methodology for constructing complex agents. Itis designed
to be applicable under any number of languages and most popular agent architectures. As
can be gathered from its name, BOD is a derivative of Behavior-Based Aurtificial Intelli-
gence (BBAI) [Brooks, 1991a, Maes, 1991a, Matarié, 1997], informed by Object-Oriented
Design (OOD) [e.g. Coad et al., 1997]. Behavior-Based Al is an approach that specifies
that intelligence should be decomposed along the lines of perception and action. Behaviors
are described in terms of sets of actions and the sensory capabilities necessary to inform
them. This sensing must inform both when the actions should be expressed, and how.
In other words, there are really two forms of sensing: sensing for detecting context, and
sensing for parameters and feedback of motor actions.
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The central observation of behavior-oriented design is that mere sensing is seldom suf-
ficient for either detecting context or controlling action. Rather, both of these abilities
require full perception, which in turn requires memory. Memory adds bias by recording
experience and creating expectation. Perception exploits experience and expectation to
perform discriminations more reliably than would otherwise be possible.

This observation has two consequences in the BOD methodology. First, memory be-
comes an essential part of a behavior. In fact, memory requirements serve as the primary
cue for behavior decomposition — the process of determining how to divide intelligence
into a set of modules. This strategy is analogous to the central tenet of object-oriented
design, the modular decomposition of a system is best determined by its adaptive state
requirements.

The second consequence is that determining context is both sufficiently important and
sufficiently difficult that it requires its own representation. Control context decisions,
though generally driven by the environment, must often be retained after the original trig-
ger is no longer apparent to sensing. BOD uses hierarchical, reactive, plan structures to
both ensure environment monitoring and keep track of control decision context.

The analogy between BOD and OOD begins with the metaphor between the behavior
and the object. The primitive elements of BOD reactive plans are encoded as methods on
the behavior objects. Equally critical is BOD’s emphasis on the design process itself. Asin
OO0D, BOD emphasizes cyclic design with rapid prototyping. The process of developing an
agent alternates between developing libraries of behaviors, and developing reactive plans
to control the expression of those behaviors. BOD provides guidelines not only for making
the initial behavior decomposition, but also for recognizing when a decomposition has
turned out to be inadequate, and heuristic rules for correcting these problems. This iterative
development system results in the ongoing optimization of a BOD agent for simplicity,
clarity, scalability and correctness.

1.3 Design in Artificial Intelligence

Hand design or programming of systems has always been the dominant means of creat-
ing Al systems. The intrinsic difficulty of hand coding has lead to a good deal of re-
search into alternate strategies such as machine learning and automated planning. Each of
these techniques is very successful in limited domains. However, the problem of complex-
ity has been proven intractable to machine-implemented (resource bounded) algorithms
in the limit case. Chapman [1987] has proved planning to be impossible for time- or
resource-bounded agents. Wolpert [1996b,a] makes similar demonstrations for machine
learning. There can be “No Free Lunch” — learning requires structure and bias to succeed.
Wooldridge and Dunne [2001] demonstrate that even determining whether an agent has
some chance of bringing about a goal state is an NP-complete problem.

More importantly, there is strong evidence that in the average case, the utility of hand
design still outstrips the utility of machine learning and planning. This evidence can be
found in the research trends of the planning field. Al users working under a many different
paradigms have turned repeatedly to designing their plans by hand (see Chapter 3).

Machine learning and automated planning techniques can be very successful in well-
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specified domains. The point of a design approach such as BOD is not to deprecate these
achievements, but to facilitate creating the systems in which these strategies can reliably
succeed.

1.3.1 Alis Software Engineering

To reiterate, the thesis of this dissertation is not that machine learning or constructive plan-
ning are useless. My thesis is that neither strategy in itself will ever be a complete solution
for developing complex agents. Al is a form of software engineering, and as such the
primary considerations of the two fields are the same. Frederick Brooks lists these as the
concerns of software engineering:

e How to design and build a set of programs into a system

e How to design and build a program or a system into a robust, tested,
documented, supported product

e How to maintain intellectual control over complexity in large doses.
[Brooks, 1995, p. 288 (emphasis is Brooks’)]

This dissertation addresses all of these questions. Behavior-oriented design is about
building and incorporating useful modules into an agent capable of coherent behavior. It
specifies procedures for developing the modules, and the coordination. These specifica-
tions include recommendations for program structure and documentation that is highly
maintainable.

BOD is an Al methodology that takes into account the fact that design, development and
maintenance are effectively inseparable parts of the same process in modern software en-
gineering. Consequently, the developed system must document its own design and provide
for its own maintenance. BOD provides for this by making clear, rational decompositions
of program code. These decompositions are not only functionally useful and simplifying,
but are easily reflected in file structure.

1.3.2 Learning and Planning are Useful

Referring back to Frederick Brooks’ agenda (above), learning and planning are some of
the ‘programs’ that need to be incorporated into an intelligent system. Nearly all of the
examples of this dissertation incorporate learning, because its capacity to generalize the ap-
plicability of a program helps control the overall complexity of the system (see Chapter 6).
One example that is discussed but not demonstrated (the dialog system in Section 12.2) in-
corporates a constructive planner while at the same time reducing and simplifying its task.
Whenever learning and planning can be supported by provided structure, their probability
of success increases and their computational cost decreases.

1.4 Evidence in an Engineering Dissertation

Engineering and the design process are critical to artificial intelligence, but they are not
easy topics for a research dissertation. Assertions about ease of use usually cannot be
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proven mathematically. Further, statistically valid scientific evidence demonstrating a sig-
nificant ease-of-use improvement is difficult and expensive to come by: it requires a large
sample of programmers tutored in a variety of methodologies, and comparisons in terms of
time, effort and quality of the final product of the programming. Because this is intractable
in the average PhD program, most architecture theses resort to combining plausible argu-
ments with a demonstration of some impressive system or systems constructed under the
methodology.

In the case of this dissertation, although I have employed both of these latter strategies,
I have also attempted to add a version of the scientific approach. Rather than hiring a large
number of programmers myself, I examine the history of agent design as made available in
the literature. When practitioners from various paradigms of Al research have converged
on a particular methodology, I take this as evidence of the viability of that method. This
is particularly true when the paradigm began in stated opposition to a particular method-
ological aspect it later adopts, or when a methodology has been subjected to substantial
application with significant results. In these cases the selection of the methodological as-
pect can reasonably be attributed to forces other than those of personal belief or some other
social bias.

This analysis appears in Chapter 3. Chapter 11 also includes a similar look at the
structure of naturally evolved complex agents. The combination of such uncertain evidence
cannot lead to perfect certainty, but it can lead to an increased probability of correctness. In
this sense, my approach is similar to that used in a scientific dissertation, particularly one
employing arguments from evolution or history. These dissertations and their theses will
always be more controversial than theses conclusively proven, but their approach is better
than leaving important areas of research unexamined.

1.5 Dissertation Structure and Motivation

This dissertation represents three different sorts of work, which might potentially be of
interest to three different sorts of readers. The work content categories are:

¢ the development of an Al methodology,

o the review and integration of literature on organizing intelligent control (both artifi-
cial and natural), and

o the development of a number of artificial agents.

Although these three activities are deeply interdependent, it is possible that some readers
will only be interested only in particular aspects. Therefore this section includes not only
a list of chapters, but also a few ‘road maps’ to sections reflecting particular interests. This
section concludes with a brief description of my personal interests in this work.

1.5.1 Chapter List

I have already begun this dissertation with a brief description of my contributions and
methods, and of the importance of software design issues in artificial intelligence.

19



Introductory Material

Chapter 2 gives a gentle introduction to BOD, both its architectural components and its
design process. This is a useful introduction to ‘the big picture’ and gives a number of toy
examples.

The next chapter provides background material in AI architectures for complex agents.
As explained earlier, Chapter 3 is critical to validating both my emphasis on design and the
general structure of the BOD architecture.

Behavior-Oriented Design

The next seven chapters present the three primary attributes of BOD in detail.

Chapters 5 and 4 give a detailed description of action selection in BOD. Chapter 5 de-
scribes Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans formally.
It also discusses how and when to introduce POSH planning structures into other archi-
tectures. BOD can be used to implement agents under any object oriented language, and
under many agent architectures. Chapter 5 introduces the concept of architectural idioms,
and how insights derived in one research program can be best distributed throughout the
entire agent community. It also includes specific examples of adding a key feature of POSH
action selection to other existing architectures.

Chapter 4 goes into more detail on the specifics of my own POSH implementations,
with examples, pseudo-code and performance statistics..

Chapters 6 and 7 describe the role of learning and modularity. Unlike most ‘behavior-
based’ architectures that also exploit reactive planning, BOD maintains the concept of be-
haviors as semi-autonomous programs with their own agendas and specialized represen-
tations. Chapter 6 classifies and demonstrates the different types of state used in agent
architecture. Chapter 7 continues this discussion in more detail, with multiple examples
from two working systems. The first system is a robot in a blocks-world simulation, and
the second is a real autonomous mobile robot.

Chapter 8 describes the BOD development process proper. The BOD methodology is
critical to maximizing the simplicity and correctness of a BOD agent. Chapter 8 describes
the ongoing process of trading-off between the possible BOD representations to keep the
agent’s code and structure clear and scalable. It also gives very practical instructions for
keeping a BOD project organized, including discussing maintenance, debugging, and tool
use.

Chapters 9 and 10 demonstrate the BOD methodology. Chapter 9 provides an extended
example on a relatively simple modeling task. The agents constructed model primate learn-
ing of reactive plans. Besides its pedagogical utility, this chapter also advances current
models of primate learning, and illustrates the theoretical interface between plans and be-
haviors. Chapter 10 provides another, briefer example of BOD. It fills in the gaps from
the previous example by using a real-time agents, demonstrating BOD in a Multi-Agent
System (MAS) setting, and showing the interaction of traditional emotional/drive theory
models of action selection with POSH reactive plans. The model is of social interactions
in a primate colony.
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The Utility of BOD

The final chapters exhibit and summarize BOD’s usefulness and describe some future work.

Chapter 11 relates the hypotheses implicit and structures explicit in BOD agents to
those of biological agents, particularly mammals. It also discusses possible future work in
creating more adaptive or biologically-correct agent architectures.

Chapter 12 describes the utility of BOD beyond artificial life and psychology research,
in the problems of industrial applications of artificial intelligence. Such applications in-
clude intelligent environments and monitoring systems. There are extended examples of
possible future applications from two real industrial applications: natural language tutoring
of undergraduates and virtual reality entertainment of young children.

Finally, Chapter 13 concludes with a summary.

1.5.2 Road Maps

If you are only going to read one chapter of this thesis (besides the introduction), read
Chapter 2.

If you are trying to learn about (or choose between!) different agent architectures, start
with Chapter 3. Then read Chapter 2 so you are familiar with the terminology of the rest
of the dissertation. Next read Chapter 5, which discusses the varying levels of reactiveness
in different architectures, and how to implement features of one architecture in another.
You might then want to read Chapter 6 which gives my arguments about why specialized
representations are important. Finally, you should probably read 12, which gives detailed
perspectives on bringing my methods to two large-scale Al projects.

If you are actually interested in natural intelligence, again start with Chapter 2 (it’s
quick!) then skip to Chapter 11. You may also want to read my primate modeling chap-
ters, 9 and 10. It’s possible that any of these chapters will then lead you to want to skim
Chapter 3, so you can see alternative ways to represent intelligence in Al

If you are already familiar with BOD (perhaps from a paper or a talk) and just want to
finally get the implementation details, you want to read Chapter 4 and the appendices. You
may also want to look at Chapters 2 and 9 for examples of how agents get developed, and
Chapter 5 for alternative implementations of POSH action selection. Finally, you really
ought to read Chapter 8 on the methodology.

1.5.3 Motivation

The primary personal motivation for this research has been the creation of a methodology
for rapidly and reliably constructing psychologically plausible agents for the purpose of
creating platforms for the scientific testing of psychological models. However, I am also
motivated socially by improving human productivity, and @sthetically by clean design. The
complete BOD methodology and its underlying architecture supports my personal goal,
as is demonstrated by the experimental work shown in Chapters 9 and 10. In addition,
various of its attributes can help in other considerations. Chapter 11 offers a bridge between
BOD-like architectures and neurological models of intelligence, both natural and artificial.
Pursuing more general productivity and utility particularly motivates Chapters 5 and 12.
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However, any Al project (in fact, any software project at all) benefits from good, practical
methodology facilitating both design and long-term maintenance. This theme is strong
throughout the dissertation, but particularly in the three nuts-and-bolts chapters, 5, 6 and 8.
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Chapter 2

BOD Basics (or How to Make a Monkey
Do Something Smart)

This chapter is a gentle introduction to behavior-oriented design (BOD). It is designed more
or less as a tutorial. The rest of the dissertation contains more technical descriptions of each
of the concepts introduced here.

2.1 Building Your Own Monkey

This is a tutorial on designing and constructing the behavior for an artificial intelligent
agent!. Agent is a term borrowed from philosophy, meaning an actor — an entity with
goals and intentions that brings about changes in the world. The term ‘agent’ could be
applied to a person, an animal, a nation or a robot. It might even be applied to a program.

The tutorial example will provide opportunities to introduce the major problems of
agent design and illustrate the BOD approach to solving them. This example is building a
robot monkey — one that would live with us, that we might take along to a party.

Designing the intelligence for such an agent requires three things: determining what to
do when, and how to do it.

2.1.1 How

In a BOD agent, how is controlled by a set of modular programs, called behaviors.

If we are building a monkey from scratch, then at some level we have to take care of
what every individual component is doing at every instant in time. To make this problem
easier, we break it up into pieces and write a different program for each piece. There might
be different behaviors for sitting, jumping, playing, eating or screeching.

IThere are other ways to make monkeys do intelligent things, but this is more interesting and doesn’t
involve issues of animal welfare.
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2.1.2 When

When can mean “at what time”, but it is more powerful if you can be more general and
say “under what circumstances.” When is the problem of action selection. At any time,
we need to be able to say what the monkey should do righr now. In BOD, we solve this
problem by providing a structured list of circumstances and actions: a reactive plan. More
formal definitions of these terms can be found in Chapter 5, but for now it’s enough that we
share a vocabulary.

2.1.3 What

What is a problem of terminology and abstraction — at what level of granularity do we
have to determine when the monkey will act? How much detail do we have to give?
Assume that right now we want the monkey to stay out of trouble while we decide what
to do next. Should we tell the monkey to ‘wait’? To ‘sit’? To ‘put your legs under your
body, put your hands on your knees, look around the room and at approximately 2 minute
intervals (using a normal distribution with a standard deviation of 30 seconds around the
interval) randomly select one of three situation-appropriate screeches and deliver it with
gesticulations’?

The problem of choosing a what comes down to this: which what you chose deter-
mines how hard a how is to write. But making a how program easier to write might make
describing when to execute it harder, and vice versa. For example, if we decide that one
what should be ‘create world peace,” or even ‘go buy a banana,” programming the how be-
comes complicated. On the other hand, if we make a what into something easy to program
like ‘move your little finger up an inch’, we will have to do a lot of work on when.

There are two parts to this problem. One is behavior decomposition. This is the prob-
lem of deciding what should be in each behavior module. If you have ever worked on
artificial perception (e.g. vision or speech recognition) you might recognize that behavior
decomposition is somewhat analogous to the problem of segmentation.

The other problem is determining an interface between how and when. Unlike many
architectures, BOD does not treat the problem of behavior decomposition and interface as
the same. For example, there may be a single sitting behavior that has several different
interfaces for ‘sit down’, ‘wait quietly’, ‘wriggle impatiently’ and ‘get up’. Thus when
plans aren’t made of just of hows, but of whats. Plans are made of actions that behaviors
know how to do.

2.1.4 BOD Methodology

The trick to designing an agent is to choose a set of whats that make the hows and whens
as easy to build as possible.

We do this by first making an educated guess about what we think the whats should be.
Then we develop how and when iteratively. If it turns out we were wrong about our first
guess about the whats that’s OK; we can change them or replace them.

Development is an iterative, ongoing process. We try to build something simple, and
then if it doesn’t work, we try to fix it. If it does work, we try to build it bigger, better or
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more interesting. One of the mistakes people sometimes make is to make a project more
and more complicated without being careful to be sure they can maintain it. The BOD
methodology reminds developers that development is an ongoing process. Its critical to
continually look at how the agent can be simplified, and to make it as clear as possible how
the agent works.

If a how becomes too complicated, we decompose it into simpler pieces (new whats).
For example, if ‘wait’ turns out to be too complicated a thing to build, we might split it into
‘sit and scratch’, ‘snooze’, ‘look around’, and ‘play banjo.” We then need to recombine
the whats using some whens. For example we might want to say ‘snooze if you're tired
enough’, ‘look around every 2 minutes’, ‘play the banjo when no one is listening’ and
‘scratch if you aren’t doing anything else.’

If a when becomes too complicated, we develop new hows to support and simplify the
decision process. For example, we may want to build a new how for the monkey so she
can tell whether she’s tired, or whether anybody’s listening.

BOD exploits the traditional software engineering tools such as hierarchy and modular-
ity to make things as simple as possible. It heavily exploits the advances of object-oriented
design and corkscrew development methodologies. It also uses new representations and
understandings of intelligent processes from artificial intelligence (Al).

2.2 Behaviors: Saying How

The way we say how under BOD is using object-oriented programming methodologies.
The particular language isn’t that important, except that development in general and our
corkscrew methodology in particular, goes much faster in untyped languages like lisp, perl
or smalltalk than in typed ones like C++ or Java. Of course, typed languages can run
relatively quickly, but in general, the time spent developing an agent is significantly more
important than the speed at which it can, in the best case, execute commands. Finding that
best case is harder than making the agent run fast.

2.2.1 The Simplest Behavior

In BOD we decompose how into modules called behaviors, which we code as objects.
Behaviors are responsible for perception and action. Perception is the interpretation of
sensory input into information useful for controlling effectors. Effectors are anything that
affects the external world. They might include motors on a robot, nodes in a model for
a virtual-reality character, the speaker or screen of a personal computer, or a teletype for
an agent trying to pass the Turing test. Since behaviors are responsible for governing
effectors, they must also perform any learning necessary for perception and control. Thus,
like objects in software engineering, they consist of program code built around the variable
state that informs it.

The simplest possible behavior is one that requires no perception at all, and no state.
So, let’s assume we’ve given our monkey a sound card attached to a speaker for one of
its effectors. One ultimately simple behavior would be a screeching behavior that sends
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the sound card the instruction to go “EEEEEEEEEE...” all of the time. We’ll call this the
screeching behavior. We’ll draw it like this, with the name underlined:

screeching

2.2.2 Behaviors with State

Unfortunately, constant screeching does not have much @sthetic appeal, nor much com-
municative power. So we might want to make our screeching behavior a little more so-
phisticated. We can give it a bit of state, and only have the action communicated to the
soundboard when that bit is high.

To make our screeching behavior even more interesting, we might want it to be pulsed,
like “EEee EEee EEee”. This requires some more state to keep track of where in the pulse
we are. If we make our screeching sound a function of the pulse’s current duration, we only
need an accumulator to keep track of how long our monkey has been screeching.

Now the screeching behavior looks like this:

screeching

screeching-now?
pulse-duration

We draw the state inside the behavior’s box, under its name.

2.2.3 Behaviors with Perception

Relatively little behavior operates without regard to other events in the environment, or is
controlled open loop, without feedback. For example, we might want our monkey to be
able to modulate the volume of her screeching to be just loud enough to be heard over the
other ambient noise in the room. The monkey should screech louder at a party than while
she’s sitting in a quiet house. This requires the monkey to have access to sound input (a
microphone of some kind) and to be able to process that information to determine her own
volume. We might include this all as part of our screeching behavior.

screeching

screeching-now?
pulse-duration

noise

On the other hand, some perception might be useful for screeching, but require many
states or processes that are generally unrelated to screeching. In that situation, it makes
more sense for the additional perception to be handled by another behavior, or set of be-
haviors.

For example, real monkeys start screeching when they see someone enter the room.
They also make different screeches depending on whether that person is a friend, an enemy,
or a stranger. Visual recognition is a fairly complicated task, and is useful for more things
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than just determining screeching, so we might want to make it a part of another behavior.
Replicating state is generally a bad idea in software engineering (it makes it possible the
copies will become out of synch), so it is better if the screeching behavior uses the state of
the visual recognition behavior to help it select the formants for a particular screech.

Here is a drawing of two behaviors:

screeching k recognize
— nown, TR P
screeching-now? liked familiarity-levels
pulse-duration ke affinity-levels

The method calls used to relate the two are put on an arrow between them. The direction of
the arrow indicates the flow of information, not responsibility for making that information
flow. In fact, normally it is the ‘receiving’ behavior that actively observes information in
other behaviors.

2.2.4 Behaviors with Triggers or Processes

Mentioning multiple behaviors brings up the possibility of conflicts between behaviors. For
example, what if our monkey is at a surprise party and sees the main guest walk into the
room? The monkey should inhibit her screeching until someone gives the signal to start
shouting. Similarly, if this is to be a very polite monkey, she shouldn’t start screeching
exactly when someone new comes up to her if she is eating a bite of cake! First she should
swallow.

Under BOD, conflict resolution is handled by allowing an action selection mechanism
to determine when things should be expressed. The interface between when and how is
called what. A what is coded as a method on the object underlying a particular behavior.
So for our screeching behavior, we might want to add a what, ‘inhibit’, which lets plans
specify the exceptional situations where the monkey should stay quiet. Deciding to do a
what can be viewed either as deciding to release or to trigger an action of a particular
behavior.

screeching

screeching-now?
pulse-duration

recognize
familiarity-levels
affinity-levels

known,
liked

inhibit

On the other hand, some actions of behaviors (such as learning or perceptual process-
ing) may run continuously or spontaneously without interference from the when part of the
intelligence. So long as they cannot interfere with other behaviors, there is no reason to
coordinate them. For example, there’s no reason (unless we build a duplicitous monkey)
to control the selection of formants from the when system. The screeching behavior could
be continuously choosing the appropriate screech to make, regardless of whether it is cur-
rently screeching or not, by having a process constantly resetting its state on the basis of
the identity (or lack of known identity) of any person the monkey is observing.
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2.2.5 Behaviors that Aren’t Objects

Some hows may be easier to build using other means than coding them from scratch. For
example, they may be available in external packages, or they may be easier to learn than to
program. That’s OK too: in that case, both whats and inter-behavior methods are just an
interface to those other programs or packages.

Often even in these cases it is useful to have another more conventional behavior that
maintains state determined by the external behavior. For example, for our monkey’s face
recognition, we might use a commercial package that returns the identity of the individual
as a vector. We might also have a coded object behavior that learns from experience to
categorize these vectors into friend, enemy, familiar neutral or unfamiliar.

screeching

screeching-now?
pulse-duration

recognize y
familiarity-levels————face recognizer|
affinity-levels

known,
liked

inhibit
[ < —

2.3 Plans: Saying When

More consideration about programming how is given in Chapter 6, and real examples on
working systems are shown in Chapter 7. But for now, we will turn to problem of deciding
when.

In BOD, when is controlled using structures that are read by a special behavior for
action selection. In Al, structures that control action selection are generally called plans.
BOD uses hand-coded, flexible plan structures. Such plans are often called reactive plans,
because with them the agent can react immediately (without thinking) to any given situa-
tion.

2.3.1 The Simplest Plan

The simplest plan is just a list of instructions, for example:
(get a banana — peel a banana — eat a banana) 2.1

Such a list is called a simple sequence, or sometimes an action pattern.

2.3.2 Conditionality

Of course, specifying the complete behavior for the entire lifetime of your monkey in a
sequence would be tedious. (Besides, it’s provably impossible.) A more common way
to specify when is to associate a particular context which the agent can perceive with a
what. Such a pairing is often called a production rule. The context is called the rule’s
precondition and the what is called its action.
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For example, the plan 2.1 could be changed into a set of rules:

(have hunger) = get a banana
(have a banana) = peel a banana 2.2)
(have a peeled banana) = eat a banana

I have put the contents of the precondition in parentheses to indicate that they are really a
question. If the question is answered ‘yes’, then the rule should fire — the action should be
executed.

It might look like our new plan is as good as or better than our old plan. For one thing,
we’ve specified something new and critical — when to execute the plan itself. For another,
if somebody hands our monkey a peeled banana, she will be able to execute the rule ‘eat a
banana’ without executing the whole sequence in plan 2.1.

Unfortunately, it’s not that easy. What if we had another sequence we wanted our
monkey to know how to do. Let’s say that we intend to have our monkey to a dinner party,
and we want her to be able to pass bananas to other guests?. Here’s the original sequence:

(get a banana from left — pass a banana to right) (2.3)

But if we translate that into rules:

(left neighbor offers banana) = get a banana from left 2.4)
(have a banana) = pass a banana to right )

Now we have two rules that operate in the same context, ‘have a banana’. What should
our monkey do?

We could try to help the monkey by adding another piece of context, or precondition,
to each of the rules. For example, all of the rules in plan 2.2 could include the precondition
‘have hunger’, and all the rules in the plan 2.4 could have the condition ‘at a party’. But
what if our monkey is at a party and she’s hungry? Poor monkey!

The problem for the programmer is worse than for the monkey. If we want to determine
what the monkey will do, we might have to add an exception to rules we’ve already written.
Assuming we think being polite is more important than eating, when we begin writing our
party rules, we’ll have to go back and fix plan 2.2 to include ‘not at a party’. Or, we might
have to fix the behavior that runs the monkey’s rules to know that party rules have higher
priority than eating rules. But what if we want our monkey to eventually eat at the party?

Thus, although the production rule structure is powerful and useful, it doesn’t have
some of the critical things we have in a sequence. A sequence maintains removes ambiguity
by storing control context. Thus if our monkey keeps the steps of plan 2.3 together in a
sequence, then when she takes a banana from the left, she knows to try to pass it to the
right. In any other circumstance, if she has a banana, she never needs to think of passing it.

2Don’t try this with real monkeys.
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2.3.3 Basic Reactive Plans

To summarize the previous section:

e Production rules are useful because they facilitate flexible behavior and the tying of
action to context. However, they rapidly become difficult to manage because of the
amount of context needed to differentiate rule firing.

¢ Sequences work well because they carry that context with them. A what embedded in
a sequence carries disambiguating information about things that occurred just before
or just after. The sequence itself represents an implicit decision made by the monkey
which disambiguates the monkey’s policy for some time.

We can combine many of the attributes of these two features using another structure,
the Basic Reactive Plan or BRP. Let’s try to rewrite plan 2.1/2.2 again:

(full) = goal
(have a peeled banana) = eat a banana
(have a banana) = peel a banana
=> get a banana

(have hunger) = < 2.5

What this notation indicates is that rules relevant to a particular activity have been
clustered into a BRP. The BRP, like a sequence, limits attention to a small, fixed set of
behaviors. It also encodes an ordering, but this time not a strict temporal one. Instead, it
records a prioritization. Priority increases in the direction of the vertical arrow on the left.
If the monkey already has a peeled banana, she’ll eat it. If she has a whole banana, she’ll
peel it. Otherwise, she’ll try to get a banana.

The BRP is a much more powerful structure than a simple sequence. If the monkey eats
her banana, and she still isn’t full, she’ll get another one!

Often (as in this case) the highest priority step of a BRP is a special rule called goal.
The goal detects when the BRP’s task is finished. A BRP ends if either none of its rules
can fire, or if it has achieved its goal (if it has one.)

Notice that when we make a sequence into a BRP, we reverse its order. This is because
the highest priority item goes on the top, so that its precondition gets checked first. Notice
also that the last rule doesn’t need a precondition: instead, it’s guarded by its low priority.
It will only fire when the monkey’s action selection attention is in the context of this BRP,
and none of the other rules can fire.

There is more information about BRPs in Chapters 5 and 4.

2.4 Making a Complete Agent

2.4.1 Drive Collections

Plans that contain elements that are themselves plans are called hierarchical. The natural
questions about a hierarchy are “where does it start?” and “where does it end?” We already
know that the plan hierarchies end in behaviors, in the specification of how.
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The start could in principle be any plan. Once that plan ends, the agent’s intelligence
is just over. This makes sense for certain kinds of software agents that might be called into
existence just to perform a certain job. But what if we are interested in making something
like a monkey? Something that lasts for some time, that decides what to do based on a set
of motivations and principles?

We call this sort of agent a complete agent. And at the start (or root) of its plan hier-
archy, we put a BRP specially designed never to end. This special designing just involves
blocking the two ways BRPs can end. First, the BRP has no goal, so it never ‘succeeds’
and completes. Second, the BRP must have at least one element that can always run, so it
never fails.

Here’s a BRP that might govern the monkey we’ve been building:

(at a party)(obligations exist) = be polite
ife’ (hungry) = eat a banana >> 2.6)
(friends around) => make friends comfortable ’
= wait

Notice I added a sense for perceiving obligations. That way, our monkey can eat even
when she’s at a party, so long as she’s not aware of any social obligations. I didn’t specify a
goal, and I included a low-priority behavior that can always run, so that ‘life’ should never
end.

Drive collection is a special name for this top / root BRP. In a BOD agent, the drive
collection also works as the environment monitor, something that every agent architecture
needs (see Chapter 3). Drive collections have some special features to help make the agent
particularly reactive; these are explained in Chapter 4.

2.4.2 The BOD Methodology: Choosing What

The previous parts of this chapter have talked about the elements of a BOD agent’s archi-
tecture. But BOD also has a methodology for constructing agents. It has two parts: creating
an initial specification, then iteratively building the agent.

Describing and ordering the motivations of a complete agent like I did in the last section
is actually part of the specification process. Here’s what you need for the entire specifica-
tion:

1. A high level description of what your agent does.

2. Collections of actions (in sequences and BRPs) that perform the functions the agent
needs to be able to do. The Reactive Plans

3. The list of whats (including questions / senses) that occur in reactive plans. The
Primitive Interface (the whats).

4. The objects collecting state needed by the primitives, and the program code for ac-
quiring and using that state. The Behavior Library.
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5. A prioritized list of high-level goals the agent will need to attend to. The Drive
Collection.

And here’s what you need to do to build the agent:

1. Choose a piece of the specification to work on.

2. Code, test and debug plans and behaviors to build that piece.
3. Revise the specification.

4. Gobacktol.

Keep doing this part over and over until your agent does everything you want it to.

2.4.3 The Principle of Iterative Design

One of the most important things about BOD and iterative design in general is realizing
that specifications are made to be changed. You never really understand a problem before
you try to solve it.

Its tempting once you've started working on an agent to try to make your first specifi-
cation work. But this tends to get messy as you tack fixes onto your program — some parts
will get bigger and more complicated, and other parts will stay small and never really get
used or finished. This kind of program gets harder and harder to add to, and also can get
very hard to debug.

The BOD methodology emphasizes that change will keep happening. That’s why you
take the time in the iterative cycle to revise the specification. You want to make sure you are
keeping the agent as simple as possible, and the specification as clear as possible. That’s
part of the job of building an agent.

2.4.4 Revising the Specification

There are some tricks to revising a specification that are specific to the BOD architecture.
In fact, the BOD architecture is designed to help make this process easy. This section
introduces some of the basics; again there will be more detail later (in Chapter 8).

The main design principle of BOD is when in doubt, favor simplicity. All other things
being equal:

e It’s better to use a sequence than to use a BRP.
e It’s better to use a single primitive than to use a sequence.
e It’s better to use control state than variable state in a behavior.

Now, if these are the rules of thumb, the question is, when do you violate them? Here are
the heuristics for knowing when to violate a rule of thumb:

¢ Use a BRP when some elements of your sequence either often have to be repeated,
or often can be skipped.
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e Use a sequence instead of one primitive if you want to reuse part, but not all, of a
primitive in another plan.

e Add variables to a behavior if control state is unnecessarily redundant, or has too
complicated of triggers.

We’ve already talked about the first rule and heuristic in sections 2.3.2 and 2.3.3. The
second heuristic is a basic principle of software engineering: Never code the same thing
twice — Make a generic function instead. There’s a simple reason for this. It’s hard enough
to get code written correctly and fully debugged once. Doing it again is asking for trouble.

The third rule is the principle of reactive intelligence, and the third heuristic helps
explain why you don’t want a fully reactive agent. Sometimes having memory around
makes control so much easier that it’s worth it.

Let’s do another example. Consider the primitive ‘get a banana’, which we used in
plan 2.5. How does the monkey get a banana? Lets suppose we’ve coded the monkey to
go to the kitchen, climb on the counter, and look in the fruit bowl. If there’s a bunch, she
should break one off: if there’s a loose one, she should take it; if there’s none, she should
throw a fit.

Clearly, a good deal of this could be coded either as a plan, or as a behavior. The
principle of BOD is that it should be a behavior, until or unless you (as the programmer)
could be using some of those same pieces again. So, for example, if you next decide you
want your monkey to be able to get you a glass of water, you now have a motivation to
write two plans:

‘get a banana’ = (go to the kitchen — take a banana) 2.7
‘get glass of water’ = (go to the kitchen — pour glass of water) (2.8)

Notice that these plans are now guarded with not a question, but a plan element, a
what. We have changed a particular what (get a banana) from being a simple method on
a behavior to being a sequence. But we don’t need to change our old plan (2.5). We just
update part of the specification.

2.5 Behavior-Oriented Design as an Agent Architecture

The fields of autonomous robots and virtual reality have come to be dominated by ‘hybrid’,
three-layer architectures. (The process of this dominance is documented in Chapter 3.)
Hybrid architectures cross the following:

1. behavior-based Al (BBAI), the decomposition of intelligence into simple, robust,
reliable modules,

2. reactive planning, the ordering of expressed actions via carefully specified program
structures, and

3. (optionally) deliberative planning, which may inform or create reactive plans, or, in
principle, even learn new behaviors.
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BBAI makes engineering easier by exploiting modularity. Reactive planning makes
BBAI easier to engineer by simplifying the arbitration between behaviors. Deliberative
planning 1s generally included to reorganize existing plan elements in the case of ‘unan-
ticipated’” changes in the world. For example a planner might choose an alternative route
through an office complex if a door is found shut.

The best description of three-layered hybrid systems I know is this one:

The three-layer architecture arises from the empirical observation that effec-
tive algorithms for controlling mobile robots tend to fall into three distinct
categories:

1. reactive control algorithms which map sensors directly onto actuators
with little or no internal state;

2. algorithms for governing routine sequences of activity which rely exten-
sively on internal state but perform no search; and

3. time-consuming (relative to the rate of change of the environment) search-
based algorithms such as planners.

[Gat, 1998, p. 209]

Gat’s view of three-layer architectures is particularly close to my own view of agent in-
telligence, because it puts control firmly in the middle, reactive-plan layer. The deliberative
‘layer’ operates when prompted by requests. We differ, however, in that I do not believe
most primitive actions can be defined simply by mapping sensors directly to actuators with
little internal state or consideration for the past.

As I said in Chapter 1, nearly all perception is ambiguous, and requires expectations
rooted in experience to discriminate. This experience may be extremely recent — for
example, a phoneme in speech is much easier to recognize if you remember the phoneme
that immediately preceded it, because speech production is affected by the starting position
of the mouth. Useful experience may also be only fairly recent, for example remembering
where you set down a banana before you answered the phone. Or it may be the result
of life-long learning, such as learning to recognize a face, or learning your way around a
house or a town.

The primitive actions governed by reactive plans may well be dependent on any of this
information. If action is dependent on completely stateless primitive modules, then such
information can only be utilized either by having some ‘higher’ level with state micro-
manage the primitive level (which defeats its purpose) or by using some generic parameter
stream to communicate between layers (which removes specialization). Neither solution is
good. Rather, in BOD I recommend fully embracing modularity. Each ‘primitive act’ is
actually an interface to a semi-autonomous behavior module, which maintains its own state
and possibly performs its own ‘time-consuming’ processes such as memory consolidation
or search in parallel to the main activity of the complete agent. BOD is still reactive,
because at the time of action, the primitive can do a look-up onto its own current state with
minimal computation.

Thus my view of agent control is very similar to Gat’s, except that:
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Figure 2-1: Behavior-oriented systems have multiple, semi-autonomous skill modules or
behaviors (b ...) which generate actions (a; ...) based on their own perception (derived
from sensing indicated by the eye icon on the left). Actions which affect state outside their
generating behavior, whether internal to the agent or external (indicated by the hand icon
on the right), are generally subject to arbitration by an action selection (AS) system.

1. Iincrease the number, importance, specificity and potential simplicity of the modules
composing his top layer. I call this the behavior library.

2. 1replace the notion of a bottom layer with that of an interface between the action-
selection module of an agent and its (other) behavior modules.

In the words of the tutorial, Gat’s high level translates into how, his middle layer trans-
lates into when and his reactive layer is reduced simply to their interface, what. In BOD,
dealing with shut doors is the domain of one particular behavior that knows about maps,
not of a general-purpose reasoning system.

A simple diagram of the BOD architecture can be seen in Figure 2-1. The important
points of this drawing are:

e The behaviors are not controlled by action selection. They are semi-autonomous.
They may act independently to update their own state, or sometimes even to change
the physical world, provided that they are not likely to interfere with other behaviors.

e Action selection itself may be considered just another specialized behavior. The
reactive plans are its specialized representation.

2.6 Conclusions

In this chapter I have introduced the basic elements of behavior-oriented design (BOD).
These are the architectural elements: semi-autonomous behaviors and hierarchical reactive
plans; and the methodological elements: an initial task decomposition, and a procedure of
incremental development.

In the next chapter, I will motivate BOD by looking at evidence from the Al literature
of the utility of certain architectural features. In the chapters that follow, I will go into
considerably more detail on every aspect of BOD. This is in three parts: planning and
reactive plans, behaviors and specialized learning, and the design process itself. There will
also (eventually) be more monkeys.
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Chapter 3

Background: Critical Components of
Agent Architectures

3.1 Introduction

All of the working examples in this dissertation have been implemented using control soft-
ware written by me. However, my thesis claims that the principles of behavior-oriented
design are general, and the contributions broadly applicable. This chapter supports this
claim in two different ways. First, it documents many architectures and several different
paradigms of Al research for agent development. This documentation indicates the general
utility of the features of BOD, which were introduced in the previous chapters. Second, it
uses these principles to make predictions and suggestions for the future directions of these
other architectures and paradigms. Some of these suggestions lead to the work shown in
Chapters 5 and 12, which demonstrate extending existing architectures and projects with
the features of BOD.

This chapter does not attempt a full review of the related architecture literature. Instead,
I concentrate on architectures or architectural traditions that are widely known or used. This
increases the amount of selective pressure on the architectures. Also, the changes that are
made to an architecture over time are particularly telling, so architectures that have a long
and well-documented period of research are particularly interesting.

3.2 Features and Trends in Complete Agent Architectures

3.2.1 Approach

Agent architectures are design methodologies. The assortment of architectures used by the
autonomous agents community reflects our collective knowledge about what methodolog-
ical devices are useful when trying to build an intelligence. I consider this perspective,
derived from Maes [1991a] and Wooldridge and Jennings [1995], to be significantly more
useful than thinking of an architecture as a uniform skeletal structure specified by a par-
ticular program. The definition of an agent architecture as a collection of knowledge and
methods provides a better understanding of how a single architecture can evolve [e.g. Laird
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and Rosenbloom, 1996, Myers, 1996] or two architectures can be combined (cf. Chapter 5).

The design knowledge expressed in agent architectures is of two types: knowledge
derived by reasoning, and knowledge derived by experience. Knowledge derived by rea-
soning is often explicit in the early papers on an architecture: these ideas can be viewed
as hypotheses, and the intelligences implemented under the architecture as their evidence.
Knowledge derived by experience may be more subtle: though sometimes recognized and
reported explicitly, it may be hidden in the skill sets of a group of developers. Worse yet,
it may be buried in an unpublished record of failed projects or missed deadlines. Never-
theless, the premise of this chapter is that facts about building intelligence are likely to be
found in the history and progress of agent architectures. In other words, architectures tend
to include the attributes which have proven useful over time and experience.

Unfortunately, as with most selective processes, it is not always a simple matter to de-
termine for any particular expressed attribute whether it has itself proven useful. A useless
feature may be closely associated with other, very useful attributes, and consequently be
propagated through the community as part of a well-known, or well-established architec-
ture. Similarly, dominating architectures may lack particular useful elements, but still sur-
vive due to a combination of sufficient useful resources and sufficient communal support.
For these reasons alone one cannot expect any particular architecture to serve as an ultimate
authority on design methodology, even if one ignores the arguments of niche specificity for
various architectures. But I do assume that architectural trends can be used as evidence for
the utility of a particular design approach.

Identifying the design advantage behind such trends can be useful, because it allows
the research community to further develop and exploit the new methodology. This is truer
not only within the particular architecture or architectural paradigm in which the trend
emerged, but can also benefit the autonomous control community in general. To the ex-
tent that all architectures face the same problems of supporting the design of intelligence,
any development effort may benefit from emphasizing strategies that have proven useful.
Many architectures have a larger number of features than their communities typically uti-
lize. In other words, many architectures are under-specified as design methodologies. Con-
sequently, even established design efforts may be able to exploit new knowledge of design
strategy without changing their architectural software tools. They may be able to make
simple reorganizations or additions to their established design processes.

In this chapter, I demonstrate this approach for evaluating and enhancing agent architec-
tures. I survey the dominant paradigms of agent architecture technology: behavior-based
design; two- and three-layer architectures; PRS and the belief, desire and intention archi-
tectures; and Soar and ACT-R. I begin by looking at some of the historic concerns about
architectural approach that have shaped and differentiated these communities. I then re-
view each paradigm and the systematic changes which have taken place within it over the
last 15 years. I conclude with a discussion of these architectures in terms of the lessons
derived from that review, making recommendations for the next stages of development for
each paradigm.
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3.2.2 Thesis

To this chapter clearer, I will begin by reiterating the results, which were introduced in
Chapter 1. My analysis indicates that there are several architectural attributes necessary for
producing an agent that is both reactive and capable of complex tasks. One is an explicit
means for ordering action selection, in particular a mechanism exploiting hierarchical and
sequential structuring. Such a system allows an agent with a large skill set to focus at-
tention and select appropriate actions quickly. This has been a contentious issue in agent
architectures, and this controversy is reviewed below. The utility of hierarchical control
has been obscured by the fact it is not itself sufficient. The other necessary components
include a parallel environment monitoring system for agents in dynamic environments, and
modularity, which seems to benefit all architectures.

Modularity substantially simplifies the design process by substantially simplifying the
individual components to be built. In this dissertation, I define modularity to be the de-
composition of an agent’s intelligence, or some part of its intelligence, into a number of
smaller, relatively autonomous units. I do notmean to imply the fully encapsulated modules
of Fodor [1983], where the state and functionality of one module are strictly unavailable
to others. The most useful form of modularity seems to be decomposed along the lines
of ability, with the module formed of the perception and action routines necessary for that
ability, along with their required or associated state.

Fully modular architectures create new design challenges. If sequential and hierarchi-
cal control are avoided, then action selection between the interacting modules becomes
difficult. However, an architecture that does allow a specialized action-selection system to
focus attention appropriately may fail to notice dangers or opportunities that present them-
selves unexpectedly. Agents existing in dynamic environments must have architectural
support for monitoring the environment for significant changes in order for the complete
agent to remain responsive. This environment monitoring may be either a part of the main
action-selection system, or a separate system with priority over ordinary action selection.

3.3 The Traditional Approach

I will now begin my review with a brief review of traditional Al approaches to agent orga-
nization. A traditional architecture for both psychology and artificial intelligence is shown
in Figure 3-1. This architecture indicates that the problems of intelligence are to transform
perception into a useful mental representation R; apply a cognitive process f to R to create
R’, a representation of desired actions; and transform R’ into the necessary motor or neural
effects. This model has lead many intelligence researchers to feel free to concentrate on
only a single aspect of this theory of intelligence, the process between the two transforma-
tions, as this has been considered the key element of intelligence.

This model (in Figure 3-1) may seem sufficiently general as to be both necessarily cor-
rect and uninformative, but in fact it makes a number of assumptions known to be wrong.
First, it assumes that both perception and action can be separated successfully from cogni-
tive process. However, perception is known to be guided by expectations and context —
many perceptual experiences cannot be otherwise explained [e.g. Neely, 1991, McGurk and
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Figure 3-1: A traditional Al architecture [after Russell and Norvig, 1995].

MacDonald, 1976]. Further, brain lesion studies on limb control have shown that many ac-
tions require constant perceptual feedback for control, but do not seem to require cognitive
contribution, even for their initiation [e.g. Matheson, 1997, Bizzi et al., 1995].

A second problem with this architecture as a hypothesis of intelligence is that the sep-
aration of representation from cognitive process is not necessarily coherent. Many neu-
ral theories postulate that an assembly of neurons processes information from perception,
from themselves and from each other [e.g. McClelland and Rumelhart, 1988, Port and van
Gelder, 1995]. This processing continues until a recognized configuration is settled. If
that configuration involves reaching the critical activation to fire motor neurons, then there
might be only one process running between the perception and the activity. If the levels
of activation of the various neurons are taken as a representation, then the process is itself
a continuous chain of re-representation. Notice that the concept of a “stopping point” in
cognition is artificial — the provision of perceptual information and the processing activity
itself is actually continuous for any dynamic agent. The activations of the motor system are
incidental, not consummatory.

3.4 Behavior-Based Architectures

3.4.1 The Society of Mind

Though traceable in philosophy at least as far back as Hume [1748], and in psychology
as far back as Freud [1900], the notion of decomposing intelligence into semi-autonomous
independent agencies was first popularized in AI by Minsky [1985]. Minsky’s model pro-
motes the idea of multiple agencies specialized for particular tasks and containing special-
ized knowledge. Minsky proposes that the control of such units would be easier to evolve
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as a species or learn as an individual than a single monolithic system. He also argues that
such a model better describes the diversity and inconsistency of human behavior.

Minsky’s “agents of mind” are hierarchical and only semi-autonomous. For example,
he postulates, a child might have separate agencies for directing behavior involving sleep-
ing, eating and playing. These compete for control. When a victorious agent emerges, its
subsidiary agencies in turn compete. Once playing is chosen, blocks compete with dolls
and books; if blocks are chosen, building and knocking down compete during the block-
playing episode. Meanwhile, the agency in charge of eating may overwhelm the agency
in charge of playing, and coherent behavior may be interrupted in mid-stride as different
agencies swap to take control.

The cost of theories that successfully explain the incoherence of human thought and
activity is that they often fail to explain its coherence. Minsky addresses this by postulating
a modular rather than a completely distributed system of thought. He explains coherent
behavior as being the output of a single agency or suite of agents, and incoherence as a
consequence of competing agencies. He also recognizes that there can be coherent transi-
tions between apparently modular behaviors. To address this, he postulates another type of
structure, the k-line. K-lines connect modules associated in time, space, or as parts of the
same entity. He also posits fairly traditional elements of knowledge representation, frames
and knowledge hierarchies, for maintaining databases of knowledge used by the various
agents.

3.4.2 Subsumption Architecture

Brooks [1986] took modularity to a greater extreme when he established the behavior-
based movement in Al. In Brooks’ model, subsumption architecture, each module must be
computationally simple and independent. These modules, now referred to as “behaviors,”
were originally to consist only of finite state machines. That is, there are an explicit number
of states the behavior can be in, each with a characteristic, predefined output. A finite state
machine also completely specifies which new states can be reached from any given state,
with transitions dependent on the input to the machine.

Brooks’ intent in constraining all intelligence to finite state machines was not only to
simplify the engineering of the behaviors, but also to force the intelligence to be reactive.
A fully reactive agent has several advantages. Because its behavior is linked directly to
sensing, it is able to respond quickly to new circumstances or changes in the environment.
This in turn allows it to be opportunistic. Where a conventional planner might continue to
execute a plan oblivious to the fact that the plan’s goal (presumably the agent’s intention)
had either been fulfilled or rendered impossible by other events, an opportunistic agent
notices when it has an opportunity to fulfill any of its goals and exploits that opportunity.

Two traits make the robots built under subsumption architecture highly reactive. First,
each individual behavior can exploit opportunities or avoid dangers as they arise. This is
a consequence of each behavior having its own sensing and running continuously (in par-
allel) with every other behavior. Second, no behavior executes as a result of out-of-date
information. This is because no information is stored — all information is a reflection of
the current environment. Although useful for the reasons expressed, these traits also create
problems for designing agents capable of complex behavior. To begin with, if there are
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two behaviors pursuing different goals, then it might be impossible for both to be oppor-
tunistic simultaneously. Consequently, any agent sophisticated enough to have potentially
conflicting goals (such as “eat” and “escape danger”’) must also have some form of behavior
arbitration.

Subsumption architecture provides behavior arbitration through several mechanisms.
First, behaviors are organized into layers, each of which pursues a single goal, e.g. walking.
Behaviors within the same goal are assumed not to contradict each other. Higher layers
are added to lower layers with the capability observe their input and suppress and even
replace individual behaviors’ output if necessary. These actions occur on communications
channels between the behaviors (wires, originally in the literal sense), not in the behaviors
themselves. All such interference is designed as part of the layer; it does not affect the
inner workings of a behavior, only the expressed consequences of those workings.

After experimentation, a third mechanism of behavior selection was introduced into
subsumption architecture. The description of a behavior was changed from “a finite state
machine” to “a finite state machine augmented by a timer.” This timer can be set by external
behaviors, with the result being that the behavior is deactivated until the timer runs out.
The timer mechanism was added to subsumption architecture because of a problem found
during the development of Herbert, the can-retrieving robot [Connell, 1990]. When Herbert
had found a can and began to pick it up, its arm blocked its camera, making it impossible
for the robot to see the can. This would allow the robot’s “search” behavior to dominate its
“pick up can” behavior, and the can could never be successfully retrieved. With the timer,
the “pick up can” behavior was able to effectively pause all the other behaviors while it
monopolized action selection for a moment.

3.4.3 Diversification in Behavior-Based Al

The use of the reactive and/or behavior-based approach is still widespread, particularly in
academic robotics and character-based virtual reality. However, no single architecture is
used by even ten percent of these researchers. Subsumption architecture, described above,
is by far the best known of the architectures, but relatively few agents have been built
that adhere to it strictly. For example, Matari¢ [1990], Bryson [1992] and Pebody [1995]
all include adaptive extensions; Appleby and Steward [1994] make the behaviors nearly
completely independent — they would now be called agents. Most roboticists, even within
Brooks’ own laboratory, seem to have been more inspired to develop their own architecture,
or to develop code without a completely specified architecture, than to attend to the details
of subsumption [e.g. Horswill, 1993, Steels, 1994a, Marjanovic et al., 1996, Parker, 1998,
Tu, 1999, Stone and Veloso, 1999]. Steels [1994b] goes so far as to claim that behaviors
should be built so as to require neither action selection nor subsumption, but simply to run
continuously in parallel with each other!.

Of the many behavior-based architectures inspired by subsumption, the one that in turn

1T have been told that this strategy was abandoned for engineering reasons, although it was feasible and
still considered in the lab to be a valid hypothesis for biological intelligence. It tends to require each behavior
to model all of the others to a sufficient extent that they do not interfere with each other. Such modeling was
too much overhead for the programmers and was abandoned in favor of inter-behavior communication.
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attracted the most attention has been Maes’ spreading activation network [Maes, 1991a].
Maes’ architecture consists of a number of nodes, including action nodes, perception nodes,
and goal nodes. The nodes are connected to one another by a two-way system of links. One
link specifies the extent to which the second node requires the first node to have executed,
the other specifies the extent to which the first node enables the second node to fire. These
conduits are used to allow activation to spread both bottom-up, starting from the perception
nodes, and top-down, starting from the goal nodes. When a single node gets sufficient
activation (over a threshold) that node is executed.

Maes’ greatest explicit hypothetical difference from subsumption architecture is her
belief that agents must have multiple, manipulable goals [see Maes, 1990b]. Maes’ claim in
that paper that subsumption architecture only allows the encoding of a single goal per agent
is mistaken; however the strictly stacked goal structure of subsumption is sufficiently rigid
that her arguments are still valid. A more implicit hypothesis is the need for a way to specify
sequential behaviors, which her weighting of connections allows. On the other hand, Maes
is very explicitly opposed to the notion of hierarchical behavior control [Maes, 1991b].
Maes states that using hierarchical methods for behavior arbitration creates a bottleneck
that necessarily makes such a system incapable of being sufficiently reactive to control
agents in a dynamic environment.

This hypothesis was disputed by Tyrrell [1993], who showed several flaws in Maes
approach, most notably that it is insufficiently directed, or in other words, does not ade-
quately focus attention. There appears to be no means to set the weights between behaviors
in such a way that nodes composing a particular “plan of action” or behavior sequence are
very likely to chain in order. Unrelated behaviors may alternate firing, creating a situation
known as “dithering”. There is actually a bias against a consummatory or goal behavior
being performed rather than one of its preceding nodes, even if it has been enabled, be-
cause the goal, being in a terminating position, is typically connected to fewer sources of
activation.

Tyrrell’s competing hypothesis is that hierarchy can be exploited in action selection,
providing that all behaviors are allowed to be fully active in parallel, and that the final de-
cision is made by combining their computation. Tyrrell refers to this strategy as a free-flow
hierarchy and attributes it to Rosenblatt and Payton [1989]. Tyrrell [1993] gives evidence
for his hypothesis by comparing Maes’ architecture directly against several hierarchical
ones, of both free-flow and and traditional hierarchies, in a purpose-built artificial life en-
vironment. In Tyrrell’s test world, a small animal needs to balance a large number of often
conflicting goals of very different types. For example, it must eat, maintain body tem-
perature, sleep in its home at night, avoid two different types of predators, and mate as
frequently as possible. Simulations cover up to 10 days of life and involve thousands of
dectsion cycles per day. Using extensive experimentation, Tyrrell demonstrates substantial
advantage for all of the hierarchical architectures he modeled over Maes’ approach.

Tyrrell also shows statistically significant superiority of the free-flow hierarchy over its
nearest strictly-hierarchical competitor, which was in fact the most simple one, a drive-
based model of control. He claims that a free-flow hierarchy must be an optimal action
selection mechanism, because it is able to take into account the needs of all behaviors.
These sorts of cooperative rules have been further refined. For example, Humphrys [1997]
suggests choosing a course that minimizes the maximum unhappiness or disapproval of the
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elements tends to lead to the optimal solutions. Such thoroughly distributed approaches
have been challenged by my work. Bryson [2000a] suggests that simplicity in finding
an optimal design, whether by a programmer or by a learning process such as evolution,
outweighs the advantage of cooperative negotiation. My action-selection system uses a
hierarchical controller where only a small subset of nodes, corresponding in number to the
elements in the top layer in the hierarchy, actively vie for control of the agent. Further,
these nodes do not compete on the basis of relative activation levels, but are activated by
threshold and strictly prioritized. Thus on any particular cycle, the highest priority node
that has threshold activation takes control. Within the winner’s branch of the hierarchy,
further competitions then take place. This is very similar to a traditional hierarchy, ex-
cepting parallel roots and some other details of execution, yet Bryson [2000a] shows a
statistically significant improvement over the Tyrrell [1993] results using the same system
for evaluation.

Blumberg [1996] presents another architecture which takes considerable inspiration
from both Maes and Tyrrell, but also extends the control trend further towards conven-
tional hierarchy. Blumberg’s system, like Tyrrell’s, organizes behaviors into a hierarchy
while allowing them to be activated in parallel. However, in Blumberg’s system the highest
activated module wins and locks any critical resources it requires, such as legs if the mod-
ule regulates walking. Nodes that are also active but do not require locked resources are
allowed to express themselves. Thus a dog can both walk and wag its tail at the same time
for two different reasons. The hierarchy is also exploited to focus attention in the voting
system. Not every behavior participates in the vote, a fact that was initially minimalized
[Blumberg, 1996], but more recently has become a stated feature of the system [Kline and
Blumberg, 1999]. Blumberg’s architecture is being used by his own and other research
groups (including Brooks’ [Breazeal and Scassellati, 1999b]) as well as a major commer-
cial animation corporation, so its future development should be of significant interest.

Summary

All behavior-based systems are modular; the modular design strategy to a large part defines
the paradigm. Most behavior-based systems rely on their modularity as their source of re-
activeness — any particular behavior may express itself opportunistically or when needed.
This has, however, lead to difficulties in action selection that seem to have limited the com-
plexity of the tasks addressed by these systems. Action selection mechanisms vary widely
between individual architectures, indicating that the field has not settled on a stable solu-
tion. However, several architectures are now incorporating hierarchical and or sequential
elements.

3.5 Multi-Layered Architectures

The achievements of behavior-based and reactive Al researchers have been very influential
outside of their own communities. In fact, there is an almost universal acceptance that at
least some amount of intelligence is best modeled in these terms, though relatively few
would agree that all cognition can be described this way. Many researchers have attempted
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to establish a hybrid strategy, where a behavior-based system is designed to work with
a traditional Al planner, which deduces the next action by searching a knowledge base
for an act that will bring it closer to a goal. Traditionally, planners have micro-managed,
scripting every individual motion. By making their elements semi-autonomous behaviors
which will react or adapt to limited uncertainty, the planners themselves can be simplified.
The following is a recent account of a project from the late 1980s:

The behavior-based plan execution was implemented bottom up to have as
much useful capability as possible, where a useful capability is one which
looked like it would simplify the design of the planner. Similarly, the plan-
ner was designed top down towards this interface, clarifying the nature of use-
ful capabilities at which the behavior-based system should aim. This design
method greatly reduced the complexity of the planner, increasing the complex-
ity of the agent much less than this reduction, and thus reduced the overall
system complexity. It also produced a robust system, capable of executing
novel plans reliably despite... uncertainty.

[Malcolm, 1997, Section 3.1]

Malcolm’s system can be seen as a two-layer system: a behavior-based foundation
controlled by a planning system. More popular of late have been three-layer systems, as
introduced in Section 2.5 above. Two- and three-layer systems are similar, except that
there is a middle layer that consists of precoded plan fragments, sometimes referred to
as “implicit knowledge”, in contrast to the “explicit” reasoning by the top-level planner.
Another distinction is that the middle layer is often considered reactive, in that it does not
create plans, but selects them based on the situation; while the top layer is a traditional
constructive planner. In most systems, the top-layer planner manipulates or generates this
intermediate representation level rather than acting directly on the behavior primitives.

One currently successful layered robot architecture is 3T [Bonasso et al., 1997], which
features Reactive Action Packages (RAPs) [Firby, 1987], for its middle layer. RAPs is a
system for creating reactive, flexible, situation-driven plans, and itself uses a lower layer of
behavior primitives. 3T integrates this system with a constructive planner. 3T has been used
on numerous robots, from academic mobile robots, to robotic arms used for manipulating
hazardous substances, previously controlled by teleoperation, to maintenance robots for
NASA'’s planned space station. Leon et al. [1997] uses 3T in simulation to run an entire
space station, including farming and environmental maintenance. Hexmoor et al. [1997]
and Kortenkamp et al. [1998] provide fairly recent reviews of many two- and three-layer
architectures.

3T may seem a more likely tool for modeling of human-like intelligence than the
behavior-based models discussed earlier, in that it has something approximating logical
competence. However, planning has been mathematically proven an unrealistic model of
intelligence because it relies on search [Chapman, 1987]. Search is combinatorially ex-
plosive: more behaviors or a more complex task leads to an exponentially more difficult
search. Though there is no doubt that animals do search in certain contexts (e.g. seek-
ing food, or for a human, choosing a gift), the search space must be tightly confined for
the strategy to be successful. A better model of this sort of process is ATLANTIS [Gat,

45



1991], which is controlled by its middle layer, and only operates its top, planning layer on
demand. This model is in fact quite similar to the Norman and Shallice [1986] model of
human action selection, where conscious control is essentially interrupt driven, triggered
by particularly difficult or dangerous situations. Although the alternative model, with the
top level being the main controller, is more typical [Bonasso et al., 1997, Albus, 1997,
Hexmoor et al., 1997, Malcolm, 1997], Gat’s model would also seem a more natural exten-
sion of the behavior-based approach. It is also notable that Bonasso et al. [1997] report a
number of 3T projects completed using only the lower two layers.

Another incompatibility between at least early behavior-based work and the layered
system approach is the behavior-based systems’ emphasis on emergence. For a hybrid sys-
tem, emergent behavior is useless [Malcolm, 1997]. This is because an emergent behavior
definitionally has no name or “handle” within the system; consequently the planning layer
cannot use it. In humans at least, acquired skills can be recognized and deliberately rede-
ployed [Karmiloff-Smith, 1992]. Hexmoor [1995] attempts to model both the development
of a skill (an element of the middle layer) from actions performed deliberately (planned
by the top layer) and the acquisition of deliberate control of skills. His hypothesis of re-
quiring both these forms of learning are probably valid, but his actual representations and
mechanisms are still relatively unproven. Another group researching the issue of learning
behaviors and assigning their levels is that of Stone and Veloso [1999]. Veloso’s group has
had a series of highly successful entrants into various leagues of robot soccer; their archi-
tecture is thus also under strenuous selective pressure. It also seems to be converging to
modularity in the areas which are most specialized, such as communication and learning,
while having a directed, acyclic graph (DAG) for general action selection over preset plans.

Summary

Two- and three-layer architectures succeed at complex tasks in real environments. They
generally have simplified behavior modules as their first (lowest) layer, and reactive plans
in their second layer. The plan layers are carefully organized in order to maintain reactiv-
ity, although some architectures rely on the bottom-level behaviors for this function, and
others do not operate in dynamic environments. Modularity has generally been limited to
the lower level, though in some architectures the top-level planner can also be seen as a
specialized module. Current research indicates there are still open questions concerning
the optimal kind of planning for the top layer, and how to manipulate and shift information
between representations, particularly learned skills.

3.6 PRS — Beliefs, Desires and Intentions

Although robotics has been dominated by three-layer architectures of late, the field of au-
tonomous agents is dominated, if by any single architecture, by the Procedural Reasoning
System, or PRS [Georgeff and Lansky, 1987, d’Inverno et al., 1997]. PRS also began as a
robot architecture, but has proven sufficiently reliable to be used extensively for tasks such
as defense simulations. It was originally developed at roughly the same time as subsump-
tion architecture, as a part of a follow-up program to the longest running robot experiment
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ever, Shakey [Nilsson, 1984]. PRS is designed to fix problems with traditional planning
architectures exposed by the Shakey project. Such problems include:

o Constructing a complete plan before beginning action. This is a necessary part of
the search process underlying constructive planning — a planner cannot determine
whether a plan is viable before it is complete. Many plans are in fact formed back-
wards: first selecting the last action needed to reach the goal, then the second last and
so on. However, besides the issues of opportunism already discussed, many details
of a real problem cannot be known until the plan is executed. For example, when
crossing a room full of people, the locations of the people are not determined until
the time of the actual crossing.

¢ Taking too long to create a plan, thereby ignoring the demands of the moment. The
standard example is trying to cross a road — a robot will not have time to replan if it
suddenly spots a car; it needs to reactively move out of the way.

¢ Being unable to create plans that contain elements other than primitive acts — to take
advantage of skills or learned procedures.

¢ Being unable to manipulate plans and goals. Plans may need to be abandoned, or
multiple goals pursued simultaneously.

Obviously, this list is very similar to the problems the behavior-based programmers at-
tempted to solve. There are, however, two main differences in approach. First, PRS, like
the layered architectures, maintains as a priority the ability to construct plans of action.
The architecture allows for incorporating specialized planners or problem solvers. The
second difference is that PRS development is couched very much in psychological terms,
the opposite of Brooks’ deprecation of conscious impact on intelligent processes. PRS is
referred to as a BDI architecture, because it is built around the concepts of beliefs, desires
and intentions.

Many researchers appreciate the belief, desires and intentions approach in concept,
without embracing PRS itself. For example, Sloman and Logan [1998] consider the notions
of belief, desire, intention and emotion as central to an agent, but propose expressing them
in a three-layer architecture. Sloman’s top layer is reflective, the middle deliberative, and
the bottom layer reactive. This is similar to Malcolm [1997] or the first and third layers of
3T [Bonasso et al., 1997], but with an additional layer dedicated to manipulating the goals
of Malcolm or Bonasso’s top layers, and considering its own current effectiveness. This
particular role assignment for the layers of a three-layer architecture is also proposed in
Figure 3-2, below.

The PRS architecture consists of four main components connected by an interpreter
(sometimes called the “reasoner”) that drives the processes of sensing, acting, and rational-
ity. The first component is a database of beliefs. This is knowledge of the outside world
from sensors, of the agent’s own internal states, and possibly knowledge introduced by
outside operators. It also includes memories built from previous knowledge. The second
component is a set of desires, or goals. These take the form of behaviors the system might
execute, rather than descriptions of external world state as are often found in traditional
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planners. The third PRS component is a set of plans, also known as knowledge areas. Each
plan is not necessarily completely specified, but is more likely to be a list of subgoals useful
towards achieving a particular end, somewhat like BOD’s POSH action selection. These
may include means by which to manipulate the database (beliefs) to construct a next action
or some new knowledge. The final main component is a stack of intentions. Intentions are
simply the set of plans currently operating. A stack indicates that only one plan is actually
driving the command system at a time, but multiple plans may be on the stack. Typically,
ordering of the stack is only changed if one plan is interrupted, but new information may
trigger a reorganization.

Like multi-layer architectures, PRS works from the hypothesis that a system needs
both the ability to plan in some situations, such as navigation, and the ability to execute
skilled acts for situations where search is not reasonable, such as avoiding trucks. In some
sense, each plan is like a behavior in behavior-based Al. Behavior-based Al is essentially
a retreat to allowing programmers to solve in advance the hard and important problems an
agent is going to face. A procedure to solve an individual problem is usually relatively
easy to design. Thus some modularity can be found in the design of the knowledge areas
that make up the plan library. On the other hand, PRS does not see specialized state and
representations dedicated to particular processes as worth the tradeoff from having access
to general information. It has moved the procedural element of traditional planners closer
to a behavior-based ideal, but not the state. It only allows for specialized or modularized
data by tagging. The interpreter, goal list and intention stack are the action-selection device
of PRS.

PRS and its variants exist both as a planning engine and as a set of development tools.
They are used by industry and the US government as well as for research. PRS has gone
through a number of revisions; in fact the original project seems to be dying. One large
change in the basic structure of the original PRS was the adoption of the ACT formalism for
its plan libraries, which can also be used by a conventional constructive planner [Wilkins
et al., 1995]. This move can be seen as a part of a general trend in current PRS research to
attempt to make the system easier to use — the idea of a planner is to allow plan libraries
to be generated automatically. There is also a “PRS-lite” [Myers, 1996] which uses easily
combinable “fuzzy behaviors”. A number of labs have worked on formalizing PRS plans
in order to make its planning provably correct [e.g d’Inverno et al., 1997]. However, these
efforts had difficulty with the reactive element of the architecture, the meta-reasoning. The
original development lab for PRS, SRI, is now focusing effort on a much more modularized
Al architecture, built under a multi-agent paradigm [Wilkins and Myers, 1998]. Some PRS
systems that are still in active use are derived from UM-PRS [e.g Huber, 1999]. One
modification these systems have made is providing for the prioritization of the reactive
plans in order to simplify meta-reasoning.

The pre-history of PRS, the Shakey project, also has relevant evolutionary trends [Nils-
son, 1984]. Although Shakey had a traditional planner (called STRIPS), over the term of
the project the concept of triangle tables was developed. A triangle table decomposes a
plan into its steps and assumptions, then creates a contingency table allowing the plan to be
restarted from any point. Perception is then used to determine which element of the plan
should be executed next. This allows action selection to be reactive within the confines of
the plan, rather than relying on memory of what steps should have already been executed.
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This approach leads naturally into teleo-reactive plans [Nilsson, 1994}, another recently
developed form of storage for skilled behaviors developed by planners. Benson [1996] de-
scribes using this as the basis of a system that learns to fly airplanes in flight simulators,
and the architecture is being used at a number of research laboratories.

The Shakey project also moved from having multiple world models in its first imple-
mentation to having a single storage place for predicates of observed data. Any predicate
used to form a new plan was rechecked by observation. This development under the selec-
tive pressure of experimentation lends credence to the mandate of reactive Al to simplify
stored models.

Summary

PRS and its related BDI architectures have been much more popular than behavior-based
systems in some academic settings. This may be because they are easier to program. They
provide significant support for developing the action-selection mechanism, a hierarchical
library of plans, and a separate, specialized mechanism for reprioritizing the agent’s atten-
tion in response to the environment. Particularly when taken over their long-term history,
however, these architectures have converged on some of the same important principles such
as simplified representations (though not specialized ones) and modularization (at least in
the plan libraries.) Current research trends indicate that designing the agent is still a critical
problem (see further Chapter 5).

3.7 Soar and ACT-R

Soar [Newell, 1990] and ACT-R [Anderson, 1993] are the Al architectures currently used
by the largest number of researchers, not only in Al, but also in psychology and particularly
cognitive science. Soar is the most ‘cognitive’ architecture typically used in U.S. Depart-
ment of Defense simulations, though even so it is not used extensively due to its high
computational overhead. These architectures are fundamentally different from the previ-
ously reviewed architectures. Both are also older, dating to the late 1970s and early 1980s
for their original versions, but both are still in active development [Laird and Rosenbloom,
1996, Anderson and Matessa, 1998]. The Soar community in particular has responded to
the behavior-based revolution, both by participating directly in competitions with the ap-
proach [Kitano et al., 1997] and even by portraying their architecture in three layers (see
Figure 3-2).

Soar and ACT-R both characterize all knowledge as coming in two types: data or pro-
cedures. Both characterize data in traditional computer science ways as labeled fields and
procedures in the form of production rules.

Soar is a system that learns to solve problems. The normal procedure is to match its
production rules against the current state of the world, find one that is applicable, and apply
it. This is automatic, roughly equivalent to the middle or bottom layer of a three-layer
architecture. If more than one production might work, or no production will fire, or nothing
has changed since the previous application of a production, then Soar considers itself to be
atan impasse. When Soar encounters an impasse, it enters a new problem space of trying to
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Figure 3-2: Soar as a three-layer architecture) [after Laird and Rosenbloom, 1996].

solve the impasse rather than the current goal. The new problem space may use any means
available to it to solve the problem, including planning-like searches. Soar has several
built-in general purpose problem solving approaches, and uses the most powerful approach
possible given the current amount of information. This process is thus something like the
way ATLANTIS [Gat, 1991] invokes its top level. Soar, however, allows the process to
recurse, so the meta-reasoner can itself hit an impasse and another new reasoning process
is begun.

Soar includes built-in learning, but only of one type of information. When an impasse
is resolved, the original situation is taken as a precondition and the solution as a procedure,
and a new rule is created that takes priority over any other possible solution if the situation
is met again. This is something like creating automatic skills out of declarative procedures,
except that it happens quickly, on only one exemplar. This learning system can be cumber-
some, as it can add new rules at a very high rate, and the speed of the system is inversely
related to the number of rules.

Soar addresses the combinatorics of many productions in two ways. First, Soar has the
concept of a problem space, a discrete set of productions involved in solving a particular
goal or working in a particular context. This makes the system roughly hierarchical even
in its non-impasse-solving mode. Soar also has carefully crafted optimizations, such as
the RETE algorithm [Forgy, 1982] for optimizing production firing. Nevertheless, many
industrial users of the system choose not to exploit the learning built into Soar.

ACT-R is essentially simpler than Soar: it does not have the impasse mechanism nor
does it learn new skills in the same way. Nevertheless, ACT-R is used extensively for
cognitive modeling, and has been used to replicate many psychological studies in decision
making and categorization [Anderson, 1993]. ACT-R also faces the difficulty of combina-
torics, but it takes a significantly different approach: it attempts to mimic human memory
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by modeling the probability that a particular rule or data is recalled. Besides the two sets
of “symbolic” knowledge it shares with Soar, ACT-R keeps Bayesian statistical records of
the contexts in which information is found, its frequency, recency and utility [Anderson
and Matessa, 1998]. It uses this information to weight which productions are likely to fire.
It also has a noise factor included in this statistical, “sub-symbolic” system, which can re-
sult in less-likely alternatives being chosen occasionally, giving a better replication of the
unpredictability of human behavior. Using alternatives is useful for exploring and learning
new strategies, though it will often result in suboptimal performance as most experiments
prove to be less useful than the best currently-known strategy.

Soar, like PRS, is used on an industrial level. However, the fact that it is losing popular-
ity within the cognitive science research community to ACT-R is attributed by researchers
largely to the the fact that ACT-R is significantly easier to work with. This is largely be-
cause Soar was designed primarily to learn — researchers compared programming Soar to
teaching by brain surgery. One simplification made in ACT-R proved to be too extreme.
Originally it did not have problem spaces, but over the course of research it was found
that hierarchical focusing of attention was necessary to doing anything nearly as complex
as modeling human mathematical competences, the primary goal of ACT-R’s development
team [Anderson, 1993]. ACT-R does not seem to be used in industrial or real-time situa-
tions.

Soar has also evolved significantly [Laird and Rosenbloom, 1996]. In particular, when
moving to solve problems in a dynamic, real-world domain, it was found to be critical
to allow programmers to specify chains or sequences of events explicitly, rather than in
terms of simple productions (see further Section 2.3.2). The encoding of time and duration
was another major challenge that had to be overcome when Soar moved into robotics —
a problem that also needed to be addressed in early versions of PRS and RAP, the middle
layer of 3T [Myers, 1996]. ACT-R has not yet been adapted to the problems of operating
in a dynamic world: representing noisy and contradictory data, and reasoning about events
over time.

Summary

Despite coming from significantly different paradigms and research communities, the long
and well-documented histories of Soar and ACT-R exhibit many of the same trends as the
other paradigms previously examined. Since both systems at least simulate extreme dis-
tribution, (their control is based almost entirely on production rules) they are necessarily
very reactive. In fact, Soar had to compromise this feature to be able to provide real-time
control. Modularity of control if not data is provided in problem spaces, which can be
hierarchical, and Soar now provides for explicit sequential action selection. Soar’s generic
representations were also found to be not entirely satisfactory. There has been forced spe-
cialization of procedure types due to the new benchmark tasks of the 1990’s, particularly
mobile robotics. Soar still suffers from an extreme overhead in programming difficulty, but
is also still in widespread use. ACT-R exploits a niche in the research community as a sim-
pler though similar form of learning system, and has been further specialized to improve
its ability to model human cognition.
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3.8 Discussion and Recommendations

There have been complaints within the autonomous control community about the over-
generation of architectures: what is wanted by users are improvements on systems with
which they are already familiar, rather than a continuous diversification. This argument
contains some truth. However, it overlooks the perspective stated in the introduction: an
agent architecture is a design methodology, and a design methodology is not simply a piece
of software. Although some architectural features will conflict, in many cases there is no
reason architectures cannot be combined, or one architecture implemented within another.
I discuss and demonstrate this in Chapter 5.

Behavior-based architectures began with many of the advantages of modularity and re-
active systems, but development of complex control software in them has been hampered
by the lack of specific control architectures for supporting hierarchical and sequential or-
dering of action selection. This is largely due to theoretical opposition: Is a system truly
autonomous if it is forced to carry out a plan? Is centralized control biologically plausible?
The answer to both of these questions is almost certainly “yes”; see for example Barber
and Martin [1999] and Bryson [2000b] respectively for some discussion. Regardless, it can
be observed empirically that all autonomous agents do still have and require action selec-
tion mechanisms. In behavior-based systems, these systems are often distributed across the
behaviors. This may lead to some improvement of robustness, but at a considerable cost in
programmability and ease of debugging.

The shift to layered architectures may therefore seem a natural progression for behavior-
based Al but I have some reservations about this model. Many of the systems have the
deliberate or constructive planner in ultimate control, which may be intuitive but has not
yet been demonstrated to be desirable. The frequent lack of such a layer within this re-
search tradition, and the success of PRS and Soar with something more like a middle layer
in primary control of action selection, are good indications that primary action selection
should probably emphasize reactive planning rather than deliberation.

A further concemn is that layered systems, and indeed some of the more recent behavior-
based systems such as HAP [Bates et al., 1992, Reilly, 1996] or the free-flow hierarchy
architectures reviewed above, have denigrated the concept of a “behavior” to a mere pro-
gramming language primitive, thus losing much of the advantage of modularity. Blumberg
[1996] addressed this by creating “clusters of behaviors”. I believe that these clusters are
at the more appropriate level for a behavior.

Behaviors were originally designed as essentially autonomous entities that closely cou-
ple perception and action to achieve a particular competence. Unfortunately, they were also
conceived as finite state machines, with no internal variable state. In nature, perception is
universally accompanied by memory and learning: much of development in mammals is
dedicated to learning to categorize and discriminate. This is why I believe that behaviors
should also contain state appropriate to their competence, and further that this state and
learning should be at the center of behavior decomposition, much as it is at the center of
modern object decomposition in object-oriented design.

My primary suggestion for behavior-based Al is further attention to easing the design of
action selection. I also suggest experimenting with limited functional modules for abilities
such as operating sequential plans and smoothing motor output. This development would
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be parallel to the nearly universal, though still reductionist, use of state in this paradigm.
My recommendation for three-layered architectures is that they look for ways to increase
support of modularity in their systems, and that they follow the lead of ATLANTIS for
focusing action-selection control in the middle layer. It is still not clear whether it is a better
idea for a system to separate action selection from goal manipulation, as Soar and PRS do,
rather than using one system for both, as do 3T and most behavior-based architectures.
BOD is an example of the latter approach.

PRS is in some ways similar to a three-layer architecture with the emphasis on the mid-
dle layer — the building of the plan library. In particular, the software version of PRS
distributed by SRI has a fairly impressive GUI for supporting the editing and debugging of
this level of intelligence. As might be gathered from the discussion of three-layer architec-
tures above, I consider this type of support very useful.

Unfortunately, PRS still leaves two important levels of abstraction largely unsupported
and difficult to manage. The construction of primitives is left to the user, to be done in the
language of the PRS implementation; in the case of SRI’s implementation, this is a reduced
set of common lisp. My suggestions for behavior-based and three-layer architectures ap-
plies equally here: primitives should be ordered modularly. They can in fact be built from
methods on objects with proprietary state, not shared by the PRS database system. I rec-
ognize that this might offend PRS purists, particularly because it might have consequences
for the theoretical work on proving program correctness that relies on the database. Never-
theless, I stand by my claim that state is a part of perception. Having some state proprietary
to a module should be no more difficult than having an external sensor proprietary to a
primitive function; in fact it is exactly equivalent.

The other design level that is surprisingly neglected is the hierarchical organization and
prioritization of the various elements of the plan library. Although it is possible to organize
plans in the file space (a collection of plans may be saved in a single file) and in lisp by
placing them in packages, there is no GUI tool that allows for viewing more than one plan
at a time. There is no tool for ordering plans within clusters or agents. Consequently, there
is no visual idiom for prioritizing plans that might otherwise be simultaneously able to
fire. Prioritization must be handled in poorly documented lisp code that is triggered during
the meta-rule section of the main processing cycle. Providing a tool to address this would
make it far simpler to program a reactive plan structure like the BRP (see Section 2.3.3 and
Chapter 5).

PRS-lite actually addresses both of these complaints, though not in the manner recom-
mended above. It supports “fuzzy” behaviors as primitives, which have their own design
methodology, and it attempts to eliminate the need for meta-reasoning or prioritization by a
combination of simplifying the task and increasing the power of the goal descriptions [My-
ers, 1996]. Whether these solutions prove adequate, the fact that these areas are a focus of
change indicates agreement on the areas of difficulty in using PRS.

Of the paradigms reviewed, I have the least personal experience with Soar and ACT-R,
having only experienced them through tutorials and the anecdotes of programmers. Given
their very different background and structure, they appear to have remarkably similar de-
sign issues to those experienced under the early behavior-based architectures. This is per-
haps unsurprising since both systems are thoroughly distributed. The parallel between the
story of the augmenting of subsumption architecture recounted above and the story of the
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augmentation of Soar with time and sequencing in order to facilitate robot control recounted
in Laird and Rosenbloom [1996] is also striking. My suggestions for improving Soar are
consequently essentially my recommendations for agent architectures in general: to focus
on making agents easier to design via enhancing the ease of use of modular decomposition
and pre-programmed action selection, while still maintaining Soar’s provision for reactivity
and opportunism.

3.9 Conclusions

Every autonomous agent architecture seems to need:

¢ A modular structure and approach for developing the agent’s basic behaviors, includ-
ing perception, action and learning.

¢ A means to easily engineer individual competences for complex tasks. This evidently
requires a means to order action selection in both sequential and hierarchical terms,
using both situation-based triggers and agent-based priorities derived from the task
structure.

¢ A mechanism for reacting quickly to changes in the environment. This generally
takes the form of a system operating in parallel to the action selection, which moni-
tors the environment for salient features or events.

In addition to the technical requirements just listed, the central theme of this chapter is
that agent architectures are first and foremost design methodologies. The advantages of one
strategy over another are largely a consequence of how effectively programmers working
within the approach can specify and develop the behavior of the agent they are attempting to
build. This stance is not necessarily antithetical to concerns such as biological plausibility
or machine learning: natural evolution and automatic learning mechanisms both face the
same problems of managing complexity as human designers. The sorts of bias that help
a designer may also help these other processes. Similarly, where it is understood, natural
intelligence serves as a knowledge source just as well as any other successful agent. This
will be discussed further in Chapter 11. The next several chapters will explain how BOD
provides for these characteristics, beginning with structured action selection.
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Chapter 4

Parallel-rooted, Ordered, Slip-stack
Hierarchical (POSH) Reactive Plans

4.1 Introduction

Behavior-oriented design consists of three equally important elements:
e an iterative design process,
e parallel, modular behaviors, which determine how an agent behaves, and
e action selection, which determines when a behavior is expressed.

This chapter describes in detail the Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH)
reactive plans that underlie the action selection for BOD agents. This chapter describes
how to implement POSH action selection directly in a standard programming language.
The next chapter discusses implementing key elements of POSH control in other agent ar-
chitectures. Behaviors and the BOD methodology itself will be covered in the succeeding
chapters.

I begin with an aside for the theorists and purists who may still doubt that planning is
necessary in a behavior-based architecture.

4.2 Basic Issues

I have already motivated the use of reactive planning both by argument (in Chapter 1) and
by induction from the history of agent architectures (Chapter 3). In this section I tie up a
few loose ends for researchers who still object either to the term or to planning in principle.

4.2.1 What does ‘Reactive Planning’ Really Mean?

The terms ‘reactive intelligence’, ‘reactive planning’ and ‘reactive plan’ appear to be closely
related, but actually signify the development of several different ideas. Reactive intelli-
gence controls a reactive agent — one that can respond very quickly to changes in its situ-
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ation. Reactive intelligence has sometimes been equated with statelessness, but that asso-
ciation is exaggerated. Reactive intelligence is however associated with minimal represen-
tations and the lack of deliberation [Brooks, 1991b, Agre and Chapman, 1990, Wooldridge
and Jennings, 1995]. As I said in Chapter 1, reactive intelligence is essentially action se-
lection by look-up.

Reactive planning is something of an oxymoron. The reason the term exists is that early
Al systems used (conventional, constructive) planning for action selection, so much so that
‘planning’ became synonymous with ‘action selection’. Many researchers who are gener-
ally considered to do reactive Al hate the term ‘reactive planning’ and refuse to apply it to
their own work. But it really just means ‘reactive action selection’. When reactive planning
is supported by architecturally distinct structures, these structures are called reactive plans.
As documented in Chapter 3, not all reactive intelligence uses reactive plans.

I embrace the term ‘reactive planning’ for several reasons. First, it has wide-spread
acceptance in the general AI community. Second, some the problems of action selection
are sufficiently universal that ‘planning’ workshops often are interesting for reactive plan-
ners like myself. Similarly, there are common representational issues for constructed and
reactive plans. Finally, the move to actually using explicit reactive plans makes using the
term ‘reactive planning’ seem somewhat more natural, though it is still misleading.

4.2.2 Isn’t Having Any Kind of Plans Bad?

I have addressed elsewhere at length [Bryson, 2000b] the concerns of some researchers
that any sort of hierarchically structured plan must be insufficiently reactive or not bio-
logically plausible. This belief has been prevalent particularly amongst practitioners of
behavior-based or ‘new’ Al [e.g. Maes, 1991b, Hendriks-Jansen, 1996] and of the ‘dynam-
ical hypothesis’ of cognitive science [e.g. Kelso, 1995, van Gelder, 1998]. Hierarchical
plans and centralized behavior arbitration are biologically plausible [Dawkins, 1976, Tanji
and Shima, 1994, Hallam et al., 1995, Byrne and Russon, 1998, Prescott et al., to appear].
They are also sufficiently reactive to control robots in complex dynamic domains [e.g. Hex-
moor et al., 1997, Bryson and McGonigle, 1998, Kortenkamp et al., 1998] and have been
shown experimentally to be as reactive as non-hierarchical, de-centralized systems [Tyrrell,
1993, Bryson, 2000a]. Although they do provide a single failure point, this can either be
addressed by standard Multi-Agent System (MAS) techniques [e.g. Bansal et al., 1998], or
be accepted as a characteristic of critical systems, like a power supply or a brain. Finally,
as demonstrated by coordinated MAS as well as by BOD (e.g. Chapter 6 below), they do
not necessarily preclude the existence of semi-autonomous behaviors operating in parallel.

This last point is the most significant with respect to the contributions of this disserta-
tion. Modularity is critical to simplicity of design, and parallelism is critical to a reactive
agent. BOD supports all of these attributes.

4.3 Basic Elements of Reactive Plans

Reactive plans provide action selection. At any given time step, most agents have a number
of actions which could potentially be expressed, at least some of which cannot be expressed
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simultaneously, for example sitting and walking. In architectures without centralized ac-
tion selection such as the Subsumption Architecture [Brooks, 1986] or the Agent Network
Architecture (ANA) [Maes, 1990b], the designer must fully characterize for each action
how to determine when it might be expressed. For engineers, it is generally easier to de-
scribe the desired behavior in terms of sequences of events, as this is characteristic of our
own conscious planning and temporally-oriented memories.

POSH plans contain an element to describe simple sequences of actions, called an ac-
tion pattern. Action patterns supply quick, simple control in situations where actions reli-
ably follow one from another.

Of course, control is often complicated by the non-determinism of both the environment
and an agents’ own capabilities. Several types of events may interrupt the completion of an
intended action sequence. These events fall into two categories:

1. Some combination of opportunities or difficulties may require the current ‘sequence’
to be reordered: some elements may need to be repeated, while others could be
skipped.

2. Some event, whether a hazard, an opportunity or simply a request, may make make
it more practical to pursue a different sequence of actions rather than finishing the
current one.

POSH action selection addresses these forms of non-determinism with a fundamental
reactive-planning idiom, the Basic Reactive Plan (BRP). The BRP will be formally de-
scribed in this section; its relevance to reactive planning in general will be examined in
Chapter 5.

In POSH, the first situation described above is handled by a BRP derivative called a
competence. A competence allows attention to be focussed on a subset of plan steps that
are applicable in a particular situation. The competence and the action pattern address the
second requirement for agent architectures (after modularity) described in Chapter 3 (see
page 54), structures to facilitate the appropriate focus of action-selection attention.

The second situation above is addressed by another variant of the BRP, the drive collec-
tion. A drive collection constantly monitors the environment for indications that the agent
should switch between plans. This addresses the third requirement from Chapter 3, the need
for an environment monitor or alarm system. In POSH, drive collections are continuous
with the rest of action selection; one forms the root of an agent’s plan hierarchy.

The remainder of this section provides formal descriptions of sequences and BRPs. The
following section will detail the POSH elements refining these basic idioms.

4.3.1 Simple Sequences

One structure fundamental to reactive control is the simple sequence of primitive actions:
11,1,...1,. Including the sequence as an element type is useful for two reasons. First, it
allows an agent designer to keep the system as simp