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Direct Dehydrative N-Pyridinylation of Amides, the Interrupted Bischler-Napieralski
Reaction, and the Enantioselective Total Synthesis and Arylative Dimerization of

Aspidosperma Alkaloids

by

Jonathan William Medley

Submitted to the Department of Chemistry
on May 14 th, 2013 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in
Organic Chemistry

ABSTRACT

I. Direct Dehydrative N-Pyridinylation of Amides
A method for the single-step N-pyridinylation of secondary amides is described. The

process involves electrophilic activation of secondary amides with trifluoromethanesulfonic
anhydride in the presence of 2-fluoropyridine followed by introduction of a pyridine N-oxide
derivative and warming to afford the corresponding N-pyridinyl tertiary amide derivatives. The
structure of activated amide intermediates is probed through in situ monitoring, and a
mechanism supported by in situ monitoring and deuterium labeling experiments is discussed.

II. Synthesis of Spirocyclic Indolines by Interruption of the Bischler-Napieralski Reaction
The development of a versatile method for the synthesis of spirocyclic

pyrrolidinoindolines is described. Treatment of N-acyltryptamines with trifluoromethanesulfonic
anhydride-2-chloropyridine reagent combination affords highly persistent spiroindoleninium
ions, which are selectively trapped intra- and intermolecularly by various nucleophiles.

III. A Concise and Versatile Double-Cyclization Strategy for the Highly Stereoselective
Synthesis and Novel Arylative Dimerization of Aspidosperma Alkaloids

A strategy for the concise, stereoselective synthesis of aspidosperma alkaloids and
related structures via a common putative diiminium ion intermediate is described. The approach
enables the dimerization of aspidosperma-type structures at the sterically hindered C2-position.
The diiminium intermediate is prepared in situ from an enantioenriched c-quaternary 2-
chlorotryptamine lactam through a stereoselective electrophilic double-cyclization cascade. The
key C5-quaternary stereocenter is secured via successive diastereoselective a-alkylations of
pseudoephenamine crotonamide.

Thesis Supervisor: Professor Mohammad Movassaghi
Title: Associate Professor of Chemistry
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Chapter I

Direct Dehydrative N-Pyridinylation of Amides
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Introduction and Background

Pyridin-2-ylated amides are key structural motifs in a wide variety of pharmaceutical

compounds and fine chemicals.1 Propiram2 (Figure 1) is a partial mu opioid receptor agonist and

weak mu antagonist analgesic that has been shown to be more effective and potent than codeine.

Eszopiclone 3 (Lunesta*), a CNS stimulant, is a short-acting, nonbenzodiazepine hypnotic agent

widely used for the treatment of chronic insomnia. Piketoprofen (Calmatel*) and piroxicam5

(Feldene*) are non-steroidal anti-inflammatory drugs, the latter of which is prescribed for the

relief of symptoms of rheumatoid and osteoarthritis. The pyridin-2-ylated amide structure is also

present in topical retinoids used for the treatment of psoriasis.6 Pirenzipine7 (Gastrozepin*) is an

Mi-selective antagonist used to treat peptic ulcers. The importance of pyridinylated amides

continues to inspire new methods for their syntheses.

Me

NN N

propiram eszopicione piketoprofen
analgesic CNS stimulant anti-inflammatory

ISO2

HO O Me Me Me O0 Me'N -N N OA

0 Me- N N 0

N 0 N 0  
N N

0e MeH

piroxicam antipsoriatic pirenzepine
anti inflammatory anti-ulcer drug

Figure 1. Representative compounds containing a pyridin-2-ylated amide substructure.

Among the earliest methods for the introduction of a pyridin-2-yl substituent onto a

nitrogen atom was the reaction between sodamide and pyridine at elevated temperature reported

by Chichibabin and co-workers (Scheme 1).8 Addition of strongly basic sodamide into the

weakly electrophilic 2-position of pyridine, followed by loss of hydrogen gas, affords 2-

sodamidopyridine; acidification affords 2-aminopyridine. Recently, a milder set of conditions

has been reported by Yin and co-workers9 (Scheme 2), in which a pyridine N-oxide derivativelo

is activated with para-toluenesulfonic anhydride (Ts20) in the presence of excess tert-butyl

12



amine to effect in situ formation of a 2-tert-butylamino pyridine derivative. Addition of

trifluoroacetic acid and heating affords the 2-aminopyridine product. While these methods

provide efficient access to 2-aminopyridines," they are not known to effect the N-pyridinylation

of amide substrates.

NH NH2  ~ NHNa NH 2NaNH2[Na H j-H2NN H2+N NH-~ -. N

N Nheat N N + NaH -2 NH

Scheme 1. The Chichibabin reaction.

- tB NH 1N H Bu N H 2
uN H2 N H Cu NH2

O Ts2 0 TsO, :NH 2qu -2 TsOH 1 CF 3COOHN ~ N 1  LNO 0
_ PhCF3  Theat

OR PC3 R TR -isobutylene

Scheme 2. Synthesis of 2-aminopyridines from pyridine N-oxides.

Metal-catalyzed cross-coupling reactions between nitrogen nucleophiles and aryl or

heteroaryl halides or sulfonates, such as the palladium- and copper-catalyzed methods reported

by Buchwald1 3 and the complementary palladium-catalyzed method reported by Hartwig, 4 have

proven to highly efficient and mild means for the N-arylation and N-heteroarylation of a variety

of nitrogen-containing compounds, including amines and amides (Scheme 3). Primary amide

substrates, in general, are efficiently substituted with a wide range of aryl and heteroaryl groups,

including pyridin-2-yl groups. Secondary lactams and sterically unhindered15 acyclic secondary

amides are also generally useful in these transformations, though sterically hindered acyclic

secondary amides represent a challenging substrate class, 16 and to date, methods for the

intermolecular cross-coupling of sterically hindered acyclic secondary amides and 2-

Buchwald:

o Pd(OAc) 2, tBuBrettPhos O N
N K3PO4, H20

/ NH2 + *HO +C tBuOH, 110 *C O
0 C1 0e

93%

Hartwig:

o CI Pd(OAc)2, Josiphos O
NaO tBu

NNH2 + N * N N
1,2-DME, 70 *C H

99%

Scheme 3. N-pyridinylation of amides via the Buchwald-Hartwig reaction.

13



halopyridines has not been reported.

In 1969, R. A. Abramovitch and co-workers reported a fascinating methodology for the

synthesis of N-pyridinyl amide derivatives via the nucleophilic addition of heteroaromatic N-

oxides to N-aryl and N-alkyl imidoyl chlorides or nitrilium salts at elevated temperature followed

by a thermal rearrangement (Scheme 4).17 Abramovitch's proposed mechanism was supported

by elegant mechanistic investigations, although the reversibility or irreversibility of the steps

involved was not determined. The reactions in general give good regioselectivity with respect to

site of substitution on the pyridine ring, typically affording the N-pyridin-2-yl amide product as

the only regioisomer. The high temperatures required for the reaction, the need for the synthesis

and isolation of sensitive imidoyl chlorides or nitrilium salts in a separate step, the failure of

electron-deficient N-oxides to undergo reaction, and the tendency for undesired side-product

formation represent drawbacks to the original methodology.

CI- +K>R Ci- 1
R 1 N'R + PhC N R -HCI R2

R [ R' N ' L 2  J
R2 

R

Scheme 4. The Abramovitch reaction.

Recently, more direct methods for the N-pyridinylation of amides through reaction with

pyridine N-oxide derivatives have been developed. Couturier and co-workers' 8 reported the N-

quinolinylation and N-isoquinolinylation of primary amides by in situ activation of the amide

with oxalyl chloride at elevated temperature to afford an N-acylisocyanate intermediate, which

undergoes trapping by a quinoline or isoquinoline N-oxide and subsequent thermal

rearrangement to afford a secondary N-quinolin-2-ylated or N-isoquinolin-1-ylated amide

product as single regioisomers (Scheme 5). Also, Bilodeau and co-workers19 reported a

modification of the Abramovitch reaction for the N-pyridinylation of secondary amides via in

situ activation of the amide substrate with oxalyl chloride in the presence of 2,6-lutidine (Scheme

6). Addition of a pyridine N-oxide derivative to the imidoyl chloride intermediate affords the N-

pyridinylated amide product. While this method allows for the direct N-pyridinylation of

sterically unhindered N-methyl and N-benzyl acetamides and benzamides, no successful

examples of the N-pyridinylation of sterically hindered amides were reported, and N-aryl amides

proved to be a highly recalcitrant substrate class. Given the importance of N-pyridinylated amide

14



products, we sought to develop a mild protocol that would expand the substrate scope of the

Abramovitch reaction.

0 (COCI)2

Me NH2 (CICH 2)2, reflux
-2 HCI, -CO [

H0

N O H -NO -' ' -

A C0 - . N N O
Me N reflux Me O 83% Me N N

i O j H

Scheme 5. N-pyridinylation of primary amides via N-acylisocyanates.

0,+

O (COCI) 2 ' CI AM Me
2,6-lutidine Bn Me N

Me kN ' M Me Nme-W
H CH2CI2, O MC 0 - 23 C N

66% 6er

Scheme 6. A modified Abramovitch reaction.

Our laboratory has previously reported the use of 2-chloropyridine (2-ClPyr) with

trifluoromethanesulfonic anhydride 20 (Tf 2O) as a versatile reagent combination for the synthesis

of pyrimidine2 1 and pyridine derivatives (Scheme 7).2 These methodologies provide the desired

TfO- TfO-

R'J N ' - f0 : C CI +N '1,'_-_I-R
H 2-CIPyr R RN '''

_ TfO- H Tfo H

-2-CIPyrTfOH

R TR

-2-CIPyr-TfOH

-2-CiPyr-TfOH

I
R'

TfOH . N ' R
R NR

R4 TfO- R40

K j R2  R

R4

-R40H

R3

TfOH - '_-R

R1 N "

Scheme 7. Previous condensative heterocycle syntheses by Movassaghi et al.
azaheterocycles via electrophilic activation of secondary N-aryl or N-vinyl amides to enable

nucleophilic addition and annulation. Early spectroscopic studies indicated that activation of N-

15
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aryl amides with our laboratory's reagent combination Tf2 O-2-ClPyr gives rise to 2-

chloropyridinium adducts, which were proposed to potentially be highly electrophilic species

that might enable reaction with the nucleophile. We envisioned that our laboratory's conditions

would serve well for a modified Abramovitch reaction (eq 1). In this chapter, we describe the N-

pyridinylation, N-isoquinolinylation and N-quinolinylation of various secondary amides and

discuss a plausible mechanism supported by deuterium labeling and in situ monitoring

experiments.

0

0 N' ,R2
Ok -2  + Tf2O, 2-CiPyr, R' N

R1  ,R + O R+ No, CH(1H C 2C12
R -78 - 23*C

Results and Discussion

Based off of our laboratory's previous results in the context of azaheterocycle synthesis,

we reasoned that N-aryl amide la would be competent for in situ electrophilic activation with 2-

ClPyr-Tf2O and subsequent reaction with N-oxide nucleophiles. Thus, amide la and

isoquinoline N-oxide (2a) served as substrates for our early exploration of this chemistry (Table

1). Interestingly, the use of 2-fluoropyridine (2-FPyr, 1.2 equiv) as a base additive afforded a

significant improvement in the reaction yield as compared to 2-ClPyr, furnishing amide 3aa in

99% yield (compare entries 1 and 11, Table 1). More nucleophilic and stronger base additives

generally gave poorer yields as compared to base additives with attenuated nucleophilicity and

basicity. These observations suggest that optimal conditions provide a balance between the need

for a base additive to promote electrophilic activation of the amide substrate while avoiding

nucleophilic inhibition of this reaction. Consistent with our earlier findings,2 1 2 2 both the

presence of the optimal base additive in excess or its absence led to a marked decrease in the

yield of the desired product (entries 3, 12 and 13, Table 1). The use of the Hendrickson reagent

((Ph 3P*)20-2TfO~)23 as the activating agent for this dehydrative N-pyridinylation reaction proved

less effective as compared to the optimal conditions described above (entry 16, Table 1). The

overall yield can be improved by use of excess 2a due to competitive N-oxide decomposition

(entry 2, Table 1).

We next examined the optimal conditions with a range of amide substrates with three

representative heteroaromatic N-oxides (Table 2). Isoquinolinylation of amides under our

conditions is highly efficient, giving good to excellent yields in all cases examined.

16



Table 1. Optimization of Reaction Conditions.a

0
MeO N' .Ph
MeO H Tf20 (1.1 equiv) O
MeO 1 la base additive MeO N'Ph

0+
ON CH2CI2, 3 h MeO N

-78 - 23 'C 3aa
2aa

entry base additive base equiv N-oxide X equiv yield (%)b

1 2-Cl-pyridine 1.2 1.1 77
2 2-Cl-pyridine 1.2 2.0 81
3 None - 1.1 16
4 pyridine 1.2 1.1 10
5 Et3N 1.2 1.1 0
6 2-Br-pyridine 1.2 1.1 58
7 3-CI-pyridine 1.2 1.1 74
8 Ethyl Nicotinate 1.2 1.1 73
9 3-Br-pyridine 1.2 1.1 72
10 2,6-lutidine 1.2 1.1 55
11 2-F-pyridine 1.2 1.1 99
12 2-F-pyridine 2.0 1.1 88
13 2-F-pyridine 5.0 1.1 76
14 DIPEA 1.2 1.1 48
15 2,6-dichloropyridine 1.2 1.1 15
16 Hendrickson Reagentc 1.5 1.1 72

aConditions: Amide la, Tf2O (1.1 equiv), base additive,
CH 2C12, -78 -+ 0 'C; isoquinoline N-oxide, 0 -+ 23 *C,
3 h. blsolated yield. cHendrickson reagent

((Ph 3P') 20-2TfO-) was prepared (reference 23) and used

in place of Tf2O without base additive.

Isoquinolinylation of both N-alkyl benzamides (entries 3da, 3fa, and 3ga, Table 2), in addition to

N-aryl and N-vinyl amides (entries 3ca and 3ha, Table 2) were achieved in high yields under our

standard reaction conditions. The high efficiency of our reaction with sterically hindered amide

substrates (3fa, 3ga, and 3ha, Table 2) is notable. Electron rich benzamides notwithstanding

(entry 3aa, Table 2), the least efficient substrates in this series were N-aryl benzamides (entries

3ba and 3ea, Table 2). In all cases, completely regioselective isoquinolinylations proceeded at

the 1-position of the isoquinoline ring.17 -19

The use of quinoline N-oxide (2b, Table 2) and pyridine N-oxide (2c) as substrates also

gave completely regioselective acylamination, however, with reduced overall efficiency for the

formation of the desired products. This is due in part to the faster decomposition17b,c, 24 of N-

oxides 2b and 2c (as compared to 2a) under the electrophilic activation reaction conditions."

Interestingly, in reactions employing N-oxide 2c, amides that exhibited high reactivity in

17



Table 2. Direct Dehydrative N-Pyridinylation of Amides.a

0

R1  N'R2

1x H

+ 'N

2y R

N-oxide: 0 +

2a

0

Tf2O, 2-FPyr, CH2Cl2  R N'R2

-78--23'C N
3xy

R

06+
ON

2bI 2c

amide N-(isoquinolin-1 -yl) N-(quinolin-2-yl) N-(pyridin-2-yl)
product 3 product 3 product 3

0
MeO N Ph

Me H 3aa: 9 9%b 3ab: 0%C 3ac: 41%

MeO 1 a
0

Ph N'Ph 3ba: 72% 3bb: 36% 3bc: 40%

lb H
0

Me N'Ph 3ca: 97% 3cb: 35% 3cc: 6 6%d

1c H
0

Ph N'Me 3da: 100% 3db: 60% 3dc: 67 %d

1d HyOMe

Br N 3ea: 74% 3eb: 42% 3ec: 37%

Irl H 0

N )r 3fa: 92% 3fb: 13% 3fc: 74%

0 I I H

0

MeO IN'r 3ga: 94% 3gb: 25% 3gc: 48%
I H

MeO H

SBu N 3ha: 91% 3hb: 78% 3hc: 39 %de

1h H

a Isolated yields of products 3xy. Average of two experiments.

Conditions: Amide 1x (1 equiv), Tf2O (1.1 equiv), 2-FPyr (1.2

equiv), CH 2Cl2 , -78 - 0 'C; N-oxide 2y (2.0 equiv), 0 -+ 23 'C,
4 h. b N-oxide 2a (1.1 equiv), 3 h. c Decomposition of la

observed over 4 h. d 2,6-lutidine used as base. e Low yield due

to product decomposition.

isoquinolinylation reactions gave higher yields when 2,6-lutidinel9 was used in place of 2-FPyr

as the base additive (products 3cc, 3dc and 3hc Table 2), likely owing to slight suppression of N-

oxide decomposition. However, the use of 2,6-lutidine in place of 2-fluoropyridine with less

18



reactive N-aryl benzamides (1b and le, Table 2) resulted in significantly lower yields of the

desired products.

Attempts to N-quinolinylate amide la under our standard conditions gave no detectable

amount of the desired product 3ab. This is consistent with poor nucleophilic addition of 2b to

the activated intermediate allowing a competitive decomposition of amide la.26 Given that

nucleophilic base additives inhibit the desired reaction (Table 1), we conjectured that the N-

pyridinylated products formed may also play an inhibitory role. Activation of amide 1f followed

by sequential addition of N-pyridinylated amide 3fc (1.00 equiv) and pyridine N-oxide (2c) gave

a low 33% yield of the desired amide 3fc (eq 2),2 which is less than half the expected yield.

This suggests that product inhibition can be significant in these pyridinylation reactions.

However, activation of amide 1f under optimized conditions, followed by sequential addition of

o Tf20, 2-FPyr O
CH2C 2, -78 - 0 *C; 'Pr

N i~r N Pr (2)
H 3fc (1.00 equiv)

0 2N 1f N-Oxide 2c (2.00 equiv) 02N N
0 - 23 C 3fc

33%

O Tf20, 2-FPyr O

N' Pr CH 2Cl2 , -78 -+ 0 *C;" N'Pr (3)
H 3fa (1.00 equiv)

0 2N if N-Oxide 2a (2.00 equiv) 0 2N N
0 - 23 *C 3fa

92%

product 3fa (1.00 equiv) and isoquinoline N-oxide (2a) gave 92% yield of the desired N-

isoquinolinylated amide 3fa (eq 3),27 indicating no significant product inhibition in this reaction.

Furthermore, sequential activation of an enantiomerically enriched amide 1h22 under optimized

conditions followed by introduction of isoquinoline N-oxide (2a) provided the optically active N-

isoquinolinylated amide (+)-3ha without erosion of optical activity (eq 4).

O VT20, 2-FPyr; 0

Me N '0 N-oxide 2a Me N (4)
Me NH (4)
MeH H2C12, 4h Me

-78 - 23 *C
1h, 98% ee 88% Z 1

(+)-3ha, 98% ee

Interestingly, while N-pyridinylation of amides was generally less efficient as compared to N-

isoquinolinylation, the use of both electron-rich and electron-poor 4-substituted pyridine N-

oxides 2d and 2e, respectively, gave good yields of the desired products (eqs 5 and 6). The

successful N-pyridinylation of amide Id with 4-nitropyridine N-oxide (2e) is notable, as its use

19



as a nucleophile for the Abramovitch reaction was previously reported to be unsuccessful, 17a,c

suggesting greater electrophilicity of the intermediate under the conditions described here.

O 0+ Tf2O, 2-FPyr O
Ph, NMe + N Ph Ne (5)

H OMe CH2C12, 4 h
-78 - 23 *CN

1d 2d 75% 3dd
OMe

o 0 Tf20, 2-FPyr O

Ph NMe + N Ph N'Me (6)Ph NO CH2C2, 4 h PhN

-78 - 23 C

1d 2e 67% 3de N02
NO 2

To gain better understanding of the intermediates involved in this transformation, a series

of in situ IR and NMR monitoring experiments were performed. The conversion of amide 1d to

N-isoquinolinylated amide 3da under optimized conditions was monitored by in situ IR analysis.

Addition of Tf2O to a mixture of amide ld and 2-FPyr resulted in complete consumption of the

amide absorption band (1668 cm- 1) and appearance of a persistent absorption at 2370 cm-1,

suggestive of a nitrilium ion intermediate.17c,28 Addition of isoquinoline N-oxide (2a) resulted in

immediate disappearance of the absorption at 2370 cm-1 and appearance of a persistent

absorption at 1691 cm-1, which was due to the protonated product 3da. Interestingly, the

activation of N-(4-methoxyphenyl)benzamide (i) with the reagent combination of 2-ClPyr and

Tf 2O did not lead to an observable absorption corresponding to a nitrilium ion, but instead gave

rise to a persistent absorption at 1600 cm-, suggestive of an amidinium intermediate. 2 These

observations suggest that while electrophilic activation of ld using 2-FPyr results in 5d (Scheme

8), similar activation of li using 2-ClPyr leads to predominant formation of 4i rather than 5i.

- R2 Tf2O Jn 1 =NR x+c
R1 N' T X +N TfO - TfO-

H 2-XPyr R1  NH + TfO- H

1 4 2 5 6

X = CI, F -2-XPyr-HOTf R

R

R1 NR 2  O-N TfO- + -R

S R +- -O
N TfOH R' , H

3 TfO- R2 8 R 1 N
Sche R R2

Scheme 8. Mechanism for direct dehydrative N-pyridinylation of amides.
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To determine the degree to which the formation of a nitrilium ion depends on the nature

of the base additive and the amide structure itself, a series of in situ IR monitoring experiments

were carried out.27 For comparison, while activation of N-alkyl benzamide 1d under optimal

conditions resulted in an absorption suggesting a nitrilium ion (2370 cm-1),29 the activation of N-

aryl benzamides lb and 1i under the same conditions led to no detection of an IR absorption

consistent with a nitrilium ion, but instead resulted in the appearance of an IR absorption

suggesting an amidinium ion (1621 cm 1 in both cases). However, Tf 2O activation of the

electron-rich N-aryl benzamide la in the presence of either 2-FPyr or 2-CIPyr (1.2 equiv) indeed

resulted in an absorption at 2312 cm-1, suggesting a persistent nitrilium ion intermediate.

Interestingly, addition of extra equivalents of 2-ClPyr resulted in complete disappearance of this

absorption band and appearance of a persistent absorption at 1594 cm 1, consistent with the

formation of the previously observed amidinium ion.22  Even the electron-poor N-alkyl

benzamide 1f resulted in a lasting nitrilium ion (2354 cm 1) upon electrophilic activation in the

presence of either 2-FPyr or 2-ClPyr (1.2 equiv), although the presence of excess 2-ClPyr

resulted in disappearance of the absorption at 2354 cm-1 and the appearance of an absorption at

1609 cm .3 These observations suggest that activation of N-alkyl amides under these

conditions more readily results in persistent nitrilium ion formation, while N-aryl amides show

reluctance to form the corresponding nitrilium ion, likely owing to the inductive effect of the

nitrogen substituent.31 Only the particularly electron-rich N-aryl benzamide la resulted in any

observable nitrilium ion, perhaps due to greater stabilization by resonance contribution. These

differences in amide reactivity were further substantiated by in situ IH NMR monitoring of the

electrophilic activation step. Interestingly, amides that demonstrated the least propensity to form

a nitrilium ion upon activation under the optimal reaction conditions also gave the lowest yields

in reactions with isoquinoline N-oxide (e.g., entry 3ba, Table 2). Furthermore, reduced yield of

the desired product upon addition of excess base additive (or use of nucleophilic bases, Table 1)

is consistent with the observed disappearance of the nitrilium species during in situ monitoring

experiments.

Additional mechanistic insight was obtained using deuterated substrates 2a-d 2, 2c-d 2 and

2c-di (eqs 7 and 8). Electrophilic activation of N-alkyl benzamide 1f under optimal conditions

followed by introduction of excess 32 isoquinoline N-oxide (2a) and 1,3-dideuteroisoquinoline N-

oxide (2a-d2) provided a mixture of N-isoquinolinylated products 3fa and 3fa-di corresponding
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to kH:kD= 1.0:1.0 in 86% combined yield (eq 7).2 The same outcome was observed in a similar

experiment using excess 2c-d2 and 2c, resulting in a mixture of the N-pyridinylated products 3fc

and 3fc-di corresponding to kH:kD = 1.0:1.0 in a combined yield of 59% (eq 7). As another

mechanistic probe, activation of 1f under optimal conditions and the use of excess 2-

deuteropyridine N-oxide (2a-di) provided the expected N-pyridinylated amide 3fc as a mixture of

non-deuterated and monodeuterated derivatives (eq 8).27 Importantly, the ratio of 3fc-d and 3fc-

di was found to be 1.0:2.0, reflecting an observable primary kinetic isotope effect (kH:kD =

2.0:1.0).33 These observations suggest that addition 34 of the imidate nitrogen onto the pyridinium

ring is reversible, whereas nucleophilic addition of the N-oxide 2 to the nitrilium ion 5 (or

another electrophilic variant) is irreversible (Scheme 8).

D

0
o i 'Pr

Ie )Pr D T 2a-d 2 (2c-d2) T2 2-FPyr N Z - (7)

0 2 N if _ H CH2C12, 2 h O2-
ON -78 -+ 23 *C R '

86% (59%) R = H, 3fa (3fc)
H2a (2c) kH:kD = 1.0:1.0 R = D, 3fa-d1 (3fc-d1)

0

o O+ Tf2O, 2-FPyr N Pr

.. N)Pr + * (8)
H / CI D H2C12, 4 h 0 2N

0 2N 1f 2c-d1 -78 - 23 C
if 2-d, 30% R

R = H, 3fc
kHAkD = 2.0:1.0 R = D, 3fc-d1

Conclusion

We have presented a direct method for the dehydrative N-pyridinylation of amides under

electrophilic activation by the reagent combination of Tf2O and 2-FPyr. This method allows for

a highly effective activation of a variety of amide substrates, including sterically hindered and N-

aryl amides,' 9 without requiring the isolation of sensitive intermediates or the use of heavy metal

Lewis acid additives, allows for the use of electron-deficient pyridine N-oxide derivatives, and

proceeds in shortened reaction times without the need for elevated temperatures.' 7 Our in situ

monitoring experiments suggest greater propensity for the formation of persistent nitrilium ion

intermediates when N-alkyl amide substrates are used as compared to N-aryl amides. Our

studies with deuterated N-oxide substrates suggest an irreversible nucleophilic addition step and

a plausible interconversion of intermediates 7 and 8 based on the observed kinetic isotope effect.
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Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried round bottomed
flasks, modified Schlenk (Kjeldahl shape) flasks or glass pressure vessels. The flasks were fitted
with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel
gas-tight syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column
chromatography was performed as described by Still et al. using silica gel (60 A pore size, 32-63 pm,
standard grade) or non-activated alumina (80-325 mesh, chromatographic grade).' Analytical thin-
layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh
silica gel or neutral alumina impregnated with a fluorescent indicator (254 nm). Thin layer
chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an
ethanolic phosphomolybdic acid (PMA), an acidic solution of p-anisaldehyde (anis), an aqueous
solution of ceric ammonium molybdate (CAM), an aqueous solution of potassium permanganate
(KMnO 4) or an ethanolic solution of ninhydrin followed by heating (<1 min) on a hot plate (-250
'C). Organic solutions were concentrated on rotary evaporators at -20 Torr (house vacuum) at 25-35
0C, then at -1 Torr (vacuum pump) unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions:
Dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, toluene, and triethylamine were
purchased from J.T. Baker (Cycletainer Tm ) and were purified by the method of Grubbs et al. under
positive argon pressure.2 2-Chloropyridine was distilled from calcium hydride and stored sealed
under an argon atmosphere. Secondary amides were prepared by acylation of the corresponding
primary amines3 or by previously reported copper-catalyzed C-N bond-forming reactions. 4

Instrumentation. Proton nuclear magnetic resonance ('H NMR) spectra were recorded with 300 and
500 MHz spectrometers. Chemical shifts are recorded in parts per million on the 6 scale and are
referenced from the residual protium in the NMR solvent (CHCl3: 6 7.27, C2D5HSO: 6 2.50). Data are
reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m =
multiplet), coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic
resonance (1 3 C NMR) spectra were recorded with 300 and 500 MHz spectrometers and are recorded in
parts per million on the 8 scale and are referenced from the carbon resonances of the solvent (CDCl 3:
6 77.2, (D3C)2SO: 6 39.5). Data are reported as follows: chemical shift [multiplicity (s = singlet, d =
doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, assignment]. Infrared
data were obtained with an FTIR and are reported as follows: [frequency of absorption (cm 1),
intensity of absorption (s = strong, m = medium, w = weak, br = broad), assignment]. In situ IR
reaction monitoring was performed with an in situ monitoring IR spectrometer.

1 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
For a general procedure, see: DeRuiter, J.; Swearingen, B. E.; Wandrekar, V.; Mayfield, C. A. J. Med. Chem. 1989, 32, 1033.
For the general procedure used for the synthesis of N-vinyl amides, see: Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.

2003, 5, 3667.
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0
MeO N Ph

MeO
la

Tf20, 2-FPyr, CH2CI2;

isoquinoline N-oxide
-78 -- 23 *C

99%

0
MeO N Ph

MeO N

3aa

N-(Isoguinolin-1-yl)-3,4-dimethoxy-N-phenylbenzamide (3aa, Table 2):
Trifluoromethanesulfonic anhydride (46.0 tL, 0.270 mmol, 1.10 equiv) was added via syringe

to a solution of 3,4-dimethoxy-N-phenylbenzamide 5 (1a, 63.0 mg, 0.245 mmol, 1 equiv) and 2-
fluoropyridine (25.3 tL, 0.294 mmol, 1.20 equiv) in dichloromethane (1.0 mL) at -78 'C. After 2
min, the reaction mixture was warmed to 0 'C. After 5 min, isoquinoline N-oxide (39.2 mg, 0.270
mmol, 1.10 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 3 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (40 -- 60% ethyl acetate in
hexanes) to afford the amide 3aa (93.1 mg, 99%).

IH NMR (500 MHz, CDCl3, 20 'C) 6:

13C NMR (125 MHz, CDCl 3, 20 'C) 8:

FTIR (neat) cm-1:

HRMS (ESI):

8.37 (d, 1H, J= 5.6 Hz), 8.16 (dd, 1H, J= 8.5, 0.8 Hz),
7.86 (d, 1H, J= 8.3 Hz), 7.69-7.57 (m, 3H), 7.31 (t, 2H,
J= 8.0 Hz), 7.24 (d, 2H, J= 7.5 Hz), 7.20 (m, 2H), 7.07
(s, 1H), 6.64 (s, 1H), 3.82 (s, 3H), 3.58 (s, 3H).

171.1, 155.4, 151.0, 148.1, 143.5, 141.9, 138.4, 130.7,
129.3, 128.5, 128.0, 127.3, 126.5, 126.3, 125.7, 125.0,
123.0, 121.1, 112.1, 110.1, 55.9, 55.7.

3061 (w), 2936 (m), 1661 (s), 1516 (s), 1268 (s).

calc'd for C 2 4H 2 1N 2 0 3 [M+H]*: 385.1547,
found: 385.1551.

TLC (50% EtOAc in hexanes), Rf: 0.21 (UV).

5 Gore, V. G.; Narasimhan, N. S. J. Chem. Soc., Perkin Trans. 1 1988, 481.
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0
MeO N Ph

MeO
la

Tf20, 2-FPyr, CH2CI2;

pyridine N-oxide
-78 -- 23 'C

41%

0
MeO N 'Ph

MeO N

3ac

3,4-Dimethoxy-N-phenyl-N-(pyridin-2-yl)benzamide (3ac, Table 2):
Trifluoromethanesulfonic anhydride (38.2 [tL, 0.227 mmol, 1.10 equiv) was added via syringe

to a solution of 3,4-dimethoxy-N-phenylbenzamide 5 (1a, 52.7 mg, 0.206 mmol, 1 equiv) and 2-
fluoropyridine (21.2 [tL, 0.247 mmol, 1.20 equiv) in dichloromethane (1.0 mL) at -78 'C. After 2
min, the reaction mixture was warmed to 0 'C. After 5 min, pyridine N-oxide (39.2 mg, 0.412 mmol,
2.00 equiv) was added as a solid under an atmosphere of argon. After 5 min, the resulting mixture
was allowed to warm to 23 'C. After 3 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (40 -+ 60% ethyl acetate in
hexanes) to afford the amide 3ac (28.0 mg, 41%).

IH NMR (500 MHz, CDCl3 , 20 'C) 8: 8.43-8.42 (m, 1H), 7.67-7.64 (m, 1H), 7.35-7.32 (m,
2H), 7.24-7.21 (m, 2H), 7.18-7.10 (m, 4H), 7.03 (d, 1H,
J= 2.0 Hz), 6.70 (d, 1H, J= 8.0 Hz), 3.85 (s, 3H), 3.69
(s, 3H).

13C NMR (75 MHz, CDCl3, 20 'C) 8: 170.7, 157.0, 151.1, 149.3, 148.3,
128.0, 127.8, 126.8, 123.6, 122.2,
56.0, 55.9.

143.4, 138.0, 129.5,
121.4, 112.6, 110.2,

FTIR (neat) cm 1 3007 (w), 2936 (m), 1660 (s), 1585 (s), 1239 (s).

calc'd for C20H19N 203 [M+H]*: 335.1390,
found: 335.1381.

HRMS (ESI):

TLC (50% EtOAc in hexanes), Rf: 0.09 (UV).
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Ph N'Ph
H

lb

Tf20, 2-FPyr, CH2CI2;

isoquinoline N-oxide
-78 - 23 *C

74%

0

Ph N'Ph

N -

3ba

N-(Isoguinolin-1-yl)-N-phenylbenzamide 6 (3ba, Table 2):
Trifluoromethanesulfonic anhydride (49.2 tL, 0.292 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylbenzamide (1b, 52.3 mg, 0.265 mmol, 1 equiv) and 2-fluoropyridine (27.3
[tL, 0.318 mmol, 1.20 equiv) in dichloromethane (2.0 mL) at -78 'C. After 2 min, the resulting
mixture was warmed to 0 'C. After 5 min, isoquinoline N-oxide (77.0 mg, 0.530 mmol, 2.00 equiv)
was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was allowed to
warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the trifluoromethanesulfonate
salts, and the mixture was diluted by the addition of dichloromethane (10 mL). The reaction mixture
was washed with brine (10 mL), and the layers were separated. The aqueous layer was extracted with
dichloromethane (2 x 5 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on silica gel
3ba6 (63.6 mg, 74%).

1 H NMR (500 MHz, (D3 C) 2SO, 20 'C) 6:

13C NMR (125 MHz, (D 3C) 2SO, 100 'C) 8:

FTIR (neat) cm 1:

HRMS (ESI):

(20 -- 30% ethyl acetate in hexanes) to afford the amide

8.34-8.28 (m, 1H), 8.22 (d, 1H, J= 8.3 Hz), 8.02 (d, 1H,
J= 8.2 Hz), 7.84-7.74 (m, 2H), 7.73-7.67 (m, 1H), 7.47
(s, 2H), 7.34-7.27 (in, 3H), 7.26-7.16 (m, 5H).

170.2, 153.8, 142.3, 140.8, 137.4, 135.7, 130.1, 129.7,
128.4, 128.0, 127.6, 127.3, 126.6, 126.1, 125.7, 124.4,
124.1, 120.5.

3059 (in), 1663 (s), 1584 (s), 1494 (s), 1386 (s).

calc'd for C22H17N20 [M+H]*: 325.1335,
found: 325.1345.

TLC (30% EtOAc in hexanes), Rf: 0.35 (UV).

6 Abrarnovitch, R. A.; Rogers, R. B.; Singer, G. M. J. Org. Chem. 1975, 40, 41.

30



0

Ph N'Ph
H

lb

Tf2O, 2-FPyr, CH2Cl2;

quinoline N-oxide
-78 - 23 *C

35%

0

Ph )NPh

N

/ 3bb

N-(Quinolin-2-yl)-N-phenylbenzamide 6 (3bb, Table 2):
Trifluoromethanesulfonic anhydride (46.3 IAL, 0.275 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylbenzamide (1b, 49.0 mg, 0.250 mmol, 1 equiv) and 2-fluoropyridine (25.8
giL, 0.300 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction
mixture was allowed to warm to 0 'C. After 5 min, quinoline N-oxide (72.6 mg, 0.500 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (20 -> 30% ethyl acetate in
hexanes) to afford the amide 3bb6 (28.2 mg, 35%).

'H NMR (300 MHz, CDCl3, 20 'C) 8:

13C NMR (125 MHz, CDCl 3, 20 'C) 8:

FTIR (neat) cm-1

HRMS (ESI):

8.09 (d, 1H, J= 8.7 Hz), 7.81-7.74 (m, 2H), 7.66-7.59
(m, 1H), 7.58-7.45 (m, 3H), 7.39-7.17 (m, 9H).

171.7, 155.6, 147.3, 142.7, 138.1, 136.4, 130.7, 130.0,
129.4, 129.3, 129.0, 128.1, 128.1, 127.5, 127.0, 126.6,
126.5, 120.0.

3062 (m), 1666 (s), 1594 (s), 1502 (s), 1301 (s).

calc'd for C22H17N20 [M+H]*: 325.1335,
found: 325.1343.

TLC (30% EtOAc in hexanes), Rf: 0.44 (UV).
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Ph N'Ph
H

1b

Tf20, 2-FPyr, CH2CI2;

pyridine N-oxide
-78 - 23 *C

40%

0

Ph N'Ph

N

3bc

N-(Pyridin-2-yl)-N-phenylbenzamide 7 (3be, Table 2):
Trifluoromethanesulfonic anhydride (48.1 [tL, 0.286 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylbenzamide (1b, 51.1 mg, 0.260 mmol, 1 equiv) and 2-fluoropyridine (26.8
tL, 0.312 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction

mixture was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (49.5 mg, 0.520 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (20 -> 50% ethyl acetate in
hexanes) to afford the amide 3bc 7 (28.4 mg, 40%).

'H NMR (500 MHz, CDCl 3, 20 'C) 8:

"C NMR (125 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm-1:

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

8.40 (d, 1H, J= 4.5 Hz), 7.65 (dt, 1H, J= 7.5, 2.0 Hz),
7.49 (d, 2H, J 6.0 Hz,), 7.36-7.29 (m, 3H), 7.28-7.20
(m, 4H), 7.18 (d, 2H, J= 7.5 Hz), 7.12-7.08 (m, 1H).

171.2, 156.6, 149.3, 142.9, 137.9, 136.2, 130.6, 129.4,
129.3, 128.2, 127.9, 127.0, 122.0, 121.5.

3060 (w), 1660 (s), 1582 (s), 1435 (m), 1348 (in).

calc'd for CI8H15N 20 [M+H]*: 275.1179,
found: 275.1185.

0.24 (UV).

7 Abramovitch, R. A.; Singer, G. M. J. Org. Chem. 1974, 39, 1795.
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Tf2 0, 2-FPyr, CH 2 CI2 ;

isoquinoline N-oxide

-78 23 'C
99%

0

Me N'Ph

N 
10

3ca

N-(Isoguinolin-1-yl)-N-phenylacetamide (3ca, Table 2):
Trifluoromethanesulfonic anhydride (54.0 [tL, 0.321 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylacetamide (1c, 39.5 mg, 0.292 mmol, 1 equiv) and 2-fluoropyridine (30.2
[L, 0.351 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction
mixture was allowed to warm to 0 'C. After 5 min, isoquinoline N-oxide (84.8 mg, 0.584 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 RL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (30 -+ 50% ethyl acetate in
hexanes) to afford the amide 3ca (73.6 mg, 96%).

IH NMR (500 MHz, (D3C)2 SO, 80 OC)

13C NMR (125 MHz, (D 3C)2SO, 100 'C) 5:

FTIR (neat) cm-:

HRMS (ESI):

8.47 (d, 1H, J= 5.7 Hz), 8.18 (d, 1H, J = 8.4 Hz), 8.05
(d, 1H, J = 8.3 Hz), 7.89 (d, 1H, J= 5.7 Hz), 7.84-7.79
(m, 1H), 7.74-7.70 (m, LH), 7.46 (d, 2H, J = 7.8 Hz),
7.39-7.34 (m, 2H), 7.26-7.22 (m, 1H), 1.98 (s, 3H).

169.4, 153.4, 141.3, 141.0, 137.6, 130.3, 128.4, 128.1,
126.6, 126.2, 126.1, 124.6, 124.3, 120.9, 22.4.

3059 (m), 2932 (w), 1680 (s), 1495 (s), 1370 (s).

calc'd for C17H15N20 [M+H]*: 263.1179,
found: 263.1172.

TLC (50% EtOAc in hexanes), Rf: 0.24 (UV).
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0

Me N'Ph
H

1c

Tf20, 2-FPyr, CH2CI2;

quinoline N-oxide
-78 - 23 *C

33%

0

Me N'Ph

NA

| - 3cb

N-(Quinolin-2-yl)-N-phenylacetamide (3ch, Table 2):
Trifluoromethanesulfonic anhydride (57.7 [tL, 0.343 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylacetamide (1c, 42.1 mg, 0.311 mmol, 1 equiv) and 2-fluoropyridine (32.1
tL, 0.374 mmol, 1.20 equiv) in dichloromethane (1.75 mL) at -78 'C. After 2 min, the reaction

mixture was allowed to warm to 0 'C. After 5 min, quinoline N-oxide (90.4 mg, 0.623 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (20 -- 30% ethyl acetate in
hexanes) to afford the amide 3cb (26.7 mg, 33%).

H NMR (300 MHz, CDCl 3, 20 'C) 6: 8.13 (d, 1H, 8.7 Hz), 7.98 (d, 1H, 8.4 Hz), 7.80 (d,
= 7.8 Hz), 7.73-7.65 (m, 1H), 7.56-7.50 (m, 1H),
7.29 (m, 6H), 2.27 (s, 3H).

1H, J
7.46-

3 C NMR (75 MHz, CDCl 3, 20 'C) 8:

FTIR (neat) cm 1

HRMS (ESI):

171.6, 154.6, 147.1, 141.9, 138.2, 130.0, 129.6, 129.1,
128.6, 127.7, 127.5, 126.8, 126.7, 119.7, 24.7.

3062 (m), 2927 (w), 1682 (s), 1593 (s), 1501 (s), 1292
(s).

calc'd for C17Hi5N20 [M+H]*: 263.1179,
found: 263.1168.

TLC (70% EtOAc in hexanes), Rf: 0.64 (UV).
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Me N'Ph
H

1C

Tf20, 2,6-lut, CH 2CI 2;

pyridine N-oxide
-78 - 23 *C

67%

Me N'Ph

N-

3cc

N-(Pyridin-2-yl)-N-phenylacetamide 8 (3cc, Table 2):
Trifluoromethanesulfonic anhydride (48.3 [tL, 0.287 mmol, 1.10 equiv) was added via syringe

to a solution of N-phenylacetamide (1c, 35.3 mg, 0.261 mmol, 1 equiv) and 2,6-lutidine (36.5 [tL,
0.313 mmol, 1.20 equiv) in dichloromethane (1.75 mL) at -78 'C. After 2 min, the reaction mixture
was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (49.7 mg, 0.522 mmol, 2.00 equiv) was
added as a solid under an argon atmosphere. After 5 min, the resulting mixture was allowed to warm
to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the trifluoromethanesulfonate salts,
and the mixture was diluted by the addition of dichloromethane (10 mL). The reaction mixture was
washed with brine (10 mL), and the layers were separated. The aqueous layer was extracted with
dichloromethane (2 x 5 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on silica
3cc 8 (42.1 mg, 67%).

H NMR (500 MHz, CDCl3, 20 'C) 5:

13C NMR (125 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm-1

HRMS (ESI):

TLC (70% EtOAc in hexanes), Rf:

gel (0 -- 50% ethyl acetate in hexanes) to afford the amide

8.44 (d, 1H, J= 5.0 Hz), 7.75-7.70 (m, 1H), 7.48 (d, 1H,
J= 7.5 Hz), 7.45-7.40 (m, 2H), 7.35 (d, 1H, J= 7.5 Hz),
7.32-7.29 (m, 2H), 7.16-7.12 (m, 1H), 2.12 (s, 3H,).

171.2, 155.4, 149.0, 142.2, 138.1, 129.7, 128.6, 127.8,
121.7, 121.4, 24.5.

3058 (w), 2920 (w), 1678 (s), 1585 (s), 1433 (s).

calc'd for C13H13N20 [M+H]*: 213.1022,
found: 213.1023.

0.35 (UV).

8 Manley, P. J.; Bilodeau, M. T. Org. Lett. 2002, 4, 3127.
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Ph N'Me
H

1d

Tf20, 2-FPyr, CH2CI2;

isoquinoline N-oxide
-78 - 23 'C

100%

0

Ph N'Me

N

3da

N-(Isoguinolin-1-yl)-N-methylbenzamide (3da, Table 2):
Trifluoromethanesulfonic anhydride (55.7 [tL, 0.331 mmol, 1.10 equiv) was added via syringe

to a solution of N-methylbenzamide (1d, 40.7 mg, 0.301 mmol, 1 equiv) and 2-fluoropyridine (31.0
[tL, 0.361 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 0C. After 2 min, the reaction
mixture was allowed to warm to 0 0C. After 5 min, isoquinoline N-oxide (87.4 mg, 0.602 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (30 -+ 50% ethyl acetate in
hexanes) to afford the amide 3da (79.0 mg, 100%).

'H NMR (300 MHz, CDCl3, 20 'C) 8:

3C NMR (75 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm-1:

HRMS (ESI):

8.31 (d, 1H, J= 5.5 Hz), 7.99 (d, 1H, J= 8.5 Hz), 7.78
(d, 1H, J= 8.5 Hz), 7.65-7.50 (m, 3H), 7.40-7.20 (m, 2
H), 7.15-6.90 (m, 3H), 3.63 (s, 3H).

171.8, 155.9, 141.5, 138.2, 136.2, 130.8, 130.0, 128.4,
128.1, 127.8, 127.3, 125.0, 124.5, 121.0, 37.2.

3058 (m), 2936 (w), 1651 (s), 1560 (s), 1363 (s).

calc'd for C17H 15N 20 [M+H]+: 263.1179,
found: 263.1179.

TLC (50% EtOAc in hexanes), Rf: 0.33 (UV).
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Ph N'Me
H

1d

Tf20, 2-FPyr, CH2CI2;

quinoline N-oxide
-78 - 23 *C

65%

0

Ph N'Me

S- 3db

N-(Quinolin-2-yl)-N-methylbenzamide (3db, Table 2):
Trifluoromethanesulfonic anhydride (41.9 tL, 0.249 mmol, 1.10 equiv) was added via syringe

to a solution of N-methylbenzamide (1d, 30.6 mg, 0.226 mmol, 1 equiv) and 2-fluoropyridine (23.4
[L, 0.272 mmol, 1.20 equiv) in dichloromethane (2.0 mL) at -78 'C. After 2 min, the reaction
mixture was allowed to warm to 0 'C. After 5 min, quinoline N-oxide (65.7 mg, 0.453 mmol, 2.00
equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (10 -> 30% ethyl acetate in
hexanes) to afford the amide 3db (38.4 mg, 65%).

IH NMR (500 MHz, CDCl 3, 20 'C) 8:

13 C NMR (75 MHz, CDCl 3, 20 'C) 6:

FTIR (neat) cm-1

HRMS (ESI):

7.97 (d, 1H, J= 9.0 Hz), 7.84 (d, 1H, J= 9.0 Hz), 7.73-
7.69 (m, 2H), 7.52-7.48 (m, 1H), 7.45-7.42 (m, 2H),
7.35-7.31 (m, 1H), 7.25-7.21 (m, 2H), 6.91 (d, 1H, J=
9.0 Hz), 3.74 (s, 3H).

171.6, 156.0, 147.1, 137.1, 136.3, 130.7, 130.2, 128.9,
128.7, 128.4, 127.6, 126.5, 126.0, 120.3, 36.4.

3050 (m), 2918 (m), 1652 (s), 1595 (s), 1502 (m).

calc'd for C17Hi 5N20 [M+H]*: 263.1179,
found: 263.1182.

TLC (70% EtOAc in hexanes), Rf: 0.71 (UV).
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Ph N'Me
H

1d

Tf20, 2,6-lut, CH2CI2 ;

pyridine N-oxide
-78 - 23 'C

73%

0

Ph N'Me

N-

3dc

N-(Pyridin-2-yl)-N-methylbenzamide8 (3dc, Table 2):
Trifluoromethanesulfonic anhydride (48.1 tL, 0.286 mmol, 1.10 equiv) was added via syringe

to a solution of N-methylbenzamide (1d, 35.1 mg, 0.260 mmol, 1 equiv) and 2,6-lutidine (36.3 tL,
0.312 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction mixture
was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (49.4 mg, 0.519 mmol, 2.00 equiv) was
added as a solid under an argon atmosphere. After 5 min, the resulting mixture was allowed to warm
to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the trifluoromethanesulfonate salts,
and the mixture was diluted by the addition of dichloromethane (10 mL). The reaction mixture was
washed with brine (10 mL), and the layers were separated. The aqueous layer was extracted with
dichloromethane (2 x 5 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on silica
3dC (40.4 mg, 73%).

IH NMR (500 MHz, CDCl3, 20 'C) 8:

13C NMR (125 MHz, CDCl3, 20 'C) 6:

FTIR (neat) cm 1

HRMS (ESI):

TLC (70% EtOAc in hexanes), Rf:

gel (0 -+ 50% ethyl acetate in hexanes) to afford the amide

8.46-8.44 (m, 1H), 7.46-7.42 (m, 1H), 7.36-7.29 (m,
3H), 7.25-7.20 (m, 2H), 7.06-7.02 (m, 1H), 6.81 (d, 1H,
J= 8.0 Hz), 3.60 (s, 3H).

171.2, 156.9, 148.9, 137.5, 136.2, 130.3, 128.7, 128.2,
121.8, 121.1, 36.2.

3058 (w), 2931 (w), 1651 (s), 1587 (s), 1359 (s).

calc'd for C13H 13N 20 [M+H]*: 213.1022,
found: 213.1022.

0.45 (UV).
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NI H
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le

Tf20, 2-FPyr, CH2CI2;

isoquinoline N-oxide
-78 -+ 23 *C

77%

o / OMe

N

Br N

3ea

4 -Bromo-N-(isoquinolin-1-yl)-N-(4-methoxyphenyl)benzamide (3ea, Table 2):
Trifluoromethanesulfonic anhydride (32.0 [tL, 0.190 mmol, 1.10 equiv) was added via syringe

to a solution of 4-bromo-N-(4-methoxyphenyl)benzamide 9 (le, 52.9 mg, 0.173 mmol, 1 equiv) and 2-
fluoropyridine (17.9 iL, 0.208 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, isoquinoline N-oxide (50.2 mg,
0.346 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (10 -- 50% ethyl acetate in
hexanes) to afford the amide 3ea (57.7 mg, 77%).

IH NMR (300 MHz, CDCl 3, 20 'C) 6:

13 C NMR (125 MHz, (D 3C) 2 SO, 20 'C) 8:

FTIR (neat) cm 1

HRMS (ESI):

TLC (50% EtOAc in hexanes), Rf:

8.34 (d, 1H, J= 4.8 Hz), 8.15 (d, 1H, J= 8.1 Hz), 7.85
(d, 1H, J= 8.1 Hz), 7.72-7.56 (m, 3H), 7.46-7.24 (in,
4H), 7.20 (d, 2H, J= 7.8 Hz), 6.83 (d, 2H, J= 8.7 Hz),
3.76 (s, 3H).

169.3, 157.4, 153.7, 140.8, 137.5, 135.0, 134.8, 130.4,
130.2, 129.5, 128.0, 127.5, 126.6, 124.2, 124.2, 123.2,
120.5, 114.0, 54.9.

3057 (m), 2933 (w), 1660 (s), 1509 (s), 1248 (s).

calc'd for C2 3Hi 8BrN2 0 2 [M+H]*: 433.0546,
found: 433.0545.

0.45 (UV).

9 Yang, K.; He, X.; Ha-soon, C.; Wang, Z.; Woodmansee, D. H.; Liu, H. Tetrahedron Lett. 2008, 49, 1725.
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Br
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Tf20, 2-FPyr, CH2C2;

quinoline N-oxide
-78 - 23 'C

43%

o N OMe

NN

Br N

|./ 3eb

4 -Bromo-N-(guinolin-2-y)-N-(4-methoxyphenyl)benzamide (3eb, Table 2):
Trifluoromethanesulfonic anhydride (30.8 [tL, 0.183 mmol, 1.10 equiv) was added via syringe

to a solution of 4-bromo-N-(4-methoxyphenyl)benzamide 9 (1e, 51.0 mg, 0.167 mmol, 1 equiv) and 2-
fluoropyridine (17.2 tL, 0.200 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, quinoline N-oxide (48.3 mg,
0.333 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column
hexanes) to afford the amide 3eb (30.7 mg,

IH NMR (500 MHz, CDCl 3, 20 'C) 6:

13C NMR (75 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm 1:

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

chromatography on silica gel (5 -- 30% ethyl acetate in
43%).

8.08 (d, 1H, J= Hz), 7.78-7.72 (m, 1H), 7.65-7.58 (in,
1H), 7.54-7.46 (m, 1H), 7.42-7.25 (m, 6H), 7.18-7.12
(m, 2H), 6.95-6.83 (m, 2H), 3.79 (s, 3H).

170.7, 158.6, 155.3, 147.1, 138.3, 135.4, 135.1, 131.4,
130.8, 130.1, 129.2, 129.0, 127.5, 126.7, 126.5, 125.0,
119.5, 114.8, 55.6.

3062 (w), 2956 (w), 1663 (s), 1509 (s), 1247 (s).

calc'd for C23H18BrN20 2 [M+H]*: 433.0546,
found: 433.0546.

0.39 (UV).
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4-Bromo-N-(pyridin-2-yl)-N-(4-methoxyphenyl)benzamide (3ec, Table 2):
Trifluoromethanesulfonic anhydride (37.4 tL, 0.222 mmol, 1.10 equiv) was added via syringe

to a solution of 4-bromo-N-(4-methoxyphenyl)benzamide 9 (le, 61.8 mg, 0.202 mmol, 1 equiv) and 2-
fluoropyridine (20.8 ptL, 0.242 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (38.4 mg,
0.404 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (20 -- 30% ethyl acetate in
hexanes) to afford the amide 3ec (29.9 mg, 39%).

IH NMR (300 MHz, CDCl3, 20 'C) 8:

13C NMR (125 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm-1

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

8.39 (dd, 1H, J= 4.8, 1.5 Hz), 7.67 (dt, 1H, J= 8.1, 2.1
Hz), 7.40-7.32 (m, 4H), 7.24 (d, 1H, J= 8.1 Hz), 7.14-
7.07 (m, 3H), 6.85 (d, 2H, J= 8.7 Hz), 3.79 (s, 3H).

170.2, 158.5, 156.4, 149.2, 138.0, 135.3, 135.2, 131.4,
130.8, 129.1, 125.0, 121.5, 121.5, 114.8, 55.6.

3055 (m), 2933 (m), 1662 (s), 1509 (s), 1247 (s).

calc'd for C19HI 6BrN20 2 [M+H]*: 383.0390,
found: 383.0391.

0.14 (UV).
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-78 - 23 *C
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N-(Isoguinolin-1-yl)-N-isopropyl-4-nitrobenzamide (3fa, Table 2):
Trifluoromethanesulfonic anhydride (44.3 tL, 0.263 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-4-nitrobenzamidel (1f, 49.7 mg, 0.239 mmol, 1 equiv) and 2-
fluoropyridine (24.6 tL, 0.286 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, isoquinoline N-oxide (69.2 mg,
0.477 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (10 -+ 20% ethyl acetate in
hexanes) to afford the amide 3fa (72.0 mg, 90%).

IH NMR (500 MHz, CDCl 3, 20 'C) 6:

13C NMR (125 MHz, CDC13, 20 'C) 6:

FTIR (neat) cm 1:

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

8.43 (d, 1H, J= 5.5 Hz), 7.92 (d, 1H, J= 8.5 Hz), 7.78
(d, 2H, J= 8.5 Hz), 7.72 (d, 1H, J= 8.0 Hz), 7.63-7.54
(m, 3H), 7.39 (d, 2H, J= 8.5 Hz), 5.15-5.05 (m, 1H),
1.65 (d, 3H, J= 6.5 Hz), 1.14 (d, 3H, J= 6.5 Hz).

168.8, 152.9, 147.9, 143.5, 141.5, 138.1, 131.0, 128.9,
128.6, 127.4, 127.2, 124.6, 122.8, 121.7, 50.9, 22.2,
19.7.

3057 (w), 2977 (m), 1651 (s), 1523 (s), 1346 (s).

calc'd for C19H18N30 3 [M+H]*: 336.1343,
found: 336.1353.

0.30 (UV).

to Van den Hoven, B. G.; Alper, H. J. Am. Chem. Soc. 2001, 123, 10214.
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N-(Pyridin-2-yl)-N-isopropyl-4-nitrobenzamide (3fc, Table 2):
Trifluoromethanesulfonic anhydride (45.1 tL, 0.268 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-4-nitrobenzamidel (If, 50.7 mg, 0.244 mmol, 1 equiv) and 2-
fluoropyridine (25.1 iL, 0.292 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (46.3 mg,
0.487 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 ptL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (0 -> 20% ethyl acetate in
hexanes) to afford the amide 3fc (51.6 mg, 74%).

'H NMR (500 MHz, CDCl 3, 20 'C) 6:

13C NMR (125 MHz, CDCl3, 20 'C) 6:

FTIR (neat) cm-1:

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

8.47-8.43 (in, 1H), 8.01 (d, 2H, J= 8.4 Hz), 7.56-7.48
(in, 1H), 7.43 (d, 2H, J= 8.4 Hz), 7.16-7.10 (m, 1H),
6.86 (d, 1H, J= 8.1 Hz), 5.12-4.98 (m, 1H), 1.34 (d, 6H,
J= 6.9 Hz).

168.3, 153.7, 149.5, 148.0, 143.5, 138.0, 129.3, 124.8,
123.2, 122.9, 49.3, 21.1.

3075 (w), 2976 (m), 1651 (s), 1522 (s), 1346 (s).

calc'd for C15Hi 6N 30 3 [M+H]*: 286.1186,
found: 286.1182.

0.21 (UV).
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N-(Isoguinolin-1-yl)-N-isopropyl-3,4-dimethoxybenzamide (3ga, Table 2):
Trifluoromethanesulfonic anhydride (41.9 [tL, 0.249 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-3,4-dimethoxybenzamide 1 (1g, 50.5 mg, 0.226 mmol, 1 equiv) and 2-
fluoropyridine (23.3 [tL, 0.271 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at 0 'C. After 7 min,
isoquinoline N-oxide (65.7 mg, 0.452 mmol, 2.00 equiv) was added as a solid under an argon
atmosphere. After 5 min, the resulting mixture was allowed to warm to 23 'C. After 4 h,
triethylamine (100 tL) was added to quench the trifluoromethanesulfonate salts, and the mixture was
diluted by the addition of dichloromethane (10 mL). The reaction mixture was washed with brine (10
mL), and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 5
mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and
were concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel (50% ethyl acetate in hexanes) to afford the amide 3ga (75.3 mg, 95%).

'H NMR (500 MHz, CDCl3, 20 'C) 6:

13C NMR (125 MHz, CDCl3, 20 'C) 6:

FTIR (neat) cm 1:

HRMS (ESI):

TLC (70% EtOAc in hexanes), Rf:

8.45 ( d, 1H, J= 5.5 Hz), 7.93 (d, 1H, J= 8.5 Hz), 7.72
(d, 1H, J= 8.0 Hz), 7.59-7.53 (m, 2H), 7.51-7.46 (m,
1H), 6.91 (d, 1H, J= 8.5 Hz), 6.79 (s, 1H), 6.43 (d, 1H,
J = 8.5 Hz), 5.19-5.07 (m, 1H), 3.65 (s, 3H), 3.56 (s,
3H), 1.63 (br s, 3H), 1.13 (br s, 3H).

170.5, 154.6, 150.0, 147.7, 141.3, 138.1, 130.6, 130.0,
128.1, 127.5, 127.1, 125.3, 122.1, 121.1, 111.6, 109.9,
55.8, 55.8, 50.8, 22.5, 19.8.

3057 (w), 2971 (m), 2934 (m), 1640 (s), 1516 (s), 1264
(s).

calc'd for C 2 1H 2 3N 2 0 3 [M+H]*: 351.1703,
found: 351.1703.

0.46 (UV).

" AIjundi, F.; Hannig, E.; Boehm, R. Pharmazie 1973, 28, 362.
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N-(Quinolin-2-yl)-N-isopropyl-3,4-dimethoxybenzamide (3gb, Table 2):
Trifluoromethanesulfonic anhydride (40.6 [tL, 0.241 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-3,4-dimethoxybenzamide" (1g, 49.0 mg, 0.219 mmol, 1 equiv) and 2-

fluoropyridine (22.6 [tL, 0.263 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at 0 'C. After 7 min,
quinoline N-oxide (63.7 mg, 0.439 mmol, 2.00 equiv) was added as a solid under an argon
atmosphere. After 5 min, the resulting mixture was allowed to warm to 23 'C. After 4 h,

triethylamine (100 [tL) was added to quench the trifluoromethanesulfonate salts, and the mixture was
diluted by the addition of dichloromethane (10 mL). The reaction mixture was washed with brine (10
mL), and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 5
mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and
were concentrated under reduced pressure. The residue was purified by flash column

chromatography on silica gel (20 - 50% ethyl acetate in hexanes) to afford the amide 3gb (23.1 mg,
30%).

'H NMR (300 MHz, CDCl3, 20 'C) 8:

13C NMR (125 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm-1

HRMS (ESI):

8.03 (d, 1H, J= 9.0 Hz), 7.85 (d, 1H, J= 8.7 Hz), 7.76-
7.68 (m, 2H), 7.52 (dt, 1H, J= 6.9, 1.2 Hz), 6.98-6.89
(m, 2H), 6.80 (d, 1H, J= 8.7 Hz), 6.54 (d, 1H, J= 8.4
Hz), 5.25-5.15 (m, 1H), 3.75 (s, 3H), 3.56 (s, 3H), 1.43
(d, 6H, J= 6.9 Hz).

170.0, 155.2, 150.4, 148.2, 147.2, 137.2, 130.1, 129.6,
129.2, 127.5, 126.8, 126.3, 123.2, 122.8, 112.2, 110.1,
55.9, 55.8, 50.2, 21.3.

3063 (w), 2969 (m), 2934 (in), 1647 (s), 1594 (s), 1264

(s).

calc'd for C 2 1H 2 3N 2 0 3 [M+H]*: 351.1703,
found: 351.1702.

TLC (70% EtOAc in hexanes), Rf: 0.52 (UV).

45



0

MeO N')Pr

I H
MeO

1g

Tf20, 2-FPyr, CH2CI2;

pyridine N-oxide
0 - 23 *C

48%

0
MeO N' Pr

MeO N
'3g

3gc

N-(Pyridin-2-yl)-N-isopropyl-3,4-dimethoxybenzamide (3gc, Table 2):
Trifluoromethanesulfonic anhydride (40.9 tL, 0.243 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-3,4-dimethoxybenzamide 1 (1g, 49.3 mg, 0.221 mmol, 1 equiv) and 2-

fluoropyridine (22.8 [L, 0.265 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at 0 'C. After 7 min,
pyridine N-oxide (42.0 mg, 0.442 mmol, 2.00 equiv) was added as a solid under an argon
atmosphere. After 5 min, the resulting mixture was allowed to warm to 23 'C. After 4 h,
triethylamine (100 [tL) was added to quench the trifluoromethanesulfonate salts, and the mixture was

diluted by the addition of dichloromethane (10 mL). The reaction mixture was washed with brine (10

mL), and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 5

mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and
were concentrated under reduced pressure. The residue was purified by flash column

chromatography on alumina (30 -- 40% ethyl acetate in hexanes) to afford the amide 3gc (31.8 mg,
48%).

IH NMR (500 MHz, CDCl 3, 20 'C) b:

13C NMR (125 MHz, CDCl3, 20 'C) 8:

FTIR (neat) cm 1

HRMS (ESI):

8.54-8.47 (m, 1H), 7.51-7.44 (m, 1H), 7.13-7.07 (m,
1H), 6.91-6.83 (m, 2H), 6.75 (d, 1H, J= 8.4 Hz), 6.61
(d, 1H, J = 8.7 Hz), 5.13-5.00 (m, 1H), 3.80 (s, 3H),
3.70 (s, 3H), 1.34 (d, 6H, J= 7.2 Hz).

170.0, 155.7, 150.3, 149.0, 148.2, 137.7, 129.6, 125.2,
122.5, 121.9, 112.1, 110.1, 56.0, 55.9, 49.5, 21.2.

2970 (m), 2934 (m), 1643 (s), 1585 (s), 1270 (s).

calc'd for C 1 7H2 1N 2 0 3 [M+H]*: 301.1547,
found: 301.1534.

TLC (70% EtOAc in hexanes), Rf: 0.27 (UV).
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N-Cyclohexenyl-N-(isoguinolin-1-yl)-2-methylbutanamide (3ha, Table 2):
Trifluoromethanesulfonic anhydride (50.2 [tL, 0.298 mmol, 1.10 equiv) was added via syringe

to a solution of (±)-N-cyclohexenyl-2-methylbutanamide1 2 (1h, 49.1 mg, 0.271 mmol, 1 equiv) and 2-
fluoropyridine (27.9 iL, 0.325 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, isoquinoline N-oxide (78.7 mg,
0.542 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 iL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (10 -+ 50% ethyl acetate in
hexanes) to afford the amide 3ha (77.7 mg, 93%).

IH NMR (500 MHz, (D 3C) 2SO, 100 'C) 6:

13C NMR (125 MHz, (D 3C)2 SO, 100 'C) 6:

FTIR (neat) cm-1

HRMS (ESI):

TLC (50% EtOAc in hexanes), Rf:

8.40 (d, 1H, J= 5.7 Hz), 8.06-7.96 (m, 2H), 7.85-7.76
(in, 2H), 7.74-7.67 (m, 1H), 5.67 (br s, 1H), 2.99 (br s,
1H), 2.51-2.20 (m, 3H), 2.12-1.83 (m, 2H), 1.75-1.25
(m, 5H), 1.06 (d, 3H, J = 6.4 Hz), 0.83 (t, 3H, J= 7.3
Hz).

175.7, 153.4, 140.8, 139.0, 137.3, 130.1, 128.7, 127.7,
126.6, 124.8, 124.2, 120.4, 27.9, 26.4, 24.8, 23.8, 22.0,
20.7, 17.0, 11.0.

3055 (w), 2964 (s), 1673 (s), 1461 (m), 1384 (s).

calc'd for C20H 25N 20 [M+H]*: 309.1961,
found: 309.1949.

0.61 (UV).

12 Movassaghi, M.; Hill, M. D.; Ahmad, 0. K. J. Am. Chem. Soc. 2007, 129, 10096.

47

0

Me N
Me H

1h



Me N
Me

1h

Tf20, 2-FPyr, CH2CI2;
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-78 - 23 *C
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N-Cyclohexenyl-2-methyl-N-(guinolin-2-yl)butanamide (3hb, Table 2):
Trifluoromethanesulfonic anhydride (51.3 tL, 0.3 05 mmol, 1.10 equiv) was added via syringe

to a solution of N-cyclohexenyl-2-methylbutanamide12 (1h, 50.2 mg, 0.277 mmol, 1 equiv) and 2-
fluoropyridine (28.5 tL, 0.332 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, quinoline N-oxide (80.4 mg,
0.554 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (5 -- 30% ethyl acetate in
hexanes) to afford the amide 3hb as an equal mixture of atropisomers (65.7 mg, 77%).

H NMR (300 MHz, CDCl3, 20 'C, equal mixture of atropisomers) 8: 8.70 (d, 1H, J= 2.7 Hz), 8.12-
8.03 (m, 2H), 7.98-7.93 (m, 1H), 7.85-7.81 (m, 1H),
7.80-7.74 (m, 2H), 7.70-7.59 (m, 2H), 7.54-7.45 (m,
3H), 5.78-5.73 (m, 1H), 4.85-4.80 (m, 1H), 2.97-2.73
(m, 2H), 2.37-2.26 (m, 2H), 2.23-2.14 (m, 2H), 2.09-
2.00 (m, 2H), 1.97-1.40 (m, 14H), 1.33 (d, 3H, J= 6.9
Hz), 1.22 (d, 3H, J= 6.9 Hz), 1.03 (t, 3H, J= 7.5 Hz),
0.92 (t, 3H, J= 7.5 Hz).

13 C NMR (75 MHz, CDCl3, 20 'C, equal mixture of atropisomers) 6:
147.1, 146.9, 145.5, 142.7,
129.0, 128.7, 128.5, 127.7,
126.2, 126.0, 119.3, 108.4,
27.2, 25.1, 24.3, 23.0, 22.8,
12.4.

178.5, 164.8, 154.3, 147.4,
139.7, 137.6, 129.7, 129.2,
127.6, 127.4, 127.0, 126.5,

40.4, 35.8, 29.2, 29.1, 28.1,
22.4, 21.8, 19.1, 18.3, 12.7,

FTIR (neat) cm-1: 3060 (w), 2963 (s), 1683 (s), 1597 (s), 1502 (s), 1225
(s).

HRMS (ESI): calc'd for C20H25N20 [M+H]: 309.1961,
found: 309.1961.

TLC (30% EtOAc in hexanes), Rf: 0.67 (UV).
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N-Cyclohexenyl-2-methyl-N-(pyridin-2-yl)butanamide (3hc, Table 2):
Trifluoromethanesulfonic anhydride (46.1 [tL, 0.274 mmol, 1.10 equiv) was added via syringe

to a solution of N-cyclohexenyl-2-methylbutanamide 2 (1h, 45.1 mg, 0.249 mmol, 1 equiv) and 2,6-
lutidine (34.8 [tL, 0.299 mmol, 1.20 equiv) in dichloromethane (1.75 mL) at -78 'C. After 2 min, the
reaction mixture was allowed to warm to 0 'C. After 5 min, pyridine N-oxide (47.3 mg, 0.498 mmol,
2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (0 -> 30% ethyl acetate in
hexanes) to afford the amide 3hc (27.3 mg, 42%).

'H NMR (500 MHz, CDCl3, 20 'C) 8:

13C NMR (125 MHz, CDCl 3, 20 'C) 8:

FTIR (neat) cm 1

HRMS (ESI):

TLC (30% EtOAc in hexanes), Rf:

8.47-8.43 (in, 1H), 7.71-7.65 (m, 1H), 7.42 (d, 1H, J=
7.3 Hz), 7.14-7.09 (m, 1H), 5.77 (br s, 1H), 2.71 (br s,
1H), 2.19 (br s, 4H), 1.84-1.58 (m, 5H), 1.48-1.38 (m,
1H), 1.17 (d, 3H, J= 6.7 Hz), 0.92 (t, 3H, J= 7.4 Hz).

177.8, 154.8, 148.9, 139.4, 137.7, 127.5, 121.3, 121.1,
40.0, 29.1, 28.1, 25.1, 23.0, 21.8, 18.4, 12.4.

2933 (in), 2875 (w), 1667 (s), 1586 (s), 1432 (s).

calc'd for Ci 6H23N20 [M+H]*: 259.1805,
found: 259.1812.

0.25 (UV).
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Me Tf20, 2-FPyr, CH2CI2; Me N
Me isoquinoline N-oxide MeN

1h, 98% ee -78 - 23 *

88% (+)-3ha, 98% ee

(S)-(+)-N-Cyclohexenyl-N-(isoquinolin-1-yl)-2-methylbutanamide ((+)-3ha, Equation 1):
Trifluoromethanesulfonic anhydride (44.1 [tL, 0.262 mmol, 1.10 equiv) was added via syringe

to a solution of (S)-N-cyclohexenyl-2-methylbutanamide 12 (1h, 43.2 mg, 0.238 mmol, 1 equiv) and 2-

fluoropyridine (24.6 tL, 0.286 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, isoquinoline N-oxide (69.2 mg,
0.477 mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting

mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The

aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.

The residue was purified by flash column chromatography on silica gel (10 -+ 50% ethyl acetate in

hexanes) to afford the amide (+)-3ha (77.7 mg, 93%). The enantiomeric excess of the product amide
was determined to be 98% by chiral HPLC analysis [Whelk-O (R,R); 0.5 mL/min; 3% 'PrOH in

hexanes; tR (minor) = 69.3 min, tR (major) = 74.5 min]. The enantiomeric excess of the starting
material amide was determined to be 98% by chiral HPLC analysis [Whelk-O (S,S); 0.8 mL/min; 3%
'PrOH in hexanes; tR (major) = 37.7 min, tR (minor) = 42.3 min]. (S)-(+)-3ha: [a] 2 0 D = +98.3 (c 0.480,
CHCl3). See page 47 for complete characterization data for amide 3ha.
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Tf20, 2-FPyr, CH2CI2;

4-methoxypyridine
N-oxide

-78 - 23 *C

75%

0

Ph N'Me

PhN

OMe
3dd

N-(4-Methoxypyridin-2-yl)-N-methylbenzamide (3dd, Equation 2):
Trifluoromethanesulfonic anhydride (46.0 ItL, 0.273 mmol, 1.10 equiv) was added via syringe

to a solution of N-methylbenzamide (ld, 33.6 mg, 0.249 mmol, 1 equiv) and 2-fluoropyridine (25.6
iL, 0.298 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction

mixture was allowed to warm to 0 'C. After 5 min, 4-methoxypyridine N-oxide (62.2 mg, 0.497
mmol, 2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting
mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL) was added to quench the
trifluoromethanesulfonate salts, and the mixture was diluted by the addition of dichloromethane (10
mL). The reaction mixture was washed with brine (10 mL), and the layers were separated. The
aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on alumina (10 -+ 20% ethyl acetate in
hexanes) to afford the amide 3dd (44.9 mg, 75%).

IH NMR (500 MHz, CDCl3, 20 'C) 6:

13C NMR (125 MHz, CDCl 3, 20 'C) 6:

FTIR (neat) cm-1

HRMS (ESI):

TLC (50% EtOAc in hexanes), Rf:

8.22 (d, 1H, J = 6.0 Hz), 7.38-7.28 (m, 3H), 7.26-7.20
(m, 2H), 6.57 (dd, 1H, J= 6.0, 2.5 Hz), 6.28 (d, 1H, J=
2.5 Hz), 3.56 (s, 3H), 3.55 (s, 3H).

171.2, 166.6, 158.4, 149.6, 136.3, 130.3, 128.5, 128.2,
108.4, 107.3, 55.4, 36.1.

3061 (w), 2941 (w), 1652 (s), 1595 (s), 1362 (s).

calc'd for C 14Hi 5N2 0 2 [M+H]+: 243.1128,
found: 243.1133.

0.28 (UV).
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Tf20, 2-FPyr, CH2Cl2;

4-nitropyridine
N-oxide

-78 - 23 'C

67%

0

Ph N'Me

Ph N

NO2
3de

N-(4-Nitropyridin-2-yl)-N-methylbenzamide (3de, Equation 3):
Trifluoromethanesulfonic anhydride (44.1 [tL, 0.262 mmol, 1.10 equiv) was added via syringe

to a solution of N-methylbenzamide (1d, 32.2 mg, 0.238 mmol, 1 equiv) and 2-fluoropyridine (24.6
tL, 0.286 mmol, 1.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction

mixture was allowed to warm to 0 'C. After 5 min, 4-nitropyridine N-oxide (66.7 mg, 0.476 mmol,
2.00 equiv) was added as a solid under an argon atmosphere. After 5 min, the resulting mixture was
allowed to warm to 23 'C. After 4 h, triethylamine (100 ptL) was added to quench the
trifluoromethanesulfonate salts, and the resulting mixture was concentrated under reduced pressure.13
The residue was purified by flash column chromatography on silica gel (10 -+ 30% ethyl acetate in
hexanes) to afford the amide 3de (40.8 mg, 67%).

'H NMR (500 MHz, CDCl3, 20 'C) 8: 8.66 (d, 1H, J= 5.0 Hz), 7.93
7.71 (m, 1H), 7.46-7.40 (m,
3.62 (s, 3H).

(d, 1H, J= 1.5 Hz), 7.75-
3H), 7.38-7.33 (m, 2H),

13C NMR (125 MHz, CDCl 3, 20 C) 6:

FTIR (neat) cm :

HRMS (ESI):

171.9, 158.3, 154.5, 150.3, 135.6, 131.2, 128.8, 128.3,
113.2, 112.7, 36.6.

3090 (w), 2923 (w), 1663 (s), 1534 (s), 1356 (s).

calc'd for C13H12N 3 0 3 [M+H]*: 258.0873,
found: 258.0883.

TLC (30% EtOAc in hexanes), Rf: 0.38 (UV).

13 In the case of amide 3de, aqueous work-up resulted in a decreased isolated yield (60%).
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Product Inhibition Studies:

0 0

N'' Pr Tf20, 2-FPyr, CH2Cl2; N Pr
H

O2N 3fa' 0 2N N --if isoquinoline N-oxide
-78 -+ 23 *C

92% 3fa

N-(Isoguinolin-1-yl)-N-isopropyl-4-nitrobenzamide:
Trifluoromethanesulfonic anhydride (22.6 [tL, 0.134 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-4-nitrobenzamide 0 (If, 25.4 mg, 0.122 mmol, 1 equiv) and 2-
fluoropyridine (12.5 tL, 0.146 mmol, 1.20 equiv) in dichloromethane (0.75 mL) at -78 'C. After 2
min, the reaction mixture was warmed to 0 'C. After 5 minutes, a solution of amide 3fa (38.2 mg,
0.114 mmol, 1.00 equiv) in dichloromethane (0.75 mL) was added via cannula followed by addition
of isoquinoline N-oxide (35.4 mg, 0.244 mmol, 2.00 equiv) as a solid under an argon atmosphere.
After 5 min, the reaction mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 [tL)
was added to quench the trifluoromethanesulfonate salts, and the mixture was diluted by the addition
of dichloromethane (10 mL). The reaction mixture was washed with brine (10 mL), and the layers
were separated. The aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on silica gel (10 -+
20% ethyl acetate in hexanes) to afford the amide 3fa (75.7 mg). This corresponded to 37.5 mg
(92%) of newly formed amide 3fa. See page 42 for complete characterization data for amide 3fa.

0 0

0 N Pr Tf20, 2-FPyr, CH2Cl2 O2 N N Pr
&2  - 3fc, &'.

1f pyridine N-oxide 0 2 N N
-78 - 23 C

33% 3fc

N-(Pyridin-2-yl)-N-isopropyl-4-nitrobenzamide:
Trifluoromethanesulfonic anhydride (33.5 [tL, 0.199 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-4-nitrobenzamidel 0 (If, 37.7 mg, 0.181 mmol, 1 equiv) and 2-
fluoropyridine (18.6 tL, 0.217 mmol, 1.20 equiv) in dichloromethane (0.75 mL) at -78 'C. After 2
min, the reaction mixture was warmed to 0 'C. After 5 minutes, a solution of amide 3fc (51.6 mg,
0.181 mmol, 1.00 equiv) in dichloromethane (1.0 mL) was added via cannula followed by addition of
pyridine N-oxide (34.4 mg, 0.362 mmol, 2.00 equiv) as a solid under an argon atmosphere. After 5
min, the reaction mixture was allowed to warm to 23 'C. After 4 h, triethylamine (100 tL) was
added to quench the trifluoromethanesulfonate salts, and the mixture was diluted by the addition of
dichloromethane (10 mL). The reaction mixture was washed with brine (10 mL), and the layers were
separated. The aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on silica gel (15 ->
20% ethyl acetate in hexanes) to afford the amide 3fc (68.8 mg). This corresponded to 17.2 mg
(33%) of newly formed amide 3fc. See page 43 for complete characterization data for amide 3fc.
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React-IR Monitoring of Reactions:
All reactions were performed in a reaction vessel under an atmosphere of argon with the

React-IR probe completely submerged in the reaction mixture.

0 0

Ph N'Me Tf20, 2-FPyr, CH2C2 Ph N'Me
H

1d isoquinoline N-oxide N-78 - 23 C 

85% 3da

In situ IR Analysis of the Conversion of Amide ld to Amide 3da:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (70.0 tL, 0.416

mmol, 1.1 equiv) via syringe to a solution of N-methylbenzamide (1d, 51.1 mg, 0.378 mmol, 1 equiv)
and 2-fluoropyridine (39.0 [tL, 0.454 mmol, 1.2 equiv) in dichloromethane (4.5 mL) at 0 'C revealed
within 1 min complete consumption of the starting material amide (cm-1) and appearance of a
persistent absorption at 2370 cm I, corresponding to an activated compound. After 5 min,
isoquinoline N-oxide (109.8 mg, 0.756 mmol, 2.00 equiv) was added as a solid, resulting in
immediate consumption of the activated compound and appearance of a persistent absorption at 1691
cm , corresponding to a protonated amide 3da. After 3 h, triethylamine (100 iL) was added to
quench the trifluoromethanesulfonate salts, and the mixture was diluted by the addition of
dichloromethane (10 mL). The reaction mixture was washed with brine (10 mL), and the layers were
separated. The aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on silica gel (30 -

50% ethyl acetate in hexanes) to afford the amide 3da (84.3 mg, 85%).
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React-IR Control Experiments:

Assignment of the 2-fluoropyridine and the 2-fluoropyridinium trifluoromethanesulfonate
characteristic stretches:

In situ IR monitoring of the addition of trifluoromethanesulfonic acid (26.8 [tL, 0.303 mmol,
1.00 equiv) to a solution of 2-fluoropyridine (26.0 RL, 0.303 mmol, 1 equiv, 1598 cm 1) in
dichloromethane (3.5 mL) at 0 'C resulted in formation of the expected 2-fluoropyridinium
trifluoromethanesulfonate salt (1632 cm ).

Assignment of the isoquinoline N-oxide and N-hydroxyisoquinolium trifluoromethanesulfonate
characteristic stretches.

In situ IR monitoring of the addition of trifluoromethanesulfonic acid (36.2 [tL, 0.409 mmol,
1.00 equiv) to a solution of isoquinoline N-oxide (59.3 mg, 0.409 mmol, 1 equiv, 1327 cm-1) in
dichloromethane (3.5 mL) at 0 'C resulted in formation of the expected N-hydroxyisoquinolium
trifluoromethanesulfonate salt (1309 cm-1).

Assignment of Protonated, Trifluoromethanesulfonate Salt Derivatives of N-(isoquinolin-1-yl)-N-
methylbenzamide 3da:

In situ IR monitoring of the addition of trifluoromethanesulfonic acid (28.1 [tL, 0.317 mmol,
1.00 equiv) to a solution of N-(isoquinolin-1-yl)-N-methylbenzamide (3da, 83.1 mg, 0.317 mmol, 1
equiv, 1648 cm-1) in dichloromethane (3.5 mL) at 0 'C resulted in consumption of the amide 3da and
formation of the expected trifluoromethanesulfonate salt (1649 cm-1). Further addition of
trifluoromethanesulfonic acid (28.1 [tL, 0.317 mmol, 1.00 equiv) resulted in disappearance of the
absorption at 1649 cm 1 and appearance of a strong absorption at 1691 cm-1, corresponding to the
doubly protonated amide ditrifluoromethanesulfonate salt.
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React-IR Monitoring of Activated Amides:

Activation of N-methylbenzamide and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (52.0 [tL, 0.309

mmol, 1.10 equiv) to a vigorously stirred solution of N-methylbenzamide (38.0 mg, 0.281 mmol, 1
equiv, 1668 cm1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption of the
starting material and appearance of a strong absorption consistent with a nitrilium
trifluoromethanesulfonate salt (2370 cm-1). Addition of 2-fluoropyridine (29.0 [tL, 0.337 mmol, 1.20
equiv) resulted in a drastic increase in the intensity of this absorption. Further addition of 2-
fluoropyridine (24.1 tL, 0.281 mmol, 1.00 equiv) had no significant effect on the intensity of this
absorption. Subsequent addition of 2-fluoropyridine (67.6 [tL, 0.787 mmol, 2.80 equiv) had no
significant effect on the intensity of the absorption at 2370 cm 1. Addition of triethylamine (47.0 [tL,
0.337 mmol, 1.20 equiv) resulted in a significant decrease in intensity of this absorption.

Activation of N-methylbenzamide and addition of 2-chloropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (67.1 [tL, 0.399

mmol, 1.10 equiv) to a vigorously stirred solution of N-methylbenzamide (49.0 mg, 0.363 mmol, 1
equiv, 1668 cm-1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption of the
starting material and appearance of a strong absorption consistent with a nitrilium
trifluoromethanesulfonate salt (2370 cm '). Addition of 2-chloropyridine (41.2 [tL, 0.435 mmol, 1.20
equiv) resulted in a drastic increase in the intensity of this absorption. Further addition of 2-
chloropyridine (34.3 tL, 0.363 mmol, 1.00 equiv) had no significant effect on the intensity of this
absorption. Subsequent addition of 2-chloropyridine (96.0 tL, 1.01 mmol, 2.80 equiv) had no
significant effect on the intensity of the absorption at 2370 cm- . Addition of triethylamine (60.6 tL,
0.435 mmol, 1.20 equiv) resulted in a significant decrease in intensity of this absorption.

Activation of N-phenylacetamide and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (55.6 tL, 0.330

mmol, 1.10 equiv) to a vigorously stirred solution of N-phenylacetamide (40.6 mg, 0.300 mmol, 1
equiv, 1695 cm-) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption of the
starting material but did not result in appearance of an absorption consistent with a nitrilium
trifluoromethanesulfonate salt. Addition of 2-fluoropyridine (30.9 [tL, 0.360 mmol, 1.20 equiv)
resulted in appearance of a strong absorption consistent with a nitrilium trifluoromethanesulfonate
salt (2364 cm 1). Further addition of 2-fluoropyridine (25.8 tL, 0.300 mmol, 1.00 equiv) had no
significant effect on the intensity of this absorption. Subsequent addition of 2-fluoropyridine (72.3
[tL, 0.841 mmol, 2.80 equiv) had no significant effect on the intensity of the absorption at 2364 cm-1.
Addition of triethylamine (50.2 tL, 0.360 mmol, 1.20 equiv) resulted in a significant decrease in
intensity of this absorption.

Activation of N-isopropyl-4-nitrobenzamidel0 and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (66.7 pL, 0.396

mmol, 1.10 equiv) to a vigorously stirred solution of N-isopropyl-4-nitrobenzamide 10 (75.0 mg, 0.360
mmol, 1 equiv, 1668 cm-1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption
of the starting material and appearance of a strong absorption consistent with a nitrilium
trifluoromethanesulfonate salt (2354 cm 1). Addition of 2-fluoropyridine (37.1 [tL, 0.432 mmol, 1.20
equiv) resulted in a drastic increase in the intensity of this absorption. Further addition of 2-
fluoropyridine (30.9 ptL, 0.360 mmol, 1.00 equiv) had no significant effect on the intensity of this
absorption. Subsequent addition of 2-fluoropyridine (86.6 pL, 1.01 mmol, 2.80 equiv) had no
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significant effect on the intensity of the absorption at 2354 cm-'. Addition of triethylamine (60.3 [tL,
0.432 mmol, 1.20 equiv) resulted in a significant decrease in intensity of this absorption.

Activation of N-isopropyl-4-nitrobenzamide"0 and addition of 2-chloropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (66.7 tL, 0.396

mmol, 1.10 equiv) to a vigorously stirred solution of N-isopropyl-4-nitrobenzamide 10 (75.0 mg, 0.3 60
mmol, 1 equiv, 1668 cm-) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption
of the starting material and appearance of a strong absorption consistent with a nitrilium
trifluoromethanesulfonate salt (2354 cm 1). Addition of 2-chloropyridine (40.9 tL, 0.432 mmol, 1.20
equiv) resulted in a drastic increase in the intensity of this absorption. Further addition of 2-
chloropyridine (34.1 tL, 0.360 mmol, 1.00 equiv) resulted in a drastic decrease in the intensity of this
absorption and the appearance of a strong absorption consistent with an amidinium
trifluoromethanesulfonate salt (1609 cm-'). Subsequent addition of 2-chloropyridine (95.5 tL, 1.01
mmol, 2.80 equiv) resulted in a further decrease in the intensity of the absorption at 2354 cm and an
increase in the intensity of the absorption at 1609 cm-1. Addition of triethylamine (60.3 tL, 0.432
mmol, 1.20 equiv) resulted in a further decrease in intensity of the absorption at 2354 cm and a
drastic decrease in the absorption at 1609 cm- 1.

Activation of 3,4-dimethoxy-N-phenylbenzamide 5 and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (36.0 [tL, 0.214

mmol, 1.10 equiv) to a vigorously stirred solution of 3,4-dimethoxy-N-phenylbenzamide 5 (50.1 mg,
0.195 mmol, 1 equiv, 1691 cm-1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate
consumption of the starting material and appearance of a very weak absorption consistent with a
nitrilium trifluoromethanesulfonate salt (2312 cm-1). Addition of 2-fluoropyridine (20.1 [tL, 0.234
mmol, 1.20 equiv) resulted in a drastic increase in the intensity of this absorption. Further addition of
2-fluoropyridine (16.8 tL, 0.195 mmol, 1.00 equiv) had no significant effect on the intensity of this
absorption. Subsequent addition of 2-fluoropyridine (46.8 [tL, 0.545 mmol, 2.80 equiv) resulted in a
slight decrease in the intensity of the absorption at 2312 cm '. Addition of triethylamine (32.6 [tL,
0.234 mmol, 1.20 equiv) resulted in a drastic decrease in intensity of this absorption.

Activation of 3,4-dimethoxy-N-phenylbenzamide 5 and addition of 2-chloropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (44.6 tL, 0.265

mmol, 1.10 equiv) to a vigorously stirred solution of 3,4-dimethoxy-N-phenylbenzamide5 (62.0 mg,
0.241 mmol, 1 equiv, 1691 cm-1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate
consumption of the starting material and appearance of a very weak absorption consistent with a
nitrilium trifluoromethanesulfonate salt (2312 cm-1). Addition of 2-chloropyridine (27.3 RL, 0.289
mmol, 1.20 equiv) resulted in a drastic increase in the intensity of this absorption and the appearance
of a strong absorption consistent with an amidinium trifluoromethanesulfonate salt (1594 cm ).
Further addition of 2-chloropyridine (22.8 [tL, 0.241 mmol, 1.00 equiv) resulted in a significant
decrease in the intensity of the absorption at 2312 cm-1 and an increase in the intensity of the
absorption at 1594 cm . Subsequent addition of 2-chloropyridine (63.9 [tL, 0.675 mmol, 2.80 equiv)
resulted in disappearance of the absorption at 2312 cm I and an increase in the intensity of the
absorption at 1594 cm 1. Addition of triethylamine (40.3 tL, 0.289 mmol, 1.20 equiv) resulted in
disappearance of the absorption at 1594 cm 1.

Activation of N-phenylbenzamide and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (44.1 [tL, 0.262

mmol, 1.10 equiv) to a vigorously stirred solution of N-phenylbenzamide (47.0 mg, 0.238 mmol, 1
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equiv, 1679 cm 1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate consumption of the
starting material but did not result in appearance of an absorption consistent with a nitrilium

trifluoromethanesulfonate salt. Addition of 2-fluoropyridine (24.6 iL, 0.286 mmol, 1.20 equiv)
resulted in appearance of a strong absorption consistent with an amidinium trifluoromethanesulfonate

salt (1621 cm 1). Further addition of 2-fluoropyridine (20.4 ptL, 0.238 mmol, 1.00 equiv) resulted in

a slight increase in the intensity of this absorption. Subsequent addition of 2-fluoropyridine (57.3 [tL,
0.667 mmol, 2.80 equiv) resulted in an additional slight increase in the intensity of the absorption at

1621 cm-1. Addition of triethylamine (39.9 RL, 0.286 mmol, 1.20 equiv) resulted in a drastic
decrease in intensity of this absorption.

Activation of N-(4-methoxyphenyl)benzamide 4 and addition of 2-fluoropyridine:
In situ IR monitoring of the addition of trifluoromethanesulfonic anhydride (41.6 [tL, 0.247

mmol, 1.10 equiv) to a vigorously stirred solution of N-(4-methoxyphenyl)benzamide1 4 (51.0 mg,
0.224 mmol, 1 equiv, 1513 cm-1) in dichloromethane (2.5 mL) at 0 'C resulted in immediate
consumption of the starting material but did not result in appearance of an absorption consistent with

a nitrilium trifluoromethanesulfonate salt. Addition of 2-fluoropyridine (23.1 tL, 0.269 mmol, 1.20
equiv) resulted in appearance of a strong absorption consistent with an amidinium

trifluoromethanesulfonate salt (1621 cm-1). Further addition of 2-fluoropyridine (19.2 [tL, 0.224
mmol, 1.00 equiv) resulted in a slight increase in the intensity of this absorption. Subsequent

addition of 2-fluoropyridine (54.0 [tL, 0.628 mmol, 2.80 equiv) resulted in an additional slight
increase in the intensity of the absorption at 1621 cm-1. Addition of triethylamine (37.5 tL, 0.269

mmol, 1.20 equiv) resulted in a drastic decrease in intensity of this absorption.

Deuterium Labelling Studies:
D

S NPr 2c-d2  Tf20, 2-FPyr 0
I H + &____ -

02NC if _H CH2CI2  02N N "

o H -78 -23 C R
1 59%

R = H, 3fc
H kH:kD = 1.01.0 R = D, 3fc-d1

2c

Reaction of N-isopropyl-4-nitrobenzamide"0 with a mixture of pyridine N-oxide and 2,6-
dideuteropyridine N-oxide:

Trifluoromethanesulfonic anhydride (45.1 tL, 0.268 mmol, 1.10 equiv) was added via syringe
to a solution of N-isopropyl-4-nitrobenzamidel" (If, 50.7 mg, 0.244 mmol, 1 equiv) and 2-

fluoropyridine (25.1 tL, 0.292 mmol, 1.20 equiv) in dichloromethane (1.0 mL) at -78 'C. After 2
min, the reaction mixture was allowed to warm to 0 'C. After 5 min, a solution of 2,6-
dideuteropyridine N-oxide15 (2c-d 2, 105 mg, 1.08 mmol, 4.42 equiv) and pyridine N-oxide (2c, 110
mg, 1.15 mmol, 4.73 equiv) in dichloromethane (1.0 mL) was added via cannula. After 5 min, the

resulting mixture was allowed to warm to 23 'C. After 2 h, triethylamine (100 [tL) was added to

quench the trifluoromethanesulfonate salts, and the mixture was diluted by the addition of
dichloromethane (10 mL). The reaction mixture was washed with brine (10 mL), and the layers were

separated. The aqueous layer was extracted with dichloromethane (2 x 5 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under

reduced pressure. The residue was purified by flash column chromatography on silica gel (15

14 Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254.
15 Pavlik, J. W.; Laohhasurayotin, S. J. Heterocyclic Chem. 2007, 44, 1485.
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20% ethyl acetate in hexanes) to afford the amide 3fc (21.8 mg, 31%) and amide 3fc-di (19.4 mg,
28%) as a 1.1:1.0 mixture, indicating kH:kD= 1.0:1.0 based on the ratio of the respective starting
materials.

D

0 N 0

0 N Pr 2ad Tf20, 2-FPyr 02 PrI H + ad e

0 2N 1f _ H CH 2Cl 2  0 2N N
0 + -78- 23 C R

'N '" "" 86%
86% -R = H, 3fa

H kH:kD = 1.01.0 R = D, 3fa-d1
2a

Reaction of N-isopropyl-4-nitrobenzamide with a mixture of isoquinoline N-oxide and 1,3-
dideuteroisoquinoline N-oxide (equation 5):

Trifluoromethanesulfonic anhydride (24.9 tL, 0.148 mmol, 1.10 equiv) was added via syringe
to a solution of N-isopropyl-4-nitrobenzamide 0 (If, 28.1 mg, 0.135 mmol, 1 equiv) and 2-

fluoropyridine (13.9 iL, 0.162 mmol, 1.20 equiv) in dichloromethane (0.8 mL) at 0 'C. After 7 min,
a solution of 1,3-dideuteroisoquinoline N-oxide 6'17 (2a-d2, 100 mg, 0.68 mmol, 5.0 equiv) and
isoquinoline N-oxide (2a, 98 mg, 0.68 mmol, 5.0 equiv) in dichloromethane (0.8 mL) was added via
cannula. After 5 min, the resulting mixture was allowed to warm to 23 'C. After 2 h, triethylamine

(100 tL) was added to quench the trifluoromethanesulfonate salts, and the mixture was diluted by the
addition of dichloromethane (10 mL). The reaction mixture was washed with brine (10 mL), and the

layers were separated. The aqueous layer was extracted with dichloromethane (2 x 5 mL). The
combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on

silica gel (0 --+ 20% ethyl acetate in hexanes) to afford the amide 3fa (20.7 mg, 46%) and amide 3fa-
di (18.3 mg, 40%) as a 1.1:1.0 mixture, indicating kH:kD = 10: 1.0.

0
O 0 + Tf20, 2-FPyr Pr

& N NPr + NII 
N

Pr + D CH2C 2,4h

0 2 N 
-78 - 23 C0 2 N

if2c-d 30% R

kH:kD = 2.0:1.0 R = H, 3fc
R = D, 3fc-d1

Reaction of N-isopropyl-4-nitrobenzamide"0 with 2-deuteropyridine N-oxide (Equation 6):
Trifluoromethanesulfonic anhydride (24.7 [tL, 0.147 mmol, 1.10 equiv) was added via syringe

to a solution of N-isopropyl-4-nitrobenzamidel (If, 27.8 mg, 0.134 mmol, 1 equiv) and 2-

fluoropyridine (13.7 iL, 0.160 mmol, 1.20 equiv) in dichloromethane (1.0 mL) at 0 'C. After 7 min,
a solution of 2-deuteropyridine N-oxide (2c-di, 116 mg, 1.20 mmol, 9.00 equiv) in dichloromethane
(0.7 mL) was added via cannula. After 5 min, the resulting mixture was allowed to warm to 23 'C.

After 4 h, triethylamine (100 [tL) was added to quench the trifluoromethanesulfonate salts, and the
mixture was diluted by the addition of dichloromethane (10 mL). The reaction mixture was washed
with brine (10 mL), and the layers were separated. The aqueous layer was extracted with

dichloromethane (2 x 5 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by

flash column chromatography on silica gel (0 -- 50% ethyl acetate in hexanes) to afford the amide
3fc (3.81 mg, 10%) and amide 3fc-di (7.65 mg, 20%) as a 1.0:2.0 mixture, indicating kH:kD 2.0: 1.0.

16 Pavlik, J. W.; Laohhasurayotin, S. J. Heterocyclic Chem. 2007, 44, 1485.
17 The 1,3-dideuteroisoquinoline N-oxide employed contained 100% deuterium incorporation at the 1-position of the isoquinoline ring,

and 91% deuterium incorporation at the 3-position by 'H NMR. This incomplete isotopic enrichment was taken into account when

calculating kH:kD.
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Chapter II

Synthesis of Spirocyclic Indolines by Interruption of the

Bischler-Napieralski Reaction
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Introduction and Background

Spirocyclic pyrrolidinoindolines are a ubiquitous substructure in nature, representing the

core of the aspidosperma, kopsia, and strychnos alkaloid families, and are prevalent also in

pharmaceutically active compounds and other fine chemicals (Figure 1).1 (-)-Vindoline2 is a

member of the aspidosperma alkaloid family with a complex pentacyclic core, while (-)-

kopsinine3 represents the kopsia alkaloids, a related family with a distinct cage substructure. (-)-

Strychnine4 is a potently poisonous glycine antagonist of the strychnos alkaloid family that

blocks postsynaptic inhibition in the spinal cord.5  The importance of the

spiropyrrolidinoindoline structural motif has motivated the development of a number of elegant

synthetic strategies in complex alkaloid synthesis. 6 Synthetic spiropyrrolidinoindolines display a

range of useful properties and include insecticidal compounds, d and sky kinase inhibitors. lh

N Me N N

OAc

OH N H -O
MeO N H C2Me N CO2Me O

(-)-vindoline (-)-kopsinine (-)-strychnine

,QNH

N H N (C

C NNC

sky kinase inhibitor insecticide

Figure 1. Representative spiropyrrolidinoindoline compounds.

A direct route to the valuable spiropyrrolidinoindoline substructure would involve

intramolecular electrophilic trapping of an appropriate tryptamine derivative at C3. Such an

approach finds plausibility in the Pictet-Spengler reaction,7 a common reaction in the synthesis

and biosynthesis of tetrahydro-p-carbolines from tryptamines. Numerous studies into the

mechanism of this reaction,8 most notably Bailey's elegant isotope labelling study,8c have shown

that the reaction proceeds by initial intramolecular electrophilic trapping of the 2H-indole

nucleus at C3 by a pendant iminium ion to afford a spiroindoleninium intermediate (Scheme 1).

Wagner-Meerwein rearrangement affords the C2-protonated tetrahydro-P-carboline, which

undergoes deprotonation to afford the tetrahydro-p-carboline product. It is known, however, that

the initial spirocyclization event is reversible, and it cannot be ruled out that the protonated
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tetrahydro-p-carboline is formed by eventual direct attack of C2 onto the iminium ion.9

Furthermore, kinetic isotope studies8e in a biological setting have shown the final deprotonation

event to be rate-limiting, suggesting that all three of the aforementioned intermediates may be in

or near equilibrium during the reaction.

H

NH2 R2CHO + 2  RNH -H+ NH

2 2 H ~ H
eN H N CNH R 2  

S R2

/Wagner-Merwein
NH rearrangement

~R1
Scheme 1. Mechanism of the Pictet-Spengler reaction.

The presence of spiroindoleninium ions during the course of the Pictet-Spengler reaction

suggests the feasibility of intercepting such intermediates en route to spiropyrrolidinoindoline

products; however, the inherent tendency of such 2H-indoleninium systems to undergo rapid

Wagner-Meerwein rearrangement (Scheme 1) makes such an approach difficult. Previously

reported methods6 d'6 1,'0 for such transformations overcome this problem by using strongly

nucleophilic intramolecular traps or by employing electron-withdrawing groups on the indole or

aliphatic nitrogen, or both, to minimize such rearrangements, which can still occur (Scheme 2).

An early and illustrative example was reported in 1971 by Btichi6d in his seminal total synthesis

of (±)-vindorosine: electrophilic activation of an N-acetyl vinylgous amide in boron trifluoride

diethyl etherate resulted in electrophilic trapping of the indole nucleus at C3, followed by

cyclizative trapping at C2 with a strongly nucleophilic boron trifluoride enolate to afford the

desired spirocyclic product in 38% yield en route to the natural product. However, the isolation

of the undesired tetrahydro-p-carboline side product in 20% yield demonstrates the difficulty of

kinetically outcompeting the Wagner-Meerwein rearrangement. In Corey's enantioselective

synthesis of (-)-aspidophytine, 61 a similar strategy employing a chiral dialdehyde with a highly

nucleophilic pendant allylic trimethylsilane allows for a remarkable condensative cascade

reaction with a tryptamine derivative, affording the pentacyclic core of the natural product in

66% yield. Their use of an elaborate alkene reflects the need to outcompete rearrangement, as a

simple vinyl group would have been an ideal synthon: manipulation of the exocyclic alkene in

their pentacyclic product to the endocyclic alkene in the natural product requires four extra steps.
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NAc Et2O
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NH2

MeO N
MMe

OMe

Nakagawa:
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NAc 0O0 +

Me Me
20%

0 O'Pr
OHC (CF30) 20

OHC SiMe3  MeCN;
NaBH3CN MeO

66%

N ~Me
OAcO'j OH

N H 'O 2 Me
Me

(±)-vindorosine38

O'Pr

MeOf N HM I -Me
OMe

(-)-aspidophytine

OH

+ SMe
N- CF3C00H

NHloc CH2CI2N
H 23 OC

70%

H Et
only observed product

Jackson and Biswas:

TiC 4, Et3SiH

CH 2CI2, A
R =H

+ N HNOH
SMe

H NHBoc
29%

TiC 4, Et3SiH

CH2CI2, A
R = Ts

OMe
0

N OMe C3)0(28euv
H \& /W. 3 ) 2.8euv

SN PhH
H

COCF 3 (*)
N

OMeIIIAN H
COCF 3  OMe

95%

Biswas:

ROOCROOC OCF3 (*) COCF 3 (*) ROOC

N.Ph (CF 30) 20 (14 equiv) Q \, NCOCF 3

C CN PhH K N HK'NH ~ N P
H R=Me,Et OF 3  H H

73-74% 8-9% 3-5%

Scheme 2. Representative examples of trapping spiropyrrolodinoindoleninium ions.

Heteroatom nucleophiles have also been used as nucleophilic traps, as seen in an example

reported by Nakagawa in which the nitrogen atom of a secondary carbamate serves as a trapping

moiety to afford a spirocyclic product in 70% yield. 10h Nonetheless, under their conditions, the
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Wagner-Meerwein rearrangement competes with trapping of the spirocyclic indoleninium, as

two diasteromeric tetrahydro-@-carboline products were isolated in a combined 29% yield. The

use of an intermolecular nucleophilic trap present during iminium formation was employed by

Bosch,10' who found that that the presence of an electron-withdrawing para-toluenesulfonyl

group on the indole nitrogen was essential to reduce the rate of Wagner-Meerwein

rearrangement relative to nucleophilic trapping by triethylsilane en route to their spirocyclic

product. The absence of such an electon-withdrawing group gave the tetrahydro-@-carboline

product under identical conditions.

While the vast majority of examples of interception of spiropyrrolidinoindoleninium ions

have been in the context of the Pictet-Spengler reaction, there have been reportsi Oa-d on the use

of carbon nucelophiles in such a strategy in the context of the related Bischler-Napieralski

reaction," which differs by employing electrophilically activated amide electrophiles in place of

iminium ions. Jacksonoasc and Biswas reported an example of a tryptamine derived secondary

amide bearing a highly nucleophilic dimethoxyphenyl group undergoing a

spirocyclization/intramolecular trapping sequence when treated with a large excess of

trifluoroacetic anhydride, affording the spirocyclic product in 95% yield. Notably, an electron-

withdrawing trifluroacetyl group was installed on both nitrogen atoms during the reaction; the

use of trichlorooxyphosphine as activating agent resulted in a mixture of spiroindoline and

dihydro-@-carboline products. Later, Biswas10d reported two examples of a less nucleophilic

phenyl group as a trap in a similar reaction. While doubly trifluoroacetylated spirocyclic

products were isolated in yields of 73-74%, together with singly trifluoroacetylated 1H-

spirocycles in yields of 8-9%, singly trifluoroacetylated products resulting from competetive

Wagner-Meerwein rearrangement were also isolated in yields of 3-5%, consistent with a need

for trifluoroacetylation of the indole nitrogen atom to enable trapping at C2 to sufficiently

outcompete rearrangement when less powerful nucleophiles are used as intramolecular traps.

Due to the importance of spiropyrrolidinoindoline compounds, our group is interested in

new methods for their synthesis. In this chapter, we report a method for the efficient synthesis of

spiropyrrolidinoindolines by interruption of the Bischler-Napieralski reaction of 2H-N-

acyltryptamines via spiroindoleninium intermediates with high resilience to Wagner-Meerwein

rearrangements (eq 1).
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TfO- + (* W*
O Tf20 NMe Me NMe Me

N Me 2-CIPyr Le EtTSf + -(M
S Me Me Me INIz ,"HM

Me Me I H LiAIH4  M
Me TfO- Me Me 91%

Results and Discussion

Earlier, our laboratory reported the use of the reagent combination

trifluoromethanesulfonic anhydride (Tf2O)-2-chloropyridine (2-ClPyr)12 to effect the Bischler-

Napieralski reaction of secondary amides.13 Interestingly, exposure of amide la to Tf20 (1.1

equiv) in the presence of 2-ClPyr (1.2 equiv) followed by warming and addition of excess

triethylamine14 provided the expected Bischler-Napieralski product 2a (76%) along with the

unexpected spirocyclic side product (+)-3a in low yield (-5%, Scheme 3). The sulfonylation of

the amide nitrogen was easily rationalized by sulfonylation of a spirocyclic indoleninium

intermediate (±)-4a with the slight excess of Tf 2O used for amide activation to afford

spiroindoleninium (±)-5a. Consistent with N-sulfonylation of intermediate (±)-4a, the use of 2.1

equivalents of Tf 2O and 3.2 equivalents of 2-CIPyr greatly increased the yield of (±)-3a to 30%

together with a complex mixture of side products and none of the Bischler-Napieralski product

2a. The reduction at C2 of the indoline nucleus prompted further investigation to better

understand the reactivity of the intermediates. Given the propensity of

spiropyrrolidinoindoleninium intermediates to undergo Wagner-Meerwein rearrangement unless

a strongly nucleophilic trap present is prior to spirocyclization,6d,1,10 a-fh-k we hypothesized

0

e~N
Tf20O(X equiv) '~. H Me

2-CIPyr (Y equiv) Me
CH 2Cl2 (0.3 M) N
-78 - 23 *C 1a Me

.. - SO2CF3~
N me N Me

Tf20

-HOTf-2-CIPyr HM

TfO- Me 4a TfO- Me 5a

| Wagner-Meerwein reduction at C2 by |
rearrangement NEt3 (5.8 equiv) * SO 2CF3N Me

/N X, Y

1 N Me 76% ----- 1.1,1.2----- 5% 2 Me
Me Me 0% ----- 2.1, 3.2-----30% (* N

2S (±)-3a Me

Scheme 3. Mechanism of the Interrupted Bischler-Napieralski Reaction.
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that the reduction at C2 may have been the result of a rapid hydride transfer reaction between

two intermediates along the reaction pathway' 5 (Scheme 3). This, however, was ruled out with a

concise set of deuterium labeling studies. First, hexadeuterated amide la-d6 was subjected to the

reaction conditions. Spirocycle (±)-3a-d6 was isolated in 29% yield with complete deuterium

retention on the alkenyl methyl groups and no deuterium enrichment at C2 (eq 2). Furthermore,

when amide la was exposed to the reaction conditions with lithium aluminum deuteride used in

place of triethylamine as the quenching reagent, monodeuterated spirocycle (+)-3a-di was

isolated in 60% yield with incorporation of exactly one deuterium atom at C2 (eq 3, 6:1 dr at

C2). 16 This showed unequivocally that reduction at C2 does not occur until an exogenous

hydride source is introduced. We posited that triethylamine might be acting as a hydride

source1 and conjectured that the modest mass balance might be the result of

spiroindoleninium (+)-5a undergoing competitive decompostion. Notably, when lithium

aluminum hydride (eq 2) or lithium aluminum deuteride (eq 3, without warming to 23 'C) were

introduced just 5 min after warming the respective reactions to 0 *C, products (±)-3a-d and (I)-

3a-di were isolated in 95% and 96% yields, respectively.

o Tf20, 2-CIPyr SO2CF3

CH2Cl2, -78 *C; N CD3
H CD3  s (2)H r 3UAIH -C HCD3D3C LiAIH 4, THF, 0 C ' H

N or N
1a-d 6 Me 23 *C, 3h; Et3N (±)-3a-d 6 Me No deuterium

95% (29%) incorporation at

S Tf20, 2-CIPyr N Me

N CH2CI2, -78 *C;
H Me nH(3)

Me LiAID4, THF, 0 *C D
N orN

la Me 23 *C, h; LAID 4  (±)-3a-d1 Me 1 deuterium atomTHE, 0 -C 96% (60%) at * (87:13 dr)

These results suggested that spirocyclic N-trifluoromethanesulfonyl indoleninium (±)-5a

was electrophilic at C2 but recalcitrant to undergo a Wagner-Meerwein rearrangement due to

deactivation of the trifluoromethanesulfonamide nitrogen lone pair. Electrophilic activation of

la followed by reduction with lithium aluminum hydride afforded spirocycle (+)-3a in excellent

yield (Table 1, entry 1, 98% yield). When a less potent hydride source, triethylsilane, was

introduced after activation and the resulting mixture warmed to ambient temperature, spirocycle

(±)-3a was afforded in just 55% yield (Table 1, entry 2). On the other hand, 1-methyl-N-

acetyltryptamine (1b), which bears no s-hydrogens, underwent highly efficient spirocyclization
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and reduction to afford spirocycle (+)-3b using triethylsilane (Table 1, entry 3, 97% yield),

lithium aluminum hydride (Table 1, entry 4, 92% yield), or triethylamine (Table 1, entry 5, 72%

yield) as reducing agent. Spirocyclization followed by reduction with triethylsilane proceeded

smoothly with 1-benzyl-N-acetyltryptamine (1c) and even with electron-deficient 1-para-

toluenesulfonyl-N-acetyltryptamine (1d), providing the corresponding spirocycles (±)-3c (Table

1, entry 6, 100% yield) and (±)-3d (Table 1, entry 7, 94% yield), respectively. Trapping the

spironindoleninium of amide lb at C2 with a carbon nucleophile, 1-methylindole, afforded the

Table 1. Spirocyclization and Reduction.

Tf2O (2.1equiv) SO2CF3

2-CIPyr (3.2 equiv) N R2

'. H R2  H2C12  R

R2 N2-78 C- temp.

time; Et3SiH
la-id R (2 equiv), 23 *C, 3 h (±)-3a-3d R

entry amide R1  R2  temp. time yielda

1 la Me Me 0 *C 5 min 9 8%b

2 la Me Me 0OC 30 min 55%

3 lb Me H 0 *C 30 min 97%

4 lb Me H 0 *C 5 min 9 2%b

5 lb Me H 23 C 60 min 72%c

6 1c Bn H 0 *C 30 min 100%

7 ld Ts H 23 0C 30 min 94%

alsolated yield. bLiALH 4 (3.0 equiv) used as reducing

agent at 0 'C. cEt3N (5.0 equiv) used as reducing agent.

spirocyclic indole adduct (±)-6b in excellent overall yield (eq 4, 76%) as a single diastereomer.16

The stereochemical outcome of the reaction is consistent with approach of the 1-methylindole

nucleophile opposite the bulky and highly electronegative19 trifluoromethanesulfonamide

moiety.

SO2CF3
O Tf20, 2-CIPyr N

Ne 1 -methylindole

| H CH2Cl2  NMe

1b Me -78-*23*C (±)-6b Me -

76%

In order to avoid N-trifluoromethanesulfonylation, we hypothesized that a rapid,

reversible nucleophilic trap at C2 with an oxygen nucleophile might give a persistent

intermediate that could be further derivatized. Thus, 1-methyltryptamine oxazolidinone urea 1i

was activated with Tf2O (1.1 equiv) and 2-ClPyr (2.2 equiv); introduction of 1-methyltryptamine
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and titanium tetrachloride followed by heating to 45 *C afforded 1-methyltryptamine adduct (±)-

6e in 83% yield as a single diastereomer 6 (eq 5) that was consistent with nucleophile approach

from the same face of the spiroindoleninium as seen with amide lb (eq 4). The use of titanium

tetrachloride was found to be essential to achieve C-C bond formation, consistent with

competitive nucleophilic inibition at C2 by the oxazolidinone oxygen atom.

0
0 Tf2O, 2-CIPyr N O

N O CH2CI2 N
H N 4 10 (5)

O -78 -- 0 C; N / NMe
N 1-methylindole Me -

le Me TiCl 4, 45 0C (*)-6eM
83%

Motivated by a desire to extend the range of diastereoselective trappings of

spiroindoleninium intermediates, we hypothesized that non-enolizable tertiary amides would,

upon activation with Tf20-2-ClPyr, undergo rapid spirocyclization to afford a persistent

diiminium dication resilient to Wagner-Meerwein rearrangement.20 To our delight, treatment of

tertiary pivalamide 1f with 1.1 equivalents of Tf2O-2-ClPyr at 0 *C in acetonitrile 21 and warming

to 23 *C, followed by sequential trapping with triethylsilane and lithium aluminum hydride,

afforded spirocyclic indoline (+)-7f as a single diastereomeri in 91% yield (eq 6), suggesting the

in situ formation of a putative persistent diiminium dication intermediate. The

diastereoselectivity is likely a result of the steric bulk of the arene, which blocks approach of

lithium aluminum hydride. Use of lithium aluminum deuteride in place of lithium aluminum

hydride afforded monodeuterated spirocyclic indoline (+)-7f-di, demonstrating the regioselective

trapping at C2 with triethylsilane. 16 Similarly, activation of lactam 1g followed by tandem

reduction with triethylsilane-lithium aluminum hydride afforded tetracyclic indoline (+)-7g in

quantitative yield as a single diastereomer16 (eq 7).

o 2-CIPyr, Tf20 NMe meMeCN
N Me -78 - 0 C; ..<M
MMe EtXS HeC2Me (6)

e N MMe Et3SiH, 2300C;

if Me LiAIX4, 0 "C Me
LiAIH4, X = H: (*)-7f, 91%
LiAID 4, X = D: (±)-7f-d1, 91%

o 2-CIPyr, Tf 20 N
Me CH2CI2N Me -78 - 0 0C; ' Me (7)H Me (7

N Et3SiH, 23 *C;
ig Me LiAIH 4, 0 *C (,)-7g Me

100%
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Encouraged by the efficiency of the spirocyclization/intermolecular nucleophilic trapping

protocol, we envisaged a double-cyclization cascade making use of enolizable secondary amides

with pendant nucleophiles. To explore and optimize this reaction, 1-methyltryptamine

phenylacetamide (1h) was selected as substrate. Activation with a slight excess of Tf2O (2.1

equiv) in the presence of 2-ClPyr (3.2 equiv) in CH 2 Cl2 followed by warming to 23 *C provided

pentacycle (±)-8h in 40% yield (Scheme 4) accompanied with monocyclized side products and

no recovered starting material or Bischler-Napieralski products. Heating the reaction to 45 *C in

an oil bath afforded (±)-8h in excellent yield22 (Scheme 2, 91% yield), while brief heating in a

microwave 2 3 to 130 'C provided (±)-8h in quantitative yield. While similar cascades have been

reported previously, the lack of any requirement of large excesses of activating agentsI Oacd or

installation of an electron-withdwrawing group on N110iac and the ability to completely avoid

Wagner-Meerwein rearrangement'Od are specific advantages to our conditions, and highlight the

importance of nitrogen lone pair deactivation by the highly electronegative

trifluoromethanesulfonyl group. Not surprisingly, electron-rich 3,4-dimethoxyphenylacetamide

1i provided pentacycle (±)-8i in 98% yield as a single regio- and diastereomer' 6 under 45 *C

conditions on half-gram scale (Scheme 4). Even highly electron-deficient 4-

nitrophenylacetamide lj afforded pentacycle (±)-8j in moderate yield (53%) under microwave

heating conditions (130 *C, 10 min), and vinylacetamide 1k afforded tetracyclic spiroindoline

(±)-8k in 56% yield under 45 *C conditions.

SO 2CF3
0 Tf2O N

N R2  2-CiPyr R 6

'I CH2C12  O NHR

lh-k R1  (±)-8h-k R4

SO2CF 3  SO2CF3  SO2CF3  SO2CF3
N N N N

NH NOMe

Me Me OMe SO2CF3  NO2  SO2CF3

(±)-8h 1 0 %a,b (±)-8i: 9 8 %* (±)-8j: 5 3 %f (±)-8k: 5 6 %9

91 %C

40%d

Scheme 4. Double-Cyclization Cascades. aIsolated yields of single diastereomers. bTf2O (2.1 equiv), 2-ClPyr
(3.2 equiv), 130 *C (microwave), 5 min. c45 *C, 3 h. d2 3 *C, 3 h. eTf 20 (2.1 equiv), 2-ClPyr (3.2 equiv), 45

*C, 3 h.

69



The trifluoromethanesulfonyl group present in the spirocyclic indolines derived from

secondary amides is readily removed under reductive or eliminative conditions: desulfonylation

of pentacycle (±)-8i with sodium and ammonia in the presence of methanol provided pentacyclic

diamine (±)-9i in excellent yield (95%) as a single diastereomer 1 (eq 8), while

dehydrosulfinylation of tricycle (±)-3a is effected with 1,8-diazabicyclo[5.4.0]undec-7-ene

(DBU) in acetonitrile under microwave heating conditions (eq 9) to afford enimine (±)-10a in

71% yield.

SO2CF3  H
N N

Na, NH3

s OMeMe T " FOMe (8)

"'~NH -78 OC K~N H
(*)-8i Me OMe (±).i Me OMe

95%

SO 2CF3N Me N
DBU

MN4Me *CMe (9)

K~.N MeCN, 125T N
(±)-3a Me (±)-10a Me

71%

Conclusion

We have presented a method for the efficient generation of distinctively persistent

spiroindoleninium intermediates from secondary and tertiary N-acyl tryptamines. The

exceptional resilience of these intermediates to Wagner-Meerwein rearrangement, determined

through mechanistic studies, allows for efficient intra- and intermolecular trapping with

nucleophiles, including weak nucleophiles such as deactivated arenes, which can be introduced

even after6 d,1,10a-f,h-k initial activation and spirocyclization. The use of oxazolidinone ureas and

tertiary amides under our conditions allows for the direct and highly diastereoselective synthesis

of spiropyrrolidinoindolines without competitive rearrangement 6d,I0a,c-e,h,k or the need for an

electron-withdrawing group d,10a,c,d,g,k on the aliphatic or indole nitrogen atoms.
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Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried round bottomed
flasks, modified Schlenk (Kjeldahl shape) flasks or glass pressure vessels. The flasks were fitted
with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel
gas-tight syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column
chromatography was performed as described by Still et al. using silica gel (60 A pore size, 32-63 pim,
standard grade) or non-activated alumina (80-325 mesh, chromatographic grade).' Analytical thin-
layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh
silica gel or neutral alumina impregnated with a fluorescent indicator (254 nm). Thin layer
chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an
aqueous solution of ceric ammonium molybdate (CAM) or an aqueous solution of potassium
permanganate (KMnO4) followed by heating (<1 min) on a hot plate (-250 C). Organic solutions
were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25-35 'C, then at -1 Torr
(vacuum pump) unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions:
Dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, toluene, and triethylamine were
purchased from J.T. Baker (CycletainerTM) and were purified by the method of Grubbs et al. under
positive argon pressure .2 2-Chloropyridine and NN-diisopropylamine were distilled from calcium
hydride and stored sealed under argon atmospheres. The molarity of n-butyllithium solutions was
determined by titration against diphenylacetic acid3  (average of three titrations).
Trifluoromethanesulfonic anhydride was purchased from Oakwood Products, Inc.; all other solvents
and chemicals were purchased from Sigma-Aldrich.

Instrumentation. All reaction conducted at 130 "C were performed in a CEM Discover Lab Mate
microwave reactor. Proton nuclear magnetic resonance ('H NMR) spectra were recorded with Varian
inverse probe INOVA-500 and Varian INOVA-500 spectrometers, are reported in parts per million
on the 6 scale, and are referenced from the residual protium in the NMR solvent (CDCl 3: 6 7.24
(CHCl 3), toluene-d: 6 2.09 (C6D5CD 2H)). Data are reported as follows: chemical shift [multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, sp = septet, m = multiplet, br = broad), coupling
constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance (13C NMR)
spectra were recorded with a Varian INOVA-500 spectrometer, are reported in parts per million on
the 6 scale, and are referenced from the carbon resonances of the solvent (CDCl 3: 6 77.23, toluene-d8 :
6 20.4). Data are reported as follows: chemical shift (assignment). Fluorine-19 nuclear magnetic
resonance (19F NMR) spectra were recorded with a Varian Mercury 300 spectrometer or a Varian
INOVA-500 spectrometer, are reported in parts per million on the 6 scale, and are referenced from
the fluorine resonance of neat trichlorofluoromethane (CFCl3: 6 0). Data are reported as follows:
chemical shift (assignment). Infrared data (IR) were obtained with a Perkin-Elmer 2000 FTIR, and
are reported as follows: frequency of absorption (cm-1), intensity of absorption (s = strong, m =
medium, w = weak, br = broad). Optical rotations were measured on a Jasco- 1010 polarimeter. We

1 W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
2 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.

W. G. Kofron, L. M. Baclawski, J. Org. Chem. 1976, 41, 1879.
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are grateful to Dr. Li Li for obtaining the mass spectrometric data at the Department of Chemistry's
Instrumentation Facility, Massachusetts Institute of Technology. High resolution mass spectra
(HRMS) were recorded on a Bruker Daltonics APEXIV 4.7 Tesla FTICR-MS using a direct analysis
in real time (DART) ionization source.
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Si Sla

N-Isobutyryltryptamine (Sla) :4'

Isobutyryl chloride (1.96 mL, 18.7 mmol, 1.00 equiv) was added via syringe to a solution of
tryptamine (Si, 3.00 g, 18.7 mmol, 1 equiv) and triethylamine (2.87 mL, 20.6 mmol, 1.10 equiv) in
tetrahydrofuran (47.0 mL) at 23 'C. After 20 min, water was added, and the organic layer was
diluted with ethyl acetate (250 mL). The layers were separated, and the organic layer was washed
with aqueous hydrogen chloride solution (IN, 250 mL), saturated aqueous potassium carbonate
solution (250 mL), and brine (250 mL). The organic layer was dried over anhydrous sodium sulfate,
was filtered, and was concentrated under reduced pressure to afford N-isobutyryltryptamine (Sla,
3.56 g, 82.6%) as a tan powder. Structural assignments were made with additional information from
gCOSY data.

'H NMR (500 MHz, CDCl3, 20 *C):

13C NMR (125 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

6 8.32-8.18 (br-s, 1H, NIH), 7.60 (dd, J= 1.0, 7.9, 1H,
C5H), 7.37 (d, J= 8.0, 1H, C8H), 7.19 (app-dt, J= 1.1,
7.6, lH, C7H), 7.11 (app-dt, J= 1.1, 7.5, 1H, C6H), 7.01
(d, J= 2.3, 1H, C2H), 5.61-5.46 (br-s, 1H, N12H), 3.58
(app-q, J= 6.7, 2H, CI1 H2), 2.96 (t, J= 6.7, 2H, C1oH 2 ),
2.24 (sp, J= 7.0, 1H, C14H), 1.09 (d, J= 7.0, 6H, CI5 H3,
Ci6 H 3).

8 177.4, 136.6, 127.5, 122.4, 122.1, 119.4, 118.7, 112.7,
111.6, 39.9, 35.7, 25.4, 19.7.

3286 (br-s), 2969 (in), 1652 (s),
1229 (in), 743 (s).

1529 (s), 1457 (m),

HRMS (DART): calc'd for C14Hi8N2NaO [M+Na]*: 253.1311,
found: 253.1314.

TLC (A120 3, 30% EtOAc in hexanes), Rf: 0.08 (UV, CAM, KMnO4).

4 The Cl 5,C 16-hexadeuterated isotopomer Sla-d was synthesized by dehydrative coupling of tryptamine (Si) with isobutyric acid-d6
ref. 5) in the presence of 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrogen chloride (EDC-HCI) in dichloromethane.
For a previous preparation of isobutyric acid-d6, see Semmelhack, M. F.; Bargar, T. J. Am. Chem. Soc. 1980, 102, 7765.
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1-Methyl-N-isobutyryltryptamine (1a) :6
Sodium hydride (60% dispersion in mineral oil, 564 mg, 14.1 mmol, 1.30 equiv) was added as

a solid under an argon atmosphere to a solution of N-isobutyryltryptamine (Sla, 2.50 g, 10.9 mmol, 1
equiv) in NN-dimethylformamide (27 mL) at 23 'C. After 55 min, iodomethane (901 piL, 14.4
mmol, 1.33 equiv) was added dropwise via syringe over 5 min. After 15 h, water (20 mL) was added

to quench the excess base. The resulting mixture was diluted with diethyl ether (300 mL), and the

organic layer was washed with brine (3 x 300 mL). The organic layer was dried over anhydrous

sodium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified
by flash column chromatography on alumina (0 -+ 20% ethyl acetate in hexanes) to afford 1-methyl-

N-isobutyryltryptamine (la, 1.64 g, 61.8%) as a tan powder. Structural assignments were made with
additional information from gCOSY data.

'H NMR (500 MHz, CDCl3, 20 'C):

13C NMR (125 MHz, CDC13, 20 'C):

8 7.59 (d, J= 7.9, 1H, C5H), 7.29 (d, J= 8.2, 1H, C8H),
7.23 (app-dt, J = 1.2, 7.7, 1H, C7 H), 7.10 (app-dt, J =

1.0, 7.5, 1H, C6H), 6.86 (s, 1H, C2 H), 5.58-5.43 (br-s,
1H, N12H), 3.74 (s, 3H, C17H3 ), 3.56 (app-q, J= 6.7, 2H,
C,H 2 ), 2.94 (t, J = 6.7, 2H, CioH 2), 2.23 (sp, J= 6.9,
1H, C14 H), 1.09 (d, J= 6.9, 6H, C15H 3, Ci6 H 3).

8 177.0, 137.2, 127.9, 126.9, 121.8, 119.0, 119.0, 111.7,
109.4, 39.9, 35.7, 32.7, 25.4, 19.7.

3301 (br-s), 2967 (m), 1646 (in),
1236 (m), 740 (m).

FTIR (neat) cm-1:

HRMS (DART):

1548 (in), 1472 (in),

calc'd for C15H20N2NaO [M+Na]*: 267.1468,
found: 267.1465.

TLC (A120 3, 30% EtOAc in hexanes): Rf: 0.21 (UV, CAM, KMnO4).

6 The C15,C16-hexadeuterated isotopomer la-d was synthesized by an analogous procedure starting from Sla-d6 .
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Spirocyclic indoline ()-3a:
Trifluoromethanesulfonic anhydride (62.8 p.L, 373 gmol, 2.10 equiv) was added via syringe to

a solution of 1-methyl-N-isobutyryltryptamine (1a, 43.4 mg, 178 pmol, 1 equiv) and 2-chloropyridine
(53.3 pL, 568 pmol, 3.20 equiv) in dichloromethane (1.8 mL) at -78 *C. After 5 min, the reaction
mixture was allowed to warm to 0 C.7 ,8 After 5 min, tetrahydrofuran (1.0 mL) was added via
syringe. After 30 sec, lithium aluminum hydride9 '10 '1 (20.2 mg, 533 pmol, 3.00 equiv) was added as
a solid under an argon atmophere. After 20 min, sodium sulfate decahydrate was added to quench the
unreacted aluminum hydride salts. The resulting suspension was filtered, and the filter cake was
extracted with ethyl acetate (20 mL). The combined filtrates were concentrated under reduced
pressure. The residue was purified by flash column chromatography on silica gel (0 -> 10% ethyl
acetate in hexanes) to afford spirocyclic indoline (±)-3a (62.7 mg, 97.9%) as a beige powder.
Structural assignments were made with additional information from gCOSY, HSQC, gHMBC, and
NOESY data.
1H NMR (500 MHz, CDCl 3, 20 *C):

13 C NMR (125 MHz, CDCl 3, 20 *C):

19F NMR (471 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (30% EtOAc in hexanes), Rf:

8 7.11 (app-dt, J= 1.3, 7.7, 1H, C7H), 6.95 (dd, J= 0.8,
7.4, 1H, C5H), 6.68 (app-dt, J= 0.9, 7.4, 1H, C6H), 6.51
(d, J= 7.9, 1H, CsH), 3.75-3.60 (m, 2H, C1 1H2), 3.52
(d, J 9.3, 1H, C2 Ha), 3.38 (d, J= 9.3, 1H, C2Hb), 2.81
(s, 3H, C17H3), 2.38 (app-dt, J = 13.0, 6.5, 1H, CioHa),
2.13 (app-dt, J = 13.0, 6.7, 1H, CioHb), 1.86 (s, 3H,
C15H3), 1.41 (s, 3H, C16H3).

6 151.8 (C9 ), 135.6 (C4), 134.7 (C13), 130.1 (C14), 128.4
(C7 ), 122.4 (C5), 120.0 (q, J = 323.4, SO2CF 3), 118.6
(C), 107.6 (C8), 68.8 (C2 ), 53.0 (C3 ), 50.5 (C11), 43.9
(C10), 35.7 (C17), 23.5 (C15), 21.2 (C 16).

S-75.1

2860 (m), 1606 (m), 1493 (m), 1378 (s), 1223 (s), 1191
(s), 1024 (m), 738 (m).

calc'd for C16H20F3N20 2S [M+H]*: 361.1192,
found: 361.1184.

0.67 (UV, CAM, KMnO 4).

Warming to 23 *C followed by addition of triethylsilane affords spirocyclic indoline (±)-3a in 55% yield. Warming to 23 *C and
keeping the mixture at 23 'C for 4.5 h followed by addition of triethylamine affords spirocyclic indoline (+)-3a in 30% yield.
8 The use of Cl 5,C16-hexadeuterated analog la-d6 as substrate and addition of triethylamine after warming to 23 *C for 4.5 y affords
C15,CI6-hexadeuterated spirocyclic indoline (+)-3a-d in 29% yield (>99% deuterium incorporation at C15 and C16 by H NMR
analysis).
9 The use of the C15,C16-hexadeuterated isotopomer la-d6 as substrate affords C15,C16-hexadeuterated spirocyclic indoline (±)-3a-d
in 95% yield (>99% deuterium incorporation at C15 and C16 by 'H NMR analysis).
' The addition of lithium aluminum deuteride (98 atom% D) in place of lithium aluminum hydride affords C2-monodeuterated analog
(±)-3a-di in 96% yield (;>98% deuterium incorporation at C2 [d.r. = 6:1] by 'H NMR analysis). The C2-deuterium bond in the major
diastereomer is syn to the C3-C 10 bond, as determined by 'H NMR analysis and NOESY correlations for spirocyclic indoline (±)-3a.
" The addition of lithium aluminum deuteride (98 atom% D) I h after allowing the reaction mixture to warm to 23 *C affords C2-
monodeuterated analog (±)-3a-dl in 60% yield (>98% deuterium incorporation at C2 [dr = 6:1] by 'H NMR analysis).
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Spirocyclic indoline ()-3b:
Trifluoromethanesulfonic anhydride (70.7 pL, 420 pmol, 2.10 equiv) was added via syringe to

a solution of 1-methyl-N-acetyltryptamine12 (1b, 43.3 mg, 200 pmol, 1 equiv) and 2-chloropyridine
(60.1 pL , 640 pmol, 3.20 equiv) in dichloromethane (500 pL) at -78 'C. After 2 min, the reaction

mixture was allowed to warm to 0 'C. After 25 min, triethylsilane13 (63.9 pL, 400 [tmol, 2.00 equiv)
was added via syringe. After 5 min, the reaction mixture was allowed to warm to 23 'C. After 3 h,
triethylamine (300 ptL) was added to neutralize the trifluoromethanesulfonate salts. Brine (10 mL)
was added, and the aqueous layer was extracted with dichloromethane (10 mL, 2 x 5 mL). The

combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (0 --+ 20% ethyl acetate in hexanes) to afford spirocyclic indoline (±)-3b (64.7 mg, 97.3%)
as an off-white powder. Structural assignments were made with additional information from gCOSY,
HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl 3, 20 'C):

13C NMR (125 MHz, CDCl 3, 20 'C):

19 F NMR (471 MHz, CDCl 3, 20 *C):

FTIR (neat) cm-:

HRMS (DART):

TLC (30% EtOAc in hexanes), Rf:

8 7.17 (app-dt, J= 1.3, 7.7, 1H, C7H), 6.99 (d, J= 7.4,
1H, C5 H), 6.75 (app-dt, J= 1.0, 7.5, 1H, C6H), 6.56 (d,
J 7.9, 1H, C8H), 5.25 (d, J= 2.4, 1H, C14Hz), 4.42 (d,
J 2.4, 1H, C14HE), 4.00 (app-dt, J = 2.5, 9.2, 1H,
CiiHa), 3.78 (app-dt, J= 6.6, 10.2, 1H, CI Hb), 3.36 (d,
J= 8.8, 1H, C2 Ha), 3.21 (d, J= 8.8, 1H, C2Hb), 2.77 (s,
3H, C15H3), 2.22 (ddd, J = 2.5, 6.6, 12.6, 1H, CioHa),
2.07 (ddd, J= 8.2, 10.2, 12.6, 1H, C1oHb).

5 153.2 (C9), 148.4 (C13), 132.1 (C4), 129.2
(C), 120.6 (q, J = 325.8, SO2 CF3 ), 118.8
(Cs), 94.8 (C14), 68.4 (C2 ), 55.6 (C13), 49.8
(C15 ), 35.1 (C10 ).

5 -74.0.

(C7 ), 123.5
(C6 ), 108.1
(C11 ), 35.9

2954 (w), 1657 (in), 1608 (m), 1492 (m), 1404
1383 (in), 1227 (s), 1198 (s), 1147 (s), 748 (in).

calc'd for C14H16F3N2 0 2 S [M+H]*: 333.0879,
found: 333.0872.

(in),

0.60 (UV, CAM, KMnO 4).

For previous preparations of amides 1b, 1c, and 1d, see Song, H.; Yang, J.; Chen, W.; Qin, Y. Org. Lett. 2006, 8, 6011.
" The addition of tetrahydrofuran and lithium aluminum hydride in place of triethylsilane affords spirocyclic indoline (±)-3b in 92%
yield. The addition of triethylamine in place of triethylsilane affords spirocyclic indoline (±)-3b in 72% yield.
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Spirocyclic indoline (W)-3c:
Trifluoromethanesulfonic anhydride (154 pL, 916 ptmol, 2.10 equiv) was added via syringe to

a solution of 1-benzyl-N-acetyltryptamine12 (1c, 128 mg, 436 pmol, 1 equiv) and 2-chloropyridine
(131 pL, 1.40 mmol, 3.20 equiv) in dichloromethane (1.5 mL) at -78 'C. After 2 min, the reaction
mixture was allowed to warm to 0 'C. After 25 min, triethylsilane (63.9 pL, 400 pimol, 2.00 equiv)
was added via syringe. After 5 min, the reaction mixture was allowed to warm to 23 'C. After 3 h,
triethylamine (500 pL) was added to neutralize the trifluoromethanesulfonate salts. Brine (15 mL)
was added, and the aqueous layer was extracted with dichloromethane (3 x 15 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on silica gel (0 -+ 5%
ethyl acetate in hexanes) to afford spirocyclic indoline (±)-3c (128 mg, 99.5%) as a viscous, colorless
oil. Structural assignments were made with additional information from gCOSY, HSQC, gHMBC,
and NOESY data.

'H NMR (500 MHz, CDCl3, 20 *C):

"C NMR (125 MHz, CDCl 3, 20 'C):

19F NMR (282 MHz, CDCl3, 20 *C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (20% EtOAc in hexanes), Rf:

6 7.44-7.38 (m, 2H, C18H, C20H), 7.44-7.38 (in, 2H,
CI7 H, C2 1H), 7.44-7.38 (m, 1H, C19H), 7.20 (app-dt, J=
1.2, 7.7, 1H, C7H), 7.07 (dd, J= 1.2, 7.5, 1H, C5H), 6.81
(app-dt, J = 0.8, 7.4, 1H, C6H), 6.65 (d, J = 7.9, 1H,
C8H), 5.30 (d, J= 2.3, 1H, CI4Hz), 4.49 (d, J= 2.3, 1H,
C14HE), 4.43 (d, J 14.8, 1H, C15Ha), 4.25 (d, J= 14.8,
1H, C15Hb), 4.06-3.97 (m, 1H, CiHa), 3.82-3.70 (m,
1H, C11Hb), 3.38 (d, J= 9.2, 1H, C2Ha), 3.33 (d, J= 9.2,
1H, C2Hb), 2.27-2.09 (m, 2H, CoH2).

6 152.3 (C9 ), 148.6 (C13), 137.8 (C16), 131.9 (C4), 129.3
(C 7), 128.8 (C, 8 , C20), 127.9 (C17, C2 1), 127.6 (C19),
123.8 (C5), 120.6 (q, J = 325.3, SO2 CF3), 118.9 (C6),
108.0 (C), 94.8 (C14), 66.1 (C2 ), 55.4 (C3 ), 53.0 (C15),
49.7 (C1), 35.5 (C10).

6-74.0.

2831 (m), 1656 (in), 1606 (m), 1489 (s), 1404 (s), 1382
(s), 1228 (s), 1198 (s), 1029 (m), 742 (m).

calc'd for C20H20F3N20 2S [M+H]*: 409.1192,
found: 409.1178.

0.67 (UV, CAM, KMnO 4).
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Spirocyclic indoline (W)-3d:
Trifluoromethanesulfonic anhydride (64.9 gL, 386 gmol, 2.10 equiv) was added via syringe to

a solution of 1-(p-toluenesulfonyl)-N-acetyltryptamine1 (Id, 65.5 mg, 184 ptmol, 1 equiv) and 2-
chloropyridine (55.2 p.L, 588 pmol, 3.20 equiv) in dichloromethane (1.0 mL) at -78 'C. After 2 min,
the reaction mixture was allowed to warm to 0 'C. After 10 min, the reaction mixture was allowed to
warm to 23 'C. After 30 min, triethylsilane (58.7 [tL, 368 pmol, 2.00 equiv) was added via syringe.
After 3 h, triethylamine (300 pL) was added to neutralize the trifluoromethanesulfonate salts. Brine
(15 mL) was added, and the aqueous layer was extracted with dichloromethane (3 x 15 mL). The
combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (0 -- 10% ethyl acetate in hexanes) to afford spirocyclic indoline (±)-3d (81.2 mg, 93.5%)
as a white powder. Structural assignments were made with additional information from gCOSY,
HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl 3, 20 'C):

3 C NMR (125 MHz, CDCl3, 20 0C):

19F NMR (282 MHz, CDC13, 20 'C):

FTIR (neat) cm1:

HRMS (DART):

TLC (10% EtOAc in hexanes), Rf:

8 7.70 (d, J= 8.2, 1H, CH), 7.66 (d, J= 8.3, 2H, C17 H,
C2 1H), 7.30 (app-dt, J= 1.4, 7.8, 1H, C7H), 7.23 (d, J=
8.3, 1H, Ci 8H, C20H), 7.05 (app-dt, J = 0.9, 7.5, 1H,
C6H), 6.99 (d, J = 7.6, 1H, C5 H), 5.00 (d, J = 2.8, 1H,
C14Hz), 3.99-3.95 (m, 1H, CiiHa), 3.93 (d, J= 10.8, 1H,
C2Ha), 3.75 (d, J= 10.8, 1H, C2Hb), 3.74 (d, J= 2.8, 1H,
C14HE), 3.73-3.65 (m, 1H, C,,Hb), 2.36 (s, 3H, C2 2H3),
2.01 (ddd, J= 8.3, 10.9, 12.8, 1H, Ci0 Ha), 1.91 (ddd, J=
2.0, 6.2, 12.8, 1H, CiOHb).

6 148.2 (C13), 144.8 (C19), 142.4 (C9), 133.6 (CIs),
133.5 (C4), 130.0 (C 8, C20), 129.8 (C8 ), 127.5 (C17,
C2 1), 124.7 (C), 124.5 (C), 120.5 (q, J = 325.3,
SO2CF 3), 115.2 (C), 95.4 (C 14), 62.5 (C2 ), 55.0 (C3 ),
49.5 (C,,), 36.5 (C1o), 21.7 (C2 2).

6-74.0.

2919 (w), 1656 (m), 1599 (m), 1478 (m), 1405 (s), 1359
(s), 1229 (s), 1199 (s), 1169 (s), 1027 (m).

calc'd for C2 0 H2 0F3N20 4S2 [M+H]*: 473.0811,
found: 473.0807.

0.13 (UV, CAM, KMnO4).
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Spirocyclic 1-methyltryptamine adduct (+)-6b:
Trifluoromethanesulfonic anhydride (220 piL, 1.31 mmol, 2.10 equiv) was added via syringe

to a solution of 1-methyl-N-acetyltryptamine 2 (1b, 135 mg, 622 jmol, 1 equiv), 2-chloropyridine
(187 pL, 1.99 mmol, 3.20 equiv) and 1-methyltryptamine (85.5 pL, 685 pimol, 1.10 equiv) in
dichloromethane (5.0 mL) at -78 *C. After 5 min, the reaction mixture was allowed to warm to 0 'C.
After 5 min, the reaction mixture was allowed to warm to 23 *C. After 4 h, saturated aqueous
potassium carbonate solution (5 mL) was added to neutralize the trifluoromethanesulfonate salts.
Brine (10 mL) was added, and the aqueous layer was extracted with dichloromethane (3 x 10 mL).
The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (25% dichloromethane in hexanes) to afford spirocyclic 1-methyltryptamine adduct (+)-6b
(219 mg, 76.0%) as a white powder. Structural assignments were made with additional information
from gCOSY, HSQC, gHMBC, and NOESY data.

H NMR (500 MHz, PhMe-d, 100 'C):

"3 C NMR (125 MHz, PhMe-d, 100 'C):

'9F NMR (471 MHz, PhMe-ds, 100 'C):

FTIR (neat) cm 1:

HRMS (DART):

TLC (50% CH2Cl2 in hexanes), Rf:

8 7.69 (d, J= 8.1, 1H, C5,H), 7.14-7.07 (m, 2H, C7 ,H,
C7H), 7.02 (app-t, J= 7.7, 1H, C6,H), 7.00 (d, J= 8.1,
1H, C8 H), 6.91 (d, J = 7.4, 1H, C5 H), 6.72 (app-t, J=
7.5, lH, C6 H), 6.70 (s, 1H, C2'H), 6.47 (d, J= 7.9, 1H,
C8H), 5.48 (d, J= 1.7, 1H, C14Hz), 4.55 (d, J= 1.7, 1H,
C14HE), 4.54 (s, 1H, C2H), 3.19 (s, 3H, C15.H3 ), 3.15
(app-t, J = 9.1, 1H, CiiHa), 2.52-2.43 (m, 1H, CnHb),
2.48 (s, 3H, Ci5H3), 2.26-2.16 (m, 1H, CioHa), 1.52-
1.43 (m, 1H, CioHb).

6 153.3 (C9), 151.2 (C13), 138.5 (C9'), 134.1 (C4 ), 129.4

(C7), 128.9 (C2.), 128.4 (C4'), 124.0 (C5 ), 122.8 (C7 ),
121.4 (C5'), 121.3 (q, J = 325.8, SO 2CF 3), 120.6 (C61),
119.7 (C6), 110.5 (C5 .), 109.9 (C8'), 108.5 (C8), 95.5
(C14), 77.9 (C2 ), 61.4 (C3 ), 50.3 (C,1 ), 34.1 (C,5 ), 33.2
(C1O), 32.2 (Ci5').

5 -75.1.

2915 (w), 1650 (m), 1605 (m), 1485 (s), 1402 (s), 1382
(s), 1228 (s), 1197 (s), 1146 (s), 1021 (m), 744 (m).

calc'd for C23H23F3N30 2 S [M+H]*: 462.1458,
found: 462.1477.

0.42 (UV, CAM, KMnO4).
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Oxazolidinone urea le:
A solution of 1-methyltryptamine' 4 (S2, 1.66 g, 9.53 mmol, 1 equiv) in tetrahydrofuran (20

mL) was added via cannula to a solution of N-chlorocarbonyloxazolidin-2-one 1 5 (S3, 1.56 g, 10.4
mmol, 1.09 equiv) and triethylamine (3.33 mL, 23.9 mmol, 2.51 equiv) in tetrahydrofuran (40 mL) at
23 'C. After 12 h, the reaction mixture was diluted with ethyl acetate (250 mL). The organic layer
was washed with saturated aqueous ammonium chloride solution (2 x 250 mL), aqueous sodium

hydroxide solution (IN, 250 mL), saturated aqueous sodium bicarbonate solution (250 mL), and
brine (250 mL). The organic layer was dried over anhydrous sodium sulfate, was filtered, and was
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (50% ethyl acetate in hexanes) to afford oxazolidinone urea le (1.76 g, 64.3%) as a beige
powder. Structural assignments were made with additional information from gCOSY data.

'H NMR (500 MHz, CDCl 3, 20 'C):

3 C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-1:

HRMS (DART):

8 7.92-7.84 (br-m, 1H, N12H), 7.63 (d, J = 7.9, 1H,
CH), 7.30 (d, J= 8.2, 1H, C8H), 7.24 (app-dt, J= 1.1,
7.6, 1H, C7 H), 7.13 (app-dt, J= 1.1, 7.4, 1H, C6H), 6.92
(s, 1H, C2H), 4.32 (t, J = 8.2, 2H, Ci 8H2), 3.98 (t, J=
8.2, 2H, C19H2 ), 3.74 (s, 3H, C19H3 ), 3.58 (app-q, J =

7.1, 2H, C11H 2 ), 3.02 (t, J= 7.1, 1H, C10 H2).

8 155.7, 151.6, 137.1, 127.6, 126.9, 121.6, 118.8, 118.8,
111.1, 109.3, 62.3, 42.4, 40.7, 32.6, 25.4.

3349 (br-m), 2922 (m), 1755 (s), 1697 (s), 1540 (s),
1478 (s), 1400 (s), 1245 (s), 1104 (s), 1037 (m), 744 (s).

calc'd for C 5Hi 8N30 3 [M+H]*: 288.1343,
found: 288.1348.

TLC (50% EtOAc in hexanes), Rf: 0.19 (UV, CAM, KMnO 4).

" For a previous preparation of 1-methyltryptamine (S2), see Lygin, A. V.; de Meijere, A. Eur. J. Org. Chem. 2009, 5138.
" For a previous preparation of N-chlorocarbonyloxazolidin-2-one (S3), see Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595.
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Spirocyclic 1-methyltryptamine adduct (0-6e:
Trifluoromethanesulfonic anhydride (25.9 gL, 154 pmol, 1.10 equiv) was added via syringe to

a solution of oxazolidinone urea le (40.2 mg, 140 pmol, 1 equiv) and 2-chloropyridine (28.9 gL, 308
pmol, 2.20 equiv) in dichloromethane (1.8 mL) at -78 *C. After 5 min, the reaction mixture was
allowed to warm to 0 0C. After 30 min, 1-methylindole (19.2 pL, 154 pmol, 1.10 equiv) was added
via syringe. After 1 min, titanium tetrachloride (1.0 M solution in dichloromethane, 154 gL, 154
pimol, 1.10 equiv) was added via syringe. After 5 min, the reaction mixture was allowed to warm to
23 'C. After 5 min, the reaction vessel was placed into an oil bath and heated to 45 *C. After 3 h, the
reaction vessel was removed from the oil bath and allowed to cool to 23 *C before saturated aqueous
sodium bicarbonate solution (15 mL) was added to quench the titanium and
trifluoromethanesulfonate salts. The aqueous layer was extracted with dichloromethane (3 x 10 mL).
The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (30 --> 70% ethyl acetate in hexanes) to afford spirocyclic 1 -methyltryptamine adduct (±)-6e
(46.6 mg, 83.2%) as a white powder. Structural assignments were made with additional information
from gCOSY, HSQC, gHMBC, and NOESY data.

IH NMR (500 MHz, PhMe-d, 100 *C):

13C NMR (125 MHz, PhMe-d, 80 *C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (70% EtOAc in hexanes), Rf:

6 7.83-7.60 (br-s, 1H, C5'H), 7.13 (app-t, J = 7.6, 1H,
C7,H), 7.09 (app-t, J = 7.8, 1H, C7 H), 7.04 (app-t, J =

8.0, 1H, C6,H), 7.01 (d, J= 8.2, 1H, C8sH), 6.79 (d, J=
7.7, lH, C5 H), 6.79-6.74 (br-s, 1H, C2,H), 6.66 (app-t, J
= 7.4, 1H, CH), 6.52 (d, J = 7.9, 1H, CH), 5.82-5.69
(br-s, 1H, C2 H), 3.78 (app-q, J = 9.0, 1H, Ci8 Ha),
3.71-3.57 (in, 1H, Ci8Hb), 3.71-3.57 (m, 1H, C17Ha),
3.53 (app-q, J= 8.3, 1H, C17Hb), 3.39 (ddd, J= 3.5, 8.6,
14.8, 1H, CiHa), 3.17 (s, 3H, C19 ,H3), 2.83 (app-dt, J=
15.0, 7.5, 1H, CuHb), 2.72 (s, 3H, C19H3 ), 2.70-2.62
(in, 1H, CioHa), 1.86 (app-dt, J= 13.0, 7.9, 1H, CIoHb).

6 163.9 (C13 ), 154.0 (C9 ), 153.0 (C15), 138.4 (C9.), 135.4
(C4 ), 129.3 (C4), 128.9 (C2'), 128.6 (C7), 122.3 (C7 '),
121.6 (C5), 120.7 (C5 ), 120.0 (C'), 118.4 (C6), 113.2
(C3 '), 109.6 (C8 '), 108.2 (C8), 69.7 (C2), 64.4 (C3), 62.1
(C 17), 54.9 (C11), 46.8 (Ci 8), 40.4 (C1o), 34.7 (C19), 32.2
(C19').

2931 (m), 1770 (s), 1611 (s), 1488 (s), 1399 (s), 1121
(in), 1066 (in), 741 (s).

calc'd for C2 4 H2 5N 40 2 [M+H]*: 401.1972,
found: 401.1972.

0.18 (UV, CAM, KMnO 4).
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lN-Dimethyl-N-pivalyltryptamine (1f):
Sodium hydride (60% dispersion in mineral oil, 1.24 g, 31.0 mmol, 8.00 equiv) was added

slowly over 5 min as a solid under an argon atmosphere to a solution of N-pivalyltryptamine 6 (S4,
946 mg, 3.87 mmol, 1 equiv) in NN-dimethylformamide (12.0 mL) at 0 *C, and the resulting mixture
was allowed to warm to 23 'C. After 30 min, iodomethane (2.42 mL, 38.7 mmol, 10.0 equiv) was
added slowly via syringe over 5 min. After 48 h, saturated aqueous ammonium chloride solution (20
mL) was added via syringe to quench the excess base, and the resulting biphasic mixture was
concentrated under reduced pressure. The residue was diluted with diethyl ether (250 mL) and was
washed with water (2 x 200 mL) and brine (200 mL). The organic layer was dried over anhydrous
magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was
purified by flash column chromatography on silica gel (20 -+ 40% ethyl acetate in hexanes) to afford
1,N-dimethyl-N-pivalyltryptamine (1f, 993 mg, 94.1%) as a viscous yellow oil. Structural
assignments were made with additional information from gCOSY data.
1H NMR (500 MHz, CDCl 3, 20 C): 6 7.63 (d, J= 7.7, 1H, C5H), 7.28 (d, J= 8.2, 1H, CsH),

"C NMR (125 MHz, CDCl3, 20 0C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (30% EtOAc in hexanes), Rf:

(d, J = 7.7, 1H, C5 H), 7.21 (app-t, J = 7.6, 1H, C7H),
7.10 (app-t, J= 7.4, 1H, CH), 6.86 (s, 1H, C2H), 3.73
(s, 3H, C19H3 ), 3.62 (t, J= 7.3, 2H, C1 IH2), 3.05 (s, 3H,
C18H3), 2.99 (t, J = 7.3, 2H, C10 H2), 1.28 (s, 9H,
C(CH3)3).

8 177.3, 137.1, 127.9, 126.7, 121.7, 119.0, 118.9, 111.7,
109.3, 51.6, 38.9, 36.9, 32.7, 28.4, 23.4.

3054 (w), 2933 (in), 1623 (s), 1482 (s), 1403 (in), 1379
(m), 1328 (m), 1094 (m), 740 (s).

calc'd for C17H24N2NaO [M+Na]*: 295.1781,
found: 295.1771.

0.20 (UV, CAM, KMnO4).

16 For a previous preparation of amide S4, see Eichele, 0.; Mutschler, E. A rchiv der Pharmazie 1967, 300, 1038.
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Tricyclic indoline (+)-7f:
Trifluoromethanesulfonic anhydride (59.7 gL, 355 pmol, 1.10 equiv) was added via syringe to

a solution of 1,N-dimethyl-N-pivalyltryptamine (1f, 87.8 mg, 322 pmol, 1 equiv) and 2-
chloropyridine (36.3 ptL, 387 ptmol, 1.20 equiv) in acetonitrile (3.6 mL) at 0 'C. After 10 min, the
reaction mixture was allowed to warm to 23 *C. After 20 min, triethylsilane (154 pL, 967 pmol, 3.00
equiv) was added via syringe. After 8 h, the reaction mixture was cooled to 0 *C, and
tetrahydrofuran (3.0 mL) was added via syringe. After 30 sec, lithium aluminum hydride' 7 (48.9 mg,
1.29 mmol, 4.00 equiv) was added as a solid under an argon atmosphere. After 10 min, sodium
sulfate decahydrate was added to quench the unreacted aluminum hydride salts. The resulting
suspension was filtered, and the filter cake was extracted with ethyl acetate (20 mL). The combined
filtrates were concentrated under reduced pressure. The residue was purified by flash column
chromatography on alumina (0 -+ 1.5% ethyl acetate in hexanes) to afford tricyclic indoline (±)-7f
(76.1 mg, 91.4%) as a viscous, colorless oil. Structural assignments were made with additional
information from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 'C):

"C NMR (125 MHz, CDCl3, 20 "C):

FTIR (neat) cm-1:

HRMS (DART):

8 7.20 (d, J= 7.4, 1H, C5H), 7.10 (app-t, J= 7.7, 1H,
C7H), 6.68 (app-t, J= 7.4, 1H, CH), 6.49 (d, J = 7.7,
1H, C8H), 3.37-3.24 (in, 1H, CiiHa), 3.18 (d, J= 7.9,
1H, C2Ha), 2.72 (s, 1H, CB3 H), 2.69 (s, 3H, C19H 3), 2.64
(s, 3H, C, 8H3), 2.63 (d, J= 7.9, 1H, C2Hb), 2.54 (app-dt,
J= 7.5, 12.2, 1H, CioHa), 2.42 (ddd, J= 5.9, 8.7, 12.2,
1H, C1,Hb), 1.71 (app-dd, J = 5.9, 12.0, 1H, CoHb),
0.68 (s, 9H, C(CH 3)3).

6 155.5 (C9), 134.0 (C4 ), 128.1 (C7), 125.2 (C5), 117.8
(C6), 108.0 (C8), 80.4 (C13), 74.2 (C2 ), 55.4 (C3), 55.3
(C, 1), 48.1 (C,8), 37.3 (C14), 37.0 (C19), 36.5 (Cio), 27.2
(C(CH3)3).

2953 (s), 2797 (s), 1606 (s), 1484 (s),
(in), 1269 (m), 1154 (in), 1047 (in), 965

calc'd for C17H27N2 [M+H]*: 259.2169,
found: 259.2164.

1461 (in), 1365
(in), 740 (s).

TLC (A12 0 3, 10% EtOAc in hexanes), Rf: 0.76 (UV, CAM, KMnO 4).

17 The use of lithium aluminum deuteride (98 atom% D) affords the Cl3-monodeuterated analog (±)-7f-di (> 8% deuterium
incorporation at Cl 3 and <5% deuterium enrichment at C2 by 1H NMR analysis).
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Tetracyclic indoline (±)-7g:
Trifluoromethanesulfonic anhydride (10.2 pL, 60.7 pmol, 1.10 equiv) was added via syringe

to a solution of a-quaternary 1-methyltryptamine lactam 1g' 8 (15.7 mg, 55.2 pmol, 1 equiv) and 2-

chloropyridine (11.4 pL, 121 ptmol, 2.20 equiv) in dichloromethane (600 pL) at -78 'C. After 5 min,
the reaction mixture was allowed to warm to 0 'C. After 10 min, the reaction mixture was allowed to
warm to 23 'C. After 20 min, triethylsilane (26.5 piL, 166 [tmol, 3.00 equiv) was added via syringe.
After 2 h, the reaction mixture was cooled to 0 'C, and tetrahydrofuran (2.0 mL) was added via
syringe. After 30 sec, lithium aluminum hydride (8.4 mg, 221 Pmol, 4.00 equiv) was added as a solid
under an argon atmosphere. After 10 min, sodium sulfate decahydrate was added to quench the
unreacted aluminum hydride salts. The resulting suspension was filtered, and the filter cake was
extracted with ethyl acetate (20 mL). The combined filtrates were concentrated under reduced
pressure. The residue was purified by flash column chromatography on silica gel (1% triethylamine,
10% ethyl acetate in hexanes) to afford tetracyclic indoline (±)-7g (14.9 mg, 99.8%) as an off-white
powder. Structural assignments were made with additional information from gCOSY, HSQC,
gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 'C):

13C NMR (125 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

8 7.15 (d, J= 7.3, 1H, C5 H), 7.06 (app-dt, J= 1.0, 7.6,
1H, C7H), 6.61 (app-t, J 7.3, 1H, C6 H), 6.39 (d, J =

7.8, 1H, C8H), 3.50 (d, J 9.3, 1H, C2Ha), 3.29 (app-dt,
J= 4.8, 9.1, 1H, CiiHa), 3.17-3.11 (m, 1H, C17Ha), 3.09
(d, J= 9.3, 1H, C2Hb), 2.71 (s, 3H, C20H 3), 2.20 (app-dt,
J = 6.6, 9.9, 1H, CIIHb), 2.09 (ddd, J = 6.6, 8.8, 12.7,
1H, C10 Ha), 1.92 (app-dt, J = 3.1, 11.7, 1H, C17Hb),
1.87-1.79 (i, 1H, C1oHb), 1.81 (s, 1H, C1 3H),
1.69-1.56 (i, 1H, C16Ha), 1.39-1.32 (m, 1H, C16Hb),

1.20-1.13 (i, lH, C15Ha), 1.05 (app-dt, J = 3.7, 13.3,
1H, C15Hb), 1.00 (s, 3H, C18H3), 0.28 (s, 3H, C19H3).

8 153.0 (C9 ), 136.6 (C4), 127.8 (C7), 126.7 (C5), 117.4

(C), 106.6 (Cs), 82.1 (C13), 67.8 (C2), 56.0 (C17), 53.4
(C 1), 52.9 (C3 ), 43.8 (C15), 40.3 (Cio), 35.7 (C20), 34.3
(C 14), 28.8 (Ci 8), 22.3 (C16 ), 21.7 (C19).

2933 (s), 1605 (s), 1492 (s), 1386 (w),
(m), 1105 (w), 1023 (m), 740 (m).

calc'd for Ci 8H27N2 [M+H]*: 271.2169,
found: 271.2170.

1271 (m), 1163

TLC (A12 0 3, 10% EtOAc in hexanes), Rf: 0.60 (UV, CAM, KMnO 4).

" Lactam ig was prepared from the C14-didemethyl derivative by sequential treatment with excess lithium diisopropylamide and
methyl iodide in tetrahydrofuran. For a previous preparation of the C14-didemethyl derivative of lactam 1g, see Nagawa, M.; Kiuchi,
M.; Obi, M.; Tonozuka, M.; Kobayashi, K.; Hino, T.; Ban, Y. Chem. Phann. Bull. 1975, 23, 304.

87



Tf20, 2-CiPyr
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7 NH 19
Me21

(±)-8h

Pentacyclic indoline (±')-8h:
Trifluoromethanesulfonic anhydride (38.4 pL, 228 ptmol, 2.10 equiv) was added via syringe to

a solution of 1-methyl-N-phenylacetyltryptamine' 9 (1h, 31.8 mg, 109 pmol, 1 equiv) and 2-
chloropyridine (32.7 gL, 348 pmol, 3.20 equiv) in dichloromethane (1.0 mL) at -78 0C. After 5 min,
the reaction mixture was allowed to warm to 0 'C. After 5 min, the reaction mixture was allowed to
warm to 23 'C. After 5 min, the reaction vessel was placed into a microwave reactor and heated to
130 *C. After 5 min, the reaction vessel was removed from the microwave reactor and allowed to
cool to 23 'C before triethylamine (500 [tL) was added to neutralize the trifluoromethanesulfonate
salts. Brine (10 mL) was added, and the aqueous layer was extracted with dichloromethane (10 mL,
then 2 x 5 mL). The combined organic layers were dried over anhydrous sodium sulfate, were
filtered, and were concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel (0 --> 20% ethyl acetate in hexanes) to afford spirocyclic indoline (±)-
8h (44.1 mg, 99.8%) as an off-white powder. Structural assignments were made with additional
information from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 'C):

3 C NMR (125 MHz, CDCl3, 20 'C):

'9F NMR (471 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (20% EtOAc in hexanes), Rf:

8 7.43 (d, J= 6.7, 1H, C19H), 7.14-7.05 (m, 1H, C7H),
7.14-7.05 (in, 1H, C17H), 7.14-7.05 (m, 1H, C18H),
6.98-6.93 (m, 1H, C5H), 6.98-6.93 (m, 1H, Ci6H), 6.63
(app-dt, J = 0.9, 7.4, 1H, C6H), 6.49 (d, J = 7.8, 1H,
CsH), 6.38 (s, 1H, C14H), 4.80 (s, 1H, C2H), 4.04 (app-t,
J = 9.3, 1H, CiiHa), 3.94 (app-dt, J = 5.7, 10.9, 1H,
C,Hb), 3.38 (s, 3H, C2 1H3), 2.23 (app-dt, J= 8.6, 11.8,
1H, CioHa), 2.12 (app-dd, J= 5.7, 11.8, 1H, CioHb).

6 149.6 (C9), 137.4 (C1 3), 133.7 (C 20), 133.4 (C 4), 133.0
(C 15), 129.4 (C 7), 128.2 (C17), 127.6 (C,6), 127.1 (Ci8),
126.8 (C19), 121.7 (Cs), 120.4 (q, J = 324.8, SO2CF 3),
118.1 (C6 ), 108.1 (Cs), 106.1 (C14 ), 73.4 (C2), 55.0 (C3 ),
49.1 (C11), 38.7 (C1o), 37.2 (C2 1).

5-75.0.

2911 (w), 1671 (m), 1605 (m), 1485 (s), 1399 (s), 1227
(s), 1194 (s), 1147 (s), 1039 (m), 746 (m).

calc'd for C20Hi 8F3N20 2S [M+H]*: 407.1036,
found: 407.1026.

0.56 (UV, CAM, KMnO4).

'9 For a previous preparation of amide lh, see Ho, B. T.; Mclsaac, W. M.; Tansey, L. W.; Kralik, P. M. J. Pharm. Sci. 1968, 57, 1998.
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7 2 NaHDMF; 7 21
1 N -~ N

H S5 Me2 1  i

1-Methvl-N-(3,4-dimethoxvphenvl)acetyltrvtamine (i):
Sodium hydride (60% dispersion in mineral oil, 147 mg, 3.68 mmol, 1.30 equiv) was added

slowly over 5 min as a solid under an argon atmosphere to a solution of N-(3,4-
dimethoxyphenyl)acetyltryptamine20 (S5, 958 mg, 2.83 mmol, 1 equiv) in NN-dimethylformamide
(25 mL) at 23 'C. After 30 min, iodomethane (230 [tL, 3.68 mmol, 1.30 equiv) was added slowly via
syringe over 5 min. After 18 h, the reaction mixture was concentrated under reduced pressure and
then diluted with diethyl ether (125 mL). The organic layer was washed with water (2 x 125 mL),
was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure.
The residue was purified by flash column chromatography on alumina (50% ethyl acetate in hexanes)
to afford 1-methyl-N-(3,4-dimethoxyphenyl)acetyltryptamine (1i, 536 mg, 53.7%) as a white powder.
Structural assignments were made with additional information from gCOSY, HSQC, and gHMBC
data.

'H NMR (500 MHz, CDCl3, 20 'C):

3 C NMR (125 MHz, CDCl 3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (50% EtOAc in hexanes), Rf:

6 7.50 (d, J= 7.9, 1H, C5H), 7.26 (d, J= 8.2, 1H, C8H),
7.21 (app-t, J= 7.6, 1H, C7H), 7.07 (app-t, J= 7.4, 1H,
CH), 6.74 (d, J= 8.1, 1H, CI 9H), 6.65 (dd, J= 1.5, 8.1,
1H, C20H), 6.62 (d, J = 1.5, 1H, CIH), 6.57 (s, IH,
C2 H), 5.61-5.42 (br-s, 1H, N 12H), 3.85 (d, 3H, C2 3H3),
3.73 (s, 3H, C2 2H3 ), 3.66 (s, 3H, C2 1 H 3), 3.49 (app-q, J
= 6.3, 2H, CI1 H2), 3.44 (s, 2H, C14H 2), 2.86 (t, J= 6.6,
2H, CioH 2).

6 171.3 (C13), 149.3 (C 17), 148.3 (C, 8 ), 137.2 (C9 ),
127.8 (C4), 127.6 (C, 5), 126.8 (C2 ), 121.9 (C7 ), 121.8
(C20), 119.1 (C), 118.9 (C), 112.5 (C,6 ), 111.5 (C19),
111.3 (C3 ), 109.4 (C), 56.0 (C23), 56.0 (C22 ), 43.6
(C14), 40.0 (CI1), 32.6 (C 2 1), 25.0 (C10 ).

3293 (br-m), 2934 (m), 1645 (s), 1514 (s), 1465 (m),
1328 (m), 1262 (s), 1235 (s), 1156 (m), 1027 (s), 742
(m).

calc'd for C21H24N2NaO3 [M+Na]*: 375.1679,
found: 375.1687.

0.64 (UV, CAM, KMnO4 ).

20 For a previous preparation of amide S5, see Onda, M.; Kawanishi, M. Yakugaku Zasshi 1956, 76, 966.
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Pentacyclic indoline ( )-8i:
Trifluoromethanesulfonic anhydride (417 gL, 2.48 mmol, 2.10 equiv) was added via syringe

to a solution of 1 -methyl-N-(3,4-dimethoxyphenyl)acetyltryptamine (1i, 416 mg, 1.18 mmol, 1 equiv)
and 2-chloropyridine (355 pL, 3.78 mmol, 3.20 equiv) in dichloromethane (12.0 mL) at -78 'C.
After 5 min, the reaction mixture was allowed to warm to 0 'C. After 5 min, the reaction mixture was
allowed to warm to 23 'C. After 5 min, the reaction vessel was placed into an oil bath and heated to
45 *C. After 3 h, the reaction vessel was removed from the oil bath and allowed to cool to 23 *C
before triethylamine (1.0 mL) was added to neutralize the trifluoromethanesulfonate salts. Brine (60
mL) was added, and the aqueous layer was extracted with dichloromethane (60 mL, then 2 x 30 mL).
The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (10 -+ 30% ethyl acetate in hexanes) to afford pentacyclic indoline (±)-8i (540 mg, 98.1%)
as a tan powder. Structural assignments were made with additional information from gCOSY,
HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 *C):

"C NMR (125 MHz, CDCl3, 20 'C):

'9F NMR (282 MHz, CDCl3 , 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (50% EtOAc in hexanes), Rf:

6 7.11 (app-dt, J= 1.2, 7.7, 1H, C7H), 6.96 (d, J= 7.3,
1H, C5H), 6.94 (s, 1H, C19H), 6.64 (app-dt, J= 1.0, 7.5,
1H, C6H), 6.51 (d, J = 7.7, 1H, C8H), 6.48 (s, 1H,
CIAH), 6.29 (s, 1H, C14H), 4.76 (s, 1H, C2H), 4.03 (app-
t, J= 9.2, 1H, CIIHa), 3.93 (app-dt, J= 5.9, 11.0, 1H,
C1LHb), 3.84 (s, 3H, C22H3), 3.79 (s, 3H, C2 3H3), 3.37 (s,
3H, C2 1H3), 2.24 (app-dt, J= 8.4, 11.8, 1H, CioHa), 2.11
(app-dd, J= 5.6, 11.9, 1H, CIoHb).

6 149.5 (C9), 148.7 (C 1 7), 147.9 (C18), 1
133.8 (C4), 129.4 (C7), 126.1 (C15), 125.6 (
(C5), 120.5 (q, J = 325.3, SO2CF3), 118.4
(C 16), 110.7 (C19), 108.5 (Cs), 105.7 (C 14),
56.3 (C22), 56.0 (C23), 55.0 (C 3), 49.1 (C11 ),
37.4 (C21).

6-75.0.

2935 (m), 1670 (m), 1603 (m), 1516 (m),
1396 (s), 1256 (s), 1225 (s), 1212 (s), 1148
(m), 666 (s).

calc'd for C22H22F3N2 0 4S [M+H]*: 467.1247,
found: 467.1232.

36.2
C20),

73.6
38.6

(C 13),
121.7
110.7
(C2 ),

(C10 ),

1489 (m),
(m), 1040

0.64 (UV, CAM, KMnO4).
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5 1 NH2 4-nitrophenylacetic acid
EDC*HCI, HOBT

H S1 4A-MS, CH2CI2
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10 0 16~ NO2
5 NN0

H \ 19
7 1 N

H Ij

N-(4-nitrophenvDacetyltryptamine (1j):
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrogen chloride (EDC-HCl, 4.81 g, 25.1

mmol, 1.50 equiv) was added under an argon atmosphere to a solution of tryptamine (S1, 2.95 g, 18.4
mmol, 1.10 equiv), 4-nitrophenylacetic acid (3.03 g, 16.7 mmol, 1 equiv), N-hydroxybenzotriozole
(HOBT, 3.39 g, 25.1 mmol, 1.50 equiv), and powdered 4 A molecular sieves (3.0 g) in
dichloromethane (100 mL) at 23 'C. After 48 h, the reaction mixture was concentrated under
reduced pressure. The residue was diluted with ethyl acetate (275 mL) and was washed with aqueous
hydrogen chloride solution (IN, 250 mL), saturated aqueous ammonium chloride solution (250 mL),
saturated aqueous sodium bicarbonate solution (2 x 250 mL), and brine (250 mL). The organic layer
was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure
to afford N-(4-nitrophenyl)acetyltryptamine (1j, 4.71 g, 87.1%) as a tan powder. Structural
assignments were made with additional information from gCOSY data.

'H NMR (500 MHz, CDCl 3, 20 'C):

13 C NMR (125 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (70% EtOAc in hexanes), Rf:

8 8.29-8.18 (br-s, 1H, N1H), 8.05 (d, J= 8.6, 2H, C17 H,
C19H), 7.52 (d, J= 7.8, 1H, C5 H), 7.35 (d, J= 8.1, 1H,
C8H), 7.25 (d, J = 8.6, 2H, C16 H, C2oH), 7.21 (t, J =

7.6, 1H, C7H), 7.10 (t, J= 7.5, 1H, C6H), 6.89 (s, 1H,
C2H), 5.62-5.48 (br-s, 1H, N 12H), 3.59 (app-q, J= 6.3,
2H, C1 H2), 3.53 (s, 2H, C1 4H2), 2.95 (t, J= 6.6, 2H,
CioH 2).

8 169.3, 147.2, 142.5, 136.5, 130.3, 127.4, 124.0, 122.5,
122.3, 119.8, 118.7, 112.6, 111.6, 43.5, 40.3, 25.0.

3403 (br-s), 3293 (br-s), 2929 (w), 1652 (s), 1517 (s),
1457 (m), 1346 (s), 1109 (w), 743 (m).

calc'd for C1 8H1 7N3NaO3 [M+Na]*: 346.1162,
found: 346.1150.

0.25 (UV, CAM, KMnO 4).
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Pentacyclic indoline ()-8i:
Trifluoromethanesulfonic anhydride (110 pL, 652 pmol, 3.10 equiv) was added via syringe to

a solution of N-(4-nitrophenyl)acetyltryptamine (1j, 68.0 mg, 210 pmol, 1 equiv) and 2-
chloropyridine (82.9 pL, 883 imol, 4.20 equiv) in dichloromethane (2.1 mL) at -78 *C. After 5 min,
the reaction mixture was allowed to warm to 0 'C. After 5 min, the reaction mixture was allowed to
warm to 23 *C. After 5 min, the reaction vessel was placed into a microwave reactor and heated to
130 "C. After 10 min, the reaction vessel was removed from the microwave reactor and allowed to
cool to 23 *C before triethylamine (500 RL) was added to neutralize the trifluoromethanesulfonate
salts. Brine (10 mL) was added, and the aqueous layer was extracted with dichloromethane (10 mL,
then 2 x 5 mL). The combined organic layers were dried over anhydrous sodium sulfate, were
filtered, and were concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel (0 --> 10% ethyl acetate in hexanes) to afford pentacyclic indoline (+)-
8j (63.7 mg, 53.2%) as a white powder. Structural assignments were made with additional
information from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 'C):

13C NMR (125 MHz, CDCl3, 20 *C):

19 F NMR (282 MHz, CDCl 3, 20 0C):

FTIR (neat) cm-1:

HRMS (DART):

TLC (10% EtOAc in hexanes), Rf:

6 8.54 (s, 1H, CI 9H), 8.05 (dd, J = 2.0, 8.2, 1H, C17H),
7.59 (d, J= 8.1, 1H, C8H), 7.33 (app-dt, J= 1.2, 7.8, 1H,
C7H), 7.22 (app-dt, J = 0.8, 7.6, 1H, C6 H), 7.18-7.10
(m, 1H, C5H), 7.18-7.10 (m, 1H, CIH), 6.55 (s, 1H,
C14H), 5.74 (s, 1H, C2H), 4.20 (app-t, J = 9.5, 1H,
CiiHa), 4.01 (app-dt, J = 5.7, 11.1, 1H, C1Hb), 2.51
(app-dt, J= 8.8, 11.9, 1H, CioHa), 2.22 (app-dd, J= 5.7,
12.1, lH, CoHb).

6 147.3 (C,8 ), 140.3 (C, 3), 138.8 (C15 ), 137.8 (C9),
134.5 (C4), 130.7 (C7), 130.1 (C20), 128.1 (C, 6), 127.7
(C), 125.0 (C17), 123.1 (C19), 122.6 (C5), 120.4 (q, J=
325.3, SO2CF3), 120.3 (q, J = 324.8, SO2CF 3), 117.5
(Cs), 105.1 (C14), 72.4 (C2 ), 54.8 (C3), 49.3 (C,,), 37.1
(C1O).

6 -73.9, -75.0.

2918 (w), 1666 (m), 1582 (m), 1524 (s), 1404 (s), 1340
(s), 1229 (s), 1203 (s), 1145 (s), 1077 (m), 666 (m).

calc'd for C20H 14F6N3 0 6 S2 [M+H]*: 570.0223,
found: 570.0220.

0.15 (UV, CAM, KMnO4).
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Tetracyclic indoline (0-8k:
Trifluoromethanesulfonic anhydride (199 p.L, 1.18 mmol, 3.10 equiv) was added via syringe

to a solution of N-vinylacetyltryptamine2 1 (1k, 87.0 mg, 381 pmol, 1 equiv) and 2-chloropyridine
(150 [tL, 1.21 mmol, 4.20 equiv) in dichloromethane (19.1 mL) at -78 *C. After 2 min, the reaction
mixture was allowed to warm to 0 'C. After 5 min, the reaction mixture was allowed to warm to 23
'C. After 5 min, the reaction vessel was placed into an oil bath and heated to 45 *C. After 3 h, the
reaction vessel was removed from the oil bath and allowed to cool to 23 'C before saturated aqueous
sodium bicarbonate solution (30 mL) was added to neutralize the trifluoromethanesulfonate salts.
Brine (40 mL) was added, and the aqueous layer was extracted with ethyl acetate (3 x 60 mL). The
combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (0 -- 5% ethyl acetate in hexanes) to afford tetracyclic indoline (±)-8k (102 mg, 56.4%) as
an off-white powder. Structural assignments were made with additional information from gCOSY,
HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 53 C): 6 7.55 (d, J= 8.1, 1H, CH), 7.34 (app-dt, J= 1.4, 7.8,

3 C NMR (125 MHz, CDCl3, 53 'C):

19F NMR (471 MHz, CDC 3, 53 'C):

FTIR (neat) cm'1:

HRMS (DART):

TLC (20% EtOAc in hexanes), Rf:

1H, C7 H), 7.20 (app-dt, J= 1.0, 7.5, 1H, C6H), 7.14 (d,
J= 7.5, 1H, C5H), 5.97-5.91 (m, 1H, Ci5H), 5.87 (d, J=
6.3, 1H, C14 H), 5.43 (dd, J = 2.2, 9.5, 1H, CIAH), 5.39
(s, 1H, C2H), 4.06 (app-t, J= 9.6, 1H, C 1Ha), 3.92 (app-
dt, J= 6.1, 10.8, 1H, CIIHb), 2.33 (app-q, J= 10.9, 1H,
CioHa), 2.11 (app-dd, J= 5.8, 12.2, 1H, CIoHb).

6 137.9 (C13), 137.7 (C9), 135.3 (C4 ), 130.2 (C7), 126.7
(C6), 125.8 (Ci5 ), 122.8 (Cs), 121.1 (Ci6 ), 120.5 (q, J=
324.8, SO2 CF3), 120.4 (q, J = 324.3, SO2CF 3), 116.2
(Cs), 101.6 (C14), 72.4 (C2 ), 53.6 (C3), 48.7 (C11), 37.3
(C1O).

6 -75.0, -75.5.

2918 (w), 1671 (m), 1603 (m), 1474 (m), 1463
1405 (s), 1229 (s), 1205 (s), 1146 (s), 1077 (m),
(m), 666 (s).

calc'd for C16H13F6N204S2 [M+H]*: 475.0215,
found: 475.0226.

(m),
1048

0.51 (UV, CAM, KMnO4).

21 For a previous preparation of amide 1k, see Airiau, E.; Spangenberg, T.; Girard, N.; Schoenfelder, A.; Salvadori, J.; Taddei, M.;
Mann, A. Chem. Eur. J. 2008, 14, 10938.
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Pentacyclic indoline (+)-9i:
Sodium metal ingot (25.0 mg, 1.09 mmol, 9.91 equiv) was added as a solid under an argon

atmosphere to a solution of pentacyclic indoline (±)-8i (51.3 mg, 110 pmol, 1 equiv) and methanol
(31.4 gL, 776 pmol, 7.05 equiv) in tetrahydrofuran (2.0 mL) and ammonia (2.5 mL) at -78 'C. After
4.25 h, ammonium chloride (150 mg) was added as a solid to quench the sodium salts, and the
resulting mixture was allowed to warm to 23 'C over 1 h. Saturated aqueous potassium carbonate
solution (60 mL) was added, and the aqueous layer was extracted with diethyl ether (3 x 50 mL).
The combined organic layers were dried over anhydrous potassium carbonate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (1.4% ammonium hydroxide [40% aqueous solution], 12.6% methanol, 30%
dichloromethane in chloroform) to afford pentacyclic indoline (±)-9i (35.0 mg, 94.6%) as a yellow
powder. Structural assignments were made with additional information from gCOSY, HSQC,
gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 'C):

13C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-1:

HRMS (DART):

6 7.16 (d, J= 7.2, 1H, C5 H), 7.12 (app-t, J= 7.6, 1H,
C7H), 6.80-6.75 (in, 1H, C6H), 6.79 (s, 1H, C19H), 6.77
(s, 1H, C16 H), 6.47 (d, J = 7.6, 1H, CH), 3.91 (s, 3H,
C2 2 H 3), 3.88 (s, 3H, C2 3H3), 3.81 (s, 1H, C2H), 3.37 (br-
s, 1H, C13H), 3.07 (dd, J= 3.7, 14.7, 1H, C14Ha), 3.03-
2.87 (in, 2H, C1 1H2), 2.80 (d, J = 14.7, 1H, C14Hb),
2.57-2.47 (in, 1H, CioHa), 2.53 (s, 3H, C2 1H 3), 1.69
(app-dt, J= 12.8, 8.3, 1H, CIoHb).

5 152.8 (C9), 149.1 (C18 ), 147.4 (C 17), 136.0

(C20 ), 128.0 (C7 ), 125.7 (C15), 122.8 (C),
114.3 (C 19), 113.6 (C16), 107.5 (Cs), 76.8
(C 13 ), 56.4 (C22), 56.1 (C2 3), 54.7 (C3 ), 48.1
(C1o), 33.6 (C21), 31.8 (C 14).

(C 4),
119.1
(C2 ),
(C 11),

128.9
(C6),
68.4
43.7

3335 (br-w), 2952 (in), 1606 (in), 1515 (s), 1486 (s),
1294 (m), 1250 (in), 1119 (s), 1022 (m), 742 (m).

calc'd for C2 1H25N2 0 2 [M+H]*: 337.1911,
found: 337.1924.

TLC (2% NH40H [40% aqueous solution], 18% MeOH in CHCl 3), Rf: 0.59 (UV, CAM, KMnO 4).
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Spirocyclic enimine (0-10a:
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 257 pL, 1.72 mmol, 15.0 equiv) was added via

syringe to a solution of spirocyclic indoline 3a (41.3 mg, 115 pmol, 1 equiv) in acetonitrile (4.0 mL)
at 23 'C. After 5 min, the reaction vessel was placed into a microwave reactor and heated to 125 "C.
After 10 min, the reaction vessel was removed from the microwave reactor and allowed to cool to 23
'C and concentrated under reduced pressure. The residue was purified by flash column
chromatography on alumina (0 -- 10% ethyl acetate in hexanes) to afford spirocyclic enimine (±)-

10a (18.3 mg, 70.6%) as a white powder. Structural assignments were made with additional
information from gCOSY, HSQC, gHMBC, and ROESY data.

1H NMR (500 MHz, CDC13, 20 0C):

13C NMR (125 MHz, CDC13, 20 0C):

FTIR (neat) cm-1:

HRMS (DART):

6 7.09 (app-dt, J= 1.3, 7.7, 1H, C7H), 6.86 (dd, J= 1.3,

7.3, 1H, C5H), 6.63 (app-dt, J= 0.9, 7.4, 1H, C6H), 6.48
(d, J= 7.8, 1H, CH), 5.30 (s, 1H, C15HE), 5.19 (s, 1H,
Ci5Hz), 4.05 (ddd, J= 4.5, 8.4, 16.6, 1H, CiiHa), 3.86
(app-dt, J= 16.6, 7.4, 1H, C11Hb), 3.61 (d, J= 9.4, 1H,
C2Ha), 3.35 (d, J= 9.4, 1H, C2Hb), 2.80 (s, 3H, C17H3),
2.32 (ddd, J= 4.5, 7.8, 12.9, 1H, CioHa), 2.18 (ddd, J
7.2, 8.4, 12.9, 1H, CioHb), 1.97 (s, 3H, C16H3).

8 176.0 (C 13), 151.8 (C9 ), 137.7 (C 14 ), 135.4 (C4 ), 128.5

(C7), 123.2 (C5), 122.5 (C15), 118.3 (C), 107.3 (Cs),
65.1 (C3 ), 61.1 (C2 ), 57.9 (CO), 43.3 (C10 ), 35.7 (C 17),
21.6 (C16).

2918 (s), 2849 (s), 1679 (m), 1605 (s), 1493 (s), 1463
(s), 1377 (m), 744 (m), 666 (s).

calc'd for C15H19N 2 [M+H]: 227.1543,
found: 227.1554.

TLC (30% EtOAc in hexanes), Rf: 0.38 (UV, CAM, KMnO 4).
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Chapter III

A Concise and Versatile Double-Cyclization Strategy for the Highly

Stereoselective Synthesis and Novel Arylative Dimerization of

Aspidosperma Alkaloids
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Introduction and Background

The monoterpene-indole alkaloids represent the largest family of alkaloid natural

products, whose more than 2,000 members display a broad range of chemical diversity and

potent biological activity.' The structural challenges presented by this family have long been a

source of interest, resulting in the development of a variety of inventive synthetic strategies to

access various family members. The biogenetically related natural alkaloids N-

methylaspidospermidine (1), N-methylquebrachamine (2), and tabernaebovine (3) represent the

aspidosperma subfamily of indole-monoterpene alkaloids (Figure 1). 2,3,4,5,6,7,8,9 The desmethyl

X
N 6

8 -"'\ 21

10 N D 6 2N 6 15 19 4 Me N X
E ."\ 1 1 \ e1

15 1 C 4 Me 21 15 19 4 Me 21 / ' 19'

1A B \2. 2' Me

1N H 1 N N
17 R R Me H

R = Me, (-)-N-methylaspidospermidine (1) R = Me, (+)-N-methylquebrachamine (2) X = 0, (+)-tabemaebovine (3)
R = H, (-)-aspidospermidine (1a) R = H, (+quebrachamine (2a) X = H2, (+)-dideepoxytabernaebovine (4)

OH
Me

N\Me2l e2
N 6 N N N N 6Me21

15 19 Me 21 15 19 Me 21 1 19 OAc 9 OAc

~~-,OH / 1| OH~~~ 2C5(.~1 NH'
1N H 1N 2CO 2Me X 1NHCO2Me N 1N H 'C 2Me

OMe Ac H Meie Me

(-)-aspidospermine (5) (-)-tabersonine (6) X = H, (-)-vindorosine (7) X = CO 2Me: (-)-vinblastine (9)
X = OMe, (-)-vindoline (8)

Figure 1. Representative aspidosperma alkaloids.

derivatives of 1 and 2, aspidospermidine (1a) and quebrachamine (2a), are also natural products

of the aspidosperma family. Aspidospermine (5) and tabersonine (6) represent further

monomeric derivatives of 1; tabersonine (6) is a key intermediate in the biosynthesis of the

aspidosperma alkaloids (Scheme 1). Vindorosine (7) and vindoline (8) are skeletally

functionalized derivatives of 1, while dimeric alkaloid vinblastine (9), a potent oncolytic agent, is

an dimeric natural product containing an aspidosperma alkaloid derived subunit. The dimeric

alkaloid tabernaebovine (3), isolated from Tabernaemontana bovina in 1 9 9 8 ,2n has a fascinating

molecular constitution that exhibits a unique C2-C 15' linkage between two pentacyclic

aspidosperma skeletons. While elegant strategies for synthesis of other dimeric indole-

monoterpene alkaloids have been reported,9 no synthetic solution to the distinctive C2-C15'

union present in 3 existed prior to our work. As an outgrowth of our laboratory's studies

concerning electrophilic amide activationo and of our results discussed in chapter II, we were
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inspired to develop a concise and convergent strategy for the enantioselective synthesis of

alkaloids (-)-1, (+)-2, and dimeric (+)-dideepoxytabernaebovine (4).

The biosynthesis' of the aspidosperma alkaloids is known to begin from tryptamine (10)

and geraniol derivative secologanin (11), and proceeds through the skeleton of the related

corynanthe family of indole-monoterpene alkaloids followed by several structural

rearrangements (Scheme 1). The first step in the biosynthetic route is the strictosidine synthase

11 8 CHO strictosidine 1121 strictosidine 1121
NH2  '9Glc synthase NH /OGIc deglusosidase NH 1C

I+ 6 i9 8 I8 CH
N N O - O N OH
H MeO 2C 4 H 6 4 H 6 4

tryptamine (10) secologanin (11) strictosidine (12) MeO 2C MeO 2CGc = glucosyl

N 6 Me N 19 5 N+19
19 N Me Me 8 Me N 21

0 -OH I N 6 MeI 2 C 2 3 4 eH 6

1N CO 2Me N CO2Me 1N CO 2Me MeO2C
4 OHH H H M0

(-)-tabersonine (6) dehydroscodine (16) preakuammicine (15) dehydrogeissoschizine (14)

Scheme 1. Proposed biosynthesis of the aspidosperma alkaloids.

catalyzed Pictet-Spengler reaction between tryptamine (10) and secologanin (11), which affords

strictosidine (12). Strictosidine deglucosidase acts on 12 to reveal an aldehyde intermediate 13,

which undergoes condensative N9-C19 double bond formation and isomerization of the C20-

C21 olefin to give key intermediate dehydrogeissoschizine (14), an alkaloid of the corynanthe

type. While the enzymes responsible for the remaining biosynthetic steps are not known,

previous studies have allowed for a proposed sequence involving a retro-Pictet-Spengler

reaction of 14 and subsequent C2-C3 bond formation to furnish preakuammicine (15), which

undergoes a series of rearrangements to give dehydrosecodine (16). The final step is proposed to

be an intramolecular Diels-Alder reaction to give tabersonine (6), which serves as a gateway into

the biosynthesis of related aspidosperma alkaloids.

Review of Prior Total Syntheses of Aspidosperma Alkaloids

The first total synthesis of aspidosperma alkaloids related to 1 and 2 was the seminal

collective syntheses of (±)-aspidospermine (5) and (±)-quebrachamine (2a) reported by Stork6b

in 1963 (Scheme 2). The synthetic route exploits the potential for interconversion of the

aspidospermidine- and quebrachamine-type skeletons, allowing for the collective syntheses of

both targets through late-stage divergence. Michael addition of enamine 17 onto methyl acrylate

and in situ enamine hydrolysis, followed by enamine formation and a subsequent Robinson
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annulation with methyl vinyl ketone, afforded C-ring containing enone (±)-18 in 32% yield over

three steps. Enone (±)-18 was converted to bicyclic chloroacetamide (±)-19 in five steps.

Treatment of (±)-19 with potassium tert-butoxide in benzene effected smooth Cl1-C12

cyclization to afford tricycle (±)-20. Reduction of the C1O-amide over 3 steps

N 6

19 -Et g,h

0 0 151 1

MeO2C CI N&1 10 N N e,1fN
N a-c 19 steps 3 steps ~ (±)-22

191 'Et '19 Et 12 19 -'E 12 -E6t Et jIrEti Q EtOeN 6

Et 0 2 O 2 0 i,fN E4 N

17 (1)-18 (_)-19 ( -20 (±)-2119
151

1N
(±)-23

Scheme 2. Stork's seminal syntheses of (2)-aspidospermine (5) and (±)-quebrachamine (2a): a) methyl

acrylate, 67%. b) pyrrolidine. c) methyl vinyl ketone; AcOH, 48% (2 steps). d) KOtBu, PhH. e) 2-

methoxyphenylhydrazine. f) AcOH, heat. g) LiAlH4 . h) Ac 20. i) phenylhydrazine. j) KBH 4.

afforded key tricyclic ketone (±)-21. A two-step Fischer indoleninization sequence between (±)-

21 and 2-methoxyphenylhydrazine afforded pentacycle (±)-22 with inversion of the C19-

stereocenter to the more stable natural configuration via a reversible C12-C19 retro-Mannich

reaction; reduction of (±)-22 with lithium aluminum hydride and subsequent acetylation of NI

afforded (±)-aspidospermine (5). Alternatively, Fischer indoleninization of (+)-21 with phenyl

hydrazine afforded pentacycle (±)-23, which, upon treament with potassium borohydride,

underwent C12-C19 bond cleavage and reduction of a putative C19-iminium ion to afford (±)-

quebrachamine (2a). The judicious exploitation of late-stage divergence to form both natural

products from a common intermediate highlights the strategic sophistication of Stork's synthetic

route.

Following Stork's seminal work, over two decades would pass before the first

enantioselective total synthesis of la, the aspidosperma alkaloid most directly related to (-)-1,

was achieved by Fuji in 1987 (Scheme 3).5' Enantioenriched chiral lactone 2411 was converted

in six steps to key acetal 25 in 57% overall yield. An acetic acid mediated Picter-Spengler

reaction of 25 with tryptamine (10) at elevated temperature and subsequent basic hydrolysis

afforded corynanthe related tetracycle 26 in 42% overall yield. Trifluoromethanesulfonic acid

mediated rearrangement of 26 afforded aspidosperma type pentacycle 27 in 60% yield, and

subsequent reduction with lithium aluminum hydride afforded (-)-aspidospermidine (la) in 81%
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OH NO2

0 OAc O1 .0 NO EtOCO HON N O~ce 6steps OMeN N
23Q9 .Et -, .,tCOOH a-,Et. I~ N 2~ 01 0 N 2 3  OH

29 MeO 28 24, 85% ee overall 25 26 Et

g, h 3 steps from c
commercial material O

MeSOE 19 Me 19 Me 19 Me
O N 

N d N

I I 2 2 d~I
~1 N 2  'Et ~ 1 N 1 N H 1 1N

30 H (+)-2a H (-)-1a H 27

Scheme 3. Enantioselective total syntheses of (-)-la and (+)-2a by Fuji: a) tryptamine (10), AcOH, A. b)
NaOH, MeOH, 42% (2 steps). c) TfOH, 60%. d) LiAlH4 , Et 20, 81%. e) TiCl 3 , MeOH, pH 5. f) tryptamine
(10), AcOH, A, 84% (2 steps). g) LiAlH4 , THF. h) MsCl, Et3N, CHCl 3. i) Na, NH 3 , EtOH, 53% (3 steps).

yield, completing the first enantioselective total synthesis of this alkaloid. Additionally,

reduction of nitroolefin 24 with titanium trichloride afforded acetal 28, which underwent a

Pictet-Spengler reaction with tryptamine (10) to afford tetracycle 29 as a diastereomeric mixture

in 84% yield. Conversion of 29 to quaternary ammonium salt 30 over two steps, followed by

reductive cleavage of the C3-N9 bond under Birch conditions, afforded (+)-2a in 53% yield

from 29, thus completing the total synthesis. While Fuji's collective approach to (-)-la and (+)-

2a does not benefit from the strategic late-stage divergence employed by Stork, the completion

of the first enantioselective synthesis of (-)-la in biomimetic fashion was a substantial step

forward in aspidosperma alkaloid synthesis.

Two more recent examples of aspidosperma alkaloid syntheses demonstrate efficient

MeO 2C N MeO 2C ' N A N MeO 2C -N

19 2 CHOb-d e 19 Me

tBuMe 2SiO tuMe2SiO 0 2N 02 1N 2

31 33, 95% ee X = CO2Me, 34 35
2 steps from f-h

commercial material SbF6
H -1-H (+)-1a N
_N, +,,N- 19

4 1Bu u (-)-2a Me

catalyst 32 36

Scheme 4. Rawal's enantioselective total syntheses of (+)-la and (-)-2a: a) ethacrolein, catalyst 32
(5.0 mol %), 4A-MS, CH 2Cl2 , 84%, 95% ee. b) Ph3PCH3I, "BuLi, THF. c) Grubbs' lst generation
catalyst (7.5 mol %), CH2Cl2, A. d) (2-nitrophenyl)(phenyl)iodonium fluoride, THF, DMSO, 57-62%
(3 steps). e) TiCl3 , NH40Ac, acetone, H20, 90%. f) Me 3Sil, CH2Cl2 , A. g) Br(CH2)2OH, Na 2CO 3 ,
EtOH, A. h) MsCl, NEt3 ; KOtBu, 79% (3 steps). i) NaBH 4 , EtOH. j) H2, PtO2 , EtOH, 73% (2 steps).
k) H2 , PtO2 , AcOH, 69%.
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approaches for asymmetric synthesis. Rawal's 5 2002 collective syntheses of (+)-la and (-)-2a

(Scheme 4) commenced with a catalytic enantioselective Diels-Alder reaction between super-

diene 31 and ethacrolein promoted by Jacobsen's 1 2 chiral chromium salen catalyst 32, affording

monocyclic compound 33 in 84% yield and 95% ee. Elaboration of 33 to nitroarene 34 through

Wittig olefination, ring-closing olefin metathesis and arylation, followed by reductive

NHBoc Boc CHO Boc
N CHO N -2

NBoc 3steps SePh a b N 1

3 1~ 3
~ N63% 1 N ~ N N ' H

37 H overall 38 Bn Bn Bn

40, 97% ee c, d

SN N N -

MeM N 19 19 19

Iu'N 2 I-, 2 2.
qu H2 Br3COO_ 6 1 N ~ 1 N "1i

2 H N NH
catalyst 39 (+)-la 43 42

Scheme 5. MacMillan's enantioselective total synthesis of (+)-la: a) propynal, catalyst 41 (20 mol %),
PhMe, 83%, 97% ee. b) Ph3PCH 31, nBuLi, THF; NaBH 3CN, AcOH. c) TFA, CH2Cl2 . d) (Z)-3-bromo-

1 -iodopropene, K2CO 3 , DMF, 73% (3 steps). e) (Ph3P)4Pd, Et3N, PhMe, 80 'C, 65%. f) H2 (200 psi),
Pd(OH) 2 , MeOH, EtOAc, 98%.

indolization of 34, afforded tetracycle 35 in 51-56% overall yield. The C 10-C 11 ethylene group

was installed in 79% yield over 3 steps in a sequence reminiscent of Stork's strategy to afford

indolenine 36. Reduction of indolenine 36 with sodium borohydride and subsequent catalytic

hydrogenation afforded (-)-la in 73% yield, completing a 12-step total synthesis. Catalytic

hydrogenation of 36 in acetic acid afforded (+)-2a in 69% yield via a putative C19-iminium ion.

Additionally, Rawal was able to access (+)-tabersonine (6) and other aspidosperma alkaloids via

his route, highlighting the utility of late-stage synthetic divergence in a modem, asymmetric

setting. MacMillan's 5 1 2009 synthesis of (+)-la (Scheme 5) centered on a key organocatalytic

enantioselective Diels-Alder reaction/Michael addition cascade between 2-vinylindole 38 and

propynal promoted by catalyst 39 afforded tetracycle 40 in 83% yield and 97% ee. Elaboration

of 40 to vinyl iodide 42 and subsequent Heck cyclization afforded pentacyclic triene 43 in 47%

yield over four steps. Exhaustive catalytic hydrogenation and hydrogenolysis afforded (+)-la in

98% yield, completing a nine-step synthesis from tricycle 37. Their strategy was also applied to

the synthesis of related kopsia and strychnos alkaloids through a similar key Diels-Alder

reaction/Michael addition cascade.
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Despite numerous previous total syntheses of aspidosperma alkaloids, prior to our work,

no total synthesis of N-methquebrachamine (2) had been reported, and no enantioselective

synthesis of N-methylaspidospermidine (1) had been reported.13 The only synthesis of 1 was

reported by Boger3 in 2006 in the context of his groups' total synthesis of (+)-vindoline (8).

Oxadiazole 45, synthesized in three steps from N-methyltryptamine (44), was acylated with 4-

methylenehexanoic acid in the presence of EDC-HCl to afford achiral intermediate 46 in 87%

yield. Heating of 46 in refluxing 1,2-dichlorobenzene effected a unique [4+2]/[3+2]

cycloaddition cascade to secure hexacycle (±)-47 in 74% yield; separation of the enantiomers by

chiral HPLC afforded (+)-47, which was reduced in a single step or through a higher yielding

two step sequence to pentacyclic diol 48. Oxidative diol cleavage with sodium periodate, ketone

reduction with sodium borohydride, and a two step Barton-McCombie deoxygenation afforded

(+)-1 in 68% yield over four steps, completing a nine or ten step synthesis from N-

methyltryptamine (44).

NH N Me 19
NH2 3steps 19 aq 9, 6Y b '. M-7 -/-,- \o~ ------

66% 1- N2 N 1~ N 3) -N N - NH CO 2Me
44 Me overall 45 me CO 2Me 46 me CO2Me (+)-47

c or
d, e

N N N N

194M 1911

me 
H i N Me N Me f OMe

'HNH HNH I ~N OH
(+)1 M 50 Me 49 Me 48 Me

Scheme 6. Boger's total synthesis of (+)-N-methylaspidospermidine (1): a) 4-methylenehexanoic acid,
4-DMAP, EDCeHCl, CH2Cl2, 87%. b) 1,2-dichlorobenzene, 180 *C, 74% of (t)-47; 37% of (+)-47
after chiral HPLC separation of enantiomers. c) LiAlH4, 31%. d) NaBH 3CN, HCl, MeOH, 96%. e)
LiAIH4, 99%. f) NaIO4, 93%. g) NaBH 4, 99%. h) LiHMDS, CS2; Mel, 77%. i) AIBN, "Bu 3SnH, 96%.

In chapter II, we discussed the development of a methodology for the interruption of the

Bischler-Napieralski reaction by intra- and intermolecular trapping of spirocyclic indoleninium

ions. In this chapter, we discuss the development of a double-cyclization cascade based on our

interrupted Bischler-Napieralski reaction methodology and its application to the previously

unprecedented C2-C15' union of aspidosperma alkaloids in the enantioselective total synthesis

of dimeric decacyclic product (+)-4 in addition to enantioselective total syntheses of (-)-1 and

(+)-2.
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Results and Discussion

Inspired by precedence in biogenetically relevant dimerizations of other monoterpene-

indole alkaloids, ', we posited the biogenesis of (+)-tabemaebovine (3) to involve late-stage

HHTfO- + TfO- + Me interrupted 0 Me
reuto eN / Bischler- 2 91 ~*

reduction 19 C2-C3 I . Napieralski 12 3

2 Me Cl C12-C19 2 Cf

C N H N +TfO- N+ Me -)53
(-)-1 Me L 51 Me 52 Me TfO

C2-C1 5' ---
Friedel-Crafts; N9-alkylation and

reduction hydrative Grob N9-acylation
fragmentation;

N reduction PNHNs h Me
-N ~ 8

~Me N + Ph 4  N19 CI
N N OH Me N 3

N19 Me Me 54 (+)-55
Me'/- Me Me

MeH N
(+)-4 (+)-2 Me

Scheme 7. Retrosynthetic analysis of the aspidosperma alkaloids.

union of two aspidosperma fragments at the C2-C15' linkage. This retrobiosynthetic analysis14

prompted the development of a regio- and diastereoselective C2-arylation of pentacycle 51

(Scheme 7) en route to decacycle (+)-4. Based on our results discussed in chapter II, we

envisioned that a highly electrophilic diiminium ion 51 would allow for stereo- and

regioselective transformations that provide divergent access to dideepoxytabemaebovine (+)-4 as

well as monomeric aspidosperma alkaloids (-)-N-methylaspidospermidine (1) and (+)-N-

methylquebrachamine (2) (Scheme 7). We expected reduction of the diiminium ion 51 would

afford (-)-1, whereas hydrative Grob fragmentation followed by reduction would afford (+)-2.

We hypothesized that the diiminium ion 51 could be generated from lactam (-)-53 via a novel,

stereoselective double-cyclization cascade. We envisioned a transformation involving

spirocyclization of an electrophilically activated lactam intermediate onto the 2-chloroindole and

subsequent interruption of the Bischler-Napieralski reaction by cyclization of an unactivated

C3-C4 vinyl group onto the C2-position of the putative 2-chlorospiroindoleninium intermediate

52, a bond formation uniquely favored by the relative stereochemistry in 52. The overall

stereochemical outcome of the process would be secured from the resident stereochemistry of the

C5-quaternary center. The requisite lactam (-)-53 could be simplified via N-acylation and N-

alkylation transforms to 2-chlorotryptamine sulfonamide 54 and a-quaternary amide (+)-55, the
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latter of which could be synthesized diastereoselectively via alkylative quaternization of an

amide enolate.

The concise enantioselective synthesis of the key tryptamine-lactam (-)-53 is illustrated

in Scheme 8. Regioselective methylation of sulfonamide 5615 via its disodium dianion provided

0 Ph

NHNs 9NHNs Ph C1C N 1
a, ab CN 9Y 1 CI 1 - Me OTESI "' ~ + Yg

el N 54 OR Me\ ( Nh
H Me Me Me

(+)-55, R =H 0Mee (+)-60,R=TES 10

Ph Ph 0 Ph 0 N 3
Ph e N 19 C2 Ph + (-)-57N'<19 --f' M5  e -N 19 CI N

OH (-)-57 OH Me (+)-58 OH Me N 3 (+)-59 Me (-)-53, 94% ee

Scheme 8. Enantioselective synthesis of lactam (-)-53: a) NaH, DMF, 23 'C; Mel, 0 -+ 23 'C, 91%. b) N-
chlorosuccinimide, MeCN, 23 'C, 76%. c) E-crotonyl chloride, Et3N, THF, -30 -+ 23 *C, 97%. d) lithium
2,2,6,6-tetramethylpiperidide, LiCl, THF, 0 -+ -78 *C; 3-chloro-1-iodopropane, -78 -+ 0 'C, 83%. e) lithium
diisopropylamide, LiCl, THF, -78 -- 0 'C; N,N-dimethylpropylene urea, -40 OC; EtI, -50 OC, 72%, >29:1 dr.
f) triethylsilyl triflate, 2,6-lutidine, CH 2Cl 2 , 23 'C, 100%. g) (+)-60, 54, KH, "Bu 4NI, DMF, 100 *C, 86%. h)
PhSH, K2CO 3, DMSO, 23 0C; KOEt, Et 3Ne3HF, EtOH, 85 OC, 95%, 94% ee, 99% recovery of (-)-57. DMF
= N-dimethylformamide, Ns = 2-nitrobenzenesulfonyl, TES = triethylsilyl.

the requisite Ni-methylated derivative in 91% yield.16  Subsequent treatment with N-

chlorosuccinimide afforded C2-chlorotryptamine 54 in 76% yield. The C5-quaternary

stereogenic center that we envisioned would enable stereocontrolled introduction of all

stereocenters found in alkaloids (-)-1, (+)-2, and (+)-4 was secured by successive

diastereoselective a-alkylations of crotonamide (+)-58. Acylation of (-)-pseudoephenamine

(57)17 with E-crotonyl chloride gave the enamide (+)-58 in 97% yield. Chemoselective y-

deprotonation of enamide (+)-58 with lithium 2,2,6,6-tetramethylpiperidide in the presence of

lithium chloride,' 8 followed by electrophilic trapping of the resulting enolate with 3-chloro-1-

iodopropane afforded c-vinyl amide (+)-59 as a single diastereomer in 83% yield. Inspired by

Myers' alkylative quaternizations19 of pseudoephedrine amides and precedent for a-alkylation of

a-methyl crotonimides,20 we reasoned that deprotonation of a-vinyl amide (+)-59 would afford

the corresponding enolate with the sterically less demanding vinyl group cis to the amide

nitrogen. Alkylation from the less sterically shielded face of the enolate 1',1 would secure the

desired C5-quaternary stereocenter. Gratifyingly, deprotonation of amide (+)-59 with lithium

diisopropylamide in the presence of lithium chloride, followed by electrophilic trapping with
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iodoethane at -50 'C in the presence of N,N-dimethylpropylene urea provided the a-quatemary

amide (+)-55 in 72% yield with an excellent level of stereoselection (>29:1 dr).16,2 1,22

Attempts to hydrolyze amide (+)-55 to the corresponding carboxylic acid were

unsatisfactory due to competitive lactone formation under either basic or acidic conditions.

Initial efforts to couple a-quatemary amide (+)-55 with sulfonamide 54 via nucleophilic

displacement of the C8-chloride proved inefficient; fast N---O acyl transfer of amide (+)-55 led

to intramolecular N-alkylation. This propensity of amide (+)-55, however, could be used to our

advantage for the synthesis of lactam (-)-53 and recovery of the chiral auxiliary. Sequential

treatment of sulfonamide 54 with potassium hydride and O-silyl derivative (+)-60 in DMF in the

presence of tetrabutylammonium iodide followed by heating to 100 'C afforded N-alkylated

sulfonamide (+)-61 in 86% yield. Desulfonylation 23 of (+)-61 to the corresponding secondary

amine and in situ desilylation and heating in ethanol afforded the key lactam (-)-53 in 95% yield

and 94% ee. 16  This single-step transformation, which occurs via a desilylation/N--O acyl

transfer/lactam cyclization cascade, also leads to efficient recovery of the chiral auxiliary (-)-57

in 99% yield (Scheme 8).24

We next focused on the development of a unified strategy to access a versatile

intermediate en route to alkaloids (-)-1, (+)-2, and (+)-4. Electrophilic activation of lactam (-)-

53 with trifluoromethanesulfonic anhydride'' 2 5 initiated a double-cyclization cascade leading to

the versatile diiminium ion 51 (Scheme 9). Guided by our methodology for the interrupted

O Me21 TfO-+N 6 1N O 6  N 6

1 N19 a 19 Me Me Me

CI 6 3 1
SN N+ TfO- 1 N 1N
Me (-)-53 L Me 51 Me (M)64 me (+)-2

N N 6 N 6

19 4 Me b 4 Me 9 4 Me

NN H3 *
1Me (_)_1 4Me (-)-62 (-)-63 Me *

NMe2 63-(HCI) 2 *

Scheme 9. Synthesis of aspidosperma alkaloids by interception of diiminium ion 51: a) Tf20, 3-
cyanopyridine, MeCN, 85 'C. i) NaBH 3CN, THF, 50%. ii) 4-(Me2N)-C6H4MgBr, -40 'C; Red-Al, 40%.

iii) trifluoroacetic acid, sodium trifluoroacetate, H20, 70 'C, 57%. b) H2 , Pt/C, THF, 100%. c) H2, Pt/C,

THF. d) LiAlH4 , THF, 65 0C, 82% (two steps). Tf2O = trifluoromethanesulfonic anhydride.
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Bischler-Napieralski reaction discussed in chapter II and by our prior methodologies for

azaheterocycle syntheses employing electrophilic amide activation,' 0 we recognized the optimal

conditions for conversion of lactam (-)-53 to diiminium ion 51 involve the use of mildly basic

additive 3-cyanopyridine in acetonitrile followed by warming. This transformation relies on

C19-electrophilic activation of lactam (-)-53 and rapid C12-nucleophilic spirocyclization

affording the putative 2-chlorospiroindoleninium intermediate 52 (Scheme 7) that undergoes C2-

addition by the vinyl group and loss of hydrogen chloride. The ability to employ an unactivated

C3-C4 olefin as the nucleophile in the second cyclization is likely due to the enhanced C2-

electrophilicity of intermediate 52 imparted by the chlorine atom,26 together with a high
27,28resilience of 52 toward an undesired Wagner-Meerwein rearrangement. Consistent with the

sensitivity of this double-cyclization step, the use of less basic 2-chloropyridine or more

nucleophilic pyridine as the additive gave the desired diiminium ion 51 with reduced efficiency

as evidenced by the presence of singly cyclized side-products, recovered starting material, and

significant decomposition.29 The synthetic versatility of diiminium ion 51 is illustrated by its

conversion to alkaloids (-)-1, (+)-2, and (-)-63 (Scheme 9). In situ reduction of intermediate 51

with sodium cyanoborohydride furnished (-)-N-methyldehydroaspidospermidine (62) in 50%

yield as a single diastereomer. Catalytic hydrogenation of cis-alkene (-)-62 with a carbon-

supported platinum catalyst afforded (-)-N-methylaspidospermidine (1) {[a] 24 D= -23 (c 0.17,

CHCl3); lit. [a] 25D = -23 (c 1.1, CHCl 3);3 for (+)-1, [c] 20 D = +24 (c 1.25, CHCl 3)2 1} in

quantitative yield (Scheme 9). All spectroscopic data for our synthetic (-)-1 was consistent with

those reported in the literature.3  The concise enantioselective synthesis of lactam (-)-53

combined with the double-cyclization strategy described above enables rapid access to useful

intermediates with highly reactive C2- and C19-iminium functions.

The unique reactivity of diiminium ion 51 is demonstrated by its utility in a C2-arylation

reminiscent of the C2-C15' bond adjoining the two halves of the complex natural alkaloid (+)-

tabernaebovine (3, Figure 1). We reasoned that the vicinal C19-iminium ion of intermediate 51

would enhance the electrophilicity of the C2-iminium ion both inductively and by reducing the

steric environment through the flattening of the DE-ring system. Gratifyingly, treatment of in

situ generated diiminium ion 51 with 4-(NN-dimethylamino)phenylmagnesium bromide at -40

'C for 30 seconds followed by addition of Red-Al afforded hexacyclic C2-aniline adduct (-)-63

in 40% yield as a single diastereomer (Scheme 9).16 The steric congestion about C2 in adduct
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(-)-63 is evidenced by the ~20 kcal/mol barrier to rotation16 about the C2-C23 T -bond as

measured through NMR coalescence temperature experiments. Also, heating an acidic aqueous

solution of diiminium ion 51 to 70 'C effected Grob fragmentation to give the tetracyclic lactam

(-)-6430 in 57% yield in a single step from lactam (-)-53. Platinum catalyzed hydrogenation31 of

the C3-C4 olefin and subsequent C19-carbonyl reduction with lithium aluminium hydride at 60

C provided (+)-N-methylquebrachamine (2) {[a]2 4D= +102 (c 0.22, CHCl 3); lit. [a]24D +110

(CHCl 3)2 g} in 82% yield over two steps.16

With particular interest in evaluating this chemistry as a general entry to the synthesis of

complex aspidosperma alkaloids, we investigated a series of C2-addition reactions of relevance

in synthetic planning. Importantly, lactam (-)-64, requiring mild activation conditions, proved to

be an excellent precursor to diiminium ion 51. Treatment of lactam (-)-64 with Tf2O-2-

chloropyridine reagent combination 0 in acetonitrile (23 'C, 10 min) resulted in rapid stereo- and

regioselective electrophilic transannular spirocyclization to 51 en route to various C2-adducts

62-69 (Table 1). Introduction of sodium cyanoborohydride afforded (-)-N-

methyldehydroaspidospermidine (62) in 95% yield (Table 1, entry 1) consistent with efficient

generation of the same electrophilic intermediate 51 accessed from lactam (-)-53 (Scheme 9).

The greater reactivity at C2 compared to C19 of diiminium ion 51 can be used for regioselective

addition of the first nucleophile at the former.32  For example, treatment of 51 with

tributylstannane, followed by introduction of sodium borodeuteride, afforded C19-deuterated

pentacycle (-)-65 in 94% yield with no deuterium enrichment at C2 and 93% deuterium

incorporation at C19 (Table 1, entry 2). Notably, the C2-arylated product (-)-63 could be

prepared efficiently from lactam (-)-64 using 4-(NN-dimethylamino)phenylmagnesium bromide

as the first nucleophile followed by in situ C19 reduction (Table 1, entry 3, 76% yield).

Alternatively, hexacyclic iminium triflate (-)-66 could be isolated then reduced with sodium

cyanoborohydride to (-)-63 in a subsequent step (Table 1, entries 4 and 9). That this C19-

reduction of pentacycle (-)-66 occurs in the absence of an acidic additive is consistent with its

spectroscopic data revealing its iminium ion structure.16 It is notable that the ~12 kcal/mol

barrier to rotation' 6 about the C2-C23 -bond in iminium ion (-)-66 is significantly lower than

in the reduced product (-)-63 (vide supra), consistent with the aforementioned structural

flattening effect of the C19-iminium ion. The high electrophilicity of diiminium ion 51 allows
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Table 1. Regio- and stereoselective transformations of lactam (-)-64.

Tf2O

2-CIPyr
MeCN

Entry Nuc-1a

N R2

Nuc-1; 19 Me-'- 2/
Nuc-2 NRI

62 -69 Me

Nuc-2 Product Yieldb

1 NaBH3CN

2 "Bu 3SnH

BrMg
3e

NMe2

Me

5 BrMg

Me

Me
6 JSiMe3,

OMe
7

OSiMe2tBu

8

9 aNMe2

NaBD4

Red-Al

Red-Al

NaHB(OMe)
3

NaHB(OMe)3

NaHB(OHMe)
3

(-)-62

N D

19 Me
2/

NNH
(-)-65 Me

N H

S1 9 
Me

Me /
Me -

(-)-67

NYH

19 Me
2 / O/

"N

(-)-69 Me OMe

(-)-63

(-)-66

108

95%

94%

76%

76%

59%

92%

79%

74%

73%

aGrignard reagents at -40 'C. Other nucleophiles at 23 C. blsolated
yield of single diastereomer. c93% Deuterium incorporation at C19.
2-ClPyr = 2-chloropyridine.

BrMg z

NMe2



for C-C bond formation at C2 with highly hindered and mildly nucleophilic species. Treatment

of intermediate 51 with 2,6-dimethylphenylmagnesium bromide followed by hydride reduction

afforded the highly congested xylene adduct (-)-67 in 59% yield (Table 1, entry 5). The high

degree of steric congestion about C2 in (-)-67 is evidenced by the complete lack of observable

C2-C23 a -bond rotation on the 'H NMR timescale, even at 140 'C. Reaction of 51 with 2-

methallyltrimethylsilane or 1-(tert-butyldimethylsilyloxy)-1-methoxyethene and subsequent

hydride reduction afforded methallyl adduct (-)-68 (Table 1, entry 6, 92% yield) or methyl

acetate adduct (-)-69 (Table 1, entry 7, 79% yield), respectively. The utility of this strategy to

access C2-arylated derivatives is highlighted by a Friedel-Crafts reaction of 51 with NN-

dimethylaniline (23 'C, 90 min) and either in situ C19-reduction to provide C2-arylated amine

(-)-63 or isolation of the pentacyclic C19-iminium salt (-)-66 (Table 1, entries 8 and 9, 74% and

73% yield, respectively).

With insight gained from these studies, in particular entries 8 and 9 of Table 1, we

sought to implement this chemistry in effecting the dimerization of two pentacyclic

aspidosperma type molecular frameworks at the challenging C2-C15' linkage (Scheme 10). In

the event, electrophilic activation of tetracyclic lactam (-)-64 followed by treatment with

equimolar (-)-N-methyldehydroaspidospermidine (62) and heating to 85 'C afforded the

decacyclic iminium triflate (+)-70 in 80% yield. Subsequent C19-reduction of (+)-70 gave (-)-

didehydrodideepoxytabemaebovine (71), which upon hydrogenation provided (±)-

(-)-62 N

-N .1 TfO~
N O TfO- +N Me +N

Me 19 Me N 19 Me

N N + TfO- N 15- \ N
(-)-64 Me 51 Me Me /Me

N
b MeH

(+)-70

N H NtH

Me N cMe
2 N C 2/ N

N 15' N N5'
Me Me Me Me

N N
(+)4 MeH _H.71 MeH

Scheme 10. Synthesis of (+)-dideepoxytabernaebovine (4): a) Tf2O, 2-CiPyr, MeCN,
23 OC. i) (-)-62 (1.0 equiv), 85 0C, 80%. ii) (-)-62, 85 'C; NaHB(OMe) 3, THF,

73%. b) Ied-Al, THF, 0 0C, 73%. c) H2, Pt/C, THF, 84%.
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dideepoxytabernaebovine (4) in 64% yield over two steps. Alternatively, in situ C19-reduction

of dimeric iminium ion (+)-70, formed through the union of lactam (-)-64 with (-)-N-

methyldehydroaspidospermidine (62) as described above, with sodium trimethoxyborohydride

directly afforded product (-)-71 from (-)-64 in 73% yield. Apart from increasing the

electrophilicity of the vicinal C2-iminium ion, the C19-iminium ion may be responsible for

reducing the nucleophilicity of the dimeric intermediate (+)-70, as no oligomerized products

could be observed even when only one equivalent of (-)-62 was employed as nucleophile.

Conclusion

We have developed a concise synthetic strategy to access the aspidosperma type

molecular framework employing a double-cyclization cascade that sets up to three contiguous

stereogenic centers and forms up to three carbon-carbon bonds with complete regio- and

stereochemical control in a single step. The use of the chiral auxiliary (-)-5717 was critical in

enabling our concise and enantioselective synthesis of the key intermediate (-)-63. The ability

to use an unactivated olefin as a pendant nucleophile minimizes the need for functional group

removal and allows for concise and convergent access to complex aspidosperma alkaloids. We

have shown putative diiminium ion 51 to be a highly reactive and versatile intermediate,

allowing the rapid enantioselective total syntheses of (-)-N-methylaspidospermidine (1) and (+)-

N-methylquebrachamine (2) in 8 and 9 steps, respectively, from E-crotonyl chloride and (-)-

pseudoephenamine (57), as well as previously unprecedented C-C bond formations onto the

highly congested C2-position of the aspidosperma skeleton. The power of this synthetic strategy

has been demonstrated in the first example of a C2-C15' dimerization of two aspidosperma type

systems, a complex assembly drawing on biogenetic considerations of (+)-3, in the synthesis of

(+)-dideepoxytabernaebovine (4).33

1 For reviews, see: (a) Brown, R. T. Indoles, The Monoterpenoid Indole Alkaloids. In The

Chemistry of Heterocyclic Compounds; Saxton, J. E., Weissberger, A., Taylor, E. C., Eds.;

Wiley: New York, 1983; Vol. 25, Part 4, pp 85. (b) Saxton, J. E. In The Alkaloids. Chemistry and

Biology; Cordell, G. A., Ed.; Academic Press: San Diego, 1998; Vol. 51, pp 1. (c) Dewick, P. M.

In Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; Wiley: Chichester, 2001; pp

350. (d) O'Connor, S. E.; McCoy, E. Recent Adv. Phytochem. 2006, 40, 1. (e) O'Connor, S. E.;

Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532. (f) O'Connor S. E. In Plant-Derived Natural

110



Products.: Synthesis, Function and Application; Osbourn, A. E., Lanzotti, V., Eds.; Springer,

New York, 2009, pp 165. (g) O'Connor, S. E. In Comprehensive Natural Products H; Mander,

L., Liu, H.-W., Eds.; Elsevier: Amsterdam, 2010; Vol. 1, pp 977.

2 (a) Fraude, G. Ber. 1878, 11, 2189. (b) Hesse, 0. Ber. 1881, 13, 2308. (c) Janot, M.-M.;

Pourrat, H., Le Men, J. Bull. Soc. Chim. Fr. 1954, 707. (d) Noble, R. L.; Beer, C. T.; Cutts, J. H.

Ann. N. Y Acad. Sci. 1958, 76, 882. (e) Svoboda, G. H.; Nuess, N.; Gorman, M. J Am. Pharm.

Assoc. Sci. Ed. 1959, 48, 659. (f) Biemann, K.; Spiteller-Friedmann, M.; Spiteller, G.

Tetrahedron Lett. 1961, 2, 485. (g) Mokry, J.; Kompis, I.; Dubravkova, L.; Sefcovic, P.

Tetrahedron Lett. 1962, 25, 1185. (h) Moza, B. K.; Trojinek, J. Collect. Czech. Chem. Commun.,

1963, 28, 1427. (i) Noble, R. L. Lloydia 1964, 27, 280. (j) Mokry, J.; Kompis, I. Lloydia 1964,

27, 428. (k) Walser, A.; Djerassi, C. Helv. Chim. Acta 1965, 48, 391. (1) Mokry, J.; Kompis, I.;

Spiteller, G. Collect. Czech. Chem. Commun. 1967, 32, 2523. (m) Zeches-Hanrot, M.; Nuzillard,

J.-M.; Richard, B.; Schaller, H.; Hadi, H. A.; Sevenet, T.; Le Men-Olivier, L. Phytochemistry

1995, 40, 587. (n) Lien, T. P.; Kamperdick, C.; Sung, T. V.; Adam, G.; Ripperger, H.

Phytochemistry 1998, 49, 1797. (o) Merzweiler, K.; Lien, T. P.; Sung, T. V.; Ripperger, H.;

Adam, G. J. Prakt. Chem. 1999, 341, 69.

3 For a synthesis of (+)-1, see: Ishikawa, H.; Elliot, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J.

Am. Chem. Soc. 2006, 128, 10596.

4 For syntheses of (±)-la, see: (a) Kutney, J. P.; Abdurahman, N.; Quesne, P. L.; Piers, E.;

Vlattas, I. J. Am. Chem. Soc. 1966, 88, 3656. (b) Harley-Mason, J.; Kaplan, M. Chem. Commun.

1967, 915. (c) Kutney, J. P.; Abdurahman, N.; Gletsos, C.; Le Quesne, P.; Piers, E.; Vlattas, I.; J.

Am. Chem. Soc. 1970, 92, 1727. (d) Laronze, J. Y.; Laronze-Fontaine, J.; Levy, J.; Le Men, J.

Tetrahedron Lett. 1974, 15, 491. (e) Gallagher, T.; Magnus, P.; Huffman, J. J. Am. Chem. Soc.

1982, 104, 1140. (f) Gallagher, T.; Magnus, P.; Huffman, J. C. J. Am. Chem. Soc. 1983, 105,

4750. (g) Wenkert, E.; Hudlickf, T. J. Org. Chem. 1988, 53, 1953. (h) Mandal, S. B.; Giri, V. S.;

Sabeena, M. S.; Pakrashi, S. C. J. Org. Chem. 1988, 53, 4236. (i) Le Menez, P.; Kunesch, N.;

Liu, S.; Wenkert, E. J. Org. Chem. 1991, 56, 2915. (j) Wenkert, E.; Liu, S. J. Org. Chem. 1994,

59, 7677. (k) Forns, P.; Diez, A.; Rubiralta, M. J. Org. Chem. 1996, 61, 7882. (1) Callaghan, 0.;

Lampard, C.; Kennedy, A. R.; Murphy, J. A. Tetrahedron Lett. 1999, 40, 161. (in) Callaghan, 0.;

Lampard, C.; Kennedy, A. R.; Murphy, J. A. Tetrahedron Lett. 1999, 40, 2225. (n) Callaghan,

111



0.; Lampard, C.; Kennedy, A. R.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1999, 995. (o)

Toczko, M. A.; Heathcock, C. H. J. Org. Chem. 2000, 65, 2642. (p) Patro, B.; Murphy, J. A.

Org. Lett. 2000, 2, 3599. (q) Banwell, M. G.; Smith, J. A. J Chem. Soc., Perkin Trans. 1 2002,

2613. (r) Banwell, M. G.; Lupton, D. W. Org. Biomol. Chem. 2005, 3, 213. (s) Banwell, M. G.;

Lupton, D.W.; Willis, A. C. Aust. J Chem. 2005, 58, 722. (t) Sharp, L. A.; Zard, S. Z. Org. Lett.

2006, 8, 831. (u) Pearson, W. H.; Aponick, A. Org. Lett. 2006, 8, 1661. (v) Coldham, I.; Burrell,

A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem., Int. Ed. 2007, 46, 6159. (w)

Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. J. Org. Chem. 2008, 73,

7498. (x) Callier-Dublanchet, A.-C.; Cassayre, J.; Gagosz, F.; Quiclet-Sire, B.; Sharp, L. A.;

Zard, S. Z. Tetrahedron 2008, 64, 4803. (y) Burrell, A. J. M.; Coldham, I.; Watson, L.; Oram,

N.; Pilgram, C. D.; Martin, N. G. J. Org. Chem. 2009, 74, 2290. (z) Sabot, C.; Guerard, K. C.;

Canesi, S. Chem. Commun. 2009, 2941. (aa) De Simone, F.; Gertsch, J.; Waser, J. Angew.

Chem., Int. Ed 2010, 49, 5767. (ab) Cho, H.-K.; Tam, N. T.; Cho, C. G. Bull. Korean Chem.

Soc. 2010, 31, 3382. (ac) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc. 2012, 134, 14563.

(ad) McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew. Chem., Int. Ed 2012, 51, 9288. (ae)

Kawano, M.; Kiuchi, T.; Negishi, S.; Tanaka, H.; Hoshikawa, T.; Matsuo, J.; Ishibashi, H.

Angew. Chem., Int. Ed. 2013, 52, 906.

5 For enantioselective syntheses of la, see: (a) Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem.

Soc. 1987, 109, 7901. (b) Node, M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517. (c)

Desmaeele, D.; d'Angelo, J. J. Org. Chem. 1994, 59, 2292. (d) Schultz, A. G.; Pettus, L. J. Org.

Chem. 1997, 62, 6855. (e) Iyengar, R.; Schildknegt, K.; Aub6, J. Org. Lett. 2000, 2, 1625. (f)

Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. J Am. Chem. Soc. 2002, 124, 4628. (g)

Marino, J. P.; Rubio, M. B.; Cao, G.; Dios, A. J. Am. Chem. Soc. 2002, 124, 13398. (h) Gnecco,

D.; Vazquez, E.; Galindo, A.; Teriln, J. L.; Orea, L.; Bemees, S.; Enriquez, R. G. Arkivoc 2003,

xi, 185. (i) Iyengar, R.; Schildknegt, K.; Morton, M.; Aube, J. J. Org. Chem. 2005, 70, 10645. (j)

Hayashi, M.; Motosawa, K.; Satoh, A.; Shibuya, M.; Ogasawara, K.; Iwabuchi, Y. Heterocycles

2009, 77, 855. (k) Suzuki, M.; Kawamoto, Y.; Sakai, T.; Yamamoto, Y.; Tomioka, K. Org. Lett.

2009, 11, 653. (1) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature

2011, 475, 183. (m) Li, Z.; Zhang, S.; Wu, S.; Shen, X.; Zou, L.; Wang, F.; Li, X.; Peng, F.;

Zhang, H.; Shao, Z. Angew. Chem., Int. Ed. 2013, 52, 4117.

112



6 (a) For a review, see Hajicek, J. Collect. Czech. Chem. Commun. 2004, 69, 1681. For related

syntheses, see ref. 9 and: (b) Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872. (c) Ban,

Y.; Sato, Y.; Inoue, I.; Nagai, M.; Oishi, T.; Terashima, M.; Yonemitsu, 0.; Kanaoka, Y.

Tetrahedron Lett. 1965, 27, 2261. (d) BtIchi, G.; Matsumoto, K. E.; Nishimura, H. J. Am. Chem.

Soc. 1971, 93, 3299. (e) Kuehne, M. E.; Podhorez, D. E.; Mulamba, T.; Bornmann, W. G. J. Org.

Chem. 1987, 52, 347. (f) Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J Am. Chem. Soc.

1988, 110, 2242. (g) Kobayashi, S.; Peng, G.; Fukuyama, T. Tetrahedron Lett. 1999, 40, 1519.

(h) He, F.; Bo, Y.; Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 6771. (i) Kobayashi,

S.; Ueda, T.; Fukuyama, T. Synlett 2000, 883.

7 For syntheses of (±)-2a, see refs. 6b, 4a, 4v, and: (a) Wenker, E.; Garratt, S.; Dave, K. G. Can.

J Chem. 1964, 42, 489 (b) Ziegler, F. E.; Kloek, J. A.; Zoretic, P. A. J. Am. Chem. Soc. 1969,

91, 2342. (c) Takano, S.; Hatakeyama, S.; Ogasawara, K. J Am. Chem. Soc. 1979, 101, 6414. (d)

Wenkert, E.; Halls, T. D. J.; Kwart, L. D.; Magnusson, G.; Showalter, H. D. H. Tetrahedron

1981, 37, 4017. (e) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T. J. Am. Chem. Soc. 1981, 103, 6990.

(f) Bajtos, B.; Pagenkopf, B. L. Eur. J Org. Chem. 2009, 1072.

8 For enantioselective syntheses of 2a, see: refs. 5a, 6f and (a) Takano, S.; Chiba, K.; Yonaga,

M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1980, 616. (b) Takano, S.; Yonaga, M.;

Ogasawara, K. J Chem. Soc., Chem. Commun. 1981, 1153. (c) Temme, 0.; Taj, S.-A.;

Andersson, P. G. J Org. Chem. 1998, 63, 6007. (d) Amat, M.; Lozano, 0.; Escolano, C.; Molins,

E.; Bosch, J. J. Org. Chem. 2007, 72, 4431. (e) Malcolmson, S. J.; Meek, S. J.; Satterly, E. S.;

Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456, 933. (f) Satterly, E. S.; Meek, S. J.;

Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943.

9 (a) Mangeney, P.; Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y.; Potier, P. J. Am. Chem.

Soc. 1979, 101, 2243. (b) Kutney, J. P.; Choi, L. S. L.; Nakano, J.; Tsukamoto, H. H.; McHugh,

M.; Boulet, C. A. Heterocycles 1988, 27, 1845. (c) Kuehne, M. E.; Matson, P. A.; Bornmann, W.

G. J Org. Chem. 1991, 56, 513. (d) Magnus, P.; Mendoza, J. S.; Stamford, A.; Ladlow, M.;

Willis, P. J Am. Chem. Soc. 1992, 114, 10232. (e) Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato,

A.; Kuboyama, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 2137. (f)

Ishikawa, H.; Colby, D. A.; Boger, D. L. J. Am. Chem. Soc. 2008, 130, 420. (g) Ueda, H.; Satoh,

H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem., Int. Ed. 2009,

113



48, 7600. (h) Nicolaou, K. C.; Dalby, S. M.; Li, S.; Suzuki, T.; Chen, D. Y.-K. Angew. Chem.,

Int. Ed. 2009, 48, 7616.

10 (a) Movassaghi, M.; Hill, M. D.; Ahmad, 0. K. J. Am. Chem. Soc. 2007, 129, 10096. (b)

Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485. (c) Medley, J. W.; Movassaghi, M. J.

Org. Chem. 2009, 74, 1341. (d) Ahmad, 0. K.; Medley, J. W.; Coste, A.; Movassaghi, M. Org.

Synth. 2012, 89, 549.

" Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855.

12 (a) Martinez, L. E.; Leighton, J. M.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995,

117, 5897. (b) Schaus, S. E.; Brainalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 403. (c)

Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 4876.

13 For semi-syntheses of 1 and 2 from related natural products, see refs. 2k and 2g, respectively.

14 Movassaghi, M.; Siegel, D. S.; Han, S. Chem. Sci. 2010, 1, 561.

15 Matsuda, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10, 125.

16 Please see Experimental Section for details.

17 Morales, M. R.; Mellem, K. T.; Myers, A. G. Angew. Chem., Int. Ed. 2012, 51, 4568. We are

grateful to Professor Myers for providing us with a generous sample of (-)-pseudoephenamine

(57).
18 (a) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am.

Chem. Soc. 1997, 119, 6496. (b) The use of lithium diisopropylamide as base in place of lithium

2,2,6,6-tetramethylpiperidide gives competitive Michael addition of the amide base onto the

crotonamide; for a related example with a pseudoephedrine amide, see Yang, B. H. PhD thesis,

Harvard University, 1997.

19 Kummer, D. A.; Chain, W. J.; Morales, M. R.; Quiroga, 0.; Myers, A. G. J. Am. Chem. Soc.

2008, 130, 13231.

20 Abe, T.; Suzuki, T.; Sekiguchi, K.; Hosokawa, S.; Kobayashi, S. Tetrahedron Lett. 2003, 44,

9303.
21 Chain, W. J.; Myers, A. G. Org. Lett. 2007, 9, 355.

22 A parallel strategy using (+)-pseudoephedrine as chiral auxiliary did not provide products with

higher than 6:1 dr.

23 Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
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2 At partial conversion the uncyclized secondary C9-amine retains the triethylsilyl group

consistent with 0-desilylation preceding cyclization.
25 Charette, A. B.; Grenon, M. Can. J Chem. 2001, 79, 1694.

26 Use of C2-H derivatives of 53 gave no double-cyclization products.

(a) Desmaelee, D.; Mekouar, K.; d'Angelo, J. J. Org. Chem. 1997, 62, 3890. (b) Yasui, Y.;

Takeda, H.; Takemoto, Y. Chem. Pharm. Bull. 2008, 56, 1567.
28 An elegant report involving a functional pendant nucleophile (ref. 6h) requires additional steps

for synthetic simplification.
29 The use of less electrophilic dehydrating agents (e.g., trifluoroacetic anhydride, POCl3, POBr 3,

the Hendrickson reagent or the Burgess reagent) provided none of the desired cyclization

products.
30 For semisynthesis of a similar tetracyclic lactam, see Yates, P.; MacLachlan, F. N.; Rae, I. D.

Can. J. Chem. 1978, 56, 1052.

31 Hydrogenation was carried out at 400 psi: the C3-C4 olefin in 3,4-dehydroquebrachamine

systems is resilient to hydrogenation (see ref. 7b).
32 The steric shielding of the C19-iminium ion inhibited the addition of carbon nucleophiles at

C19.

33 Medley, J. W.; Movassaghi, M. Angew. Chem., Int. Ed. 2012, 51, 4572.
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Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried round bottomed
flasks, modified Schlenk (Kjeldahl shape) flasks or glass pressure vessels. The flasks were fitted
with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel
gas-tight syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column
chromatography was performed as described by Still et al. using silica gel (60 A pore size, 32-63 pm,
standard grade) or non-activated alumina (80-325 mesh, chromatographic grade).1 Analytical thin-
layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh
silica gel or neutral alumina impregnated with a fluorescent indicator (254 nm). Thin layer
chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an
ethanolic solution of phosphomolybdic acid (PMA), an acidic solution of p-anisaldehyde (anis), an
aqueous solution of ceric ammonium molybdate (CAM), an aqueous solution of potassium
permanganate (KMnO 4), or an ethanolic solution of ninhydrin followed by heating (<1 min) on a hot
plate (-250 'C). Organic solutions were concentrated on rotary evaporators at -20 Torr (house
vacuum) at 25-35 'C, then at -1 Torr (vacuum pump) unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions:
Dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, toluene, and triethylamine were
purchased from J.T. Baker (Cycletainer TM) and were purified by the method of Grubbs et al. under
positive argon pressure .2 2-Chloropyridine, NN-diisopropylamine and N,N'-dimethylpropylene urea
were distilled from calcium hydride and stored sealed under argon atmospheres. Lithium chloride was
dried by the method of Myers et al.3 and stored in a chemical glovebox. The molarity of n-
butyllithium solutions was determined by titration against diphenylacetic acid4 (average of three
titrations). Trifluoromethanesulfonic anhydride was purchased from Oakwood Products, Inc.; all
other solvents and chemicals were purchased from Sigma-Aldrich.

Instrumentation. Proton nuclear magnetic resonance ('H NMR) spectra were recorded with Varian
inverse probe INOVA-500 and Varian INOVA-500 spectrometers, are reported in parts per million
on the 6 scale, and are referenced from the residual protium in the NMR solvent (CDCl3 : 8 7.24
(CHCl 3), benzene-d: 6 7.16 (benzene-d5), CD3CN: 6 1.94 (CD2HCN), toluene-d: 6 2.09
(C6D5CD 2H), DMSO-d: 6 2.50 (DMSO-d)). Data are reported as follows: chemical shift
[multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant(s) in
Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance (13C NMR) spectra were
recorded with a Varian INOVA-500 spectrometer, are reported in parts per million on the 6 scale,
and are referenced from the carbon resonances of the solvent (CDCl3 : 6 77.23, benzene-d: 6 128.39,
CD 3CN: 6 1.39, toluene-d: 6 20.4, DMSO-d: 6 39.51). Data are reported as follows: chemical shift
(assignment). Fluorine-19 nuclear magnetic resonance ('9F NMR) spectra were recorded with a
Varian Mercury 300 spectrometer, are reported in parts per million on the 6 scale, and are referenced
from the fluorine resonance of neat trichlorofluoromethane (CFCl3 : 6 0). Data are reported as
follows: chemical shift (assignment). Infrared data (IR) were obtained with a Perkin-Elmer 2000
FTIR, and are reported as follows: frequency of absorption (cm-1), intensity of absorption (s = strong,

'Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978,43,2923.
2 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
3 Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
' Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976,41, 1879.
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m = medium, w = weak, br = broad). Optical rotations were measured on a Jasco-1010 polarimeter.
We are grateful to Dr. Li Li for obtaining the mass spectrometric data at the Department of
Chemistry's Instrumentation Facility, Massachusetts Institute of Technology. High resolution mass
spectra (HRMS) were recorded on a Bruker Daltonics APEXIV 4.7 Tesla FTICR-
MS using a direct analysis in real time (DART) ionization source.

Positional Numbering System. At least two numbering systems exist in the literature for the

aspidosperma alkaloids.' For direct comparison between structures, the system employed by Yates
for (-)-aspidophytine is optimal and is used throughout this report. In the case of dimeric structures

such as (+)-tabernaebovine (3), the subunit bearing C15' substitution is given primed numbers.

8

10 N D 620

2 C 4 Me 21

IA B
16 BN H

Me 22

(-)-N-methylaspidospermidine (1)

8

16 N#7N
Me 22

(+)-N-methylquebrachamine (2)

8 0

10 N 20
""19 \ 21 8'

14N 19 4 Me O
S 2 N

16 1 N 19' 21'
Me 4. Me

H
Me

(+)-tabernaebovine (3)

'(a) Yates, P.; Maclachlan, F. N.; Rae, I. D.; Rosenberger, M.; Szabo, A. B.; Willis, C. R.; Cava, M. P.; Behforouz, M.;

Lakshmikantham, M. V.; Zeiger, W. J. Am. Chem. Soc. 1973,95,7842. (b) J. E. Saxton, The Alkaloids, Chem. and Biol. 1998,51, 1.
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14 NHNs NaH, DMF;

16 2 Mel
H 91%

56

10

14 NHNs

16 N
2

Me
SI

1-Methyltryptamine nosylamide (S1):
Sodium hydride (60% dispersion in mineral oil, 1.06 g, 26.5 mmol, 3.52 equiv) was added as

a solid under an argon atmosphere to a solution of sulfonamide 566 (2.60 g, 7.53 mmol, 1 equiv) in
N,N-dimethylformamide (28 mL) at 23 *C. After 20 min, the reaction mixture was cooled to 0 *C.
lodomethane (470 pL, 7.53 mmol, 1.00 equiv) was added dropwise via syringe over 5 min. After 3
h, the reaction mixture was allowed to warm slowly to 23 *C. After 6 h, saturated aqueous
ammonium chloride solution (20 mL) was added via syringe to quench the sodium salts. The
resulting biphasic mixture was concentrated under reduced pressure. The residue was diluted with
ethyl acetate (500 mL) and was washed with brine (2 x 500 mL). The organic layer was dried over
anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The residue
was purified by flash column chromatography on silica gel (30 -> 40% ethyl acetate in hexanes) to
afford sulfonamide S1 (2.46 g, 90.9%) as a yellow powder. Structural assignments were made with
additional information from gCOSY data.

'H NMR (500 MHz, CDCl3, 20 *C):

3C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-:

6 8.00-7.95 (m, 1H, PhNs-H), 7.65-7.60 (m, 1H, PhNs~
H), 7.59-7.53 (m, 2H, PhNs-H), 7.29 (d, J = 7.6, 1H, C14 -
H), 7.20 (d, J = 8.2, 1H, C17-H), 7.17-7.12 (m, 1H, C,6 -
H), 6.96-6.91 (m, 1H, C,5-H), 6.84 (s, 1H, C2-H), 5.36-
5.30 (br-m, 1H, N,-H), 3.68 (s, 3H, C22-H3), 3.41 (app-q,
J = 6.6, 2H, C10-H2), 2.97 (app-t, J = 6.6, 2H, CII-H 2 )-

6 147.5, 137.4, 133.4, 133.4, 132.7, 131.0, 127.8, 127.2,
125.5, 121.9, 119.1, 118.5, 109.7, 109.6, 44.0, 32.8,
25.5.

3339 (br-m), 3095 (w), 2934 (m), 1538 (s), 1407 (s),
1344 (s), 1167 (s), 739 (s).

HRMS (DART):

TLC (50% EtOAc in hexanes),

calc'd for C17HI8 N 30 4S
found: 360.1007.

Rf: 0.38 (UV, CAM).

[M+H]*: 360.1013,

6 The 2-nitrobenzenesulfonyl amide 56 was prepared in 1-step, see Matsuda, Y.; Kitajima, M.; Takay ama, H . Org. Lett. 2008, 10, 125.
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MeCN
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14 NHNs

I ci2 CI16 -N2
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54

2-Chloro-1-methyltryptamine nosylamide (54):
N-Chlorosuccinimide (1.01 g, 7.57 mmol, 1.10 equiv) was added as a solid under an argon

atmosphere to a solution of sulfonamide S1 (2.47 g, 6.88 mmol, 1 equiv) in acetonitrile (120 mL) at
23 *C. After 1 h, saturated aqueous sodium thiosulfate solution (20 mL) was added to quench excess
N-chlorosuccinimide. The mixture was diluted by addition of brine (125 mL) and dichloromethane
(125 mL), and the layers were separated. The aqueous layer was further extracted with
dichloromethane (2 x 125 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on silica gel (20% ethyl acetate in hexanes) to afford sulfonamide 54
(2.06 g, 76.1%) as a yellow powder. Structural assignments were made with additional information
from gCOSY data.

'H NMR (500 MHz, CDC13, 20 *C):

3C NMR (125 MHz, CDC13, 20 *C):

FTIR (neat) cm-':

HRMS (DART):

5 7.96-7.91 (m, 1H, PhNs-H), 7.67-7.64 (m, 1H, PhNs-
H), 7.59-7.53 (m, 2H, PhNs-H), 7.29 (d, J = 7.9, 1H, C14 -
H), 7.16-7.14 (m, 1H, C16-H), 7.16-7.14 (m, 1H, C17-
H), 7.01-6.97 (m, 1H, C 5-H), 5.38-5.30 (br-m, 1H, N9-
H), 3.63 (s, 3H, C22-H3), 3.44 (app-q, J = 6.8, 2H, CO-
H 2), 2.98 (app-t, J= 6.8, 2H, C1,-H 2)-

8 147.6, 135.8, 133.8, 133.3, 132.8, 130.9, 126.2, 125.5,
125.0, 122.2, 120.2, 117.9, 109.4, 106.5, 43.6, 30.1,
24.8.

3354 (br-m), 2937 (m), 1537 (s), 1468 (s), 1332 (s),
1163 (s), 738 (s).

calc'd for C, 7HI,7ClN30 4 S [M+H]*: 394.0623,
found: 394.0610.

TLC (30% EtOAc in hexanes), Rf: 0.35 (UV, CAM).
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Ph 0
Ph NH + CI 1 Me3

OH Me
(-)-57 S2

NEt3

THF
97%

Ph 0

Ph N1Me

OH Me
(+)-58

Crotonamide (+)-58:
An ice-cooled solution of E-crotonyl chloride (S2, 1.28 mL, 13.2 mmol, 1.00 equiv) in

tetrahydrofuran (7.0 mL) was added slowly via cannula to a solution of amine (-)-57 (3.00 g, 13.2
mmol, 1 equiv) and triethylamine (2.21 mL, 15.8 mmol, 1.20 equiv) in tetrahydrofuran (40 mL) at
-30 *C. The resulting mixture was allowed to warm slowly to -10 *C over 80 min and then allowed
to warm to 23 *C. After 2 h, saturated aqueous sodium bicarbonate solution (20 mL) was added to
quench the amine hydrochloride salts. The mixture was diluted with ethyl acetate (600 mL), and the
layers were separated. The organic layer was washed successively with aqueous hydrogen chloride
solution (IN, 400 mL), saturated aqueous potassium carbonate solution (400 mL), and brine (400
mL). The organic layer was dried over anhydrous sodium sulfate, was filtered, and was concentrated
under reduced pressure. The residue was recrystallized from 40% ethyl acetate in hexanes to afford
crotonamide (+)-58 (3.78 g, 97.0%) as lustrous yellow needles.' Structural assignments were made
with additional information from gCOSY data.

'H NMR (500 MHz, CDCl3, 20 *C, 6:1 atropisomer mixture, * denotes minor atropisomer): 8 7.43-
7.15 (m, 1OH, Ph-H), 7.43-7.15 (m, 1OH, Ph-H*), 6.92
(dq, J = 15.0, 6.9, 1H, C4-H), 6.72-6.60 (m, 1H, C4-H*),
6.21 (d, J = 15.0, 1H, C5-H), 6.20-6.13 (m, 1H, C5 H*),
5.70 (d, J = 8.4, 1H, NC-H), 5.41-5.35 (m, 1H, OC-
H*), 5.34 (app-t, J = 7.8, 1H, OC-H), 5.24-5.18 (m, 1H,
NC-H*), 4.45 (d, J = 6.9, 1H, O-H), 3.18-3.10 (m, 1H,
0-H*), 2.93 (s, 3H, NC-H 3*), 2.91 (s, 3H, NC-H 3), 1.87
(d, J= 6.9, 3H, C3-H3), 1.82-1.76 (m, 3H, C3-H3 .*)

"C NMR (125 MHz, CDCl 3, 20 *C, 6:1 atropisomer mixture, * denotes minor atropisomer): 8 168.9,
168.9*, 143.1, 142.1, 141.3*, 140.8*, 137.2, 136.6*,
128.7, 128.6, 128.5, 128.3*, 127.9*, 127.8*, 127.8,
127.7, 127.2*, 127.1, 127.0*, 126.8*, 122.7*, 122.3,
73.9,73.4*, 66.0, 65.8*, 34.3, 30.1*, 18.5, 15.4*.

FTIR (neat) cm-:

HRMS (DART):

3395 (br-s), 3031 (w), 1656 (s), 1597 (s), 1062 (m), 699
(n).

calc'd for C,9H22NO2 [M+H]*: 296.1645,
found: 296.1640.

[a D24:

TLC (50% EtOAc in hexanes), Rf:

+199 (c = 0.41, CHCl3)-

0.20 (UV, KMnO 4).

For a synthesis of a related unsaturated pseudoephedrine amide, see Yang, B. H. Ph.D. thesis, Harvard University, 1997.
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Ph 0
Ph 4  N9 Me3

OH Me
(+)-58

LTMP, LiCI, THF
0 -- 78 *C;

I(CH 2)3Cl
-78 - 0 *C

83%

Ph 0 H
Phy N C

OH Me
(+)-59 3

Vinyl tertiary amide (+)-59:
2,2,6,6-Tetramethylpiperidine (2.12 mL, 12.5 mmol, 2.30 equiv) was added via syringe to a

suspension of lithium chloride (1.39 g, 32.7 mmol, 6.00 equiv) in tetrahydrofuran (6.0 mL) at -78 *C.
A solution of n-butyllithium (2.01 M in hexanes, 5.56 mL, 11.2 mmol, 2.06 equiv) was added via
syringe, and the resulting mixture was warmed to 0 *C. After 20 min, an ice-cooled solution of
crotonamide (+)-58 (1.61 g, 5.45 mmol, 1 equiv) in tetrahydrofuran (15 mL) was added via cannula.
The transfer was quantitated with additional tetrahydrofuran (2 x 2.5 mL). After 10 min, the reaction
mixture was cooled to -78 *C. After 10 min, 3-chloro-1-iodopropane (1.17 mL, 10.9 mmol, 2.00

equiv) was added via syringe. After 40 min, the reaction mixture was warmed to 0 'C. After 4.5 h,
saturated aqueous ammonium chloride solution (40 mL) was added to quench the lithium alkoxide
salts. Brine (85 mL) and ethyl acetate (125 mL) were added, and the layers were separated. The
aqueous layer was further extracted with ethyl acetate (2 x 125 mL). The combined organic layers
were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on silica gel (20 --> 30% ethyl
acetate in hexanes) to afford vinyl tertiary amide (+)-59 (1.69 g, 83.4%) as a colorless gum.
Structural assignments were made with additional information from gCOSY data.

'H NMR (500 MHz, CDCl 3, 20 *C, 4.6:1 atropisomer mixture, * denotes minor atropisomer): 8 7.47-
7.22 (m, 1OH, Ph-H), 7.47-7.22 (m, IH, Ph-H*), 5.88-
5.79 (m, 1H, C4 H*), 5.79-5.72 (m, 1H, C4-H), 5.65 (d,
J= 7.4, 1H, NC-H), 5.49 (dd, J= 1.6, 6.5, 1H, OC-H*),
5.40 (app-t, J = 7.2, 1H, OC-H), 5.34 (d, J = 6.5, 1H,
NC-H*), 5.19 (app-d, J= 10.3, 1H,C 3-HE),5.15, (app-d,
J = 17.2, 1H, C3-Hz), 5.14-5.08 (m, 2H, C3 H2*), 4.05
(br-s, 1H, O-H), 3.59-3.53 (m, 2H, C8 -H2 ), 3.51-3.44
(m, 2H, C8-H2 *), 3.22 (app-q, J = 7.1, 1H, C5-H), 3.15
(app-q, J = 7.3, 1H, C5 H*), 2.94 (s, 3H, NC-H 3), 2.90,
(s, 3H, NC-H 3*), 2.34 (br-d, J = 1.6, 1H, 0-H*), 1.96-
1.82 (m, 2H, C6 -H2), 1.96-1.82 (m, 2H, C7-H2), 1.77-
1.59 (m, 2H, C6-H2*), 1.77-1.59 (m, 2H, C7 H2 *)-

3C NMR (125 MHz, CDC13, 20 *C, 4.6:1 atropisomer mixture, * denotes minor atropisomer):
8 174.9, 174.2*, 142.0, 141.8*, 137.8*, 137.1, 137.0*,
136.2, 129.0*, 128.8*, 128.7, 128.5, 128.4, 127.9, 127.8,
127.1*, 126.8, 117.8*, 117.7, 73.8, 73.5*, 66.1, 64.2*,
47.4, 47.2*, 45.1*, 44.9, 34.6, 31.0*, 30.4*, 30.3, 30.0*,
29.8.

FTIR (neat) cm-': 3382 (s), 3031 (w), 2958 (w), 1619 (s), 1451 (m), 1403
(m), 1063 (m), 700 (s).

S For c-alkylation of related pseudoephedrine amides, see Yang, B. H. Ph.D. thesis, Harvard University, 1997.
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calc'd for C2 2H27ClN0 2 [M+H]*: 372.1725,
found: 372.1738.

+122 (c = 0.37, CHCl 3)-

TLC (40% EtOAc in hexanes), Rf: 0.51 (UV, KMnO 4).

122

HRMS (DART):



Ph O LDA, LiCI, THF Ph Me

Ph CI 6 0 ; Ph CI

OH Me DMP, -0 C; OH Me N

(+)-59 3 72% (+)-55 3

>29:1 dr

a-Quaternary amide (+)-55:
N,N-Diisopropylamine (531 pL, 3.79 mmol, 2.26 equiv) was added via syringe to a

suspension of lithium chloride (428 mg, 10.1 mmol, 6.01 equiv) in tetrahydrofuran (3.0 mL) at -78
*C. A solution of n-butyllithium (2.25 M in hexanes, 1.55 mL, 3.48 mmol, 2.07 equiv) was added via
syringe, and the resulting mixture was warmed to 0 *C. After 5 min, the resulting solution was
cooled to -78 *C. An ice-cooled solution of vinyl tertiary amide (+)-59 (625 mg, 1.68 mmol, 1

equiv) in tetrahydrofuran (5.0 mL) was added via cannula.9 The transfer was quantitated with
additional tetrahydrofuran (2 x 1.0 mL), and the resulting mixture was warmed to 0 *C. After 1 h,
the reaction mixture was cooled to -40 C, and NN'-dimethylpropylene urea (507 pL, 4.21 mmol,
2.51 equiv) was added via syringe. After 10 min, the reaction mixture was cooled to -60 *C, and

iodoethane (1.01 mL, 12.6 mmol, 7.50 equiv) was added slowly via syringe. After 5 min, the
reaction mixture was warmed to -50 *C. After 42 h, saturated aqueous ammonium chloride solution
(5 mL) was added to quench the lithium alkoxide salts, and the resulting biphasic mixture was
allowed to warm to 23 *C. Brine (55 mL) and dichloromethane (60 mL) were added, and the layers
were separated. The aqueous layer was further extracted with dichloromethane (3 x 60 mL). The

combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
silica gel (10 -- 18% ethyl acetate in hexanes) to afford a-quaternary amide (+)-55 (484 mg, 72.0%)
as a colorless gum. Structural assignments were made with additional information from gCOSY
data. The diastereomeric ratio of the purified a-quaternary amide (+)-55 was determined to be >29:1
by 'H NMR analysis of the oxazolinium trifluromethanesulfonate derivative S3.'0

'H NMR (500 MHz, C6D6, 73 *C): 8 7.32 (d, J = 7.6, 2H, Ph-H), 7.28 (d, J = 7.5, 2H, Ph-
H), 7.10-7.02 (m, 4H, Ph-H), 7.02-6.95 (m, 2H, Ph-H),

9 We are grateful to professor Myers and co-workers for sharing their new asymmetric alkylation methodology in advance of

publication: (a) Personal communication, Myers, A. G. 2011. (b) Morales, M. R.; Mellem, K. T.; Myers, A. G. Angew. Chem., Int. Ed.

2012,51,4568.
'4 The diastereomeric ratio of the product (+)-55 was determined by its conversion to the corresponding a-quaternary oxazolinium

trifluoromethanesulfonate S3; see Chain, W. J.; Myers, A. G. Org. Lett. 2007, 9, 355.
21 8

21 Me CI
Ph 0 .Me Tf2O, pyridine, Ph

Ph 8 CH 2CI 2, /Ph . 6
6 CI 19 19 3

OH Me N.0~2t P
OH Me 0 - 23 *C P + ,Me F3CSO 3(+)-55 3 S3

>29:1 dr

A sample of S3 was prepared as follows: Trifluoromethanesulfonic anhydride (2.3 pL, 14 Rmol, 1.5 equiv) was added via

syringe to a solution of a-quaternary amide (+)-55 (3.7 mg, 9.3 imol, 1 equiv) and pyridine (2.2 pL, 28 ptmol, 3.0 equiv) in

dichloromethane (1.0 mL) at 0 *C. After 10 min, the solution was allowed to warm to 23 *C. After 10 min the reaction mixture was

concentrated under reduced pressure. The residue was dissolved in CDC13 for 'H NMR analysis. Structural assignments were made

with additional information from gCOSY experiments. 'H NMR (500 MHz, CDCl3 , 20 *C, >29:1 diastereomer mixture, * denotes

minor diastereomer): 6 7.21-7.10 (m, 6H, Ph-H), 7.21-7.10 (m, 6H, Ph-H*), 6.98-6.92 (m, 2H, Ph-H), 6.98-6.92 (m, 2H, Ph-H*),

6.98-6.92 (m, 1H, NC-H), 6.98-6.92 (m, IH, NC-H*), 6.88-6.83 (m, 2H, Ph-H), 6.88-6.83 (m, 2H, Ph-H*), 6.32 (d, J = 11.9, IH,

OC-H*), 6.24 (d, J = 10.9, 1H, OC-H), 6.18 (dd, J = 10.8, 17.7, 1H, C4-H), 6.10 (dd, J = 10.9, 17.7, 1H, C4-H), 5.69 (d, J = 10.8, 1H,

C3-HE), 5.68 (d, J = 10.9, 1 H, C3-HE*), 5.52 (d, J = 17.7, 1 H, C3-Hz), 5.50 (d, J = 17.7, 1H, C3-Hz*), 3.76-3.68 (m, I H, C8-Ha), 3.76-

3.68 (m, IH, C8 -Ha*), 3.67-3.59 (m, IH, C8-Hb), 3.67-3.59 (m, 1H, C8-Hb*), 3.39 (s, 3H, NC-H 3), 3.37 (s, 3H, NC-H 3*), 2.30-2.04

(m, 2H, C6-H2), 2.30-2.04 (m, 2H, C6-H 2 *), 2.30-2.04 (m, 2H, C7-H 2), 2.30-2.04 (m, 2H, C7-H2*), 2.04-1.94 (m, 1H, C 2-Ha), 2.04-

1.94 (m, 1H, C2-Ha*), 1.92-1.82 (m, 1H, C2-Hb), 1.92-1.82 (m, 1H, C 2-Hb*), 1.15 (t, J = 7.5, 3H, C21-H 3*), 1.06 (t, J = 7.5, 3H, C2 1-
H3).
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"C NMR (125 MHz, C6D6 , 73 C):

FTIR (neat) cm-':

HRMS (DART):

5.91 (d, J = 8.1, 1H, NC-H), 5.69 (dd, J = 10.9, 17.8,
1H, C4-H), 5.22 (d, J = 8.1, 1H, OC-H), 4.92 (app-d, J =
10.9, 1H, C 3-HE), 4.84 (app-d, J = 17.8, 1H, C3-Hz),
3.38-3.27 (br-s, 1H, O-H), 3.27-3.16 (m, 2H, C8-H2),
2.74 (s, 3H, NC-H 3), 1.89-1.79 (m, 1H, C6-Ha), 1.73-
1.49 (m, 1H, C6-Hb), 1.73-1.49 (m, 2H, C7-H2), 1.73-
1.49 (m, 2H, C20-H2), 0.76 (t, J = 7.4, 3H, C2 -H3)-

5 175.8, 143.4, 142.6, 138.9, 129.6, 128.8, 128.7, 128.1,
128.0, 127.8, 114.2, 74.2, 66.4, 53.2, 46.1, 34.8, 34.2,
29.3, 28.5, 9.0.

3407 (br-s), 2965 (m), 1607 (s), 1451 (m), 1391 (m),
1083 (m), 699 (s).

calc'd for C24H31ClN02 [M+H]*: 400.2038,
found: 400.2056.

laD
2 4 :

TLC (30% EtOAc in hexanes), Rf:

+92 (c = 0.44, CH2Cl 2 )-

0.39 (UV, KMnO4).

124



21
Ph 0 Me

Ph N 6 CI

OH Me
(+)-55 3

TESOTf
2,6-lutidine

CH 2CI2
0 - 23 *C

100%

21
Ph 0 Me
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TESO Me
(+)-60 3

O-Silylated a-quaternary amide (+)-60:
Triethylsilyltrifluoromethanesulfonate (535 pL, 2.37 mmol, 2.00 equiv) was added via

syringe to a solution of a-quaternary amide (+)-55 (473 mg, 1.18 mmol, 1 equiv) and 2,6-lutidine
(343 pL, 2.96 mmol, 2.50 equiv) in dichloromethane (8.0 mL) at 0 *C. After 5 min, the solution was
allowed to warm to 23 *C. After 4.5 h, the reaction mixture was poured into -saturated aqueous
sodium bicarbonate solution (15 mL). Brine (25 mL) was added, and the layers were separated. The
aqueous layer was further extracted with dichloromethane (4 x 40 mL). The combined organic layers
were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on silica gel (0 -- 5% ethyl
acetate in hexanes) to afford O-silylated a-quaternary amide (+)-60 (608 mg, 100%) as a viscous
colorless oil. Structural assignments were made with additional information from gCOSY data.

'H NMR (500 MHz, CDC13, 20 *C, 4.5:1 atr

13C NMR (125 MHz, CDCl3, 20 *C, 4.5:1

FTIR (neat) cm-':

HRMS (DART):

TLC (20% EtOAc in hexanes), Rf:

opisomer mixture, * denotes minor atropisomer): 8 7.46-
7.04 (m, 1OH, Ph-H), 7.46-7.04 (m, 8H, Ph-H*), 6.94-
6.77 (m, 2H, Ph-H*), 6.24-6.03 (br-m, 1H, NC-H),
5.92-5.80 (m, 1H, C4-H*), 5.85 (dd, J = 10.7, 17.6, 1H,

C4-H), 5.66-5.56 (br-m, 1H, NC-H*), 5.36 (d, J = 7.0,
1H, OC-H), 5.18-5.11 (m, 1H, C3-Ha*), 5.14 (d, J =
10.7, 1H, C3-HE), 5.11-5.02 (br-m, 1H, OC-H*), 5.00-
4.92 (m, 1H, C3-Hb*), 4.96 (d, J = 17.6, 1H, C3-Hz),
3.47-3.35 (m, 2H, C8-H2 ), 3.30 (s, 3H, NC-H 3*), 3.09
(s, 3H, NC-H 3), 3.04-2.92 (m, 1H, C8-Ha*), 2.88-2.75
(m, 1H, C8-Hb*), 1.90-1.16 (m, 2H, C6 -H2), 1.90-1.16
(m, 2H, C6-H2 *), 1.90-1.16 (m, 2H, C7-H2 ), 1.90-1.16
(m, 2H, C7-H2 *), 1.90-1.16 (m, 2H, C20-H2), 1.90-1.16
(m, 2H, C2 0-H2*), 0.86-0.71 (m, 9H, Si(CH 2CH 3)3*),
0.79 (t, J = 7.7, 9H, Si(CH2CH 3)3), 0.78-0.73 (m, 3H,
C2 1-H3*), 0.64 (t, J = 7.1, 3H, C21-H3), 0.46-0.32 (m,
6H, Si(CH 2CH3)3*), 0.39 (q, J = 7.7, 6H, Si(CH 2CH3)3)-

atropisomer mixture, * denotes minor atropisomer): 6
175.1*, 174.0, 143.4*, 142.3, 142.1, 141.9*, 139.3*,
138.6, 128.8, 128.6*, 128.2, 128.1, 128.0*, 127.7,
127.6*, 127.4, 127.2, 113.9, 113.3*, 78.0*, 75.3, 66.0*,
63.2, 52.2, 52.1*, 46.1, 45.2*, 33.8, 33.2, 31.3*, 29.9*,
28.4*, 27.7, 27.5, 8.5, 8.4*, 7.0, 6.9*, 5.1, 5.0*.

3031 (w), 2957 (s), 2877 (m), 1624 (s), 1454 (m), 1384
(m), 1088 (m), 1005 (m), 699 (s).

calc'd for C3oH44ClNNaO 2Si [M+Na]*: 536.2722,
found: 536.2706.

+72 (c = 0.52, CHCl3).

0.61 (UV, KMnO4).
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(+)-60 3 54 86%

Tertiary sulfonamide (+)-61:
Potassium hydride (47.4 mg, 1.18 mmol, 1.10 equiv) was added as a solid under an argon

atmosphere to a solution of O-silylated a-quatemary amide (+)-60 (553 mg, 1.08 mmol, 1 equiv),
sulfonamide 54 (466 mg, 1.18 mmol, 1.10 equiv), and tetrabutylammonium iodide (392 mg, 1.08
mmol, 1.00 equiv) in NN-dimethylformamide (2.5 mL) at 23 *C. After 5 min, the solution was
warmed to 100 *C. After 24 h, the solution was allowed to cool to 23 *C. Saturated aqueous
ammonium chloride solution (20 mL) was added to quench the sulfonamide salts. Brine (40 mL) and
dichloromethane (60 mL) were added, and the layers were separated. The aqueous layer was further
extracted with dichloromethane (2 x 60 mL). The combined organic layers were dried over
anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue
was purified by flash column chromatography on silica gel (80% dichloromethane in hexanes -+ 30%
ethyl acetate in hexanes) to afford tertiary sulfonamide (+)-61 (806 mg, 86.0%) as a beige foam.
Structural assignments were made with additional information from gCOSY data.

'H NMR (500 MHz, CDCl 3, 20 *C, 4.4:1 atropisomer mixture, * denotes minor atropisomer): 8 7.93-
7.85 (m, 1H, PhNs-H), 7.85-7.75 (m, 1H, PhNs-H*),
7.65-7.53 (m, 3H, PhNs-H), 7.65-7.53 (m, 3H, PhNs-H*),
7.53-7.05 (m, 14H, Ar-H), 7.53-7.05 (m, 12H, Ar-H*),
6.96-6.84 (m, 2H, Ar-H*), 6.21-6.07 (br-m, 1H, NC-
H), 5.93-5.81 (m, 1H,C 4-H*), 5.86 (dd, J = 11.0, 18.1,
1H, C4-H), 5.66-5.56 (br-m, 1H, NC-H*), 5.36 (d, J =
6.8, 1H, OC-H), 5.17-5.09 (m, 1H, C3 -Ha*), 5.12 (d, J =
11.0, 1H, C3-HE), 5.08-5.02 (br-m, 1H, OC-H*), 4.98-
4.88 (m, 1H, C3-Hb*), 4.93 (d, J = 18.1, 1H, C3-Hz),
3.66 (s, 3H, C22-H3), 3.66 (s, 3H, C2 2-H3 *), 3.45 (app-t, J
= 7.3, 2H, Cio-H 2), 3.45 (app-t, J = 7.3, 2H, Co-H2*),
3.42-3.32 (m, 2H, C8-H2), 3.30 (s, 3H, NC-H3*), 3.07
(s, 3H, NC-H 3), 3.03-2.92 (m, 1H, C8 -Ha*), 2.97 (app-t,
J = 7.3, 2H, Cl 1-H2), 2.97 (app-t, J = 7.3, 2H, C,1-H 2 *),
2.93-2.75 (m, 1H, C8-Hb*), 1.88-1.06 (m, 2H, C6 -H2 ),
1.88-1.06 (m, 2H, C6-H2 *), 1.88-1.06 (m, 2H, C7-H2 ),
1.88-1.06 (m, 2H, C7-H2 *), 1.88-1.06 (m, 2H, C2 0 -H2 ),
1.88-1.06 (m, 2H, C20 -H 2 *), 0.88-0.73 (m, 9H,
Si(CH2 CH 3)3 *), 0.80 (t, J = 7.8, 9H, Si(CH2CH 3)3),
0.73-0.65 (m, 3H, C21-H3 *), 0.60 (t, J = 7.0, 3H, C2 1-
H3), 0.49-0.32 (m, 6H, Si(CH 2CH 3)3*), 0.40 (q, J = 7.8,
6H, Si (CH 2CH3)3)-

3C NMR (125 MHz, CDCl3, 20 C): 6 173.9, 147.9, 142.3, 142.1, 138.5, 135.7, 133.9, 133.1,
131.5, 130.8, 128.9, 128.2, 128.1, 127.7, 127.5, 127.2,
126.4, 124.4 124.1, 122.1, 120.2, 118.3, 114.0, 109.2,
107.5, 75.1, 63.2, 52.3, 48.3, 46.6, 34.0, 33.1, 30.0, 27.2,
23.8, 23.0, 8.7, 7.0, 5.1.
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FTIR (neat) cm-':

HRMS (DART):

2955 (m), 1622 (s), 1544 (s), 1468 (m), 1372 (s), 1091
(m), 741 (m).

calc'd for C4 7H6oClN 40 6SSi [M+H]*: 871.3686,
found: 871.3678.

+49 (c = 0.38, CH 2 Cl2).

TLC (50% EtOAc in hexanes), Rf: 0.87 (UV).
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Lactam (-)-53:
Thiophenol (203 pL, 1.98 mmol, 3.00 equiv) was added via syringe to a suspension of tertiary

sulfonamide (+)-61 (574 mg, 0.658 mmol, 1 equiv) and potassium carbonate (455 mg, 3.29 mmol,
5.00 equiv) in dimethylsulfoxide (3.6 mL) at 23 *C. After 3 h, triethylamine trihydrofluoride (716
pL, 4.39 mmol, 6.67 equiv) was added via syringe. After 1 min, potassium ethoxide (2.25 M solution
in ethanol, 17.1 mL) was added via syringe. After 5 min, the solution was warmed to 85 *C. After 24
h, the solution was allowed to cool to 23 *C. Saturated aqueous ammonium chloride solution (20
mL) was added to quench the potassium ethoxide, and the resulting biphasic mixture was
concentrated under reduced pressure. Saturated aqueous sodium bicarbonate (60 mL) and
dichloromethane (60 mL) were added, and the layers were separated. The aqueous layer was further
extracted with dichloromethane (2 x 60 mL). The combined organic layers were dried over
anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue
was purified by flash column chromatography on silica gel (10 -> 20% ethyl acetate in hexanes) to
afford lactam (-)-53 (216 mg, 95.1%) as a viscous light orange oil. Further elution (0.5% ammonium
hydroxide, 4.5% methanol, 20% chloroform in dichloromethane) afforded amine (-)-57 (148 mg,
98.9%) as a white powder. Structural assignments were made with additional information from
gCOSY data. Lactam (-)-7 was determined to be of 94% ee by chiral HPLC analysis (Chiralpak IC,
25% 'PrOH / 75% hexanes, 0.5 ml/min, 230 nm, tR(minor)= 19.8 min, tR(major) = 22.7 min).

'H NMR (500 MHz, CDCl3, 20 *C):

3C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-':

HRMS (DART):

TLC (30% EtOAc in hexanes), Rf:

8 7.64 (d, J = 7.8, 1H, C14-H), 7.24-7.15 (m, 1H, C17-H),
7.24-7.15 (m, 1H, C16-H), 7.10 (app-t, J = 7.8, 1H, C 5 -
H), 5.90 (dd, J = 10.7, 17.6, 1H, C4-H), 5.11 (dd, J =
1.0, 10.7, 1H, C3-HE), 5.01 (dd, J = 1.0, 17.6, 1H, C3-
Hz), 3.69 (s, 3H, C2 2 -H3 ), 3.63-3.55 (m, 1H, CiO-Ha),
3.54-3.46 (m, 1H, CIo-Hb), 3.29-3.20 (m, 1H, C8 -Ha),
3.20-3.13 (m, 1H, C8-Hb), 3.07-2.95 (m, 2H, CI-H 2),
1.96-1.56 (m, 2H, C6-H 2), 1.96-1.56 (m, 2H, C7-H 2 ),
1.96-1.56 (m, 2H, C20-H2), 0.80 (t, J = 7.5, 3H, C21-H3).

8 172.8, 142.7, 135.8, 126.9, 124.0, 122.0, 120.0, 118.8,
113.9, 109.1, 108.8, 49.3, 49.2, 48.3, 31.7, 30.0, 28.7,
22.4, 19.6, 8.6.

2937 (m), 1629 (s), 1467 (s), 1328 (m), 1199 (m), 740
(n).

calc'd for C20H26ClN 20 [M+H]*: 345.1728,
found: 345.1721.

-5 (c = 0.19, CHCl3)-

0.70 (UV, CAM, KMnO4).
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(-)-N-Methyldehydroaspidospermidine (62):
Trifluoromethanesulfonic anhydride (18.5 p.L, 110 pmol, 1.10 equiv) was added via syringe

to a solution of lactam (-)-53 (34.6 mg, 100 pmol, 1 equiv) and 3-cyanopyridine (12.5 mg, 120 [imol,
1.20 equiv) in acetonitrile (6.5 mL) at 23 *C. After 5 min, the solution was warmed to 85 'C. After 3
h, the solution was allowed to cool to 0 *C. A solution of sodium cyanoborohydride (62.8 mg, 1.00
mmol, 10.0 equiv) in tetrahydrofuran (4 mL) was added via cannula, and the resulting mixture was
allowed to warm to 23 *C. After 6 h, saturated aqueous sodium bicarbonate solution (15 mL) was
added to quench the trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the
layers were separated. The aqueous layer was further extracted with dichloromethane (2 x 15 mL).
The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
alumina (0 -> 3% ethyl acetate in hexanes) to afford (-)-N-methyldehydroaspidospermidine (62, 14.7
mg, 49.8%) as a light tan gum. Structural assignments were made with additional information from
gCOSY, HSQC, gHMBC, and ROESY data.

'H NMR (500 MHz, C6D6, 20 'C):

3 C NMR (125 MHz, C6D6, 20 'C):

FTIR (neat) cm-':

HRMS (DART):

TLC (A12 0 3, 10% EtOAc in hexanes), R,:

6 7.11 (app-t, J = 7.8, 1H, C16-H), 7.02 (d, J= 7.8, 1H,

C14-H), 6.74 (app-t, J = 7.8, 1H, C15-H), 6.25 (d, J = 7.8,
1H, C17-H), 5.80 (dd, J = 4.0, 10.3, 1H, C3-H), 5.59 (d, J
= 10.3, 1H, C4-H), 3.68 (d, J = 4.0, 1H, C2-H), 2.97 (dt,
J = 3.3, 8.5, 1H, CoI-Ha), 2.88 (m, 1H, C8-Ha), 2.53 (s,
3H, C22-H3), 2.25-2.18 (m, 1H, ClO-Hb), 2.23 (s, 1H, C19-
H), 2.03 (dt, J = 12.2, 8.5, 1H, Ci-Ha), 1.94-1.82 (m,
1H, Cs-Hb), 1.94-1.82 (m, 1H, CII-Hb), 1.68-1.57 (m,
1H, C7-Ha), 1.57-1.49 (m, 1H, C6 -Ha), 1.40-1.29 (m,
1H, C7-Hb), 1.40-1.29 (m, 1H, C20 -Ha), 1.12-1.03 (m,
1H, C2 0 -Hb), 1.03-0.95 (m, 1H, C6-Hb), 0.61 (t, J = 7.5,
3H, C21-H 3).

6 151.6 (C18), 137.8 (C4 ), 136.0 (C1 3), 128.4 (C16), 124.6

(C3), 123.8 (C14), 117.5 (C15), 106.1 (C17), 73.3 (C19),
71.5 (C2), 53.0 (C8), 52.9 (CIO), 52.9 (C12 ), 43.9 (C11),
39.4 (C5), 35.6 (C20), 34.9 (C6), 32.6 (C22), 23.8 (C7 ), 8.2

(C 21).

2931 (s), 1605 (m), 1492 (m), 1264 (m), 1121 (m), 736
(s).

calc'd for C20H27N2 [M+H]*: 295.2169,
found: 295.2165.

-28 (c = 0.30, CH 2 C12 )-

0.40 (UV, CAM, KMnO 4 ).
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Alternate Synthesis:

8 8

N O 6 Tf2O, 2-CIPyr N 6

14 19 M"\ MeCN, 23 *C; -'
14 _9_4 Me 21 14 19 4 Me 21

16 1 N NaBH 3CN 1 N H
(-)-64 Me 95% (-)-62 Me

Synthesis of (-)-N-Methyldehydroaspidospermidine (16) from tetracyclic lactam (-)-64:
Trifluoromethanesulfonic anhydride (18.0 pL, 107 imol, 1.10 equiv) was added via syringe

to a solution of tetracyclic lactam (-)-64 (29.9 mg, 96.9 pmol, 1 equiv) and 2-chloropyridine (10.9
pL, 116 pmol, 1.20 equiv) in acetonitrile (3.0 mL) at 23 *C. After 10 min, a solution of sodium
cyanoborohydride (36.6 mg, 582 gmol, 6.00 equiv) in tetrahydrofuran (1.0 mL) was added via
cannula. After 6 h, saturated aqueous sodium bicarbonate solution (15 mL) was added via syringe to
quench the trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the layers
were separated. The aqueous layer was further extracted with dichloromethane (2 x 15 mL). The
combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
alumina (0 -- 3% ethyl acetate in hexanes) to afford (-)-N-methyldehydroaspidospermidine (62, 27.1
mg, 94.9%) as a light tan gum. See page 129 for characterization data for (-)-N-
methyldehydroaspidospermidine (62).

8 8

N 6 Tf20, 2-CIPyr N , 6

14 19 Me2 MeCN, 23* 14 19 me 21

16 1 N BusSnH; 16 N H
(}64 Me NaBD4, MeOH (-)-65 Me

94%

Synthesis of C19-deuterated pentacycle (-)-65 from tetracyclic lactam (-)-64:
Trifluoromethanesulfonic anhydride (2.4 VL, 14 pmol, 1.1 equiv) was added via syringe to a

solution of tetracyclic lactam (-)-64 (4.0 mg, 13 pmol, 1 equiv) and 2-chloropyridine (1.5 jL, 16
jimol, 1.2 equiv) in acetonitrile (0.8 mL) at 23 *C. After 10 min, tributylstannane (5.2 pL, 20 [tmol,
1.5 equiv) was added via syringe. After 30 min, a solution of sodium borodeuteride (98 atom% D,
2.2 mg, 52 pmol, 4.0 equiv) in methanol (0.8 mL) was added via cannula. After 30 min, saturated
aqueous sodium bicarbonate solution (15 mL) was added via syringe to quench the
trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the layers were separated.
The aqueous layer was further extracted with dichloromethane (2 x 15 mL). The combined organic
layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on alumina (0 -> 3% ethyl
acetate in hexanes) to afford pentacycle (-)-65 (3.6 mg, 94%) as a light tan gum. 'H NMR analysis
of the purified pentacycle (-)-65 showed 0% deuterium incorporation at C2 and 93% deuterium
incorporation at C19. See page 129 for characterization data for (-)-N-
methyldehydroaspidospermidine (62).
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(-)-1Me

(-)-N-Methylaspidospermidine (1):
Platinum on charcoal (10% w/w, 10.0 mg, 5.13 pmol, 0.130 equiv) was added as a solid to a

solution of (-)-N-methyldehydroaspidospermidine (62, 11.6 mg, 39.4 Rmol, 1 equiv) in
tetrahydrofuran (2.0 mL) at 23 *C. The opened reaction vessel was placed in a Fischer-Porter tube
and sealed under an atmosphere of hydrogen gas (80 psi). After 48 h, the Fischer-Porter tube was
opened in air, and the suspension was filtered over Celite. The solids were extracted with ethyl
acetate, and the combined filtrates were concentrated under reduced pressure. The residue was
purified by flash column chromatography on alumina (0 -> 3% ethyl acetate in hexanes) to afford

(-)-N-methylaspidospermidine (1, 11.7 mg, 100%) as a pale off-white powder. Structural

assignments were made with additional information from gCOSY, HSQC, gHMBC, and NOESY
data.

'H NMR (500 MHz, CDC13, 20 'C):

13C NMR (125 MHz, CDC13 , 20 *C):

FTIR (neat) cm-':

HRMS (DART):

TLC (A12 03, 20% EtOAc in hexanes), Rf:

6 7.04 (app-t, J = 7.3, 1H, C16-H), 7.00 (d, J = 7.1, 1H,

C14-H), 6.61 (app-t, J = 7.3, 1H, C15-H), 6.35 (d, J = 7.7,
1H, C17-H), 3.40 (dd, J = 5.8, 11.0, 1H, C2-H), 3.15-
3.06 (m, 1H, CIo-Ha), 3.06-2.99 (m, 1H, C8-Ha), 2.72 (s,
3H, C22 -H3), 2.35-2.17 (m, 1H, Ci;-Ha), 2.35-2.17 (m,
1H, CS-Hb), 2.17 (s, 1H, C,9-H), 1.99-1.81 (m, 1H, CIO-
Hb), 1.99-1.81 (m, 1H, C4-H), 1.80-1.65 (m, 1H, C3 -
Ha), 1.80-1.65 (m, 1H, C7-Ha), 1.64-1.56 (m, lH, C6-
Ha), 1.53-1.37 (m, 1H, C7-Hb), 1.53-1.37 (m, 1H, C11-
Hb), 1.53-1.37 (m, 1H, C20-Ha), 1.26-1.16 (m, 1H, C3-
Hb), 1.15-1.03 (m, 1H, C4-Hb), 1.15-1.03 (m, 1H, C6-
Hb), 0.90-0.80 (m, 1H, C20-Hb), 0.60 (t, J = 7.5, 3H, C21-
H3).

8 150.8 (CI8), 137.1 (C13), 127.4 (CI6 ), 122.4 (C14),
117.3 (CI), 106.6 (C17), 72.0 (C2), 71.4 (C19), 54.1 (C8),
53.3 (CIO), 52.8 (C12), 39.3 (C11), 35.7 (C), 34.7 (C6 ),
31.7 (C22), 30.3 (C20), 23.1 (C 4), 22.2 (C3 ), 22.0 (C), 7.0

(C 21)-

2929 (s), 1606 (m), 1485 (m), 1446 (m), 1376 (m), 1265
(s), 1122 (m), 737 (m).

calc'd for C20H29N2 [M+H]*: 297.2325.
found: 297.2317.

-23 (c = 0.17, CHCl3)-

0.63 (UV, CAM, KMnO4 ).

" Literature value: [C]D
25

= -23 (c 1.1, CHCl3) for (-)-1, Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem.

Soc. 2006, 128, 10596. [a]D20
= +24 (c 1.25, CHCl3) for (+)-1, Mokry, J.; Kompis, I.; Spiteller, G. Collect. Czech. Chem. Commun.

1967,32,2523.
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Table S1. Comparison of our 'H NMR data for (-)-N-methylaspidospermidine (1) with
literature data for (+)-N-methylaspidospermidine (1):

r\6N .6

14 '19
4 Me 21

16 N H
Me

(+)-N-methylaspidospermidine (1)

8

N 6

44 1 Me 21

16 1N H
Me

(-)-N-methylaspidospermidine (1)

Assignment Boger's Report" This Work
(+)-N-Methylaspidospermidine (1) (-)-N-Methylaspidospermidine (1)

'H NMR, 400 MHz, 'H NMR, 500 MHz,
CDC13  CDC13, 20 *C

C2 3.40 (dd, J= 5.8, 10.7, 1H) 3.40 (dd, J= 5.8, 11.0, 1H)
C3 1.80-1.65 (m, 1H) 1.80-1.65 (m, 1H)

1.29-1.20 (m, 1H) 1.26-1.16 (m, 1H)
C4 2.00-1.80 (m, 1H) 1.99-1.81 (m, 1H)

1.20-1.10 (m, 1H) 1.15-1.03 (m, 1H)
C5 -
C6 1.65-1.60 (m, 1H) 1.64-1.56 (m, 1H)

1.20-1.10 (m, 1H) 1.15-1.03 (m, 1H)
C7 1.80-1.65 (m, 1H) 1.80-1.65 (m, 1H)

1.55-1.40 (m, 1H) 1.53-1.37 (m, 1H)
C8 3.20-3.05 (m, 1H) 3.06-2.99 (m, 1H)

2.35-2.20 (m, 1H) 2.35-2.17 (m, 1H)
C1O 3.20-3.05 (m, 1H) 3.15-3.06 (m, 1H)

2.00-1.80 (m, 1H) 1.99-1.81 (m, 1H)
C1l 2.35-2.20 (m, 1H) 2.35-2.17 (m, IH)

1.55-1.40 (m, IH) 1.53-1.37 (m, 1H)
C12 -_ -
C13 -_ -
C14 7.02 (d, J= 7.7, 1H) 7.00 (d, J= 7.1, 1H)
C15 6.63 (t, J= 7.3, 1H) 6.61 (app-t, J= 7.3, 1H)
C16 7.05 (t, J= 7.7, 1H) 7.04 (app-t, J= 7.3, 1H)
C17 6.37 (d, J= 7.7, 1H) 6.35 (d, J= 7.7, 1H)
C18 -_ -
C19 2.21 (s, 1H) 2.17 (s, 1H)
C20 1.55-1.40 (m, 1H) 1.53-1.37 (m, 1H)

0.90-0.80 (m, 1H) 0.90-0.80 (m, 1H)
C21 0.62 (t, J= 7.4, 3H) 0.60 (t, J = 7.5, 3H)
C22 2.74 (s, 3H) 2.72 (s, 3H)

12 Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10596.
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Table S2. Comparison of our 13C NMR data for (-)-N-methylaspidospermidine (1) with
literature data for (+)-N-methylaspidospermidine (1):

8 8

6 6N N

14 4 Me21 14 19 4 Me 21
N N

16 N 'H 16 1 N H
Me Me

(+)-N-methylaspidospermidine (1) (-)-N-methylaspidospermidine (1)

Assignment Boger's Report 12  This Work Chemical Shift

(+)-N-Methylaspidospermidine (1) (-)-N-Methylaspidospenmidine (1) Difference

13C NMR, 100 MHz, "C NMR, 125 MHz, Ab =
CDCl 3  CDC13, 20 *C 6 (this work) -

6 (Ref. 12)

C2 71.7 72.0 0.3

C3 22.0 22.2 0.2
C4 22.9 23.1 0.2

C5 35.5 35.7 0.2

C6 34.5 34.7 0.2

C7 21.7 22.0 0.3

C8 53.8 54.1 0.3
C1O 53.0 53.3 0.3

C11 39.0 39.3 0.3

C12 52.5 52.8 0.3
C13 136.9 137.1 0.2

C14 122.1 122.4 0.3

C15 117.0 117.3 0.3

C16 127.2 127.4 0.2

C17 106.4 106.6 0.2

C18 150.5 150.8 0.3

C19 71.2 71.4 0.2

C20 30.1 30.3 0.2

C21 6.8 7.0 0.2

C22 31.5 31.7 0.2
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21
.Me

16

Tf2O, 3-CNPyr
MeCN, 85 'C;

NaF3CCOO
F3CCOOH
H20, 70 *C

57%

8

NO 6

14 1 4 Me 21

16 N N

(-)_64 Me

Tetracyclic lactam (-)-64:
Trifluoromethanesulfonic anhydride (115 pL, 686 pmol, 1.10 equiv) was added via syringe to

a solution of lactam (-)-53 (215 mg, 623 gmol, 1 equiv) and 3-cyanopyridine (77.9 mg, 748 Pmol,
1.20 equiv) in acetonitrile (25 mL) at 23 *C. After 5 min, the solution was warmed to 85 *C. After 3
h, the solution was allowed to cool to 23 *C. Sodium trifluoroacetate (254 mg, 1.87 mmol, 3.00
equiv) was added as a solid under an argon atmosphere. After 2 min, water (12.5 mL) was added via
syringe. After 5 min, trifluoroacetic acid (382 pL, 4.99 mmol, 8.00 equiv) was added via syringe, and
the solution was warmed to 70 *C. After 12 h, the solution was allowed to cool to 23 *C. Saturated
aqueous potassium carbonate solution (20 mL) was added to quench the trifluoroacetic acid. Brine
(100 mL) and dichloromethane (120 mL) were added, and the layers were separated. The aqueous
layer was further extracted with dichloromethane (2 x 120 mL). The combined organic layers were
dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.
The residue was purified by flash column chromatography on silica gel (1.5% acetone in
dichloromethane -> 30% ethyl acetate in hexanes) to afford tetracyclic lactam (-)-64 (110.4 mg,
57.4%) as a beige powder. Structural assignments were made with additional information from
gCOSY, HSQC, and gHMBC data.

'H NMR (500 MHz, CD 3CN, 73 *C):

3C NMR (125 MHz, CD 3CN, 73 *C):

FTIR (neat) cm-':

HRMS (DART):

5 7.55 (d, J = 7.9, 1H, C14-H), 7.30 (d, J = 7.9, 1H, C 17-
H), 7.17 (app-t, J = 7.9, 1H, C16-H), 7.06 (app-t, J = 7.9,
1H, C15-H), 6.37 (d, J = 11.9, lH, C3-H), 6.21 (d, J =
11.9, 1H, C4-H), 4.29-4.22 (m, 1H, Cio-Ha), 3.59 (s, 3H,
C22-H 3), 3.06-2.95 (m, 2H, C8-H 2), 3.06-2.95 (m, 1H,
Ci-Ha), 2.89 (ddd, J = 2.9, 6.0, 12.7, 1H, CIo-Hb), 2.74-
2.66 (m, 1H, ClI-H), 1.92-1.58 (m, 2H, C6-H 2 ), 1.92-
1.58 (m, 2H, C7-H2), 1.92-1.58 (m, 2H, C20 -H 2 ), 0.94 (t,
J = 7.5, 3H, C21-H3).

5 176.1 (C19), 149.2 (C4), 138.4 (C18), 135.1 (C2), 129.1
(CI), 122.7 (C16), 121.2 (C3), 120.0 (C,5), 119.2 (C14 ),
112.0 (C12), 110.3 (C, 7 ), 52.3 (CIO), 49.8 (C5), 48.3 (C),
32.5 (C6 ), 32.0 (C20), 31.0 (C2 2), 23.4 (C11), 21.6 (C),
9.5 (C 2 1).

2926 (m), 1638 (s), 1469 (m), 1321 (m), 1245 (w), 742
(mn).

calc'd for C20H 25N 20 [M+H]*: 309.1961,
found: 309.1971.

TLC (50% EtOAc in hexanes), Rf:

-200 (c = 0.38, CHCl3).

0.45 (UV, CAM, KMnO4).
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8

16 U N

(-)-64 Me

6 1. H2 , Pt/C
2\ THF, 23 *C.

4 Me 21

2. LiAIH 4, THF
60 *C

82% (two steps)

21

16

(+)-N-Methylquebrachamine (2):
Platinum on charcoal (10% w/w, 10.0 mg, 5.13 jmol, 0.0806 equiv) was added as a solid to a

solution of tetracyclic lactam (-)-64 (19.6 mg, 63.6 pmol, 1 equiv) in tetrahydrofuran (2.0 mL) at 23
*C. The opened reaction vessel was placed in a Parr bomb and sealed under an atmosphere of
hydrogen gas (400 psi). After 48 h, the Parr Bomb was opened in air, and the suspension was filtered
over Celite. The solids were further extracted with ethyl acetate (30 mL), and the combined filtrates
were concentrated under reduced pressure. The residue was dissolved in tetrahydrofuran (1.5 mL) at
23 'C. Lithium aluminum hydride (2.0 M solution in tetrahydrofuran, 160 pL, 320 pmol, 5.0 equiv)
was added via syringe. After 5 min, the reaction mixture was warmed to 60 *C. After 12 h, the
reaction mixture was allowed to cool to 23 *C. Sodium sulfate decahydrate was added as a solid to
quench the aluminum hydride salts. The resulting suspension was filtered over Celite. The solids
were further extracted with ethyl acetate (30 mL), and the combined filtrates were concentrated under
reduced pressure. The residue was purified by flash column chromatography on alumina (0 -- 5%

ethyl acetate in hexanes) to afford (+)-N-methylquebrachamine (2, 15.3 mg, 81.7% over two steps) as
a white gum. Structural assignments were made with additional information from gCOSY, HSQC,
and gHMBC data.

'H NMR (500 MHz, CDC13, 20 *C): 8 7.51 (d, J = 7.8, 1H, C 4-H), 7.28 (d, J = 7.8, 1H, C 7 -

13 C NMR (125 MHz, CDCL3, 20 *C):

FTIR (neat) cm-1:

HRMS (DART):

laD 24 :

TLC (Al2O3, 5% EtOAc in hexanes), Rf:

H), 7.15 (app-t, J = 7.8, 1H, C,6-H), 7.07 (app-t, J = 7.8,
1H, C15-H), 3.70 (s, 3H, C22-H3), 3.36 (d, J = 11.9, 1H,
C19-Ha), 3.03-2.82 (m, 1H, CII-Ha), 3.03-2.82 (m, 1H,
Cl,-Hb), 2.79 (app-dd, J = 10.8, 15.3, 1H, C3-Ha), 2.65
(app-dd, J = 6.8, 15.6, 1H, C3-H), 2.51-2.40 (m, 1H,
Cio-Ha), 2.51-2.40 (m, 1H, C8-Ha), 2.34-2.21 (m, 1H,
CIo-Hb), 2.34-2.21 (m, 1H, C8-Hb), 1.81 (app-dd, J =
6.8, 13.7, 1H, C4-Ha), 1.64 (app-t, J = 12.1, 1H, C4 -Hb),
1.61-1.54 (m, 1H, C7-Ha), 1.5 1 (d, J = 11.9, 1 H, C I -Hb),
1.35-1.24 (m, 1H, C7-Hb), 1.35-1.24 (m, 1H, C6 -Ha),
1.35-1.24 (m, 1H, C20-Ha), 1.24-1.10 (m, 1H, C2 0 -Hb),
1.24-1.10 (m, 1H, C6-Hb), 0.90 (t, J= 7.5, 3H, C21-H3)-
5 142.2 (C2), 136.4 (C18), 127.9 (C13), 119-9 (C16), 118.4

(C15 ), 117.5 (C,4), 108.7 (C,), 108.4 (C12), 56.8 (C,9),
55.4 (C8 ), 53.7 (CIO), 37.8 (C), 35.0 (C6 ), 32.5 (C4),
32.2 (C20), 29.7 (C 2 2), 22.8 (C7), 22.7 (C,), 19.2 (C3),
8.1 (C21).

3051 (w), 2928 (s), 2782 (m), 1472 (s), 1371 (s), 1299
(n), 1191 (m), 1140 (m), 1012 (w), 736 (s).

calc'd for C20H29N2 [M+H]*: 297.2325,
found: 297.2329
+102 (c = 0.22, CHC 3)-13

0.59 (UV, CAM, KMnO4).

" Literature value: [C]D
2 4

= +110 (CHCI3), Mokry, J.; Kompis, I.; Dubravkova, L.; Sefcovic, P. Tetrahedron Lett. 1962,25, 1185.
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Table S3. Comparison of our 'H NMR data for (+)-N-methylquebrachamine (2) with literature
data for (-)-kopsiyunnanine D (S4) and (+)-quebrachamine (2a):

Though early reports concerning (+)-N-methylquebrachamine (2) have not reported 'H or "C
NMR spectra, later reports14 have included 'H and "C NMR data for the structural analog (-)-
kopsiyunnanine D (S4) and have made assignments based on gCOSY, HSQC and gHMBC data.
Furthermore, 'H and "C NMR spectra have been reported for (+)-quebrachamine (2a), though
assignments based upon 2D NMR data were not reported. A comparison of the 'H data for the three
compounds is presented below; a comparison of the "C NMR data is presented on page 137.

N .. 6

14 19 4 Me 21

16 1 N Me

22 0 24

(-)-kopsiyunnanine D (S4)

8

N 6

14 19 4 Me 21

16 N

H

(+)-quebrachamine (S5)

8

6

4 Me 2j

16

(+)-N-methylquebrachamine (2)

Assignment Takayama's Report" Schrock's Report" This Work
(-)-Kopsiyunnanine D (S4) (+)-Quebrachamine (2a) (+)-N-Methylquebrachamine (2)

'H NMR, 500 MHz, 'H NMR, 400 MHz, 'H NMR, 500 MHz,
CDC13  CDC13  CDC13, 20 *C

NI 7.70 (br-s, IH)
C2
C3 2.79 (m, 1H) 2.74 (ddd, J= 2.0, 10.4, 15.6, 1H) 2.79 (app-dd, J= 10.8, 15.3, 1H)

2.55 (ddd, J= 1.5, 7.5, 7.5, 1H) 2.67 (ddd, J= 2.0, 7.2, 15.2, 1H) 2.65 (app-dd, J= 6.8, 15.6, 1H)
C4 1.74 (dd, J= 6.0, 13.0, 1H) 1.92 (ddd, J= 2.0, 6.8, 14.0, 1H) 1.81 (app-dd, J= 6.8, 13.7, 1H)

1.55 (m, IH) 1.65-1.53 (m, IH) 1.64 (app-t, J= 12.1, 1H)
C5
C6 1.18 (m, 1H) 1.33-1.08 (m, 2H) 1.35-1.24 (m, 1H)

1.09 (m, 1H) 1.24-1.10 (m, 1H)
C7 1.20 (m, 2H) 1.65-1.53 (m, 1H) 1.61-1.54 (m, 1H)

1.33-1.08 (m, 1H) 1.35-1.24 (m, 1H)
C8 2.32 (dd, J = 5.5, 13.0, 1H) 2.41 (dd, J= 2.8, 4.4, 1H) 2.51-2.40 (m, 1H)

2.18 (ddd, J = 3.5, 13.0, 13.0, 1H) 2.25 (dt, J= 2.8, 11.6, 1H) 2.34-2.21 (m, 1H)
CIO 2.40 (ddd, J = 1.5, 4.5, 13.0, 1H)) 2.48-2.43 (m, 1H)) 2.51-2.40 (m, 1H)

2.22 (ddd, J = 4.5, 13.0, 13.0, 1H) 2.33 (dt, J = 4.4, 11.6, 1H) 2.34-2.21 (m, 1H)
C11 2.87 (ddd, J= 4.5, 13.0, 15.0, 1H) 2.94 (ddd, J= 4.8, 11.6,14.8, 1H) 3.03-2.82 (m, 1H)

2.77 (m, 1H) 2.84 (ddd, J= 2.8, 4.4, 14.8, 1H) 3.03-2.82 (m, 1H)
C12 -_-_-
C13 - _-_-
C14 7.41 (d, J= 7.5, 1H) 7.49-7.47 (m, 1H) 7.51 (d, J= 7.8, 1H)
C15 7.03 (ddd, J= 1.5, 7.5, 7.5, 1H) 7.06 (dt, J= 1.6, 7.2, 1H) 7.07 (app-t, J= 7.8, 1H)
C16 7.08 (ddd, J= 1.5, 7.5, 7.5, 1H) 7.09 (dt, J= 1.6, 7.2, 1H) 7.15 (app-t, J= 7.8, 1H)
C17 7.33 (d, J= 7.5, 1H) 7.29-7.26 (m, 1H) 7.28 (d, J= 7.8, 1H)
C18 -_-_-
C19 3.28 (br-d, J= 12.0, 1H) 3.25 (br-d, J= 11.6, 1H) 3.36 (d, J= 11.9, 1H)

1.41 (m, 1H) 1.50 (d, J= 11.6, 1H) 1.51 (d, J= 11.9, 1H)
C20 1.21 (m, 1H) 1.33-1.08 (m, 2H) 1.35-1.24 (m, 1H)

1.05 (m, 1H) 1.24-1.10 (m, 1H)
C21 0.80 (t, J= 7.5, 3H) 0.85 (t, J= 7.2, 3H) 0.90 (t, J = 7.5, 3H)
C22 5.39 (d, J= 11.5, 1H) 3.70 (s, 3H)

5.35 (d, J= 11.5, 1H)
C24 3.19(s,3H)

'" Wu, Y.; Suehiro, M.; Kitajima, M.; Matsuzaki, T.; Hashimoto, S.; Nagaoka, M.; Zhang, R.; Takay ama, H. J. Nat. Prod. 2009, 72,
204.
" Sattely, E. S.; Meek, S. J.; Malcolson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943.
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Table S4. Comparison of our 13C NMR data for (+)-N-methylquebrachamine (2) with literature
data for (-)-kopsiyunnanine D (S4) and (+)-quebrachamine (2a):

r\6N
14 19 4 Me 21

16 1 N Me

22O 24

8

N 6

9 Me 21

16 1 N
H

N 6

9 Me 21

16 1 N
Me

(-)-kopsiyunnanine D (S4) (+)-quebrachamine (S5) (+)-N-methylquebrachamine (2)

Assignment Takayama's Report" Schrock's Report" This Work Chemical Chemical

(-)-Kopsiyunnanine D (+)-Quebrachamine (2a) (+)-N-Methyl Shift Shift

(S4) "C NMR, 100 MHz, quebrachamine (2) Difference Difference

"C NMR, 125 MHz, CDC13  "C NMR, 125 MHz, Ab = Ab =
CDC13  CDC13, 20 *C 6 (this work) 6 (this work)

- 8 (Ref. 14) - 6 (Ref. 15)
C2 141.8 140.0 142.2 0.4 2.2
C3 18.5 22.1 19.2 0.7 -2.9
C4 32.4 33.6 32.5 0.1 -1.1
C5 37.5 37.3 37.8 0.3 0.5
C6 34.7 34.9 35.0 0.3 0.1
C7 22.6 22.8 22.8 0.2 0.0
C8 55.2 55.2 55.4 0.2 0.2

C1O 53.0 53.4 53.7 0.7 0.3
Cli 22.3 22.6 22.7 0.4 0.1
C12 110.2 108.9 108.4 -1.8 -0.5
C13 128.3 129.1 127.9 -0.4 -1.2

C14 117.4 117.5 117.5 0.1 0.0
C15 119.2 118.8 118.4 -0.8 -0.4

C16 120.5 120.3 119.9 -0.6 -0.4
C17 108.8 110.1 108.7 -0.1 1.4
C18 136.7 135.0 136.4 -0.3 1.4
C19 56.5 56.9 56.8 0.3 -0.1
C20 31.8 32.2 32.2 0.4 0.0
C21 7.9 7.9 8.1 0.2 0.2

C22 73.8 - 29.7 -44.1l6 17

C24 55.6 -18 19

16 Significant difference in chemical shift is due to oxygenation of C22 in (-)-kopsiyunnanine D (S4).
"7 No difference in chemical shift is reported due to absence of C22 in (+)-quebrachamine (2a).

18 No difference in chemical shift is reported due to absence of C24 in (-)-N-methylquebrachamine (2).

'9 No difference in chemical shift is reported due to absence of C24 in (+)-N-methylquebrachamine (2) and (+)-quebrachamine (2a).
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21

10 O Me

14 N 1

ci 6
16 eN 2

Me (-)-53

Tf20, 3-CNPyr
MeCN, 85 *C;

(4-(dimethylamino)phenyl)-
magnesium bromide

-40 *C;
Na(MeO(CH 2)20)2AIH 2

40%

Hexacyclic aniline adduct (-)-63:
Trifluoromethanesulfonic anhydride (4.8 pL, 29 pmol, 1.1 equiv) was added via syringe to a

solution of lactam (-)-53 (9.0 mg, 26 gmol, 1 equiv) and 3-cyanopyridine (3.3 mg, 32 pmol, 1.2
equiv) in acetonitrile (1.0 mL) at 23 *C. After 5 min, the solution was warmed to 85 *C. After 3 h,
the solution was cooled to -40 *C, and (4-(dimethylamino)phenyl)magnesium bromide (0.50 M
solution in tetrahydrofuran, 130 pL, 65 pimol, 2.5 equiv) was added via syringe. After 30 sec, sodium
bis(2-methoxyethoxy)aluminum hydride (65% w/v solution in toluene, 80 PL, 260 gmol, 10 equiv)
was added via syringe. After 2 min, acetic acid (50 pL) was added via syringe to quench the
aluminum hydride salts, and the solution was allowed warmed to 23 *C. Saturated aqueous
potassium carbonate solution (15 mL) and ethyl acetate (15 mL) were added, and the layers were
separated. The aqueous layer was further extracted with ethyl acetate (2 x 15 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on alumina (0 -> 1.5%
ethyl acetate in hexanes) to afford hexacyclic aniline adduct (-)-63 (4.3 mg, 40%) as a white powder.
Structural assignments were made with additional information from gCOSY, HSQC, gHMBC, and
ROESY data. The connectivity and relative stereochemistry of hexacyclic aniline adduct (-)-63 were
secured by X-Ray diffraction of a single crystal of its bis-(hydrogen chloride) salt (-'-)-63*2HC 20

(page 164, vide infra).

'H NMR (500 MHz, CDC13, 20 *C): 6 7.44 (dd, J = 2.2, 8.7, 1H, C28-H), 7.27 (dd, J = 2.2,
8.6, 1H, C24-H), 7.06 (app-t, J = 7.7, 1H, C16-H), 6.97
(d, J = 7.7, 1H, C14-H), 6.69 (dd, J = 2.7, 8.7, 1H, C27 -
H), 6.64 (dd, J = 2.7, 8.6, 1H, C25-H), 6.56 (app-t, J =
7.7, 1H, C15-H), 6.30 (d, J= 7.7, 1H, C17-H), 5.77 (d, J =
10.4, 1H, C3-H), 5.70 (dd, J = 1.4, 10.4, 1H, C4-H), 2.94
(s, 6H, C3 0-(H3)2), 2.88-2.82 (m, lH, CO-Ha), 2.66 (s,
3H, C22-H3), 2.46 (s, lH, C19-H), 2.19-2.11 (m, lH, C10-
Ha), 2.07-2.00 (m, 1H, ClO-Hb), 2.00-1.91 (m, 1H, C8-
Hb), 1.81-1.72 (m, lH, Cii-Ha), 1.70-1.64 (m, 1H, C6 -
Ha), 1.64-1.56 (m, 1H, C7-Ha), 1.56-1.41 (m, 1H, C7-
H), 1.56-1.41 (m, lH, CIl-Hb), 1.20 (app-dt, J = 4.2,
12.9, 1H, C6 -Hb), 1.02-0.83 (m, 2H, C20-H2), 0.65 (t, J=
7.5, 3H, C21-H3)-

20 A sample of the corresponding bis-(hydrogen chloride) salt (+)-63e2HCl was prepared from hexacyclic aniline adduct (t)-63 as
follows: Hydrogen chloride (2.0 M in diethyl ether, 9.6 pL, 19 gmol, 2.0 equiv) was added via syringe to a solution of hexacyclic
aniline adduct (±)-63 (4.0 mg, 9.7 pmol, 1 equiv) in diethyl ether-chloroform (3:1, 500 pL) at 23 *C. A white solid precipitated
immediately. The resulting slurry was concentrated under reduced pressure, and the residue was dissolved in chloroform (200 pL).
Vapor diffusion of diethyl ether into this solution provided crystals of hexacyclic aniline adduct bis-(hydrogen chloride) salt (±)-
63e2HCl suitable for X-Ray diffraction. For a thermal ellipsoid representation of (±)-63-2HCl, see page 164.
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"C NMR (125 MHz, CDCl3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

8 150.7 (C18), 149.2 (C26), 136.1 (C4), 134.2 (C13), 132.1

(C 28 ), 131.6 (C 23), 128.9 (C 24), 128.6 (C 3), 127.8 (C 16),
123.5 (CI), 116.0 (C15), 112.3 (C 27), 111.1 (C25), 104.3

(C17), 73.8 (C2), 72.3 (C19), 57.4 (C12), 52.4 (C), 51.5
(CIO), 40.9 (C30), 38.6 (C1,), 38.3 (C), 35.6 (C20), 34.4
(C6), 29.8 (C22), 23.6 (C7), 7.8 (C21).

2929 (s), 2791 (m), 1603 (s), 1517 (s), 1497 (s), 1315
(m), 1186 (m), 1121 (m), 734 (s).

calc'd for C28H36N 3 [M+H]*: 414.2904,
found: 414.2912.

TLC (Al20 3, 5% EtOAc in hexanes), Rf:

8

16

Tf2O, 2-CIPyr
MeCN, 23 *C;

21 (4-(dimethylamino)pheny)-
magnesium bromide

-40 *C;
Na(MeOEtO) 2AIH2

76%

Synthesis of hexacyclic aniline adduct (-)-63 from tetracyclic lactam (-)-64 and (4-
(dimethylamino)phenyl)magnesium bromide:

Trifluoromethanesulfonic anhydride (19.7 pL, 117 pmol, 1.10 equiv) was added via syringe
to a solution of tetracyclic lactam (-)-64 (32.7 mg, 106 jmol, 1 equiv) and 2-chloropyridine (11.9
pL, 127 [mol, 1.20 equiv) in acetonitrile (4 mL) at 23 *C. After 10 min, the reaction mixture was
cooled to -40 *C, and (4-(dimethylamino)phenyl)magnesium bromide (0.50 M solution in
tetrahydrofuran, 320 pL, 160 gmol, 1.5 equiv) was added via syringe. After 30 sec, sodium bis(2-
methoxyethoxy)aluminum hydride (65% w/v solution in toluene, 323 PL, 1.06 mmol, 10.0 equiv)
was added via syringe. After 2 min, acetic acid (500 [LL) was added via syringe to quench the
aluminum hydride salts, and the solution was allowed warmed to 23 *C. Saturated aqueous
potassium carbonate solution (15 mL) and ethyl acetate (15 mL) were added, and the layers were
separated. The aqueous layer was further extracted with ethyl acetate (2 x 15 mL). The combined
organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under
reduced pressure. The residue was purified by flash column chromatography on alumina (0 -+ 1.5%
ethyl acetate in hexanes) to afford hexacyclic aniline adduct (-)-63 (33.1 mg, 75.5%) as a white
powder. See page 138 for characterization data for hexacyclic aniline adduct (-)-63.
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-186 (c = 0.16, CH 2 Cl2 )-

0.65 (UV, CAM, KMnO 4).
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8 N 6

N O 6 Tf20, 2-CIPyr 14 1 \
MeCN, 23 C; /

14 19 4 Me 21 |

9 4 Me / N,N-dimethylaniline; 16 1 Ne /23\ 27
16 1 ~ N Na(OMe)3BH, THF (-)-63

(-)-64 Me 74% 25 NMe 2

Synthesis of hexacyclic aniline adduct (-)-63 from tetracyclic lactam (-)-64 and N-
dimethylaniline:

Trifluoromethanesulfonic anhydride (5.6 pL, 34 pmol, 1.1 equiv) was added via syringe to a
solution of tetracyclic lactam (-)-64 (9.4 mg, 31 gmol, 1 equiv) and 2-chloropyridine (3.4 pL, 37
gmol, 1.2 equiv) in acetonitrile (0.7 mL) at 23 *C. After 10 min, N,N-dimethylaniline (4.6 pL, 37
gmol, 1.2 equiv) was added via syringe. After 90 min, a solution of sodium trimethoxyborohydride
(39.0 mg, 305 pmol, 10.0 equiv) in tetrahydrofuran (1.0 mL) was added via cannula. After 2 h,
saturated aqueous sodium bicarbonate solution (15 mL) was added to quench the
trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the layers were separated.
The aqueous layer was further extracted with dichloromethane (2 x 15 mL). The combined organic
layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on alumina (0 -> 1.5% ethyl
acetate in hexanes) to afford hexacyclic aniline adduct (-)-63 (9.3 mg, 74%) as a white powder. See
page 138 for characterization data for hexacyclic aniline adduct (-)-63.
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(-)-63 Me '/232
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25 NMe 2

Activation energy calculation for hexacyclic aniline adduct (-)-63 C2-C23 bond rotation:
The rate constant for rotation about the C2-C23 bond of hexacyclic aniline adduct (-)-63 in

dimethyl sulfoxide-d6 was approximated from changes in the 'H NMR peak separation of the
resonances corresponding to the C24 and C28 protons. Data were collected at temperatures
sufficiently below the coalescence point of the two resonances. In this regime, defined by k : Av
where k is the exchange rate constant and Av = 102.03 Hz is the peak separation of the resonances of

the C24 and C28 protons at a temperature where negligible exchange is occurring, the rate constant

for rotation can be approximated by k = (Av2 - Ai), where Ave is the separation of the

resonances of the C24 and C28 protons at the experimental temperature, T.
Ea

The activation energy Ea was calculated from the Arrhenius equation k = Ae r, where R is

the Boltzmann constant (1.98 cal/mol) and A is a constant factor. This can be written in form
suitable for application of linear least squares regression: In k = - + C, where C is a constant.

RT

T (*C) Ave (Hz) T' (mK') In(k)

52.0 100.98 3.08 3.48

56.0 100.52 3.04 3.66

60.0 97.46 3.00 4.21

64.0 93.27 2.97 4.52

68.0 80.93 2.93 4.93

ln(k)

R0 09811

3.05 3.12.9 2.95

T' (mK-')

Linear least squares gives Ea = 20.1 - 0.1 kcal/mol.

(a) Gasparro, F. P.; Kolodny, N. H. J. Chem. Ed. 1977,54, 258. (b) Johnson, E. S. In Advances in Magnetic Resonance, Waugh, J.S.,

Ed.; Academic Press: New York, 1956, Vol. 1, Chapter 2, pp. 64-68. (c) Gutowsky, H. S.; Holm, C. H. J. Chem. Phys. 1956,25, 1228.
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8 Tf2O, 2-CIPyr F3CSO 3 + 6

N O 6 MeCN, 23 *C; 14

14 19
14* 19 4 Me 21 (4-(dimethylamino)pheny)- /

magnesium bromide 16 Ne 23 27
16 1 N -40 *C; AcOH (-)-66 30

(-)-64 Me 76% 25 NMe 2

Hexacyclic iminium trifluoromethanesulfonate (-)-66:
Trifluoromethanesulfonic anhydride (6.0 pL, 36 pmol, 1.1 equiv) was added via syringe to a

solution of tetracyclic lactam (-)-64 (10.0 mg, 32.4 pmol, 1 equiv) and 2-chloropyridine (3.7 pL, 39
pmol, 1.2 equiv) in acetonitrile (1.5 mL) at 23 *C. After 10 min, the reaction mixture was cooled to
-40 *C, and (4-(dimethylamino)phenyl)magnesium bromide (0.50 M solution in tetrahydrofuran, 97
pL, 49 pmol, 1.5 equiv) was added via syringe. After 30 sec, acetic acid (20 pL) was added via
syringe to quench the arylmagnesium bromide salts, and the solution was allowed warmed to 23 *C.
Saturated aqueous sodium bicarbonate solution (15 mL) and dichloromethane (15 mL) were added,
and the layers were separated. The aqueous layer was further extracted with dichloromethane (2 x 15
mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and
were concentrated under reduced pressure. The residue was purified by flash column
chromatography on alumina (20 -+ 80% acetone in hexanes) to afford hexacyclic iminium
trifluoromethanesulfonate (-)-66 (13.9 mg, 76.3%) as a yellow oil. Structural assignments were
made with additional information from gCOSY, HSQC, gHMBC, and NOESY data.
'H NMR (500 MHz, C6D6 , 72 *C): 6 7.76 (d, J = 7.5, 1H, C14-H), 7.06 (d, J = 7.5, 1H, C16 -

H), 7.01 (br-d, J = 8.3, 2H, C24-H, C28-H), 6.80 (app-t, J
=7.5, 1H, Ci5-H), 6.74 (d, J = 8.3, 2H, C2 5-H, C27-H),
6.29 (d, J =7.5, 1H, C17-H), 5.53 (d, 1H, J = 9.9, C4-H),
5.43 (d, J = 9.9, 1H, C3-H), 4.25 (app-dd, 1H, J = 5.6,
16.6, Cio-Ha), 4.17-4.07 (m, 1H, C8-Ha), 3.57-3.44 (m,
2H, CIO-Hb), 2.68 (s, 6H, C30 -(H3)2), 2.68-2.55 (m, 1H,
C8-Hb), 2.44 (s, 3H, C22-H3), 2.20-2.10 (m, 1H, C7-Ha),
2.10-2.02 (m, 1H, Ci-Ha), 2.10-2.02 (m, 1H, C20-Ha),
2.02-1.93 (m, 1H, Cl,-Hb), 1.86-1.73 (m, 1H, C7-Hb),
1.86-1.73 (m, 1H, C6-Ha), 1.67-1.55 (m, 1H, C20-Hb),
1.33-1.21 (m, 1H, C6-Hb), 0.52 (t, J = 7.5, 3H, C2 1-H 3)-

13C NMR (125 MHz, C6D6, 72 *C): 8 192.0 (C19), 151.8 (C26), 150.6 (C18), 132.7 (C4), 130.9
(C13), 130.5 (C16), 129.2 (C24 , C28), 127.5 (C14), 125.9
(C3), 123.2 (C23), 122.9 (q, J = 322.4, F3CS0 3-), 120.1
(C 15), 113.5 (C25, C27), 108.1 (C, 7), 82.8 (C 2), 69.4 (C12),
59.3 (C), 50.7 (CIO), 43.5 (C), 40.4 (C30), 32.8 (C 1),
31.8 (C 20), 30.2 (C 22), 27.8 (C 6), 17.7 (C 7), 7.8 (C 2 1)-

'9F NMR (300 MHz, C6D6 , 20 *C): 6-78.6

FTIR (neat) cm-': 2925 (m), 1670 (m), 1609 (s), 1521 (m), 1489 (m), 1262
(s), 1157 (s), 1031 (s), 638 (s).

HRMS (DART): calc'd for C28H34N3 [M-CF 30 3S-]*: 412.2747,
found: 412.2745.

[a] 24: -85 (c = 0.25, CH2Cl2).

TLC (A120 3, 75% acetone in hexanes), Rf: 0.26 (UV, CAM, KMnO4).
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8 Tf2O, 2-CIPyr F3CSO 3 +N 6

N O 6 MeCN, 23 C;

14 19 4 Me 21 N,N-dimethylaniline I
74% 16 1 N /23N 27

16 1 N--
(-)-64 Me (-)-66 25 NMe 2

Synthesis of hexacyclic iminium trifluoromethanesulfonate (-)-66 from tetracyclic lactam (-)-

64 and NN-dimethylaniline:
Trifluoromethanesulfonic anhydride (17.2 pL, 102 gmol, 1.10 equiv) was added via syringe

to a solution of tetracyclic lactam (-)-64 (28.7 mg, 93.1 pmol, 1 equiv) and 2-chloropyridine (10.5
pL, 112 pmol, 1.20 equiv) in acetonitrile (3.5 mL) at 23 *C. After 10 min, NN-dimethylaniline (14.2
VL, 112 pmol, 1.20 equiv) was added via syringe. After 90 min, a solution of sodium bicarbonate
(150 mg) in water (15 mL) was added to quench the trifluoromethanesulfonic acid salts.
Dichloromethane (15 mL) was added, and the layers were separated. The aqueous layer was further
extracted with dichloromethane (2 x 15 mL). The combined organic layers were dried over
anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue
was purified by flash column chromatography on alumina (20 -- 80% acetone in hexanes) to afford

hexacyclic iminium trifluoromethanesulfonate (-)-66 (37.9 mg, 72.5%) as a yellow oil. See page 142

for characterization data for hexacyclic iminium trifluoromethanesulfonate (-)-66.
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F3CSO 3 + f

16 -1N 27
(-)-66 M30

25 NMe 2

Activation energy calculation for hexacyclic iminium trifluoromethanesulfonate (-)-66 C2-C23
bond rotation:

The rate constant for rotation about the C2-C23 bond of hexacyclic iminium
trifluoromethanesulfonate (-)-66 in acetonitrile-d3 was approximated from changes in the 'H NMR
peak separation of the resonances corresponding to the C24 and C28 protons. Data were collected at
temperatures sufficiently below the coalescence point of the two resonances. In this regime, defined
by k * Av where k is the exchange rate constant and Av = 327.89 Hz is the peak separation of the
resonances of the C24 and C28 protons at a temperature where negligible exchange is occurring, the

rate constant for rotation can be approximated by k = T(v2 - Av where Ave is the separation

of the resonances of the C24 and C28 protons at the experimental temperature, T.
The activation energy Ea was calculated from the Arrhenius equation k = Ae~i, where R is

the Boltzmann constant (1.98 cal/mol) and A is a constant factor. This can be written in form
suitable for application of linear least squares regression: In k = - + C, where C is a constant.

RT
V T 3.72

T ('C) Ave (Hz) T-1 (mK~1) In(k)

-2.0 318.41 3.69 5.16

1.0 311.86 3.65 5.42

4.0 300.67 3.61 5.67

7.0 287.73 3.57 5.86

10.0 256.17 3.53 6.12

3.7

3.68

36

3.64RI097

In(k) 3.62 R 97

3.6

3.S8

3.56

3.54
3.52

5 5.2 5.4 5-6 58S 6 6.2

T-'(inK')

Linear least squares gives Ea = 11.7 ± 0.2 kcal/mol.
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F3CSO 3 + 6 N 6

14 4 Me 21 NaBHcN, AcOH 4 Me 21

16 61 N~e /23\ 27 30 MeOH, 23 C; 16 1 M /23\ 27

H--66 - 30 ()-63 -- 30

25 NMe 2  25 NMe 2

Reduction of hexacyclic iminium trifluoromethanesulfonate (-)-66:
Sodium cyanoborohydride (10.1 mg, 161 jmol, 7.89 equiv) was added as a solid under an

argon atmosphere to a solution of hexacyclic iminium trifluoromethanesulfonate (-)-66 (11.5 mg,
20.4 [tmol, 1 equiv) and acetic acid (42.9 gL, 533 Rmol, 26.1 equiv) in methanol (2.0 mL) at 23 *C.
After 2 h, saturated aqueous sodium bicarbonate solution (15 mL) was added via syringe to quench
the trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the layers were
separated. The aqueous layer was further extracted with dichloromethane (2 x 15 mL). The
combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
alumina (0 - 1.5% ethyl acetate in hexanes) to afford hexacyclic aniline adduct (-)-63 (8.2 mg,
97%) as a white powder. See page 138 for characterization data for hexacyclic aniline adduct (-)-63.
If the reaction is run in the absence of acetic acid, hexacyclic aniline adduct (-)-63 is afforded in 92%
yield.
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NO 6

14 19 4 Me 21

16 1N

(-)-64 Me

Tf2O, 2-CIPyr
MeCN, 23 *C;

(2,6-dimethylphenyl)-
magnesium bromide

-40 *C;
Na(MeO(CH 2)20)2AH 2

59%

Hexacyclic xylene adduct (-)-67:
Trifluoromethanesulfonic anhydride (10.5 pL, 62.4 pmol, 1.10 equiv) was added via syringe

to a solution of tetracyclic lactam (-)-64 (17.5 mg, 56.7 pimol, 1 equiv) and 2-chloropyridine (6.4 pL,
68 pmol, 1.2 equiv) in acetonitrile (1.5 mL) at 23 *C. After 10 min, the reaction mixture was cooled
to -40 *C, and (2,6-dimethylphenyl)magnesium bromide (1.0 M solution in tetrahydrofuran, 85.1 pL,
85 pmol, 1.5 equiv) was added via syringe. After 10 min, sodium bis(2-methoxyethoxy)aluminum
hydride (65% w/v solution in toluene, 104 pL, 340 pmol, 6.00 equiv) was added via syringe. After 2
min, acetic acid (100 VL) was added via syringe to quench the aluminum hydride salts, and the
solution was allowed warmed to 23 *C. Saturated aqueous potassium carbonate solution (15 mL) and
ethyl acetate (15 mL) were added, and the layers were separated. The aqueous layer was further
extracted with ethyl acetate (2 x 15 mL). The combined organic layers were dried over anhydrous
sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue was
purified by flash column chromatography on silica gel (0 -> 2% ethyl acetate in hexanes) to afford
hexacyclic xylene adduct (-)-67 (13.4 mg, 59.2%) as a white powder. Structural assignments were
made with additional information from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3 , 20 *C):

3C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-':

HRMS (DART):

[a] 4 E
TLC (2% EtOAc in hexanes), Rf:

8 7.03 (t, J = 7.8, 1H, C16-H), 7.01-6.95 (m, 1H, C25-H),
7.01-6.95 (m, 1H, C26-H), 7.01-6.95 (m, 1H, C14-H),
6.91 (m, 1H, C27-H), 6.50 (app-t, J = 7.8, 1H, C,5-H),
6.06 (d, J = 10.5, 1H, C3-H), 6.03 (d, J = 7.8, 1H, C17 -
H), 5.44 (dd, J = 1.5, 10.5, 1H, C4-H), 2.89-2.83 (m,
1H, C8-Ha), 2.72 (s, 3H, C29-H3), 2.56-2.50 (m, 1H, CO-
Ha), 2.49 (s, 3H, C22-H3), 2.27 (s, 1H, C1,9-H), 2.17 (ddd,
J = 5.7, 8.6, 10.5, 1H, CIO-Hb), 2.02-1.95 (m, 1H, C8-
Hb), 1.95-1.88 (m, 1H, CI-Ha), 1.92 (s, 3H, C30-H3 ),
1.82 (ddd, J = 4.4, 10.5, 14.0, 1H, CI,-Hb), 1.65-1.59
(m, 1H, C6-Ha), 1.57-1.42 (m, 2H, C7-H2), 1.29-1.13
(m, IH, C6 -Hb), 0.81-0.66 (m, 2H, C20-H2 ), 0.55 (t, J =
7.5, 3H, C21-H3)-
8 149.9 (C18 ), 142.0 (C 23), 140.1 (C24), 139.7 (C 28),
134.2 (C13), 132.5 (C3), 131.6 (C4), 131.5 (C25), 130.6
(C27), 128.5 (C16), 126.3 (C26), 123.0 (C14), 115.1 (Ci1),
103.0 (C17), 74.5 (C2), 74.0 (C1,9), 57.8 (C,2), 52.3 (C8),
51.8 (CIO), 38.4 (C5), 36.9 (C,1 ), 34.9 (C6 ), 34.4 (C20),
28.7 (C22), 25.5 (C30), 23.6 (C29), 23.2 (C 7), 7.9 (C 21).
2929 (s), 1603 (s), 1503 (s), 1457 (m), 1382 (m), 1188
(m), 666 (s).
calc'd for C28H35N2 [M+H]*: 399.2795,
found: 399.2790.
-145 (c = 0.14, CH2Cl2)-
0.26 (UV, CAM, KMnO 4).
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14

16

Tf20, 2-CIPyr
MeCN, 23 *c;

trimethyl(2-methallyl)silane;
Na(OMe)3BH, THF

92%

21

16

(-)-68 26

Pentacyclic methallyl adduct (-)-68:
Trifluoromethanesulfonic anhydride (6.0 VL, 36 gmol, 1.1 equiv) was added via syringe to a

solution of tetracyclic lactam (-)-64 (10.0 mg, 32.4 pmol, 1 equiv) and 2-chloropyridine (3.7 pL, 39
gmol, 1.2 equiv) in acetonitrile (1.3 mL) at 23 *C. After 10 min, trimethyl(2-methallyl)silane (8.5 pL,
49 pmol, 1.5 equiv) was added via syringe. After 90 min, a solution of sodium
trimethoxyborohydride (24.9 mg, 195 gmol, 6.00 equiv) in tetrahydrofuran (1.0 mL) was added via
cannula. After 2 h, saturated aqueous sodium bicarbonate solution (15 mL) was added to quench the
trifluoromethanesulfonate salts. Dichloromethane (15 mL) was added, and the layers were separated.
The aqueous layer was further extracted with dichloromethane (2 x 15 mL). The combined organic

layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on silica gel (10 --> 20% ethyl
acetate in hexanes) to afford pentacyclic methallyl adduct (-)-68 (10.4 mg, 92.0%) as a viscous

yellow oil. Structural assignments were made with additional information from gCOSY, HSQC,
gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 *C):

3C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-1:

HRMS (DART):

8 7.03-6.93 (m, 1H, C16-H), 7.03-6.93 (m, 1H, C,4-H),
6.51 (app-t, J = 7.8, 1H, C15-H), 6.10 (d, J = 7.8, 1H,

C17-H), 5.80 (d, J = 10.3, 1H, C3-H), 5.64 (d, J = 10.3,
1H, C4-H), 4.87-4.76 (m, 2H, C25 -H2 ), 3.03-2.94 (m,
1H, CiO-Ha), 3.03-2.94 (m, 1H, C8-Ha), 2.69 (s, 3H, C2 2-
H3 ), 2.65-2.55 (m, 1H, Ci-Ha), 2.47 (s, 2H, C2 3-H 2),
2.28 (app-q, J = 8.5, 1H, CIo-Hb), 2.06 (s, 1H, CI9-H),
1.96-1.86 (m, lH, C8-Hb), 1.86-1.76 (m, 1H, CI,-Hb),
1.72 (s, 3H, C26-H3), 1.70-1.61 (m, 1H, C6 -Ha), 1.54-
1.43 (m, 2H, C7-H 2), 1.16-1.06 (m, 1H, C6-Hb), 1.06-
0.96 (m, 1H, C2 0 -Ha), 0.84-0.74 (m, 1H, C20-Hb), 0.53 (t,
J = 7.5, 3H, C21-H3)-

8 150.3 (C,8), 143.2 (C24), 137.2 (C4 ), 136.3 (C,3), 129.5

(C3), 128.0 (C16), 123.2 (C,4), 115.8 (C,5), 114.4 (C25),
104.1 (C17), 77.4 (C, 9), 68.4 (C2), 57.4 (C, 2), 53.9 (CO),
53.0 (C8), 45.6 (C23), 39.0 (C), 36.3 (C,), 34.7 (C6),
33.7 (C20), 30.0 (C22), 25.4 (C26), 23.2 (C7), 7.7 (C21)-

2927 (s), 1604 (s), 1501 (s), 1462 (s), 1376 (m), 736 (s).

calc'd for C2 4 H 33 N 2 [M+H]*: 349.2638,
found: 349.2645.

TLC (A12 0 3, 5% EtOAc in hexanes), Rf:

-130 (c = 0.15, CH 2Cl2)-

0.63 (UV, CAM, KMnO 4).
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14 19
14~ 1 4 Me 21

16 1 N

(-)-64 Me

Tf20, 2-CiPyr,
MeCN, 23 *C;

tert-butyl((1-methoxyvinyl)oxy)
dimethylsilane;

Na(OMe)3BH, THF,
-30 -> 0 C;

79%

N 6

14 19 4 Me 21

N23 OMe
626

Pentacyclic methyl acetate adduct (-)-69:
Trifluoromethanesulfonic anhydride (12.0 pL, 71.3 jmol, 1.10 equiv) was added via syringe

to a solution of tetracyclic lactam (-)-64 (20.0 mg, 64.8 pmol, 1 equiv) and 2-chloropyridine (7.3 pL,
78 pmol, 1.2 equiv) in acetonitrile (2.5 mL) at 23 *C. After 10 min, tert-butyl((1-
methoxyvinyl)oxy)dimethylsilane (21.2 pL, 97.3 pmol, 1.50 equiv) was added via syringe. After 90
min, the reaction mixture was cooled to -30 *C, and a solution of sodium trimethoxyborohydride
(49.8 mg, 389 gmol, 6.00 equiv) in tetrahydrofuran (1.0 mL) was added via cannula. After 30 min,
the reaction mixture was allowed to warm slowly to 0 *C. After 30 min, saturated aqueous sodium
bicarbonate solution (15 mL) was added to quench the trifluoromethanesulfonate salts, and the
resulting biphasic mixture was allowed to warm to 23 *C. Dichloromethane (15 mL) was added, and
the layers were separated. The aqueous layer was further extracted with dichloromethane (2 x 15
mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and
were concentrated under reduced pressure. The residue was purified by flash column
chromatography on alumina (5 -> 10% ethyl acetate in hexanes) to afford pentacyclic methyl acetate
adduct (-)-69 (18.8 mg, 79.1%) as a yellow oil. Structural assignments were made with additional
information from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl 3, 20 *C):

"C NMR (125 MHz, CDCl3, 20 *C):

FTIR (neat) cm-:

HRMS (DART):

TLC (A120 3, 10% EtOAc in hexanes), Rf:

8 7.04-6.93 (m, 1H, C14-H), 7.04-6.93 (m, 1H, C16-H),
6.54 (app-t, J = 7.8, 1H, C15-H), 6.16 (d, J = 7.8, 1H,
C17-H), 5.84 (d, J = 10.3, 1H, C3-H), 5.70 (d, J = 10.3,
1H, C4-H), 3.46 (s, 3H, C26-H3), 3.07-2.99 (m, 1H, CIO-
Ha), 2.99-2.90 (m, 1H, Cs-Ha), 2.80 (d, J = 14.1, 1H,
C2 3-Ha), 2.75 (d, J = 14.1, 1H, C23-Hb), 2.72 (s, 3H., C22-
H3), 2.55-2.45 (m, 1H, CII-Ha), 2.30 (app-q, J = 8.4, 1H,
Clo-Hb), 2.12 (s, 1H, C19-H), 1.98-1.81 (m, 1H, C8-Hb),
1.98-1.81 (m, 1H, CII-Hb), 1.73-1.64 (m, 1H, C6-Ha),
1.53-1.42 (m, 2H, C7-H2), 1.19-1.02 (m, 1H, C6 -Hb),
1.19-1.02 (m, lH, C2 0-Ha), 0.92-0.80 (m, lH, C20-Hb),
0.56 (t, J = 7.4, 3H, C2 1-H3).

8 171.7 (C24), 149.9 (C18), 138.3 (C4), 135.7 (C13), 127.9

(C14), 127.8 (C3 ), 123.0 (C6 ), 116.6 (C15), 104.8 (C27),
76.3 (C1,9), 68.9 (C2), 57.1 (C12), 53.4 (CIO), 52.7 (C),
51.5 (C2 6), 42.1 (C2 3), 39.0 (C5), 36.6 (C11), 34.8 (C6 ),
33.8 (C20), 29.6 (C22), 23.0 (C7), 7.8 (C2 1)-
2934 (s), 1733 (s), 1603 (s), 1494 (s), 1304 (m), 1189
(m), 1156 (m), 737 (m).

calc'd for C23H3IN20 2 [M+H]*: 367.2380,
found: 367.2377.

-95 (c = 0.17, CH 2Cl 2)-

0.26 (UV, CAM, KMnO 4).

148



8

16
Me

(-)-64

Tf2O, 2-CIPyr
MeCN, 23 *C;

21

(-)-N-methyldehydro-
aspidospermidine (62)

85 *C; NaHCO 3
80%

F8
F3CSO 3 +_ f

16

Decacyclic iminium trifluoromethanesulfonate (+)-70:
Trifluoromethanesulfonic anhydride (16.3 pL, 97.0 pmol, 1.10 equiv) was added via syringe

to a solution of tetracyclic lactam (-)-64 (27.2 mg, 88.2 Rmol, 1 equiv) and 2-chloropyridine (10.0
pL, 106 gmol, 1.20 equiv) in acetonitrile (2.0 mL) at 23 *C. After 10 min, a solution of (-)-N-
methyldehydroaspidospermidine (62, 26.0 mg, 88.2 gmol, 1.00 equiv) in acetonitrile (2.0 mL) was
added via cannula. After 5 min, the reaction mixture was warmed to 85 *C. After 90 min, the
reaction mixture was allowed to cool to 23 *C, and a solution of sodium bicarbonate (150 mg) in
water (15 mL) was added to quench the trifluoromethanesulfonic acid salts. Dichloromethane (15
mL) was added, and the layers were separated. The aqueous layer was further extracted with
dichloromethane (2 x 15 mL). The combined organic layers were dried over anhydrous sodium
sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on alumina (10 --> 85% acetone in hexanes) to afford decacyclic
iminium trifluoromethanesulfonate (+)-70 (51.8 mg, 79.9%) as an amorphous orange solid.

Structural assignments were made with additional information from gCOSY, HSQC, gHMBC, and
NOESY data.

'H NMR (500 MHz, PhMe-ds, 80 *C): 8 7.86 (d, J = 7.5, 1H, C 4-H), 7.01 (app-t, J = 7.5, 1H,

C16-H), 7.01-6.96 (br-s, 1H, C4,-H), 6.78 (app-t, J = 7.5,
1H, C15-H), 6.77-6.66 (br-m, 1H, C,6-H), 6.30-6.21 (m,
1H, C17-H), 6.30-6.21 (m, 1H, C,7-H), 5.69 (dd, J = 3.8,
10.3, 1H, C3-H), 5.56 (d, J = 10.0, 1H, C4-H), 5.51 (d, J
= 10.3, 1H, C4-H), 5.46 (d, J = 10.0, 1H, C3-H), 4.38-
4.25 (m, 1H, C8-Ha), 4.38-4.25 (m, 1H, CiO-Ha), 3.68 (d,
J = 3.8, 1H, C2-H), 3.38-3.27 (m, 1H, C8-Hb), 3.07-2.98
(m, 1H, Ci0eHa), 2.86-2.79 (m, 1H, Cg-Ha), 2.72-2.64
(m, 1H, CIo-Hb), 2.64 (s, 3H, C22 -H3), 2.49 (s, 3H, C2 2 -
H3 ), 2.35-2.26 (m, 1H, CIo-Hb), 2.26-2.15 (m, 1H, C7-
Ha), 2.26-2.15 (m, 2H, C,-H 2), 2.15 (s, 1H, C,9-H),
2.14-2.04 (m, 1H, C20-Ha), 2.14-2.04 (m, 1H, Cti-Ha),
1.95-1.88 (m, 1H, C6 -Ha), 1.88-1.74 (m, 1H, C7-Hb),
1.88-1.74 (m, 1H, C8-Hb), 1.88-1.74 (m, 1H, CuI-Hb),
1.68 (dq, J = 6.3, 7.5, 1H, C20-Hb), 1.58-1.47 (m, 1H,

C7 Ha), 1.58-1.47 (m, 1H, C6-Ha), 1.39-1.31 (m, 1H,

C7 -Hb), 1.25-1.17 (m, 1H, C6-Hb), 1.13-1.04 (m, 1H,

C20-Ha), 1-01-0-91
C20 -Hb), 0.59 (t, J
3H, C21-H3).

"C NMR (125 MHz, PhMe-d8, 80 *C):

(m, 1H, C6'-Hb), 1.01-0.91 (m, 1H,
= 7.5, 3H, C2 1-H3), 0.56 (t, J = 7.5,

5 192.2 (C19), 152.0 (C,8), 150.4 (C18), 137.4
136.9 (C4 ), 132.7 (C 4), 130.8 (C,3 ), 130.3 (C, 6 ),
(C1,6 ), 127.7 (C14 ), 125.9 (C3), 124.0 (C3,), 123.2
122.8 (C14 ), 122.5 (q, J = 322.4, F3CSO 3-), 120.0

(C, ),
128.6
(C1,5),
(C15),
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'9F NMR (300 MHz, CDCl 3, 20 'C):

FTIR (neat) cm-1:

HRMS (DART):

107.9 (C 17), 105.6 (C17,), 83.1 (C2), 73.0 (C1 g,), 71.5
(C2), 69.6 (C 12), 59.2 (CIO), 52.9 (C12), 52.6 (C8,), 52.4
(C1 O,), 50.7 (C8), 44.4 (CI 1 ), 43.6 (C), 39.3 (C,), 36.2
(C2 0 ,), 34.6 (C,), 32.4 (C11), 31.7 (C 22), 31.4 (C20), 29.9
(C22), 28.1 (C6 ), 23.5 (C,), 17.6 (C), 7.7 (C21), 7.6
(C 21 )-

6 -78.9

2933 (s), 1672 (m), 1608 (s), 1489 (s), 1454 (m), 1262
(s), 1155 (s), 1031 (s), 752 (m).

calc'd for C40H4qN4 [M-CF 30 3S ]*: 585.3952,
found: 585.3941.

TLC (Al2O 3, 75% acetone in hexanes), Rf:

+9 (c = 0.076, CH2Cl 2).

0.48 (UV, CAM, KMnO 4).
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8

N O 6 Tf2O, 2-CIPyr N 6
14 1 MeCN,23*C; 14 \ 8'

14 19 1Me21 M

(-)-N-methyldehydro- / N 6'

16 1N aspidospermidine (62) 16 1 N 19
Me 85 *C; Na(OMe) 3BH /4- Me2l'

(-)-64 THF, 23 0C (-)-7N 1eH
73%

Decacyclic dimer (-)-71:
Trifluoromethanesulfonic anhydride (7.2 VL, 42 pmol, 1.1 equiv) was added via syringe to a

solution of tetracyclic lactam (-)-64 (11.8 mg, 38.2 pmol, 1 equiv) and 2-chloropyridine (4.3 VL, 46
pmol, 1.2 equiv) in acetonitrile (0.6 mL) at 23 *C. After 10 min, a solution of (-)-N-
methyldehydroaspidospermidine (62, 13.5 mg, 45.9 Rmol, 1.20 equiv) in acetonitrile (1.2 mL) was
added via cannula. After 5 min, the reaction mixture was warmed to 85 *C. After 90 min, the
reaction mixture was allowed to cool to 23 *C, and a solution of sodium trimethoxyborohydride (29.3
mg, 229 gmol, 6.00 equiv) in tetrahydrofuran (1.8 mL) was added via cannula. After 3 h, saturated
aqueous sodium bicarbonate solution (15 mL) was added to quench the trifluoromethanesulfonate
salts, and the resulting biphasic mixture was allowed to warm to 23 *C. Dichloromethane (15 mL)
was added, and the layers were separated. The aqueous layer was further extracted with
dichloromethane (2 x 15 mL). The combined organic layers were dried over anhydrous sodium

sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by
flash column chromatography on silica gel (0.5% acetic acid, 20% methanol, 20% tetrahydrofuran in

dichloromethane -+ 30% methanol in dichloromethane) to afford decacyclic dimer (-)-71 as its acetic

acid salt, which was dissolved in ethyl acetate (30 mL) and washed with saturated aqueous potassium
carbonate solution (30 mL) and brine (30 mL). The organic layer was dried over anhydrous sodium
sulfate, was filtered, and was concentrated under reduced pressure to afford decacyclic dimer (-)-71
(16.3 mg, 72.6%) as a colorless gum. Structural assignments were made with additional information
from gCOSY, HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl3, 20 *C, 1.7:1 atropisomer mixture, * denotes minor atropisomer): 8 7.36
(d, J = 1.7, 1H, C1 ,-H*), 7.28 (d, J = 8.3, 1H, C16,-H),
7.11-7.07 (m, 1H, C16,-H*), 7.09-7.06 (m, 1H, C16-H),
7.08 (d, J = 1.8, 1H, C14-H), 7.04 (app-dt, J = 1.1, 7.5,
1H, C16-H*), 6.97 (d, J = 7.7, 1H, C14-H), 6.97-6.94 (m,
1H, C14 -H*), 6.58 (app-t, J = 7.2, 1H, C15-H), 6.55 (app-
t, J = 7.3, 1H, C15-H*), 6.33 (d, J = 7.7, 1H, C17-H), 6.30
(d, J = 7.7, 1H, C17-H*), 6.23 (d, J = 8.3, 1H, C,-H),
6.17 (d, J = 8.2, 1H, C17,H*), 5.98 (dd, J = 4.5, 10.2,
1H, C3,-H), 5.98-5.95 (m, 1H, C3,-H*), 5.74 (d, J = 10.2,
1H, C,-H), 5.73-5.63 (m, 1H, C4'-H*), 5.73-5.63 (m,
1H, C3-H), 5.73-5.63 (m, 1H, C4-H), 5.73-5.63 (m, 1H,

C4-H*), 5.73-5.63 (m, 1H, C3-H*), 3.76-3.71 (m, 1H,

CT-H), 3.76-3.71 (m, 1H, C2,-H*), 3.16-3.00 (m, 1H,
CIo0 -Ha*), 3.16-3.00 (m, 1H, CIt0 Ha), 3.16-3.00 (m, 1H,
C8 -Ha*), 3.16-3.00 (m, 1H, C8-Ha), 2.84 (s, 3H, C22-
H3 ), 2.82 (s, 3H, C2 2 ,-H 3*), 2.80-2.73 (m, 1H, C8-Ha),
2.80-2.73 (m, 1H, C8-Ha*), 2.62 (s, 3H, C22-H3), 2.61 (s,
3H, C22-H 3*), 2.54 (s, 1H, C19-H*), 2.52 (s, 1H, C19-H),
2.34-2.26 (m, 1H, CIO'-Hb), 2.26-2.19 (m, 1H, CIocHb*),
2.17 (s, 1H, Cg,-H*), 2.12 (s, 1H, C19-H), 2.15-1.83 (m,
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1H,
1H,
1H,

CI,-Ha), 2.15-1.83
Co-H2*),2.15-1.83
Ci-Ha*), 2.15-1.83

(m

(m
1H, CIo-H 2), 2.15-1.83 (m,
1H, Cg-Hb*), 2.15-1.83 (m,.
1H,
1H,
1H,
2H,
1H,
1H,
1H,
1H,
1H,
1H,
1H,
1H,
3H,
7.4,

1H, C8-Hb), 2.15-1.83 (m,
1H, C8,-Hb*), 2.15-1.83 (m,
1H, Cl,,-Hb), 2.15-1.83 (m,
1H, C8,-Hb), 2.15-1.83 (m,

1H, C I ,-Hb*), 2.15-1.83 (m,
CI-Ha), 2.15-1.83 (m, 1H, CII-Ha*), 1.77-1.60 (m,
C 6,-Ha*), 1.77-1.60 (m, 1H, C6-Ha*), 1.77-1.60 (m,
C 6-Ha), 1.77-1.60 (m, 1H, C6,-Ha), 1.67-1.48 (m,
C7,-H2*), 1.67-1.48 (m, 1H, C7-Ha*), 1.67-1.48 (m,

C7-Ha), 1.67-1.48 (m, 1H, C,-Ha), 1.67-1.48 (m,

C7-Hb), 1.67-1.48 (m, 1H, C7-Hb*), 1.67-1.48 (m,

C7 ,-Hb), 1.53-1.39 (m, 1H, CII-Hb), 1.53-1.39 (m,

Cl,-Hb*), 1.32-1.15 (m, 1H, C6-Hb*), 1.32-1.15 (m,

C6 -Hb), 1.32-1.15 (m, 1H, C6,-Hb), 1.32-1.15 (m,

C6 ,-Hb*), 1.15-0.83 (m, 2H, C20-H 2*), 1.15-0.83 (m,
C20'-Ha), 1.15-0.83 (m, 2H, C20 ,-H 2 *), 1.15-0.83 (m,
C20-H2), 1.15-0.83 (m, 1H, C2 o,-Hb), 0.66 (t, J = 7.4,
C2 r,-H 3*), 0.65 (t, J = 7.5, 3H, C21-H3 ), 0.62 (t, J =
3H, C2 1-H3 *), 0.50 (t, J = 7.5, 3H, C2,r-H3)-

13C NMR (125 MHz, CDC13, 20 C, 1.7:1

FTIR (neat) cm-':

HRMS (DART):

TLC (A120 3, 10% EtOAc in hexanes), Rf:

atropisomer mixture, * denotes minor atropisomer): 8
150.8 (CI8), 150.8 (C18 *), 149.4 (C,8 ), 149.3 (C,8,*),
139.1 (C4,*), 137.9 (C4.), 135.5 (C 4), 135.4 (C4 *), 134.8
(C,3 '*), 134.6 (C,3 ,), 134.0 (C,3 ), 133.9 (C3*), 131.8
(C ,6 ), 131.5 (C ,), 131.2 (C ,5 *), 128.7 (C 3*), 128.4

(C3), 127.7 (C16 ), 127.7 (C16 *), 127.7 (C 6,*), 127.1
(C ,4 *), 125.1 (C3 ,), 124.6 (C 3,*), 123.5 (C 4 ), 123.5
(C 4 *), 123.2 (C 4.), 116.2 (C15*), 116.1 (C, 5 ), 104.7

(CI.), 104.7 (C,7*), 104.6 (C, 7), 103.4 (C17,*), 75.3
(Cg,), 74.4 (C2 *), 74.3 (C 2), 74.0 (Cg,*), 71.7 (C2.), 71.5

(C2,*), 71.3 (C,9), 71.2 (C1,*), 57.0 (C12*), 57.0 (C12),
53.3 (CIO,*), 53.0 (CIO,), 52.9 (C8,*), 52.8 (C8.), 52.3
(C*), 52.3 (C12.), 52.1 (C8), 52.1 (C12 '*), 51.2 (C10*),
50.7 (CIO), 45.4 (CI,.), 44.5 (Cl,,*), 39.1 (CO,), 39.1

(C5,*), 38.5 (C), 38.4 (C*), 38.2 (C,,*), 38.1 (C,,),
36.1 (C20), 36.0 (C2 0*), 35.4 (C20,), 34.4 (C6 ,*), 34.3

(C6.), 34.3 (C6), 34.2 (C6*), 34.1 (C 20,*), 33.4 (C22.), 33.2

(C 22,*), 29.9 (C 2 2*), 29.5 (C 2 2), 23.7 (C*), 23.6 (C 7),
23.3 (C7,), 23.3 (C 7,*), 8.0 (C2 ,*), 7.9 (C21), 7.9 (C21*),
7.7 (C 21.)-

2928 (s), 2781 (m), 1603 (s), 1494 (s), 1373 (m), 1263
(m), 1190 (m), 1122 (m), 736 (m), 666 (m).

calc'd for C40H5,N4 [M+H]*: 587.4108,
found: 587.4111.

-240, (c = 0.10, CH2Cl 2)-

0.40 (UV, CAM, KMnO 4).
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Table S5. Comparison of our 'H NMR data for decacyclic dimer (-)-71 with literature data for
(+)-tabernaebovine (3):22,23

Blue arrows in the figure below represent key NOESY correlations:

key NOESY
correlations:

For clarity most 16
methines are
omitted; arrows
point to the carbon of
the methines of interest.

(+)-tabernaebovine (3) (-)-71
major rotamer

(-)-71
minor rotamer

Assignment Ripperger's Report2 2  This Work
(+)-Tabernaebovine (3) (-)-71

'H NMR, 500 MHz, 'H NMR, 500 MHz,
CDC13  CDC13, 20 *C

* denotes minor atropisomer resonance

C2 --

C3 2.83 (dd, J= 3.7, 13.4, 1H) 5.73-5.63 (m, 1H)
1.83 (m, IH) 5.73-5.63* (m, IH)

C4 2.08 (m, 1H) 5.73-5.63 (m, 1H)
1.43 (m, 1H) 5.73-5.63* (m, IH)

C5 -_ -

C6 2.98 (d, J= 3.9, 1H) 1.77-1.60 (m, 1H)
1.32-1.15 (m, 1H)
1.77-1.60* (m, 1H)
1.32-1.15* (m, 1 H)

C7 3.30 (m, 1H) 1.67-1.48 (m, 2H)
1.67-1.48* (m, 2H)

C8 3.49 (dd, J= 13.0, 1.5, 1H) 2.80-2.73 (m, 1H)
2.27 (d, J = 12.8, 1H) 2.15-1.83 (m, 1H)

2.80-2.73* (m, 1H)
2.15-1.83* (m, 1H)

C1O 2.78 (dt, J= 3.4, 8.5, 1H) 2.15-1.83 (m, 2H)
2.07 (m, 1H) 2.15-1.83* (m, 2H)

C11 1.59 (m, 1H) 2.15-1.83 (m, 1H)
1.50 (m, IH) 1.53-1.39 (m, 1H)

2.15-1.83* (m, 1H)
1.53-1.39* (m, 1H)

C12 -_ -
C13 -_ -

C14 6.90 (d, J= 6.7, 1H) 6.97 (d, J= 7.7, 1 H)
6.97-6.94* (m, IH)

C15 6.54 (dt, J= 0.7, 7.3, 1H) 6.58 (app-t, J= 7.2, 1H)
6.55* (app-t, J= 7.3, 1H)

C16 7.09 (dt, J = 1.2, 7.6, 1H) 7.09-7.06 (m, IH)
7.04* (app-dt, J= 1.1, 7.5, 1H)

C17 6.27 (d, J= 7.9, 1H) 6.33 (d, J= 7.7, 1H)
6.30* (d, J= 7.7, 1H)

C18
C19 2.04 (s, 1H) 2.52 (s, 1H)

2.54* (s, IH)

C20 1.07 (m, 2H) 1.15-0.83 (m, 2H)
1.15-0.83* (m, 2H)

22 Lim, T. P.; Kamperdick, C.; Sung, T. V.; Adam, G.; Ripperger, H. Phytochemistry 1998,49, 1797.
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C21 0.68 (t, J = 7.4, 3H) 0.65 (t, J= 7.5, 3H)
0.62* (t, J 7.4, 3H)

C22 2.46 (s, 3H) 2.62 (s, 3H)
2.61 * (s, 3H)

C2' 3.34 (br-d, J= 5.2, 1H) 3.76-3.71 (m, 1H)
3.7 6-3.7 1* (m, 1 H)

C3' 1.74 (m, I H) 5.98 (dd, J= 4.5, 10.2, 1H)
1.10 (m, 1H) 5.98-5.95* (m, 1H)

C4' 1.76 (m, IH) 5.74 (d, J= 10.2, 1 H)
1.37 (m, 1H) 5.73-5.63* (m, 1H)

C5'
C6' 2.88 (br-s, 1H) 1.77-1.60 (m, 1H)

1.32-1.15 (m, 1H)
1.77-1.60* (m, 1H)
1.32--1.15* (m, 1 H)

C7' 3.30 (m, I H) 1.67-1.48 (m, 2H)
1.67-1.48* (m, 2H)

C8' 3.53 (br-d, J= 12.8, 1H) 3.16-3.00 (m, 1H)
ca. 2.30 (m, 1H) 2.15-1.83 (m, 1H)

3.16-3.00* (m, 1H)
2.15-1.83* (m, 1H)

CIO' 3.15 (t, J= 7.6, 1H) 3.16-3.00 (m, 1H)
2.07 (m, I H) 2.34-2.26 (m, IH)

3.16-3.00* (m, 1H)
2.26-2.19* (m, 1 H)

C1l' 2.23 (m, 1H) 2.15-1.83 (m, 2H)

1.50 (m, 1 H) 2.15-1.8 3*m 2H)

C1 2'--
Cl3'-
C14' not observed 7.08 (d, J= 1.8, 1 H)

7.36* (d, J= 1.7, 1H)
C15'
C16' 6.93 (br, 1H) 7.28 (d, J= 8.3, 1H)

7.11-7.07* (m, 1 H)

C17' 6.24 (br-d, J= 7.0, 1H) 6.23 (d, J= 8.3, 1H)
6.17* (d, J= 8.2, 1H)

C18' --

C19' 2.05 2.12 (s, IH)
2.17* (s, 1 H)

C20' 1.11 (m, 2H) 1.15-0.83 (m, 2H)
1.15-0.83* (m, 2H)

C2 1' O.68 (t, J = 7.4, 3H) 0.50 (t, J= 7.5, 3H)
0.66* (t, J= 7.4, 3H)

C22' 2.70 (s, 3H) 2.84 (s, 3H)
2.82* (s, 3H)
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Table S6. Comparison of our 13C NMR data for decacyclic dimer (-)-71 with literature data for
(+)-tabernaebovine (3):23

8

16

16

(+)-tabernaebovine (3) (-)-71
major rotamer

(-)-71
minor rotamer

Ripperger's This Work Chemical
Report" (-)-71 Shift

(+)-tabemaebovine "C NMR, 125 MHz, Difference

(3) CDC13, 20 -C Ab =
"C NMR, * denotes minor atropisomer resonance 8 (this work)

125 MHz, - 6 (Ref. 22)

CDCl3
Assign Chemical Chemical Key gHMBC
-ment Shift Shift Correlations

C2 74.8 74.3 C3, C4, C11, C19, C22, C14', C16' -0.5
74.4* C3*, C4*, C1I*, C19*, C22*, C14'*, C16'* -0.4*

C3 26.0 128.4 102.424
128.7* 102.7*24

C4 28.4 135.5 C6, C19, C20 107.124
135.4* C6*,C19*,C20* 107.0*24

C5 32.8 38.5 C3,C4,C7,C19,C20,C21 5.7
38.4* C3*,C4*,C7*,C19*,C20*,C21* 5.6*

C6 60.2 34.3 C4,C7,C8,C19,C20 -25.925

34.2* C4*,C7*,C8*,C19*,C20* -26.0*25
C7 53.12 23.6 C6,C8 -29.5225

23.7* C6*,C8* -29.4225

C8 52.2 52.1 C6,C7,C1O,C19 -0.1
52.3* C6*,C7*,CIO*,C19* 0.1*

C1O 53.6 50.7 C8,CI,C19 -2.9
51.2* C8*, C11*, C19* -2.4*

CI 36.2 38.1 C10,C19 1.9
38.2* C10*,C19* 2.0*

C12 56.8 57.0 C3,C1O,CI1,C14,C19 0.2
57.0* C3*,C1O*,C11*,C14*,C19* 0.2*

C13 135.1 134.0 C11, C15, C17, C19 -1.1
133.9* C11*, C15*, C17*, C19* -1.2*

C14 123.0 123.5 C15,C16 0.5
123.5* C15*,C16* 0.5*

C15 115.6 116.1 C16,C17 0.5
116.2* C16*,C17* 0.6*

C16 128.1 127.7 C14,C15 -0.4
127.7* C14*,CI5* -0.4*

C17 102.7 104.6 C15,C16 1.9
104.7* C15*,C16* 2.0*

C18 152.4 150.8 C14,C16,C22 -1.6
150.8* C14*, C16*, C22* -1.6*

23 The lack of epoxides and the presence of alkenes in dimer

tabernaebovine (3).

)-71 results in greater C2-C 15' atropisomerism compared to (+)-
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C19 72.8 71.3 C4,C6, C8, C1O, C11, C20 -1.5
71.2* C4*, C6*, C8*, C1O*, C11*, C20* -1.6*

C20 32.9 36.1 C4,C6,C19,C21 3.2
36.0* C4*,C6*,C19*,C21* 3.1*

C21 8.1 7.9 C20 -0.2
7.9* C20* -0.2*

C22 29.0 29.5 0.5
29.9* - 0.9*

C2' 73.3 71.7 C3', C4', C11', C19', C22' -1.6
71.5* C3'*, C4'*, C11'*, C19'*, C22'* -1.8*

C3' 20.1 125.1 C2' 105.026
124.6* C2'* 104.5*26

C4' 24.3 137.9 C2', C6', C19', C20' 113.626
139.1* C2'*, C6'*, C19'*, C20'* 114.8*26

CS 34.5 39.1 C3', C4', C7', C19', C20', C21' 4.6
39.1* C3'*, C4'*, C7'*, C19'*, C20'*, C21* 4.6*

C6' 57.6 34.3 C4', C7', C8', C19', C20' -23.327
34.4* C4'*, C7'*, C8'*, C19'*, C20'* -23.2*27

CT 53.1 23.3 C6', C8' -29.827
23.3* C6'*, C8'* -29.8*27

C8' 53.06 52.8 C6',C7',C1O',C19' -0.26
52.9* C6'*, C7'*, C10'*, C19'* -0.16*

C1O' 53.6 53.0 C8', CI1', C19' -0.6
__ _ _53.3* C8'*,C11'*,C19'* -0.3*
C11' 41.1 45.4 C2',C1O',C19' 4.3

44.5* C2'*, C1O'*, C19'* 3.4*
C12' 51.2 52.3 C2', C3', C10', C11', C14', C19' 1.1

52.1* C2'*, C3'*, C10'*, C11'*, C14'*, C19'* 0.9*
C13' 136.4 134.6 Cl1',C17',C19' -1.8
C14____ _134.8* C11'*, C17'*, C19'* -1.6*
C14' 120.7 123.2 C16' 2.5

127.1* C16'* 6.4*
C15' 132.2 131.5 C3,C17' -0.7

131.2* C3*,C17'* -1.0*
C16' 126.9 131.8 C14' 4.9

127.7* C14'* 0.8*
CIT 105.9 104.7 C16' -1.2

103.4* C16'* -2.5*
C18' 148.8 149.4 C14', C16', C22' 0.6

149.3* C14'*, C16'*, C22'* 0.5*
C19' 66.7 75.3 C2', C4', C6', C8', C10', CI', C20' 8.6

74.0* C2'*, C4'*, C6'*, C8'*, C10'*, C11'*, C20'* 7.3*
C20' 27.9 35.4 C4', C6', C19', C21' 7.5

34.1* C4'*, C6'*, C19'*, C21'* 6.2*
C21' 7.5 7.7 C20' 0.2

1 8.0* C20'* 0.5*
C22' 31.5 33.4 C2' 1.9

1_ 1 33.2* C2'* 1.7*

2 Difference in chemical shift is due to presence and absence of C3-C4 double bond in (-)-71 and (+)-tabemaebovine (3),
respectively.
25 Difference in chemical shift is due to absence and presence of C6-C7 epoxide in (-)-71 and (+)-tabernaebovine (3), respectively.
26 Difference in chemical shift is due to presence and absence of C3'-C4' double bond in (-)-71 and (+)-tabemaebovine (3),
respectively.
27 Difference in chemical shift is due to absence and presence of C6'-C7' epoxide in (-)-71 and (+)-tabemaebovine (3), respectively.
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- 8 8
F3 CSO 3 + 6 N 6N N

14 19 \21 8' \14 19 8'
4 Me N ' Na(MeOEt(CH 2)20)2AH 2  4 N 6'N 6'IH N

16 1 \ 19'"\ THF, 0 *C 16 1N \ 19'
- /4' Me2l' 76% e /4- Me2l'

(+)-70 1'N H (-)-71 'N H
Me MeH

Synthesis of decacylic dimer (-)-71 by reduction of decacyclic iminium trifluoromethane-
sulfonate (+)-70:

Sodium bis(2-methoxyethoxy)aluminum hydride (65% w/v solution in toluene, 91.2 jiL, 299
pmol, 5.00 equiv) was added via syringe to a solution of decacyclic iminium
trifluoromethanesulfonate (+)-70 (43.9 mg, 59.7 pmol, 1 equiv) in tetrahydrofuran (4.0 mL) at 0 *C.
After 30 min, aqueous hydrogen chloride solution (2.0 mL) was added to quench the aluminum
hydride salts, and the reaction mixture was allowed to warm to 23 *C. Saturated aqueous potassium
carbonate solution (15 mL) and ethyl acetate (15 mL) were added, and the layers were separated.
The aqueous layer was further extracted with ethyl acetate (2 x 15 mL). The combined organic
layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced
pressure. The residue was purified by flash column chromatography on alumina (3 -> 7% ethyl
acetate in hexanes) to afford decacyclic dimer (-)-71 (26.6 mg, 75.9%) as a colorless gum. See page
151 for characterization data for decacyclic dimer (-)-71.
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8

6

14

6

H2 , Pt/C

6'
THF 23*C

14 8'

6'

me 4Me 84% Me Me21'v MN1 'e2l' 1~~~4 MeN

(-)-71 (+)-4 MeH

(+)-Dideepoxytabernaebovine (4):
Platinum on charcoal (10% w/w, 50.0 mg, 25.6 pmol, 2.00 equiv) was added as a solid to a

solution of decacyclic dimer (-)-71 (7.5 mg, 13 pmol, 1 equiv) in tetrahydrofuran (1.4 mL) at 23 *C.
The opened reaction vessel was placed in a Parr bomb and sealed under an atmosphere of hydrogen
gas (900 psi). After 72 h, the Parr Bomb was opened in air, and the suspension was filtered over
Celite. The solids were further extracted with ethyl acetate, and the combined filtrates were
concentrated under reduced pressure. The residue was purified by flash column chromatography on
alumina (0 --> 2% ethyl acetate in hexanes) to afford (+)-dideepoxytabernaebovine (4, 6.3 mg, 84%)
as a colorless gum. Structural assignments were made with additional information from gCOSY,
HSQC, gHMBC, and NOESY data.

'H NMR (500 MHz, CDCl 3, 53 *C): 6 7.19 (br-d, J = 8.2, 1H, C,-H), 7.16 (br-s, 1H, C,4 -H),
7.08 (app-t, J = 7.5, 1H, C16-H), 6.94 (d, J = 7.1, 1H,
C14-H), 6.57 (app-t, J = 7.4, 1H, C15-H), 6.30 (d, J = 7.6,
1H, C17-H), 6.24 (d, J = 8.2, 1H, C 7,-H), 3.37 (dd, J =
6.0, 10.6, 1H, CT-H), 3.07 (app-dt, J = 2.9, 8.9, 1H, C 1,-
Ha), 2.99 (app-d, J = 10.8, 1H, C8,-Ha), 2.86 (app-d, J =
9.5, 1H, C8-Ha), 2.73 (s, 3H, C22-H3), 2.60-2.51 (m, 1H,
C3-Ha), 2.50 (s, 3H, C22-H3), 2.32-2.20 (m, 1H, C,,-Ha),
2.32-2.20 (m, lH, CIo-Ha), 2.17 (s, 1H, C,9-H), 2.17-
2.06 (m, 1H, Cio,-Hb), 2.17-2.06 (m, 1H, C4-Ha), 2.03 (s,
1H,
1H,
1H,
1H
1H,
1H,
1H,
1H,
lH,
1H,
lH,
1H,

C1g,-H),
C8,-H), I

C4,-Ha),

C3-Hb),

C7-Ha),
C6,-Ha),

C7-Hb),
CII,-Hb)
C4-Hb),
C20-Ha),

C6'-Hb),

1.98-1.82 (m,
1.98-1.82 (m,
1.98-1.82 (m,
1.82-1.64 (m,
1.82-1.64 (m,
1.63-1.28 (m,
1.63-1.28 (m,

,1.63-1.28 (m,
1.63-1.28 (m,
1.28-1.17 (m,

1.16-0.98 (m,
0.98-0.82 (m,

1H, Cio-Hb),
1H, C8-Hb),
1H, Ci-Ha),
1H, C3,-Ha),
1H, C,-Ha),
1H, C6-Ha),
1H, C7 -Hb),
1H, CIl-Hb),

1H, C 2 0 '-Ha),
1H, C3 -Hb),
1H, C4,-Hb),
1H, C2 0-Hb),

1.98-1.82
1.98-1.82
1.82-1.64
1.82-1.64
1.63-1.28
1.63-1.28
1.63-1.28
1.63-1.28
1.28-1.17
1.16-0.98
1.16-0.98
0.78-0.65

(mn,

(in,

(in,

(in,

(in,

(in,

(in,

(in,

(in,

(mn,

(in,

(mn,

1H, C20,-Hb), 0.57 (t, J
7.3, 3H, C21,-H3)-

= 7.5, 3H, C21-H3), 0.53 (t, J =

13C NMR (125 MHz, CDC13, 20 *C): 8 151.4 (C,8), 149.1 (C1,8
133.4 (C1,5), 127.8 (C16), 1
(C,4 ), 116.5 (C,5), 105.4 (
74.1 (C2), 72.0 (C2), 71.6
53.5 (C8), 53.3 (CIO,), 52.7
37.3 (C1,), 35.6 (C6), 35.3

), 135.9 (C13), 135.8 (C13,),
27.7 (C1,6 ), 123.4 (C,4), 123.3
CI,), 105.1 (C,7), 74.5 (C,9),
(Clg,), 57.1 (C12), 54.1 (C8 ,
(CIO), 51.9 (CI), 39.5 (C,,),
(C,), 34.6 (C.), 31.8 (C20),
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31.8 (C), 31.7 (C 22,), 30.3 (C 20 ), 29.3 (C 22), 28.8 (C3),
26.4 (C4), 23.2 (C4,), 22.4 (C 3,), 22.3 (C7), 22.0 (C,), 7.6

(C 21), 6.8 (C 2 )-

2929 (s), 1604 (s), 1490 (s), 1375 (m), 1262 (m), 1181
(m), 1122 (m), 801 (m), 737 (m), 666 (m).

FTIR (neat) cm-':

HRMS (DART): calc'd for C40H 55N 4 [M+H]*: 591.4421,
found: 591.4420.

TLC (A12 0 3, 10% EtOAc in hexanes), Rf:

+144, (c = 0.10, CHCl3).

0.48 (UV, CAM, KMnO4).
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Table S7. Comparison of our 'H NMR data for (+)-dideepoxytabernaebovine (4) with literature
data for (+)-tabernaebovine (3):21

Blue arrows in the figure below represent key reported NOESY correlations:
8

key NOESY
correlations:

For clarity most
methines are 16

omitted; arrows
point to the carbon of
the methines of interest.

8

6'
16

Me2l'

(+)-tabernaebovine (3) (+)-dideepoxytabernaebovine (4)

Assignment Ripperger's Report" This Work
(+)-Tabernaebovine (3) (+)-Dideepoxytabemaebovine (4)

'H NMR, 500 MHz, 'H NMR, 500 MHz,
CDC1, CDC13,53 *C

C2 -
C3 2.83 (dd, J= 3.7, 13.4, 1H) 2.60-2.51 (m, 1H)

1.83 (m, 1H) 1.82-1.64 (m, 1H)
C4 2.08 (m, 1H) 2.17-2.06 (m, 1H)

1.43 (m, 1H) 1.63-1.28 (m, 1H)
C5 -_ -
C6 2.98 (d, J= 3.9, 1H) 1.63-1.28 (m, 1H)

1.16-0.98 (m, 1H)
C7 3.30 (m, 1H) 1.82-1.64 (m, 1H)

1.63-1.28 (m, 1H)
C8 3.49 (dd, J= 13.0, 1.5, 1H) 2.86 (app-d, J= 9.5, 1H)

2.27 (d, J= 12.8, 1H) 1.98-1.82 (m, 1H)
C1O 2.78 (dt, J = 3.4, 8.5, 1H) 2.32-2.20 (m, 1H)

2.07 (m, IH) 1.98-1.82 (m, 1H)
Cli 1.59 (m, 1H) 1.98-1.82 (m, 1H)

1.50 (m, 1H) 1.63-1.28 (m, 1H)
C12
C13
C14 6.90 (d, J= 6.7, 1H) 6.94 (d, J= 7.1, 1H)
C15 6.54 (dt, J= 0.7, 7.3, 1H) 6.57 (app-t, J= 7.4, 1H)
C16 7.09 (dt, J= 1.2, 7.6, 1H) 7.08 (app-t, J= 7.5, 1H)
C17 6.27 (d, J= 7.9, 1H) 6.30 (d, J= 7.6, 1H)
C18 -_ -
C19 2.04 (s, 1H) 2.17 (s, 1H)
C20 1.07 (m, 2H) 1.28-1.17 (m, 1H)

0.98-0.82 (m, 1H)
C21 0.68 (t, J= 7.4, 3H) 0.57 (t, J= 7.5, 3H)
C22 2.46 (s, 3H) 2.50 (s, 3H)
C2' 3.34 (br-d, J= 5.2, 1H) 3.37 (dd, J= 6.0, 10.6, 1H)
C3' 1.74 (m, 1H) 1.82-1.64 (m, 1H)

1.10 (m, 1H) 1.28-1.17 (m, 1H)
C4' 1.76 (m, 1H) 1.98-1.82 (m, 1H)

1.37 (m, 1H) 1.16-0.98 (m, 1H)
C5' - _-
C6' 2.88 (br-s, 1H) 1.63-1.28 (m, 1H)

1.16-0.98 (m, 1H)
C7 3.30 (m, 1H) 1.82-1.64 (m, 1H)

1.63-1.28 (m, 1H)
C8' 3.53 (br-d, J = 12.8, 1H) 2.99 (app-d, J = 10.8, 1 H)

ca. 2.30 (m, 1H) 1.98-1.82 (m, 1H)

2 The lack of epoxides in (+)-dideepoxytabernaebovine (4) results in local variation compared to (+)-tabernaebovine (3).
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CIO' 3.15 (t, J= 7.6, 1 H) 3.07 (app-dt, J= 2.9, 8.9, 1H)
2.07 (m, I H) 2.17-2.06 (m, 1 H)

C1l' 2.23 (m, IH) 2.32-2.20 (m, I H)
1.50 (m, IH) 1.63-1.28 (m, I H)

C12' --

C13' -

C14' not observed 7.16 (br-s, 1H)

C15'
C16' 6.93 (br, IH) 7.19 (br-d, J= 8.2, 1 H)
C17' 6.24 (br-d, J= 7.0, 1H) 6.24 (d, J= 8.2, 1 H)
C18' -
C19' 2.05 2.03 (s, 1H)

C20' 1.11 (m, 2H) 1.63-1.28 (m, 1H)
0.78-0.65 (m, 1 H)

C21' 0.68 (t, J= 7.4, 3H) 0.53 (t, J= 7.3, 3H)
C22' 2.70 (s, 3H) 2.73 (s, 3H)
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Table S8. Comparison of our 13C NMR data for (+)-dideepoxytabernaebovine (4) with
literature data for (+)-tabernaebovine (3):29

16 16

(+)-tabernaebovine (3) (+)-dideepoxytabemaebovine (4)

Ripperger's This Work Chemical
Report" (+)-Dideepoxytabernaebovine (4) Shift

(+)-Tabernaebovine "C NMR, 125 MHz, Difference
(3) CDCl 3, 20 *C Ab =

"3C NMR, 125 MHz, 6 (this work)
CDCl3  - 6 (Ref. 22)

Assign- Chemical Chemical Key gHMBC
ment Shift Shift Correlations

C2 74.8 74.1 C4, C11, C22, C19, C14', C16' -0.7
C3 26.0 28.8 - 2.8
C4 28.4 26.4 C6, C19, C20 -2.0
C5 32.8 31.8 C3, C7, C19, C21 -1.0
C6 60.2 35.6 C4, C8, C19, C20 -24.630
C7 53.12 22.3 - _-30.8234

C8 52.2 53.5 C6,C1O,C19 1.3
CIO 53.6 52.7 C8,C19 -0.9
Cli 36.2 37.3 C19 1.1
C12 56.8 57.1 C3,C1O,C14 0.3
C13 135.1 135.9 C11, C15, C17, C19 0.8
C14 123.0 123.4 C16 0.4
C15 115.6 116.5 C17 0.9
C16 128.1 127.8 C14 -0.3
C17 102.7 105.1 C15 2.4
C18 152.4 151.4 C14,C16,C22 -1.0
C19 72.8 74.5 C4,C6,C8,C1O,C11,C20 1.7
C20 32.9 31.8 C4, C6, C19, C21 -1.1
C21 8.1 7.6 -0.5
C22 29.0 29.3 - 0.3
C2' 73.3 72.0 C4', C11', C19', C22' -1.3
C3 20.1 22.4 2.3
C4' 24.3 23.2 C2', C6', C19', C20' -1.1
C5' 34.5 35.3 C3',C7',C19',C21' 0.8
C6' 57.6 34.6 C4', C8',C19',C20' -23.031
CT 53.1 22.0 -31.131
C8' 53.06 54.1 C6',C1O',C19' 1.04
C10' 53.6 53.3 C8',C19' -0.3
C1l' 41.1 39.5 C2', C19' -0.6
C12' 51.2 51.9 C3', C10', C14', C19' 0.7
C13' 136.4 135.8 C11',C17',C19' -0.6
C14' 120.7 123.3 C16' 2.6
C15' 132.2 133.4 C3, C17' 1.2
C16' 126.9 127.7 C14' 0.8
C17' 105.9 105.4 - -0.5

29 The lack of epoxides in (+)-dideepoxytabemaebovine (4) results in local variation compared to (+)-tabemaebovine (3).
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C18' 148.8 149.1 C14', C16', C22' 0.3
C19' 66.7 71.6 C2', C4', C6', C8', C10', C11', C20' 4.9
C20' 27.9 30.3 C4', C6', C19', C21' 2.4
C21' 7.5 6.8 -0.7
C22' 31.5 31.7 C2' 0.2

30 Difference in chemical shift is due to absence and presence of C6-C7 epoxide in (+)-dideepoxytabernaebovine (4) and (+)-
tabernaebovine (3), respectively.
" Difference in chemical shift is due to absence and presence of C6'-C7' epoxide in (+)-dideepoxytabernaebovine (4) and (+)-
tabernaebovine (3), respectively.
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Crystal structure of diammonium dichloride (*)-63*2HC .

Structural parameters for diammonium dichloride (±)-63-2HCl are freely available from the
Cambridge Crystallographic Data Center under CCDC 862060.

View 1:

0

4: S

View 2:

*-4.

* 0
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Table S9. Crystal data and structure refinement for (±)-63-2HC.

Identification code x8_11133

Empirical formula C28 H38.66 C12 N3 01.33

Formula weight 509.50

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2(1)/n

Unit cell dimensions a = 12.4338(15) A

b = 12.6833(16) A

c = 17.824(2) A

Volume 2706.6(6) A3

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 28.910

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F 2

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

a= 90'.

@= 105.660(2)0.

y = 900 .

4

1.250 Mg/m3

0.267 mm-1

1089

0.30 x 0.09 x 0.02 mm3

1.79 to 28.91*.

-16<=h<=16, -17<=k<= 17, -24<=l<=24

57036

7129 [R(int) = 0.0547]

100.0 %

Semi-empirical from equivalents

0.9947 and 0.9243

Full-matrix least-squares on F2

7129 / 29 / 356

1.017

RI =0.0413, wR2=0.0954

R1 =0.0706, wR2= 0.1113

0.530 and -0.242 e.A- 3
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Table S10. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 101)
for ( )-63 2HC. U(eq) is defined as one third of the trace of the orthogonalized UUi tensor.

x y z U(eq)

Cl(l)
CI(2)
N(l)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
N(9)
C(10)
C(l 1)
C(12)
C(13)
C(14)
C(15)
C(16)
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
C(27)
C(28)
N(29)
C(30)
C(31)
O(lS)
O(1T)
O(2T)

-1713(1)
-1102(1)
3463(1)
2326(1)
1564(1)
1454(1)
2043(1)
1396(1)

318(1)
553(1)

1053(1)
1318(2)
1920(2)
2550(1)
3812(1)
4484(2)
5641(2)
6097(2)
5431(1)
4278(1)
2155(1)
3235(1)
3260(2)
3675(2)
1891(1)
2624(1)
2253(1)
1124(1)
376(1)
759(1)
708(1)
843(2)

1230(2)
-1326(5)
-1036(8)
-1118(4)

8982(1)
7643(1)
9333(1)
8847(2)
9560(2)
9523(2)
8717(2)
8504(2)
7880(2)
6844(2)
7108(1)
6207(2)
6774(2)
7728(1)
7622(2)
6756(2)
6844(2)
7794(2)
8674(2)
8572(2)
7688(1)
9104(2)

10052(2)
10317(2)
8722(2)
8446(2)
8296(2)
8430(2)
8705(2)
8845(2)
8276(1)
7166(2)
9023(2)
5786(5)
5537(9)
6723(4)

-1123(1)
-4549(1)
-3315(1)
-3539(1)
-4134(1)
-4896(1)
-5265(1)
-6125(1)
-6225(1)
-5791(1)
-4951(1)
-4396(1)
-3645(1)
-3886(1)
-3586(1)
-3593(1)
-3281(1)
-2965(1)
-2934(1)
-3255(1)
-4798(1)
-5248(1)
-5772(1)
-2890(1)
-2813(1)
-2099(1)
-1437(1)
-1497(1)
-2194(1)
-2855(1)

-803(1)
-513(1)
-157(1)

-3361(3)
-3607(8)
-1925(2)

29(1)
30(1)
23(1)
22(1)
24(1)
23(1)
23(1)
25(1)
27(1)
26(1)
23(1)
27(1)
26(1)
22(1)
23(1)
28(1)
31(1)
30(1)
27(1)
23(1)
22(1)
26(1)
33(1)
31(1)
23(1)
25(1)
26(1)
24(1)
28(1)
28(1)
25(1)
34(1)
30(1)
72(2)
63(3)
35(1)
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Table S1I. Bond lengths [A] and angles [0]

N(1)-C(18)
N(1)-C(22)
N(1)-C(2)
C(2)-C(3)
C(2)-C(23)
C(2)-C( 12)
C(3)-C(4)
C(4)-C(5)
C(5)-C(19)
C(5)-C(6)
C(5)-C(20)
C(6)-C(7)
C(7)-C(8)
C(8)-N(9)
N(9)-C( 10)
N(9)-C( 19)
C(10)-C(l 1)
C(1 1)-C(12)
C(12)-C(13)
C(12)-C( 19)
C(13)-C( 14)
C(1 3)-C(18)
C(14)-C(15)
C(15)-C(16)
C(16)-C(17)
C(17)-C(1 8)
C(20)-C(2 1)
C(23)-C(24)
C(23)-C(28)
C(24)-C(25)
C(25)-C(26)
C(26)-C(27)
C(26)-N(29)
C(27)-C(28)
N(29)-C(30)
N(29)-C(3 1)

1.383(2)
1.447(2)
1.494(2)
1.517(2)
1.539(2)
1.602(2)
1.327(2)
1.510(2)
1.533(2)
1.549(2)
1.554(2)
1.525(2)
1.513(3)
1.497(2)
1.489(2)
1.514(2)
1.526(2)
1.564(2)
1.521(2)
1.567(2)
1.382(3)
1.396(3)
1.400(3)
1.384(3)
1.400(3)
1.399(2)
1.528(3)
1.395(2)
1.397(2)
1.392(2)
1.388(2)
1.380(2)
1.478(2)
1.397(2)
1.493(3)
1.496(2)

C(1 8)-N(1)-C(22)
C(1 8)-N(1)-C(2)
C(22)-N(1)-C(2)
N(1)-C(2)-C(3)
N(1)-C(2)-C(23)
C(3)-C(2)-C(23)
N(1)-C(2)-C( 12)
C(3)-C(2)-C( 12)
C(23)-C(2)-C( 12)
C(4)-C(3)-C(2)
C(3)-C(4)-C(5)
C(4)-C(5)-C( 19)

122.32(15)
110.73(14)
121.41(14)
107.90(14)
109.91(13)
110.77(13)
102.59(12)
113.51(13)
111.76(14)
124.57(16)
122.78(16)
108.87(13)

C(4)-C(5)-C(6)
C(19)-C(5)-C(6)
C(4)-C(5)-C(20)
C(1 9)-C(5)-C(20)
C(6)-C(5)-C(20)
C(7)-C(6)-C(5)
C(8)-C(7)-C(6)
N(9)-C(8)-C(7)
C(1 0)-N(9)-C(8)
C(I 0)-N(9)-C(19)
C(8)-N(9)-C(19)
N(9)-C(10)-C(1 1)
C(10)-C(1 1)-C(12)
C(I 3)-C(1 2)-C( 11)
C(1 3)-C(I 2)-C( 19)
C( 11)-C(1 2)-C( 19)
C(I 3)-C(1 2)-C(2)
C( 11)-C(1 2)-C(2)
C(1 9)-C(1 2)-C(2)
C(1 4)-C(1 3)-C( 18)
C(1 4)-C(1 3)-C(12)
C(1 8)-C(1 3)-C( 12)
C(1 3)-C(1 4)-C( 15)
C(16)-C(15)-C(14)
C(1 5)-C(1 6)-C( 17)
C(1 8)-C(1 7)-C(16)
N(1)-C(1 8)-C( 13)
N(1)-C(1 8)-C(17)
C(I 3)-C(1 8)-C( 17)
N(9)-C(19)-C(5)
N(9)-C(1 9)-C( 12)
C(5)-C(1 9)-C(12)
C(2 1)-C(20)-C(5)
C(24)-C(23)-C(28)
C(24)-C(23)-C(2)
C(28)-C(23)-C(2)
C(25)-C(24)-C(23)
C(26)-C(25)-C(24)
C(27)-C(26)-C(25)
C(27)-C(26)-N(29)
C(25)-C(26)-N(29)
C(26)-C(27)-C(28)
C(27)-C(28)-C(23)
C(26)-N(29)-C(30)
C(26)-N(29)-C(3 1)
C(30)-N(29)-C(3 1)

111.43(14)
109.62(15)
110.45(15)
108.16(14)
108.24(12)
114.33(13)
110.41(14)
106.72(15)
116.73(15)
103.14(13)
113.58(13)
100.84(14)
106.73(13)
112.40(14)
111.49(12)
102.70(13)
102.28(13)
115.30(13)
113.03(14)
120.44(16)
129.47(17)
110.07(15)
119.44(18)
119.71(18)
121.84(17)
117.56(18)
110.92(15)
128.08(17)
120.98(17)
111.76(13)
102.52(12)
119.53(14)
114.44(15)
118.46(15)
120.07(15)
121.44(14)
121.59(16)
118.45(15)
121.55(15)
118.90(15)
119.55(15)
119.29(16)
120.65(16)
112.52(14)
112.56(14)
110.23(14)

Symmetry transformations used to generate equivalent
atoms.
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Table S12. Anisotropic displacement parameters (A2x 103) for (+)-63e2HC. The anisotropic
displacement factor exponent takes the form: -2jT2[ h2 a*2 U"l + ... + 2 h k a* b* U 12 ]

U " U22 U 33 U23 U1 3 U12

Cl(1)
Cl(2)
N(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
N(9)
C(10)
C(1 1)
C(12)
C(13)
C( 14)
C(15)
C(16)
C(17)
C(18)
C( 19)
C(20)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
C(27)
C(28)
N(29)
C(30)
C(31)
O(lS)
O(1T)
O(2T)

21(1)
21(1)
21(1)
20(1)
22(1)
19(1)
19(1)
21(1)
19(1)
21(1)
20(1)
25(1)
26(1)
20(1)
19(1)
27(1)
26(1)
19(1)
22(1)
23(1)
16(1)
21(1)
31(1)
32(1)
22(1)
19(1)
21(1)
22(1)
19(1)
21(1)
20(1)
32(1)
30(1)
58(3)
25(3)
31(2)

39(1)
47(1)
31(1)
33(1)
33(1)
32(1)
35(1)
40(1)
42(1)
38(1)
31(1)
31(1)
32(1)
31(1)
36(1)
38(1)
49(1)
55(1)
42(1)
34(1)
32(1)
39(1)
45(1)
34(1)
33(1)
40(1)
41(1)
36(1)
46(1)
45(1)
38(1)
39(1)
43(1)
64(3)

47(5)
45(3)

28(1)
24(1)
19(1)
14(1)
19(1)
18(1)
15(1)
15(1)
18(1)
20(1)
19(1)
25(1)
20(1)
16(1)
14(1)
19(1)
18(1)
18(1)
17(1)
13(1)
17(1)
19(1)
25(1)
28(1)
15(1)
19(1)
16(1)
16(1)
21(1)
16(1)
17(1)
35(1)
18(1)
72(3)
105(8)
27(2)

1(1)
-2(1)
-2(1)
-1(1)
0(1)
2(1)
0(1)
0(1)
-2(1)
-7(1)

-1(1)
0(1)
2(1)
0(1)
1(1)
-3(1)
0(1)
3(1)
2(1)
2(1)

-1(1)
-2(1)
1(1)

-4(1)

-1(1)
1(1)
2(1)
-1(1)
-1(1)
2(1)
1(1)
7(1)

-1(1)
27(2)
29(5)
3(2)

10(1)
8(1)
7(1)
6(1)
8(1)
5(1)
7(1)
5(1)
4(1)
5(1)
7(1)
7(1)
8(1)
7(1)
6(1)
5(1)
7(1)
8(1)
7(1)
9(1)
5(1)
7(1)
10(1)
9(1)

7(1)
8(1)
4(1)

9(1)
8(1)
5(1)
8(1)
16(1)
10(1)
-19(2)
-1(4)
6(2)

1(1)
-3(1)
1(1)
2(1)
4(1)
2(1)
0(1)
0(1)
-1(1)
-3(1)
-1(1)
-1(1)
-1(1)
0(1)
3(1)
6(1)
13(1)
4(1)
-3(1)
1(1)

-1(1)
-4(1)
-8(1)
0(1)
2(1)
3(1)
3(1)
0(1)
4(1)

7(1)
1(1)
0(1)
-2(1)

-18(2)

-7(3)
3(2)
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Table S13. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) for (+)-63-2HCI.

x y z U(eq)

H(3)
H(4)
H(6A)
H(6B)
H(7A)
H(7B)
H(8A)
H(8B)
H(9N)
H(1OA)
H(1OB)
H(11A)
H(I1B)
H(14)
H(15)
H(16)
H(17)
H(19)
H(20A)
H(20B)
H(21A)
H(21 B)
H(21C)
H(22A)
H(22B)
H(22C)
H(24)
H(25)
H(27)
H(28)
H(29N)
H(30A)
H(30B)
H(30C)
H(31A)
H(31B)
H(31C)
H(lSA)
H(lSB)
H(ITA)
H(1TB)
H(2TA)
H(2TB)

1137
983

1214
1889
-217

-25
-147
1080
536(15)

1809
631

2455
1376
4163
6111
6885
5750
2687
3634
3646
2989
4028
2781
3791
3033
4344
3394
2760
-393
246
-42(13)

1636
429
550

2032
884

1114
-1270(60)
-1900(40)
-1110(90)
-1620(60)
-1400(70)
-1300(40)

10069
10026
9189
8114
8297
7743
6439
6414
7531(15)
5685
5850
6293
7024
6106
6256
7849
9316
7223
9293
8515
9839

10313
10611
10179
10788
10649

8360
8105
8799
9025
8455(16)
6976
6692
7102
8879
8929
9749
6270(40)
5400(40)
6130(50)
5180(70)
7330(30)
6470(40)

-3949
-5222
-6396
-6380
-6024
-6786
-5856
-5992
-4792(11)
-4553
-4347
-3296
-3369
-3807
-3287
-2763
-2704
-4977
-4705
-5408
-6319
-5670
-5662
-2333
-3075
-2974
-2064

-954
-2223
-3337

-941(12)
-368
-924
-56
30

272
-349

-3660(30)
-3510(40)
-3820(70)
-3690(70)
-1900(40)
-2386(17)

29
27
30
30
32
32
32
32
28
32
32
31
31
34
37
36
32
26
31
31
50
50
50
47
47
47
31
31
34
33
30
51
51
51
44
44
44

108
108
94
94
70(30)
18(14)
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Appendix A

Spectra for Chapter I
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.100 sec
Pulse 73.1 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4294973 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 21 sec

0

MeO Ph

N

3aa

11 10 9

it~ iLl
8 7

I -I- I I I I I -- T - I 'T

6

0.89 1.02.10 1.16
1.01 1.07 6.18 1.13

12 5 34

3.22
2.91

2 1 ppm



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz NO, r- W,0M
221 repetitions M C' 0 n

OBSERVE C13, 125.7822234 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
cont i nuous ly on
WALTZ-16 modulated
DATA PROCESSING

Line broadening 0.3 Hz
FT size 131072
Total time 45 hr, 39 min, 31 sec

c"00

,.cn

0) ~o '
('3

4CD
U, ~

-4-4-4

CD0 ,
co

0

MeO N P

MeON -

3aa

00

LnDD

CYD
-4 -

-4 -

-4

NJ~

cii

220 
140 120 100 80 60 40

200 180 160 20 0 ppm

cn

220 140 120 100 80 60 40



84.4

80

75

70

65

60

55

2252.67
0

MeO -Ph
MN 

"~ N ,
N

I I

3aa

50

45
I,

II

1075.9R

'i177.65

1137.79

1023

'2 4.67

1515.73

1660.79

2000

1337.4k

1303.16

1268.09

1500
cm-I

1000

I I

I837.80

3060.501
2935.73

71.3I

.83

40

6.301
14

t5.98

752.44

731.13

35

30

913.38
828.

25
23.1

4000.0 3000 500 400.0



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.100 sec
Pulse 78.7 degrees
Acq. time 4.999 sec
Width 12012.0 H7
16 repetitions

OBSERVE H1, 500.4294975 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 21 sec

0

MeO Ph

N

3ac

-_ -------- ----- ---------- _ ------ _ _

T-'---7-- V - - --- T- -- ---- F r 7 -----T rF 7 T --- 7----- T ---- ----- -7- F - - -

12 1110 9 8 7 6 5 4 3 2 1 ppm

0.82 2.0.69 1.07
1.00 1.8B.99



13C OBSERVE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
512 repetitions

OBSERVE C13, 75.4615184 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 17 min, 8 sec

0

MeO NPh

MeO N

3ac

-

1-

oU')

LON

0N

A..J~~~~~~~~~~~ W.L. JA AiJ 1.. . . - -A-I .- i~L"

I I'..I. . .I . .r I I I

220 200 180 160

C0

N 0

C0)

-
40

in 0

- 4 -4

4 N

CIO

N4

CIO

C0)

-.iL I . I II .

o N

L. I 1 1

S8 0 4I I I I

80 60 40

I I T T 1. 1 1 1 1 1 f T I I - I I I T 1 1 1 1 1 1 r T 1 1 1 1 1 1 , I [ I , I , I -

20 0 PPM

T--T-T

-4
Cq
CD

Ln

I I I I I I II I

140 120
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3059.1I

3006.71
837.73
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1732 .9

1

1 i 151
1660 47

1584.53

2000
cm-i

I

2

6 6.46
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590.90

.13

1213.2

1176.60
I 1138.26

024.08

1269.39
1 8.76

1500 1000 500 400.0

768.88

I I

I I

40

35

30

25

20

15

10

5

0.3 K

4000.0 3000

I



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: DMSQ
Ambient temperature

INOVA-500 "Zippy"

Relax. delay 0.100 sec
Pulse 78.7 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4318716 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 21 sec

0

Ph N Ph

N /

3ba

14 13 12 11 10 9 8 7 6 5 4 3

1. O0 .091.183.32
1.10 2.211.95.33

2T

1 ppm



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: DMSO
Temp. 100.0 C / 373.1 K

INOVA-500 "zippy'

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
296 repetitions

OBSERVE C13, 125.7829573 MHz
DECOUPLE H1, 500.2315969 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 22 hr, 49 min, 46 sec

a

Cq

to M C in c
-" - 3- -YC') C" U1 N L

Nl N N CS

0. 2 2

0 N
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1
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N NN
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13

Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052783 MHz
DATA PROCESSING
FT si ze 131072
Total time 1 min, 4 sec

00-
0

0

Ph N

N

/ 3bb

- ' ' ' ' -

9 8 7 6 5 4

1.00 1.14 9.29
1.92 .98

I ' ------ | ' I I I | 1 '
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13C. OBSERVE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
512 repetitions
OBSERVE C13, 75.4615196 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 17 min, 8 sec

00

N71

i,~~~~~~~ ~ ~ ~ ~ ~ iNj ii wL~L h9Aj"1 iAA .I U.1. A-iW j1.

LN Cno CUi

C. N -4 C
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0

Ph )N 
Ph

N

.'3b b
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1 C'

IL~L4MM1L~k..~I in. IJ~~~hALu~ ~i41it~ii .&i Li .ih.Lan ili~J, .nI&~ L*kIMI*4 nn.iAJUi.J Iii IAinL .i..Li ,i..LJ~ .Mi&. ~ .~ hAiL

160 140 120 100 80 60 40 20
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240 220

I I
200
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180
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 2.000 sec
Pulse 94.4 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417199 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 20 sec

8 7 6 5 4 3 2 1 -O ppm
Y L"I Y
2.18.2318

1.173.2518

0
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V
11 10 9

1.00
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13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
512 repetitions

OBSERVE C13, 75.4615190 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 17 min, 8 sec

00

Ln

160 140 120 1'
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0
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: DMSO
Temp. 80.0 C / 353.1 K

INOVA-500 "zippy"

Relax. delay 0.100 sec
Pulse 73.1 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
32 repetitions

OBSERVE Hi, 500.4318712 MHz
DATA PROCESSING
FT size 262144
Total time 2 min, 43 sec
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: DMSO
Temp 100.0 C / 373.1 K

INOVA-500 "zippy'

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
168 repetitions

OBSERVE C13, 125.7829567 MHz
DECOUPLE H1, 500.2315969 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 22 hr, 49 min, 46 sec
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE Hi, 300.1052818 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec
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13C OBSERVE

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
256 repetitions

OBSERVE C13, 75.4615215 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 8 min, 34 sec
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 2.000 sec
Pulse 59.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417203 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 20 sec

0

Me N

N'

3cc

V ~~ - V F TT r -------- r j I 1-

12 11 10 9 8 7 6 5 4 3 2 1 ppm

0.83 0.838r.00
0.971.BB99 2.96



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
4096 repetitions

OBSERVE C13, 125.7822090 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 2 hr, 51 min, 15 sec
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambi ent temperature

INOVA-500 "zippy'

Relax. delay 0.100 sec
Pulse 78.7 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
Single scan
OBSERVE H1, 500.4294965 MHz
DATA PROCESSING
FT si ze 262144
Total time 0 min, 5 sec
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13C OBSERVE

Pulse Sequence: s2pul
Solvent: COC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
256 repetitions
OBSERVE C13, 75.4615277 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING

Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 8 min, 34 sec
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Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.100 sec
Pulse 78.7 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4294963 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 21 sec
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13C OBSERVE

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
256 repetitions
OBSERVE C13, 75.4615208 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 8 min, 34 sec
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Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

INOVA-500 "zippy'

Pulse 88.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE H1, 500.2272164 MHz
DATA PROCESSING
FT size 131072
Total time 0 min, 54 sec
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 3.000 sec
Pulse 33.6 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
435 repetitions

OBSERVE C13, 125.6601347 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING

Line broadening 1.0 Hz
FT size 131072
Total time 91 hr, 11 min, 2 sec
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy'

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052785 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: DMSO
Temp. 100.0 C 7 1 K

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.136 sec
Width 37735.8 Hz
271 repetitions

OBSERVE C13, 125.7829573 MHz
DECOUPLE H1, 500.2315969 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING

Line broadening 0.3 Hz
FT size 131072
Total time 22 hr, 49 min, 46 sec
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STANDARD 1H OBSFRVF

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax . delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052821 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec
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13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Temp. 20.0 C / 293.1 K

Mercury-300 "mrhat"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
1756 repetitions

OBSERVE C13, 75.4615196 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING

Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 41 hr, 47 min, 0 sec
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052821 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
512 repetitions
OBSERVE C13, 125.7822136 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 21 min, 26 sec
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambi ent temperature

INOVA-500 ''zippy"

Relax. delay 2.000 sec
Pulse 94.4 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions
OBSERVE h1, 499.741/185 MHz
DATA PROCESSING
FT si ze 262144
Total time 1 min, 20 sec
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
256 repetitions
OBSERVE C13, 125.7822113 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 10 min, 44 sec
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052786 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec

f

0

0 2N N

3fc

/

T ------ 7 T- -V 1 TT Fl

12 11 10 9 8 7 6 5 4 3 2

0.99 1.16 1.18 1.22
1.95 1.96 1.13

1
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambi ent temperature

INOVA-500 "zippy"

Relax. delay 0.763 se.
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
2124 repetitions

OBSERVE C13, 125.7822072 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 44 hr, 8 min, 23 sec

0

0 2N N,
M I C
N IN N

3fc
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambi ent temperature

INOVA-500 "zippy"

Relax. delay 2.000 sec
Pulse 94.4 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417206 MHz
DATA PROCESSING
FT si ze 262144
Total time 1 min. 20 sec

IT-r

MeO

MeO

.1Pr

3ga

-T T

8 7

1.00 1.15.11 1.06
1.10 2.18 1.01 1.13

ppm1
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12 11 10 9 6 5 4
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STANDARD CARBON PARAME TERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.763 sec 0
Pulse 69.0 degrees
Acq. time 1.736 sec MeO Pr
Width 37735.8 Hz N - D to
4719 repetitions
OBSERVE C13, 125.7822078 MHz - - -N -
DECOUPLE 111, 500.2292208 MHz MeO N
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072 3ga
Total time 22 hr, 49 min, 46 sec

Lnin

211 4
o M4c

CD CD 
4U

('Jo

0 01

I 4
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052782 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec

k)

1'

12 11 10 9

0

MeO ,p r

MeO N

/ 3gb
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"
0

Relax . delay 0.763 sec
Pulse 69.0 degrees MeO Pr
Acq. time 1.736 sec N
Width 37735.8 Hz
480 repetitions

OBSERVE C13, 125.7822130 MHz MeO N
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz o ,-e.in

FT size 131072 - 'Z
Total time 22 hr, 49 min, 46 sec O C> _ ,

CD

U')

Co
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C

cEl C".
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60 40 20 PPM160 140 120 100 80
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STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.I0522789
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec

0

MeO Pr
N

MeO NMHz

3gc

I / I

~ kA ~iJ'JI______________ I __________________ _____________

5 4

.99
0.98
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 sec M
Pulse 69.0 degrees N' P
Acq. time 1.736 sec N
Width 37735.8 Hz to 0o
644 repetitions DoM, r' a

OBSERVE C13, 125.7822084 MHz MeO N
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING 3gC
Line broadening 0.3 Hz

FT size 131072
Total time 45 hr, 39 min, 31 sec

220 00 10 16 14 120 10 806040

cl N N

-4 ~ --4

C')NC,

0

C1 00 14 .10

o " W
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770I 7 I VVT lI
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: DMSO
Temp. 100.0 C / 373.1 K

INOVA-500 "zippy"

Pulse 79.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE H1, 500.2295896 MHz
DATA PROCESSING
FT size 131072
Total time 0 min, 54 sec

00

O

Me N
MeN

N

3ha

7- -5-43-- 1

7 6 54 3 2

-0.00
0.88

1.36

12 11 10 9 8
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: DMSO
Temp. 100.0 C / 373.1 K

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
1272 repetitions

OBSERVE C13, 125.7829550 MHz
DECOUPLE H1, 500.2315969 MHz
Power 37 dB
continuously on
WALT2-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 22 hr, 49 min, 46 sec
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0

Me N

N

3ha
N 0

C"

co4

-0 LflI M C" n0 -40 C> 0 a N GO
N o M4 (4) C" N .

0, 0" Nl ( 47 C') -40C
M' C-4 N 3 N l c..) N N~--i-K

I!

1.ili1ri
160 140 120 100 80

0 V
C,0

mm~IW~gm~m~muN ~ AL AmLgsw1Efahj k i .. wwry-7WWFF ,
iil . , . -Li

- -"I"o "'IT I I

220 200 180 60 40 20 PPM



I tU3

oo& I0O00017

01

L9
F o
Fz

ooz000t

8VtL9I

EE*LZ8 10,9801

~ZZL LZ I Z6 rt'f6fI F

FL 0-0O6 8S *tOI
,SO9& 14-996 I94O9Il

F9.10 ?-8

9,67L'

9E*L I

OL*9 C 96*6991

6SOtJ

N e~

0

0.00t7 00&0001

8~t78tI

06*V99
zgSLt9

1L%

0

(N

L E96Z

9Ev~

09

OL

9L0 ~I f8~

E'L8

0091



STANDARD 1H OBSERVE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.050 sec
Pulse 34.3 degrees
Acq. time 4.003 sec
Width 6002.4 Hz
16 repetitions

OBSERVE H1, 300.1052790 MHz
DATA PROCESSING
FT size 131072
Total time 1 min, 4 sec-

_ 11

0
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MeN
N

/ 3hb
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13C OBSERVE

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.500 sec
Pulse 46.2 degrees
Acq. time 1.500 sec
Width 22624.4 Hz
512 repetitions

OBSERVE C13, 75.4615227 MHz
DECOUPLE H1, 300.1067546 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Sq. sine bell 1.500 sec
Shifted by -1.500 sec

FT size 262144
Total time 17 min, 8 sec
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Pulse 79.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions
OBSERVE H1, 500.2272157 MHz
DATA PROCESSING
FT size 131072
Total time 0 min, 54 sec

0

Me N

Me
N

3hc

A

13 12 11 10 9 8
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1.22 1.25

1.231.00

1.50
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Temp. 20.0 C / 293.1 K

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
12712 repetitions

OBSERVE C13, 125.7821446 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING

Line broadening 0.3 Hz
FT size 131072
Total time 45 hr, 39 min, 31 sec
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0

Me N

(+)-3ha

MWD1 D, Sig=254,16 Ref=360,100

mAU

0)00
80

60

40

20
'I

C.J
0

67.5 70 72.5 75 77.5 80 82.5 85 min

Area Percent Report

Sorted By
Multiplier
Di ltion
Use MuItipl ir & Dilution

Signal
1.0000
1.0000

Factor with ISTDs

Sigal i.: MWDI D, Sig=254,16 Ref=360,100

Peak RetTime Typ
# [inn

I 69.292 PV
74.489 VB

Totals :

e Width
[min I

1.4743
2.4760

Area
mAU* s

143 .10532
1.32871e4

1.34302e4

Height
[mAU]

1.15119
72.98418

74.13538

Area

1.0655
98.9345

Resul : s obtained with enhanced integrator!

End of Report
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0

Me N

MeN....

(+)-3ha

MWD1 D, Sig=254,16 Ref=360,100

mAU

8

6

4
C\4 Co

00f

68 70

Area Percent Report

Sorted By

D K u t I LP
Use~ Mult>p ier

: Signal
: 1.0000
: 1.0000

& Dilution Factor with ISTDs

Signal 1: MWDi D, Sig=254,16 Ref=360,100

I

RetTime Type

1-.2 4 MM
75.665 MM

Width
min]

2.3878
2.6063

Totals :

Area
[mAU* s]

422.22662
421.07855

843.30518

Height
[mAU]

2.94713
2.69268

5.63980

P-sul:.- ob.tained wirh enhanced integrator!

End of Report
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Me N
Me H

1h

MWD1 B, Sig=230,16 Ref=360,100

'I

0

Ci

2-- --
42 44

Area Percent Report

Sr t-ed By
Mu t ipl1er
D lution
Use0 Multriplier

Signal
1.0000
1.0000

& Dilution Factor with ISTDs

Signal 1: MWDI B, Sig=230,16 Ref=360,100

Pak RT ime

S37.719
2 .340

Type

LBB
MM

Width Area Height
[min] [mAU*s] [mAU]

-- --- I---------I - - - - -
0.9076 6347.98145 102.34804
0.9913 77.54951 1.30385

Area

-

98.7931
1.2069

Tot-als : 6425.53096 103.65188

Results obtained with enhanced integrator!

* End of Report ***
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Me N
Me

1h

MWD1 B, Sig=230,16 Ref=360,100

mAU

15

10

0
0)
N-
(~)

-5

-15
34 36

Area Percent Report

:rtec e y
M-u t 1p0 ier
Dilut ion
Use Multipl~ir

: Signal
: 1.0000
: 1.0000

& Dilution Factor with ISTDs

n I:WD1 B, Sig=230,16 Ref=360,100

Peadk RetTiine Type

37.9L0 LBB

4 42.231 BB

Width
[min]

0.7657
0.7854

Area
[mAU * s]

323.57190
327.61554

651.18744

Height
[mAU]

5.65401
5.28346

10.93746

Area

49.6895
50.3105

Resulls obtained with enhanced integrator!

* End of Report *

240

-10

CVi

38 40 42
-4

44 min~



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

INOVA-500 "zippy"

Relax. delay 2.000 sec
Pulse 89.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417195 MHz
DATA PROCESSING
FT size 262144
Total time 1 min, 20 sec

O

Ph N'

OMe

3dd

9 8 7 6 5 4 3 2 1 ppm

1.00 1.98 0.93
2.81 0.98 6.25

12 11 10



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 sec
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
52 repetitions

OBSERVE C13, 125.7822142 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 45 hr, 39 min, 31 sec
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDClY
Amb i ent temperature

INOVA-500 "Zippy"

Relax. delay 2.000 sec
Pulse 89.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417195 MHz
DATA PROCESSING
FT si ze 262144
Total time 1 min, 20 sec

0

Ph N'

%- 
NO

2

3de

- I -

8
Y Y4-

0.98 2.27
0.81 3.16

6 5 4 3 2 1 ppm

1.00
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

INOVA-500 "zippy"

Relax. delay 0.763 se.
Pulse 69.0 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
255 repetitions

OBSERVE C13, 125.7822118 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
Total time 45 hr, 39 min, 31 sec

0

40-0

0 M-M
0- co

QU

(Z
Lr)
U")

Lr)
CY)

0

Ph N'Me

N 
1

NO
2

3de

01

Cn

-4

cli

to

NCIO

22020018016014012010080 0 4 20ppml,

a)

Ln

1;
Lr)

220 200 180 160 140 120 100 80 60 40 20 PPM



87.2

85

80

75

70

65

60

13 4.5

282.9

4-

ii I

1393.116!

1663.03

1534.31

2000 1500

1356.43

1000
cm-1

90.02

1191.31

1132.3
1101.411

1080.

1048.41
1021.99

3

0

)Me
P h N'

N

NO2

3de

3089.82
2923.40

55

50CIS

885.87
:829.24

643.23

45

40

35

30

25

22.4

4000.0 3000 600.0

IIA 1



Appendix B

Spectra for Chapter II
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 72.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE 11, 500.4252875 MHz
DATA PROCESSING
FT size 262144

0

Me

Me

Sla

00

1 1 T
1211 8 7 654 32 1 PPM10 9



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
65536 repetitions

OBSERVE C13, 125.7822245 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

0
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H Me
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4 T 2 0 ppm200 180 160 140 120 100 80 60 40 20 0 ppm
I I ! I
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 72.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4252862 MHz
DATA PROCESSING
FT size 262144 I

12 11 10 9 8 7 6 5 4 3 2 1 -O ppm

0

N MeH 
Me

Me
Me

1a

3 2 1 -0 ppm12 11 10 9 8 7 6 5



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
65536 repetitions

OBSERVE C13, 125.7822245 MHZ
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417347 MHz
DATA PROCESSING
FT size 262144

1 1 10
12 11 10 9

S02 CF3
N Me

0 '' Me

:LN
Me

(±)-3a

8 7 6 5 4 3 2 1 ppm

k)

3 2 1 PPM87 6 5 4



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDCIS
Ambient temperature

Relax. delay 3.000 sec SO 2CF 3Pulse 35.0 degrees
Acq. time 2.000 sec N ME
Width 31397.2 Hz
302 repetitions
OBSERVE C13, 125.6601362 MHz
DECOUPLE H1, 499.7442194 MHz '' Me
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING Me
Line broadening 1.0 Hz (±).3a
FT size 131072

200 180 160 140 120 100 80 60 40 20 0 ppir
120 100 80 60 40 20 0 ppnr200 180 160 140



19F SENSITIVITY
0.05X TRIFLUOROTOLUENE

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 90.0 degrees 2 3
Acq. time 0.232 sec N Me
Width 140.8 kHz
12 repetitions

OBSERVE FI, 470.2272133 MHz
DATA PROCESSING Me
Line broadening 1.0 Hz

FT size 131072 N
Me

(±)-3a

in
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F T --T - F -r TI f I I 1 7 T
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE Hi, 499.7417336 MHz
DATA PROCESSING
FT size 262144

S02CF3N

N
Me

(±)-3b

TTI IIIIIIIT I I Ii -I_ _ _ _ _ __ _ _ _ _

00

2 1 pp7 6 54 3
- I I

9 812 1110



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
142 repetitions

OBSERVE C13, 125.6601405 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

SO2 CF3
N

Me

1-~

200 180 160 140 120 100 80 60 40 20 0 ppi

40 20 0 ppi
I I II I . I I I . I I f 1 1 1 1 1 1

I 1 1 1 1,
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19F SENSITIVITY
0.05% TRIFLUOROTOLUENE

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 90.0 degrees
Acq. time 0.232 sec
Width 140.8 kHz
16 repetitions

OBSERVE F19, 470.2272133 MHz
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

S02 CF3
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
5 repetitions

OBSERVE Hi, 500.2272318 MHz
DATA PROCESSING
FT size 131072

S0 2CF 3
N

( )-3c /

12 11 10 I 8 7 6 I I I I i Ipp -T--I I I I I I I--T I I T I I
3 2 1ppl

I I
11 10 9 8 712



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
397 repetitions
OBSERVE C13, 125.7822193 MHz
DECOUPLE Hi, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz
FT size 131072

S02CF3
N

(±)-3c

200 180 160 140ZOO 180 160 140 120 100 80 60 40 20 0 ppmI I I I I I I I
120 100 80 60 40 20 0 PPM



19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
6 repetitions

OBSERVE F19, 282.3814158 MHz
DATA PROCESSING
Line broadening 0.3 Hz
FT size 262144

SO2CF 3
N
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.100 sec
Pulse 72.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4252873 MHz
DATA PROCESSING
FT size 262144

SO 2CF 3
N

N

(±)-3d 02 0 Me

~I IL
I Ll I

12 I1 10 I 8 T 6 5 I f I I Ipp - - I I I I I I I I I I
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
534 repetitions

OBSERVE C13, 125.7822118 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz
FT size 131072

SO2CF 3
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0 2 S
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L 1j J LP) ~ U P~P I Ni

I I 1-T-
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19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
27 repetitions

OBSERVE F19, 282.3814158 MHz
DATA PROCESSING
Line broadening 0.3 Hz

FT size 262144
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(±)-3d /28Me

C)

00

w
0)
C

I I I I

-160 PPM
0 ' ' ' ' I ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' I I ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I I - 1 p

-40 -60 -80 -100 -120 -140

. I'~~ ~~ ~~~~ ' ' ' ' '' ' ' '
I '

0 -20



165

90

88

86

84

82

80-

78

76

74

72

0 2S
Me

11 9.96

.091.05

1 7.92

1359.31 102

1228.9b

I 199. 9

939.73

869.48

815.12

757.86

735.

699.2

1169.04

665.11.

613.33

1500 1000
cm-I

2285.21

338679

3583.21

92.5

6.201 1+47

1598.87 1

1478.44

14

2919.46

S02CF 3
N

-N

(±)-3d

70

68

66

65.1
4000.0 2000 500 400.03000



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: toluene
Temp. 100.0 C / 373.1 K

Relax. delay 2.000 sec
Pulse 84.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
12 repetitions

OBSERVE H1, 499.7418474 MHz
DATA PROCESSING
FT size 262144

I2 I 1 10 I f I 6 5 4 3 2T-r 1- ppm I I I I I I I I I I ; I I I

SO 2CF 3

NMe

(±)-6b

I ktI .1 K I
12 11 10 9 8 7 654 3 21PPM



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent; toluene
Temp. 100.0 C / 373.1 K

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
1581 repetitions

OBSERVE C13, 125.6600986 MHz
DECOUPLE H1, 499.7442944 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz

FT size 131072

1 0 0. I 1 1 0 1 6 1 4 1 2 1 0 8 0 6 0 4 0 2 0 0I. . . I . I I I ; , , 1 , - i . I I I I I I . I . I Pp p m 1 7 ; T ji I
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19F SENSITIVITY
0.05% TRIFLUOROTOLUENE

Pulse Sequence: s2pul

Solvent: toluene
Temp. 100.0 C / 373.1 K

Relax. delay 2.000 sec
Pulse 90.0 degrees
Acq. time 0.232 sec
Width 140.8 kHz
17 repetitions

OBSERVE F19, 470.2272838 MHz
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
32 repetitions
OBSERVE H1, 500.2272234 MHz
DATA PROCESSING
FT size 131072

12 11 10 9 8 7 6
5 4 3 2 1 ppm
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7 611 10 9 812



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec (
Width 31397.2 Hz
320 repetitions N

OBSERVE C13, 125.6601534 MHz
DECOUPLE H1, 499.7442194 MHz H N
Power 34 dB o
continuously on
WALTZ-16 modulated
DATA PROCESSING Me
Line broadening 3.0 Hz
FT size 131072 le

2I i

200 180 160 140 120 100 80 60 40 20 0 pp~
40 20 0 ppn120 100 80 60
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: toluene
Temp. 100.0 C / 373.1 K

Relax. delay 2.000 sec
Pulse 84.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417947 MHz
DATA PROCESSING
FT size 262144

................. ..I J . A A

1 -0 ppm8 7 6 5 4 3 212 11 10 9



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: toluene
Temp. 80.0 C / 353.1 K

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
10368 repetitions

OBSERVE C13, 125.6600952 MHz
DECOUPLE H1, 499.7442944 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 3.0 Hz

FT size 131072
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE Hi, 500.2272299 MHz
DATA PROCESSING
FT size 131072

0

N
Me Me

MeMe
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if

00

A-- X

S 1 1 1 0 p p 4 1 0 pp12 11 1



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
464 repetitions

OBSERVE C13, 125.7822280 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072
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I
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60 40
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I

200 180 140 120



100

80

60

40-

20

0.-

-20 -

1623.22 1379.1)

1327.68

740.34

1152.35

1094.38

.- ....

1500 1000 500 400.0
cm-I

124.3-

3053. 0

2933.23

O0

if

1233.1 8 1 70

2.1208.

1403.96 1168.8

1482.46 13P3.12 111 1.4p

00

-40

-60-

-80-

-100_

-120

-140

-161.4 z

4000.0 3000 2000



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 84.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417505 MHz
DATA PROCESSING
FT size 262144

NMe Me
"" 1(Me

' H Me

Me
(±)-7f

12 11 10 I 8 7h 6-5-4-3-2 1ppmI I
6 5 4 3 2 1 PPM12 11 10 9 8 7



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
358 repetitions

OBSERVE C13, 125.6601405 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 d8
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 3.0 Hz

FT size 131072

NMe Me

'' H Me

Me
(±)-7f
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100 80 60 40 20 0 ppm

00

I 

I I I ,



NMe Me
-""6Me
H Me

NI
Me

(±)-7f

91.2

80

70

30-

%T 20-

10

0

-10

-20-1

-30

-40

-46.1

4000.0
cm-I

14 1

390.16

1365.27

1483.2

1461.62

269.39

1208.

11

1500

877.3

102.47 842.50

19.10 964.68

1046.54

1606.23

1000

53.76

60.

50

40 -

00

2952.69

2796.74

2000

740.37

3000 500 400.0



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 84.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
17 repetitions

OBSERVE H1, 499.7417322 MHz
DATA PROCESSING
FT size 262144

00

(±)-7g

FT ~II 1

12 11 10 9 8 7 6 5 4 3 2 1 pp

12 11 10 9 8 7 6 5 4 32 1 pp



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
2165 repetitions

OBSERVE C13, 125.7822072 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz N

FT size 131072

(-)-79

200 180 160 140 120 100 80 60 40 20 0 ppi
1 - , I

40 20 0 ppi200 180 160 140 120 100 80 60
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 81.5 degrees S0 2 CF3Acq. time 3.001 sec
Width 10504.2 Hz
4 repetitions

OBSERVE H1, 499.7417343 MHz
DATA PROCESSING
FT size 262144

N H
Me

(±)-8h

12 11 10 9 8 7 6 5 3 2 1 ppF

I I - 111111 k I I

4



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
1995 repetitions

OBSERVE C13, 125.6601328 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

140 120 100 60 40 20 0

S02CF 3

(±)-8h

200 180 160 80 PPM



19F SENSITIVITY
0.05% TRIFLUOROTOLUENE

Pulse Sequence: s2pul
Solvent: COC13
Ambient temperature

Relax. delay 2.000 sec
Pulse 90.0 degrees
Acq. time 0.232 sec
Width 140.8 kHz
11 repetitions

OBSERVE F19, 470.2272133 MHz
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

T I i i . I T T- - T f T I i I T T - I IT T 1

-60 -80 -100

SO2CF 3
.N

(±)-8h

a!

0 -20 -120 -140 -160 PPM-40
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12.8

6.401
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800.39

745.56

1226.67

cm-1
10001500

89.0
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3583.15

094.161
II I

1039.32

147.19

2911.37 SO2CF 3

t'J
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70

68

66
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4000.0
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
3 repetitions

OBSERVE H1, 500.2272281 MHz
DATA PROCESSING
FT size 131072

OMe
0

N OMe
H

Me 11

I ~i1 A lii
I I 1 1 . . , , I I , I12 11 10 I 8 .6 5 4 I I 1 -0 Ippn I IIIIIII i II I I I i I

1 1 10 9 8 7 6 54 3 212 1 -0 ppn



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
108 repetitions

OBSERVE C13, 125.7822170 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz

FT size 131072

OMe
0
s --'OMeN

H

VP
140 120 100 80 60200 180 160 40 20 0 PPM
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1500
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 73.1 degrees
Acq. time 4.999 sec 2 3
Width 12012.0 Hz N
16 repetitions

OBSERVE 11, 500.4295125 MHz
DATA PROCESSING
FT size 262144 /\-OMe

N H
Me OMe

(±)-8i

1 2 1 1 0 I 8 -- - 6 5 4 3 I I. p p l I I I I I I I I I i T -T --
3 2 1 PPI

i I I I I

12 10 9 8 76 5 411 I



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
1272 repetitions

OBSERVE C13, 125.7822107 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

SO2CF 3
N

OMe

fN H
Me OMe

(±)-8i

160 140 120 100 80 60 40200 180 20 0 ppt



19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
11 repetitions

OBSERVE F19, 282.3814158 MHz
DATA PROCESSING
Line broadening 0.3 Hz

FT size 262144

SO2CF 3
N

OMe

N H
Me OMe

(±)-8i

-140 -160 ppm-40 -60 -80 -100

00

- I

0 -200 -120
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
4 repetitions

OBSERVE H1, 500.2272224 MHz
DATA PROCESSING
FT size 131072 N N0 2

H

Ij

12 11 10 9 8 7 6 5 4 3 2 1 ppm
3 2 1 PPM12 11 10 9 8 7



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
65536 repetitions

OBSERVE C13, 125.7822130 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

0

N NO 2
H

N 
H ij

200 180 160 140 20 0 PPM120 100 80 60 40
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 72.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
20 repetitions

OBSERVE H1, 500.4252876 MHz
DATA PROCESSING
FT size 262144

I

S02 CF3
N

'N H
SO2CF 3  NO2

(±)-8j

J

I [ i11
12I 1 9 I 7
12 11 10 9 8 7 6 5 4 3 2 1 -0 ppm

I 

.



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
448 repetitions

OBSERVE C13, 125.7822049 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

S0 2CF3
N

N H
SO 2CF 3  NO2

(±)-8j

I
200 180

14 I I i10 I 6
140 120 100 80 60

-up- _1 111, 11k 0_0

I T I I i I I I I r--T--= T F-T-7- I F T_ -T--T--T-

h, I
40160 20 0 PPM



19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 20.0 C / 293.1 K

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
16 repetitions

OBSERVE F19, 282.3812074 MHz
DATA PROCESSING
Line broadening 0.3 Hz

FT size 262144

S02CF 3
N

H' NH2
SO2CF 3  NO2

(±)-8j

C!J
0n

CV)

-160 ppm0-- -F 40 -6 -8 -10 -1T -140FII! I;IT
-120 -140-80 -100

i I II , , 1 1 1

40 -600 -20
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STANDARD PROTON PARAMETERS

Pulse Sequence:
Solvent: CDCl3
Temp. 53.0 C /

s2pul

326.1 K

Relax. delay 2.000 sec
Pulse 84.1 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417326 MHz
DATA PROCESSING
FT size 262144

SO 2 CF3
N

(±)-8k

U

12 11 10 9 16 5 4 3 28 7 PPM



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 53.0 C / 326.1 K

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
1331 repetitions

OBSERVE C13, 125.6601151 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz

FT size 131072

2 0 0 1 8 T0 1 6 1 4 1 2 0 T T 10 8 0 6 0 4 02 p

SO2CF 3

(±)-8k

00

I I At A
Tr' -

I I I I i
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19F SENSITIVITY
0.05% TRIFLUOROTOLUENE

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 53.0 C / 326.1 K

Relax, delay 2.000 sec
Pulse 90.0 degrees
Acq. time 0.232 sec
Width 140.8 kHZ
23 repetitions

OBSERVE F19, 470.2272133 MHz
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

S02CF 3
N

0
0

(±)-8k

-60 -80 -100

N, i A- VIA I

-120 -140 P p10 -20 -40
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 1.800 sec
Pulse 90.0 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE H1, 500.2272302 MHz
DATA PROCESSING
FT size 131072

H
N

OMe

NH
Me OMe

(±)-9i

12 11 10 9
1I I1 1 8 7i ! 5 4 3 2 IppN I I I I I I . I I T TI

6 5 4 3 2 1 ppn8 7



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CODC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
516 repetitions

OBSERVE C13, 125.7822176 MHz
DECOUPLE H1, 500.2292208 MHz
Power 46 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

H
IN

OMe

N H
Me OMe

(±)-9i

20 I8 16 14 120 IIII. 1 0 80 60 40 20 0 ,ppn 1.iIIII17' I-TT7IIIII
200 180 160 20 0 ppn80 60 40140 120 100
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 72.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
17 repetitions

OBSERVE H1, 500.4252875 MHz
DATA PROCESSING
FT size 262144

Me

(t)-1 Oa

12 11 10 9 8 7 6 5 4 3 2 1 -fl ppm

IF,

3 1-0 PPM7
I ! !

5 48 612 11 10 9



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 37.8 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
226 repetitions
OBSERVE C13, 125.6601333 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 3.0 Hz

FT size 131072

N

Me

44
Me

(-1Oa

A i -,~~~ ~~~~~~ " i.I.ihj.a.. kik W~U

jaill ijil" &4"AirL lwmA 
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ppm20 0120 100 80 60180 160 140200 40
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Appendix C

Spectra for Chapter III
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Pulse 76.1 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE H1, 500.2272311 MHz
DATA PROCESSING
FT size 131072

02 NO 2

N'
H

N
Me

S1

I L~i

10 9 8 7 6 5

o

A Ai
i IA" 

I

4 3 2 1 0 PPM12 11



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
65536 repetitions
OBSERVE C13, 125.7822130 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

02 NO 2

N 'S
H

N
Me

S1

I I I I I I I I I i I F I I T I T -;I I I 1 ;FI I
200~ ~~~~~~ 180 16 401010 0604 0 p
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 78.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
32 repetitions

OBSERVE H1, 500.4252887 MHz
DATA PROCESSING
FT size 262144

I ii iJt~ A

4 3 2 1 -o ppm

NO 2

54

±1
I I ! I I . I I I . . I I I .

12 11 10 9
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STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
20631 repetitions

OBSERVE C13, 125.7822090 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

I 18 16 140 12 10 80 60 40 20 I II

02 NO 2-S

54
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0 PPM

I I
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Pulse 76.1 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE H1, 500.2272196 MHz
DATA PROCESSING
FT size 131072

Ph 0

Ph
N Me

OH Me
(+)-58

6.0:1.0 mixture of atropisomers

7 6 5 4 3 2 1 ppm
I I . I

812 11 10 9



STANDARD CARBON PARANETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
5151 repetitions
OBSERVE C13, 125.7822147 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

Ph 0

Ph
N Me

OH Me
(+)-58

6.0:1.0 mixture of atropisomers

.1
_____I______________J6.__h_____A___ I

160 140 120 100 80 40 20 0 ppm
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.100 sec
Pulse 78.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4252632 MHz
DATA PROCESSING
FT size 262144 Ph 0

H
Ph CI

OH Me
(+)-59

4.6:1.0 mixture of atropisomers

12 I1 1 9 8 7 6 2 1 ppm -- I I I I I I I . I I I I 1 T -
5 4 31211 10 9 8 7 6 2 1 P PM



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
23066 repetitions

OBSERVE C13, 125.7822009 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

0C

Ph 0
= H

Ph N "7 CI
OH Me

(+)-59
4.6:1.0 mixture of atropisomers
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Temp. 73.0 C / 346.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417485 MHz
DATA PROCESSING
FT size 262144 Ph O -,MePhO

Ph N CI
OH Me

(+)-55

101 9 8 7 6 5 4 3 2 1 ppm12 1



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Temp. 73.0 C / 346.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
341 repetitions
OBSERVE C13, 125.6600618 MHz
DECOUPLE H1, 499.7442644 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

Ph O Me
Ph N CI

OH Me
(+)-55

200- 180 160 14 12 10 80 60ol I It
40 20 0 ppm120200 180 160 140 100 80 60
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature

Relax. delay 0.100 sec
Pulse 78.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4252874 MHz
DATA PROCESSING
FT size 262144 Ph 0 Me

Ph
h N CI

TESO Me
(+)-60

4.5:1.0 mixture of atropisomers

I* ' I12 1 10 8 76 54 3 1 - pp
I T .

I I i~~ ~ I I I I I I I I I I I I I I I

12 11 10 9 8 7 6 5 4 3 2 1 -0 PPM



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
10016 repetitions

OBSERVE C13, 125.6601328 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

.1gII .1

Ph 0 Me
Ph

N C1
TESO Me

(+)-60

4.5:1.0 mixture of atropisomers

Li j I Ii

200 180 160 140 120 40 20 0 ppm

,,II~I

LA- LIIII-,

10 0 80 6 0
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 78.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE Hi, 500.4252879 MHz
DATA PROCESSING
FT size 262144

Me 0 Ph

N N Ph
Ns I

Ns Me OTES
NC
Me (+)-61

4.4:1.0 mixture of atropisomers

12 11 10 9 8 7 6 5 4
. . . . . . . . . . . . . . . . . .

3 21PPM



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
5312 repetitions
OBSERVE C13, 125.6601362 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

Me 0 Ph

N N Ph

Ns I

Cs Y Me OTES

(+)-61

140 120 100 80
I I . I I . I I I 1 1 1 T I ;

200 180 160 60 40 20 0 PPM



100.0-

95

90

85

80

75-

70

651

60-

55

50-
%T

4500

40

35

30

25

20

15

10

5

0.0

4000.0

2955.46
1621.63 1372.35

1544.53

Me 0 PhI

1467.55

ll Me OTES

1004.02

1161.34

1090.79

Me (+)-61

4.4:1.0 mixture of atropisomers

3000 2000 1500
cm-1

1000

00.07

740.89

500 400.0



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 75.4 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE Hi, 500.4295113 MHz
DATA PROCESSING
FT size 262144

Me

N
Me

(-)-53

6 5 4 3 2 1 0 ppm
I I I I

12 1110 9



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
1095 repetitions

OBSERVE C13, 125.7822101 MHz
DECOUPLE Hi, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

0

N
Me

(-)-53

M im
20 18 160 14 120 0 pp

100I I I I 2
100 80 60 40 21200 180 160 140 120 00 PPM
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75%hex
Chiralpak IC
.5 mL/min

0 Me

N

N
Me

(-)-53

DADI C, Sig=230,16 Ref=360,100

mAU

250-

200-

150

100-

50

0- -- -

19 20 21 22 23 24 25 min

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=230,

Peak RetTime Type Width
# [min] [min]
--- ------ I--.-- I-------I
1 19.784 BB 0.3298
2 22.733 BB 0.5051

Totals :

16 Ref=360,100

Area Height Area
[mAU*s] [mAU] %

--- - - -I - - - - -I --------
280.11615 10.21808 3.0750
8829.24609 268.90414 96.9250

9109.36224 279.12222

342

04
C4



75%hex
Chiralpak IC
.5 mL/min

o Me

N '

N
Me

(-)-53

DAD1 C, Sig=230,16 Ref=360,100

mAU

600

500-

400

300-

200-

100-

0

N

0)

S('4

S/

C-

/

19 20 21 22

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DADi C, Sig=230,16 Ref=360,100

Peak RetTime Type Width Area Height Area

# [min] [min] [mAU*s) [mAU) %
---- I--------I ----I-------I---------- ---------------------I

1 19.562 BB 0.4421 1.69635e4 587.10394 49.7855
2 22.381 BB 0.5081 1.71097e4 514.37726 50.2145

3.40731e4 1101.48120

343

23 24 25 miW

Totals :

I in 21 22 23



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Ambient temperature

Relax. delay 0.100 sec
Pulse 78.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4295272 MHz
DATA PROCESSING
FT size 262144 

Me

(-)-62

12 11 10 9 8 7 6 5 4 3 2 1 ppm
9 8 7 6 PPM12 1110



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
18234 repetitions

OBSERVE C13, 125.7821556 MHz
DECOUPLE H1, 500.2292658 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

I I- - * *

200 180 140 120 100 80 60 40 20 0 ppm

160

Me

L

200 180

I

140 100 80 60120 40 20 0 PPM
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Pulse 76.1 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
16 repetitions

OBSERVE Hi, 500.2272319 MHz
DATA PROCESSING N
FT size 131072 .. ,

Me

12 11 10 9 8 7 6 5 4 3 2 1 -o ppm
I I I I II I I I I I I I I I I I I I I I I I 1 1

12 11 10 9 1 -0 ppm
I i I I I I I I i , I
8 7 6 5 4 3 2



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 0.763 sec
Pulse 69.8 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
16226 repetitions

OBSERVE C13, 125.7822078 MHz
DECOUPLE H1, 500.2292208 MHz
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.3 Hz

FT size 131072

00

j

200 180 160 140 120 40 20 0 ppm

Me

100 80 60
I i M i I ;
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CD3CN
Temp. 72.0 C / 345.1 K

Pulse 76.1 degrees
Acq. time 3.200 sec
Width 10000.0 Hz
42 repetitions

OBSERVE H1, 500.2298782 MHz
DATA PROCESSING
FT size 131072

9 8
. I I I . I . I t I I I I I I I I I I I I I I T - - -- -- r i I ; I I I I i I I I I I

7 6 5 3

Me

(-)-64

3 2 1PPM4
I I I I I I I I I . . . . I

11 1012



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CD3CN
Temp. 73.0 C / 346.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
3711 repetitions

OBSERVE C13, 125.6606536 MHz
DECOUPLE H1, 499.7468631 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

200 180 160 140 120 100 80 60 40 20 0 ppm

Me

(-)-64

I1.1 Lj

I I

200 180 160 140 120 100 80
1 ; ; 1 ; 1

60 40 20 0 PPM

& - I , -
6-1TM- 

I 1 1-0-411 
014 

1
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 60.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
32 repetitions
OBSERVE H1, 500.4252688 MHz
DATA PROCESSING
FT size 262144

12 11 I0 I T I I I 4 3-T 2- T1 
ppmII I

10 9 5 4 3 21PPM8 7 612 11



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
1332 repetitions
OBSERVE C13, 125.6601314 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

200 180 160 140 120 100 81 60 40 20 0 ppm

Me

1 1 1I11 1 1 1 I f I 1 1 1

180 0 60 40 20 0 PPM

1 1.i I I I I I I - . I I . I I I I I I I I I I I I I I I i . I I 1 1

160 140 120 100 8
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
32 repetitions
OBSERVE H1, 499.7417341 MHz
DATA PROCESSING
FT size 262144

9 8 7 6 5 4

Me

(-)-63

U.

I I I t I I - I I I . . I I I I f I I T T I f I I T I T- I I I ; I .I I I i I I I I I

2 1 PPM12 11 10 3



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: COC13
Ambient temperature

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
264 repetitions

OBSERVE C13, 125.6601333 MHz
DECOUPLE Hi, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 131072

s<Am-LA~ L--t-f It -:11r1 h.14.&-s~ a i2.'
1 0I 1 1

180 160 140
1 100I I I I I I p I m

120 100 80 60 40 20 0 PPM

Me

NMe 2

200

d'IK. L~. 1,1.- L
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Temp. 72.0 C / 345.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417469 MHz
DATA PROCESSING
FT size 262144

F3CS0 3 +

Me

(-)-66 Me

I I

la 11 'a 9 B 7 6 5 4 3 2 1 ppm
12 11 10 9 7 6 5 4 3 2 1 PPM8



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Temp. 72.0 C / 345.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
13063 repetitions

OBSERVE C13, 125.6600613 MHz
DECOUPLE H1, 499.7442644 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

~k~J..~hhLd~A
4

~iILkL

I I I f I T-7 7 I I i i i I i i I I i I I I I I I I I I I I I I I I i I I I j 1 1 1 1 1 j I j I i I I I I I. .I.I I.I.I I.I. .I.I I.I.I I.T.. . .I I.I.I I.I. .I.I I.. .I I.. . .1. ... I

100 80 6 C

F3CS0 3 +

Me

(-)-66

-. 1 A A L-.- - t . hIJ ..L7
L-!-'i -A. 11L-A1 i.1-- LALM"hW AN,"

II I

1 11 --

200 180 120
I f I 1 ; 1 ; 1 1 1 ; ; ; i

160 140 40 20 0 PPM



19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul

Solvent: Benzene
Ambient temperature

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
4 repetitions
OBSERVE F19, 282.3816196 MHz
DATA PROCESSING
Line broadening 0.3 Hz

FT size 262144

F3CSO 3 +
C

Me

(-)-66 Me

I I I

150 100 50 0 -50 -100 -150 ppmI I I I
150 100 -100 -150 PPM50 0 -50
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 22.0 C / 295.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions

OBSERVE H1, 499.7417327 MHz
DATA PROCESSING
FT size 262144

Me,
(-)-67

12 I1 1 8 I 6 5 4 I I 1 ppmII . I I I I I I I I I

i-LA - I
I I I I I I I I

2 1 PPM5 4 310 9 8 7 612 11



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 22.0 C / 295.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
709 repetitions
OBSERVE C13, 125.6601290 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

Me-
(-)-67

ON

I.

ppm80 60 40 20 0

M'K'7 111 , - "1wr"7-r-

- -
I i I

I

I~~ ~ ~ ~ I i-rT T ,- -r r rT T T rT r r- I I I I I I I I I I | Ii i 1 |
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 22.0 C / 295.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions
OBSERVE H1, 499.7417347 MHz
DATA PROCESSING N
FT size 262144

Me

(-)-68 Me

ONA

12 1 98 7 6 5 4 3 p

i -k. IA,
12 1110 9 2 1 PPM3



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 22.0 C / 295.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
11977 repetitions
OBSERVE C13, 125.6601290 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

(-)-68 Me

.-I
.A I J- L .1.1 1 -1. - 0 -rJ

140 120 40 20 0 ppm

. I F " I - r r - -I - -- !- -i

200 180 160 100 80 60
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 60.3 degrees
Acq. time 4.999 sec
Width 12012.0 Hz
16 repetitions

OBSERVE H1, 500.4252861 MHz
DATA PROCESSING
FT size 262144

I I

12 11 10 9 8 7 6 5 4 3 2 1 ppm

12 1110 9 2 1 PPM7 6 5 4 38



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 65.4 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
3524 repetitions
OBSERVE C13, 125.7822101 MHz
DECOUPLE H1, 500.2292208 MHz N
Power 37 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz

FT size 131072

N
Me

PPM

1 14I I I I80 6 4 2 III

160 140 120 100 80 60 40 20220 200

OMe

iILI A ~ I i
A. 11 - , ""M """ : 111, 11,1- 1 ji, A" IVA Jli".Ik -J, lukaWLA. L d ku LA J L-1

I - 1 11
L

240 180 0 -20
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: toluene
Temp. 80.0 C / 353.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
16 repetitions F3CSO3 +

OBSERVE H1, 499.7418438 MHz
DATA PROCESSING
FT size 262144 \

(+)-70

7 6 5 4 3 2 1 ppm
7- 1 --F---T-I I 1 1 4 1 1

.11

12 1110 9 8



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: toluene
Temp. 80.0 C / 353.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 sec
Width 31397.2 Hz
10625 repetitions

OBSERVE C13, 125.6601082 MHz
DECOUPLE H1, 499.7442944 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

F3CSO 3 +

Me

Li

I"' 
0-m~ " -4T' ii L I IL..I v,~LA r4

I I
0 PPM

20 I8 16 14 12 10 806T02
100200 180 160 140 120 80 60 40 20



19F OBSERVE
STANDARD PARAMETERS

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temDerature

Relax. delay 4.000 sec
Pulse 45.0 degrees
Acq. time 0.300 sec
Width 100.0 kHz
8 repetitions

OBSERVE F19, 282.3815086 MHz
DATA PROCESSING
Line broadening 0.3 Hz

FT size 262144
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N

150 100
I I

50 0 -100 -150 ppm

F3CS0 3

-50



982.05 803.06

902.55

1671.991

54.1

1607.77

1488.98

188.p

8 1 46.95

375.95

1355.12

123i60

1155.46

Me

cm-I

1261.80

1500

92.1

91

90-

89
Iq85.19

36081 4

486.06

3583.26

2786.56

2 19.34

2933.04

752.81

F3CSO 3 +

88

87-

86 -

85 -

%T 84

83

82

81 ~

80

79

78

77

030.84

eH

76.2

4000.0 3000

665 5

6I486

2000 1000 500 400.0

I



STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.100 sec
Pulse 60.3 degrees
Acq. time 4.999 sec
Width 12012.0 HZ
32 repetitions

OBSERVE H1, 500.4252873 MHz
DATA PROCESSING
FT size 262144

(-)-71 N
MeH

1.7:1.0 mixture of atropisomers

8 7 6 5 4 3 2 1 ppm12 11 10 9



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 21.0 C / 294.1 K

Relax. delay 3.000 sec
Pulse 35.0 degrees
Acq. time 2.000 Sec
Width 31397.2 Hz
9729 repetitions

OBSERVE C13, 125.6601314 MHz
DECOUPLE H1, 499.7442194 MHz
Power 34 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz

FT size 131072

Me Me
(-)-71 N

MeH
1.7:1.0 mixture of atropisomers
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STANDARD PROTON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Temp. 54.0 C / 327.1 K

Relax. delay 2.000 sec
Pulse 81.5 degrees
Acq. time 3.001 sec
Width 10504.2 Hz
354 repetitions
OBSERVE H1, 499.7417334 MHz
DATA PROCESSING
FT size 262144

Me

12 11 10 9 8 7 6 5 4

"I I , I I I k)

3 2 1 -0 ppm



STANDARD CARBON PARAMETERS

Pulse Sequence: s2pul

Solvent: CDC13
Ambient temperature

Relax. delay 0.763 sec
Pulse 60.9 degrees
Acq. time 1.736 sec
Width 37735.8 Hz
31639 repetitions
OBSERVE C13, 125.7822055 MHz
DECOUPLE H1, 500.2292208 MHz
Power 45 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 3.0 Hz

FT size 131072
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