Mechanism Design: A New Algorithmic

Framework
by
Yang Cai
Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of ARCHIVES
Doctor of Philosophy in Computer Science S“Aiqfiw{gé‘"(:@spm
at the % UL 08 20
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ; LBRARIES

June 2013

(© Massachusetts Institute of Technology 2013. All rights reserved.

Author SRR T PP TPEREEPTRERRTREPERRTS
Department of Electrl‘e/al Engineering and Computer Science

. May 22, 2013

Certified by...
£ Constantinos Daskalakis

Associate Professor of EECS
Thesis Supervisor

Accepted by

Chairman, Department Committee on Graduate Students

Mechanism Design: A New Algorithmic Framework
by
Yang Cai

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2013, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

A modern engineering system, e.g. the Internet, faces challenges from both the strate-
gic behavior of its self-interested participants and the inherent computational in-
tractability of large systems. Responding to this challenge, a new field, Algorithmic
Mechanism Design, has emerged. One of the most fundamental problems in this field
is How to optimize revenue in an auction?

In his seminal paper [Mye81], Myerson gives a partial solution to this problem
by providing a revenue-optimal auction for a seller who is looking to sell a single
itermn to multiple bidders. Extending this auction to simultaneously selling multiple
heterogeneous items has been one of the central open problems in Mathematical
Economics.

We provide such an extension that is also computationally efficient. Our solution
proposes a novel framework for mechanism design by reducing mechanism design
problems (where one optimizes an objective function on “rational inputs”) to algorithm
design problems (where one optimizes an objective function on“honest inputs”). Our
reduction is generic and provides a framework for many other mechanism design
problems.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor of EECS

Acknowledgments

First of all, I would like to thank my advisor, Costis Daskalakis, for all his guidance
and encouragement. My whole Ph.D. has been a wonderful experience largely because
of Costis. He has made himself available over these past four years whenever I want
to have a discussion. I want to thank him for all the wise advices he has given to me
on research, career and life. His enthusiasm and his taste in research problems have
deeply influenced me and helped me to develop as a better researcher.

I also want to thank the theory faculty at MIT for the friendly, collaborative and
stimulating atmosphere they have created for the group. In particular, I want to
express my gratitude to Silvio Micali and Andrew Lo for serving on my dissertation
committee and all their invaluable advices beyond this thesis.

I feel in debt to all my co-authors: Costis, Gagan Aggarwal, Zhiyi Huang, Fan
Long, Haifeng Luo, Mohammad Mahdian, Aranyak Mehta, George Pierrakos, Bo
Waggoner, Xi Wang, Matt Weinberg and Ting Zhang. Thanks for all the things they

the days and nights we spent thinking, writing papers and rehearsing talks together!
Without him, all the results in this thesis might be impossible.

I want to express my sincere thanks to Yuval Peres at Microsoft Research Red-
mond, as well as Gagan Aggarwal and Aranyak Mehta at Google Mountain View, for
two very enjoyable summer internship. These experiences have greatly broadened my
research horizon.

Thanks to all my friends at MIT for making the last five years wonderful: Pablo
Azar, Haogang Chen, Jing Chen, Alan Deckelbaum, Shuo Deng, Mohsen Ghaf-
fari, Bernhard Haeupler, Tao Lei, Huijia Lin, Fan Long, Yuan Luo, Yandong Mao,
Krzysztof Onak, Yue Pan, Debmalya Panigrahi, Christoz Tzamos, Xi Wang, Matt
Weinberg, Ning Xie, Morteza Zadimoghaddam, Zeyuan Zhu and everyone.

I want to thank Yun for the unbelievable amount of love and support she has given
to me. Research can be frustrating, and stress is unavoidable from time to time. I am

deeply grateful for her tolerance of me during my depressing times of my graduate

study.

Last but not least, I am immensely grateful to my parents. I want to thank them
the most for always being supportive for all my choices, and offering wise advices
and selfless helps through my toughest time. I have no way to thank them for their
priceless love, care, inspiration, patience, and encouragement, but to dedicate this

thesis to them.

Contents

1 Introduction
1.1 Algorithmic Mechanism Design
1.2 Fundamental Objectives
1.3 Overview of Main Result and Techniques
1.4 Thesis Organization

2 Background

2.1 Basic Concepts from Mechanism Design
2.2 The Optimal Mechanism Design Problem
2.3 Black-box Reduction from Revenue to Welfare
24 Related Work L

2.4.1 Structural Results. L. oL

2.4.2 Algorithmic Results

2.4.3 Black-box Reduction in Mechanism Design
2.5 Preliminaries and notation L oL
2.6 Details from Preliminaries,
2.7 Imput Model
2.8 A Geometric Algorithmo oL oo oL

3 Feasibility of Single-Item Reduced Forms
3.1 Overviewof QurResults
3.2 Single-item, LI.D. Bidders, Bidder-Symmetric Reduced Forms
3.3 Single-item, Independent Bidders

3.4 Implementation of Single-item Reduced Forms via Hierarchical Mech-

ANISINS & L o v e

Feasibility of General Reduced Forms

4.1 Characterization of General Feasible Reduced Forms

4.2 Algorithms for Reduced Forms
4.2.1 SeparationOracle
4.2.2 Decomposition Algorithm via a Corner Oracle

4.3 Efficient Implementation of Algorithms for Reduced Forms
4.3.1 Exact Implementation
4.3.2 Approximate Implementation,

4.4 Details for Approximate Implementation
441 An Approximate Polytope
4.4.2 Putting Everything Together

4.5 Characterization for Correlated Biddders

Revenue-Optimal Mechanisms
5.1 Revenue-Maximizing Mechanisms
5.2 Discussion and Proofs from Section 5.1

5.3 Accommodating Budget Constraints

Approximately Optimal Mechanisms

6.1 Overviewof OurResults
6.1.1 Approach and Techniques.
6.1.2 PreviousWork L.

6.2 Preliminaries for Weird Separation Oracle

6.3 The Weird Separation Oracle (WSO)
6.3.1 Three Convex Regions.
6.32 WSO.

6.4 Approximately Maximizing Revenue using WSO

6.5 Runtime

78
79
86
86
88
90
90
91
94
94
102
104

109
110
112
122

6.6 Formal Theorem Statements
6.7 Extensions of Theorem 20
6.8 Omitted Proofs from Section 6.5
6.8.1 The Runtimeof WSO
6.8.2 Computing Reduced Forms of (Randomized) Allocation Rules.
6.8.3 The Runtime of the Revenue-Maximizing LP
6.9 Additive Dimension o L.
6.9.1 d-minded Combinatorial Auctions

6.9.2 Combinatorial Auctions with Symmetric Bidders.

7 Conclusion and Open Problems

A Omitted Details from Chapter 4

A.1 Omitted Details from Section 4.2
A.2 Proofs Omitted From Section 4.3.1: Exact Implementation

List of Figures

4-1

5-1
5-2

6-1

A Linear Program to minimize gz(w). 88
A linear programming formulation for MDMDP. 113
A linear programming formulation for MDMDP that accommodates

budget constraints. 122
A “weird” separationoracle. L., 135

10

Chapter 1

Introduction

Traditionally, engineering systems are centrally designed, and their various parts co-
operate with each other to produce the desired outcome (think of the Integrated
Circuit, for example). However, in modern engineering applications, systems have
started to deviate from this paradigm. One of the most well-known examples is the
Internet. It is not centrally designed, and its various components do not necessarily
cooperate to produce a result but may optimize their own strategic objectives, re-
sembling socio-economic behavior; e.g. a recent two-hour outage in global YouTube
access resulted from a BGP table update due to censorship in Pakistan [Sto]. Be-
cause of such socio-economic phenomena, it is crucial to use concepts and ideas from
Economics and Game Theory to understand the modern engineering systems.

The subfiled of Economics dedicated to the design and analysis of such complicated
systems is called Mechanism Design. The goal is the design of optimal institutions

and regulations even when the designer has limited information.

1.1 Algorithmic Mechanism Design

Mechanism Design: reverse game theory

Mechanism design is a unique branch of Game Theory and Economics: most of

Game Theory and Economics analyzes existing economic systems, so that we can

11

predict what will happen in these systems or explain why some outcome has actually
happened. In contrast, Mechanism design comes from a complete opposite direction.
It starts with identifying some desired outcome, and then asks if it is possible to
design a system such that when it is used by self-interested participants the desired
outcome will arise. If yes, how?

The main difficulty for designing the right system is the information asymmetry
between the designer and the participants: usually, how desirable an outcome is
depends on the interests of the participants in some aggregated sense. However,
the designer is usually ignorant about the participants. A participant’s interest for
some outcome is private information to the participant herself. Thus, it requires some
cooperation of the participants to achieve a desirable outcome, e.g. honestly reporting
how “valuable” an outcome is to each. Since the selected outcome depends on each
participant’s report, unless the system is designed carefully to properly incentivize
a participant, e.g. promising a favorable outcome for her, monetary compensation
or the combination of both, she may lie about her privately held information to
manipulate the outcome to maximize her own objective at the expense of the whole

system.

The Rise of Algorithmic Mechanism Design

Despite its difficulty, mechanism design has actually gained great success in both
theory and practice. It addresses the economic side of our system design problem.
However, in the context of the Internet, the number of participants is normally gi-
gantic and growing. To guarantee the performance of a system, we have to take
computational efficiency into consideration.

This is the mission of Algorithmic Mechanism Design (AMD), an area that aims
to handle both the strategic behavior of self-interested participants and the inherent
computational intractability of large systems. Primarily, AMD has roots in Algorithm
Design from Computer Science, which focuses on optimizing an objective as a func-
tion of “ honest” inputs with computational efficiency considerations. Inheriting the

theoretical framework of mechanism design, AMD targets on optimizing an objective

12

as a function of “rational” inputs with computational efficiency considerations. The
theory and concepts of AMD have been broadly and increasingly applied in the real
world, from online market places (such as eBay) and sponsored search (Google, Bing)
to spectrum auctions. For such applications, careful design might make a difference
on the scale of billions of dollars. Thus, finding optimal mechanisms is a particularly

meaningful topic not only in theory but also in the real world.

1.2 Fundamental Objectives

A mechanism design problem can be described by a set of feasible outcomes, and a
group of agents, each equipped with a private valuation function mapping an outcome
to a real number. The designer needs to choose an outcome that dependes on the
agents’ private valuation functions, and uses an objective function to “measures” the
quality of the outcome.

There are two fundamental objectives in mechanism design:
e Social Welfare — the happiness of the agents participating in the mechanism
e Revenue — the happiness of the designer

Usually, researchers consider optimizing these objectives in the more concrete
environment of multi-item auctions, because an auction is typically easier to describe
yet has strong expressive power. See Section 2.2 for examples. In fact, any mechanism
in which monetary transfers are allowed can be modeled as an auction.!

It is no surprise that the central problems in AMD are how to optimize these two
fundamental objectives. To discuss existing results for these problems, we need to
first explain how an auction is modeled.? Informally, there is an auctioneer /seller who
has a limited supply of several items for sale, and there are many participants/bidders

who are interested in these items. An auction is some communication protocol (e.g.

'Basically, for every outcome, we can use an item to represent it. Also, we use the following
feasibility constraints on what allocations are legitimate: 1) every bidder can only receive one item;
2) every item can either be allocated to everyone or no one (similarly to a public object auction).
From now on, we will use the word auction and mechanism interchangeably.

2Formal definitions can be found in Section 2.1.

13

each bidder reports her values for the items to the auctioneer) after which, the seller
decides an allocation of the items and how much she wants to charge each bidder. If
all the bidders are asked to do is to report their values to the auctioneer, and they

are incentivized to do so honestly, the auction is called truthful.

Welfare Maximization

For social welfare, a beautiful mechanism was discovered in a sequence of works by
Vickrey, Clarke and Groves [Vic61, Cla7l, Gro73]. This mechanism is now known
as the VCG mechanism, and it optimizes social welfare in all settings. This is an
extremely general result and, surprisingly, the mechanism is very simple: all par-
ticipants are asked to report how much they value each possible allocation®; then
the allocation which maximizes the sum of all participants’ values is chosen; in the
end, the seller will carefully charge the participants to make sure the mechanism is
truthful.

This completely solves the economic problem of designing welfare-maximizing
mechanisms. When computational complexity is taken into account, finding the al-
location which maximizes the sum of all participants value could be NP-hard. For
computer scientists, the most natural way to overcome such barrier is to look for effi-
cient approximations — a mechanism that approximately optimizes welfare. However,
it turns out that this is a non-trivial task. The main reason is that if the end allocation
is only approximately optimal, incentivizing the participants to tell the truth is very
difficult. There has been a long line of research addressing this issue [NR99, LOS02,
BKV05, DNS05, LS05, DNS06, BLP06, DN07, DD09, HL10, DR10, BH11, HKM11].
Recently in a sequence of works [HL10, BH11, HKMI11], it is shown that in the
Bayesian setting* if there is an algorithm for finding an approximately welfare op-
timal allocation, there is a generic way to turn it into a mechanism that optimizes

welfare achieving the same approximation ratio. In other words, there is a black-boz

3The values are not necessarily represented as a list. For example they could be modeled as
an oracle that takes an allocation as input and cutputs the valie, if we care about computational
efficiency.

4This is the standard setting in Mathematical Economics and is also the setting we use in this
thesis. See Section 2.1 for a formal definition.

14

reduction from mechanism design to algorithm design for welfare optimization.

Revenue Maximization

Compared to welfare maximization, the progress for maximizing revenue has been
much slower. The most important result is Myerson’s Nobel-Prize winning work
from 1981, which showed that if there is a single item for sale, a simple auction can

achieve the optimal revenue [Mye81].

Myerson’s Auction (informal)
1. Each bidder reports her value for the item.

2. The seller transforms each bidder’s report to some “virtual”-report using

some bidder specific function.

3. Apply the VCG allocation rule on the “virtual”-reports.

This
natural question raised by this result is, what if there are multiple items for sale?

More specifically,

e Are there simple, efficiently computable, revenue-optimal multi-item

multi-bidder auctions?

It 1s no surprise that this has become a central open problem in Mathematical
Economics attracting lots of attention from not only that community but also the
Theory of Computation community.

Despite continual effort of economists [MM88, Wil93, Arm96, RC98, Arm99,
Zhe00, Bas01, Kaz01, Tha04, MV06, MV07], no major progress has occurred for
over 30 years. Similarly, on the Computer Science side, although many works have
designed constant factor approximations for optimizing revenue [CHK07, CHMS10,
BGGM10, Alall, HN12, KW12], all settings were heavily restricted, and no general

solution had been provided.

15

One of the main reasons for the slow progress was that the right tool for this
problem seemed to still be missing. In Myerson’s result, the proof is purely algebraic
and even seems magical. Many researchers have tried to understand and extend
his approach to the general setting, but no one was able to do so. To solve the
general case, a novel and drastically different approach is needed. Motivated by the
importance of this problem, we devote this thesis to the problem of revenue-optimal
mechanism design. Our result is not only a clear solution to this central open problem,

but also provides a novel and general framework that can be applied to many other

AMD problems.

1.3 Overview of Main Result and Techniques

Main result

We answer this open problem affirmatively under the technical assumption that the
bidders are additive®: there are simple, efficiently computable, revenue-optimal multi-
item auctions, even in the most general settings.

In particular, we provide a poly-time black box reduction from a mechanism design
problem of finding a revenue-optimal auction, to an algorithm design problem of
finding a welfare-maximizing allocation. More specifically, we reduce the problem
to implementing the VCG allocation on some “virtual” reports instead of the real

reports. The revenue-optimal auction we obtain looks like:

5See Section 2.1 for the formal definition. It basically means a bidder's value for a bundle of
items equals to the sum of her value for each item.

16

The Revenue-optimal Auction (informal)

0. In a preprocessing step, the seller computes a distribution over virtual trans-
formations, where each transformation has a bidder-specific transformation

function for every bidder.
1. Each bidder reports her values for all items.

2. The seller samples one virtual transformation from the distribution computed

in the preprocessing step.

3. The seller applies the sampled transformation to the real reports to get the

“virtual” reports.

4. Use the VCG allocation rule to allocate the items based on the “wirtual”

reports.

So how does our solution compare to Myerson’s single-item result? In Myerson’s
optimal auction, the allocation rule is just the VCG allocation rule, but on virtual
reports instead of true reports. Then, he provides a closed-form description of the
virtual transformations as well as a closed-form description of the pricing rule that
makes the bidders report truthfully. However, in the general setting, it is known that
randomness is necessary to achieve optimal revenue, even with a single bidder and
two items [BCKW10, CMS10]. Hence, we cannot possibly hope for a solution as clean
as Myerson’s, but we have come quite close in a very general setting: Our allocation
rule is just a distribution over virtual VCG allocation rules. Instead of a closed form
for each virtual transformation and the pricing rule, we provide a computationally

efficient algorithm to find them.

The Framework

Our approach also gives a new framework for solving a mechanism design problem,
by reducing it to an algorithm design problem, that is, we reduce a problem with

incentives to a problem without incentives. Our reduction can be divided into two

17

main steps: 1) Reduce the revenue-optimal mechanism design problem to the problem
of checking feasibility of reduced form auctions. 2) Reduce the problem of checking
feasibility of reduced form auctions to the problem of finding welfare-optimal alloca-
tions.

For the first step, our reduction heavily relies on linear programming and the ellip-
soid method. In fact, several special cases of the revenue-optimal mechanism design
problem have been solved computationally efficiently by linear programming [CH13,
DW12]. Simply put, these algorithms explicitly store a variable for every possible bid-
der report profile denoting the probability that bidder i receives item j on that profile,
and write a linear program to maximize expected revenue subject to the constraint
that the auction must be feasible and the bidders must be truthful. Unfortunately,
the number of variables required for such a program is exponential in the number of
bidders, making such an explicit description prohibitive.

Our solution cleverly uses the reduced form of an auction to sidestep this dimen-
sionality issue. The reduced form of an auction, first introduced in [Bor91, MR&4,
Mat84], is a succinct description of the auction. Intuitively, a reduced form auction
can be viewed as promises that the seller makes to the bidders about the probabilities
of receiving the items based on their own report. Using reduced form auctions as the
variables of our LP has two major advantages: 1) its total size is polynomial in the
number of bidders; 2) more importantly, it contains all the necessary information to
verify that the bidders are truthful. That is, we can guarantee the bidders are honest
by adding linear constraints to the LP.

The only obstacle for solving this LP is that we need to verify the feasibility of a
reduced form auction efficiently. More specifically, given a reduced form auction, we
need to verify if there is a feasible mechanism implementing it (i.e, whether it matches
these probabilities), if yes, can we also construct this mechanism efficiently? This is
the problem of checking feasibility of reduced form auctions. Hence, we successfully
reduced the revenue-optimal mechanism design problem to this algorithmic problem.

It turns out checking feasibility of reduced form auctions is an interesting al-

gorithmic problem by itself, and has already been studied by Border twenty years

18

ago [Bor91]. Unfortunately, Border only studied a special case when there is only
a single item and he did not gave any efficient algorithm even for this special case.
Our first contribution is to provide an efficient algorithm for this problem in Chap-
ter 3. However, to solve the multi-item revenue-optimal mechanism design problem,
we need to be able to check feasibility for general, i.e. multi-item, reduced form
auctions. We show that for arbitrary feasibility constraints®, we can construct an effi-
cient separation oracle for checking feasibility of general reduced form auctions using
only black-box calls to an algorithm that exactly maximizes welfare under the same
constraints (Chapter 4). In other words, we have black-box reduced the problem of
checking feasibility of reduced form auctions to the algorithmic problem of finding
an allocation that exactly maximizes welfare. This completes the second step of our
whole reduction.

However, this result requires the welfare-maximizing algorithm to be exact. For
many feasibility constraints, this problem is intractable unless P=NP. In Chapter 6,
we take one step further. We show that given any o approximation algorithm for max-
imizing welfare under some feasibility constraints, by making only black-box calls to
this algorithm we can still construct an “approximate” separation oracle for checking
feasibility. Using such an “approximate” separation oracle, we can design an auction
that achieves at least a-fraction of the optimal revenue. Hence, our reduction can
accommodate approximations.

In this thesis, we only study the objective of revenue, but clearly our framework
can accommodate any objective that is concave in the reduced form auctions, e.g. so-
cial welfare or any convex combination of revenue and social welfare. In a very high
level, our framework for mechanism design can be described as a two stage procedure.
First, find a succinct representation of auction, which still contains all necessary in-
formation to verify if the bidders are truthful. Write an LP using this representation
as the variables. This reduces the mechanism design problem to an algorithmic prob-

lem of checking feasibility for this succinct representation of auction. Second, design

6For example, bidders might be unit-demand, so an allocation is feasible iff it is a matching
between the items and bidders . See Section 2.2 for a formal definition and more discussion.

19

an efficient algorithm to check feasibility. Our framework has already been used. In
a recent unpublished manuscript [CDW13b], we introduced a new succinct descrip-
tion of auction, implicit forms, and extended our framework to accommodate new

mechanism design problems, for example maximizing fractional max-min fairness.

1.4 Thesis Organization

In Chapter 2, we first introduce all mechanism design concepts and definitions that are
needed to read this thesis. Next, we formally define the Revenue-Optimal Mechanism
Design problem, and provide a more in-depth discussion of our main result, the black-
box reduction from revenue to welfare. Then we overview the related work on the
revenue-optimal mechanism design problem. In the end, we introduce some further
notations and a few theorems and algorithms that will be repeatedly used in future
chapters.

In Chapter 3, we study the feasibility of single-item reduced form auctions. Qur
result is enabled by a novel, constructive proof of Border’s theorem [Bor91], and a
new generalization of this theorem to independent (but not necessarily identically
distributed) bidders, improving upon the results of [Bor07, CKM11]. For a single
item and independent (but not necessarily identically distributed) bidders, we show
that any feasible reduced form auction can be implemented as a distribution over
hierarchical mechanisms. We also give a polynomial-time algorithm for determining
feasibility of a reduced form auction, or providing a separation hyperplane from the
set of feasible reduced forms. To complete the picture, we provide polynomial-time al-
gorithms to find and exactly sample from a distribution over hierarchical mechanisms
consistent with a given feasible reduced form.

In Chapter 4, we study the feasibility of general reduced forms auctions under
a arbitrary feasibility constraint. We first show a characterization result that every
feasible reduced form auction can be implemented as a distribution over virtual VCG
allocation rules. A virtual VCG allocation rule has the following simple form: Every

bidder’s valuation #; is transformed into a virtual valuation f;(t;), via a bidder-specific

20

function. Then, the allocation maximizing virtual welfare is chosen. We generalize
this result to arbitrarily correlated bidders, introducing the notion of a second-order
VCG allocation rule. Next, we give two algorithmic results on reduced form auctions
in settings with arbitrary feasibility and demand constraints. First, we provide a
separation oracle for determining feasibility of a reduced form auction. Second, we
provide a geometric algorithm to decompose any feasible reduced form into a dis-
tribution over virtual VCG allocation rules. In addition, we show how to efficiently
execute both algorithms given only black box access to an implementation of the
VCG allocation rule.

In Chapter 5, based on the separation oracle designed in Chapter 4, we provide
a reduction from revenue maximization to welfare maximization in multi-item auc-
tions with arbitrary (possibly combinatorial) feasibility constraints and independent
bidders with arbitrary (possibly combinatorial) demand constraints, appropriately
extending Myerson’s result [Mye81] to the general setting.

In Chapter 6, we extend the results in Chapter 4 and 5 to accommodate ap-
proximations. In Chapter 5, we show that revenue optimization can be computa-
tionally efficiently reduced to welfare optimization in all multi-item auctions with
arbitrary (possibly combinatorial) feasibility constraints and independent additive
bidders with arbitrary (possibly combinatorial) demand constraints. This reduction
provides a poly-time solution to the optimal mechanism design problem in all auc-
tion settings where welfare optimization can be solved efficiently, but it is fragile
to approximation and cannot provide solutions to settings where welfare maximiza-
tion can only be tractably approximated. In this chapter, we extend the reduction
to accommodate approximation algorithms, providing an approximation preserving
reduction from (truthful) revenue maximization to (not necessarily truthful) welfare
maximization. The mechanisms output by our reduction choose allocations via black-
box calls to welfare approximation on randomly selected inputs, thereby generalizing
also the earlier structural results on optimal mechanisms to approximately optimal
mechanisms. Unlike in Chapter 4, our results are obtained through novel uses of the

Ellipsoid algorithm and other optimization techniques over non-convez regions.

21

In Chapter 7, we give conclusions and open problems.

All results are based on joint work with Constantinos Daskalakis and S. Matthew
Weinberg. Chapter 3 is based on [CDW12a], Chapter 4 and 5 are based on [CDW12b)
and Chapter 6 is based on [CDW13a].

22

Chapter 2

Background

In this chapter, we first introduce all mechanism design concepts and definitions
that are needed to read this thesis. Next, we formally define the Revenue-Optimal
Mechanism Design problem, and provide a more in-depth discussion of our main result
— the black-box reduction from (truthful) revenue optimization to (not necessary
truthful) welfare optimization. Then we overview the related work on the revenue-
optimal mechanism design problem. In the end, we introduce the notations and a

few theorems and algorithms that will be repeatedly use in future chapters.

2.1 Basic Concepts from Mechanism Design

We provide the necessary mechanism design concepts in this section.

Basic Terms

Bidder’s type: A bidder’s type contains all information about the bidder that is
relevant to the decision of the mechanism. For example, in a single item auction. A
bidder’s type will simply be her value for this item. Throughout this thesis, we will
use t; to denote bidder 7’s type and T; be the set of possible types for bidder .

Bayesian Setting: In a Bayesian setting, it is assumed that every bidder’s type is

drawn from a known distribution. By known, we mean the distribution is known to

23

the seller as well as the other bidders. Notice that only the distribution is known,
not the exact value of the sample. Throughout this thesis, we will use D; to denote
bidder ¢’s distribution, D_; to denote the joint distribution of all bidders except ¢ and
D to denote the joint distribution of all bidders.

Utility Function: A utility function of a bidder is a function that maps an allocation,
a payment and the bidder’s type to a real value utility. We say the utility function
is quasi-linear if it equals the bidder’s value of the allocation minus her payment.
We say a bidder is risk-neutral if her value for a distribution over allocations is her

expected value for the sampled allocation.

(Direct Revelation) Mechanism: A mechanism is the following three-step proto-
col: (1) Each bidder submits her type, which is usually called her bid. (2) The seller
use the bid profile to decide some allocation, and finally (3) The seller charges each
bidder some monetary payment. The map from a bid profile to an allocation in step
(2) is called an allocation rule, and the map from a bid profile to payments in step

(3) is called a pricing rule.

Social Welfare and Revenue: Social welfare is the sum of every bidder’s value
for the allocation chosen by the mechanism. Revenue is the sum of every bidder’s

payment.
Essential Concepts

Truthfulness/Incentive compatibility: A mechanism is truthful/incentive com-
patible iff each bidder’s utility is maximized when they report her type honestly.
Formally, it is known as Bayesian Incentive Compatible (BIC).

o Bayesian Incentive Compatible (BIC): Truthfully reporting maximizes a bid-
der’s utility if other bidders are also truthfully reporting. That is, for any
bidder 7, her expected utility is maximized when being truthful, where the ex-
pectation is taken over the randomness of the mechanism and the randomness

the other bidders’ bids (assuming they are sampled from D_;).

24

Individual Rationality (IR): We say a mechanism is individual rational iff each
bidder’s utility is non-negative when they report her type truthfully. A mechanism is
interim IR if each bidder’s utility is non-negative when being truthful in expectation
over other bidder’s types. A mechanism is ex-post IR if each bidder’s utility is non-

negative when being truthful under any profile of bids.

Revelation Principle: A mechanism can actually have a more complicated com-
munication protocol than a direct revelation one, which simply asks the bidders to
submit their types. Such a mechanism is usually modeled as a game of incomplete
information. However, the Revelation Principle states that for any outcome that can
be achieved in an equilibrium of a game of incomplete information, there is a truth-
ful direct revelation mechanism that achieves the same outcome and preserves every
bidder’s utility [Mye79]. In other words, it implies that for any mechanism design

problem, focusing on only truthful direct revelation mechanism is WLOG.

The revenue-optimal mechanism design problem has received much attention from the
Economics community, and recently the Computer Science community as well. The
problem description is simple: a seller has a limited supply of several heterogenous
items for sale and many interested buyers. The goal is for the seller to design an
auction for the buyers to play that will maximize her revenue.

In order to make this problem tractable (not just computationally, but at all?),

some assumptions must be made:
e First, we assume we are in a Bayesian setting.

e Second, the bidders will play any auction at a Bayes-Nash Equilibrium. We also

assume that all buyers are quasi-linear and risk-neutral.

!Indeed, even in the simpler case of a single buyer and a single item, how would the seller sell
the item to optimize her profit without any assumptions about the buyer who can, in principle, lie
about his willingness to pay?

25

e Finally, we say that the goal of the seller is to maximize her expected revenue

over all auctions when played at a Bayes-Nash Equilibrium.

All of these assumptions have become standard with regards to this problem. Indeed,
all were made in Myerson’s seminal paper on revenue-maximizing mechanism design
where this problem is solved for a single item and product distributions [Mye81].

In addition, Myerson introduces the revelation principle, showing that every auc-
tion played at a Bayes-Nash Equilibrium is strategically equivalent to a Bayesian
Incentive Compatible (BIC) direct revelation mechanism. In a direct revelation mech-
anism, each bidder reports a bid for each possible subset of items they may receive.
In essence, Myerson's revelation principle says that one only needs to consider BIC
direct revelation mechanisms rather than arbitrary auctions played at a Bayes-Nash
Equilibrium to maximize revenue (or any other objective for that matter).

In Myerson’s result, a single real number suffices to represent a bidder’s type.
However, in multi-item auctions, we need multiple numbers to specify a bidder’s
type. For example, when a bidder’s valuation is additive, we need one number for
each item. That is why the Revenue-Optimal Mechanism Design problem is usually
called the multi-dimensional mechanism design problem.

As we depart from Myerson’s single-item setting, the issue of feasibility arises.
With only a single item for sale, it is clear that the right feasibility constraints are
simply that the item is always awarded to at most a single bidder, but it will be much
more complicated in multi-item cases. Imagine natural scenarios with heterogenous

items:

e Maybe the items are houses. In this case, a feasible allocation awards each

house to at most one bidder, and to each bidder at most one house.

e Maybe the items are appointment slots with doctors. In this case, a feasible
allocation does not award the same slot to more than one bidder, and does not
award a bidder more than one slot with the same doctor, or overlapping slots

with different doctors.

26

e Maybe the items are bridges built at different locations. In this case, if a bridge
is built, everyone will be able to use it, so a feasible allocation awards each

bridge to everyone or to no one.

Just like in the above cases, feasibility constraints can be all different. Sometimes,
feasibility constraints are imposed by the supply side of the problem: a doctor cannot
meet with two patients at once, and a bridge cannot be built for one bidder but not
another. Other times, feasibility constraints are imposed by the demand side of the
problem: no bidder wants two houses or two appointments with the same doctor.

Without differentiating where feasibility constraints come from, we model them
in the following way: let A = [m] x [n] denote the space of assignments (where (3, 5)
denotes that bidder i is assigned item 7), and let F be a set system on .4 (that is,
a subset of 24). Then in a setting with feasibility constraints F, it is possible for
the seller to simultaneously make any subset of assignments in F. F may be a truly
arbitrary set system, it need not even be downward-closed.?

As we leave the single-item setting, we also need to consider how a bidder values
a bundle of multiple items. In general, a bidder may have arbitrarily complicated
ways of evaluating bundles of items, and this information is encoded into the bid-
der’s type. For the problem to be computationally meaningful, however, one would
want to either assume that the auctioneer only has oracle access to a bidder’s val-
uation, or impose some structure on the bidders’ valuations allowing them to be
succinctly described. Indeed, virtually every recent result in revenue-maximizing
literature [AFH*12, BGGM10, CD11, CH13, CHK07, CHMS10, DW12, KW12| as-
sumes that bidders are capacitated-additive.® In fact, most results are for unit-demand
bidders. It is easy to see that, if we are allowed to incorporate arbitrary demand con-
straints into the definition of F, such bidders can be described in our model as simply

additive. In fact, far more complex bidders can be modeled as well, as demand con-

?We say a set system F is downward-closed, if for any set S € F all subsets of S are also in F.

3A bidder is capacitated-additive if for some constant C her value for any subset § of at most C
goods is equal to the sum of her values for each item in S, and her value for any subset S of more
than C goods is equal to her value for her favorite S’ C S of at most C goods.

27

straints could instead be some arbitrary set system. Because F is already an arbitrary
set system, we may model bidders as simply additive and still capture virtually every
bidder model studied in recent results, and more general ones as well. In fact, we note
that every multi-dimensional setting can be mapped to an additive one, albeit not
necessarily computationally efficiently.* So while we focus our discussion to additive
bidders throughout this thesis, our results apply to every auction setting, without
need for any additivity assumption. In particular, our characterization result (Infor-
mal Theorem 2) of feasible allocation rules holds for any multi-dimensional setting,
and our reduction from revenue to welfare optimization (Informal Theorem 1) also
holds for any setting, and we show that it can be carried out computationally effi-
ciently for any additive setting. In Section 6.9, we generalize our result to settings
beyond additive and introduce a new concept called “additive dimension”. We show
that if a setting has “additive dimension” d, all results for additive setting still hold

after multiplying the runtime by only a poly(d) factor.

Optimal Multi-dimensional Mechanism Design. With the above motivation
in mind, we formally state the revenue optimization problem we solve. We remark that
virtually every known result in the multi-dimensional mechanism design literature
(see references above) tackles a special case of this problem, possibly with budget
constraints on the bidders (which can be easily incorporated in all results presented
in this thesis as discussed in Section 5.3), and possibly replacing BIC with DSIC.®
We explicitly assume in the definition of the problem that the bidders are additive,

recalling that this is not a restriction if computational considerations are not in place.

“The generic transformation is to introduce a meta-item for every possible subset of the items,
and have the feasibility constraints (which are allowed to be arbitrary) be such that an allocation is
feasible if and only if each bidder receives at most one meta~item, and the corresponding allocation
of real items (via replacing each meta-item with the subset of real items it represents) is feasi-
ble in the original setting. Many non-additive settings allow much more computationally efficient
transformations than the generic one.

®Dominant Strategy Incentive Compatible (DSIC) is another truthfulness definition, and is usu-
ally seen in the literature of welfare maximization. In particular, DSIC means truthfully bidding
maximizes a bidder’s utility no matter what the other bidders report.

28

Revenue-Maximizing Multi-Dimensional Mechanism Design Problem
(MDMDP): Given as input m distributions (possibly correlated across items)
Dy, ..., Dy, over valuation vectors for n heterogenous items and feasibility con-
straints F, output a BIC mechanism M whose allocation is in F with probability
1 and whose expected revenue is optimal relative to any other, possibly random-

ized, BIC mechanism when played by m additive bidders whose valuation vectors

are sampled from D = x;D;.

2.3 Black-box Reduction from Revenue to Welfare

We provide a poly-time black box reduction from the MDMDP with feasibility con-
straints F to implementing VCG with feasibility constraints F by introducing the
notion of a virtual VCG allocation rule. A virtual VCG allocation rule is defined by a
collection of functions f; for each bidder i. f; takes as input bidder i’s reported bid vec-
tor and outputs a virtual bid vector. When the reported bids are ty, .. ., t,,, the virtual
VCG allocation rule with functions { f;}iepm) simply implements the VCG allocation
rule (with feasibility constraints F) on the virtual bid vectors fi(¢1),-. -, fm(tm). We
also note here that implementing VCG for additive bidders is in general much eas-
ier than implementing VCG for arbitrary bidders.® Our solution to the MDMDP is

informally stated below, and is formally given as Theorem 17 of Section 5.1:

Informal Theorem 1. Let Ar be an implementation of the VCG allocation rule
with respect to F (i.e. Ax takes asinput a profile of bid vectors and outputs the VCG
allocation). Then for all Dy, ..., Dy, with finite support and all F, given Dy,..., Dy,
and black boz access to Ax (and without need of knowledge of F), there exists a fully
polynomial-time randomized approzimation scheme’ for the MDMDP whose runtime
is polynomial in n, the number of bidder types (and not type profiles), and the runtime

of Ax. Furthermore, the allocation rule of the output mechanism is a distribution over

6When bidders are additive, implementing VCG is simply solving the following problem, which is
very well understood for a large class of feasibility constraints: every element of A has a weight. The
weight of any subset of A is equal to the sum of the weights of its elements. Find the max-weight
subset of A that is in F.

"This is often abbreviated as FPRAS, and we provide its formal definition in Section 2.5.

29

virtual VCG@G allocation rules.

We remark that the functions defining a virtual VCG allocation rule may map a
bidder type to a vector with negative coordinates. Therefore, our given implementa-
tion of the VCG allocation rule should be able to handle negative weights. This is not
a restriction for arbitrary downwards-closed F as any implementation of VCG that
works for non-negative weights can easily be (in a black-box way) converted into an
implementation of VCG allowing arbitary (possibly negative) inputs.® But this is not
necessarily true for non downwards-closed F’s. If the given Ax cannot accommodate
negative weights, we need to replace it with an algorithm that can in order for our
results to be applicable.

Several extensions are stated and discussed in Section 5.1, including solutions for
distributions of infinite support, and improved runtimes in certain cases that make
use of techniques from [DW12]. We also extend all our solutions to accommodate
strong budget constraints by the bidders in Section 5.3.

We further generalize Informal Theorem 1 in Chapter 6. Informal Theorem 1
implies that, for all F’s such that maximizing social welfare can be solved efficiently,
MDMDP can also be solved efficiently. On the other hand, the reduction is geometric
and sensitive to having an exact algorithm for maximizing welfare, and this limits
the span of mechanism design settings that can be tackled. In Chapter 6 we extend
this reduction, making it robust to approzimation. Namely, we reduce the problem
of approximating MDMDP to within a factor o to the problem of approximately

optimizing social welfare to within the same factor a.

Characterization of Feasible Reduced Form Auctions. In addition to our
solution of the MDMDP, we provide a characterization of feasible reduced forms of

multi-dimensional mechanisms in all (not necessarily additive) settings.® We show the

8The following simple black-box transformation achieves this: first zero-out all negative coordi-
nates in the input vectors; then run VCG; in the VCG allocation, un-allocate item j from bidder 7 if
the corresponding coordinate is negative; this is still a feasible allocation as the setting is downwards-
closed.

9For non-additive settings, the characterization is more usable for the purposes of mechanism
design when applied to meta-items (see discussion above), although it still holds when directly
applied to items as well.

30

following informal theorem, which is stated formally as Theorem 10 in Section 4.1.
Recall that a virtual VCG allocation rule is associated with a collection of functions
fi that map types t; to virtual types f;(t;) for each bidder i, and allocates the items
as follows: for a given type vector (¢1,...,tm), the bidders’ types are transformed into
virtual types (fi(t1),..., fm(tm)); then the virtual welfare optimizing allocation is

chosen.

Informal Theorem 2. Let F be any set system of feasibility constraints, and D
any (possibly correlated) distribution over bidder types. Then the reduced form of any
feasible mechanism can be implemented as a distribution over virtual VCG allocation

rules.

2.4 Related Work

2.4.1 Structural Results

Some structural results are already known for special cases of the MDMDP and its
extension to correlated bidders. As we have already discussed, Myerson showed that
the revenue-optimal auction for selling a single item is a virtual Vickrey auction: bids
are transformed to virtual bids, and the item is awarded to the bidder with the highest
non-negative virtual value [Mye81]. It was later shown that this approach also applies
to all single-dimensional settings (i.e. when bidders can’t tell the difference between
different houses, appointment slots, bridges, etc) as long as bidders’ values are inde-
pendent. In this setting, bids are transformed to virtual bids (via Myerson’s trans-
formation), and the virtual-welfare-maximizing feasible allocation is chosen. These
structural results are indeed strong, but hold only in the single-dimensional setting
and are therefore of very limited applicability.

On the multi-dimensional front, it was recently shown that similar structure exists
in restricted settings. It is shown in [CDW12a] that when selling multiple heteroge-
nous items to additive bidders with no demand constraints (i.e. F only ensures that

each item is awarded to at most one bidder), the optimal auction randomly maps bids

31

to virtual bids (according to some function that depends on the distributions from
which bidders’ values are drawn), then separately allocates each item to the highest
virtual bidder.1® It is shown in [AFH*12] that when there are many copies of the same
customizable item and a matroid constraint on which bidders can simultaneously re-
ceive an item (i.e. F only ensures that at most k items are awarded, subject to a
matroid constraint on the served bidders), that the optimal auction randomly maps
bids to virtual bids (according to some function that depends on the distributions
from which bidders’ values are drawn), then allocates the items to maximize virtual
surplus (and customizes them after). We emphasize that both results, while quite
strong for their corresponding settings, are extemely limited in the settings where
they can be applied. In particular, neither says anything about the simple setting
of selling houses to unit-demand bidders (i.e. F ensures that each house is awarded
at most once and each bidder receives at most one house: Example 1, Section 2.2).
Selling houses to unit-demand bidders is on the easy side of the settings considered
in this thesis, as we provide a solution in multi-dimensional settings with arbitrary
feasibility constraints. We do not even assume that F is downward-closed.

For correlated bidders, the series of results by Cremer and McLean [CM85, CM88]
and McAfee and Reny [MR92] solve for arbitrary feasibility constraints subject to a
non-degeneracy condition on the bidder correlation (that is not met when bidders are
independent). Under this assumption, they show that the optimal auction extracts
full surplus (i.e. has expected revenue equal to expected welfare) and simply uses
the VCG allocation rule (the prices charged are not the VCG prices, but a specially
designed pricing menu based on the bidder correlation). Our structural results for
correlated bidders apply to arbitrary feasibility constraints as well as arbitrary bidder
correlation, removing the non-degeneracy assumption. Of course, the expected rev-
enue extracted by our mechanisms cannot possibly always be as high as the expected

maximum social welfare (as it happens in Cremer-McLean and McAfee-Reny) as they

07y fact, the allocation rule of [CDW12a] has even stronger structure in that each item is inde-
pendently allocated to the bidder whose virtual value for that item is the highest, and moreover
the random mapping defining virtual values for each item simply irons a total ordering of all bidder
types that depends on the underlying distribution. This result is also included in Chapter 3.

32

also apply to independent bidders, but our characterization is still quite simple: the
optimal auction randomly maps pairs of actual bids and possible alternative bids
to second-order bids. Then, the second-order bids are combined (based on the un-
derlying bidder correlation) to form virtual bids, and the virtual-welfare-maximizing

allocation is chosen.

2.4.2 Algorithmic Results

The computer science community has contributed computationally efficient solutions
to special cases of the MDMDP in recent years. Many are constant factor approx-
imations [Alall, BGGM10, CHK07, CHMS10, KW12]. These results cover settings
where the bidders are unit-demand (or capacitated-additive) and the seller has ma-
troid or matroid-intersection constraints on which bidders can simultaneously receive
which items. All these settings are special cases of the MDMDP framework solved in
this thesis.!! In even more restricted cases near-optimal solutions have already been
provided. Tools are developed in [CD11, CH13, DW12] that yield solutions for simple
cases with one or few bidders. Cases with many asymmetric independent bidders is
considered in [AFH*12]. They studied the case where F ensures that at most & items
are awarded, subject to a matroid constraint on the served bidders is solved. Our
computational results push far beyond existing results, providing a computationally

efficient solution in multi-dimensional settings with arbitrary feasibility constraints.

2.4.3 Black-box Reduction in Mechanism Design

One appealing feature of our result is that our reduction from approximate revenue
optimization to non-truthful welfare approximation is black-box. Such reductions
have been a recurring theme in mechanism design literature but only for welfare,
where approximation-preserving reductions from truthful welfare maximization to

non-truthful welfare maximization have been provided [BKV05, BLP06, HL10, DR10,

11 Again, in some of these results [Alall, BGGM10] bidders may also have budget constraints,
which can be easily incorporated to the MDMDP framework without any loss, as is shown in Sec-
tion 5.3, and some replace BIC with DSIC [Alall, CHK07, CHMS10, KW12].

33

BH11, HKM11]. The techniques used here are orthogonal to the main techniques of
these works. In the realm of black-box reductions in mechanism design, our work is
best viewed as “catching up” the field of revenue maximization to welfare maximiza-

tion, for the settings covered by the MDMDP framework.

2.5 Preliminaries and notation

We denote the number of bidders by m, the number of items by n. To ease notation,
we sometimes use A (B, C, etc.) to denote the type of a bidder, without emphasizing
whether it is a vector or a scalar. The elements of Xx;T; are called type profiles,
and specify a type for every bidder. We assume type profiles are sampled from a
distribution D over x;T;. For independent bidders, we use D_; to denote the marginal
of D over the types of all bidders, except bidder i. For correlated bidders, we use
D_;(7;) to denote the conditional distribution over the types of all bidders except for i,
conditioned on bidder ¢’s type being v;. We use ¢; for the random variable representing
the type of bidder ¢. So when we write Pr[t; = A], we mean the probability that bidder
t’s type is A. In Section 2.7, we discuss how our algorithms access distribution D.

We let A = [m] x [n] denote the set of possible assignments (i.e. the element
(i,7) denotes that bidder ¢ was awarded item 7). We call (distributions over) sub-
sets of A (randomized) allocations, and functions mapping type profiles to (possibly
randomized) allocations allocation rules. We call an allocation combined with a price
charged to each bidder an outcome, and an allocation rule combined with a pricing
rule a (direct revelation) mechanism. As discussed in Section 2.2, we may also have a
set system F on A (that is, a subset of 24), encoding constraints on what assignments
can be made simultaneously by the mechanism. F may be incorporating arbitrary
demand constraints imposed by each bidder, and supply constraints imposed by the
seller, and will be referred to as our feasibility constraints. In this case, we restrict all
allocation rules to be supported on F.

The reduced form of an allocation rule (also called the interim allocation rule) is

a vector function 7 (-), specifying values m;;(A), for all items j, bidders i and types

34

A € T;. w;;(A) is the probability that bidder i receives item j when truthfully
reporting type A, where the probability is over the randomness of all other bidders’
types (drawn from D_; in the case of independent bidders, and D_;(A) in the case of
correlated bidders) and the internal randomness of the allocation rule, assuming that
the other bidders report truthfully their types. For single-item reduced forms, we
omit the subscript j for convenience. When bidders are i.i.d., we say a reduced form
is bidder-symmetric if m;(A) = 7y (A) for all 4,7’ € [n] and any type A. Sometimes, we
will want to think of the reduced form as a ny .-, |T;|-dimensional vector, and may
write 7 to emphasize this view. To ease notation we will also denote by T :=n), |T;|.

Given a reduced form 7, we will be interested in whether the form is “feasible”,
or can be “implemented.” By this we mean designing a feasible allocation rule M
(i.e. one that respects feasibility constraints F on every type profile with probability
1 over the randomness of the allocation rule) such that the probability M;;(A) that
bidder i receives item j when truthfully reporting type A is exactly m;;(A), where the
probability is computed with respect to the randomness in the allocation rule and the
randomness in the types of the other bidders, assuming that the other bidders report
truthfully. While viewing reduced forms as vectors, we will denote by F(F,D) the
set of feasible reduced forms when the feasibility constraints are F and consumers
are sampled from D.

A bidder is additive if her value for a bundle of items is the sum of her values for
the items in that bundle. If bidders are additive, to specify the preferences of bidder
i, we can provide a valuation vector ¥;, with the convention that v;; represents her
value for item j. Even in the presence of arbitrary demand constraints, the value
of additive bidder i of type ¥; for a randomized allocation that respects the bidder’s
demand constraints with probability 1, and whose expected probability of allocating
item j to the bidder is %;;, is just the bidder’s expected value, namely > ; Vij*Tij. The
utility of bidder ¢ for the same allocation when paying price p; is just > 5 Vig " Tij — Pi-

Throughout this thesis, we denote by OPT the expected revenue of an optimal
solution to MDMDP. Also, most of our results for this problem construct a fully

polynomial-time randomized approrimation scheme, or FPRAS. This is an algorithm

35

that takes as input two additional parameters €,7 > 0 and outputs a mechanism (or
succinct description thereof) whose revenue is at least OPT — ¢, with probability at
least 1—7 (over the coin tosses of the algorithm), in time polynomial in n), |T;[, 1/e,
and log(1/n).

Some arguments will involve reasoning about the bit complezrity of a rational
number. We say that a rational number has bit complexity b if it can be written with
a binary numerator and denominator that each have at most b bits. We also take the
bit complexity of a rational vector to be the total number of bits required to describe
its coordinates. Similarly, the bit complexity of an explicit distribution supported on
rational numbers with rational probabilities is the total number of bits required to
describe the points in the support of the distribution and the probabilities assigned to
each point in the support. For our purposes the bidder distributions Dy, ..., D,, are
given explicitly, while D = x;D; is described implicitly as the product of Dy, ..., D,,.

Also, for completeness, we formally define in Section 2.6 the standard notion of
Bayesian Incentive Compatibility (BIC) and Individual Rationality (IR) of mech-
anisms for independent bidders, and state a well-known property of the Ellipsoid

Algorithm for linear programs.

2.6 Details from Preliminaries

We provide a formal definition of Bayesian Incentive Compatibility and Individual
Rationality of a mechanism for independent bidders and state a well-known property
of the Ellipsoid Algorithm. For completeness, we provide an additional proposition
showing a standard trick that can force the Ellipsoid algorithm to always output a

corner.

Definition 1. [DW12/(BIC/e-BIC Mechanism) A mechanism M is called e-BIC iff
the following inequality holds for all bidders i and types 7;, 7] € T;:

Ee_sno_ [Ui(mi, Mi(7i 5 220))] 2 Ee_iop_, [Ui(7i, Mi(7] 5 1-3))]—€Umax-max {1, > i
j

36

where:

o U;(A, M;(B ; t_;)) denotes the utility of bidder i for the outcome of mechanism
M if his true type is A, he reports B to the mechanism, and the other bidders

report t_;;

® U 1S the mazimum possible value of any bidder for any item in the support

of the value distribution; and

° wf;f’ (A) 1is the probability that item j is allocated to bidder i by mechanism M if
bidder i reports type A to the mechanism, in expectation over the types of the
other bidders, assuming they report truthfully, and the mechanism’s internal

randomness.

In other words, M is e-BIC iff when a bidder i lies by reporting 7] instead of his true
type 7;, she does not expect to gain more than €vya, times the maximum of 1 and the

expected number of items that 7! receives. A mechanism is called BIC iff it is 0-BIC.'?
We also define individual rationality of BIC/e-BIC mechanisms:

Definition 2. A BIC/e-BIC mechanism M is called interim individually rational
(interim IR) #ff for all bidders i and types 7; € T;:

Et_,-N‘D_,- [Ui(Tin‘i(Ti) t—i))] 2 O’

where U;(A, Mi(B ; t_;)) denotes the utility of bidder i for the outcome of mechanism
M if his true type is A, he reports B to the mechanism, and the other bidders report
t_;. The mechanism is called ex-post individually rational (ex-post IR) iff for all
i, 7 and t_;, Ui(mi, Mi(7; ; t—;) > O with probability 1 (over the randomness in the

mechanism,).

12Strictly speaking, the definition of BIC in [DW12] is the same but without taking a2 max with
1. We are still correct in applying their results with this definition because any mechanism that is
considered e-BIC by [DW12] is certainly considered e-BIC by this definition. We basically call a mech-
anism e-BIC if either the definition in [BH11, HKM11, HL10] (¢vmax) or [DW12] (evmax E]. 735 (Ws))
holds.

37

Theorem 1. [FEllipsoid Algorithm for Linear Programming/ Let P be a convez poly-
tope in RY specified via a separation oracle SO, and &- be a linear function. Assume
that all coordinates of @ and b, for all separation hyperplanes @- T < b possibly output
by SO, and all coordinates of ¢ are rational numbers of bit complezity ¢. Then we
can run the ellipsoid algorithm to optimize ¢ - & over P, maintaining the following

properties:
1. The algorithm will only query SO on rational points with bit complezity poly(d, £).

2. The ellipsoid algorithm will solve the Linear Program in time polynomial in d, £

and the runtime of SO when the input query is a rational point of bit complerity

poly(d, £).
3. The output optimal solution is a corner of P.13

Proposition 1. Let @ be a d-dimensional vector, whose coordinates are rational num-
bers of bit complexity £y, P be a d-dimensional convez polytope, in which all coordi-
nates of all corners are rational numbers of bit complezity €s. Then we can transform
a into a new d-dimensional vector I_;, whose coordinates are all rational numbers of
bit complezity d(€1 + 1) + (2d* + 1)€ + 1, such that * = argmaxgz.p b- T is unique.

Furthermore,

Proof. Let a; = p;/q;, where both p; and ¢; are integers with at most ¢, bits. Now
change the a;’s to have the same denominator @ = Il;¢;. So a; = p,/Q, where p, =
pill;2:q;. Both Q and p) have at most d¢; bits. Let now b; = (p}+2~(+e+@db+1)1) /0
So b; can be described with d(¢; + 1) + (2d% + 1)¢; + 1 bits.

Now we will argue that, for any rational vector Z # 0, whose coordinates can
be described with at most 2¢; bits, b-z # 0. Let z; = r;/s;, where both r; and s;
are integers with at most 2¢; bits. Now modify z; to be 7;/S, where S = II;s; and

r; = r;illjzs;. Both S and 7 have at most 2d¢; bits. Now consider the fractional

13This is well-known, but also proved in Proposition 1 for completeness.

38

partsof @ - S - (5 Z), which is

d
Z 9—(1+€2+(2dl2+1)-4) | T;-

i=1

But this equals to 0 only when 7; = 0 for all i. Thus, if Z' # 0,b-% # 0.

Next, we argue that, if £ and ¥ are two different vectors, whose coordinates can
be described with £, bits, b- % # b- . This is implied by the above argument, since
all coordinates of ¥ — ¥ can be described with at most 2¢; bits. So there is a unique
optimal solution to maxzep b- Z. Call that solution Z*.

Now we show that * is also an optimal solution for maxzep @ - £. We only need
o argue that if corner Z is not optimal for &, it will not be optimal for b. First, it is
not hard to see that for corners ¥ and %, if @- (¥ —¢) # 0, a- (¥ —¢) > ?ﬂ%@ Second,
for any corner Z,
9—(1+82+(2db2+1)-4)

1
L of2 -
2) 2% < Stmamp-

l(l'»'—*)-flsz

!

SoifG-%>a-7,b-Z is still strictly greater than b- ij. Thus, #* must be an optimal

solution for maxzep @ - . O

2.7 Input Model

We discuss two models for accessing a value distribution D, as well as what modifi-

cations are necessary, if any, to our algorithms to work with each model:

e Exact Access: We are given access to a sampling oracle as well as an oracle

that exactly integrates the pdf of the distribution over a specified region.

e Sample-Only Access: We are given access to a sampling oracle and nothing

else.

The presentation of this thesis focuses on the first model. In this case, we can exactly

evaluate the probabilities of events without any special care. If we have sample-only

39

access to the distribution, some care is required. Contained in Appendix A of [DW12]
is a sketch of the modifications necessary for all our results to apply with sample-
only access. The sketch is given for the item-symmetric case, but the same approach
will work in the asymmetric case. Simply put, repeated sampling will yield some
distribution D’ that is very close to D with high probability. If the distributions are
close enough, then a solution to the MDMDP for D’ is an approximate solution for
D. The error in approximating D is absorbed into the additive error in both revenue

and truthfulness.

2.8 A Geometric Algorithm

Carathéodory’s theorem states that every point Z inside an n-dimensional polytope
P can be written as a convex combination of at most n + 1 corners of P. In this
section, we provide an efficient algorithm for coming up with such a combination.
We will consider polytopes that are described as an intersection of half-spaces. Each
half-space is defined by a hyperplane h together with a choice of a side. We use B(P)
to denote the set of half-spaces, but overload notation using B(P) to also denote the
set of boundary hyperplanes of the polytope P. We reserve the symbol h to denote
hyperplanes. In addition, we consider cases where | B(P)| may be exponentially large,
and we only have an implicit description of B(P). That is, we have access to a
boundary oracle BO that outputs yes on input h if A € B(P), and no otherwise. We
also have access to a separation oracle, SO, that outputs yes on input Z if ¥ € P,
and outputs some h € B(P) if £ is on the wrong side of A (and therefore not in P).

We will talk about one more algorithm related to P:

Definition 3. CO is a corner oracle for P if it has the following behavior. Given as
input a set of hyperplanes B, CO outputs no if B ¢ B(P), or (ﬂhEB R)NP =0 (ie.
the hyperplanes are not boundary hyperplanes of P, or they are boundary hyperplanes,

but do not intersect inside P). Otherwise, CO outputs a corner of P inside (), h.

}43uch an algorithm is in fact quite standard, given a separation oracle. We include it just for
completeness.

40

It is clear that C'O has well-defined behavior on all inputs. If B contains only
boundary hyperplanes of P, and the intersection of these hyperplanes with P is non-
empty, this region must contain a corner of P. Now we describe our algorithmic

problem in terms of these algorithms:

Question 1. Given as input a boundary oracle, BO, separation oracle SO, and
corner oracle CO for some n-dimensional polytope P, and a point T, output no if
T ¢ P. Otherwise, output cy,...,Chy1, G1,---,0ny1 Such that @; is a corner of P for

all 'i, Zz C; = 1, and chﬁaﬁ =T

It follows from Carathéodory’s theorem that such ¢;, @; exist whenever £ € P. We
provide an algorithm to find such a solution whenever it exists. At a high level, we
begin with the input £ and maintain at all times two points ¥ € P, Z € P, such that
T =cy+ (1 —c)Z, for some c € [0,1]. After step ¢ of the algorithm is completed, 7 is
the convex combination of at most ¢ corners of P, and Z lies in the (n —t)-dimensional
intersection of ¢ hyperplanes of B(P). Hence, after at most n steps, z’ will lie in a
0-dimensional space, and therefore must be a corner, so the algorithm will terminate
after at most n + 1 steps.

To go from step t to step ¢ + 1, we pick an arbitrary corner, d;, that lies in the

intersection of the ¢ hyperplanes where 2" lies. Then, we let ¢; be as large as possible

(1—2 i<t Cj)f—-cr&'t

l—c: —ZJ-« ¢j

without pushing the point outside of P. We update Z to Zpew =

(1-3",c¢ ¢j)Zola—ce-dr
1-c—=3 5t S

and update 4 appropriately to include @, in its convex combination
of corners. The new Z must lie at the intersection of the original ¢ hyperplanes where
the old Z’ lied, as well as a new h € B(P) that stopped us from further increasing
c;. Below is a formal description of the algorithm. In the description, E denotes the
set of hyperplanes whose intersection contains Z’ (the empty intersection is the entire

space).

Theorem 2. Let P be a n-dimensional polytope with corner oracle CO and separation
oracle SO such that each coefficient of every hyperplane ever output by SO is a
rational number of bit complezity b. Then Algorithm 1 decomposes any point & € P

into a convex combination of at most n + 1 corners of P. Furthermore, if £ is the

41

Algorithm 1 Algorithm for writing £ as a convex combination of at most n + 1
corners

1: Initialize: i:=1,7:=0,Z:=%, E:=0,¢,:=0,d;:=0Vi € [n+1].

2: Invariants: c:= Y, ¢, §:= 3, cidi, or 0ifc=0,cf+(1—c)z=1%.

3: if SO(Z) # yes then

4: Output no.

5. end if

6: while c < 1 do

7. Set a@; := CO(E).

8: if d; = Z then

9: Set ¢;:=1—c.

10: Output Cly---5Cntl, &'1,...,d’n+1.

11: else

12: Set D := max{d| (1 + d)Z — da; € P}.

13: Set E; = SO((1+ D + €)Z — (D + €)a;) for sufficiently small € > 0. /* the
appropriate choice of € is explained in the proof of Theorem 2%/

14: Update: ¢; := (1 - H_LD)(I —c), Z:= l—lc_—cc."g_ ol ¥ = gV + s
c=c+c, F=FUEFE;,i:=1+1.

15: end if

16: end while

mazimum number of bits needed to represent a coordinate of ¥, then the runtime
is polynomial in d,b, € and the runtimes of SO and CO on inputs of bit complezity
poly(n, b, ?).

Proof. First, we describe how to execute Steps 12 and 13 of the algorithm, as it is
clear how to execute every other step. Step 12 can be done by solving a linear program
using SO. Explicitly, maximize d subject to (1 + d)Z — da; € P. For Step 13, we
will explain later in the proof how to choose an € small enough so that the following

property is satisfied:
(P): for all h € B(P) and for whatever D is computed in Step 12 of the algorithm,
if (1 + D)Z — Dd; is not contained in h, then (1 + D + €)Z — (D + €)@; is on the
same side of h as (1 + D)z — Da,.

We will explain later why (P) suffices for the correctness of the algorithm, how to

choose an € so that (P) holds, and why its description complexity is polynomial in n
and b.

We start with justifying the algorithm’s correctness, assuming that € is chosen so

42

that (P) holds. We observe first that 3 . ¢; < 1 always. If the algorithm ever increases
¢, it is because 2’ # @;. If this is the case, then D from Step 12 will have some finite
positive value. So (1 — ﬁ)(l —¢) < 1 — ¢, and adding ¢; to ¢ will not increase c
past 1. We also observe that all the invariants declared in Step 2 hold throughout the
course of the algorithm. This can be verified by simply checking each update rule in
Step 14. Finally, we argue that every time the algorithm updates E, the dimension of
Nieg b decreases by 1, and ([,cgh) N P # 0 is maintained. Because d@; and Z both
lie in), When Step 13 is executed, none of the hyperplanes in this intersection can
possibly be violated at (14 D +¢€)Z— (D + €)a;. Therefore, the hyperplane output by
SO((1+ D+ €)Z— (D + €)d;) must reduce the dimension of {),.5 h by 1 when added
to E at Step 14. Furthermore, because E; is violated at (1 + D + €)Z— (D +¢€)@;, but
not at (1+ D)Z — Da;, it must be the case that (1 + D)z — Dad lies in the hyperplane
E;. (This holds because we will guarantee that our e satisfies Property (P), described
above.) Because this point is clearly in P, in the hyperplane E;, and in all of the
hyperplanes in E, it bears witness that we maintain (), .5 k) | P # 0 always. Hence
after at most n iterations of the while loop, the dimension of the remaining space is
0, and we must enter the case where @; = Z. The algorithm then exits outputting a
convex combination of corners equaling Z.

It remains to argue that a choice of € satisfying Property (P) is possible. Assuming
the correctness of our algorithm, we show first that all the coefficients ¢; computed
by the algorithm have low bit complexity. Indeed, let b; = (@, 1) for all i. Once we

know the algorithm is correct, the ¢;’s satisfy

S b = (@), (2.1)

B
where ¢; and @; are outputs of our algorithm. We will argue that, for these d;s, the
above system of linear equations has a unique solution. If not, let ¢ and ¢’ be two
different solutions, and d; = ¢; — ¢,. We will show by induction on ¢ that d; = 0 for
all i. In the base case, consider the hyperplane in ;. We can write a corresponding

(n+1) dimensional vector #1, such that for all 2 € P, (.757, 1)-#; €0, and for all i > 1,

43

l_); -1y = 0. But 51 -1, # 0, otherwise, for any D, (1 + D)z — Dd, does not violate the
constraint in £;. On the other hand,). d,-l_;i -t; = 0, therefore d; = 0. Now assume
when i < k, d; = 0, we will argue that dy = 0. Let #; be the corresponding vector for
the hyperplane in Ej. For any j > k, by -ty = 0, and by the Inductive Hypothesis, for
any ¢ < k, d; = 0, therefore dkgk -1 = 0. But we know Ek -t # 0, otherwise, for any
D, (14 D)z — Daj, does not violate the constraint in Ex. So dx = 0. Thus, d; = 0 for
all 4.

So we have argued that the ¢;s are in fact the unique solution to the above linear
system. We also know that the corners d@; (in fact all corners of the polytope) have
poly(n,b) bit complexity. Applying the theory of Gaussian elimination, we deduce
that each c; can be described using no more than poly(n,b) bits, so the coefficients
output by our algorithm have low bit complexity. Hence the 2z maintained by the
algorithm has poly(n,b) bit complexity. So the intersections dj, of the ray R(d) =
{(1 + d)Z — da;} with the hyperplanes h € B(P) that do not contain both 7 and a;
(and hence the whole ray) also have poly(n,) bit complexity. This guarantees that
we can chose € to be 27PW (™) to satisfy Property (P).

The above reasoning justifies the correctness of the algorithm. It is also now clear
that every step runs in time polynomial in b, nn, the runtime of SO and the runtime
of CO, and each step is executed at most n + 1 times. So the entire algorithm runs

in polynomial time. 0

44

Chapter 3

Feasibility of Single-Item Reduced

Forms

In this chapter, we study the feasibility of single-item reduced form auctions. For a
single item and independent (but not necessarily identically distributed) bidders, we
show that any feasible reduced form auction can be implemented as a distribution over
hierarchical mechanisms. We also give a polynomial-time algorithm for determining
feasibility of a reduced form auction, or providing a separation hyperplane from the
set of feasible reduced forms.

We overview our results in Section 3.1. We start with the special case when
bidders are i.i.d., and the reduced form is bidder-symmetric. Then, we generalize
our result to the case when bidders are independent but not identical. In the end,
we provide a stronger characterization result for implementing a single-item feasible
reduced form auction. We show that any single-item feasible reduced form auction
can be implemented as a distribution over hierarchical mechanisms which respect the
same ordering of types. Section 3.2 provides the full proof for the special case when
bidders are i.i.d., and the reduced form is bidder-symmetric. Section 3.3 provides
details for the case that bidders are independent. Section 3.4 provides the full proof

for the strong characterization result for implementing single-item reduced forms.

45

3.1 Overview of Our Results

Single-item, Bidder-Symmetric Reduced Forms, i.i.d. Bidders

In the case of a single item and i.i.d. bidders, Border provided a necessary and
sufficient condition for a bidder-symmetric reduced form to be feasible, generalizing
prior partial results of Maskin-Riley [MR84] and Matthews [Mat84]. Let us review

Border’s theorem.

Theorem 3 ([Bor91]). Suppose that the bidder’s types are i.i.d. distributed according

to some measure p over T. Then a bidder-symmetric reduced form = is feasible if an

only if
VSCT: m- / x()du(t) < 1— (1 — u(S)™. (3.1)
S

Simply put, a reduced form is feasible if and only if the probability that the item is
awarded to a type in some set S (as computed by the reduced form) is at most the
probability that someone with type from S shows up to the auction (as computed by
the type distribution), for all subsets of types S C T. We call a set that violates this
condition a constricting set. Clearly, the existence of a constricting set bears witness
that the reduced form is infeasible, as the auctioneer cannot possibly award the item
to someone in S if no one in .S shows up. Border’s theorem states that this is in fact
a sufficient condition.

Border’s original paper considered continuous type spaces (hence the integral
in (3.1)), and the proof was based on measure theory. The following extension of
the theorem was also shown: If there exists a constricting set S, then there is also a
constricting set of the form S,, where S, = {A|n(A) > z}, for some z. In the case of
finite type spaces, we can determine the feasibility of a reduced form auction in time
O(clog c-+c-m), where ¢ = |T|, as after sorting the type space in decreasing 7’s there
are only c¢ different subsets of the form S, and a dynamic program can find us if any
of them violates (3.1) in time O(c - m). In other words, determining the feasibility

of a bidder-symmetric reduced form, for a single item, and many i.i.d. bidders is

46

easy. However, the following important question was left unanswered: Given a fea-
sible reduced form, can we efficiently obtain a mechanism implementing the reduced
form? Notice that answering this question in the affirmative is absolutely necessary
to be able to run the auction specified by the reduced form. Our first contribution is

solving this problem.

Theorem 4. Under the same assumptions as Theorem 3, given a bidder-symmetric
single-item reduced form we can determine if it is feasible, or find a hyperplane sepa-
rating it from the set of feasible bidder-symmetric reduced forms, in time O(c- (logc+
m)), where ¢ = |T|. If the reduced form 1is feasible, we provide a succinct description
of a mechanism implementing the reduced form, in time polynomial in c-m. The
description of the mechanism is just (at most) ¢ + 1 probabilities and an equal num-
ber of orderings of T. ! The mechanism itself runs as follows: given the reported
type profile, the mechanism samples a random subset of bidders in time polynomial in
O(cm), and the item is allocated uniformly at random to some bidder in that subset,

or the item is thrown away.

We prove Theorem 4 in Section 3.2, as a corollary of Proposition 2 and Theorem 2
of Section 3.2 and 2.8 respectively. In proving our result, we consider the following

type of mechanisms:

Definition 4. A hierarchical mechanism consists of a function H : T — [c] U
{LOSE}; one should interpret LOSE as a value larger than c. On bid vector (A4, ..., An),
the mechanism has the following behavior: If H(A;) = LOSE for all i, the mecha-
nism throws the item away. Otherwise, the item is awarded uniformly at random to

a bidder in argmin; H(A;).

In other words, a hierarchical mechanism breaks down the type space into a hierarchy.
When the bidders arrive and submit their types, the mechanism finds the highest-
priority level of the hierarchy that is populated by the submitted types, and gives the
item uniformly at random to a bidder whose type falls in that level of the hierarchy

(unless every bidder is a loser, in which case the mechanism throws the item away).

' An ordering may have equalities, but must be total (compare every pair of elements in T).

47

We say that a hierarchical mechanism H is well-ordered w.r.t. « if: w(A) > n(4’) =
H(A) < H(A'). We prove the following characterization result about feasible bidder-

symmetric reduced forms:

Theorem 5. When bidders are i.i.d., every feasible bidder-symmetric single-item
reduced form w can be exactly implemented as a distribution over at most ¢ + 1 well-

ordered with respect to m hierarchical mechanisms.

Theorem 5 alone is not enough to allow us to implement a given bidder-symmetric
reduced form. Indeed, if 7(-) takes 6 (can be as large as c) distinct values, there are
2% different well-ordered w.r.t. = hierarchical mechanisms. From here, we switch to
our vector-view of reduced forms (as vectors # in [0, 1]'71) and study the geometry
of the space of feasible mechanisms respecting the order on the type-space induced
by a given reduced form 7, which we will call P. We show that, in fact, P is a
g-dimensional polytope whose corners are ezactly the 2° different well-ordered w.r.t.
hierarchical mechanisms. Using the geometric algorithm in Section 2.8 we can
decompose 7 into a convex combination of at most ¢ + 1 corners of P in polynomial
time. This convex combination is exactly a distribution over well-ordered w.r.t. #
hierarchical mechanisms that implements 7. The geometric algorithm runs in time
poly(m,c), and sampling from the distribution output by our algorithm takes time
O(c). We provide the details of our approach and proofs of the relevant claims in

Section 3.2 and 2.8.

Single-item Reduced Forms, Non-i.i.d. Bidders

Recently, an alternative proof of Border’s theorem for distributions with finite support
was discovered in [Bor07] and again in [CKM11], the latter using a clean network-flow
interpretation. These proofs extend Theorem 3 to independent, but not necessarily
identical, bidders and non-symmetric reduced forms. In this case, (3.1) is replaced

by the following necessary and sufficient condition:

VS1C Ty S ST D Y mi(A) Prfti= Al < 1- [J(1 - Prlt; € Si)). (3:2)
. i A€eS; i

48

The interpretation of the LHS and RHS of the above inequality is the same as the
one given above for (3.1) except generalized to the non-iid non-symmetric setting. In
addition to the above condition, [CKM11] proves a generalization of Border’s extended
result: If there is a constricting S = (S1,...,Sm), then there is also a constricting
set of the form &' = (S, ..., 5™, where S = {4 € Tj|m;(A) > z;}. In other
words, each bidder has a different threshold z;, and Sg(f,.) contains all types of bidder 3
with ; above z;. Unfortunately, despite this simplification, there are still [,(|7;|+1)
possible constricting sets, and testing each of them would take time exponential in
the number of bidders.

One might hope to obtain a stronger theorem that would only require testing a
number of sets polynomial in ¢ and m. We prove such a theorem by introducing a
notion of a virtual 7, defined next. We name it such not because the equation involves
hazard rates or looks anything like that for virtual valuations [Mye81], but because
the spirit of the transformation is the same. Myerson observed that he could make
the most revenue not from the bidder with the highest valuation, but from the bidder
with the highest virtual valuation. Likewise, in our setting, the most difficult types
to satisfy are not the types with the highest #, but the types with the highest virtual

7. The definition of virtual 7, which we denote 7, is actually quite simple.

Definition 5. If 7 is a reduced form, we define its corresponding virtual reduced

form # as follows: for all i and type A € T;, 7:i(A) := Pr[mi(t:) < m(A)|mi(A).

It turns out that this definition exactly captures which types of different bidders are
harder to satisfy. In the bidder-symmetric case of Section 3.1, we were able to compare
a pair of types A and B submitted by bidders ¢ # k based only on their corresponding
7;(A) and 7 (B). This is no longer the case in the non-iid case, resulting in the more
complicated constricting sets defined above. Nevertheless, we show that A and B can

be compared at face value of 7;(A) and 7, (B):

Theorem 6. Suppose that the bidders are independent and there is a single item for

sale. A reduced form = is feasible if and only if: for all x, the sets 59 = {A €

49

Ti|7:i(A) > =} satisfy:

> > m(A)Prfti = Al <1 -1 - Prlt; € S9)). (3.3)

i aes® i

In particular, we can test the feasibility of a reduced form, or obtain a hyperplane

separating the reduced form from the set of feasible reduced forms, in time linear in

2% |l - (log (0 |Tal) + m).

Details of the proof can be found in Section 3.3. We also prove there two analogues
of Theorem 5 in this setting: Theorem 7, which is used for our algorithmic results,
and Theorem 9, which provides a much stronger characterization. The analog of

Definition 4 is the following:

Definition 6. A hierarchical mechanism consists of a function H : |J,(T; x
{i}) = 22; ITi[JU{LOSE}; one should interpret LOSE as a value larger than 3", |T;|.
On bid vector (Ai,...,Am), if H(A;, i) = LOSE for all i, the mechanism throws
the item away. Otherwise, the item is awarded uniformly at random to a bidder in

argmin; H(A;, 7).

We say that a hierarchical mechanism H for non-identical bidders is partially-
ordered w.r.t. 7 if for all i and A, A" € T}, m(A) > m;(A') = H(A,i) < H(A',1). We
say that a hierarchical mechanism is strict if for all bidders ¢, and types A € T}, B €
Tj: i#j= (H(Ai)# H(B,j)Vv H(A,i) = H(B,j) = LOSE) (i.e. there is always
a unique winner in argmin; H(A;,) if one exists, because each level (except possibly
for LOSE) contains types from only a single bidder). Our algorithmic extension of

Theorem 5 is the following:

Theorem 7. When bidders are independent, but not necessarily identically distributed,
every feasible single-item reduced form n can be ezactly implemented as a distribution

over at most) . |T;| + 1 strict, partially-ordered w.r.t. m hierarchical mechanisms.

From here, we take the same geometric approach as in Section 3.1 and study the

geometry of the set of feasible reduced forms that respect the partial-ordering of types

30

induced by a given reduced-form . Again we show that this is a (>, d;)-dimensional
polytope, P, where d; (could be as large as |T;|) is the number of distinct values
that m;(-) takes on input from Tj, and that the corners of P are ezactly the strict,
partially-ordered w.r.t. @ hierarchical mechanisms. Writing a point in P as a convex
combination of), |Tj| + 1 corners is no longer an easy procedure. Not only does P
have an exponential number of corners, but there are also exponentially many hyper-
planes defining the boundary of P (where there were only 2- ¢ such hyperplanes in the
i.i.d. case). Luckily, Theorem 6 provides an efficient separation oracle for membership
in P. By making use of this separation oracle instead of checking the exponentially-
many boundary equations one by one, the geometric algorithm of Section 2.8 outputs
a representation of a given 7 as a convex combination of at most Y. |T;| + 1 cor-
ners of P, which is exactly a distribution over the corresponding), |T;| + 1 strict,
partially-ordered w.r.t. = hierarchical mechanisms. Putting this approach together

with Theorems 6 and 7, we obtain in Section 3.3 the algorithmic result of this section:

can determine if it is feasible, or find a hyperplane separating it from the set of
feasible reduced forms, in time linear in Y. |T;| - (log 3°; |T;|) +m). If the reduced
form is feasible, we can compute a succinct description of a mechanism tmplementing
the reduced form, in time polynomial in Y . |T;|. The description of the mechanism
is just (at most) >, |T;| + 1 probabilities and the same number of total orderings of
U, (Ti x {i}). The mechanism itself runs as follows: given the reported type profile, the
mechanism samples a random total ordering of all bidders’ types in time O(>_, |T;|),
and allocates the item to the bidder whose reported type is highest in that ordering,

or throws the item away.

While Theorem 7 does provide some structure to the otherwise unknown set of
feasible mechanisms for independent bidders, the result is not as compelling as that
of Theorem 5. One might have hoped that every feasible reduced form can be im-
plemented as a distribution over virtually-ordered hierarchical mechanisms (that is,

hierarchical mechanisms such that #;(A4) > #;(B) = H(A,i) < H(B,j)). Unfortu-

51

nately, this is not true, as is shown in Section 3.3. Despite this, we show that a strong
generalization of Theorem 5 holds in this setting. Let o be a total ordering on the
elements of | J;(T; x {i}) (i.e. a mapping o : |J,(T; x {i}) — [>, |T:|]). We say that
o respects 7 if m;(A) > m(B) = 0(A,i) < o(B,i). We also say that a hierachical
mechanism H is o-ordered if 0(A4,7) < 0(B,j) = H(A,i) < H(B,j). We prove the

following theorem:

Theorem 9. If a single-item reduced form w is feasible, there exists a total ordering
o on the elements of | J,(T; x {i}) that respects w such that = can be implemented as

a distribution over o-ordered hierarchical mechanisms.

We provide the proof of Theorem 9 in Section 3.4.

3.2 Single-item, I.1.D. Bidders, Bidder-Symmetric

Reduced Forms

We provide the details and proofs of the techniques discussed in Section 3.1 for single-
item, i.i.d. bidders, and bidder-symmetric reduced forms, beginning with some tech-

nical lemmas.

Lemma 1. Every feasible bidder-symmetric reduced form auction © for i.i.d. bidders
and a single item can be implemented (not necessarily exactly implemented) as a

distribution over well-ordered w.r.t. 7 hierarchical mechanisms.

Proof. Our proof is by induction on the number of distinct non-zero values in {7 (A4)} a7
Base Case: There is a single non-zero value in this set, equal to some £ < 1. The
mechanism that gives the item uniformly at random to a bidder whose reported type
A satisfies m(A) = x (if such bidder shows up) implements this reduced form as long
as it is feasible.
Inductive Hypothesis: For all 0 < k < 6, every feasible reduced form with k distinct
non-zero values in {7(A)} aer can be implemented as a distribution over well-ordered

w.r.t. 7 hierarchical mechanisms.

52

Inductive Step: We show that the inductive hypothesis extends to the case where
there are exactly 6 distinct non-zero values in {7(A)}aer. Let X denote the set of
all distributions over well-ordered w.r.t. 7 hierarchical mechanisms. Then X can
be interpreted as a closed, bounded subset of R20, where each coordinate denotes
the probability of using one of the 2¢ well-ordered w.r.t. = hierarchical mechanisms.
Therefore, X is compact. For a distribution over hierarchical mechanisms M € X,
denote by M(A) the probability that a bidder reporting type A receives the item
under M. Define the function F': X — R as:

F(M) = max{r(4) — M(A)}.

Let us use the Euclidean distance in X as a subset of R?’. As X is a compact space,
and F is a continuous function, F attains its minimum in X. Let M denote one such
minimizer of F. Then if F(M) < 0, M implements the reduced form. If F(M) > 0, we
will show a contradiction. Let S denote the subset of types argmax {w(A) — M(A4)},

i.e. the subset of types who are the most unsatisfied by M.

We show first that, if S contains every non-zero type, then the reduced form is
infeasible. We may, w.l.o.g., assume that M always awards the item to a non-zero
type if one shows up, as this will not decrease M (A) for any non-zero A. Therefore,

we know that

Z Pr[A]M(A) = Pr[see a non-zero type].
A (A)£0

However, if 7(A) — M(A) > 0 for all non-zero types, then we must have

Z Pr[A]n(A) > Pr[see a non-zero type]
Arm(A)£0
and the reduced form is infeasible. So if the reduced form is feasible, S must be
missing at least one non-zero type.
Now let s = |{m(A)}4es| be the number of distinct non-zero values assigned by 7
to types in S. We argue that s < #. To see this, it suffices to observe the following:
for all types B and B, n(B) = w(B') implies that M (B) = M (B’) (this is because, by

53

definition, all hierarchical mechanisms H in the support of M satisfy H(B) = H(B’)).
So in particular either B, B’ € S or B, B’ ¢ S, but it cannot be that one of B, B’ is
in S and the other is not. And because S is missing at least one non-zero type, s < 6.

To show a contradiction to F'(M) > 0, let us define a new reduced form =’ as

follows. For all A € S, set 7'(A) = w(A). For all A ¢ S, set

w(A) = max {x(B)},

" BeS|n(B)<r(A)

unless {B | B € SAn(B) < m(A)} is empty in which case we set 7/(A) = 0. Observe
that the number of distinct non-zero values in {7'(A)}aer is exactly s < 6. So it
follows by our inductive hypothesis that 7’ can be implemented by a distribution over
well-ordered (with respect to #’) hierarchical mechanisms. In fact, as #(4) > w(A’) =
#'(A) > w'(A"), every hierarchical mechanism that is well-ordered with respect to «’
is also well-ordered with respect to w. Call M’ the distribution over well-ordered
hierarchical mechanisms implementing #’. Now, set € = (F(M) — argmax 4¢5{m(A) —
M(A)})/2, and consider the distribution M” = (1 — €)M + eM’ (with probability
(1 — €) sample from M, with probability € sample from M’).

What is M”(A)? If A € S, then M'(A) = w(A), so M"(A) = (1—€)M(A) +em(A).
So for all A€ S, M"(A) > M(A), hence n(A) - M"(A) < F(M).

If A ¢S, then M'(A) > 0, so M"(A) > (1 — e)M(A) > M(A) — ¢, so we get
w(A) - M"(A) < w(A) — M(A)+ e < F(M). Putting both observations together, we
see that F(M") < F(M), a contradiction.

So we must have F(M) < 0, meaning M implements the reduced form, completing

the inductive step and the proof of the lemma. il

Corollary 1. Every feasible bidder-symmetric reduced form m can be exactly imple-

mented as a distribution over well-ordered w.r.t. © hierarchical mechanisms.

Proof. 1t follows from Lemma 1 that = can be implemented as a distribution over well-
ordered w.r.t. 7 hierarchical mechanisms. Let then X denote the set of distributions
over well-ordered w.r.t. 7 hierarchical mechanisms that implement 7. As in Lemma 1

the set X, viewed as a subset of R?, where 6 is the number of distinct non-zero values

94

in 7, is compact. We can also define the function G : X — R as:

G(M) = max{M(A) - n(A)}.

Equipping X with the Euclidean distance of Rzg, G is a continuous function on X.
As X is compact and G continuous, G attains its minimum in X.

We show that the minimum of G is exactly 0 (i.e. that a minimizer of G exactly
implements), following an induction similar to the one used in Lemma 1 in terms
of the number of distinct non-zero values in {n(A)}aer. We sketch the steps involved
for the inductive step. Take any minimizer M of G. If G(M) < 0, then because
M has to implement m, M must exactly implement . If G(M) > 0, then let S =
T — argmax4{M(A) — w(A)}. Then, for all A € S, define 7’(A) = w(A). For all
A ¢ S, define 7'(A) = maxpesin(B)<r(a){7(B)}, unless {B : B € SA®(B) < n(A)}
is empty, in which case set 7/(A) = 0. As argmax{M(A) — w(A)} can’t possibly be
empty the number of distinct non-zero values in {#/(A)} aer is smaller than that in
{n(A)}aer- (We still use the observation that, for all types B and B’, n(B) = n(B’)
implies that M(B) = M(B’)). The rest of the inductive step proceeds identically

with that in the proof of Lemma 1, resulting in a contradiction. Hence, it can’t be

that the minimizer of G satisfies G(M) > 0. O

To proceed we need a definition. Let >:= A; > As > ... > Ag be a total ordering
of a set Ty, := {Ay,...,Ax} of k types, and consider a setting where we have m
bidders whose types are distributed i.i.d. over Tx. We say that a bidder-symmetric
reduced form = : Ty — [0,1] respects > iff 7(A4;) > 7(A2) > ... > w(Ag). We also
say that an hierarchical mechanism H on T} is well-ordered with respect to > iff
H(A;) < H(A2) < ... < H(Ak). 2 With respect to these definitions we show the

following proposition.

2Notice that this definition of well-ordered hierarchical mechanism (with respect to >) is very
similar to its counterpart in the main body (with respect to =), but different. Being well-ordered
with respect to 7 certainly imposes the same constraints as being well ordered with respect to any
> that 7 respects. The difference is that being well-ordered with respect to = may also impose some
equality constraints, if m(4) = «(B) for types A # B.

95

Proposition 2. Consider m bidders whose types are distributed i.i.d. over T} =
{Ay,...,Ax} and a total ordering >:= Ay > Ay > ... > Ax of Tx. The set of
feasible bidder-symmetric reduced forms that respect > is a k-dimensional polytope
whose corners are ezactly the 2% hierarchical mechanisms that are well-ordered with

respect to >.

Proof. As a corollary of Theorem 3, a reduced form respects > and is feasible if and

only if

w(A;) = 7(Ai) Vi € [k]; (34)

m
> m-Pr[4jln(4;) < 1- (1 - ZPr[A]-]> Vi € [k); (3.5)
i<i Jj<i

where for notational convenience we denote 7(Ax+1) = 0. We have hence shown that
the set of feasible bidder-symmetric reduced forms that respect > is a k-dimensional
polytope.

We proceed to show that each well-ordered w.r.t. > hierarchical mechanism is
a corner. Let H be such a mechanism and 7 be the reduced form that it induces.
Then, for all ¢ (including i = k, denoting H(Ax41) = LOSE) we either have H(A;) =
H(A;11), in which case 7(4;) = 7(Ai1), or H(A;) < H(A;41), in which case i
Pr[A;j]n(A;) = 1 = (1 = 3°,.; Pr[A4;])™, because the item is always awarded to one
of the top ¢ types whenever one is present. Therefore, at least k of the inequalities
defining the polytope are tight. And it is easy to see that there is a unique reduced
form making these inequalities tight. It is also clear that every well-ordered w.r.t.
> hierarchical mechanism is inside the polytope. So every well-ordered w.r.t. >
hierarchical mechanism is a corner of the polytope.

Finally, we show that there are no other corners. Assume for contradiction that
there was a corner « of the polytope that is not a well-ordered w.r.t. > hierarchi-
cal mechanism. Then by Corollary 1, we know that 7 can be written as a convex
combination of well-ordered w.r.t. 7 hierarchical mechanisms, and hence as a convex

combination of well-ordered w.r.t. > hierarchical mechanisms. (As 7 respects > a

56

hierarchical mechanism that is well-ordered w.r.t. = will also be well-ordered w.r.t.
>). As every well-ordered w.r.t. > hierarchical mechanism is a corner of the polytope,
and 7 is not one of them, this means that = can be written as a convex combination
of other corners of the polytope, which contradicts that = is itself a corner.
Therefore we have shown that every feasible bidder-symmetric reduced form re-
specting > lies inside the afore-described polytope, every well-ordered w.r.t. > hier-
archical mechanism is a corner of this polytope, and there are no other corners. This

establishes the proposition. O

Now we can put everything together to prove Theorems 5 and 4.
Proof of Theorem 5: Suppose that the bidders’ types are sampled i.i.d. from T
according to Dj, and let 7 be a feasible bidder-symmetric reduced form. We do the
following preprocessing operation on the set of types T

TYPEMERGE: Find a maximal set of types Aj,...,As € T such that n(4;) =
... =m(Ap). Then remove types Ay, ..., A, from T and add super-type (A, ..., As)
inte T
(Aq, ..., As) with probability 3 . Pr[4;]; and set 7((Ay,..., As)) = 7(A1). Repeat
this procedure until every type in T has different 7 value, i.e. until the set {7(A4)}aer
has cardinality |T'].
Let 7", n’, D} be the type-set, reduced-form, type-distribution resulting from the

TYPEMERGE operation on input 7. We claim that:

1. #’ is a feasible bidder-symmetric reduced form for bidders sampled i.i.d. from
Di. This follows immediately from the feasibility of w. Indeed it follows from
Theorem 3 and our discussion in Section 3.1 that a sufficient condition for the
feasibility of #’ is for it to satisfy Eq. (3.1) for all subsets of types of the form
{A| Ae T An'(A) > z}. On the other hand the feasibility of = implies that =
satisfies Eq. (3.1) for all subsets of types of the form {A | A € T A#x(A) > z}.
This together with the nature of our TYPEMERGE operation implies that 7’

satisfies the afore-mentioned sufficient conditions for feasibility.

57

2. A mechanism that exactly implements n’ immediately gives a mechanism ex-
actly‘ implementing 7. Indeed, to implement © we just run the mechanism
implementing 7’ after replacing in the reported type vector every type A that

was removed from T' by TYPEMERGE by its corresponding super-type.

3. A hierarchical mechanism H’ that is well-ordered w.r.t. 7’ can be ezpanded into
a hierarchical mechanism H that is well-ordered w.r.t. . Indeed, if super-type
(A, .., Ap) replaced types Ai,...,As during the TYPEMERGE operation we
set H(A;) :== H'((Ay,...,Ap)), for alle=1,...,£. On the other hand, if a type
A belongs in both T and T”, we set H(A) := H’(A). Moreover, if 7y, g are
respectively the reduced forms induced by H’ and H, the following property
is satisfied. If super-type (A,,...,As) replaced types Ai,..., A, during the
TYPEMERGE operation, then wy(A;) := wp({Ay,...,Ap)), foralli=1,... ¢
On the other hand, if a type A belongs in both T and 7", then wg(A) = 7g(A).

Now, suppose that the cardinality of 77 is k. Given that #’ assigns a distinct
probability to every type in 77, it induces a total ordering on 7”. In particular, suppose
that T := {Ay,..., Ax}, where 7/(A1) > 7n'(42) > ... > 7'(A;). By Proposition 2,
7’ lies inside a k-dimensional polytope whose corners are exactly the 2% hierarchical
mechanisms that are well-ordered with respect to the order >:= A; > ... > A;. By
Carathéodory’s Theorem, every point in the polytope can be written as a convex
combination of at most k + 1 corners. As a convex combination of corners is exactly
a distribution over well-ordered hierarchical mechanisms w.r.t. >, we get that «’ can
be written as a distribution over hierarchical mechanisms that are well-ordered w.r.t.
>, and hence also w.r.t. #’. Now we can expand all hierarchical mechanisms in the
support of the distribution, according to the procedure described in Step 3 above, to
obtain that 7 can be written as a distribution over hierarchical mechanisms that are

well-ordered w.r.t. . OJ

Proof of Theorem j: It follows from our discussion in Section 3.1 that a bidder-

symmetric reduced form 7 is infeasible if and only if it violates Eq. (3.1) for a subset

58

of types of the form {A | A € T A#(A) > z}. Since there are at most ¢ = |T'| such
sets we can efficiently determine feasibility of a given reduced from % or provide a
hyperplane separating it from the set of feasible reduced forms.

We now need to describe how to efficiently find a mechanism implementing a
reduced form 7 that is feasible. In view of the TYPEMERGE operation defined in the
proof of Theorem 5, we can w.l.o.g. assume that 7 assigns a distinct probability to
every type in T. (Otherwise we can always run TYPEMERGE to merge types sharing
the same 7-probability to super-types and apply the procedure outlined below to the
output of the TYPEMERGE operation, and then go back to the original 7). Under
the assumption that 7 assigns distinct probabilities to all types in T', Proposition 2
implies that 7 lies inside a c-dimensional polytope, P, whose corners are the well-
ordered w.r.t. 7 hierarchical mechanisms. Therefore we can directly apply Theorem 2
of Section 2.8 to write as a convex combination of such hierarchical mechanisms,
as long as we can describe the boundary oracle BO, corner oracle CO and separation
oracle SO that are needed for Theorem 2. BO is trivial to implement, as we just
have to include in the set of halfspaces defining the boundary of P those inequalities
described in the proof of Proposition 2. For CO, on input B, we first check that
every hyperplane h € B satisfies BO(h) = yes. If not, output no. Otherwise we
need to check if (), 5 h contains a corner of P. We know that the corners of P are
exactly the well-ordered w.r.t. 7 hierarchical mechanisms. So none of the corners lies
in the intersection of the hyperplanes 7(A;) = 7(As41) and >°..;m - Pr[4;]n(4;) =
1= (1—3cPr[4;])™, for any i. (Indeed, for a hierarchical mechanism H and
its induced reduced form =, 7(A;) = w(A;y1) implies that H(A;) = H (A1), yet
Y i<im - Prl4jlm(4;) =1~ (1 = > °<; Pr[A;])™ implies H(A;) > H(Aiy1))- So, if B
contains any pair of hyperplanes of this form, output no. Otherwise, for all 7 such
that 7(A;) = 7(As41) € B, set H(A;) = H(A;41), otherwise set H(A;) = H(Ai41)—1.
This defines a well-ordered w.r.t. 7 hierarchical mechanism that is in [, ¢ g k, so have
CO output H. Finally, SO is easy to implement as we can just check each of the 2-¢
inequalities written in the proof of Proposition 2 one by one.

So because we can implement BO,CO, SO in polynomial time, we can apply

59

Theorem 2 to write as a convex combination of at most ¢ 4 1 corners, which is
exactly a distribution over at most ¢+ 1 well-ordered w.r.t. & hierarchical mechanisms

in polynomial time. O

60

3.3 Single-item, Independent Bidders

Here we provide details of Section 3.1 for the case of single-item independent bid-
ders, and the proofs of Theorems 6, 7 and 8, postponing the proof of Theorem 9 to
Section 3.4. Before proving our theorems, we show that the concept of virtual =s is

necessary. As in, Theorem 6 would be false if we tried to replace 7 with =.

Proposition 3. There exist reduced forms that are infeasible, yet for all St of the

form St = {A | m;(A) > z, Vi}:

> m(A)Prt;=A]<1- H(1 — > Prft; = A)).

i AeSi AeS}
Proof. Consider the case with two bidders. Bidder 1 has two types, with Pr[t; =
Al = 1/8, Pr[t; = B] = 7/8, m(A) = 5/8, m1(B) = 0. Bidder 2 has two types, with
Pr[ty = C] = 1/2, Prty = D] = 1/2, mo(C) = 1, mo(D) = 3/4.

Then this reduced form is infeasible. Indeed, observe that C' must always receive
the item whenever t, = C, which happens with probability 1/2. So if se have mp(C) =
1, we cannot also have m(A) > 1/2. So the set {A,C} forms a constricting set.
However, the sets of the form St are {C},{C, D},{C, D, A},{C, D, A, B}, and they
all satisfy the above inequality. O

Proposition 3 shows us that ordering the types of all bidders by decreasing =«
doesn’t allow us to correctly determine the feasibility of a reduced form. Similarly,
a partial ordering of the types that only orders a single bidder’s types by decreasing
7 doesn’t give enough structure to efficiently determine the feasibility of the reduced
form. What we need is a correct total ordering of the types of all bidders, and we can
obtain it using virtual 7s. Here is a quick observation about the virtual =s, followed

by a proof of Theorem 6.
Observation 1. For two types A, B € T, #;(A) > #;(B) & mi(A) > 7:(B).

Proof. 1f m;(A) > m;i(B), then Pr[m(t;) < m;(A)] > Pr[m(t;) < m(B)]. Therefore,
#;(A) > 7;(B). The other direction is identical. O

61

Proof of Theorem 6: We know from [Bor07, CKM11], that if a reduced form mecha-
nism is infeasible, then there is some constricting set of the form S = |JI~, S;,, where
Sy, = {A| mi(A) > z;, A € T;}. (Forgive the abuse of notation here. Formally, S is
a collection of m sets of types, one for each bidder. To avoid cumbersome notation
and take union casually in this proof, let us assume that a type A € T; carries the
name of bidder ¢, for all 7.) Now consider any minimal constricting set of this form,
i.e. a choice of zy,. ..,z such that replacing S, with S, — {A} (A € S;,) results in
S no longer being a constricting set. 3 Now let (i, A) € argmin, ges, #i(A). Then by
Observation 1 and by our choice of S, S — {A} is not a constricting set. Therefore,
adding A to S — { A} must increase the left-hand bound by more than it increases the
right-hand bound:

Prlt; = Almi(A) > Prt; = A [[Prln;(t;) < =]
J#
= i A) > 1.
[1; Prlm;(t;) <z
Now consider any other A’ € Ty, A’ ¢ S and 7x(A") > #;(A). Observe first that
we must have A’ from some bidder k # %, as every A” € T; with 7#;(A”) > #;(A) has

mi(A”) > m(A) > x;, so we would have A” € S. So for this A’, we have:

me(A') Prlme(ti) < mie(A)] 2 mi(A) Prlmi(ts) < mi(A)]
=7 (A") Pr{m(tx) < 2] = mi(A) Pr{mi(t;) < mi(A)]
= m(A") Pr[me(te) < zx] = mi(A) Prlm(t;) <)
=>mi(4") H Prlm;(t;) < z;) > mi(A) [[Prlm; (t5) < 5]
37::(14') S Wz(]j;
[T Prlm;(t;) < z5] = Tl Prlms(t5) < 250

3For a minimal set S, there could be many possible choices of z1,...,z,,. We simply use any of
them.

-

62

And by our choice of A and the work above, we obtain:

Wk(A’)
I1; 4 Prlm;(t;) < zj)

>1

= Prfte = Almi(4) > Prlty = A1 [Prlm;(t;) <).
i#k

This equation tells us directly that we could add A’ to S and still get a constricting
set. In fact, it tells us something stronger. If S’ = J; S}, where S} C T}, is any
constricting set containing S, then we could add A’ to S’ and still have a constricting
set. This is because the change to the left-hand side of the inequality is the same,
no matter what set we are adding A’ to. It is always Pr[t; = A'lmc(A’). And the
change to the right-hand side is exactly Pr[ty = A’] times the probability that none
of the types in U;xS’; show up. As we add more types to .S, the probability that
none of the types in U;xS’; show up will never increase. So for any constricting set
S’ containing S, we can add A’ to S, and still get a constricting set.

So starting from a constricting set 5 and a type A € T; as above we can add every
B € T; with #;(B) > #;(A) to S in order to obtain a constricting set of the form
Sz = {B|B € T; A 7;j(B) > z}, where z = #;(A). So every infeasible reduced form

has a constricting set of this form. Taking the contrapositive proves the theorem. O

We say that a hierarchical mechanism H is virtually-ordered if #;(A) > @;(A") =
H(A,7) < H(A’,j7). While the virtual ms give us a nice structural theorem about
feasible reduced forms and a linear time separation oracle for determining feasibil-
ity (see proof of Theorem 8), the following observation shows that distributions over
virtually-ordered hierarchical mechanisms are not sufficient to implement every fea-

sible reduced form when the bidders are non-i.i.d.

Observation 2. There exist feasible reduced forms that are not implementable as

distributions over virtually-ordered hierarchical mechanisms.

Proof. Consider the following example with two bidders. Bidder one has a single

type, A. Bidder two has two types, B and C and is each with probability 1/2. Then

63

m(A) = 1/3, m2(B) = 2/3 + €, m(C) = 2/3 — ¢ is a feasible reduced form. However,
71(A) > #3(C), so no distribution over virtually-ordered hierarchical mechanisms can

possibly have 73(C) > 1/2. a

Now that we have motivated Theorems 7 and 8, we proceed to prove them, after

providing the key steps as technical lemmas.

Lemma 2. Every feasible reduced form w for independent bidders and a single item
can be implemented (not necessarily ezactly implemented) as a distribution over strict,

partially-ordered w.r.t. © hierarchical mechanisms.

Proof. The proof is almost identical to that of Lemma 1. Here are the main differ-
ences: We do induction on), d;, where d; is the number of distinct non-zero values
in {m;(A)} ser,. For the inductive step, X is now taken to be the set of distributions
over strict, partially-ordered hierarchical mechanisms, and it is still compact, viewed

as a subset of the Euclidean space. The function F': X — R is now defined as
F(M) = max {r(4) — Mi(A)}.

Again, if we use the Euclidean distance on X, as a subset of the Euclidean space,
F' is continuous. Since F' is continuous and X is compact, F' achieves its minimum
inside X. Let M be a minimizer. For all 7, we define S; = {A € Tj|n;(4) — M;(A) =
F(M)}. In terms of the sets {S;}; we can define an alternative reduced form =’
as follows. For all i, A € T;: if A € §;, then set n}(A) = 7;i(A); otherwise, set
T, (A) = M8X peg;jry(a)>m(3)17(B)}, unless {B € S;|m;(A) > 7;(B)} is empty in which
case set 7, (A) equal to 0. With these changes, the proof is truly identical to that of

Lemma 1, and we avoid repeating the steps for brevity. O

Corollary 2. Every feasible reduced form = for independent bidders and a single
ttem can be ezactly implemented as a distribution over sirict, partially-ordered w.r.t.

7 hierarchical mechanisms.

Proof. The proof is identical to that of Corollary 1 after making the same modifica-

tions going from Lemma 1 to Lemma 2. O

64

We proceed to prove an analog of Proposition 2 in this setting. We need a def-
inition. For all 7, let >*:= A;; >* A;2 > ... >* A, be a total ordering of the set
T; := {Ai1,- .-, Air,} of bidder ’s types. We say that a reduced form = respects >* iff
mi(Ai1) > mi(Aig) > ... > m(Aig,). We also say that an hierarchical mechanism H
is partially-ordered with respect to >* iff H(4;1,1) < H(Ai2,i) < ... < H(Aig,,1). *

With respect to these definitions we show the following proposition.

Proposition 4. For all i, let >:= A;; > A;2 >* ... > A;x, be a total ordering of
the set T; := {Ai1,-..,Aix} of bidder i’s types. The set of feasible reduced forms
that respect >1,...,>™ is a (3_, k;)-dimensional polytope whose corners are ezactly

the strict, partially-ordered w.r.t. >*,...,>™ hierarchical mechanisms.

Proof. We know from [Bor07, CKM11] that a reduced form = respects >1,...,>™

and is feasible iff

mi(Aij) > mi(Ai i) Vi € [m],j € [ki]
(3.6)

SN Prfts = Ailm(A) <1-]] (1 =Y Prft; = A,-,,.]) Vi € [k, ..) Zm € [km]
o , = (3.7)

where for notational convenience we denote m;(A; x,+1) = 0. In fact, to make our lives

easier in a later proof, we will actually replace (3.7) with:

SN Prfti = Aglm(Ai) <1-[] (1 —) Prjti= Ai,j]) Vay € [ky— 1], ..., Zm € [km — 1]

i g i i<z

(3.8)
Z Z Prlt; = A 4lmi(Aiz) <1 (3.9)

i j<ki

4Notice that this definition of partially-ordered hierarchical mechanism (with respect to {>*};) is
similar to its counterpart in the main body (with respect to «), but different. Being partially-ordered
with respect to 7 certainly imposes the same constraints as being partially-ordered with respect to
any {>*}; that m respects. The difference is that being partially-ordered with respect to 7 may also
impose some equality constraints, if 7;(A) = 7;(B) for types A # B.

65

In the above above replacement, we are basically observing that if (3.9) holds, then
so does (3.7) for any case where at least one 7 has z; = k;. In addition, (3.8) covers all
other cases. We have hence shown that the set of feasible reduced forms that respect
>1,...,>™is a Y, ki-dimensional polytope.

We proceed to show that any strict, partially-ordered w.r.t. >!, ..., >™ hierarchi-
cal mechanism H whose reduced-form is 7 is a corner. For convenience in the proof
assume that T; N Ty = @, for all 7 # k. This is easy to achieve by having every type of
bidder i carry the name of bidder 4, for all 7. Let now y = min, Pr[34, H(t;,7) < z] =1,
i.e. the minimum y so that with probability 1 some bidder i will report a type A; ;
such that H(A;;,7) < y. In terms of this y we define y* as follows: y* := y, if
y # LOSE (case 1), and y* := y — 1, if y = LOSE (case 2). We observe then that
a type A;; € T; with H(A;;,i) > y* cannot possibly win the item, as we are either
guaranteed to see some bidder whose type lies on a higher level of the hierarchy (case
1) or the type is mapped to LOSE and is hence given no item (case 2). For all such
i, Ai; € T, we therefore have 7;(4; ;) = mi(A;ij41) = - = mi(Aig41) = 0.

We say that a set of types S = Ui{Ain,...,Ais,} for some zq,..., 2, is near-
constricting, if the corresponding Inequality (3.7) is tight for zy, .. ., z,. Then, for any
i,A;; € T; with H(A; ;,%) < y*, we know that H~'([H(A; ;,1)]) is a near-constricting
set, because the item is always awarded to a type in H™!([H(A;;,%)]) whenever at
least one type from this set is reported. Moreover, if H(A;;,,i) = ... = H(A;},, 1),
for some types A;;,,..., A € T, then m(A4; ;) = ... = mi(Aij,). Finally, because
H is strict, if some i, A;; € T; satisfy H(A;;,i) < y*, then H-1(H(A;;,4)) N Ty = 0,
for all k # 1.

Let us now define the following mapping from types to tight inequalities:

e If a type A;; € T; satisfies H(A;;,4) > y*, then we map A;; to the constraint
Wi(Ai,j) = 7F,;(Ai’j+1), i.e. the tightness of inequality Wi(Ai,j) > ﬂ-i(Ai,j—H)-

e If a type A;; € T; satisfies H(A, j,%) < y*, then:

— if H(Ai %) = H(Aij41,1), we map A;; to the constraint m;(4;;) =
7;(Aij1), i-e. the tightness of inequality m;(A; ;) > mi(Aij11);

66

— otherwise, we map A;; to the tightness of Inequality (3.7) for the set of
types H™H([H(Ay;, 1))

The above discussion ensures that our mapping is injective. Hence 7w makes at least
>, ki of the inequalities defining our polytope tight. And it is not hard to see that
there is a unique feasible reduced form making these inequalities tight. So 7 is a corner
of the polytope. Thus, every strict, partially-ordered w.r.t. >! ..., >™ hierarchical
mechanism is a corner of the polytope.

We now make the same observation as in Proposition 2 to argue that there are
no other corners. Corollary 2 implies that every point in the polytope can be written
as a convex combination of strict, partially-ordered w.r.t. >!,...,>™ hierarchical
mechanisms, all of which are corners of the polytope. As no corner of the polytope
can be written as a convex combination of other corners of the polytope, there must

not be any other corners. O

And now we are ready to prove Theorems 7 and 8.
Proof of Theorem 7: Using a similar argument as in the proof of Theorem 5 we can
assume without loss of generality that, for all ¢, 7 assigns a distinct probability to every
type in 7;. (Otherwise we can define a similar TYPEMERGE operation, like the one
defined in the proof of Theorem 5, whereby types in T; that receive the same 7 value
are merged into super-types.) Under this assumption, Proposition 4 implies that =
lies inside a (3, |Ti|)-dimensional polytope, P, whose corners are the strict, partially-
ordered w.r.t. w hierarchical mechanisms. By Carathéodory’s Theorem, every point
in the polytope can be written as a convex combination of at most (3, |Ti|) + 1
corners. As a convex combination of corners is exactly a distribution over strict,

partially-ordered w.r.t. 7 hierarchical mechanisms, this proves the theorem. U

Proof of Theorem 8: The first part of the theorem follows immediately as a corollary
of Theorem 6.

We now need to describe how to efficiently find a mechanism implementing a
reduced form 7 that is feasible. Using a similar argument as in the proof of Theorem 4

we can assume without loss of generality that, for all i, # assigns a distinct probability

67

to every type in T;. (Otherwise we can merge types in T} that receive the same #
value into super-types, like we did in the proof of Theorem 4, then run the procedure
outlined below, and finally un-merge types.) Under this assumption, Proposition 4
implies that 7 lies inside a (3, |T;|)-dimensional polytope, P, whose corners are the
strict, partially-ordered w.r.t. % hierarchical mechanisms. Therefore we can directly
apply Theorem 2 of Section 2.8 to write 7 as a convex combination of such hierarchical
mechanisms, as long as we can describe the boundary oracle BO, corner oracle CO
and separation oracle SO that are needed for Theorem 2. BO is trivial to implement,
as we just have to include in the set of halfspaces defining the boundary of P those
inequalities described in the proof of Proposition 4. In particular, for convenience in
the remaining of the proof, we include the inequalities of the form (3.6), (3.8) and
(3.9). For CO, on input B, we first check that every hyperplane h € B satisfies
BO(h) = yes. If not, output no. Otherwise, we need to check if Nhep It contains a
corner of P. We know that the corners of P are exactly the strict, partially-ordered
w.rt. 7 hierarchical mechanisms. To check if there is such a corner in (), 5 h we
need to do some work.

First, let us use the same notation as in Proposition 4, denoting T; = {A; 1, ..., Aix },
where k; = |T;| and 7;(A4;1) > ... > 7i(Aix,). Also, let us call a set of types S near-
constricting if either § = U;{A;1,..., Az} forsome 1 < ky —1,...,2Zm < by — 1
and Inequality (3.8) is tight for xy,..., 2y, or if S = U/T; and Inequality (3.9) is
tight.

Now given a set B of hyperplanes, if B contains a near-constricting set hyperplane
for the sets of types S, .. ., Sk, we check first whether these sets satisfy S; C Sy... C
Sk (possibly after renaming). If not, then there are some two near-constricting sets
S, S; with A € S; — S;, B € S; — S; for some types A # B. Because S; and S; are
different than U;7; and they are near-constricting they must be of the form making
Inequality (3.8) tight. Hence, both S; and S; miss at least one type of every bidder, so
that the right-hand side of the inequality for S; must be < 1 and similarly the right-
hand side of the inequality for S; must be < 1. In addition, we cannot have A and B

be types of the same bidder, as we only consider near-constricting sets that respect

68

the partial ordering within every bidder’s type-set. Therefore, A and B belong to
different bidders, and because the probability of seeing a type in S; is < 1 (and the
same holds for S;), there is a non-zero probability that A and B are both present, but
no other type of S; or S; is present. Then the near-constricting set equation for set
S; requires that we must give the item to A, ® and the near-constricting set equation
for S; requires that we must give the item to B, which is impossible. So if we do not
have S; C S;... C Sk, the hyperplanes do not intersect in a feasible mechanism, and
therefore C'O should output no.

Otherwise, CO looks at the other hyperplanes (of the form m;(A; ;) = mi(Aij11))
that belong to B, and chooses an arbitrary strict, partially-ordered w.r.t. 7 hierar-

chical mechanism that satisfies the following constraints:
1. H(A,i) < H(A,7) for all (4,7) € S;,(A",7) € Sj41 — S;, for all 3.
2. H(A,i) < H(A,7) for all (A,i) € Sk, (A,7) & Sk.
3. Forall4,A;; € T;:

(a) if the hyperplanes 7;(A; ;) = m:(Ai j+1), Ti(Aijr1) = mi(Aijs2), - - - TilAi k)
= 0(= mi(Aix,+1)) are all in B, then H(A,;,i) = LOSE;

(b) otherwise, if 7!','(14.17]') = 7T1'.(Ai,j+l) 1sin B, then either H(A,J) = H(Ai,j+1) =
LOSE or H(Ai’j) 2 H(Ai,j+1) —1.

We claim that an H satisfying the above constraints exists if and only if (), AN
P # §. By Proposition 4, we know that if there is a corner = in (), .5k N P, there
I8 a strict, partially-ordered w.r.t. © hierarchical mechanism H that implements it.
Without loss of generality we can make two simplifying assumptions about H: (i) For
all t # LOSE, |[H~!(t)| < 1. Indeed, suppose that |[H~1(t)| > 1 for some ¢ # LOSE.
Then because H is strict, location t of the hierarchy defined by H only contains types
belonging to the same bidder 7. And because H is partially ordered w.r.t. 7 these

types are consecutive in 7;. So we can change H to “expand” cell ¢ of the hierarchy into

SRecall that a way to interpret a near-constricting set equation for set S is the following: whenever
at least one bidder reports a type in § to the mechanism, the mechanism gives the item to a bidder
who reported a type in S, with probability 1.

69

consecutive cells containing a single type each in the right order. This has no effect in
the mechanism defined by . (ii) If H awards the item to bidder 7 of type A;; with
probability 0, we can assume that H(A;;,7) = LOSE. Now given (i) and the nature
of S1,...,8, 8 for H to have the sets Sy, ..., Si near-constricting it must satisfy the
first two constraints above. Indeed for these constraints not to be satisfied there must
exist £, 1, A;;, i, Ay y, i # 4’ such that H(A;;,i) < H(Ayy,7) and A;; ¢ Sp while
Ay j € S;. But then it must be w(4; ;) > 0 (because of assumption (ii)), so there is a
positive probability that bidder ¢ of type A; ; is the highest in the hierarchy when every
bidder except for i’ has declared a type. Still, given that H(A; ;,i) < H(Ay j,7’), even
if ¢’ declares Ay j, © will get the item, contradicting that S, is near-constricting. We
argue next that H also needs to satisfy the third constraint above. That constraint
3(a) is satisfied follows immediately from assumption (ii). We argue next that 3(b)
needs to be satisfied. Indeed, suppose there exist A;;, 4; ;41 € T; and Ay € Ty
such that m;(A;;) = m(Aij41) > 0 and H(A;;,1) < H(Avj,7) < H(A;j+1,1). As
7i(A;j+1) > 0, it follows that H(A;;4+1,7) < LOSE, so H(Ay j,i") < LOSE, which
implies that 7y (Ay y) > 0 (otherwise it would be that H(A; ;+,7) = LOSE given
(ii)). Now, because bidder ¢ wins the item with non-zero probability as type Ay j,
there is a non-zero probability that Ay ; is on the highest level of the hierarchy
after sampling from all bidders except for i. In this case, i will win the item by
reporting A; ;, and lose by reporting A; ;;1. In all other cases, i is at least as likely
to win the item by reporting A;; as A;;41, and therefore we see that bidder i gets
the item strictly more often when reporting A; ; than A; ;j1;, violating the constraint
7i(As ;) = mi(Aij41)- So if there is a corner @ in [),cg h N P it can be implemented
by a strict, partially-ordered w.r.t. @ hierarchical mechanism H satisfying the above
constraints. The other direction of our claim is even simpler. If a strict, partially-
ordered w.r.t. 7 hierarchical mechanism H satisfies all constraints above, then its
induced reduced-form 7 will immediately satisfy all equalities in B.

Hence to implement C'O one just needs to check if there is a strict, partially-

Sin particular, the fact that the sets Sy,..., Sy respect the ordering of the type sets as follows:
For all £, A; ; € S; implies A; j» € Sy, for all §/ < j.

70

ordered w.r.t. 7 hierarchical mechanism H satisfying the four constraints above.
This task is easy to do efficiently. If a mechanism is found it satisfies all equalities in
B and it is a corner of the polytope by Proposition 4.

SO is also simple to implement. On input 7, we first check that Inequalities (3.6)
are satisfied (i.e. that 7 respects the total orderings on the bidders’ type-spaces
induced by 7). Then we use the separation oracle provided by Theorem 6 to verify that
7 is feasible. As all three oracles BO, CO, SO run in polynomial time, we can apply
Theorem 2 to write 7 as a convex combination of at most Y, |T;| + 1 corners, which
is exactly a distribution over at most), |T;| + 1 strict, partially-ordered hierarchical

mechanisms in polynomial time. O

71

3.4 Implementation of Single-item Reduced Forms

via Hierarchical Mechanisms

Here we provide the proof of Theorem 9.
Proof of Theorem 9: Let o be a total ordering over all possible types, o : U;(T; x {i}) —
[>=; ITi|]. Define the unhappiness F,(M) of a distribution over o-ordered hierarchical
mechanisms, M, as follows:

Fu(M) = mas (m(4) — Mi(4).
As we argued formally in earlier sections F, can be viewed as a continuous func-
tion over a compact set. Hence it achieves its minimum inside the set. Let then
M? € argmin,, F,(M) (where the minimization is over all distributions over o-
ordered hierarchical mechanisms) and define the set S, to be the set of maximally
unhappy types under M?; formally, S, = argmax; 4{mi(A) — M7 (A)}. If for some o
there are several minimizers M7, choose one that minimizes |S,|. Now, let MO be
the set of the orderings o that minimize F,(M?). Further refine MO to only contain
o’s minimizing |S,|. Formally, we first set MO = argmin, {F,(M?)} and then refine
MO as MOpew, = argmin,¢p0{|S-|}. We drop the subscript “new” for the rest of
the proof.

From now on, we call a type (A,7) happy if M;(A) > m;(A), otherwise we call
(A,1) unhappy. Intuitively, here is what we have already done: For every ordering
o, we have found a distribution over o-ordered hierarchical mechanisms M¢° that
minimizes the maximal unhappiness and subject to this, the number of maximally
unhappy types.b We then choose from these (o, M?) pairs those that minimize the
maximal unhappiness, and subject to this, the number of maximally unhappy types.
We have made these definitions because we want to eventually show that there is an
ordering o, such that F,(M?) < 0, and it is natural to start with the ordering that
is “closest” to satisfying this property. We are one step away from completing the

proof. What we will show next is that, if 7 € MO does not make every type happy,

72

then we can find some other ordering 7/, such that F..(M™) = F.(M7), |S+| = |5,/
and S, = {771(1),...,771(|S~|)}. In other words, only the top |S;/| types in 7 are
maximally unhappy. From here, we will show that because 7/ € MO, that S is a
constricting set and get a contradiction.

First, if the maximally unhappy types in S, are not the top |S,| ones, let ¢ be the
smallest i such that 771(3 + 1) € S, but 771(i) ¢ S,. We proceed to show that by
changing either the distribution M or the ordering 7, we can always move 71(3) into
S; and 771(i + 1) out without changing |S,| or the value F.(M). Then by repeating
this procedure iteratively, we will get the 77 we want.

Before we describe the procedure, we introduce some terminology. We say there
is a cut between 771(i) and 771(¢ + 1) in a fixed 7-ordered hierarchical mechanism
H if H(r71(4)) < H(r71(i + 1)), ie. if 771(i) and 771(i + 1) are on different levels
of the hierarchy. For the remainder of the proof, we will let I be the level of 771(3)
(H(r'(4))). When we talk about adding or removing a cut below ¢, we mean increas-
ing or decreasing H(7~!(j)) by 1 for all j > i. We now proceed with a case analysis,

for fixed 771(i) ¢ S;, 77H(i+ 1) € S;. Welet (A,7) =771(i) and (B,k) =771(i +1).
e Case 1: j = k.

Since 7 is a linear extension of the bidder’s own ordering, then m;(A) > 7;(B),

but we know that
mi(A) — Mj(A) < 7;(B) — M](B),

thus M7 (A) > M](B) > 0. Because A and B are types for the same bidder j,
when A and B are in the same level, they get the item with equal probability.
Therefore, there must exist some H € supp(M7) with a cut below A, and in
which A gets the item with non-zero probability. We modify M by modifying

the mechanisms H in its support as follows.

Let H be a hierarchical mechanism in the support of M7. If there is no cut below
A, we do nothing. If all of the types on level [and level [+ 1 are from bidder j,
we remove the cut below A. This does not affect H,(C) (the probability that

73

(C,q) gets the item under H) for any q,C € T, because it was impossible for
two types in the combined level to show up together anyway. As we have not
changed H,(C) for any ¢, C in the mechanisms we have touched so far, yet none
of these mechanisms has a cut between levels [and [+ 1, there must still be
some H € supp(M7) with a cut below A and in which A gets the item with
non-zero probability (otherwise it couldn’t be that M7 (A) > MT(B) > 0). For
such an H, there is at least one type not from bidder 5 in level l or I + 1. We

distinguish two sub-cases:

— Every bidder has at least one type in level [4 1 or larger (in other words,
every type in level [+1 wins the item with non-zero probability). Consider
now moving the cut from below 7 to below 7 — 1. Clearly, A will be less
happy if we do this. Every type not from bidder j in I will be strictly
happier, as now they do not have to share the item with A. Every type
not from bidder j in I + 1 will be strictly happier, as they now get to
share the item with A. It is also not hard to see that all types # A from
bidder j in level I and I + 1 are not affected by this change, as they never
share the item with A in either case. So in particular B is unaffected.
Consider instead moving the cut from below 7 to below i + 1. Then B is
happier, every type not from bidder j in [+ 1 is less happy than before
(as they now don’t get to share with B), every type not from bidder j
in [is also less happy than before (because now they have to share with
B), and all types # B from bidder j in level ! and [+ 1 are not affected
by the change (as they never share the item with B in either case). To
summarize, we have argued that, when we move the cut to below i + 1,
B becomes strictly happier, and every type that becomes less happy by
this change becomes strictly happier if we move the cut to below i — 1
instead. Also, B is unaffected by moving the cut to i — 1. So with a tiny
probability €, move the cut from below i to below i — 1, whenever H is

sampled from M7. This makes all of the types not from bidder j in level

74

1 or I + 1 strictly happier. With a tinier probability 4, move the cut from
below 7 to below i + 1, whenever H is sampled from M7. Choose € to be
small enough that we don’t make A maximally unhappy, and choose ¢ to
be small enough so that we don’t make any types besides A less happy
than they were in H. Then we have strictly increased the happiness of B
without making A maximally unhappy, or decreasing the happiness of any

other types. Therefore, we have reduced |S;|, a contradiction.

— If there is a bidder j’ whose types are all in levels 1, .. ., [(call such bidders
high), then no type in level [+ 1 can possibly win the item. We also know
that: every high bidder has at least one type in level [by our choice of H
(otherwise A would get the item with probability 0); and all high bidders
are different than 4, since B is in level [+ 1. Now we can basically use the
same argument as above. The only difference is that when we move the
cut to below 7 — 1 or the cut to below 7 - 1, types in level [+ 1 that are
different than B will remain unaffected (i.e. the affected types different
from B are only those in level [). But since every high bidder has a type
in level I, B will be unaffected in the first case but strictly happier in the
second, and it is still the case that every type who is made unhappier by
moving the cut to below i 4+ 1 is made strictly happier by moving the cut
to below 7 — 1. So we can carry over the same proof as above, and get a

contradiction.
Therefore, it can not be the case that j = k.

e Case 2: j # k and there is never a cut below A.

This case is easy. If we switch (4, j) and (B, k) in 7, then the set S, is exactly
the same, and the distribution M7 is exactly the same. However, we have now

relabeled the types in S, so that 771(i) € S, and 77}(+ 1) ¢ 5.

e Case 3: 7 # k and there is sometimes a cut below A.

Pick a mechanism H in the support of M7” that has a cut between A and B

79

and in which A gets the item with positive probability. (If such a mechanism
doesn’t exist we can remove the cut between 7 and ¢ + 1 in all mechanisms in
the support without changing the allocation probabilities and return to Case
2). Let now i* = maxy;{#/|771(¢') € S;}. By our choice of i (specifically, that
it is the smallest i such that 771(i + 1) € S, but 771(3) ¢ S;), we see that
771(#') € 8, for all #/ < 4*, and 771(¢') ¢ S, for all i* < 7 < i. There are again

two sub-cases:

— H(77'(*)) < I. By our choice of i*, this means that everyone in level [is
not maximally unhappy. By our choice of H, everyone in level | receives
the item with non-zero probability, so there is at least one type from each
bidder in level [or larger. If we pick a tiny €, and with probability ¢ remove
the cut from below ¢ (whenever H is sampled from M7), then everyone in
level I + 1 is happier, everyone in level ! is unhappier, and everyone else is
unaffected. In particular, B will be strictly happier with this change, as he
now gets to share with A (and possibly others). If we choose a sufficiently
small €, no one in level I will be made maximally unhappy, and (B, k) will

be removed from S, a contradiction.

— H(r71(s*)) = I. In this case, introduce a cut below i* with some probability
€ whenever H is sampled from M7. The only types who may become
happier by this change are those in level ! with 7(C,q) < ¢*. The only
types who may become unhappier by this change are those in level I with
7(C,q) > i*. Everyone else is unaffected by this change. But, if we can
make any type happier, then we can choose € small enough, so that we
remove this type from S, (this type must be in S, as all types in level [
with 7(C, q) < i* are) without making any new type maximally unhappy
(as all types that can possibly become unhappier with this change are
not in S,). Again, we obtain a contradiction because this would decrease
|S;| without increasing F,.(M7). Thus, this change cannot make anyone

happier, and therefore cannot make anyone unhappier. So we may modify

76

M? by introducing a cut below i* with probability 1 whenever M7 samples
H, thereby removing H from the support of M™ (without making anyone
happier or unhappier) and replacing it with H’ satisfying: H'(77'(i*)) <
H'(7Y(3)) < H'(r7'(i + 1)) and H’ awards the item to 77!(i) with non-
zero probability. After this modification, we may return to the previous

sub-case to obtain a contradiction.

Hence, it can not be the case that j # k with sometimes a cut below A.

At the end of all three cases, we see that if we ever have 771(3) ¢ S, and 771(i+1) €
S;, then these types must belong to different bidders, and no mechanism in the
support of M7” ever places a cut between these types. Hence, we can simply swap
these types in 7 (as we described in Case 2 above), and we do that repeatedly until we
have S, = {r7}(1),...,77Y(|S;])}- Once such a 7 has been found, let k = |S;|. Now
consider a mechanism in the support of M™ that has no cut below k, and consider
putting a cut there with some tiny probability e whenever this mechanism is sampled.
The only effect this might have is that when the item went to a type outside S, it
now goes with some probability to a type inside S;. Therefore, if anyone gets happier,
it is someone in S,. However, if we make anyone in S; happier and choose ¢ small
enough so that we don’t make anyone outside of S, maximally unhappy, we decrease
|S;|, getting a contradiction. Therefore, putting a cut below k cannot possibly make
anyone happier, and therefore cannot make anyone unhappier. So we may w.l.o.g.
assume that there is a cut below & in all mechanisms in the support of M7. But now
we get that the item always goes to someone in S, whenever someone in S, shows
up, yet everyone in this set is unhappy. Therefore, S; is a constricting set, certifying
that the given 7 is infeasible.

Putting everything together, we have shown that if there is no o with F, (M)