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Abstract

Modern systems, such as engineering systems with autonomous entities, markets, and finan-
cial networks, consist of self-interested agents with potentially conflicting objectives. These
agents interact in a dynamic manner, modifying their strategies over time to improve their
payoffs. The presence of self-interested agents in such systems, necessitates the analysis of
the impact of multi-agent decision making on the overall system, and the design of new
systems with improved performance guarantees.

Motivated by this observation, in the first part of this thesis we focus on fundamental
structural properties of games, and exploit them to provide a new framework for analyzing
the limiting behavior of strategy update rules in various game-theoretic settings. In the
second part, we investigate the design problem of an auctioneer who uses iterative multi--
item auctions for efficient allocation of resources.

More specifically, in the first part of the thesis we focus on potential games, a special class
of games with desirable equilibrium and dynamic properties, and analyze their preference
structure. Exploiting this structure we obtain a decomposition of arbitrary games into three
components, which we refer to as the potential, harmonic, and nonstrategic components.
Intuitively, the potential component of a game captures interactions that can equivalently be
represented as a common interest game, while the harmonic part represents conflicts between
the interests of the players. We make this intuition precise by studying the properties of
these two components, and establish that indeed they have quite distinct and remarkable
characteristics. The decomposition also allows us to approximate a given game with a
potential game. We show that the set of approximate equilibria of an arbitrary game can
be characterized through the equilibria of a potential game that approximates it.

The decomposition provides a valuable tool for the analysis of dynamics in games.
Earlier literature established that many natural strategy update rules converge to a Nash
equilibrium in potential games. We show that games that are close to a potential game
exhibit similar properties. In particular, we focus on three commonly studied discrete-time
update rules (better/best response, logit response, and discrete-time fictitious play dynam-
ics), and establish that in near-potential games, the limiting behavior of these update rules
can be characterized by an approximate equilibrium set, size of which is proportional to
the distance of the original game from a potential game. Since a close potential game to a
given game can be systematically found via decomposition, our results suggest a systematic
framework for studying the limiting behavior of adaptive dynamics in arbitrary finite strate-
gic form games: the limiting behavior of dynamics in a given game can be characterized
by first approximating this game with a potential game, and then analyzing the limiting
behavior of dynamics in the potential game.
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In the second part of the thesis, we change our focus to implementing efficient out-
comes in multi-agent settings by using simple mechanisms. In particular, we develop novel
efficient iterative auction formats for multi-item environments, where items exhibit value
complementarities/substitutabilities. We obtain our results by focusing on a special class
of value functions, which we refer to as graphical valuations. These valuations are not fully
general, but importantly they capture value complementarity/substitutability in important
practical settings, while allowing for a compact representation of the value functions.

We start our analysis by first analyzing how the special structure of graphical valuations
can be exploited to design simple iterative auction formats. We show that in settings where
the underlying value graph is a tree (and satisfies an additional technical condition), a
Walrasian equilibrium always exists (even in the presence of value complementarities). Using
this result we provide a linear programming formulation of the efficient allocation problem
for this class of valuations. Additionally, we demonstrate that a Walrasian equilibrium may
not exist, when the underlying value graph is more general. However, we also establish that
in this case a more general pricing equilibrium always exists, and provide a stronger linear
programming formulation that can be used to identify the efficient allocation for general
graphical valuations.

We then consider solutions of these linear programming formulations using iterative
algorithms. Complementing these iterative algorithms with appropriate payment rules,
we obtain iterative auction formats that implement the efficient outcome at an (ex-post
perfect) equilibrium. The auction formats we obtain rely on simple pricing rules that, in the
most general case, require offering a bidder-specific price for each item, and bidder-specific
discounts/markups for pairs of items. Our results in this part of the thesis suggest that
when value functions of bidders exhibit some special structure, it is possible to systematically
exploit this structure in order to develop simple efficient iterative auction formats.

Thesis Supervisor: Asuman Ozdaglar

Title: Professor

Thesis Supervisor: Pablo A. Parrilo

Title: Professor

4



To my families: past, present, and future.

5



6



Acknowledgments

Being a doctoral student at one of the most intellectually stimulating schools in the world
has been a privilege. However, for me perhaps the most exciting and gratifying component
of my MIT experience has been the opportunity to work with my advisors Asu Ozdaglar
and Pablo Parrilo. Their guidance, combined with their endless support and enthusiasm
made this thesis possible. Additionally, the nurturing and friendly research environment
they created for their students at MIT, which is filled with innate curiosity and interesting
ideas, has been essential for my development as a scholar and a researcher. I, with no
doubt, have been very fortunate to complete my doctoral studies under their supervision.

Both Asu and Pablo are outstanding examples for me, and I will try my best to carry their
inspiration and guidance throughout my life.

I am also grateful to Prof. Georgia Perakis, and Prof. Daron Acemoglu for serving on

my thesis committee. Their insights and perspective inspired me to refine and improve the
ideas that are central to thesis, and discover new applications for my results. Consequently,
this thesis has benefited enormously from their comments and feedback. I have also been
very lucky to have their guidance and support in the job market. I would like to thank
them for their dedication and help.

I am indebted to faculty members at LIDS, ORC, and CSAIL, especially to John
Tsitsiklis, Devavrat Shah, Munther Dahleh, Itai Ashla Vivek Farias, and Constantinos

Daskalakis for creating a diverse and rich learning environment at MIT. Their lectures,
ideas, and talks have been both inspiring and stimulating.

I have learned vastly from my other coauthors as well: Kostas Bimpikis, Ilan Lo-
bel, Hamid Nazerzadeh, Jennifer Chayes, Christian Borgs, Ishai Menache, Constantinos
Daskalakis, and Christos Papadimitriou. I have been extremely fortunate to work with
some of these brightest minds from different communities. I look forward to interacting
more with them, and having many other fruitful collaborations. I also want to thank
Kostas, Ilan, and Hamid, for being great friends who are always willing to listen.

I am deeply grateful to (past and present) members of the Microsoft Research lab in
New England, in particular, Jennifer Chayes, Christian Borgs, Ishai Menache, Adam Kalai,
Sham Kakade, Brendan Lucier, and Yash Kanoria. In addition to the excellent talks and
workshops I attended at Microsoft Research, my interaction with the members of the lab
during my internships enriched my experience as a scholar, and exposed me to different
ideas and perspectives. Also a special thanks goes to Jennifer for her support and help
during my job search.

Various friends from ORC and LIDS made MIT a second home for me. I especially
would like to thank Alireza Tahbaz-Salehi, Ercan Yildiz, Mohamed Mostagir, Azarakhsh
Malekian, Christina Lee, Diego Feijer, Ali ParandehGheibi, Kuang Xu, Ammar Ammar,
Spyros Zoumpoulis, Mihalis Markakis, Noah Stein, Amir Ali Ahmadi, Parikshit Shah, Paul
Njoroge, James Saunderson, Takashi Tanaka, Dan Iancu, Mitra Osqui, Jagdish Ramakrish-

7



nan, Hamza Fawzi, Venkat Chandrasekaran, Srikanth Jagabathula, Hoda Eydgahi, Joline

Uichanco, Ruben Lobel, Yehua Wei, Fernanda Bravo, Chaitanya Bandi, Gerry Tsoukalas,

for making my years at MIT memorable.

Of course, my officemates Ermin Wei, Kimon Drakopoulos, Elie Adam, Annie Chen,

and Jenny Lee have a special place in my LIDS family. I thank them for many fruitful

discussions, their guidance, and support. But more importantly I am indebted to them for

their friendship. I never imagined that a workplace can be this much fun!

I am also lucky to have many other great friends in Boston. I especially would like

to thank Sefa Demirtas, Selda Celen, lke Kalcioglu, Alp Simsek, Sertac Karaman, Aylin

Kentkur, Ozgur Amac, Guner Celik, Hakan Sonmez, Yalcin Cayir, Eray Sabancilar, Halil

Tekin, Orcun Kurugol, for many fun weekends, trips to beaches and ski resorts, cookouts,

and potlucks.

I am deeply indebted to my dear girlfriend Alice Fan for her endless kindness and love.

Her support and companionship, not only helped me tackle the obstacles during the difficult

times of my doctoral studies, but also brought me joy and changed my life in many different

ways. I have been very fortunate to have her in my life. I owe her much more than I would

ever be able to express.

Finally, I would like to extend my deepest gratitude to my parents Siddika and Zafer,

and brother Utkan. I owe the opportunities and success I have had thus far to their sacrifices

and guidance. Their unconditional love, support, and patience enabled me to successfully

complete my doctoral studies.

8



Contents

1 Introduction

1.1 Main Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Part I: Structural Game Decompositions and Dynamics . . . . . . .

1.1.2 Part II: Iterative Auction Design for Graphical Valuations . . . . . .

I Structural Game Decompositions and Dynamics

2 Decomposition of Games

2.1 Introduction . . . . . . . . . . . . . .

2.1.1 Related Literature . . . . . .

2.1.2 Outline . . . . . . . . . . . .

2.2 Game-Theoretic Background . . . .

2.2.1 Preliminaries . . . . . . . . .

2.2.2 Games and Flows on Graphs

2.3 Flows and Helmholtz Decomposition

2.4 Canonical Decomposition of Games .

2.4.1 Preliminaries . . . . . . . . .

2.4.2 Decomposition of Games . .

2.4.3 An Example: Decomposition of Bimatrix Games . . .

2.5 Potential and Harmonic Games . . . . . . . . . . . . . . . . .

2.5.1 Potential Games . . . . . . . . . . . . . . . . . . . . .

2.5.2 Harmonic Games . . . . . . . . . . . . . . . . . . . . .

2.5.3 Nonstrategic Component and Efficiency in Gaines . .

2.5.4 Zero-Sum Games and Identical Interest Games . . . .

2.6 Projections onto Potential and Harmonic Games . . . . . . .
2.7 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8 Appendix: Additional Proofs . . . . . . . . . . . . . . . . . .
2.9 Appendix: Equilibria in Two Player Harmonic Games . . . .

9

13

17

17

18

23

25

. . . . . . . . . . . . . . . . . 2 5

. . . . . . . . . . . . . . . . . 2 9

. . . . . . . . . . . . . . . . . 3 0

. . . . . . . . . . . . . . . . . 3 1

. . . . . . . . . . . . . . . . . 3 1

. . . . . . . . . . . . . . . . . 3 2

. . . . . . . . . . . . . . . . . 3 4

. . . . . . . . . . . . . . . . . 3 8

. . . . . . . . . . . . . . . . . 3 9

. . . . . . . . . . . . . . . . . 4 3

. . . . . . . . 48

. . . . . . . . 49

. . . . . . . . 50

. . . . . . . . 51

. . . . . . . . 57

. . . . . . . . 60

. . . . . . . . 62

. . . . . . . . 64

. . . . . . . . 64

. . . . . . . . 70



3 Dynamics in Near-Potential Games 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Related Literature ............................ 80

3.1.2 O utline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Better Response and Best Response Dynamics . . . . . . . . . . . . . . . . 84

3.4 Logit Response Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Properties of Logit Response . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2 Stationary Distribution of Logit Response Dynamics . . . . . . . . . 89

3.5 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.1 Mixed Strategies and Equilibria . . . . . . . . . . . . . . . . . . . . . 95

3.5.2 Discrete-Time Fictitious Play . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Appendix: Proofs of Section 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 106

II Iterative Auction Design for Graphical Valuations 117

4 Tree Valuations 119

4.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1.2 O utline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.1 Graphical Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Anonymous Item Pricing and Walrasian Equilibrium . . . . . . . . . 129

4.3 Walrasian Equilibrium and Tree Valuations . . . . . . . . . . . . . . . . . . 131

4.3.1 An Alternative LP Formulation . . . . . . . . . . . . . . . . . . . . . 132

4.3.2 Existence of a Walrasian Equilibrium . . . . . . . . . . . . . . . . . 137

4.4 Relaxing the Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.1 Sign Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.2 Value Graphs with Cycles . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Appendix: Gross Substitutes and Complements Condition and Graphical

V aluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.7 Appendix: Proofs and Additional Results . . . . . . . . . . . . . . . . . . . 146

5 General Graphical Valuations 157

5.1 Introduction and Organization . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2 Anonymous Graphical Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Bidder-Specific Item Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10



5.4

5.5

5.6

5.7

Bidder-Specific Graphical Pricing . . . . . . .

Additively Decomposable Valuations.....

Sum m ary . . . . . . . . . . . . . . . . . . . .

Appendix: Proof of Theorem 5.2.1 . . . . . .

6 Iterative Algorithms and Auction Design

6.1 Introduction and Organization . . . . . . . . . . .

6.2 Iterative Algorithms for Linear Programs . . . . .

6.3 Ex-post Perfect Equilibrium . . . . . . . . . . . . .

6.4 Iterative Auctions for Tree Valuations . . . . . . .

6.4.1 An Iterative Algorithm for LP1 . . . . . . .

6.4.2 An Efficient Iterative Auction . . . . . . . .
6.5 Iterative Auctions for General Graphical Valuations

. . . . . . . . . . . . . . 167

. . . . . . . . . . . . . . 169

. . . . . . . . . . . . . . 171

. . . . . . . . . . . . . . 172

179

. . . . . . . . . . . . . . 179

. . . . . . . . . . . . . . 182

. . . . . . . . . . . . . . 184

. . . . . . . . . . . . . . 188

. . . . . . . . . . . . . . 188

. . . . . . . . . . . . . . 193

. . . . . . . . . . . . . 197
6.6 Generalization: An Alternative LP and Additively Decomposable Valuations 203
6.7

6.8

Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix: Additional Proofs ....... ..........................

7 Conclusions

7.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Future Research: Decomposition & Dynamics . . . . . . . . . . . . . . . . .
7.3 Future Research: Graphical Valuations and Mechanism Design . . . . . . .

208

209

221

221

222

223

11



12



Chapter 1

Introduction

Traditional systems engineering assumes the presence of a central entity, who has full control

over the system, and designs algorithms that optimize a single, system-wide objective.
This central entity usually has a well-defined control objective, and access to sufficient

information to optimize for that objective (Khalil, 2002; Bertsekas and Tsitsiklis, 1989).
Modern systems, in contrast, involve self-interested agents with a diverse set of service

requirements and potentially conflicting objectives. These agents take actions to maximize
their objectives, without necessarily taking into account the effect of their actions on the

remaining agents in the system. Examples include institutions in financial networks, firms
in markets, and engineering systems with autonomous agents (such as communication net-
works, online computing infrastructures, electric power systems, robotic systems, and traffic
networks). The presence of self-interested agents in these systems necessitate the analysis
of the impact of various strategic considerations on the overall system, and the design of
new systems with improved performance guarantees.

Analysis of strategic interactions, however, can be an intractable task in general game-
theoretic settings. For instance, conceptually basic problems such as characterizing the Nash
equilibria of finite games in strategic form, turn out to be intractable from a computational
point of view unless the underlying strategic interactions exhibit some special properties
(Daskalakis et al., 2006; Daskalakis and Papadimitriou, 2005; Nisan et al., 2007). Analo-
gously, characterizing the outcome of dynamic strategic interactions is a difficult problem
even for two player games, and there is no systematic framework for analyzing the limiting
behavior of many of the adaptive update rules in general game-theoretic settings (Jordan,
1993; Fudenberg and Levine, 1998; Shapley, 1964).

Similar difficulties also arise in the design of mechanisms that maximize a global ob-
jective in the presence of strategic agents. Consequently, potentially inefficient/suboptimal
mechanisms are employed in large scale social and economic systems. For instance, such
multi-item auction mechanisms are used by governments for selling spectrum bands, by
regional transmission organizations (such as New England ISO) to purchase sufficient elec-
tricity capacity in the forward capacity market, and by various businesses and govern-
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ments to procure goods and services. One explanation for the use of such potentially

inefficient/suboptimal mechanisms in practice is the difficulty of implementing the effi-

cient/optimal outcome in social and economic systems involving a large number of agents,

who have complex and potentially conflicting preferences, and interact repeatedly in a net-

worked dynamic environment. Such features of social and economic systems may, at full

generality, render the problem of implementing a desirable outcome in these systems in-

tractable (Nisan and Segal, 2006; Nisan et al., 2007).

These observations motivate two exciting and complementary research directions that

are the key components of this thesis. First, it is imperative to conduct fundamental research

to develop improved models and theoretical tools for analyzing multi-agent interactions in

various social and economic systems, and understanding their main features. Second, it is

necessary to develop simpler and better mechanisms with improved efficiency and optimality

guarantees, by exploiting these features.

Even though analyzing the outcome of strategic interactions of a large number of agents

who have complex preferences, is a challenging task in general, it is known that spe-

cial classes of games exhibit desirable equilibrium and dynamic properties, and allow for

tractable analysis. An important class of games with well-understood equilibrium and dy-

namic properties is potential games (see e.g. Young (2004); Monderer and Shapley (1996b);

Marden et al. (2009b)). These games have potential functions, which summarize incentives

of different players jointly. The limiting behavior of various update rules including bet-

ter/best response dynamics (Monderer and Shapley, 1996b; Young, 2004), fictitious play

(Monderer and Shapley, 1996a; Shamma and Arslan, 2004; Marden et al., 2009b; Hofbauer

and Sandholm, 2002) and logit response dynamics (Blume, 1993, 1997; Al6s-Ferrer and

Netzer, 2010; Marden and Shamma, 2012) can be established for potential games using the

corresponding potential function.

Motivated by this observation, in the first part of this thesis, we investigate why classes

of games such as potential games have desirable static and dynamic properties. In partic-

ular, we focus on structural properties of potential games, and delineate the fundamental

characteristics of preferences of players, which lead to these properties. Additionally, by

introducing an alternative flow representation for finite games in strategic form, and em-

ploying tools from algebraic topology, we develop a canonical direct sum decomposition of

an arbitrary game into three components, which we refer to as the potential, harmonic and

nonstrategic components. The first component of this decomposition captures the desirable

strategic properties of potential games, whereas the second component leads to qualitatively

different equilibrium and dynamic properties. By exploiting this decomposition, we develop

a novel approach for approximating a given game using a related potential game.

Additionally, we show that this decomposition provides a valuable tool for the analysis

of equilibria and dynamics in games. In particular, we first establish that the set of ap-

proximate equilibria of an arbitrary game can be characterized through the equilibria of

14



its potential game approximation. We then extend our analysis to the characterization of
dynamics in games, and provide a framework that can be used to characterize the limiting
behavior of dynamic strategic interactions in a given game, in terms of the outcome of dy-
namics in its potential game approximation. The results of this part of the thesis provide
new theoretical tools for the (approximate) characterization of equilibria and dynamics in
various game-theoretic settings.

In the second part of the thesis, we change our focus to implementing the efficient out-
comes in multi-agent settings through simple mechanisms. In particular, we develop novel
iterative auction formats that guarantee efficiency in environments where the auctioneer
sells multiple items that can exhibit value complementarities and substitutabilities.

Iterative auctions are a class of mechanisms that are commonly employed in practice.
In these auctions, the auctioneer sets prices for the items she is selling, bidders report
which items they are interested in at the given prices, and in response to these reports, the
auctioneer updates the prices. The well-known English and Dutch auctions are examples
of single-item iterative auctions. When bidders have independent private values, these
auctions allocate the item efficiently, i.e., the bidder with the highest value receives the
item (Krishna, 2009).

Arguably, iterative auction formats are more common in practice than their static coun-
terparts (such as sealed bid auctions), due to their desirable properties such as privacy
preservation, price discovery, and reduced communication requirements (Ausubel and Mil-
grom, 2006; Rothkopf et al., 1990; Engelbrecht-Wiggans and Kahn, 1991). For this reason,
a number of papers in the recent literature focused on the question of designing efficient
iterative multi-item auctions. Examples include, package bidding auction (Ausubel and
Milgrom, 2002), clinching auction and its variants (Ausubel, 2004, 2006), and auctions that
rely on universally competitive equilibria (UCE) (Mishra and Parkes, 2007). Other exam-
ples, which focus explicitly on myopic strategy updates, include best response mechanisms
of (Nisan et al., 2011b) and (Nisan et al., 2011a).

In general multi-item settings (such as spectrum or procurement auctions) the iterative
auction formats that are present in literature do not always guarantee efficiency. More
precisely, either they guarantee efficiency under some restrictive assumptions (such as the
gross substitutes assumption, Gul and Stacchetti (2000); Ausubel (2006)), or they rely on
complex pricing rules that require offering a different price for each bundle of items the
auctioneer sells (Bikhchandani et al., 2002; De Vries et al., 2007; Ausubel and Milgrom,
2002; Ausubel, 2006; Mishra and Parkes, 2007; Vohra, 2011). The auction formats in the
first category do not allow for value complementarity between different items, which is
commonly observed in practical auction environments. Those in the second category, on
the other hand, may not be practical. This is because these auctions require reporting
exponentially many prices to the bidders at each stage of the auction.

These observations motivate us to design novel iterative auctions for multi-item environ-
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ments. Our main contribution in the second part of the thesis is to develop simple efficient

iterative auction formats for settings that involve both complementarity and substitutabil-

ity in valuations. We obtain our results by focusing on a special class of valuation functions,

which we refer to as graphical valuations. These valuations are not fully general, but im-

portantly they allow for a compact representation of the value functions of the bidders, and

capture the structural properties of valuations in important combinatorial auctions. Due to

this compact structure, unlike the auctions in the existing literature, the iterative auction

formats we provide in this part of the thesis rely on simple pricing rules and guarantee

efficiency even in settings where valuation functions exhibit both value complementarity

and substitutability.

Our approach for developing iterative auctions involves three steps. First, we focus on

providing linear programming formulations of the efficient allocation problem. Then, we

consider iterative algorithms for solutions of these formulations, and show that these suggest

a natural price/demand update process that converges to the efficient outcome. Finally, we

obtain iterative auctions by complementing these algorithms with appropriate final payment

schemes. The final step also guarantees that in the iterative auctions we develop, it is an

equilibrium for bidders to reveal their demand truthfully, and this equilibrium leads to an

efficient allocation.

This approach for iterative auction design is also employed in the existing literature (see

Vohra (2011)). However, the existing iterative auction formats that follow this approach and

allow for complementarity in valuations, rely on exponentially many prices for implementing

the efficient outcome (Bikhchandani et al., 2002; De Vries et al., 2007; Mishra and Parkes,

2007; Vohra, 2011). In contrast, our main contribution in this part of the thesis is to develop

efficient iterative auction formats that rely on simple pricing rules. We accomplish this by

following the approach outlined above, and carefully exploiting the structural properties

of graphical valuations, in order to obtain simple optimization formulations of the efficient

allocation problem, and ultimately iterative auction formats that rely on simple pricing

rules.

Our results in this part of the thesis suggest that when valuation functions of bidders

exhibit some special structure, it is possible to systematically exploit this structure, in order

to develop simple efficient iterative auction formats. These iterative auctions rely on pricing

rules that have a similar structure to that of the underlying valuations. Hence, it is possible

to implement the efficient outcome using a pricing rule that is no more complex than the

valuation functions. Therefore, by first identifying the structure in valuations of bidders,

and then following the framework we propose in this thesis for iterative auction design, it

may be possible to obtain simple iterative auction formats that are applicable in practice.

A more detailed summary of the main contributions of each of the chapters of this thesis,

and an outline are provided in the next section.
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1.1 Main Contributions and Outline

The remainder of this thesis is divided into two parts. The first part contains our contri-

butions on structural game decompositions (Chapter 2) and analysis of dynamic strategic

interactions (Chapter 3). The second part focuses on the question of iterative auction design

for graphical valuations. In this part, we first obtain a linear programming formulation of

the efficient allocation problem for a subclass of graphical valuations, where the underlying

graph has a tree structure, i.e., it does not have any cycles (Chapter 4). However, we also

show that this formulation may not be used to find the efficient outcome, if the underlying

graph is not a tree. In Chapter 5 we provide alternative linear programming formulations

that can be solved to identify the efficient outcome for general graphical valuations. In

Chapter 6, we use the solutions of these linear programs with iterative algorithms to de-

velop iterative auction formats. Additionally, we characterize the equilibria of our auctions

in Chapter 6, and establish that the efficient outcome can be implemented at an ex-post per-

fect equilibrium by complementing the auctions with appropriate payment schemes. Future

directions related to the contributions of this thesis are outlined in Chapter 7.

We conclude this chapter with a detailed summary of the main contributions of the

remaining chapters.

1.1.1 Part I: Structural Game Decompositions and Dynamics

Chapter 2. In this chapter we introduce a novel flow representation for finite games in

strategic form. This representation allows us to develop a canonical direct sum decom-

position of an arbitrary game into three components, which we refer to as the potential,
harmonic, and nonstrategic components. We analyze natural classes of games that are

induced by this decomposition, and in particular, focus on games with no harmonic compo-

nent and games with no potential component. We show that the first class corresponds to

the well-known potential games. We refer to the second class of games as harmonic games,
and study the structural and equilibrium properties of this new class of games.

Intuitively, the potential component of a game captures interactions that can equiva-

lently be represented as a common interest game, while the harmonic part represents the
conflicts between the interests of the players. We make this intuition precise, by studying the
properties of these two classes, and show that indeed they have quite distinct and remarkable
characteristics. For instance, while finite potential games always have pure Nash equilibria,
harmonic games generically never do. Moreover, we show that the nonstrategic component
does not affect the equilibria of a game, but plays a fundamental role in their efficiency
properties, thus decoupling the location of equilibria and their payoff-related properties.
Exploiting the properties of the decomposition framework, we obtain explicit expressions
for the projections of games onto the subspaces of potential and harmonic games. This
enables an extension of the properties of potential and harmonic games to "nearby" games.
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We exemplify this point by showing that the set of approximate equilibria of an arbitrary

game can be characterized through the equilibria of its projection onto the set of potential

games.

Chapter 3. Except for special classes of games, there is no systematic framework for an-

alyzing the dynamical properties of multi-agent strategic interactions. Potential games are

one such special but restrictive class of games that allow for tractable analysis of dynamics.

Intuitively, games that are "close" to a potential game should share similar properties. In

this chapter, we formalize and develop this idea by quantifying to what extent the dynamic

features of potential games extend to "near-potential" games.

We study convergence of three commonly studied classes of adaptive dynamics: discrete-

time better/best response, logit response, and discrete-time fictitious play dynamics. For

better/best response dynamics, we focus on the evolution of the sequence of pure strategy

profiles and show that this sequence converges to a (pure) approximate equilibrium set,

whose size is a function of the "distance" from a close potential game. We then study logit

response dynamics parametrized by a smoothing parameter that determines the frequency

with which the best response strategy is played. Our analysis uses a Markov chain repre-

sentation for the evolution of pure strategy profiles. We provide a characterization of the

stationary distribution of this Markov chain in terms of the distance of the game from a

close potential game and the corresponding potential function. We further show that the

stochastically stable strategy profiles (defined as those that have positive probability under

the stationary distribution in the limit as the smoothing parameter goes to 0) are pure

approximate equilibria. Finally, we turn our attention to fictitious play, and establish that

in near-potential games, the sequence of empirical frequencies of player actions converges

to a neighborhood of (mixed) equilibria of the game, where the size of the neighborhood

increases with the distance of the game to a potential game. Thus, our results suggest

that games that are close to a potential game inherit the dynamical properties of potential

games. Since a close potential game to a given game can be found using the game decompo-

sition results, our approach also provides a systematic framework for studying convergence

behavior of adaptive learning dynamics in arbitrary finite strategic form games.

1.1.2 Part II: Iterative Auction Design for Graphical Valuations

Chapter 4. We start this chapter by introducing graphical valuations. Value functions

that belong to this class are associated with a value graph, nodes of which correspond to the

items that are sold by the auctioneer. The edges of this graph capture the value complemen-

tarity and substitutability exhibited by the items. The value a bidder has for a given set of

items can be expressed as the sum of the weights of nodes and edges that are contained in

this set. This valuation model captures the value complementarity/substitutability struc-

ture in important practical settings, while allowing for a compact representation of the
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value functions. A closely related valuation model appeared in a recent work by (Abra-

ham et al., 2012), where the focus was on the complexity of auction design for (hyper)

graphical valuations that do not exhibit substitutabilities. In contrast, in this work we

develop simple efficient iterative auctions for graphical valuations that exhibit both value

complementarities and substitutabilities.

An important component of iterative auction design is the choice of the pricing rule used

for running auctions. In this chapter, we present an important pricing rule, anonymous

item pricing, that is commonly used in the literature for the design of iterative auctions

(Ausubel, 2006). We also discuss a natural termination condition for iterative auctions that

rely on this pricing rule: the auctioneer terminates the auction when a "market clearance"

condition holds, i.e., when all bidders demand disjoint sets of items, and all items are

demanded by some bidder. It is clear that at such an outcome no bidder needs compete

with the remaining bidders to acquire the set of items that she demands (since the demand

sets are disjoint), thereby making this outcome a natural termination point for the auction.

Moreover, this termination condition is equivalent to convergence of the iterative auctions

to a Walrasian equilibrium. Hence, it is possible to design iterative auction formats that

rely on anonymous item pricing and the aforementioned termination condition if and only

if a Walrasian equilibrium exists.

For the remainder of this chapter, we restrict attention to a special subclass of graphical

valuations, where the underlying value graph is a tree, and valuations satisfy an additional

technical (sign consistency) condition. For this class of valuation functions, we show that
a Walrasian equilibrium always exists. It is known that the existence of a Walrasian equi-
librium is equivalent to existence of integral optimal solutions to a linear programming

formulation of the efficient allocation problem. Thus, our result immediately leads to a
linear program that can be solved to identify the efficient allocation for sign-consistent tree
valuations. We also demonstrate that if we relax the sign consistency assumption, or the
tree assumption, solving this linear programming formulation no longer gives the efficient
outcome and a Walrasian equilibrium does not exist.

Chapter 5. In this chapter, we study the efficient allocation problem for more general
value graphs. As established in the previous chapter, for general graphical valuations, a
Walrasian equilibrium need not exist, hence it is not possible to develop iterative auctions
that terminate at a market clearing outcome using anonymous item pricing. This motivates
us to consider more general pricing rules, and iterative auction formats that terminate when
a generalized market clearance condition with such pricing rules holds. To this end, we first
introduce the concept of a pricing equilibrium, which is a generalization of the Walrasian
equilibrium concept to pricing rules that are more general than anonymous item pricing.
Then, we provide linear programming formulations of the efficient allocation problem, which
have optimal solutions that are integral (hence identify the efficient outcome) if and only if
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pricing equilibria exist. Iterative solutions of these LP formulations can be used to develop

efficient iterative auction formats that terminate when a pricing equilibrium is found, as we

discuss in detail in Chapter 6.

More precisely, in this chapter, we focus on three pricing rules that generalize anony-

mous item pricing, and the associated linear programming formulations. The first linear

programming formulation we focus on strengthens the formulation of Chapter 4 by impos-

ing a constraint for each edge of the underlying value graph. Hence, its dual associates

an anonymous price variable with each node, and edge of the underlying value graph. We

refer to this pricing rule as anonymous graphical pricing. Using this linear programming

formulation and its dual, we establish that a pricing equilibrium with anonymous graphical

pricing exists if and only if this formulation has optimal solutions that are integral. We

also establish that when the underlying value graph involves a 5-clique (as a minor), then

it may be possible to find the efficient allocation using this linear programming formulation

even in cases where the formulation of Chapter 4 does not obtain the efficient allocation.

Conversely, if the value graph does not involve a 4-clique (as a minor), then the two for-

mulations are equivalent, in the sense that if one formulation gives the efficient outcome so

does the other one, and vice versa. These results suggest that even stronger optimization

formulations (or more general pricing rules) may be necessary in order to find the efficient

outcome for more general value graphs.

We then study linear programming formulations, whose duals suggest bidder-specific

item pricing, and bidder-specific graphical pricing rules. These pricing rules are analogous

to the anonymous pricing rules mentioned before, but they allow for offering different prices

to different bidders. We show that the first linear programming formulation is equivalent to

that of Chapter 4, and hence cannot find the efficient allocation for general value graphs. On

the other hand, the formulation associated with bidder-specific graphical pricing is stronger

than all of the aforementioned formulations, and can be used to identify the efficient outcome

for all graphical valuations. This result also implies that a pricing equilibrium with this

pricing rule always exists. Moreover, this formulation can be generalized to obtain linear

programming formulations (and pricing equilibria) that identify the efficient outcome, even

for valuation functions that exhibit a more general additively decomposable structure than

graphical valuations.

Chapter 6. In this chapter, we first introduce the solution concept, ex-post perfect equi-

librium, which we use for the analysis of iterative auctions, and provide conditions for

characterization of such equilibria. Then we obtain iterative algorithms for the solution of

the linear programming formulations of Chapters 4 and 5, and employ these algorithms to

develop iterative auction formats for graphical valuations. These auctions imitate the iter-

ative algorithms if bidders reveal their demand truthfully. Moreover, by charging bidders

appropriate final payments, we show that it is an ex-post perfect equilibrium for bidders
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to truthfully reveal their demand in these auctions. These results imply that our iterative

auctions guarantee efficiency at an ex-post perfect equilibrium.

More precisely, we first focus on the linear programming formulation of Chapter 4 that

allows for finding the efficient outcome for sign-consistent tree valuations. We show that

an iterative solution of this formulation using primal-dual algorithms suggests a natural

iterative auction format, where the auctioneer offers a single anonymous price for each item.

At each stage of this auction, the auctioneer increases the prices of the overdemanded items,

and decreases those of the underdemanded ones. This auction terminates when a market

clearance condition holds and allocates items efficiently, if bidders reveal their demand

truthfully. However, bidders may have incentive to misreport their demand, if their final

payments are equal to the prices that emerge at the end of the auction. We show that by

appropriately modifying these payments, the auctioneer can guarantee truthful bidding at

each stage of the auction. The corresponding iterative auction format guarantees efficiency

at an (ex-post perfect) equilibrium for sign-consistent tree valuations.

We then follow a similar approach for developing iterative auctions that guarantee effi-

ciency for general graphical valuations. In particular, we focus on iterative algorithms that

can be used for solving the linear programming formulation of Chapter 5 associated with

bidder-specific graphical pricing. These iterative algorithms can be used to find the efficient

allocation for all graphical valuations, since the corresponding linear programming formu-

lation has an optimal solution associated with such allocations. Additionally, we establish

that the aforementioned linear program has an optimal solution that allows for comput-

ing final payments that guarantee truthful bidding by bidders. Employing these payments

together with our iterative algorithm, we provide an iterative auction format that (termi-

nates at a pricing equilibrium, and) implements the efficient outcome at an ex-post perfect

equilibrium.

In this chapter, we also discuss how our results and auction formats can be generalized

to environments where valuations of bidders are not necessarily graphical, but admit a more

general additively decomposable structure. The results of this part of the thesis imply that

in general it is possible to develop efficient iterative auction formats that rely on pricing rules

that have a similar structure to the underlying valuation functions. Hence, in practice it

may be possible to develop simple iterative auction formats, by first identifying the structure

of the valuations of bidders, and then following the framework provided in this part of the

thesis to exploit this special structure.
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Part I

Structural Game Decompositions

and Dynamics
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Chapter 2

Decomposition of Games

2.1 Introduction

Potential games play an important role in game-theoretic analysis due to their desirable

static properties (e.g., existence of a pure strategy Nash equilibrium) and tractable dynamics

(e.g., convergence of simple player dynamics to a Nash equilibrium); see Monderer and

Shapley (1996b,a), and Neyman (1997). However, many multi-agent strategic interactions

in economics and engineering cannot be modeled as a potential game.

This chapter provides a novel flow representation of the preference structure in strategic-

form finite games, which allows for delineating the fundamental characteristics in preferences

that lead to potential games. This representation enables us to develop a canonical orthogo-

nal decomposition of an arbitrary game into a potential component, a harmonic component,
and a nonstrategic component, each with its distinct properties. The decomposition can be

used to define the "distance" of an arbitrary game to the set of potential games. We use this

fact to describe the approximate equilibria of a given game in terms of the equilibria of its

potential component. Moreover, we illustrate in the next chapter that a similar approach

allows for characterizing the outcome of dynamic strategic interactions in games.

Our starting point is to associate to a given finite game a game graph, where the set of

nodes corresponds to the strategy profiles and the edges represent the "comparable strategy

profiles" i.e., strategy profiles that differ in the strategy of a single player. The utility differ-

ences for the deviating players along the edges define a flow on the game graph. Although

this graph contains strictly less information than the original description of the game in

terms of utility functions, all relevant strategic aspects (e.g., equilibria) are captured.

Our first result provides a canonical decomposition of an arbitrary game using tools
from the study of flows on graphs (which can be viewed as combinatorial analogues of vector

fields). In particular, we use the Helmholtz decomposition theorem (e.g., Jiang et al. (2011)),
which enables the decomposition of a flow on a graph into three components: globally

consistent, locally consistent (but globally inconsistent), and locally inconsistent component

(see Theorem 2.3.1). The globally consistent component represents a gradient flow while the
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locally consistent flow corresponds to flows around global cycles. The locally inconsistent

component represents local cycles (or circulations) around 3-cliques of the graph.

Our game decomposition has three components: nonstrategic, potential and harmonic.

The first component represents the "nonstrategic interactions" in a game. Consider two

games in which, given the strategies of the other players, each player's utility function

differs by an additive constant. These two games have the same utility differences, and

therefore they have the same flow representation. Moreover, since equilibria are defined in

terms of utility differences, the two games have the same equilibrium set. We refer to such

games as strategically equivalent. We normalize the utilities (by adding constants to the

utilities of a player given the other players' strategies such that their sum is equal to zero),
and refer to the utility differences between a game and its normalization as the nonstrategic

component of the game. Our next step is to remove the nonstrategic component and apply

the Helmholtz decomposition to the remainder. The flow representation of a game defined in

terms of utility functions (as opposed to preferences) does not exhibit local cycles, therefore

the Helmholtz decomposition yields the two remaining components of a game: the potential

component (gradient flow) and the harmonic component (global cycles). The decomposition

result is particularly insightful for bimatrix games (i.e., finite games with two players, see

Section 2.4.3), where the potential component represents the "team part" of the utilities

(suitably perturbed to capture the utility matrix differences), and the harmonic component

corresponds to a zero-sum game.

The canonical decomposition we introduce is illustrated in the following example.

Example 2.1.1 (Road-sharing game). Consider a three-player game, where each player

has to choose one of the two roads {0, 1}. We denote the players by d1 , d2 and s. The

player s tries to avoid sharing the road with other players: its payoff decreases by 2 with

each player d1 and d2 who shares the same road with it. The player d1 receives a payoff

-1, if d2 shares the road with it and 0 otherwise. The payoff of d2 is equal to negative of

the payoff of di, i.e., udi + ud2 = 0. Intuitively, player d1 tries to avoid player d2 , whereas

player d2 wants to use the same road with d1 .

In Figure 2-1a we present the flow representation for this game (described in detail

in Section 2.2.2), where the nonstrategic component has been removed. Figures 2-1b and

2-1c show the decomposition of this flow into its potential and harmonic components. In

the figure, each tuple (a, b, c) denotes a strategy profile, where player s uses strategy a and

players d1 and d2 use strategies b and c respectively.

This example shows that the harmonic component of a game satisfies the flow conser-

vation condition, i.e., the total flow at each node is equal to zero. On the other hand, for

the potential component, the total flow around every cycle is equal to zero. These obser-

vations highlight a key distinction in the flow representations of harmonic and potential

components of a game: the harmonic component can be characterized by the presence of

"preference cycles", while the potential component does not have such cycles.
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(a) Flow representation of the (b) Potential Component.
road-sharing game.

(1, 1, 0) 2 (11 )22

(1,0,0) (1,0,1) 2

(0,1,0) (0 ,1, 1)

(0,0,0) 2 (0,0,1)

(c) Harmonic Component.

Figure 2-1: Potential-harmonic decomposition of the road-sharing game. An arrow between
two strategy profiles, indicates the improvement direction in the payoff of the player who
changes its strategy, and the associated number quantifies the improvement in its payoff.

These components induce a direct sum decomposition of the space of games into three

respective subspaces, which we refer to as the nonstrategic, potential and harmonic sub-

spaces, denoted by K, P, and H, respectively. We use these subspaces to define classes of

games with distinct equilibrium properties. We establish that the set of potential games

coincides with the direct sum of the subspaces P and N, i.e., potential games are those with

no harmonic component. Similarly, we define a new class of games in which the potential

component vanishes as harmonic games. The classical rock-paper-scissors and matching

pennies games are examples of harmonic games. The decomposition then has the following

structure:
Harmonic games

Potential games

It is insightful to provide alternative definitions of potential and harmonic games in

terms of the payoff functions of players. A game with a set of players M, set of strategies

E m for all m E M, and a collection of utility functions {umlmM is a potential game if

there exists a potential function # satisfying

d(Pm, p-) (q, p - um (p m , p -- m (q m, p-m ), (2.1)

for every m E M, pm, qm E Em, p-m E E-m. The game is a harmonic game if for all
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strategy profiles p and strategies qm C E m , the utility functions satisfy

I: I: (um(pm, p-m) - um (q m , p-m)) = 0. (2.2)
mCM q

m
cE"

It can be seen from these definitions that harmonic games are games which satisfy the flow

conservation condition illustrated in Example 2.1.1, and potential games are those for which

the total flow around each cycle is equal to zero. The equivalences of subspace definitions

of potential and harmonic games, and the definitions in (2.1) and (2.2) are established in

Sections 2.5.1 and 2.5.2.

Our second set of results establishes properties of potential and harmonic games and

examines how the nonstrategic component of a game affects the efficiency of equilibria.

Harmonic games can be characterized by the existence of improvement cycles, i.e., cycles in

the game graph, where at each step the player that changes its action improves its payoffs.

We show that harmonic games generically do not have pure Nash equilibria. Interestingly,

for the special case when the number of strategies of each player is the same, a harmonic

game satisfies a "multi-player zero-sum property" (i.e., the sum of utilities of all players is

equal to zero at all strategy profiles). We also study the mixed Nash and correlated equilibria

of harmonic games. We show that the uniformly mixed strategy profile (see Definition 2.5.2)

is always a mixed Nash equilibrium and if there are two players in the game, the set of mixed

Nash equilibria generically coincides with the set of correlated equilibria. Finally, we focus

on the nonstrategic component of a game. As discussed above, the nonstrategic component

does not affect the equilibrium set. Using this property, we show that by changing the

nonstrategic component of a game, it is possible to make the set of Nash equilibria coincide

with the set of Pareto optimal strategy profiles. Thus, while this component does not change

the equilibrium set, it determines the efficiency properties of the equilibria.

Our third set of results focuses on the projection of a game onto its respective com-

ponents. We first define a natural inner product and show that under this inner product

the components in our decomposition are orthogonal. We further provide explicit expres-

sions for the closest potential and harmonic games to a game with respect to the norm

induced by the inner product. We use the distance of a game to its closest potential game

to characterize the approximate equilibrium set in terms of the equilibria of the potential

game.

The decomposition framework in this chapter leads to the identification of subspaces

of games with distinct and tractable equilibrium properties. Understanding the structural

properties of these subspaces and the classes of games they induce, provides new insights

and tools for analyzing the equilibrium properties of general noncooperative games. Addi-

tionally, as explained in the next chapter, the decomposition framework serves as a valuable

tool for analysis of dynamics in games.
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2.1.1 Related Literature

Besides the works already mentioned, this chapter is also related to several papers in the

cooperative and noncooperative game theory literature:

The idea of decomposing a game (using different approaches) into simpler games which

admit more tractable equilibrium analysis appeared even in the early works in the coop-

erative game theory literature. In Von Neumann and Morgenstern (Von Neumann and

Morgenstern, 1947), the authors propose to decompose games with large number of players

into games with fewer players. In (Marinacci, 1996; Gilboa and Schmeidler, 1995; Shapley,

1953), a different approach is followed: the authors identify cooperative games through the

games' value functions (see (Von Neumann and Morgenstern, 1947)) and obtain decompo-

sitions of the value function into simpler functions. By defining the component games using

the simpler value functions, they obtain decompositions of games. In this approach, the

set of players is not made smaller or larger by the decomposition but the component games

have simpler structure. Another method for decomposing the space of cooperative games

appeared in Kleinberg and Weiss (Kleinberg and Weiss, 1986, 1985). In these papers, the

algebraic properties of the space of games and the properties of the nullspace of the Shapley

value operator (see Shapley (Shapley, 1953)) and its orthogonal complement are exploited

to decompose games. This approach does not necessarily simplify the analysis of games but

it leads to an alternative expression for the Shapley value (Kleinberg and Weiss, 1985). Our

work is on decomposition of noncooperative games, and different from the above references

since we explicitly exploit the properties of noncooperative games in our framework.

In the context of noncooperative game theory, a decomposition for games in normal

form appeared in Sandholm (Sandholm, 2010b). In this paper, the author defines 2 M

component games that are characterized by their sets of active and passive players, and

provides a decomposition of normal form games to these components. This decomposition

is then used to identify potential games: the original game is a potential game if and only

if in each component game the active players have identical payoff functions. We note that

our decomposition approach is different than this work in the properties of the component

games. In particular, using the global preference structure in games, our approach yields

decomposition of games to three components with distinct equilibrium properties, and these

properties can be exploited to gain insights about the static and dynamic features of the

original game.

A different decomposition of noncooperative games appeared in (Bagar and Ho, 1974;

Kalai and Kalai, 2010). This decomposition relies on identifying zero-sum and identical

interest components for a given game, and is used for dealing with cooperation-related

issues that emerge in games with strategic players. It is fundamentally different than the
decomposition we propose, since one of its components is always zero-sum, whereas this is

not the case in our decomposition.

Related ideas of representing finite strategic form games as graphs previously appeared
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in the literature to study different solution concepts in normal form games (Goemans et al.,
2005; Christodoulou et al., 2006). In these references, the authors focus on the restriction of

the game graph to best-reply paths and analyze the outcomes of games using this subgraph.

In our work, the graph representation of games and the flows defined on this graph lead

to a natural equivalence relation. Related notions of strategic equivalence are employed

in the game theory literature to generalize the desirable static and dynamic properties of

games to their equivalence classes (Moulin and Vial, 1978; Rosenthal, 1974; Morris and

Ui, 2004; Voorneveld, 2000; Germano, 2006; Hammond, 2005; Hofbauer and Hopkins, 2005;

Kannan and Theobald, 2010; Mertens, 2004; Hillas and Kohlberg, 2002). Moulin and Vial

(Moulin and Vial, 1978) refer to games which have the same better-response correspondence

as equivalent games and study the equilibrium properties of games which are equivalent to

zero-sum games. In (Hammond, 2005; Hofbauer and Hopkins, 2005), the dynamic and static

properties of certain classes of bimatrix games are generalized to their equivalence classes.

Using the best-response correspondence instead of the better-response correspondence, the

papers (Rosenthal, 1974; Morris and Ui, 2004; Voorneveld, 2000) define different equivalence

classes of games. We note that the notion of strategic equivalence used in our work implies

some of the equivalence notions mentioned above. However, unlike these papers, our notion

of strategic equivalence leads to a canonical decomposition of the space of games, which is

then used to extend the desirable properties of potential games to "close" games that are

not strategically equivalent.

Despite the fact that harmonic games were not defined in the literature before (and thus,

the term "harmonic" does not appear explicitly as such), specific instances of harmonic

games were studied in different contexts. Hofbauer and Schlag (2000) study dynamics in

"cyclic games" and obtain results about a class of harmonic games which generalize the

matching pennies game. A parametrized version of Dawkins' battle of the sexes game,

which is a harmonic game under certain conditions, is studied in Smith and Hofbauer

(1987). Other examples of harmonic games have also appeared in the buyer/seller game of

Friedman (1991) and the crime deterrence game of Cressman and Morrison (1998).

2.1.2 Outline

The remainder of this chapter is organized as follows. In Section 2.2, we present the relevant

game theoretic background and provide a representation of games in terms of graph flows.

In Section 2.3, we state the Helmholtz decomposition theorem which provides the means

of decomposing a flow into orthogonal components. In Section 2.4, we use this machinery

to obtain a canonical decomposition of the space of games. We introduce in Section 2.5

natural classes of games, namely potential and harmonic games, which are induced by this

decomposition and describe the equilibrium properties thereof. In Section 2.6, we define

an inner product for the space of games, under which the components of games turn out

to be orthogonal. Using this inner product and our decomposition framework we propose
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a method for projecting a given game to the spaces of potential and harmonic games. We

then apply the projection to study the equilibrium properties of "near-potential" games.

We close in Section 2.7 with a summary of the main contributions of this chapter. Some of

the proofs of this chapter are delegated to Section 2.8. Additional properties of two player

harmonic games are discussed in Section 2.9.

2.2 Game-Theoretic Background

In this section, we describe the required game-theoretic background. Notation and basic

definitions are given in Section 2.2.1. In Section 2.2.2, we provide an alternative represen-

tation of games in terms of flows on graphs. This representation is used in the rest of this

chapter to analyze finite games.

2.2.1 Preliminaries

A (noncooperative) strategic-form finite game consists of:

" A finite set of players, denoted M = {1, ... , M}.

" Strategy spaces: A finite set of strategies (or actions) Em, for every m C M. The
joint strategy space is denoted by E = HmM Em.

" Utility functions: um : E -4 R, m C M.

A (strategic-form) game instance is accordingly given by the tuple (M, {E m }mcM, {um}mCM),
which for notational convenience will often be abbreviated to (M, {E m}, {u m }).

We use the notation p m E E m for a strategy of player m. A collection of players'
strategies is given by p = {pm}mcM and is referred to as a strategy profile. A collection of
strategies for all players but the m-th one is denoted by p- m E E- m . We use hm = Eml
for the cardinality of the strategy space of player m, and |E| = Hm=1 hm for the overall
cardinality of the strategy space. As an alternative representation, we shall sometimes
enumerate the actions of the players, so that Em = {1, ... , hm}.

The basic solution concept in a noncooperative game is that of a Nash Equilibrium (NE).
A strategy profile p {p1 , ... pM} is an c-equilibrium if

um (p m ,p m ) um (qm ,p-m ) - e for every qm E E m and m c M. (2.3)

A (pure) Nash equilibrium' is an c-equilibrium with c = 0.
The next lemma shows that the E-equilibria of two games can be related in terms of the

differences in utilities.

'In strategic-form finite games, Nash equilibrium always exists in mixed strategies. However, pure Nash
equilibria, defined here need not always exist.
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Lemma 2.2.1. Consider two games ! and $, which differ only in their utility functions,

i.e., g (M, {E m }, {um}) and # (M, {E m }, {tm}). Assume that Ium(p) - m(p I

for every m E M and p C E. Then, every e1-equilibrium of $ is an c-equilibrium of g for

some e < 2e0 + El (and viceversa).

Proof. Let p be an ei-equilibrium of O and let q C E be a strategy profile with qk # pk for

some k E M, and qm = p m for every m E M \ {k}. Then,

uk(q) - uk(p) < u"k(q) _ uk(p) _ (fik(q) _itk(p)) ± El < 2co ± Cl,

where the first inequality follows since p is an ei-equilibrium of 4, hence fik (p) k(q) > -E1,

and the second inequality follows by the lemma's assumption. O

We turn now to describe a particular class of games that is central in this chapter, the

class of potential games (Monderer and Shapley, 1996b).

Definition 2.2.1 (Potential Game). A potential game is a noncooperative game for which

there exists a function # : E -> R satisfying

#(p m , p- m ) - q(q m , p-m ) um (pm , p- m ) - u m (q m , p m ), (2.4)

for every m C M, pm, qm C E, P-m E E-m. The function # is referred to as a potential

function of the game.

Potential games can be regarded as games in which the interests of the players are

aligned with a global potential function #. Games that obey condition (2.4) are also known

in the literature as exact potential games, to distinguish them from other classes of games

that relate to a potential function (in a different manner). For simplicity of exposition, we

will often write 'potential games' when referring to exact potential games. Potential games

have desirable equilibrium properties as summarized in Section 2.5.1.

2.2.2 Games and Flows on Graphs

In noncooperative games, the utility functions capture the preferences of agents at each

strategy profile. Note that a Nash equilibrium is defined in terms of payoff differences,

suggesting that actual payoffs in the game are not required for the identification of equilibria,

as long as the payoff differences are well defined.

A pair of strategy profiles that differ only in the strategy of a single player will be

henceforth referred to as comparable strategy profiles. We denote the set (of pairs) of

comparable strategy profiles by A C E x E, i.e., p, q are comparable if and only if (p, q) E A.

A pair of strategy profiles that differ only in the strategy of player m is called a pair of

m-comparable strategy profiles. The set of pairs of m-comparable strategies is denoted by
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A m c E x E. Clearly, UmA m = A, where A m n Ak = 0 for any two different players m and

k.

For any given m-comparable strategy profiles p and q, the payoff difference [um (p) -

um(q)] will be referred to as their pairwise comparison. For any game, we define the pairwise

comparison function X E x E -> R as follows

X(p,q) um() m(p) if (p, q) are m-comparable for some m E M (2.5)
0 otherwise.

In view of Definition 2.2.1, a game is an exact potential game if and only if there exists a

function #: E -> R such that #(q) - 4(p) = X(p, q) for any comparable strategy profiles

p and q. Note that the pairwise comparisons are uniquely defined for any given game.

However, the converse is not true, for instance any two games, for which the utilities differ

by a constant have the same pairwise comparisons.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are

defined in terms of pairwise comparisons only. Consequently, games with identical pairwise

comparisons share the same equilibrium sets. Thus, in this chapter, we refer to games with

identical pairwise comparisons as strategically equivalent games

By employing the notion of pairwise comparisons, we can concisely represent any strategic-

form game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be

an undirected graph, with set of nodes N and set of links L. An edge flow (or just flow)

on this graph is a function Y : N x N -- > R such that Y(p, q) = -Y(q, p) and Y(p, q) = 0

for (p, q) ( L (Jiang et al., 2011; Bertsimas and Tsitsiklis, 1997). Note that the flow

conservation equations are not enforced under this general definition.

Given a game g, we define a graph where each node corresponds to a pure strategy

profile, and each edge connects two comparable strategy profiles. This undirected graph

is referred to as the game graph and is denoted by G(!) 4 (E, A), where E and A are

the strategy profiles and pairs of comparable strategy profiles defined above, respectively.

Notice that, by definition, the graph G(9) has the structure of a direct product of M cliques

(one per player), with clique m having hm vertices. The pairwise comparison function

X : E x E -+ R defines a flow on G(g), as it satisfies X(p, q) = -X(q, p) and X(p, q) = 0

for (p, q) V A. This flow may thus serve as an equivalent representation of any game (up

to a "non-strategic" component). It follows directly from the statements above that two

games are strategically equivalent if and only if they have the same flow representation and

game graph. An example of the game graph representation is given in Example 2.1.1 of the

Section 2.1. Another example can be found below.

2 Other strategic equivalence definitions can be found in the literature (see Introduction, for a review of
the relevant literature). We focus on this particular definition to ensure that the flow representations of
equivalent games are identical, a feature that will be used when studying decompositions of games. It is
also true that under our equivalence notion, equivalent games have identical equilibrium sets (mixed, pure
and correlated).
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Example 2.2.1. The payoff matrix of the "battle of the sexes" game is given in the following

table. The game graph has four vertices, corresponding to the direct product of two 2-cliques,
and is presented in Figure 2-2.

2

0 F (0,O) - (0, F)

0 4,2 0,0 3 2
F 1, 0 2, 3

(F, O) - (F, F)

Figure 2-2: Flows on the game graph corresponding to "battle of the sexes".

The representation of a game as a flow in a graph is natural and useful for the under-

standing of its strategic interactions, as it abstracts away the absolute utility values and

allows for more direct equilibrium-related interpretation. In more mathematical terms, it

considers the quotient of the utilities modulo the subspace of games that are "equivalent"

to the trivial game (the game where all players receive zero payoff at all strategy profiles),
and allows for the identification of "equivalent" games as the same object, a point explored

in more detail in later sections. The game graph also contains much structural information.

For instance, two games where the directions of arrows are identical (regardless of the flow

values) share the same pure Nash equilibria. Our goal in this chapter is to use tools from

the theory of graph flows to decompose a game into components, each of which admits

tractable equilibrium characterization. The next section provides an overview of the tools

that are required for this objective.

2.3 Flows and Helmholtz Decomposition

The objective of this section is to provide a brief overview of the notation and tools required

for the analysis of flows on graphs. The basic high-level idea is that under certain conditions

(e.g., for graphs arising from games), it is possible to consider graphs as natural topological

spaces with nontrivial homological properties. In what follows, we make this idea precise.

For simplicity and accessibility to a wider audience, we describe the methods in relatively

elementary linear algebraic language, limiting the usage of algebraic topology notions when-

ever possible. The main technical tool we use is the Helmholtz decomposition theorem, a

classical result from algebraic topology with many applications in applied mathematics,
including among others electromagnetism, computational geometry and data visualization;

see e.g. (Polthier and PreuB, 2002; Tong et al., 2003). In particular, we mention the very

interesting recent work by Jiang et al. (Jiang et al., 2011), where the Helmholtz/Hodge

decomposition is applied to the problem of statistical ranking for sets of incomplete data.

Consider an undirected graph G = (E, A), where E is the set of the nodes, and A is the
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set of edges of the graph 3 . Since the graph is undirected (p, q) C A if and only if (q, p) C A.

We denote the set of 3-cliques of the graph by T = {(p, q, r)I(p, q), (q, r), (p, r) E A}.

We denote by Co = {fl f E -> R} the set of real-valued functions on the set of nodes.

Recall that the edge flows X E x E --+R are functions which satisfy

X~~p~~q) ( X (q, p) if (p, q)cA(26
Xp, q) = (2.6)

0 otherwise.

Similarly the triangular flows T : E x E x E -> R are functions for which

'I(p, q, r) = I (q, r, p) =- 'I (r, p, q) = - I(q, p, r) = -P (p, r, q) = - IF(r, q, p), (2.7)

and TJ(p, q, r) = 0 if (p, q, r) ( T. Given a graph G, we denote the set of all possible

edge flows by C1 and the set of triangular flows by C2. Notice that both C1 and C2 are

alternating functions of their arguments. It follows from (2.6) that X(p, p) = 0 for all

X C C1.

The sets Co, C1 and C2 have a natural structure of vector spaces, with the obvious

operations of addition and scalar multiplication. In this chapter, we use the following inner

products:

(41, #2)0 = 41 (p)# 2 (p).
pcE

(X, Y) 1 X (p, q) Y(p, q)(28
(p,q)CA

(I1, '2)2 = > 1(p, q, r)' 2 (p, q, r).
(p,q,r)CT

We shall frequently drop the subscript in the inner product notation, as the respective space

will often be clear from the context.

We next define linear operators that relate the above defined objects. To that end, let

W: E x E -- 4R be an indicator function for the edges of the graph, namely

(1if (p, q)A
W(p, q) = f(~q (2.9)

0 otherwise.

Notice that W(p, q) can be simply interpreted as the adjacency matrix of the graph G.

The first operator of interest is the combinatorial gradient operator O : Co -> CI, given
by

(6od)(p, q) = W(p, q)(# (q) - # (p)), p, q E E, (2.10)

for # E Co. An operator which is used in the characterization of "circulations" in edge flows

3 The results discussed in this section apply to arbitrary graphs. We use the notation introduced in
Section 2.2 since in the rest of the chapter we focus on the game graph introduced there.
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is the curl operator 61 : C1 -> C2, which is defined for all X C C1 and p, q, r C E as

r X(p, q) + X(q, r) + X(r, p) if (p, q, r) E T,
(6iX)(p, q, r) = otews.(2.11)

0 otherwise.

We denote the adjoints of the operators 6o and 61 by 6 and of respectively. Recall that

given inner products (-, -)k on Ck, the adjoint of 6 k, namely 6* : Ck+1 -> Ck, is the unique

linear operator satisfying

(Okfk, gk+1)k+1 = (fk, 6 *gk+1)k, (2.12)

for all f E Ck, 9k+1 E Ck+1-

Using the definitions in (2.12), (2.10) and (2.8), it can be readily seen that the adjoint

og : C1 -> Co of the combinatorial gradient 60 satisfies

(6oX)(p) = - X(p, q) = - W(p, q)X(p, q). (2.13)

ql(p,q)CA qcE

Note that -(o5X)(p) represents the total flow "leaving" p. We shall sometimes refer to the

operator -60 as the divergence operator, due to its similarity to the standard divergence

operator in Calculus.

The domains and codomains of the operators 6o, 61, 6, 6* are summarized below.

Co 0 C1 C2

C 0  i . 0 2 (2 .1 4 )
Co <-C1I- C2.

We next define the Laplacian operator, A0 Co -* C0, given by

A o o o, (2.15)

where o represents operator composition. To simplify the notation, we henceforth omit o

and write A0 = 6*oo. Note that functions in Co can be represented by vectors of length |El

by indexing all nodes of the graph and constructing a vector whose ith entry is the function

evaluated at the ith node. This allows us to easily represent these operators in terms of

matrices. In particular, the Laplacian can be expressed as a square matrix of size JE| x |E|;

using the definitions for 60 and o*, it follows that

SW(p, r) if p =q
rcE

[AO]pq -1 if p f q and (p, q) E A (2.16)

0 otherwise,

where, with some abuse of the notation, [Ao]p,q denotes the entry of the matrix Ao, with
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rows and columns indexed by the nodes p and q. The above matrix naturally coincides

with the definition of a Laplacian of an undirected graph (Chung, 1997).

Since the entry of Ao# corresponding to p equals E, W(p, q) (#(p) - #(q)), the Lapla-

cian operator gives a measure of the aggregate "value" of a node over all its neighbors. A

related operator is

$A of 6* 61 + 60 o og*, (2.17)

known in the literature as the vector Laplacian (Jiang et al., 2011).

We next provide additional flow-related terminology which will be used in association

with the above defined operators, and highlight some of their basic properties. In analogy to

the well-known identity in vector calculus, curl o grad = 0, we have that 60 is a closed form,

i.e., 61 o 60 = 0. An edge flow X E Ci is said to be globally consistent if X corresponds to

the combinatorial gradient of some f E Co, i.e., X = 6of; the function f is referred to as the

potential function corresponding to X. Equivalently, the set of globally consistent edge flows

can be represented as the image of the gradient operator, namely im (6o). By the closedness

of o, observe that 61X = 0 for every globally consistent edge flow X. We define locally

consistent edge flows as those satisfying (61X)(p, q, r) = X(p, q) + X(q, r) + X (r, p) = 0

for all (p, q, r) E T. Note that the kernel of the curl operator ker(6i) is the set of locally

consistent edge flows. The latter subset is generally not equivalent to im (6o), as there may

exist edge flows that are globally inconsistent but locally consistent (in fact, this will happen

whenever the graph has a nontrivial topology). We refer to such flows as harmonic flows.

Note that the operators o, 6i are linear operators, thus their image spaces are orthogonal

complements of the kernels of their adjoints, i.e., im (6o) I ker(6o) and im (6 1) I ker(6[)

[similarly, im (o5) I ker(o) and im (6*) I ker(61 ) as can be easily verified using (2.12)1.

We state below a basic flow-decomposition theorem, known as the Helmholtz Decom-

position4 , which will be used in our context of noncooperative games. The theorem (see

(Jiang et al., 2011)) implies that any graph flow can be decomposed into three orthogonal

flows.

Theorem 2.3.1 (Helmholtz Decomposition). The vector space of edge flows C1 admits an

orthogonal decomposition

C1 = im (6o) E ker(A1) E im (6f), (2.18)

where ker(A1) = ker(61) n ker(6o).

Below we summarize the interpretation of each of the components in the Helmholtz

decomposition (see also Figure 2-3):

9 im (6o) - globally consistent flows.
4 The Helmholtz Decomposition can be generalized to higher dimensions through the Hodge Decomposi-

tion theorem (see (Jiang et al., 2011)), however this generalization is not required for our purposes.
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ker(61 ) ker(6o)

Figure 2-3: Helmholtz decomposition of C1

" ker(Ai) = ker(i) n ker(o*) - harmonic flows, which are globally inconsistent but

locally consistent. Observe that ker(6i) consists of locally consistent flows (that may

or may not be globally consistent), while ker(oR) consists of globally inconsistent flows

(that may or may not be locally consistent).

" im (6*) (or equivalently, the orthogonal complement of ker(6i) ) locally inconsistent

flows.

We conclude this section with a brief remark on the decomposition and the flow conser-

vation. For X E C 1 , if oRX = 0, i.e., if for every node, the total flow leaving the node is zero,
then we say that X satisfies the flow conservation condition. Theorem 2.3.1 implies that X

satisfies this condition only when X E ker(J*) = im (o) = ker(A1) @ im (6o). Thus, the

flow conservation condition is satisfied for harmonic flows and locally inconsistent flows but

not for globally consistent flows.

2.4 Canonical Decomposition of Games

In this section we obtain a canonical decomposition of an arbitrary game into basic com-

ponents, by combining the game graph representation introduced in Section 2.2.2 with the

Helmholtz decomposition discussed above.

Section 2.4.1 introduces the relevant operators that are required for formulating the

results. In Section 2.4.2 we provide the basic decomposition theorem, which states that

the space of games can be decomposed as a direct sum of three subspaces, referred to as

the potential, harmonic and nonstrategic subspaces. In Section 2.4.3, we focus on bimatrix

games, and provide explicit expressions for the decomposition.
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2.4.1 Preliminaries

We consider a game G with set of players M, strategy profiles E -" El x .. x EM, and

game graph G(9) = (E, A). Using the notation of the previous section, the utility functions

of each player can be viewed as elements of Co, i.e., um E Co for all m E M. For given M

and E, every game is uniquely defined by its set of utility functions. Hence, the space of

games with players M and strategy profiles E can be identified as 9 M,E CoM. In the rest

of the chapter we use the notations {umn}mcM and g = (M, {FEm, {u m }) interchangeably

when referring to games.

The pairwise comparison function X(p, q) of a game, defined in (2.5), corresponds to

a flow on the game graph, and hence it belongs to C1. In general, the flows representing

games have some special structure. For example, the pairwise comparison between any

two comparable strategy profiles is associated with the payoff of exactly a single player. It

is therefore required to introduce player-specific operators and highlight some important

identities between them, as we elaborate below.

Let W m : E x E -- R be the indicator function for m-comparable strategy profiles,
namely

Wm 1 if p, q are m-comparable

0 otherwise.

Recalling that any pair of strategy profiles cannot be comparable by more than a single
player, we have

Wm(p,q)Wk(p,q)= 0, for all k m and p,q E E, (2.19)

and

W= Wm, (2.20)
mCM

where W is the indicator function of comparable strategy profiles (edges of the game graph)
defined in (2.9). Note that this can be interpreted as a decomposition of the adjacency
matrix of G(g), where the different components correspond to the edges associated with
different players.

Given # E Co, we define Dm : Co - C1 such that

(Dm#0)(p, q) W m (p, q) (0#(q) - (p)). (2.21)

This operator quantifies the change in # between strategy profiles that are m-comparable.
Using this operator, we can represent the pairwise differences X of a game with payoffs

{um}mcM as follows:

X Dmu m . (2.22)
mcM
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We define a relevant operator D : CM -> C 1, such that D = [Di ... , DM]. As can be seen

from (2.22), for a game with collection of utilities n = [u1 u2 ... ; UM] E CoM, the pairwise

differences can alternatively be represented by Du.

Let Am : C1 -> C1 be an operator so that

(AmX)(p, q) = W'(p, q)X(p, q)

for every X C Ci, p, q E E. From (2.20), it can be seen that for any X c C1, EmcM AmX

X. The definition of Am and (2.19) imply that AmAk = 0 for k $ m. Additionally, the

definition of the inner product in Ci implies that for X, Y C C1, it follows that (AmX, Y)

(X, AmY), i.e., Am is self-adjoint.

This operator provides a convenient description for the operator Dm. From the defini-

tions of Dm and Am, it immediately follows that Dm = Am6o, and since EmcM AmX = X

for all X E C1,

60 = Am60 = Dm.
mEM mEM

Since Am is self-adjoint, the adjoint of Dm, which is denoted by D* : Ci -> Co, is given by:

D* = RjAM.

Using (2.13) and the above definitions, it follows that

(D* X)(p) - W m (p, q)X(p, q), for all X C C1, (2.23)
qEE

and

o0= D*. (2.24)
mEM

Observe that D*,Dm = AkAm6o = 0 for k $ m. This immediately implies that the

image spaces of {DmlmEM are orthogonal, i.e., D*Dm = 0. Let Dm denote the (Moore-

Penrose) pseudoinverse of Dm, with respect to the inner products introduced in Section 2.3.

By the properties of the pseudoinverse, we have ker Dm = (im Dm)'. Thus, orthogonality

of the image spaces of Dk operators imply that DtDm = 0 for k = m.

The orthogonality leads to the following expression for the Laplacian operator,

o = D* Dm = 5D*Dm- (2.25)
kcM mGM mEM

In view of (2.21) and (2.23), Dm and -D* are the gradient and divergence operators

on the graph of m-comparable strategy profiles (E, Am). Therefore, the operator Ao,m ,

D*Dm is the Laplacian of the graph induced by m-comparable strategies, and is referred

to as the Laplacian operator of the m-comparable strategy profiles. It follows from (2.25)
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that

AO = A0 ,m.
mCM

The relation between the Laplacian operators A0 and A 0 ,m is illustrated in Figure 2-4.

11) (1, 2) (1, 3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Figure 2-4: A game with two players, each of which has three strategies. A node (i, j)
represents a strategy profile in which player 1 and player 2 use strategies i and j, respectively.
The Laplacian A0 ,1 (Ao, 2) is defined on the graph whose edges are represented by dashed

(solid) lines. The Laplacian A0 is defined on the graph that includes all edges.

Similarly, 6iAm is the curl operator associated with the subgraph (E, A m ). From the

closedness of the curl (6 iAm) and gradient (Am6 o) operators defined on this subgraph, we
obtain Am6 0 = 0. Observing that Ao0 = Am6o = Dm, it follows that

61Dm = 0. (2.26)

This result also implies that 6iD = 0, i.e., the pairwise comparisons of games belong to

ker 61. Thus, it follows from Theorem 2.3.1 that the pairwise comparisons do not have

a locally inconsistent component. Intuitively, there is no local inconsistency, because only

three cliques in the game graph are due to unilateral deviations of a single player, and hence

cannot lead to local inconsistency.

Lastly, we introduce projection operators that will be useful in the subsequent analysis.

Consider the operator,

im = DtDm.

Since Dm is a linear operator, Um is a projection operator5 to the orthogonal complement

of the kernel of Dm. Using these operators, we define H : C0 -> CoM such that H
diag(Hi1,..., HM), i.e., for u {um}mEM c CM, we have Hu = [Hiul;... HMuM] E CtM
We extend the inner product in Co to CM (by defining the inner product as the sum of the

5 For any linear operator L, LtL is a projection operator on the orthogonal complement of the kernel of
L (see (Golub and Van Loan, 1996)).
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inner products in all Co components), and denote by Dt the pseudoinverse of D according

to this inner product. In Lemma 2.4.4, we will show that H is equivalent to the projection

operator to the orthogonal complement of the kernel of D, i.e., H = DtD.

For easy reference, Table 2.1 provides a summary of notation. We next state some basic

facts about the operators we introduced, which will be used in the subsequent analysis. The

proofs of these results can be found in Section 2.8.

g A game instance (M, {E m }meM, (um}mCM).
M Set of players, {1, ... , M}.
E m  Set of actions for player m, E m  {1,... , hm}.
E Joint action space HmEM Em.
um Utility function of player m. We have um E Co.

Wm Indicator function for m-comparable strategy profiles, Wm : E x E -+ {0, 1}.
W A function indicating whether strategy profiles are comparable, W E x E -+ {0, 1}.
Co Space of utilities, Co = {umum : E -> R}. Note that Co ~ RE|.
C1  Space of pairwise comparison functions from E x E to R.
6o Gradient operator, o : Co -+ C1, satisfying (6o)(p,q) = W(p,q) (#(q) - #(p)).

Dm Dm : Co -> C1, such that (Dm#)(p, q) = W m (p, q) (b(q) - O(p))
D D: CO' -> CI, such that D(ui-...uM ) = mMDmum .

O*, D* R, D* : C1 - Co are the adjoints of the operators 6o and Dm, respectively.
AO Laplacian for the game graph. Ao : Co -> Co; satisfies Ao =  >*60 AEm.

Ao,m Laplacian for the graph of m-comparable strategies, Ao,m : Co -> Co; satisfies
AO,m = D* Dm = D*o-

Hm Projection operator onto the orthogonal complement of kernel of Dm, Hm : Co -> Co;
satisfies Hm = DmtDm.

Table 2.1: Notation summary

Lemma 2.4.1. The Laplacian of the graph induced by m-comparable strategies and the

projection operator Um are related by Ao,m = hmfm, where hm = |E"| denotes the number

of strategies of player m.

Lemma 2.4.2. The kernels of operators Di, Urm and Ao,, coincide, namely ker(Dm)

ker(Um) = ker(Ao,m). Furthermore, a basis for these kernels is given by a collection

{V-m}q-
me -- E Co such that

Vq-m(p) =

if p-m -'

otherwise
(2.27)

Lemma 2.4.3. The Laplacian Ao of the game graph (the graph of comparable strategy pro-

files) always has eigenvalue 0 with multiplicity 1, corresponding to the constant eigenfunction

(i.e., f C Co such that f(p) = 1 for all p C E).

Lemma 2.4.4. The pseudoinverses of operators Dm and D satisfy the following identities:
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1. Ditn = ' D*,hm rn

2. (EZcM Di)tDj = (EiM D*Di)tDjDj,

3. Dt= [D;...;Dt],

4. 1 = DtD,

5. DDt6o = 60.

2.4.2 Decomposition of Games

In this subsection we prove that the space of games gM,E is a direct sum of three subspaces

- potential, harmonic and nonstrategic, each with distinguishing properties.

We start our discussion by formalizing the notion of nonstrategic information. Consider

two games g, g E 9 M,E with utilities {um}mcM and {n m }mEM respectively. Assume that

the utility functions {umlmeM satisfy um (p m , p-m) = fim (pm, pm) + a(p-m ) where a is

an arbitrary function. It can be seen that these two games have exactly the same pairwise

comparison functions, hence they are strategically equivalent. To fix a representative for
strategically equivalent games, we introduce below a notion of normalization for games.

Definition 2.4.1 (Normalized games). We say that a game with utility functions {ur}mCM
is normalized or does not contain nonstrategic information if

E um (pm , p- m ) = 0 (2.28)
pm EEm

for all p-m E E- and all m E M.

It will be shown in the sequel that for each game there is a unique strategically equiv-
alent normalized game, hence normalized games can be used to identify representatives
for strategically equivalent games. Normalization can be made with an arbitrary constant.
However, in order to simplify the subsequent analysis we normalize the sum of the payoffs
to zero. Intuitively, in normalized games, given the strategies of a player's opponents, the
expected payoff of a player for a uniformly mixed strategy is equal to zero. The following
lemma characterizes the set of normalized games in terms of the operators introduced in
the previous section.

Lemma 2.4.5. Given a game g with utilities u = {um}mcM, the following are equivalent:
(i) g is normalized, (ii) Hmu m = um for all m, (iii) Hu = u, (iv) u G (ker D)'L.

Proof. The equivalence of (iii) and (iv) is immediate since by Lemma 2.4.4, H = DtD is a
projection operator to the orthogonal complement of the kernel of D. The equivalence of
(ii) and (iii) follows from the definition of H = diag(H1,..., HM). To complete the proof
we prove (i) and (ii) are equivalent.
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Observe that (2.28) holds if and only if (um , vqm (p)) = 0 for all q-m C E-m , where

ug-m is as defined in (2.27). Lemma 2.4.2 implies that {vq- m} are basis vectors of ker Dm.

Thus, it follows that (2.28) holds if and only if um is orthogonal to all of the basis vectors

of kerDmn, or equivalently when um C (kerDr)'. Since H_ = DtD, is a projection

operator to (ker Dm.)', we have um c (kerDm)' if and only if HU um, and the claim

follows.

Using Lemma 2.4.5, we next show below that for each game g there exists a unique

strategically equivalent game which is normalized (contains no nonstrategic information).

Lemma 2.4.6. Let g be a game with utilities {u m }incm. Then there exists a unique game U
which (i) has the same pairwise comparison function as ! and (ii) is normalized. Moreover

the utilities ft {=imn}nCm of g satisfy i m = Ulmu m for all m.

Proof. To prove the claim we show that given u = {um}mnCM, the game with the collection

of utilities DtDu = fu, is a normalized game with the same pairwise comparisons, and

moreover there cannot be another normalized game which has the same pairwise compar-

isons.

Since 1 is a projection operator, it follows that Hflu = Flu, and hence, Lemma 2.4.5

implies that Hu is normalized. Additionally, using properties of the pseudoinverse we have

Dfu = DDtDu = Du, thus Hu and u have the same pairwise comparison.

Let v E C O denote the collection of payoff functions of a game which is normalized

and has the same pairwise comparison as u. It follows that Dv = Du = DHu, and hence

v - Hu C ker D. On the other hand, since both v and fu are normalized, by Lemma

2.4.5, we have v, Hu E (ker D)', and thus v - Hu C (ker D)L. Therefore, it follows that

v - U = 0, hence Hu is the collection of utility functions of the unique normalized game,

which has the same pairwise comparison function as g. By Lemma 2.4.4, Hu = {Umum},
hence the claim follows. 0

We are now ready to define the subspaces of games that will appear in our decomposition

result.

Definition 2.4.2. The potential subspace P, the harmonic subspace N and the nonstrategic

subspace M are defined as:

P {u C u =fu and Du E im 6o}

' {uC | u = u and Du C ker 6} (2.29)

A f{ C ' u C ker D}.

Since the operators involved in the above definitions are linear, it follows that the sets

P, N and M are indeed subspaces.

Lemma 2.4.5 implies that the games in P and N are normalized (contain no nonstrategic

information). The flows generated by the games in these two subspaces are related to the
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flows induced by the Helmholtz decomposition. It follows from the definitions that the flows

generated by a game in P are in the image space of 6o and the flows generated by a game in

H are in the kernel of 6. Thus, P corresponds to the set of normalized games, which have

globally consistent pairwise comparisons. Due to (2.26), the pairwise comparisons of games

do not have locally inconsistent components, thus Theorem 2.3.1 implies that H corresponds

to the set of normalized games, which have globally inconsistent but locally consistent

pairwise comparisons. Hence, from the perspective of the Helmholtz decomposition, the

flows generated by games in P and H are gradient and harmonic flows respectively. On the

other hand the flows generated by games in A are always zero, since Du = 0 in such games.

As discussed in the previous section the image spaces of Dm are orthogonal. Thus, since

by definition Du = E EM Dmu m , it follows that u = {Um }mcM E ker D if and only if

UM E ker Dm for all m C M. Using these facts together with Lemma 2.4.5, we obtain the

following alternative description of the subspaces of games:

P {{u'}mEM | Dmum = Dm# and U1mum =m for all m E M and some # E Co}

K= {{Um}mM | o Dmu m = 0 and Hmum = um for all m E M }
mEM

N = {{umKmEM I Dmu m = 0 for all m C M }.
(2.30)

The main result of this section shows that not only these subspaces have distinct prop-

erties in terms of the flows they generate, but in fact they form a direct sum decomposition

of the space of games. We exploit the Helmholtz decomposition (Theorem 2.3.1) for the

proof.

Theorem 2.4.1. The space of games GM,E is a direct sum of the potential, harmonic and

nonstrategic subspaces, i.e., 9 M,E = P E K D K. In particular, given a game with utilities

u {u'}mEM, it can be uniquely decomposed in three components:

* Potential Component: up A Dt6o6tDu

* Harmonic Component: uH A Dt(I - 6oo)Du

* Nonstrategic Component: uN A (I - DtD)u

where up + uH + uN = u, and up E P, uH E K, UN C K. The potential function associated

with up is # A 6tDu.

Proof. The decomposition of 9M,E described above follows directly from pulling back the

Helmholtz decomposition of C1 through the map D, and removing the kernel of D; see

Figure 2-5.

The components of the decomposition clearly satisfy up + uH + uN = u. We verify the

inclusion properties, according to (2.29). Both up and uH are orthogonal to K = ker D,
since they are in the range of Dt.
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gM,E C'

D

Co CI 61 ) C2

Figure 2-5: The Helmholz decomposition of the space of flows (CI) can be pulled back
through D to a direct sum decomposition of the space of games (gM,E)-

" For the potential component, let # C C0 be such that # = StDu. Then, we have

Dup C im (6o), since

Dup = DD t 606Du = 6o3Du

where we used the definition of up, the property (v) in Lemma 2.4.4 and the definition

of #, respectively. This equality also implies that # is the potential function associated

with up.

" For the harmonic component uH, we have DUH E ker R3:

0DUH = E*DDt (I - 6ot0)Du = 60(I - 606 )Du = 0,

as follows from the definition of UH, the property (v) in Lemma 2.4.4, and properties

of the pseudoinverse.

" To check that UN E K, we have

DUN = D(I - DtD)u = (D - DDtD)u = 0.

In order to prove that the direct sum decomposition property holds, we assume that there

exists itp C P, t H E N and UN C K such that +p + UH+ N = 0. Observe that I - DtD

is a projection operator to the kernel of D. Thus, from the definition of the subspaces P,
N and K, it follows that (I - DtD)fIN = fIN and (I - DtD)inp = (I - DtD)fIH = 0.

Similarly, 6065 is a projection operator to the image of 60. Since by definition DfIp E im 60,
and DntH C ker6,R = (im o)', it follows that Jo6Dup = Dnp and JoooDnH = 0.

Using these identities, it follows that

(Dt6o6tD)(nip + H + UN) = uP

Dt(I - oo 0 t)D(nt + UH + UN) = UH

(I - DtD)(ftp + UH + UN) = UN,
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Since, itP + f1H + fiN = 0 by our assumption, it follows that tP = nH = UN = 0, and hence

the direct sum decomposition property follows.

The pseudoinverse of a linear operator L, projects its argument to the image space of L,
and then, pulls the projection back to the the domain of L. Thus, intuitively, the potential

function # =5tDu, defined in the theorem, is such that the gradient flow associated with

it (6o0) approximates the flow in the original game (Du), in the best possible way. The

potential component of the game can be identified by pulling back this gradient flow through

D to COm. The harmonic component can similarly be obtained using the harmonic flow.

Since o = mEM Dm, it follows that # = otDu = (EmeM Dm)t EmCM Dmu m . Thus,

Lemma 2.4.4 (ii), and identities Ao,m = D*Dm and Ao = EmEM Ao,m imply that

mEM

Additionally, from Lemma 2.4.4 (iii) and (iv) it follows that Dt6o = [DtD1; ... ; DtDm]

[Hi; ... ; M] and DtD = H = diag(Hi,..., HM). Using these identities, the utility func-

tions of components of a game can alternatively be expressed as follows:

* Potential Component: um =1,4, for all m E M,

" Harmonic Component: up Hmum _ 1m#, for all m C M,

" Nonstrategic Component: uN (I - Hm)um, for all m c M.

It can be seen that the definitions of the subspaces do not rely on the inner product in

CVM. Thus, the direct sum property implies that the decomposition is canonical, i.e., it

is independent of the inner product used in C". The above expressions provide closed

form solutions for the utility functions in the decomposition, without reference to this inner

product. We show in Section 2.6 that our decomposition is indeed orthogonal with respect

to a natural inner product in CO".

Note that Ao : Co -+ Co, whereas 6o : Co - C1. Since C1 and Co are associated with

the edges and the nodes of the game graph respectively, in general Ci is higher dimensional
than Co. Therefore, calculating At is computationally more tractable than calculating o6.
Hence, the alternative expressions for the components of a game and the potential function

#, have computational benefits over using the results of Theorem 2.4.1 directly.

In (Facchini et al., 1997) and (Voorneveld et al., 1999), decompositions of potential
games to a "congestion" component (where all players have identical utility functions),
and a "dummy" component (which is nonstrategic) were provided. We note that this
decomposition is different from the decomposition suggested by Theorem 2.4.1 even when
the original game is a potential game. In particular, in the potential component of a game,
players can have different utility functions (as can be seen from the alternative expressions,
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for utilities in different components of a game). This is not the case for the "congestion

component" provided in these works.

We conclude this section by characterizing the dimensions of the potential, harmonic

and nonstrategic subspaces. The proof can be found in the Section 2.8.

Proposition 2.4.1. The dimensions of the subspaces P, H and A are:

1. dim(P) = HmEM hm - 1,

2. dim(N) = (M - 1) HmcM hm - EmCM km hk + 1.

3. dim(N) = EmcM Hkm hk.

2.4.3 An Example: Decomposition of Bimatrix Games

We conclude this section by providing an explicit decomposition result for bimatrix games,

i.e., finite games with two players. Consider a bimatrix game, where the payoff matrix of

the row player is given by A, and that of the column player is given by B; that is, when

the row player plays i and the column player plays j, the row player's payoff is equal to Aij

and the column player's payoff is equal to Bij.

Assume that both the row player and the column player have the same number h of

strategies. It immediately follows from Proposition 2.4.1 that dim P = h 2 - 1, dimX =

(h 1)2 and dimN = 2h. For simplicity, we further assume that the payoffs are normalized 6 .

Thus, the definition of normalized games implies that 1TA = B1 = 0, where 1 denotes the

vector of ones. Denote by Ap (Bp) and AH (BH) respectively, the payoff matrices of the

row player (column player) in the potential and harmonic components of the game. Using

our decomposition result (Theorem 2.4.1), it follows that

(Ap, Bp) = (s + F, S - F), (AH, BH) = (D - F, -D + F), (2.31)

where S = ((A + B), D =(A - B), F = (A11T - 11TB). Interestingly, the payoff of

each player in these components depends on the payoffs of both players in the original game:

The potential component of the game relates to the average of the payoffs in the original

game and the harmonic component relates to the difference in payoffs of players. The

F term ensures that the potential and harmonic components do not contain nonstrategic

information. We use the above characterization in the next example for obtaining explicit

payoff matrices for each of the game components.

Example 2.4.1 (Generalized Rock-Paper-Scissors). The payoff matrix of the generalized

Rock-Paper-Scissors (RPS) game is given in Table 2.2a. Tables 2.2b, 2.2c and 2.2d include

the nonstrategic, potential and the harmonic components of the game. The special case

6 Lemma 2.4.2 and Lemma 2.4.6 imply that if the payoffs are not normalized, the normalized payoffs can

be obtained as (A - _111TA, B - !B11T).
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1where x = y = z = } corresponds to the celebrated RPS game. Note that in this case, the

potential component of the game is equal to zero.

R P S
R 0,0 -3x, 3x 3y, -3y
P 3x, -3x 0, 0 -3z,3z
S - 3y, 3 y 3z, -3z 0,0

(a) Generalized RPS Game
R P S

R (x - y), (x - y) (z - x), (x - y) (y - z), (x - y)

P (x - y),(z - x) (z - x),(z - x) (y - z),(z - x)
S (x - y),(y - z) (z - x),(y - z) (y - z), (y - z)

(b) Nonstrategic Component
R P S

R (y - x), (y - x) (y - x), (x - z) (y - x), (z - y)
P (x - z), (y - x) (x - z),(x - z) (x - z), (z - y)
S (z - y), (y - x) (z - y), (x - z) (z - y), (z - y)

(c) Potential Component
R P S

R 0, 0 -(x + y + z), (x + y + z) (x + y + z), -(x + y + z)
P (x + y + z), -(x + y + z) 0, 0 -(x + y + z), (x + y + z)
S -(x + y + z), (x + y + z) (x + y + z), -( + y + z) 0, 0

(d) Harmonic Component

Table 2.2: Generalized RPS game and its components.

2.5 Potential and Harmonic Games

In this section we study the classes of games that are naturally motivated by our decom-

position. In particular, we focus on two classes of games: (i) Games with no harmonic

component, (ii) Games with no potential component. We show that the first class is equiv-

alent to the well-known class of potential games. We refer to the games in the second class

as harmonic games. Pictorially, we have

Harmonic games

P (D (D 'H
Potential games

In Sections 2.5.1 and 2.5.2, we establish the equivalence of the subspace definitions of

potential and harmonic games, and the utility definitions given in equations (2.1) and

(2.2). Additionally we develop and discuss several properties of these classes of games,
with particular emphasis on their equilibria. Since potential games have been extensively

studied in the literature, our main focus is on harmonic games. The nonstrategic component

does not have an impact on the strategic actions of players, however, we establish in 2.5.3
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Potential Games Harmonic Games
Subspaces P e K ' G K
Flows Globally consistent Locally consistent but globally inconsistent
Pure NE Always Exists Generically does not exist
Mixed NE Always Exists -Uniformly mixed strategy is always a mixed NE

-Players do not strictly prefer their equilibrium strate-
gies.

Special Cases -- (two players) Set of mixed Nash equilibria coincides
with the set of correlated equilibria
-(two players & equal number of strategies) Uniformly
mixed strategy is the unique mixed NE

Table 2.3: Properties of potential and harmonic games.

that the nonstrategic component affects efficiency in games. In particular, we show that

modifying the nonstrategic component of a game properly, it is possible to make all Nash

equilibria Pareto optimal. Potential and harmonic games are related to other well-known

classes of games, such as the zero-sum games and identical interest games. In Section 2.5.4,
we discuss this relation in the context of bimatrix games. As a preview, in Table 2.3,
we summarize some of the properties of potential and harmonic games established in the

subsequent sections.

2.5.1 Potential Games

Since the seminal paper of Monderer and Shapley (Monderer and Shapley, 1996b), potential

games have been an active research topic. The desirable equilibrium properties and structure

of these games played a key role in this. In this section we explain the relation of the

potential games to the decomposition in Section 2.4 and briefly discuss their properties.

Recall from Definition 2.2.1 that a game is a potential game if and only if there exists

some # C CO such that Du = oo#. This condition implies that a game is potential if and

only if the associated flow is globally consistent. Thus, it can be seen from the definition of

the subspaces and Theorem 2.4.1 that the set of potential games is actually equivalent to

P G K. For future reference, we summarize this result in the following theorem.

Theorem 2.5.1. The set of potential games is equal to the subspace P e K.

Theorem 2.5.1 implies that potential games are games which only have potential and

nonstrategic components. Since this set is a subspace, one can consider projections onto

the set of potential games, i.e., it is possible to find the closest potential game to a given

game. We pursue the idea of projection in Section 2.6. Using the previous theorem we

next find the dimension of the subspace of potential games (similar results can be found in

(Sandholm, 2010b) and (Monderer and Shapley, 1996b)).
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Corollary 2.5.1. The subspace of potential games, P D N, has dimension HmEM h, +

>mEM Flkym hk - 1.

Proof. The result immediately follows from Theorem 2.5.1 and Proposition 2.4.1. E

We next provide a brief discussion of the equilibrium properties of potential games.

Theorem 2.5.2 ((Monderer and Shapley, 1996b)). Let G = (M, {E m }, {u m}) be a potential

game and # be a corresponding potential function.

1. The equilibrium set of G coincides with the equilibrium set of Go A (M, {E m }, {#}).

2. G has a pure Nash equilibrium.

The first result follows from the fact that the games G and G4 are strategically equivalent.

Alternatively, the preferences in G are aligned with the global objective denoted by the

potential function #. The second result is implied by the first one since in finite games the

potential function # necessarily has a maximum, and the maximum is a Nash equilibrium

of g4. These results indicate that potential games can be analyzed by an equivalent game

where each player has the same utility function #. The second game is easy to analyze since

when agents have the same objective, the game is similar to an optimization problem with

objective function #.

2.5.2 Harmonic Games

In this section, we focus on games in which the potential component is zero, hence the

strategic interactions are governed only by the harmonic component. We refer to such

games as harmonic games, i.e., a game G is a harmonic game if 9 C H(ED K. We first

provide an alternative definition of harmonic games in terms of the payoff functions of

players (cf. equation (2.2)).

Theorem 2.5.3. The set of games which satisfy

E1 E (um(pm, p m ) - um (qm , p-m)) = 0,
mEM q m cE m

for all strategy profiles p and strategies qm E Em, is equivalent to the set of harmonic games

H ( N.

Proof. The condition in the theorem statement can equivalently be expressed as 6oDu = 0,
using the operators introduced in Section 2.4. Since the flow associated with a game is
given by Du, a game satisfies this condition if and only it belongs to H (DK, as can be seen
from Definition 2.4.2. F]
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This theorem provides a certificate that can be used to check whether a given game is
a harmonic game. For instance, using the theorem it immediately follows that the rock-

paper-scissors game (for x = y = z = -) in Example 2.4.1 is a harmonic game.
The rest of this section studies the properties of equilibria of harmonic games. We first

characterize the Nash equilibria of such games, and show that generically they do not have
a pure Nash equilibrium. We further consider mixed Nash and correlated equilibria, and

show how the properties of harmonic games restrict the possible set of equilibria.

Pure Equilibria

In this section, we focus on pure Nash equilibria in harmonic games. Additionally, we

characterize the dimension of the space of harmonic games, R G K.

We first show that at a pure Nash equilibrium of a harmonic game, all players are

indifferent between all of their strategies.

Lemma 2.5.1. Let = (M, {E m }, {um}) be a harmonic game and p be a pure Nash

equilibrium. Then,

um (p m p m )=u m (q,p-m) for allmEM and q m cEEm . (2.32)

Proof. By definition, in harmonic games the utility functions u = {u m } satisfy the condition

o*Du = 0. By (2.13) and (2.21), 6oDu evaluated at p can be expressed as,

E ~ (um (p) - um (q)) = 0. (2.33)
mCM ql(p,q)CAm

Since p is a Nash equilibrium it follows that um (p) _ um (q) > 0 for all (p, q) E A m and

m E M. Combining this with (2.33) it follows that um (p) - um (q) = 0 for all (p, q) E A m

and m C M. Observing that (p, q) C Am if and only if q = (q m , p- m ) , the result

follows.

Using this result we next prove that harmonic games generically do not have pure Nash

equilibria. By "generically", we mean that it is true for almost all harmonic games, except

possibly for a set of measure zero (for instance, the trivial game where all utilities are zero

is harmonic, and clearly has pure Nash equilibria).

Proposition 2.5.1. Harmonic games generically do not have pure Nash equilibria.

Proof. Define gP C ( D K as the set of harmonic games for which p is a pure Nash

equilibrium. Observe that UpCEgp is the set of all harmonic games which have a pure

Nash equilibria. We show that gp is a lower dimensional subspace of the space of harmonic

games for each p E E. Since the set of harmonic games with pure Nash equilibrium is a

finite union of lower dimensional subspaces it follows that generically harmonic games do

not have pure Nash equilibria.
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By Lemma 2.5.1 it follows that

g, = (H-oNK)n{{u m }mcm Ium (p) um (q), for all q such that (p, q) E A m and m E M }.

Hence gp is a subspace contained in H E K. It immediately follows that gp is a lower

dimensional subspace if we can show that there exists harmonic games which are not in gp,
i.e., in which p is not a pure Nash equilibrium.

Assume that p is a pure Nash equilibrium in all harmonic games. Since p is arbitrary

this holds only if all strategy profiles are pure Nash equilibria in harmonic games. If all

strategy profiles are Nash equilibria, by Lemma 2.5.1 it follows that the pairwise ranking

function is equal to zero in harmonic games, hence 'H G K C K. We reach a contradiction

since dimension of H is larger than zero.

Therefore, 9p is a strict subspace of the space of harmonic games, and thus harmonic

games generically do not have pure Nash equilibria. l

We conclude this section by a dimension result that is analogous to the result obtained

for potential games.

Theorem 2.5.4. The set of harmonic games, R DM, has dimension (M - 1) HmCM hm+1.

Proof. The result immediately follows from Theorem 2.4.1 and Proposition 2.4.1. L

Mixed Nash and Correlated Equilibria in Harmonic Games

In the previous section we showed that harmonic games generically do not have pure Nash

equilibria. In this section, we study their mixed Nash and correlated equilibria. In particu-

lar, we show that in harmonic games, the mixed strategy profile, in which players uniformly

randomize over their strategies is always a mixed Nash equilibrium. Additionally, in the

case of two-player harmonic games mixed Nash and correlated equilibria coincide, and if

players have equal number of strategies the uniformly mixed strategy profile is the unique

correlated equilibrium of the game. Before we discuss the details of these results, we next

provide some preliminaries and notation.

We denote the set of probability distributions on E by AE. Given x E AE, x(p)

denotes the probability assigned to p E E. Observe that for all x E AE, EpCE x(p) = 1,

and x(p) > 0. Similarly for each player m E M, AEm denotes the set of probability

distributions on E m and for xm E AE m , x m (p m ) is the probability assigned to strategy

pm E E m . As before all xm C AE m satisfies EpmEEm Xm (p') = 1 and xm (p m ) > 0. We

refer to the distribution xm C AE m as a mixed strategy of player m E M and the collection

x = {xm as a mixed strategy profile. Note that {xm}m E ] mCM AE m C AE. Mixed

strategies of all players but the mth one is denoted by x-m

With some abuse of the notation, we define the mixed extensions of the utility functions
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U m : flny AEm -- R such that for any x E cm AEm,

u m (X) = E Um (p) H Xk(pk). (2.34)
pEE kEM

Similarly, if player m uses pure strategy qm and the other players use the mixed strategies
x-m we denote the payoff of player m by,

u m (q m x m ) = E um (qm p m ) fJ Xk (pk). (2.35)
p-

m CE--m  
kEM,k-fm

Using this notation we can define the solution concepts.

Definition 2.5.1 (Mixed Nash / Correlated Equilibrium). Consider the game (M, {E m}, {um}).

1. A mixed strategy profile x = {rm}m E HmEM AE m is a mixed Nash equilibrium if

for all m E M and pm E E, m(Xm, -m) ;> Um(pm,X-m).

2. A probability distribution x C AE is a correlated equilibrium if for all m C M and

pm, qm E E m , Ep-E-m (Um (P m , pm) _ um(qm, p-m)) x(pm, pm) > 0.

From these definitions it can be seen that every mixed Nash equilibrium is a correlated

equilibrium where the corresponding distribution x E HmeM /AEm C AE is a product

distribution, i.e., it satisfies x(p) = HmcM xm (p m )

These definitions also imply that similar to Nash equilibrium, the conditions for mixed

Nash and correlated equilibria can be expressed only in terms of pairwise comparisons.

Therefore, these equilibrium sets are independent of the nonstrategic components of games.

We next obtain an alternative characterization of correlated equilibria in normalized

harmonic games. This characterization will be more convenient when studying the equi-

librium properties of harmonic games, as it is expressed in terms of equalities, instead of

inequalities. See Section 2.8 for a proof.

Proposition 2.5.2. Consider a normalized harmonic game, g (M, {um}, Em) and a

probability distribution x G AE. The following are equivalent:

1. x is a correlated equilibrium.

2. For all p m , qm and m C M,

Z (Um(pm, p-m ) - um (q m , p-m)) x(p m , p-m ) = 0. (2.36)
p--mEE-m

3. For all p m , qm and m C M,

E um (q m , p- m )x(p m , pm) = 0. (2.37)
p-

m
EE-m
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The above proposition implies that the correlated equilibria of harmonic games corre-
spond to the intersection of the probability simplex with a subspace defined by the utilities
in the game. Using this result, we obtain the following characterization of mixed Nash

equilibria of harmonic games.

Corollary 2.5.2. Let g = (M, {u m }, {E m }) be a harmonic game. The mixed strategy

profile x e Hs, AE m is a mixed Nash equilibrium if and only if,

um (x m , ) = um (p m , z-m) for all p m E E m and m C M. (2.38)

Proof. Assume that (2.38) holds, then clearly all players are indifferent between all their

mixed strategies, hence it follows that x is a mixed Nash equilibrium of the game.

Let x be a mixed Nash equilibrium. Since each mixed Nash equilibrium is also a cor-

related equilibrium, from equivalence of (i) and (ii) of Proposition 2.5.2 for all harmonic
games, it follows that for all p m , q m and m C M,

0 = E(UM(pm, p-m)-_ m(qm, p-m)) x(pm, p-m)
p-mEE-m

= x m (p m ) (um (pm, p-m) um (qm, p-m)) fi xk p) (2.39)
p- m cE-m kfm

= XM(PM) (um(pm, xm) - um(qm, x-m))

Since by definition of probability distributions, there exists p m such that x m (p m ) > 0
it follows that um(pm,x-m) = um(qm,x-m) for all qm E Em. Thus, um(xm,x-m)
um(gm,x--m) for all qm C E m . Since m is arbitrary, the claim follows.

It is well-known that in mixed Nash equilibria of games, players are indifferent between
all the pure strategies in the support of their mixed strategy (see (Fudenberg and Tirole,
1991)), i.e., if x C HmEM AE m is a mixed Nash equilibrium then

M m -m = um (p m , x- m ) for all pm such that x m (p m ) 0utm (x m , x t m ) (2.40)
> um (p m , z-m) for all p m such that xm (p m ) =0.

The above corollary implies that at a mixed equilibrium of a harmonic game, each player is
indifferent between all its pure strategies, including those which are not in the support of
its mixed strategy.

We next define a particular mixed strategy profile, and show that it is an equilibrium
in all harmonic games.

Definition 2.5.2 (Uniformly Mixed Strategy Profile). The uniformly mixed strategy of
player m is a mixed strategy where player m uses xqm = -- for all q m E E m . Respectively,
we define the uniformly mixed strategy profile as the one in which all players use uniformly
mixed strategies.
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Recall that rock-paper-scissors and matching pennies are examples of harmonic games,
in which the uniformly mixed strategy profile is a mixed Nash equilibrium. The next

theorem shows that this is a general property of harmonic games and the uniformly mixed

strategy profile is always a Nash equilibrium.

Theorem 2.5.5. In harmonic games, the uniformly mixed strategy profile is always a Nash

equilibrium.

Proof. Let g = (M, {um}, {Em}) be a harmonic game, and x be the uniformly mixed

strategy profile. In order to prove the claim we first state the following useful identity (see

Section 2.8 for a proof), on the utility functions of harmonic games.

Lemma 2.5.2. Let g = (M, {u m }, {E m }) be a harmonic game. Then for all qm , rm G Em ,
m E M, Ep- m cE m um(rm np-m u(qm, p-m =0

Using this lemma, and the definition of the uniformly mixed strategy, it follows that

u m (q m , x-m ) - u= (PMxrn cM (um(qrnI P- m ) - u m (pm , P-))
P mEE-m

cm E (Urn(qm, p- m ) - um(pm, p-m)) (2.41)
p-mEE- m

=0,

where cm Hkrm Xk (pk) = lkym T- Since p m and qm are arbitrary, (2.41) implies that

um(xM, X-m) = UM (pm X-m) (2.42)

for all pm Em, and by Corollary 2.5.2, x is a mixed strategy Nash equilibrium. l

We conclude this section, by providing an additional characterization of normalized

harmonic games that is useful for the study of the equilibrium properties of these games.

Theorem 2.5.6. The game 9 with utilities u = {u}rCM is a normalized harmonic game,

i.e., it belongs to H if and only if Encm hrum = 0 and Umu" = ur for all m E M, where

hm = | Em|.

Proof. By Definition 2.4.2, H N if and only if flu = u and 6*Du = 0. Using the

definitions of the operators, these conditions can alternatively be expressed as Umum um

and o EmEM Dmum = 0. By (2.24) and the orthogonality of image spaces of operators Dm,

the latter equality implies that EmCM D*Dmu = EmeM Ao,mu m = 0. Using Lemma

2.4.1, Ao,m = hmHm, and hence it follows that g E H, if and only if

Z hmlmu" = 0 and, Umum = um for all m. (2.43)
mrEM

The claim follows by replacing Utmum in the summation with um . E
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The above theorem implies that normalized harmonic games, where players have an

equal number of strategies, are zero-sum games, i.e., in such games the payoffs of players

add up to zero at all strategy profiles. This suggests that equilibrium properties of zero-

sum games and harmonic games should be related. We study the relation between zero-sum

games and harmonic games in Section 2.5.4.

For two player harmonic games, using the above zero-sum characterization, additional

properties of equilibrium can be established. For instance, in these games sets of correlated

equilibria and mixed equilibria are identical. These properties are explored in Section 2.9.

2.5.3 Nonstrategic Component and Efficiency in Games

As discussed in Section 2.4.2, the pairwise comparisons in a game are functions of only the

potential and harmonic components of the game. Thus, the nonstrategic component has no

effect on the equilibrium properties of games. However, the nonstrategic component is of

interest mainly through its effect on the efficiency properties of games, as discussed in the

rest of this section. The efficiency measure we focus on is Pareto optimality.

Definition 2.5.3 (Pareto Optimality). A strategy profile p is Pareto optimal if and only

if there does not exist another strategy profile q such that all players weakly increase their

payoffs and one player strictly increases its payoff, i.e,

um(q) um (p), for all m E M (2.44)

uk(q) > uk(p), for some k E M.

We first state a preliminary lemma, which will be useful in the subsequent analysis.

Lemma 2.5.3. Let G be a game with utilities {u m }. There exists a game U with utilities

{f'} such that (i) the potential and harmonic components of $ are identical to these of g
and (ii) in 0 all players get zero payoff at all strategy profiles that are pure Nash equilibria

of G.

Proof. Let Ng be the set of pure Nash equilibria of g. First observe that if there are m-

comparable equilibria in g player m receives the same payoff in these equilibria, i.e., if p, q C

Ng and p = (p', p-'), q = (q', p-') for some m, then u"'(pm, p--) =) (qm, p-m).

This equality holds since otherwise, player m would have incentive to improve its payoff at

p or q by switching to a strategy profile with better payoff, and this contradicts with p and

q being Nash equilibria of G.
Define the game 9 with utilities {"'}mCM such that

0 p c Ng{(p) u'(p) - um (q) if there exists a q C Ng which is m-comparable with p

U"(p) otherwise.
(2.45)
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for all m C M, p E E. Note that ftm is well defined since in 9 player m gets the same payoff
in all p E Ng that are m-comparable. Note that in # all players receive zero payoff at all
strategy profiles p E Ng. To prove the claim, it suffices to show that 9 and 0 have the same
potential and harmonic components, or equivalently the game with utilities {um - Utm}M

is nonstrategic, i.e., belongs to M.

In order to prove that the difference is nonstrategic, we first show that the pairwise
comparisons of games with utilities {utm}mcM and { }mEM are the same. Note that by
(2.45) given m-comparable p and q, um (p) - um (q) ftm (p) - fim (q), if there is no r E Ng
that is m-comparable with p or q. If there exists r C Ng that is m-comparable with p,
then it is also m-comparable with q, hence it follows by (2.45) that inm (p) - fim (q)
um (p) - um (r) - u m (q) + um (r) = um (p) - um (q). Note that these equalities hold even if

p or q is in Ng.

Thus, for any m-comparable p and q it follows that

(u m (p) - ftm (p)) - (um (q) - fim (q)) = 0,

hence the game with utilities {um - tm }mcM is nonstrategic and the claim follows. l

Note that if two games differ only in their nonstrategic components, the pairwise com-
parisons, and hence the equilibria of these games are identical. Therefore, an immediate

implication of the above lemma is that for a given game there exists another game with

same equilibrium set such that the payoffs at all Nash equilibria are equal to zero. We use

this to prove the following Pareto optimality result.

Theorem 2.5.7. Let 9 be a game with utilities {u }. There exists a game 9 with utilities

{'I m } such that (i) the potential and harmonic components of 9 are identical to these of G
and (ii) in 9 the set of pure NE coincides with the set of Pareto optimal strategy profiles.

Proof. Games that differ only in nonstrategic components have identical pairwise compar-

isons, hence the set of Nash equilibria (NE) is the same for such games. Let Ng denote the

set of pure NE of 9, or equivalently the set of pure NE of a game which differs from g only

by its nonstrategic component.

By Lemma 2.5.3, it follows that for any game 9 there exists a game such that the

two games differ only in their nonstrategic components and all players receive zero payoffs

at all pure NE (strategy profiles in Ng). Therefore, without loss of generality, we let 9
be a game in which all players receive zero payoffs at all NE. Given such a game, let

a = 1 + maxm,p um (p). Consider the game 9 with utilities {Om}mEM such that

U(p) if p E Ng or if there exists a q E Ng which is m-comparable with p
iim (p) =

um(p) - a otherwise.

for all m E M, p E E.
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Consider m-comparable strategy profiles p and q. Observe that if there exists a strategy

profile r that is m-comparable with p, it is also m-comparable with q since by definition of

m-comparable strategy profiles p- = r-m qm

Assume that there is a NE that is m-comparable with p or q, then by definition of

Um it follows that um (p) - um (q) =i m (p) - Wm (q). On the contrary if there is no NE

that is m-comparable with p or q then ii m(p) _ i m (q) um (p) - a - um (q) + a =

Um(p) - um(q). Hence g and 9 have identical pairwise comparisons, and thus the game

with utilities {Um - im }mEM is nonstrategic.

We prove the claim, by showing that at all strategy profiles that are not an equilibrium

in 9 (equivalently in g), the players receive nonpositive payoffs and at least one player

receives negative payoff and at all NE all players receive zero payoff. This immediately

implies that strategy profiles, that are not NE cannot be Pareto optimal, as deviation to a

NE increases the payoff of at least one player and the payoff of other players do not decrease

by such a deviation. Additionally, it implies that all NE are Pareto optimal, since at all

NE all players receive the same payoff, and deviation to a strategy profile that is not a NE

strictly decreases the payoff of at least a single player.

By construction it follows that at all NE all players receive zero payoff. Let p be a

strategy profile that is not a NE. If there is some m for which p is not m-comparable to a

NE, then it follows that Um (p) um (p) - a < -1. If on the other hand, p is m-comparable

to a NE, then Wm (p) < 0, since payoffs are equal to zero at NE. Thus, at any strategy

profile, p, that is not a NE players receive nonpositive payoffs, and additionally if for some

player m, p is not m-comparable to a NE, player m receives strictly negative payoff.

To finish the proof we need to show that if p is m-comparable to a NE for all m E M,
then it still follows that Um (p) < 0 for some m c M. Assume that this is not true and

-m(p) = 0 for all m C M. Since p is not a NE, there is at least one player, say m, who

can get strictly positive payoff by deviating to a different strategy profile. Therefore this

player has strictly positive payoff after its deviation. However, as argued earlier payoffs

are nonpositive at strategy profiles that are not NE, and zero at NE. Thus. we reach a

contradiction and Um (p) < 0 for some m C M.

Therefore, it follows that all players have zero payoffs at all NE, and at any other

strategy profile all players have nonpositive payoffs and at least one player has strictly

negative payoff. E

Note that it is possible to obtain similar results for other efficiency measures using

similar arguments to those given in this section. This direction will not be pursued in this

chapter. The above theorem suggests that the difference in the nonstrategic component of

games that are otherwise identical may cause the efficiency properties of these game to be

very different. In particular, in one of the games all equilibria may be Pareto optimal when

this is not the case for the other game. Therefore, although the nonstrategic component

does not change the pairwise comparisons and equilibrium properties in a game it plays a
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key role in Pareto optimality of equilibria.

2.5.4 Zero-Sum Games and Identical Interest Games

In this section we present a different decomposition of the space of games, and discuss its

relation to our decomposition. To simplify the presentation, we focus on bimatrix games,
where each player has h strategies. Before introducing the decomposition, we define zero-

sum games and identical interest games.

Definition 2.5.4 (Zero-sum and Identical Interest Games). Let 9 denote the bimatrix game

with payoff matrices (A, B). 9 is a zero-sum game, if A + B = 0, and 9 is an identical

interest game, if A = B.

We denote the set of zero-sum games by Z, and the set of identical interest games by I.

Since these sets are defined by equality constraints on the payoff matrices, it follows that

they are subspaces.

The idea of decomposing a game to an identical interest game and a zero-sum game was

previously mentioned in the literature for two-player games, (Ba§ar and Ho, 1974). The

following lemma implies that Z and I decomposition of the set of games, has the direct

sum property.

Lemma 2.5.4. The space of two-player games 9 M,E is a direct sum of subspaces of zero-

sum and identical interest games, i.e., 9 M,E = Z E I.

Proof. Consider a bimatrix game with utilities (ul, u2 ). Observe that this game can be

decomposed to the games with payoff functions (" 2 U ) and ( U 2- ). Clearly

the former game is a zero-sum game, where the latter is an identical interest game. Since

the initial game was arbitrary, it follows that any game can be decomposed to a zero-sum

game and an identical interest game. The direct sum property follows, since for two-player

zero-sum and identical interest games, with utility functions (u, -u) and (v, v) respectively,
if (u+v,u-v) = (0,0), then u= v =0. E

Note that Theorem 2.5.6 suggests that two-player normalized harmonic games, where

players have equal number of strategies are zero-sum. 7 Also, it immediately follows by

checking the definitions that identical interest games are potential games. This intuitively

suggests that the zero-sum and identical interest game decomposition closely relates to our

decomposition. In the following theorem, we establish this relation by characterizing the

dimensions of the intersections of the subspaces Z and I, with the sets of potential and

harmonic games. We provide a proof in Section 2.8.

7 In addition, if the definition of zero-sum is generalized to include inultiplayer games where payoffs of
all players add up to zero, then it can be seen that normalized harmonic games where players have equal
number of strategies are still zero-sum games.
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Theorem 2.5.8. Consider two-player games, in which each player has h strategies. The

dimensions of intersections of the subspaces of zero-sum and identical interest games (Z
and I) with the subspaces of potential and harmonic games (P @ K and R E N) are as in

the following table.

Z I ZeI
PeN 2h -1 h 2 h+2h-1
ReN h1-2h+2 1 h2+1

P H ( G h2 h 2h2

Table 2.4: Dimensions of subspaces of games and their intersections

The above theorem suggests that the dimensions of harmonic games and zero-sum games

(and similarly identical interest games and potential games) are close to the dimension of

their intersections. Thus, zero-sum games are in general closely related to harmonic games,

and identical interest games are related to potential games. On the other hand, it is possible

to find instances of zero-sum games that are potential games, and not harmonic games (see

Table 2.5).

a b a b
x 0,0 1,-1 x 2 1
y -1, 1 0, O y 1 0

(a) Payoffs (b) Potential func-
tion

Table 2.5: A zero-sum potential game

In general, the identical interest component is a potential game, and it can be used to

approximate a given game with a potential game. However, as illustrated in Table 2.6, this

approximation need not yield the closest potential game to a given game. In this example,
despite the fact that the original game is a potential game, the zero-sum and identical

interest game decomposition may lead to a potential game which is much farther than the

closest potential game

We believe that the decomposition presented in Section 2.4 is more natural than the zero-

sum identical interest game decomposition, as it clearly separates the strategic (P @ H) and

nonstrategic (N) components of games and further identifies components, such as potential

and harmonic components, with distinct strategic properties. In addition, it is invariant

under trivial manipulations that do not change the strategic interactions, i.e., changes in

the nonstrategic component.
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a b a b a b
x 1 x 4 2 x 0,0 1,-1
y -,1 -,- y 2 0 y -1, 1 0, 0

(a) Payoffs in g (b) Potential func- (c) Payoffs in gz
tion of g

a b

X 1, 1 0,0
y 0, 0 -1, -1

(d) Payoffs in g,

Table 2.6: A potential game g and its zero-sum (gz) and identical interest components

(g1 ).

2.6 Projections onto Potential and Harmonic Games

In this section, we discuss projections of games onto the subspaces of potential and harmonic

games. In Section 2.4.2, we defined the subspaces P,'H, of potential, harmonic, and

nonstrategic components, respectively. We also proved that they provide a direct sum

decomposition of the space of all games. In this section, we show that under an appropriately

defined inner product in gM,E, the harmonic, potential and nonstrategic subspaces become

orthogonal. We use our decomposition result together with this inner product to obtain

projections of games to these subspaces, i.e., for an arbitrary game, we present closed-

form expressions for the "closest" potential and harmonic games with respect to this inner

product.

Let g, # be two games in gM,E. We define the inner product on 9 M,E as

99M,A Z hm(u m ,'ttm ), (2.46)
mEM

where the inner product in the right hand side is the inner product of Co as defined in (2.8),
i.e., it is the inner product of the space of functions defined on E. Note that it can be easily

checked that (2.46) is an inner product, by observing that it is a weighted version of the

standard inner product in Cf'. The given inner product also induces a norm which will

help us quantify the distance between games. We define the norm on gM,E as follows:

11g11M,E =(9, 9)M,E. (2.47)

Note that this norm also corresponds to a weighted 12 norm defined on the space C0.

Next we prove that the potential, harmonic and nonstrategic subspaces are orthogonal

under this inner product.

Theorem 2.6.1. Under the inner product introduced in (2.46), we have P 1 'H I , i.e.,
the potential, harmonic and nonstrategic subspaces are orthogonal.
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Proof. Let {ug}meM = gp c P, {Ui}mEM = y E and {Ug}mEM = N K be

arbitrary games in P, 'H and K respectively. In order to prove the claim we will first prove

GN I 9H and gN I Gp. Secondly we prove gp I GH. Since the games are arbitrary the

first part will imply that K _ R and K 1 P and the second part will imply that P 1 R

proving the claim.

Note that by definition um C ker(Dm) for all m E M and u', um are in the orthogonal

complement of ker(Dm) since Um = u", Uiu = um and Um is the projection operator

to the orthogonal complement of ker(Dm). This implies that (uM, up) = (ug, u') = 0 for

all m C M and hence using the inner product introduced in (2.46) it follows that gN - GH

and 9N _ Gp-

Next observe that for all m E M,

(uM, ump)= =tmmu (D* Dm#, u') = (, D* Dmum),P H hm D)hm

where the first equality follows from 1mU = um, and the second equality follows from

Lemma 2.4.1 and the fact that Dmu = Dm#. The third equality uses the properties of

the operators Dm and D*. Therefore,

(Gp, 9 H)M,E = (, D* Dmum) (#, D*Dmug) = (#, o5 DmUY4) -0.
mEM mEM mEM

Since oR EmC Dmum = 0 by the definition of X. Here the last equality follows using

o* = Em D* and orthogonality of the image spaces of Dm for m C M. Therefore, GH 1 Gp
as claimed and the result follows. LI

The next theorem provides closed form expressions for the closest potential and harmonic

games with respect to the norm in (2.47).

Theorem 2.6.2. Let G C QME be a game with utilities {um}mEM, and let 4 = 6tDu.

With respect to the norm in (2.47),

1. The closest potential game to G has utilities Hm# + (I - Ulm)u m for all m E M,

2. The closest harmonic game to G has utilities u m - Hm# for all m E M.

Proof. By Theorem 2.6.1, the harmonic component of G is orthogonal to the space of po-

tential games P E K. Thus, the closest potential game to G has utilities u' - ump, where

{uf}meM is the harmonic component of G. Similarly, the potential component of G is
orthogonal to the space of harmonic games R e K and thus the closest harmonic game to

g has utilities u m - up, where {u7}mCM is the potential component of G. Using the closed

form expressions for um and um from Theorem 2.4.1, the claim follows. l

Note that the utilities in the closest potential game consist of two parts: the term Um#

expresses the preferences that are captured by the potential function #, and (I - Um)um
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corresponds to the nonstrategic component of the original game. Similarly, the closest

harmonic game differs from the original game by its potential component, and hence has

the same nonstrategic and harmonic components with the original game. This implies that

the projection decomposes the flows generated by a game to its consistent and inconsistent

components and is closely related to the decomposition of flows to the orthogonal subspaces

of the space of flows provided in the Helmholtz decomposition.

Analyzing the projection of a game to the space of potential games may provide useful

insights for the original game; see Section 2.7 for a description of ongoing and future work

on this direction. We conclude this section by relating the approximate equilibria of a game

to the equilibria of the closest potential game.

Theorem 2.6.3. Let 9 be a game, and N be its closest potential game. Assume that hm

denotes the number of strategies of player m, and define a ||G - $||M,E. Then, every

El-equilibrium of $ is an c-equilibrium of g for some E < maxm + E (and viceversa).

Proof. By the definition of the norm, it follows that uk(p) - nk(P)I < 1g9 - OIIM,E
maxm , for all k C M, p C E. Using Lemma 2.2.1, the result follows. l

This result implies that the study and characterization of the structure of approximate

equilibria in an arbitrary game can be facilitated by making use of the connection between

its c-equilibrium set and the equilibria of its closest potential game.

2.7 Summary

We conclude this chapter with a summary of its main contributions. In this chapter, we

introduced a novel and natural direct sum decomposition of the space of games into po-

tential, harmonic and nonstrategic subspaces. We studied the equilibrium properties of the

subclasses of games induced by this decomposition, and showed that the potential and har-

monic components of games have quite distinct and appealing equilibrium properties. In

particular, there is a sharp contrast between potential games, that always have pure Nash

equilibria, and harmonic games, that generically never do. Moreover, we have shown that

while the nonstrategic component does not affect the equilibrium set of games, it can dras-

tically affect their efficiency properties. Using the decomposition framework, we obtained

closed-form expressions for the projections of games to their corresponding components,

enabling the approximation of arbitrary games by potential and harmonic games. We es-

tablished that this approximation allows for a systematic method for characterizing the set

of e-equilibria of a given game, by relating it to the equilibria of the closest potential game.

2.8 Appendix: Additional Proofs

In this section we provide proofs to some of the results from Sections 2.4 and 2.5.
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Proof of Lemmas 2.4.1 and 2.4.2. The proof relies on the fact that D* Dm = Ao,m is a

Laplacian operator defined on the graph of m-comparable strategy profiles. We show that

the kernels of Dm and Ao,m coincide, and using the spectral properties of the Laplacian

and projection matrices we obtain the desired result.

For a fixed m, it can be seen that strategy profile p = (pm, p-m) is comparable to

strategy profiles (q m , p-m) for all qm E E m , q m 74 p m but to none of the strategy profiles

(qm , q- m ) for q-m # p- m . This implies that the graph over which Ao,m is defined has

|E-ml = lkgm hk components (each p- m E E- m creates a different component), each

of which has |Eml = hm elements. Note that all strategy profiles in a component are m-

comparable, thus the underlying graph consists of |E-ml components, each of which is a

complete graph with |E m l nodes.

The Laplacian of an unweighted complete graph with n nodes has eigenvalues 0 and n,

where the multiplicity of nonzero eigenvalues is n - 1 (Chung, 1997). Each component of

Ao,m leads to eigenvalues 0 and hm with multiplicities 1 and hm - 1 respectively. Therefore,

Ao,m has eigenvalues 0 and hm where the multiplicity of nonzero eigenvalues is (hm -

1) Hkgm hk =kCM hk - Hkm hk. This suggests that the dimension of the kernel of Ao,m

is Homhk.

Observe that the kernel of Ao,m = D*Dm contains the kernel of Dm. For every q-m E

E-m define Vq-m E Co such that

{1 if p- M = q-"
vgm (p (2.48)

0 otherwise

It is easy to see that vp-m _L vq-m for p-m y q-m and Dmvp-m = 0 for all p-m C E- m .

Thus, for all q- m , vq-m belongs to the kernel of Dm and by mutual orthogonality of these

functions, the kernel of Dm has dimension at least E-m| = Hkgm hk. As the dimension of

the kernel of Ao,m is Hk$m hk and it contains kernel of Dm, this implies that the kernels

of Dm and Ao,m coincide.

Thus do,m maps any v E Co in the kernel of Dm to zero and scales the v in the

orthogonal complement of the kernel by hm. On the other hand DX Dm is a projection

operator and it has eigenvalue 0 for all functions in the kernel of Dm and 1 for the functions

in the orthogonal complement of kernel of Dm. This implies that

Ao,m = hmDt Dm, (2.49)

and the kernels of I1m, Dm and Aom coincide as the claim suggests. E

Proof of Lemma 2.4.3. For a game, the graph of comparable strategy profiles is connected

as can be seen from the definition of the comparable strategy profiles. It is known that

for a connected graph, the Laplacian operator has multiplicity 1 for eigenvalue 0 (Chung,
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1997). By (2.16) it follows that the function f c CO satisfying f(p) = 1 for all p C E, is an
eigenfunction of Ao with eigenvalue 0, implying the result. l

Proof of Lemma 2.4.4. For the proof of this lemma, we use the following property of the

pseudoinverse

At = (A*A)tA*, (2.50)

and the orthogonality properties of the Dm operators: D* Dk = 0 and DtDk = 0 if m:,4k.

(i) Using (2.50), with A = Dm implies that Di = (D* Dm)ftD* . Since for any linear

operator L, (Lt)* = (L*)t, it follows that Dn = (Dm(D* Dm)t)* = (Dm(Ao,m)f)*. Hence,

using Lemma 2.4.1 we obtain Dt = hm(Dm(Fm)t)*. Since Hm is a projection operator to

the orthogonal complement of the kernel of Dm, we have Hm = Hm, and DmHm = Dm.

Hence, it follows that Dn = hm(DmHm)* = hmD* as claimed.

(ii) The identity in (2.50), implies that

( Di)f t Di)*(y Di) ( Di)*
iEM iEM iEM iEM

By the orthogonality of the image spaces of Di, it follows that (EiCM Di)*(EiCM D) =

EiCM D*Di, and hence

(ZDi)t ( DDi( Di)*.
iEM iEM iEM

Right-multiplying the above equation by Dj and using the orthogonality of the image spaces

of Dis it follows that

(~ DfD( = zD)*D (Z Dt)*D = DjDj.
iCM \IM I iEM i

(iii) From the definition of pseudoinverse, it is sufficient to show the following 4 properties

to prove the claim: a) (DDt)* = DDt, b) (DtD)* = DtD, c) DDtD = D, d) DtDDt = Dt.

Using the identity DmDk = 0 for k # m, it follows that DDt = EmeM DmDNt ,

and DID = diag (DtDi,... DtDM). The pseudoinverse of Dm satisfies the properties

DtnDm = (DtD )* and DmDt = (DmDt)*, and the requirements a) and b) follow im-

mediately using these properties. The identity DnDk = 0 also implies that DDtD =

[DiDIDi,... , DMDDM], and DtDDt = [DtDiDt; ... ; DtDmDt]. Since the pseudoin-

verse of Dm also satisfies DtDmDt = Dt, and DmDtnDm = D, the requirements c) and

d) are satisfied and the claim follows.
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(iv) Since H = diag (H1 , ... HM), and Hm = DtnDm, it follows that

DtD = diag (DIDi, ... DMDM) = diag (1i,... HM) = H.

(v) Using the identities DmDk = 0 for k 74 m, 6o = EmcM Dm, it follows that

DDt6 0 = DDt Z D = DmDDm = D=
mEM mEM mCM

Proof of Proposition 2.4.1. Lemma 2.4.2 provides a basis for kernel of Dm and dim(ker(Dm))

E-ml, i.e., the cardinality of the basis is equal to |E-ml. By definition A = kerD

HfeM ker(Dm), hence

dim(N) = [ dim(ker(Dm)) = E E-ml = E fJ hk. (2.51)
mEM mcM mCM kpm

Next consider the subspace P of normalized potential games. By definition, the games in

this set generate globally consistent flows. Moreover, by Lemma 2.4.6 it follows that there is

a unique game in P, which generates a given gradient flow. Thirdly, note that any globally

consistent flow can be obtained as o for some # E Co, and the game {Hm#}meM E P
generates the same flows as o0. These three facts imply that there is a linear bijective

mapping between the games in P and the globally consistent flows, and hence the dimension

of P is equal to the dimension of the globally consistent flows.

On the other hand, the dimension of the globally consistent flows is equivalent to

dim(im (6o)). Since Ao = oo it follows that ker(6o) c ker(Ao). By Lemma 2.4.3 it

follows that ker(Ao) ={f c Co f(p) = c E R, for all p E E }. It follows from the defi-

nition of 6o that 6of = 0 for all f E ker(Ao). These facts imply that ker(60 ) = ker(Ao)

and hence dim(ker(6o)) 1. Since 6o is a linear operator it follows that dim(im (6 o)) =

dim(Co) - dim(ker(6o)) =E| - 1 = mCeM hm - 1.

Finally observe that dim(gM,E) = dim(CoM) = MIEI = M HmCM hm. Theorem 2.4.1
implies that dim(gM,E) = dim(P) +dim(H) +dim(NM). Therefore, it follows that dim(-) =

(M - 1) HmCM hm - EmCM fksmhk+1. O+

Proof of Lemma 2.5.2. Let X = Du denote the pairwise comparison function of the har-
monic game. By definition, (o*X)(p) = 0 for all p c E. Thus, for all rm E E m , it follows
that

0 = (6*X)(r m , -m) = E(6X)(p) (2.52)
p-

m EE- m pES

where S = {(r m , p-m)p-m E E- m}. To complete the proof we require the following

identity related to the pairwise comparison functions.
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Lemma 2.8.1. For all X C C1 and set of strategy profiles $ C E, E p g(Z)(p)

- Epes Zgese X(p, q)-

Proof. It follows from the definition of oR that

(6_Z) (p) = - (p, q) = - Zk(p, q) - Z(p, q) = - (p, q).
pe5 pCsqEE pCqC5 pE qE$ pCqCSc

since Z(p, q) + (q, p) = 0 for any p, q and thus EpEs qes '(p, q) = 0.

Using this lemma in (2.52), we obtain

0 = - E E X(p, p) = E E um (rm , p- m ) - u m (p m , p- m ). (2.53)
pESpEgc p-mCE-mprmCEm

Since rm is arbitrary, it follows that Ep-m E-m um(qm, p-m) - um(rm, p-m) = 0 for all

qm , rm c E m .

Proof of Theorem 2.5.8. Since Z e I = gM,E, the last column immediately follows from

Proposition 2.5.1 and Theorem 2.4.1. Below, we present the dimension results for each row

of the table, and the corresponding entries in the first two columns.

Throughout the proof we denote by e the h dimensional vector of ones. Since K = ker D,
the two-player games in K take the form (eaT, beT) for some a, b E Rh. We shall make use

of this fact in the proof.

P e R e N: Since P ED H eN = gM,E, it follows that dim(P e H e ) n Z

dim Z and dim(P e R e K) n I= dim I. Zero-sum games are games with payoff matrices

(A, -A) for some A E R hXh. Thus, the dimension of the zero-sum games is equivalent to

the dimension of possible A matrices that define zero-sum games and hence dim Z = h2

Similarly, identical interest games are games with payoff matrices (A, A) for some A E R
and hence dim= h2

P e K: By Theorem 2.5.1, it follows that P e K is equivalent to the set of potential

games. Observe that all identical interest games are potential games, where the utility

functions of players are equal to the potential function of the game. Thus, it follows that

dim(P qK ) n I= diml= h2

Let G denote a zero-sum game in P e K, with payoff matrices (A, -A), and denote the

matrix corresponding to a potential function of g by #. Thus, both the game with payoffs

(A, -A) and (#, #) belong to NV P, and (A, -A) is different from (#, #) by its nonstrategic

component. Hence, for some a, b C Rh, A = + eaT, -A = 4+ beT, for some a, b C Rh and

A - A = # + eaT + # + beT = 2# + eaT + beT = 0,

thus -2#ij = a +bi and Aij = #ij +aj for all i,j E {1 ... n}. Hence, a, b C Rh2

characterize the possible payoff matrices A, and it can be seen that the set of these matrices

68



has dimension 2h - 1. Since these matrices uniquely characterize zero-sum games that are

also potential games, it follows that the dimension of (P E K) n Z is equal to 2h - 1.

H e K: The games in this set do not have potential components. If a game in N D K is

an identical interest game, then it also belongs to P 9 K. Due to the direct sum property

of P @ N o K, it follows that this game can only have nonstrategic component. Therefore,

dim(N eN) nI = dim n1. Let 9 denote a game in KnI. Since g has only nonstrategic

information it follows that its payoffs are given by (eaT, beT), for some vectors a and b.

Then, being an identical interest game implies that eaT = beT, which requires that all

entries of payoff matrices are identical, thus dimK n I= 1.

Consider a zero-sum game in N e , with payoff matrices (A, -A). Since, both players

have equal number of strategies, the harmonic component of this game is also zero-sum

and the payoff matrices in the harmonic component can be denoted by (AH, -AH) for

some AH E Rhxh. Because the original game is in N E K, the payoff matrices satisfy

A = AH + eaT, -A = -AH + beT, where (eaT, beT) corresponds to the nonstrategic

component of the game. It follows that eaT + beT = 0, and hence eaT and -beT are

matrices, which have all of their entries identical. Thus, the nonstrategic component of the

games in (N e K) n Z, forms a 1 dimensional subspace. Since the harmonic component is

arbitrary, it follows that dim(N @ K) n Z = dim H + 1 = (h - 1)2 + 1 = h2 - 2h + 2. L

Proof of Proposition 2.5.2. We prove the claim, by first showing (i) and (ii) are equivalent

and then establishing the equivalence (ii) and (iii).

By the definition of correlated equilibrium, (2.36) implies that x is a correlated equi-

librium. To see that any correlated equilibrium of g satisfies (2.36), assume x E AE is a

correlated equilibrium. Since the game is a harmonic game, by definition, the utility func-

tions u {u m } satisfy the condition 6oDu = 0. Using (2.13) and (2.21), this condition can

equivalently be expressed as

SE um (qm , p- m ) - um (p m , p- m ) = 0 for all p E E. (2.54)
mEM q m EEm

Thus, it follows that

0 = x(p) E E um (q m , p- m ) - u m (pm , P-m)
pEE mEM qmCEm

SS 5 S-m) (um(qmpm) -um(pmPm). (2.55)
mEM qmCEm pmCEm p - m

EE-m

Since x is a correlated equilibrium, Ep-mEE-m x(P m , p m) (u m (q m , p t m ) - um (p m , p m )) <

0 for all p m , q m and m E M. Hence, (2.55) implies that

5 x(p m p-m) (um( q m  - m p-m))=0
p-mEE-m
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for all p m , q m and m E M. Thus, we conclude (i) and (ii) are equivalent.

To see the equivalence of (ii) and (iii), observe that (iii) immediately implies (ii). Assume

(ii) holds, then writing (2.36) for two strategies rm , qm E m ,. and subtracting these equa-
tions from each other, it follows that Ep-mE-m (urn(rm, p-) - um(q, p-m)) x(pm, p-m)

0. Since rm and qm are arbitrary it follows that for all qm E E m

E um (q m ,p- m )x(p m p- m ) = cpm, (2.56)
p-mCE-m

for some cym C R. Since the game is normalized, we have EqmEsm um(qm, p-m) = 0. Thus
summing (2.56) over qm C Em it follows that cpm = 0, and hence (ii) implies (iii).

Therefore we conclude that (i), (ii) and (iii) are equivalent for normalized harmonic

games. [l

Note that in the above proof, we used the assumption that the game is normalized, only
when establishing the equivalence of (ii) and (iii). Therefore, it can be seen that (i) and (ii)

are equivalent for all harmonic games.

2.9 Appendix: Equilibria in Two Player Harmonic Games

In this section we focus on the equilibrium properties of two player harmonic games. We

show that sets of correlated and mixed equilibria are identical in these games.

In the following theorem, we present a basis for two-player normalized harmonic games.

The idea behind our construction is to obtain a collection of games, in which both players

have "effectively" two strategies (the payoffs are equal to zero, if other strategies are played),
and ensure that they are linearly independent normalized harmonic games.

Theorem 2.9.1. Consider the set of two-player games where the first player has h1 strate-

gies and the second player has h2 strategies. For any i C {1,... ,h 1 -1} and j e {1,... ,h2-

1}, define bimatrix games 9'j, with payoff matrices (h 2.A'i, -h1A'j), where A'i C Rhlxh2 is

such that

1 if (k, l) = (i, j) or (k, l) = (i + 1, j + 1),

A = -1 if (k, l) = (i + 1, j) = (k, l) or (k, l) = (ij + 1), (2.57)

0 otherwise.

The collection {0j9} provides a basis of H.

Proof. It can be seen that each 9'j is normalized, since row and column sums of Aj is equal

to zero. By Theorem 2.5.6 and (2.57), it also follows that gij belongs to X. It can be seen
from Proposition 2.4.1 that dimN = (h1 - 1)(h 2 - 1), is equal to the cardinality of the
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collection {j}. Thus, in order to prove the claim, it is sufficient to prove that

E I: ai A 3 = 0, (2.58)
iC{1,...,h -1} jE{1,...,h2 -1}

only if aij = 0 for all i, j.

Note that All is the only matrix which has a nonzero entry in the first column and the

first row. Thus, (2.58) implies that all = 0. Similarly it can be seen that All and A 12 are

the only matrices which have nonzero entries in the first row and the second column, thus

a12 = 0. Proceeding iteratively it follows that if (2.58) holds, then a2 = 0 for all i, j and

the claim follows. L

The next example uses the basis introduced above, to show that in harmonic games, the

uniformly mixed strategy profile is not necessarily the unique mixed Nash equilibrium.

Example 2.9.1. In this example we consider two-player harmonic games, where E1

{x, y} and E 2  {a, b, c}. Using Theorem 2.9.1, a basis for normalized two-player harmonic

games is given in Tables 2.7a and 2.7b. Thus, any harmonic game with these strategy sets,

can be expressed as in Table 2.7c. Consider some fixed a and 0. As can be seen from

Definition 2.5.1, the mixed equilibria for this game are given by

(j, }) x (01, 02 -03)

where 01, 02 and 03 are scalars that satisfy 01 + 02 + 03 = 1, 01,02,03 > 0 and 01(6a) +

02(-6a + 6/3) + 03(-63) = 0. Note that since there are two linear equations in three

variables, this system has a continuum of solutions. Moreover, since (01, 02, 03) = (1, , )
is a solution, it follows that there is a continuum of solutions for which 01,02,03 > 0.

Since this is true for any a, /, we conclude that all games in R have uncountably

many mixed equilibria. Additionally, since the nonstrategic component does not affect the

equilibrium properties of a game it follows that all harmonic games on El x E 2 (all games

in H E J) have uncountably many mixed Nash equilibria.

a b c
x 3, -2 -3, 2 0,
y -3, 2 3, -2 0,

(a) Basis element 1
a

x 3a, -2a

y -3a,2a

7
0
0I

b
-3a+33,
3a-33, -

a b c

x 0, 0 3, -2 -3, 2
y 0, 0 -3, 2 3, -2

(b) Basis element 2

c

2a-2# -3#,20
2a+20 3, -20

(c) A game in H

Table 2.7: Basis of H
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Using this basis, we characterize in the following theorem, the correlated equilibria in
two-player harmonic games. Interestingly, our results suggest that in two-player harmonic

games, the set of mixed Nash equilibria and correlated equilibria generically coincide.

Theorem 2.9.2. Consider the set of two-player harmonic games where the first player has

h1 strategies and the second player has h2 strategies. Without loss of generality assume that

h1 > h2 . Generically,

1. Every correlated equilibrium is a mixed Nash equilibrium, where the player with min-

imum number of strategies uses the uniformly mixed strategy.

2. The dimension of the set of correlated equilibria is h1 - h2

Proof. As discussed earlier, nonstrategic components of games do not affect the equilibrium

sets. Thus, to prove that (i) and (ii) are generically true for harmonic games, it is sufficient

to prove that they generically hold for normalized harmonic games.

Consider a two-player normalized harmonic game with payoff matrices (A, B), where

A,B E Rhixh2. By Theorem 2.5.6, it follows that A = -iB. Denote by ei (similarly

e2), the hi (similarly h2 ) dimensional vector, all entries of which are identically equal to 1.

Since the game is normalized, it follows that eTA = 0 and Be 2 = -hiAe 2 = 0.

Let x be a correlated equilibrium of this game. For each p1 c El, denote by x(pi, -) E
Rh2 the vector of probabilities [x(p 1 , p 2

)]p2. By Proposition 2.5.2 (iii), it follows that these

vectors satisfy the condition

Ax(pl,-) = 0. (2.59)

Note that we need to characterize the kernel of the payoff matrix A, to identify the correlated

equilibria. For that reason, we state the following technical lemma:

Lemma 2.9.1. Consider the set of normalized harmonic games in Theorem 2.9.2. Gener-

ically, the payoff matrices of players have their row and column ranks equal to h2 - 1.

Proof. The payoff matrices of the players satisfy A = -- B, so they have the same row

and column rank. It follows from Theorem 2.9.1 that the collection of matrices {AU' } span

the payoff matrices of harmonic games. It can be seen that the matrices in the span of this

collection generically have row and column rank equal to h2 - 1, and the claim follows. El

Using this lemma, it follows that generically the kernel of A is 1 dimensional. As shown

earlier, e2 is in the kernel of A, thus, (2.59), implies that generically x(p1, -) has the form

X(pm, -) = cpie2, for some cpi E R. Since x is a probability distribution, the definition of

x(pl, -)implies that X(p 1 , p 2 ) = cpi 0, and EP1CE1, 2
CE 2 X(p 1 , p 2 ) = h 2  piEEl cp 1

Thus, it follows that x(p1 , p 2) = cpi = c, for some ayi > 0 such that EP1EE1 GP -

It can be seen from this description that generically, the correlated equilibria are mixed

equilibria where the first player uses the probability distribution x = a A [api]pi E AE'

and the second player uses the distribution x2 = .
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Since the correlated equilibria have this form, it can be seen using Proposition 2.5.2 (iii)

for the second player that

u2(piq 2)X(pi2) 2 1(pq2 )ap =0, (2.60)

where a E AE 1 . The above condition can be restated using the payoff matrices as follows:

aTB= h1 aTA 0, (2.61)
h2

where a C AE 1 . Since, the row rank of A is h2 - 1, the dimension of a that satisfies

(2.61) is hi - h2 + 1. Note that since a is a probability distribution, it also satisfies the

condition aTei = 1. Note that since el A - 0, this condition is orthogonal to the ones in

(2.61). Hence, it follows that the dimension of a which satisfies the correlated equilibrium

conditions in (2.61) (other than the positivity) is hi - h2 . On the other hand, a = ei

gives a correlated equilibrium (by Theorem 2.5.5), thus the positivity condition does not

change the dimension of the set of correlated equilibria, and the dimension is generically

hi - h 2.

An immediate implication of this theorem is the following:

Corollary 2.9.1. In two-player harmonic games where players have equal number of strate-

gies, the profile of uniformly mixed strategies is generically the unique correlated equilibrium.

Note that Theorem 2.9.2 implies that in two-player harmonic games, generically there

are no correlated equilibria that are not mixed equilibria. This statement fails, when the

number of players is more than two, as shown in the following theorem.

Theorem 2.9.3. Consider a M-player harmonic game, where M > 2, and in which each

player has h strategies such that hM > M(h 2 - 1) + 1. The set of correlated equilibria is

strictly larger than the set of mixed Nash equilibria: The set of correlated equilibria has

dimension at least hM - 1 - Mh(h - 1), and the set of mixed equilibria has dimension at

most M(h - 1).

Proof. Since each player has h strategies, the set of mixed strategies has dimension M(h-1),
and this is a trivial upper bound on the dimension of the set of mixed equilibria. The set

of correlated equilibria, on the other hand, is defined by the equalities in Proposition 2.5.2.

Note that there are Mh(h - 1) such equalities and the dimension of AE is hM - 1, hence the

dimension of the correlated equilibria is at least hM - 1 - Mh(h - 1) (by ignoring possible

dependence of the equalities).

The difference in the dimensions implies that the set of correlated equilibria is strictly

larger than the set of mixed equilibria. l
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Note that this theorem can be easily generalized to the case when players have differ-
ent number of strategies. An interesting problem is to find the exact dimensions of the
set of mixed Nash and correlated equilibria when there are more than two players. How-
ever, due to complicated dependence relations of the correlated equilibrium conditions in
Proposition 2.5.2, we do not pursue this question in this chapter, and leave it as a future
problem.

74



Chapter 3

Dynamics in Near-Potential Games

3.1 Introduction

The study of multi-agent strategic interactions both in economics and engineering mainly
relies on the concept of Nash equilibrium. This raises the question whether Nash equilibrium
makes approximately accurate predictions of the agent behavior. One possible justification
for Nash equilibrium is that it arises as the long run outcome of dynamical processes, in
which less than fully rational players search for optimality over time. However, unless the
game belongs to special (but restrictive) classes of games, such dynamics do not converge to
a Nash equilibrium, and there is no systematic analysis of their limiting behavior (Jordan,
1993; Fudenberg and Levine, 1998; Shapley, 1964).

In potential games, which we discussed in the previous chapter, many of the simple user
dynamics, such as best response dynamics and fictitious play, converge to a Nash equilibrium
(Monderer and Shapley, 1996b,a; Fudenberg and Levine, 1998; Sandholm, 2010a; Young,
2004). Intuitively, dynamics in potential games and dynamics in games that are "close" (in
terms of the payoffs of the players) to potential games should be related. Our goal in this
chapter is to make this intuition precise and provide a systematic framework for studying
dynamics in finite strategic form games by exploiting their relation to close potential games.

We start by illustrating via examples that general games which are close in terms of
payoffs may have significantly different limiting behavior under simple user dynamics. Our
first example focuses on better response dynamics in which at each step or strategy profile,
a player (chosen consecutively or at random) updates its strategy unilaterally to one that
yields a better payoff.1

'Consider a game where players are not indifferent between their strategies at any strategy profile.
Arbitrarily small payoff perturbations of this game lead to games which have the same better response
structure as the original game. Hence, for a given game there may exist a close enough game such that the
outcome of the better response dynamics in two games are identical. However, for payoff differences of given
size it is always possible to find games with different better response properties as illustrated in Example
3.1.1.
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Example 3.1.1. Consider two games with two players and payoffs given in Figure 3-1.

The entries of these tables indexed by row X and column Y show payoffs of the players

when the first player uses strategy X and the second player uses strategy Y. Let 0 < 0 < 1.

Both games have a unique Nash equilibrium: (B, B) for g1, and the mixed strategy profile

A + B,1  A + 1 B) for 92 .

We consider convergence of the sequence of pure strategy profiles generated by the better

response dynamics. In g1, the sequence converges to strategy profile (B, B). In g2, the

sequence does not converge (it can be shown that the sequence follows the better response

cycle (A, A), (B, A), (B, B) and (A, B)). Thus, trajectories are not contained in any e-

equilibrium set for e < 2.

A B

A 0, 1 0, 0

-B 1, 0 0, 2
!;1

A B

A 0, 1 0, 0
B 1, 0 -0, 2

92

Figure 3-1: A small change in payoffs results in significantly different behavior for the pure
strategy profiles generated by the better response dynamics.

The second example considers fictitious play dynamics, where at each step, each player

maintains an (independent) empirical frequency distribution of other player's strategies and

plays a best response against it.

Example 3.1.2. Consider two games with two players and payoffs given in Figure 3-2. Let

0 be an irrational number such that 0 < 6 < 1. It can be seen that 9 1 has multiple equilibria

(including pure equilibria (A, A), (B, B) and (C, C)), whereas g2 has a unique equilibrium

given by the mixed

strategies.

strategy profile where both players assign 1/3 probability to each of its

A B C
A 1+0,1+0 1,0 0, 1
B 0,1 1+6,1+0 1,0
C 1,0 0, 1 1+ 6,1+ 6

91
A B C

A 1 -0,1-6 1, 0 0,1
B 0, 1 1 - 0,1 - 0 1,0
C 1,0 0, 1 1-0,1-0

Figure 3-2: A small
empirical frequencies

change in payoffs results in significantly different behavior for the
generated by the fictitious play dynamics.
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We focus on the convergence of the sequence of empirical frequencies generated by the

fictitious play dynamics (under the assumption that initial empirical frequency distribution

assigns probability 1 to a pure strategy profile). In g1, this sequence converges to a pure

equilibrium starting from any pure strategy profile. In g2 , the sequence displays oscilla-

tions similar to those seen in the Shapley game (see Shapley (1964); Fudenberg and Levine

(1998)). To see this, assume that the initial empirical frequency distribution assigns proba-

bility 1 to the strategy profile (A, A). Observe that since the underlying game is a symmetric

game, empirical frequency distribution of each player will be identical at all steps. Start-

ing from (A, A), both players update their strategy to C. After sufficiently many updates,

the empirical frequency of A falls below 6/(1 + 6), and that of C exceeds 1/(1 + 6). Thus,

the payoff specifications suggest that both players start using strategy B. Similarly, after

empirical frequency of B exceeds 1/(1 + 6), and that of C falls below 6/(1 + 0), then both

players start playing A. Observe that update to a new strategy takes place only when one

of the strategies is being used with very high probability (recall that 0 < 1) and this feature

of empirical frequencies is preserved throughout. For this reason the sequence of empirical

frequencies does not converge to (1/3,1/3,1/3), the unique Nash equilibrium of g2.

These examples suggest that in general, it may not be possible to characterize the

limiting dynamics in a given game, by using knowledge of the limiting behavior in a nearby

game. In this chapter, in contrast with this observation, we will show that games that are

close (in terms of payoffs of players) to potential games have similar limiting dynamics to

those in potential games. Moreover, it is possible to provide a quantitative measure of the

size of the limiting set of dynamics in terms of the 'distance' of the game from potential

games. Our approach relies on using the potential function of a close potential game for

the analysis of commonly studied update rules. 2 We note that our results hold for arbitrary

strategic form games, however our characterization of limiting behavior of dynamics is more

informative for games that are close to potential games. We therefore focus our investigation

to such games in this chapter and refer to them as near-potential games.

We start our analysis by introducing maximum pairwise difference, a measure of "close-

ness" of games. 3 Let p and q be two strategy profiles, which differ in the strategy of a

single player, say player m. Recall that we refer to the change in the payoff of player m

between these two strategy profiles, as the pairwise comparison of p and q (see Section

2.2.2). Intuitively, this quantity captures how much player m can improve its utility by

unilaterally deviating from strategy profile p to strategy profile q. For given games, the

maximum pairwise difference is defined as the maximum difference between the pairwise

comparisons of these games. Thus, the maximum pairwise difference captures how different

two games are in terms of the utility improvements due to unilateral deviations. Since equi-
2 Throughout the chapter, we use the terms learning dynamics and update rules interchangeably.
3 Maximum pairwise difference is closely related to the norm we introduced for space of games in Section

2.6. However, it is preferred in this section, since it allows us to focus on the "strategic" difference between
games, as we explain in detail in Section 3.2.
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libria of games, and strategy updates in various update rules (such as better/best response
dynamics) can be expressed in terms of unilateral deviations, maximum pairwise difference
provides a measure of strategic similarities of games. As established in Chapter 2 the set of
potential games is a subspace of space of games. Using this observation, we show that the
closest potential game to a given game, in the sense of maximum pairwise difference, can
be obtained by solving a convex optimization problem. This provides an alternative way
(that is different than the decomposition approach) of approximating a given game with a
potential game that has a similar equilibrium set and dynamic properties, as illustrated in
Example 3.1.3.

Example 3.1.3. Consider a two-player game g, which is not a potential game, and the
closest potential game to this game (in terms of maximum pairwise difference), u, given
in Figure 3-3. The maximum pairwise difference of these games is 2, since the utility
improvements in these games due to unilateral deviations differ by at most 2 (For instance
consider the deviation of the column player from (A, A) to (A, B). In g this leads to a
utility improvement of 6, whereas, in 0 the improvement amount is 4). It can be seen that
for both games (B, B) is the unique equilibrium. Moreover, trajectories of better response
dynamics and empirical frequencies of fictitious play dynamics converge to this equilibrium

in both games.

A B A B
A 8, 2 8, 8 A 7, 3 9, 7
B 2, 2 12, 10 B 3, 1 11, 11

g g

Figure 3-3: A game (9) and a nearby potential game (9) share similar equilibrium set and
dynamic properties.

We focus on three commonly studied user dynamics: discrete-time better/best response,
logit response, and discrete-time fictitious play dynamics, and establish different notions of
convergence for each. We first study better/best response dynamics. It is known that the
sequence of pure strategy profiles, which we refer to as trajectories, generated by these
update rules converge to pure Nash equilibria in potential games (Monderer and Shapley,

1996b; Young, 2004). In near-potential games, a pure Nash equilibrium need not even

exist. For this reason we focus on the notion of pure approximate equilibria or E-equilibria,
and show that in near-potential games trajectories of these update rules converge to a
pure approximate equilibrium set. The size of this set only depends on the distance from

the original game to a potential game, and is independent of the payoffs in the original
game. In particular, our result for better/best response dynamics establish a 'Lipschitz-
type' property, i.e., we can find a constant h (which is equal to the number of strategy
profiles in the game as shown in Theorem 3.3.1) such that in a game that is 5 different (in
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terms of maximum pairwise difference) from a potential game the trajectory converges to

the 6h-equilibrium set.

We then focus on logit response dynamics. With this update rule, agents, when updat-

ing their strategies, choose their best responses with high probability, but also explore other

strategies with a nonzero probability. Logit response induces a Markov chain on the set of

pure strategy profiles. The stationary distribution of this Markov chain is used to explain

the limiting behavior of this update rule (Young, 1993; Blume, 1997, 1993; Al6s-Ferrer and

Netzer, 2010; Marden and Shamma, 2012). In potential games, the stationary distribution

can be expressed in closed form in terms of the potential function of the game. Addition-

ally, the stochastically stable strategy profiles, i.e., the strategy profiles which have nonzero

stationary distribution as the exploration probability goes to zero, are those that maximize

the potential function (Al6s-Ferrer and Netzer, 2010; Blume, 1997; Marden and Shamma,

2012). Exploiting their relation to close potential games, we obtain similar results for near-

potential games: (i) we obtain an explicit characterization of the stationary distribution

in terms of the distance of the game from a close potential game and the corresponding

potential function, and (ii) we show that the stochastically stable strategy profiles are the

strategy profiles that approximately maximize the potential of a close potential game, im-

plying that they are pure approximate equilibria of the game. Our analysis relies on a

novel perturbation result for Markov chains (see Theorem 3.4.1) which provides bounds on

deviations from a stationary distribution when transition probabilities of a Markov chain

are multiplicatively perturbed, and therefore may be of independent interest.

A summary of our convergence results on better/best response and logit response dy-

namics can be found in Table 3.1.

Update Rule Convergence Result
Better/Best Re- (Theorem 3.3.1) Trajectories of dynamics converge to X h, i.e., the
sponse Dynamics Jh-equilibrium set of g.
Logit Response (Corollary 3.4.2) Stationary distribution p, of logit response dy-
Dynamics (with .26(h 1)

namics is such that p-r(p) - -1 ( - 26 (h -1, for all p.
parameter r) EC e e T +1

Logit Response (Corollary 3.4.3) Stochastically stable strategy profiles of Q are

Dynamics (i) contained in S = {pI(p) > maxq 4(q) - 46(h - 1)}, (ii) 45h-
equilibria of g.

Table 3.1: Convergence properties of better/best response and logit response dynamics in
near-potential games. Given a game g, we use O to denote a nearby potential game with
potential function 4 such that the distance (in terms of the maximum pairwise difference,
defined in Section 3.2) between the two games is 6. We use the notation X, to denote the
c-equilibrium set of the original game, h to denote the number of strategy profiles, p, and pu
to denote the stationary distributions of logit response dynamics in 9 and 9, respectively.

We finally analyze fictitious play dynamics in near-potential games. In potential games
trajectories of fictitious play need not converge to a Nash equilibrium, but the empirical
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frequencies of the played strategies converge to a (mixed) Nash equilibrium (Monderer and

Shapley, 1996a; Shamma and Arslan, 2004). In our analysis of fictitious play dynamics,
we first show that in near-potential games if the empirical frequencies are outside some

e-equilibrium set, then the potential of the close potential game (evaluated at the empirical

frequency distribution) increases with each strategy update. Using this result we establish

convergence of fictitious play dynamics to a set which can be characterized in terms of

the e-equilibrium set of the game and the level sets of the potential function of a close

potential game. This result suggests that in near-potential games, the empirical frequencies

of fictitious play converge to a set of mixed strategies that (in the close potential game)

have potential almost as large as the potential of Nash equilibria. Moreover, exploiting the

property that for small e, e-equilibria are contained in disjoint neighborhoods of equilibria,
we strengthen our result and establish that if a game is sufficiently close to a potential game,
then empirical frequencies of fictitious play dynamics converge to a small neighborhood of

equilibria, whose size is explicitly characterized. 4 Our result recovers as a special case

convergence of empirical frequencies to Nash equilibria in potential games. 5

A summary of our results on convergence of fictitious play dynamics is given in Table

3.2.

The framework provided in this chapter enables us to study the limiting behavior of

adaptive user dynamics in arbitrary finite strategic form games. In particular, for a given

game we can use either the proposed convex optimization formulation, or the decomposition

approach introduced in Chapter 2, to find a nearby potential game and use the distance

between these games to obtain a quantitative characterization of the limiting approximate

equilibrium set. The characterization this approach provides will be tighter if the original

game is closer to a potential game.

3.1.1 Related Literature

In potential games, pure Nash equilibria are stable under various learning dynamics such

as better/best response dynamics (Monderer and Shapley, 1996b; Fudenberg and Levine,
1998; Young, 2004). Because of these properties, potential games found applications in

various control and resource allocation problems (Monderer and Shapley, 1996b; Marden

et al., 2009a; Candogan et al., 2010b; Arslan et al., 2007).

4The bounds we obtain for the limiting behavior of fictitious play dynamics have a different flavor than
those for better/best response dynamics, and logit response. While the bounds we obtain for the latter
update rules are independent of the payoffs (and a function of only 6 and the number of strategy profiles
in the game), for fictitious play they are not. This is because, fictitious play results exploit the structure of
mixed (approximate) equilibrium sets, which rely on the actual payoff parameters, whereas other dynamics
results do not involve mixed strategies.

5 This result also implies that in near-potential games fictitious play dynamics are upper semicontinuous
with respect to payoff parameters. This upper semicontinuity result could alternatively be proved by consid-
ering differential inclusions that represent the limiting behavior of fictitious play (see Benaim et al. (2005)),
together with upper semicontinuity results on differential inclusions (Li and Zhang, 2002). Our result, in
addition to upper semicontinuity, provides explicit bounds on the size of the limiting set.
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Update Rule Convergence Result
(Corollary 3.5.1) Empirical frequencies of dynamics converge to

Fictitious Play the set of mixed strategies with large enough potential: {x C
] J, A Emig(x) > minyam,. 0(y)l
(Theorem 3.5.2) Assume that g has finitely many equilibria. There

exists some S > 0, and i > 0 (which are functions of utilities of

g but not J) such that if 5 < 3, then the empirical frequencies of

fictitious play converge to

X x -x| <4f(M )ML + f (M6 + C),

Fictitious Play

for some equilibrium xk

for any c such that ;> e > 0, where f : R+ -- R+ is an upper

semicontinuous function that quantifies the size of mixed equilib-
rium sets (defined explicitly in Section 3.5) such that f(x) -> 0 as
x -> 0.

Table 3.2: Convergence properties of fictitious play dynamics in near-potential games. We
denote the number of players in the game by M, set of mixed strategies of player m by
AE m , and the Lipschitz constant of the mixed extension of # by L. Rest of the notation is
the same as in Table 3.1.

There is no systematic framework for analyzing the limiting behavior of many of the

adaptive update rules in general games (Jordan, 1993; Fudenberg and Levine, 1998; Shapley,

1964). However, for potential games there is a long line of literature establishing conver-

gence of natural adaptive dynamics such as better/best response dynamics (Monderer and

Shapley, 1996b; Young, 2004), fictitious play (Monderer and Shapley, 1996a; Shamma and

Arslan, 2004; Marden et al., 2009b; Hofbauer and Sandholm, 2002) and logit response dy-

namics (Blume, 1993, 1997; Al6s-Ferrer and Netzer, 2010; Marden and Shamina, 2012).

Another strand of literature focuses on identifying classes of games with similar proper-

ties to potential games. Examples include ordinal potential games (Monderer and Shapley,
1996b), best-response potential games (Voorneveld, 2000), pseudo-potential games (Dubey

et al., 2006), and nested potential games (Uno, 2007). Even though these classes of games

share similar ordinal properties with potential games, for update processes that involve

mixed strategies (such as fictitious play), or that rely on actual payoff values (such as logit

response), they do not lead to simple analysis unless further structure is imposed (unlike

potential games). For this reason, in this chapter we follow a different approach, and char-

acterize dynamic properties of games, by exploiting their closeness to potential games.

There are also papers in the literature, which identify classes of games that are strate-

gically equivalent to potential games (Morris and Ui, 2004). These equivalence notions

can be used to extend the dynamical properties of potential games to their equivalence
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classes. However, we want to emphasize that the framework presented in this chapter can
be applied for study of dynamics in games that are not strategically equivalent to potential
games, thereby providing tools for study of dynamics in arbitrary strategic form games.

3.1.2 Outline

The rest of the chapter is organized as follows. Most of the notation, and game theoretic
preliminaries we need for this section are borrowed from Chapter 2. In Section 3.2 we
introduce some additional notation, and cover the game theoretic preliminaries that were
not discussed in the previous chapter. We present an analysis of better and best response
dynamics in near-potential games in Section 3.3. In Section 3.4, we extend our analysis to
logit response, and focus on the stationary distribution and stochastically stable states of
logit response. We present the results on fictitious play in Section 3.5. We close in Section
3.6 with a summary of the main contributions of this chapter. Some of the proofs are
delegated to Section 3.7.

3.2 Preliminaries

In this section, we present the game-theoretic background that is relevant to this chapter.

Additionally, we introduce the closeness measure for games, which is used in the rest of the
chapter.

Our focus in this chapter is on finite strategic form games. We inherit the notation

used in Chapter 2 for such games, and denote them using the tuple (M, {E m}, {u m }). In

subsequent sections, we characterize the limiting behavior of dynamics in finite games in

relation to their equilibria. In particular, we make use of Nash equilibria, and E-equilibria

(see Section 2.2.1 for definitions). We denote the set of c-equilibria in a game 9 by X.
In order to establish our results on dynamics, we exploit the properties of potential games

(see Section 2.2.1 for a definition). We next explain an important property of potential
games, which plays a key role in our analysis: In potential games the total unilateral utility

improvement around a "closed path" is equal to zero. Before we formally state this result,
we first provide some necessary definitions, which are also used in Section 3.3 when we
analyze better/best response dynamics in near-potential games.

Definition 3.2.1 (Path -'Closed Path - Improvement Path). A path is a collection of

strategy profiles -y = (po,... PN) such that pi and pi+1 differ in the strategy of exactly one

player. A path is a closed path (or a cycle) if PO = PN. A path is an improvement path

if umi(pi) > um i(pi-1) where mi is the player who modifies its strategy when the strategy

profile is updated from pi-1 to pi.

The transition from strategy profile pi-1 to pi is referred to as step i of the path. The

length of a path is equal to its number of steps, i.e., the length of the path -y = (pO, . .., PN)
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is N. We say that a closed path is simple if no strategy profile other than the first and the

last strategy profiles is repeated along the path. For any path -y = (pO,..., PN) let I(y)

represent the total utility improvement along the path, i.e.,

N

I( ) = (pi) - u (pi -0,
i=1

where mi is the index of the player that modifies its strategy in the ith step of the path.

The following proposition provides a necessary and sufficient condition under which a given

game is a potential game.

Proposition 3.2.1 (Monderer and Shapley (1996b)). A game is a potential game if and

only if I(7) = 0 for all simple closed paths y.

We next provide a formal definition of the measure of "closeness" of games, used in the

subsequent sections.

Definition 3.2.2 (Maximum Pairwise Difference). Let g and N be two games with set of

players M, set of strategy profiles E, and collections of utility functions {u}rnCM and

{ fm}.e respectively. The maximum pairwise difference (MPD) between these games is

defined as

d(9,g) max (um (qm p-m) m (pm p-)) _ (m( m p-m) im  m -m))
pEE,mEM4,qmEEmI(p

Note that the pairwise difference u m (qm , p-m) - u m (pm , p-m) quantifies how much

player m can improve its utility by unilaterally deviating from strategy profile (pm , p- m )

to strategy profile (qm ,p- m ). Thus, the MPD captures how different two games are in

terms of the utility improvements due to unilateral deviations. 6 We refer to pairs of games

with small MPD as close games, and games that have a small MPD to a potential game as

near-potential games.

The MPD measures the closeness of games in terms of the difference of unilateral devi-

ations, rather than the difference of their utility functions, i.e., quantities of the form

(um(qm, p-m) - um (p, p-m)) _ (fm(qm p-m) - im (p m p-m))

6 An alternative distance measure can be given by

d 2 (9,0)±( rnMiem ((urn (q
m

p' 
m - u m 

(p', p't)) - (jim (q
m

, p-
t m

)i (p
m 

P-,m)))2)

\pEE mnEM,qmEEm

and this quantity corresponds to the 2-norm of the difference of g and O in terms of the utility improvements
due to unilateral deviations. Our analysis of the limiting behavior of dynamics relies on the maximum of
such utility improvement differences between a game and a near-potential game. Thus, the measure in
Definition 3.2.2 provides tighter bounds for our dynamics results, and hence is preferred in this chapter.

83



are used to identify close games, rather than quantities of the form lUm (p m , p- m ) - m (pm ,p--
This is because the difference in unilateral deviations provides a better characterization of
the strategic similarities (equilibrium and dynamic properties) between two games than the
difference in utility functions, by "quotienting out" the nonstrategic component of games

(as discussed in Chapter 2). For this reason, in this chapter we employ MPD to measure
closeness of games, as opposed to the norm introduced in Section 2.6.

We conclude this section by presenting a framework for finding the closest potential
game to a given game, where the distance between the games is measured in terms of MPD. 7

Theorem 2.5.1 suggests that the set of potential games is convex, i.e., if g = (M, E, {u m }m)
and G = (M, E, {i.m }m) are potential games, then g, = (M, E, {aum + (1 - a)nim }m), is
also a potential game provided that a E [0,1]. Hence, intuitively, it should suffice to solve
a convex optimization problem to find the closest potential game to a given game. We next
provide one such convex optimization formulation.

Assume that a game with utility functions {u m }m is given. The closest potential game

(in terms of MPD) to this game, with payoff functions {fim }m, and potential function # can

be obtained by solving the following optimization problem:

min max (Um(qm p-m) _ (pm, p-m))
4,{jm}, PCE,mEM,qmCE m

(P :) - (jyn (q m , p M) - jjjn (p m p-rn))

for all m c M, p c E, qm E E m .

Note that the difference (u m (qm , p- m ) u Um (pm , p- m ))_ (gm (q m , p- m ) _ f m (pm , p- m ))
is linear in {nim}m. Thus, the objective function is the maximum of such linear functions,
and hence is convex in {nim}m. The constraints of this optimization problem guarantee

that the game with payoff functions {jim}m is a potential game with potential #. Note that
these constrains are linear. Therefore, it follows that (P) is a convex optimization problem

that gives the closest potential game to a given game.

In the rest of the chapter, we do not discuss how a close potential game to a given game

is obtained, but we just assume that a close potential game with potential # is known and

the MPD between this game and the original game is 6. We provide characterization results

on limiting dynamics for a given game in terms of # and 6.

3.3 Better Response and Best Response Dynamics

In this section, we consider better and best response dynamics, and study convergence prop-

erties of these update rules in near-potential games. All of the update rules considered in

7 A similar framework for finding near-potential (and weighted potential) games (using a different norm)
can be found in Candogan et al. (2011a) and Candogan et al. (2010a).
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this section are discrete-time update rules, i.e., players are allowed to update their strategies

at time instants t E Z+ = {1, 2, .. .

Best response dynamics is an update rule where at each time instant a player chooses

its best response to other players' current strategy profile. In better response dynamics, on

the other hand, players choose strategies that improve their payoffs, but these strategies

need not be their best responses. Formal descriptions of these update rules are given below.

Definition 3.3.1 (Better and Best Response Dynamics). At each time instant t E {1, 2, ... },

a single player is chosen at random for updating its strategy, using a probability distribution

with full support over the set of players. Let m be the player chosen at some time t, and let

r G E denote the strategy profile that is used at time t - 1.

1. Better response dynamics is the update process where player m does not modify its

strategy if um(r) = maxqm um(qm, r-), and otherwise it updates its strategy to a

strategy in {qm um(qm, r-m) > um(r)}, chosen uniformly at random.

2. Best response dynamics is the update process where player m does not modify its

strategy if um(r) = maxq um(qm, r-m), and otherwise it updates its strategy to a

strategy in arg maxqm um(qm, r-), chosen uniformly at random.

For simplicity of the analysis, we assume here that users are chosen randomly to update

their strategy. However, this assumption is not crucial for our results, and can be relaxed.

We refer to strategies in arg maxqm um(qm, r-m) as best responses of player m to r-m.

We denote the strategy profile used at time t by pt, and we define the trajectory of the

dynamics as the sequence of strategy profiles {pt}'o. In our analysis, we assume that the

trajectory is initialized at a strategy profile po E E at time 0 and it evolves according to

one of the update rules described above.

The following theorem establishes that in finite games, better and best response dynam-

ics converge to a set of c-equilibria, where the size of this set is characterized by the MPD

to a close potential game.8

Theorem 3.3.1. Consider a game 9 and let $ be a nearby potential game such that

d(9,9) < 6. Assume that best response or better response dynamics are used in 9, and

denote the number of strategy profiles in these games by |E| = h.

For both update processes, the trajectories are contained in the h-equilibrium set of 9
after finite time with probability 1, i.e., let T be a random variable such that pt C X6h, for
all t > T, then P(T < oc) = 1.

Proof. We prove the claim by modeling the update process using a Markov chain, and

employing the improvement path condition for potential games (cf. Proposition 3.2.1).

8The bound of this theorem can be improved by using bounds on the length of utility improvement
cycles in games. In particular, for two player games using such a bound due to Ahn (2006), it is possible to
establish convergence to a smaller approximate equilibrium set.

85



Using Definition 3.3.1, we can represent the strategy updates in best response dynamics
as the state transitions in the following Markov chain: (i) Each state corresponds to a
strategy profile and, (ii) there is a nonzero transition probability from state r to state
q $ r, if r and q differ in the strategy of a single player, say m, and qm is a (strict) best

response of player m to r-m. The probability of transition from state r to state q is equal

to the probability that at strategy profile r, player m is chosen for update and it chooses qm

as its new strategy. In the case of better response dynamics we allow qm to be any strategy

strictly improving payoff of player m, and a similar Markov chain representation still holds.

Since there are finitely many states, one of the recurrent classes of the Markov chain is
reached in finite time (with probability 1). Thus, to prove the claim, it is sufficient to show

that any state which belongs to some recurrent class of this Markov chain is contained in

the E-equilibrium set of 9.

It follows from Definition 3.3.1 that a recurrence class is a singleton, only if none of

the players can strictly improve its payoff by unilaterally deviating from the corresponding

strategy profile. Thus, such a strategy profile is a Nash equilibrium of 9 and is contained

in the e-equilibrium set.

Consider a recurrence class that is not a singleton. Let r be a strategy profile in this

recurrence class. Since the recurrence class is not a singleton, there exists some player

m, who can unilaterally deviate from r by following its best response to another strategy

profile q, and increase its payoff by some a > 0. Since such a transition occurs with nonzero

probability, r and q are in the same recurrence class, and the process when started from r

visits q and returns to r in finitely many updates. Since each transition corresponds to a

unilateral deviation that strictly improves the payoff of the deviating player, this constitutes

a simple closed improvement path containing r and q. Let y = (PO,... , PN) be such an

improvement path and po = PN = r, pi = q and N < |El = h. Since um(q) - um(r) = a,
and um s (p,) - utmt(pi_1) > 0 at every step i of the path, this closed improvement path

satisfies
N

(um P _ um i(p 1))> a. (3.1)
i=1

On the other hand it follows by Proposition 3.2.1 that the close potential game satisfies

N

(fGmi(Pi) - mi (p -1)) = 0. (3.2)
i=1

Combining (3.1) and (3.2) we conclude that

N

a < 5 U ( m (pi) - u (Pi- 0) - (ft m (Pi) - m (i-0
i=1
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Since N < |El = h, it follows that a 5h. The claim then immediately follows since r

and the recurrence class were chosen arbitrarily, and our analysis shows that the payoff

improvement of player m (chosen for strategy update using a probability distribution with

full support as described in Definition 3.3.1), due to its best response is bounded by 6h. L

As can be seen from the proof of this theorem, extending dynamical properties of po-

tential games to nearby games relies on special structural properties of potential games.

As a corollary of the above theorem, we obtain that trajectories generated by better and

best response dynamics converge to a Nash equilibrium in potential games, since if g is a

potential game, the close potential game g can be chosen such that d(9, O) = 0. Also, it

follows from our proof that our result is applicable in cases where the underlying game has

better response cycles. Thus, even when the game does not share similar ordinal properties

with potential games, our approach can be used to approximately characterize the limiting

behavior of dynamics.

3.4 Logit Response Dynamics

In this section we focus on logit response dynamics. Logit response dynamics can be viewed

as a smoothened version of the best response dynamics, in which a smoothing parameter

determines the frequency with which the best response strategy is picked. The evolution of

the pure strategy profiles can be represented in terms of a Markov chain (with state space

given by the set of pure strategy profiles). We characterize the stationary distribution and

stochastically stable states of this Markov chain (or of the update rule) in near-potential

games. Our approach involves identifying a close potential game to a given game, and

exploiting features of the corresponding potential function to characterize the limiting be-

havior of logit response dynamics in the original game.

In Section 3.4.1, we provide a formal definition of logit response dynamics and review
some of its properties. We also present some of the mathematical tools used in the literature

to study this update rule. In Section 3.4.2, we show that the stationary distribution of

logit response dynamics in a near-potential game can be approximately characterized using

the potential function of a nearby potential game. We also use this result to show that
the stochastically stable strategy profiles are contained in approximate equilibrium sets in
near-potential games.

3.4.1 Properties of Logit Response

We start by providing a formal definition of logit response dynamics:

Definition 3.4.1. At each time instant t C {1, 2,... }, a single player is chosen at random
for updating its strategy, using a probability distribution with full support over the set of
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players. Let m be the player chosen at some time t, and let r E E denote the strategy profile

that is used at time t - 1.

Logit response dynamics with parameter T is the update process, where player m chooses

a strategy qm E E m with probability

SeUm (qm,r m)
P, (qmIr) = lum(pm,r-m)

In this definition, T > 0 is a fixed parameter that determines how often players choose

their best responses. The probability of not choosing a best response decreases as 7 de-

creases, and as T - 0, players choose their best responses with probability 1. This feature

suggests that logit response dynamics can be viewed as a generalization of best response

dynamics, where with small but nonzero probability players use a strategy that is not a

best response.

For a given T > 0, this update process can be represented by a finite aperiodic and

irreducible Markov chain (Marden and Shamma, 2012; Al6s-Ferrer and Netzer, 2010). The

states of the Markov chain correspond to the strategy profiles in the game. Denoting the

probability that player m is chosen for a strategy update by am, transition probability from

strategy profile p to q can be given by (assuming p $ q, and denoting the transition from

p to q by p - q):

P, (p - q) - amP '(qm jp) if q- m  p-m for some m E M (3.3)
0 otherwise.

The chain is aperiodic and irreducible since a player updating its strategy can choose any

strategy (including the current one) with positive probability. Consequently, it has a unique

stationary distribution.

We denote the stationary distribution of this Markov chain by p, and refer to it as

the stationary distribution of the logit response dynamics. A strategy profile q such that

lim,-O p, (q) > 0 is referred to as a stochastically stable strategy profile of the logit response

dynamics. Intuitively, these strategy profiles are the ones that are used with nonzero prob-

ability, as players adopt their best responses more and more frequently in their strategy

updates.

In potential games, the stationary distribution of the logit response dynamics can be

written as an explicit function of the potential. If g is a potential game with potential func-

tion <, the stationary distribution of the logit response dynamics is given by the distribution

88



(Marden and Shamna, 2012; Al6s-Ferrer and Netzer, 2010; Blume, 1997):9

1.0(q)

ir (q) = 10 . (3.4)

It can be seen from (3.4) that lim,_o p(q) > 0 if and only if q C arg maxpEE (p).

Thus, in potential games the stochastically stable strategy profiles are those that maximize

the potential function.

We next describe a method for obtaining the stationary distribution of Markov chains.

This method will be used in the next subsection in characterizing the stationary distribution

of logit response. Assume that an irreducible Markov chain over a finite set of states S, with

transition probability matrix P is given. Consider a directed tree, T, with nodes given by

the states of the Markov chain, and assume that an edge from node q to node p can exist

only if there is a nonzero transition probability from q to p in the Markov chain. We say

that the tree is rooted at state p, if from every state q 74 p there exists a unique directed

path along the tree to p. For each state p C S, denote by T(p) the set of all trees rooted

at p, and define a weight wp > 0 such that

wp = E 1 P(q -> r). (3.5)
TCT(p) (q->r)ET

The following proposition from the Markov Chain literature (Leighton and Rivest (1983);

Anantharam and Tsoucas (1989); Freidlin and Wentzell (1998)), known as the Markov

chain tree theorem, expresses the stationary distribution of Markov chains in terms of these

weights.

Proposition 3.4.1. The stationary distribution of the Markov chain defined over set S is

given by p(p) = P

For any T E T(p), intuitively, the quantity H(q-r)CT P(q -- r) gives a measure of

likelihood of the event that node p is reached when the chain is initiated from the leaves

(i.e., nodes with indegree equal to 0) of T. Thus, wp captures how likely it is that node

p is visited in this chain, and the normalization in Proposition 3.4.1 gives the stationary

distribution. Since for finite games logit response dynamics can be modeled as an irreducible

Markov chain, this result can be used to characterize its stationary distribution.

3.4.2 Stationary Distribution of Logit Response Dynamics

In this section we show that the stationary distribution of logit response dynamics in near-

potential games can be approximated by exploiting the potential function of a close potential

9 Note that this expression is independent of {Cam}, i.e., the probability distribution that is used to choose
which player updates its strategy has no effect on the stationary distribution of logit response.
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game. We start by showing that in games with small MPD logit response dynamics have
similar transition probabilities.

Lemma 3.4.1. Consider a game g and let g be a nearby potential game such that d(g, O) <
6. Denote the transition probability matrices of logit response dynamics in g and 9 by P,
and P, respectively. For all strategy profiles p and q that differ in the strategy of at most
one player, we have

26 26
e 7 < Pr(p -> q)/Pr(p --+q) < e-.

Proof. Assume that p-' = q-'. In 9 the transition probability PT(p --+ q) can be
expressed by (see (3.3)):

aMP'(q'|jp) if q' , pm

PT(P , q)kP(pkIp) otherwise.
kcM

A similar expression holds for the transition probability PT(p - q) in 9, replacing P" by
26 26

P;'. Thus, it is sufficient prove e- 7 N"Pm(q"I|p)/P(q" Ip) e T for all p, m, qm to
prove the claim.

Observe that by the definition of MPD

u m (r M , p-M ) - um (p, p-m ) -< "(r" mp-) - im (p m , p- m )

< um (r M , p-M ) - u M (p",p mp-") +(6.

Definition 3.4.1 suggests that P m (qm p) can be written as (by dividing the numerator and

the denominator by eium(Pm,P-m))

eipmmTmlpmy _m(,p r-n(tm p-m ))
P"'(q' Ip) =1(i r '- )_z P , M)

E ri mE e ' (s m (r m ,p - m )~ im( p m,p - m )

Therefore, using the bounds in (3.6) it follows that

Ptm (qm p) <
-(q"m)e- + r,moqm K(rm)eTr

where, r,(rm) = e.(um(rm,p-m)-um(Pm,p-m)) for all r" C Em. Dividing both the numer-

ator and the denominator of the right hand side by ErmEm i(r m ) and observing that

P;" (q m Ip) = rErnK(r
m

), we obtain

$"m'(q"'|p)Pe((q m  - +p) < 6 A P7(1-P"
e~ pm (qm 1p) + e- (1 - P7L(qm 1p))
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or equivalently
P m (q'I p) eT

pm (qmlp) - ii-i? qmP e , Pf (qm|p) + e-. (1 - Pf (qmlp))'

It can be seen that the right hand side is decreasing in Pm (qm Ip). Thus replacing Pm (qm Ip)

by 0, the right hand side can be upper bounded by e . Then we obtain P7n(qmlp)/P;(qmlp) <
26 26

e T . By symmetry we also conclude that P (q p)/Pnqmlp) e , and combining these

bounds the claim follows. El

Definition 3.4.1 suggests that perturbation of utility functions changes the transition

probabilities multiplicatively in logit response. The above lemma supports this intuition:

if utility gains due to unilateral deviations are modified by 6, the ratio of the transition
26

probabilities can change at most by e T . Thus, if two games are close, then the transition

probabilities of logit response in these games should be closely related.

This suggests using results from perturbation theory of Markov chains to characterize

the stationary distribution of logit response in a near-potential game (Haviv and Van der

Heyden, 1984; Cho and Meyer, 2001). However, standard perturbation results characterize

changes in the stationary distribution of a Markov chain when the transition probabilities

are additively perturbed. These results, when applied to multiplicative perturbations, yield

bounds which are uninformative. We therefore first present a result which characterizes de-

viations from the stationary distribution of a Markov chain when its transition probabilities

are multiplicatively perturbed, and therefore may be of independent interest. 10

Theorem 3.4.1. Let P and P denote the probability transition matrices of two finite ir-

reducible Markov chains with the same state space. Denote the stationary distributions of

these Markov chains by y and A respectively, and let the cardinality of the state space be

h. Assume that a > 1 is a given constant and for any two states p and q, the following

inequalities hold

a-P(p -* q) < P(p -* q) < aP(p -+ q).

Then, for any state p, we have

a-(-1)(p) + ah-l(l -- (p)) ah-lp(p) + a-(h-1)(l - p '

( ah-1 +

Proof. As before, let T(p) denote the set of directed trees that are rooted at state p. Using
the characterization of the stationary distribution in Proposition 3.4.1, for the Markov chain

10A multiplicative perturbation bound similar to ours, can be found in Freidlin and Wentzell (1998).
However, this bound is looser than the one we obtain and it does not provide a good characterization of the
stationary distribution in our setting. We provide a tighter bound, and obtain stronger predictions on the
stationary distribution of logit response.
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with probability transition matrix P, we have p(p) = -, where for each state p,

wp= E
TET(p) (x-->y)ET

P(x -> y).

For the Markov chain with probability transition matrix P, we define Cp, by replacing P

in the above equation with P and #(p) similarly satisfies A(p) =

Since the Markov chain has h states, |TI = h - 1 for all T E T(p). Hence, it follows

from the assumption of the theorem and the above definitions of wp and tip that

a-(-I) - a-(h 1 ) Z H1 P(x -- y)

TCT(p) (x-y)CT

< Ip= H P(x - y)
TET(p) (x->y)ET

<ah1 E H P(X --4y) =ahlIwp.
TCT(p) (x->y)CT

This inequality implies that for all q, gq is upper bounded by ah-1wq and lower bounded

by a-(h-1)wq. Using this observation together with the identity 4(p) = hq', we obtain

a-(h-1)w

Ce-(h-l)W ± + a-1 Eq:,p Wq

& ah-1w
<4 (P) WP <ii h-1 ZWP

Zq ?iq a ~wP ± aZ(hl1) Zqo4p Wq

Dividing the numerators and denominators of the left and right hand sides of the inequality

by Eq Wq, using Proposition 3.4.1, and observing that Eqp p(q) = 1 - p (p) the first part

of the theorem follows.

Consider functions f and g defined on [0,1] such that f(x) =h-x- x and
Ce-(h-)X 

ah 
1
X~a-(h-')(l-X)

g(x) = a-( l (h-1(1-X) - x for x E [0, 1]. Checking the first order optimality conditions,
a-h-~x Li 

1 1-) -(h-1) h-i

it can be seen that f(x) is maximized at x =a , and the maximum equals to ' .

Similarly, the minimum of g(x) is achieved at x = h 1 and is equal to 1 h-1 . Combining

these observations with part (i), we obtain

1 -ha-1 ae-(h-1) /'P

1+ ah-1 <g((p)) - a-(h-1)p(p) + ah-l(l - p(p)) -< A(P) -

ahp-1j ah-1 -1

ah-1/(p) + a-(h-1)(1 - p()) (p)) ah-1 + 1'

hence the second part of the claim follows. LI

Next we use the above theorem to relate the stationary distributions of logit response

dynamics in nearby games.
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Corollary 3.4.1. Let g and u be finite games with number of strategy profiles |E| = h,

such that d(g;, < 5. Denote the stationary distributions of logit response dynamics in

these games by p, and A, respectively. Then, for any strategy profile p we have

26(h -1) 26(h 1)

e- T p(p) e T pT (P)
26(h-1) 26(h-1) T 26(h-1) 26(h-1)

e- AT p(p) +e r (1 -pAT(P)) e AT p(P)+e AT1-p(P))
26(h -1)

e r -1
(ii) IpT(P) - ArT(p) - 26(h-1)

e +1

26

Proof. Proof follows from Lemma 3.4.1 and Theorem 3.4.1 by setting a = e T*. L

The above corollary can be adapted to near-potential games, by exploiting the relation

of stationary distribution of logit response and potential function in potential games (see

(3.4)). We conclude this section by providing such a characterization of the stationary

distribution of logit response dynamics in near-potential games.

Corollary 3.4.2. Consider a game g and let $ be a nearby potential game such that

d(G, ) < 6. Denote the potential function of g by <p, and the number of strategy profiles in

these games by |E| = h. Then, the stationary distribution A of logit response dynamics in

g is such that

I(#(p)-26(-)

ei < p-i) )

e((((P)+26(h-1))

- (#(p)+26(h-1)) ±pEE (#(q)2(h-1))'

10(p) 26(h-1)
eT#9 e* _T

(ii) pT (P) - e 2T-1
1 (q) - 26(h-1)

EqEE T e 7- +1

Proof. Proof follows from Corollary 3.4.1 and (3.4). l

With simple manipulations, it can be shown that (e' - 1)/(e' + 1) < x/2 for x > 0.

Thus, (ii) in the above corollary implies that pT(P) - '(h (q-1). Therefore,

the stationary distribution of logit response dynamics in a near-potential game can be

characterized in terms of the stationary distribution of this update rule in a close potential

game. When T is fixed and 6 -> 0, i.e., when the original game is arbitrarily close to

a potential game, the stationary distribution of logit response is arbitrarily close to the

stationary distribution in the potential game. On the other hand, for a fixed 6, as r -> 0,
the upper bound in (ii) becomes uninformative. This is the case since T -> 0 implies that

players adopt their best responses with probability 1, and thus the stationary distribution

of the update rule becomes very sensitive to the difference of the game from a potential
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game. In this case we can still characterize the stochastically stable states of logit response
using the results of Corollary 3.4.2, as we show in Corollary 3.4.3.

Corollary 3.4.3. Consider a game g and let u be a nearby potential game with potential
function # and d(g, $) < 6. Denote the potential function of 9 by #, and the number of
strategy profiles in these games by |E| = h. The stochastically stable strategy profiles of g
are (i) contained in S = {pl#(p) > maxq#(q) - 46(h - 1)}, (ii) 46h-equilibria of 9.

Proof. (i) The upper bound in the first part of Corollary 3.4.2 implies that if p is a strategy
profile such that #(p) < maxqEE #(q) - 46(h - 1), then the stationary distribution of logit
response in 9 is such that pT(p) -+ 0 as r -4 0. Thus, it immediately follows that the

stochastically stable states in 9 are contained in {p - E I#(p) > maxqEE #(q) - 46(h - 1)}.

(ii) Prom the definition of S it follows that in 9, none of the players can deviate from
a strategy profile in S and improve its utility by more than 46(h - 1). Since d(g, 0) < 6
it follows from part (i) that in 9, none of the players can unilaterally deviate from a
stochastically stable strategy profile and improve its utility by more than 46(h -1)+6 < 46h.

Hence stochastically stable strategy profiles of 9 are 46h-equilibria. L

We conclude that in near-potential games, the stochastically stable states of logit re-

sponse are the strategy profiles that approximately maximize the potential function of a

close potential game. This result enables us to characterize the stochastically stable states

of logit response dynamics in near-potential games, without explicitly computing the sta-

tionary distribution.

Since it is possible to identify a potential game that is close to a given game (as explained

in Section 3.2), Corollaries 3.4.2 and 3.4.3 provide a systematic approach for characterizing

the stationary distribution and stochastically stable states of logit response, for general

games. The characterization is tighter for near-potential games, but it is still informative

for general games.

Moreover, our results enable robust predictions about stochastically stable strategy pro-

files in potential games. In particular, we can quantify payoff perturbations that maintain

stochastically stable states of a game. For instance, consider potential games where the po-

tential # has a unique maximizer q*. Corollary 3.4.3 implies that in such games if the payoffs

are perturbed by at most - (#(q*) - maxqgg- #(q)) (so that the MPD between the original

game and the game obtained after perturbations satisfies 6 < - (#(q*) - maxqgq- #(q)))
the stochastically stable strategy profiles do not change. Thus, the corollary allows us
to bound the magnitude of payoff perturbations that leave the set of stochastically stable

strategy profiles intact.
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3.5 Fictitious Play

In this section, we investigate the convergence behavior of fictitious play in near-potential

games. Unlike better/best response dynamics and logit response, in fictitious play agents

maintain an empirical frequency distribution of other players' strategies and play a best

response against it. Thus, analyzing fictitious play dynamics requires the notion of mixed

strategies and some additional definitions that are provided in Section 3.5.1. In Section

3.5.2 we show that in finite games the empirical frequencies of fictitious play converge to

a set which can be characterized in terms of the approximate equilibrium set of the game

and the level sets of the potential function of a close potential game. When the original

game is sufficiently close to a potential game, we strengthen this result and establish that

the empirical frequencies converge to a small neighborhood of mixed equilibria of the game,

and the size of this neighborhood is a function of the distance of the original game from a

potential game. As a special case, our result allows us to recover the result of Monderer and

Shapley (1996a), which states that in potential games the empirical frequencies of fictitious

play converge to the set of mixed Nash equilibria.

3.5.1 Mixed Strategies and Equilibria

In this section, we introduce some additional notation and definitions, which will be used

in Section 3.5.2 when studying convergence properties of fictitious play in near-potential

games.

As in Section 2.5.2, we use AEm the set of mixed strategies of player m, and HmEM AEm

as the set of mixed strategy profiles in the game. For x E ImeM AEm we denote by

{u m (x)} the mixed extension of the utility of player m (as defined in Section 2.5.2), i.e.,

u m(X) = E Um (p) fJ Xk(pk). (3.7)
pEE kEM

Similarly, we denote the mixed extension of the potential function by <O(x). We use -

to denote the standard 2-norm on ]Hm AE m , i.e., for x C [m AE m , we have ||x|| 2

ZmCM EpE m (Xm(pm)) 2

A mixed strategy profile x = {xm}mcm c m AE m is a mixed c-equilibrium if for all

m E M and pm C E m ,

um(pm, x-m) - um (xm x-m) < E. (3.8)

Note that if the inequality holds for E = 0, then x is a mixed Nash equilibrium of the game.

In the rest of the chapter, we use the notation X, to denote the set of mixed e-equilibria.

Our characterization of the limiting mixed strategy set of fictitious play depends on the

number of players in the game. We use M = |M I as a short-hand notation for this number.

We conclude this section with two technical lemmas which summarize some properties

of mixed equilibria and mixed extensions of potential and utility functions. Proofs of these
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lemmas can be found in (Candogan et al., 2011b).

The first lemma establishes the Lipschitz continuity of the mixed extensions of the payoff
functions and the potential function. It also shows a natural implication of continuity: for

any e' > e, a small enough neighborhood of the e-equilibrium set is contained in the e'-
equilibrium set.

Lemma 3.5.1. (i) Let v : |,CM Em -+ R be a mapping from pure strategy profiles to

real numbers. Its mixed extension is Lipschitz continuous with a Lipschitz constant of

M EpCE |v(p)| over the domain H,,M AE'.

(ii) Let a > 0 and - > 0 be given. There exists a small enough 0 > 0 such that for any

Ix - yll < 0 if x E Xa, then y E Xae-

Lipschitz continuity follows from the fact that mixed extensions are multilinear func-

tions (3.7), with bounded domains. The proof of the second part immediately follows from

the Lipschitz continuity of mixed extensions of payoff functions and the definition of ap-

proximate equilibria (3.8). Note that the second part implies that for any e' > 0, there

exists a small enough neighborhood of equilibria that is contained in the e'-equilibrium set

of the game.

We next study the continuity properties of the approximate equilibrium mapping. We

first provide the relevant definitions (see Berge (1963); Fudenberg and Tirole (1991)).

Definition 3.5.1 (Upper Semicontinuous Function). A function g : X -+ Y C R is upper

semicontinuous at x., if, for each e > 0 there exists a neighborhood U of x, such that g(x) <

g(x.) + e for all x G U . We say g is upper semicontinuous, if it is upper semicontinuous

at every point in its domain.

Alternatively, g is upper semicontinuous if lim sup g(xn) < g(x.) for every x, in

its domain.

Definition 3.5.2 (Upper Semicontinuous Correspondence). A correspondence g : X -

Y is upper semicontinuous at x., if for any open neighborhood V of g(x.) there exists a

neighborhood U of x. such that g(x) C V for all x E U. We say g is upper semicontinuous,
if it is upper semicontinuous at every point in its domain and g(x) is a compact set for each

x E X.

Alternatively, when Y is compact, g is upper semicontinuous if its graph is closed, i.e.,
the set {(x, y)|x C X, y c g(x)} is closed.

We next establish upper semicontinuity of the approximate equilibrium mapping.1 1

" Here we fix the game, and discuss upper semicontinuity with respect to the E parameter characterizing
the e-equilibrium set. We note that this is different than the common results in the literature which discuss
upper semicontinuity of the equilibrium set with respect to changes in the utility functions of the underlying
game (see Fudenberg and Tirole (1991)).
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Lemma 3.5.2. (i) Let v : Hm y A Em -> R be an upper semicontinuous function. The

correspondence g : R :m ({M AE m such that g(v) = {xkv(x) > -v} is upper

semicontinuous.

(ii) Let g : R H-:3 ] { AE m be the correspondence such that g(co) = Xa. This correspon-

dence is upper semicontinuous.

Upper semicontinuity of the approximate equilibrium mapping implies that for any given

neighborhood of the e-equilibrium set, there exists an C' > e such that c'-equilibrium set

is contained in this neighborhood. In particular, this implies that every neighborhood of

equilibria of the game contains an c'-equilibrium set for some e' > 0. Hence, if disjoint

neighborhoods of equilibria are chosen (assuming there are finitely many equilibria), this

implies that there exists some E' > 0, such that the c-equilibrium set is contained in

disjoint neighborhoods of equilibria. In the next section, we use this observation to establish

convergence of fictitious play to small neighborhoods of equilibria of near-potential games.

3.5.2 Discrete-Time Fictitious Play

Fictitious play is a classical update rule studied in the learning in games literature. In this

section, we consider the fictitious play dynamics, proposed in Brown (1951), and explain

how the limiting behavior of this dynamical process can be characterized in near-potential

games. In particular, we show that the empirical frequencies of fictitious play converge

to a set which can be characterized in terms of the E-equilibrium set of the game, and

the level sets of the potential function of a close potential game. We also establish that

for games sufficiently close to a potential game, the empirical frequencies of fictitious play

converge to a neighborhood of the (mixed) equilibrium set. Moreover, the size of this

neighborhood depends on the distance of the original game from a nearby potential game.

This generalizes the result of Monderer and Shapley (1996a), on convergence of empirical

frequencies to mixed Nash equilibria in potential games.

In this chapter, we only consider the discrete-time version of fictitious play, i.e., the

update process starts at a given strategy profile at time t = 0, and players can update their

strategies at discrete time instants t C {1, 2,... }. Throughout this subsection we denote

the strategy used by player m at time instant t by p', and we denote by 1(p' = pm ) the

indicator function which equals to 1 if pm = pm , and 0 otherwise. A formal definition of

discrete-time fictitious play dynamics is given next.

Definition 3.5.3 (Discrete-Time Fictitious Play). Let yt(q m ) ET-> 1(p7n = qm )

denote the empirical frequency that player m uses strategy qm from time instant 0 to time

instant T - 1, and p-m denote the collection of empirical frequencies of all players but m.

A game play, where at each time instant t, every player m, chooses a strategy p' such that

pt C arg max um (qm ,- m )
qmCEm
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is referred to as discrete-time fictitious play. That is, fictitious play dynamics is the update

process, where each player chooses its best response to the empirical frequencies of the actions

of other players.

We refer to p' as the distribution of empirical frequencies of player m's strategies

at time t. Note that p4"0 can be thought of as vector with length |E', whose entries are

indexed by strategies of player m, i.e., y4'(p') denotes the entry of the vector corresponding

to the empirical frequency player m uses strategy p m with. Similarly, we define the joint

empirical frequency distribution of all players as it = {p"}mcM. Note that pm"? c AE",

i.e., empirical frequency distributions are mixed strategies, and similarly pit E HmeM AE m .

Observe that the evolution of this empirical frequency distribution can be captured by

the following equation:

14+1= t +1 t + 1 t, (3.9)t t +1

where It = {It"m}mM, and It' is a vector which has the same size as p,' and its entry

corresponding to strategy p' is given by It'(p"') = 1(p" = p m ). Rearranging the terms in

(3.9), and observing that It, pt E HmeM AE" are vectors with entries in [0, 1] we conclude

Ipt+1 -- pt|t + -1|t t|| = 0 -, (3.10)

where O(.) stands for the big-O notation, i.e., f(x) = O(g(x)), implies that there exists

some xo and a constant c such that If(x)| I cjg(x)| for all x> xo.

We start analyzing discrete-time fictitious play in near-potential games, by first focusing

on the change in the value of the potential function along the fictitious play updates in

the original game. In particular, we show that in near-potential games if the empirical

frequencies are outside some E-equilibrium set, then the potential of the close potential game

(evaluated at the empirical frequency distribution) increases by discrete-time fictitious play

updates.12

Lemma 3.5.3. Consider a game g and let $ be a close potential game such that d(g, O) < 6.
Denote the potential function of $ by $. Assume that in g players update their strategies

according to discrete-time fictitious play dynamics, and at some time instant T > 0, the

empirical frequency distribution pT is outside an E-equilibrium set of g. Then,

e - M6

#(p+1 -(p ) T + 1 T2-+0 (T /

Proof. Consider the mixed extension of the potential function #(x) = EpcE #(P) HrmeM Xm (pt ),
where x = {x'}m and x'(p') denotes the probability player m plays strategy p m . The

12 Our approach here is similar to the one used in Monderer and Shapley (1996a) to analyze discrete-time
fictitious play in potential games.
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expression for #(x) implies that Taylor expansion of # around PT satisfies

#( pT+1) = #pT) -|- (pi+1(Pm ) - p m(P ,)#m(P y ±-- O( IApT+1 - pT| 2)
mCM p

m 
C 

E m

Observing from (3.9) that yt+1-ypt = (It-pt), and noting from (3.10) that ||pt+1-tt| =

0 (1) the above equality can be rewritten as

(pT+1) = #(p1T) ± T P 1 ) - PTT (Pf))q(P m  + 0
mEpCmT + 1 T

mEcM pmE Em )

Rearranging the terms, and noting that EpmEm PT(P M )0(Pm , p i

follows that

#) (pT1) =4#(pT)± -l 1 T i1i+
mEM mE

=(PT)+T 1 (O(PT, PT M ) 4)QPm - M )) ±0 ()
mCM

Since d(g, O) <6 , the above equality and the definition of MPD imply

#(pT+1) > #(AT) + T 1 E (u" (py, pL") u"(pp, p," ) 6) ±+ Y2) (3.11)
mM

By definition of the fictitious play dynamics, every player m plays its best response to pg",

therefore um (pm, p,"m) - um (pm, p") > 0 for all m. Additionally, if pIT is outside the

e-equilibrium set, as in the statement of the lemma, then it follows that u m (pM, p t-") -
U" (pm, p") > E for at least one player. Therefore, (3.11) implies

$(pT+1) > (PT ) + 6 - M6

hence, the claim follows. LI

The above theorem implies that if AT is not in the e-equilibrium set for some E > M6,
and T sufficiently large, then the potential evaluated at empirical frequencies increases when

players update their strategies. Since the mixed extension of the potential is a bounded

function, the potential cannot increase unboundedly, and this observation suggests that the

E-equilibrium set is eventually reached by the empirical frequency distribution. On the other

hand, at a later time instant PT can still leave this equilibrium set, and before it does so the

potential cannot be lower than the lowest potential in this set (since PT itself belongs to this

set). Moreover, after AT leaves the e-equilibrium set the potential keeps increasing. Thus,
the empirical frequencies are contained in the set of mixed strategy profiles, which have
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potential at least as large as the minimum potential in this approximate equilibrium set.
We next make this intuition precise, and characterize the set of limiting mixed strategies

for fictitious play in near-potential games. We adopt the following convergence notion:

we say that empirical frequencies of fictitious play converge to a set S C H~mcM AEm, if

inf,.Cs ||Ipt - x|| 1-0 as t -> 00).

Theorem 3.5.1. Consider a game g and let $ be a close potential game such that d(g,$ ) <
J. Denote the potential function of g by g. Assume that in g players update their strategies

according to discrete-time fictitious play dynamics, and let X, denote the a-equilibrium set

of g. For any e > 0, there exists a time instant T, > 0 such that for all t > T,

pt ccEc A x C 1 AEm (x) > min #(y)
LmEM YCXM6+e

Proof. Let c' be such that e > e' > 0. It can be seen from the definition of CE that

XM6+e C Xpjs+ C C.. We prove the claim in two steps: (i) We first show that in this

update process XMj+±e is visited infinitely often by pt, i.e., for all T', there exists t > T'

such that pt C XM6+E', (ii) We prove that there exists a T" such that if pt C C for some

t > T", then for all t' > t we have pt' C C,. Thus, the second step guarantees that if CE

is visited at a sufficiently later time instant, then pt remains in CE. Since XM6+E c CE the

first step ensures that such a time instant exists, and the claim in the theorem immediately

follows from (ii). Moreover, this time instant corresponds to T in the theorem statement.

Proof of both steps rely on the following simple observation: Lemma 3.5.3 implies that

there exists a large enough T, such that if the empirical frequencies do not belong to XM6+E'

at a time instant t > T, then # increases:

OA) MJ + e' - M ( 1 (3'2
#(pt+1) -4(pt) >M ± MS O _ > > 0. (3.12)(t + 1) t22(t + 1)

We prove (i) by contradiction. Assume that there exists a T' such that pt V XMj+E' for

t > T', and let Tm = max{T, T'}. Then, (3.12) holds for all t {Tm+1,... }, and summing

both sides of this inequality over this set we obtain

00 E

limsup g(pt+1)-(pTm+1) E-
t-400o t=TmI+1 2(t + 1)'

Since the mixed extension of the potential is a bounded function, it follows that the left

hand side of the above inequality is bounded, but the right hand side grows unboundedly.

Hence, we reach a contradiction, and (i) follows.

Lemma 3.5.1 (ii) implies that there exists some 0 > 0 such that if a strategy profile x

is an (MS + e')-equilibrium, then any strategy profile y that satisfies Ix - yll < 0 is an

(M6 + e)-equilibrium (recall that e > E' > 0). Since pt+1 ~ pt|| = O(1/t) by (3.10), this
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implies that there exists some T" > T, such that for all t > T" if tt E XM+e', then we

have

Pt+1 E X.A6+E. (3.13)

Let pt e C, for some time instant t > T". If pt E XM6+', then by (3.13) pt+1 E

XM6+e c C,. If, on the other hand, pt E C, - XM+E', then by (3.12) and the definition of

C, we have

#(pt+i) > #(pt) > min #(y), (3.14)
yCXM6+e

and hence t+1 C C. Thus, we have established that there exists some T" such that if

pt E CE for some t > T", then yt+1 E C, and hence (ii) follows. El

The above theorem establishes that after finite time pt is contained in the set CE for

any e > 0. Corollary 3.5.1, establishes that in the limit this result can be strengthened: as

t -- 00, pt converges to a set, which is a subset of CE for every F > 0. The proof can be

found in Section 3.7.

Corollary 3.5.1. The empirical frequencies of discrete-time fictitious play converge to

C A x E 1 AEm #(x) > min #(y)

This result suggests that in near-potential games, the empirical frequencies of fictitious

play converge to a set where the potential is at least as large as the minimum potential

in an approximate equilibrium set. For exact potential games, it is known that the em-

pirical frequencies converge to a Nash equilibrium (Monderer and Shapley, 1996a). It can

be seen from Definition 2.2.1 that in potential games, maximizers of the potential function

are equilibria of the game. Thus, in potential games with a unique equilibrium the equi-

librium is the unique maximizer of the potential function. Hence, for such games, we have

6 = 0, minyEXM6 0(y) = maxxc~im AEm #(x), and Corollary 3.5.1 implies that empirical

frequencies of fictitious play converge to the unique equilibrium of the game, recovering the

convergence result of Monderer and Shapley (1996a). However, when there are multiple

equilibria Corollary 3.5.1 suggests that empirical frequencies converge to the set of mixed

strategy profiles that have potential weakly larger than the minimum potential attained

by the equilibria. While this set contains equilibria, it may contain a continuum of other

mixed strategy profiles. This suggests that in games with multiple equilibria our result may

provide a loose characterization of the limiting behavior of fictitious play dynamics.

We next show that by exploiting the properties of mixed approximate equilibrium sets,
it is possible to obtain a stronger result. Before we present our result, we discuss a feature of

mixed equilibrium sets which will be key in our analysis: For small e, the e-equilibrium set

is contained in a small neighborhood of equilibria (this statement follows from Lemma 3.5.2

(ii) by considering the upper semicontinuity of the approximate equilibrium correspondence
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g(a) at a = 0). This property is illustrated in Example 3.5.1.

Example 3.5.1 (Mixed equilibrium set of Battle of the Sexes:). Consider the two-player
battle of the sexes (BoS) game: Each player has two possible actions {O, F}, and the payoffs
of players are as given in Table 3.3. This game has three equilibria: (i) both players use

0 F

O 3, 2 0, 0
F 0, 0 2, 3

Table 3.3: Payoffs in BoS.

0, (ii) Both players use F, (iii) Row player uses 0 with probability 0.6, and column player
uses 0 with probability 0.4. Note that since this is a game where each player has only
two strategies, the probability of using strategy 0, in the third case uniquely identifies the
corresponding mixed equilibrium. For different values of E, the set of c-equilibria of this
game is shown in Figure 3-4. It follows that the set of e-equilibria is contained in disjoint
neighborhoods of equilibria for small values of e.

It was established in Lemma 3.5.3 that the potential function of a nearby potential
game (with MPD 6 to the original game), evaluated at the empirical frequency distribution,
increases when this distribution is outside the M6-equilibrium set of the original game
(where M is the number of players). If 6 is sufficiently small, then the M6-equilibria of the
game will be contained in a small neighborhood of the equilibria, as illustrated above and
shown in Lemma 3.5.2 (ii). Thus, for sufficiently small 6, it is possible to establish that the
potential of a close potential game increases outside a small neighborhood of the equilibria
of the game. In Theorem 3.5.2, we use this observation to show that for sufficiently small
6 the empirical frequencies of fictitious play dynamics converge to a neighborhood of an
equilibrium. We state the theorem under the assumption that the original game has finitely
many equilibria. This assumption generically holds, i.e., for any game a (nondegenerate)

random perturbation of payoffs will lead to such a game with probability one (see Fudenberg

and Tirole (1991)).

When stating our result, we make use of the Lipschitz continuity of the mixed extension

of the potential function, as established in Lemma 3.5.1. We also make use of a function
f : R+ --+ R+, which quantifies the size of the neighborhood of equilibria which contains
the approximate equilibrium sets of games. For a game g with 1 equilibria, denoted by

x 1 , ... , x1 , this function can be formally defined as follows:

f(a) = max min ||x-xkl|, (3.15)
xEXa kE{,..l

for all a C R+. Note that minkE{1,. I x - xk|I is continuous in x, since it is minimum

of finitely many continuous functions. Moreover, Xa is a compact set, since c-equilibria
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(a) 0.2-equilibrium set.
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Probability the row player uses strategy 0

(b) 0.3-equilibrium set.

0.2 0.4 0.6 0.8
Probability the row player uses strategy 0

(c) 0.4-equilibrium set.

Figure 3-4: Approximate equilibrium sets in BoS are contained
of equilibria for small e.

are defined by finitely many inequality constraints of the form (3.8). Therefore, in (3.15)
maximum is achieved and f is well-defined for all a > 0.

Additionally, we define two variables, (a, d), which characterize the approximate equi-
librium sets of the underlying game G: (i) the minimum pairwise distance between the
equilibria is denoted by d A minigjI|xi - x|| (ii) a A sup{alf(a) < d/4} > 0, i.e., for every
a < a, the a-equilibrium is at most d/4 distant from an equilibrium of g. Next, using these
definitions, we state an improved convergence result for fictitious play in near-potential
games.

Theorem 3.5.2. Consider a game 9 and let $ be a close potential game such that d(g, $) <
6. Denote the potential function of N by p, and the Lipschitz constant of the mixed extension
of $ by L. Assume that 9 has finitely many equilibria, and in G players update their
strategies according to discrete-time fictitious play dynamics.

(i) There exists some S > 0, and i > 0 satisfying

MS + < a, and f(MS + 6 ) < (a-M)d
24LM
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(ii) Consider any S > 0, and F > 0 satisfying (i). Provided that 3 > 3 > 0, it can be
established that the empirical frequencies of fictitious play converge to

( AfM )Mx -x± < f(M5 +1 e), for some equilibrium Xk (3.16)

for any e, such that i ;> e > 0.

The proof of this theorem can be found in Section 3.7.13

The proof has three main steps illustrated in Figures 3-5 and 3-6. As explained earlier,
for small 3 and e, the M6 + c-equilibrium set of the game is contained in disjoint neigh-

borhoods of the equilibria of the game. Lemma 3.5.3 implies that potential evaluated at tt
increases outside this approximate equilibrium set with strategy updates. In the proof, we

first quantify the increase in the potential, when pt leaves this approximate equilibrium set

and returns back to it at a later time instant (see Figure 3-5a). Then, using this increase

condition we show that for sufficiently large t, pt can visit the approximate equilibrium set

infinitely often only around one equilibrium, say xk' (see Figure 3-5b). This holds since, the

increase condition guarantees that the potential increases significantly when pt leaves the

neighborhood of an equilibrium xk, and reaches to that of xkl. Finally, using the increase

condition one more time, we establish that if after time T, pt visits the approximate equi-

librium set only in the neighborhood of xk', we can construct a neighborhood of xk', which

contains pt for all t > T (see Figure 3-6). In equation (3.16) of Theorem 3.5.2, we provide

bounds on this neighborhood, as a function of 6 (that characterizes the "closeness" of the

original game to a potential game), and f (that captures how the size of the E-equilibrium

sets increase, as a function of c).
Observe that if 3 = 0, i.e., the original game is a potential game, then f(M) = 0,

and Theorem 3.5.2 implies that empirical frequencies of fictitious play converge to the f(e)-

neighborhood of equilibria for any e such that i ;> e > 0. Thus, choosing e arbitrarily small,
and observing that lims-o f(x) = 0, our result implies that in potential games, empirical

frequencies converge to the set of Nash equilibria. Hence, as a special case of Theorem 3.5.2,
we obtain the convergence result of Monderer and Shapley (1996a).

Assume that 6 = 0 and a small e < K is given. If 3 is sufficiently small then f (M3)/e ~ 0,
since limx-o f(x) = 0. Consequently, 4f(M)ML + f(M6 + e) is small, and Theorem 3.5.2

establishes convergence of empirical frequencies to a small neighborhood of equilibria. Thus,
we conclude that for games that are close to potential games, i.e., for 3 < 1, Theorem 3.5.2

establishes convergence of empirical frequencies to a small neighborhood of equilibria.

Corollary 3.5.1 and Theorem 3.5.2 give a systematic framework for approximately char-

acterizing the limiting behavior of fictitious play in arbitrary games. Moreover, such a

1
3 A strand of the literature characterizes the limiting behavior of discrete time fictitious play by exploiting

its relation to a continuous time update rule (see for instance Benaim et al. (2005)). In our proof, we instead
follow a direct approach, which exploits Lemma 3.5.3, and provides a quantitative characterization of the
limiting behavior of fictitious play dynamics for near-potential games.
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Xk

V 

k

(a) If empirical frequencies leave an ap-

proximate equilibrium set at time t, and

return back to it at t', then 4(pt) >

0(pt).

Xk'

- - Xk

(b) For sufficiently large t, pt visits the
component of the approximate equilib-
rium set contained in the neighborhood
of a single equilibrium.

Figure 3-5: For small 6 and F, M6 - e-equilibrium set (enclosed by solid lines around
equilibria Xk, and xk) is contained in disjoint neighborhoods of equilibria. If the empirical
frequency distribution, pt, is outside this approximate equilibrium set, then the potential
increases with each strategy update. Assume that empirical frequency distribution leaves
an approximate equilibrium set (at time t) and returns back to it at a later time instant
(t' > t). We first quantify the resulting increase in the potential (left). If pt travels from
the component of the approximate equilibrium set in the neighborhood of equilibrium xk to
that in the neighborhood of equilibrium xk', then the increase in the potential is significant,
and consequently pt cannot visit the approximate equilibrium set in the neighborhood of
equilibrium xk at a later time instant (right).

Figure 3-6: If after time T, pt only visits the approximate equilibrium set in the neighbor-
hood of a single equilibrium XkI, then we can establish that pt never leaves a neighborhood
of this equilibrium for t > T. The size of this neighborhood is denoted by r in the figure
and can be expressed as in Theorem 3.5.2.
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characterization can be obtained even in settings where the underlying game does not share
similar ordinal properties to potential games. Following a similar argument as in the case of
logit response dynamics, our result also allows for characterizing robustness of convergence
results for potential games to payoff perturbations.

3.6 Summary

In this chapter, we presented a framework for studying the limiting behavior of adaptive
learning dynamics in finite strategic form games by exploiting their relation to nearby poten-

tial games. We restricted our attention to better/best response, logit response and fictitious
play dynamics. We showed that for near-potential games trajectories of better/best response

dynamics converge to E-equilibrium sets, where E depends on closeness to a potential game.

We studied the stochastically stable strategy profiles of logit response dynamics and proved

that they are contained in the set of strategy profiles that approximately maximize the
potential function of a nearby potential game. In the case of fictitious play we focused on
the empirical frequencies of players' actions, and established that they converge to a small

neighborhood of equilibria in near-potential games. Our results suggest that games that are
close to a potential game inherit the dynamical properties (such as convergence to approx-

imate equilibrium sets) of potential games. Additionally, since a close potential game to a
given game can be found by using the decomposition approach of Chapter 2, or solving a
convex optimization problem, as discussed in Section 3.2, this enables us to characterize the

dynamical properties of strategic form games by first identifying a nearby potential game

to this game, and then studying the dynamical properties of the nearby potential game.

3.7 Appendix: Proofs of Section 3.5

Proof of Corollary 3.5.1: Let En = M6 + - for n E Z+. Observe that since the mixed

extension of the potential function is continuous, C and CE are closed sets for any n E Z+.
Since C is closed minyec ljx - yll is well-defined for any x E HmEM AE m .

We claim that for any 6 > 0 the set

so= XE AEm min||x-yll<6 , (3.17)
mEM yEC

is such that CEn C So for some n. Note that if this claim holds, then it follows from

Theorem 3.5.1 that there exists some To such that for all t > To we have Pt C So. Using

the definition of So given in (3.17), this implies

limsup min| x - t|| < 0. (3.18)
t-oo xEC
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Moreover, since 0 > 0 is arbitrary, and ||x - pt|| > 0, using (3.18) we obtain

lim min||x - ptII = 0.
t-*oo xEC

Thus, if we prove C,, C So for some n, it follows that pt converges to C.

In order to prove C,, c So we first obtain a certificate which can be used to guarantee

that a mixed strategy profile belongs to So. Then, we show that for large enough n any

z C Ce, satisfies this certificate, and hence belongs to So.

It follows from Lemma 3.5.2 (i) (by setting v = # and v - minycxM6 0(y)) and

definition of upper semicontinuity (Definition 3.5.2) that there exists -y > 0 such that

0 neighborhood of {xl#(x) > minyExM3 #(y)} contains {xJ#(x) > minycxM6 0(y) - - }.

Hence, for any z satisfying #(z) > minycxM, #(y) - -y there exists some x satisfying #(x) >
minyEXM3 0(y) and Ilx - zfl < 0. Note that the definition of So implies that z for which

there exists such x belongs to So. Thus, if #(z) > minycx, 0(y) - -y it follows that z E So.

We next show that for large enough n, any z which belongs to Cn, satisfies the above

certificate and hence belongs to So. Let L denote the Lipschitz constant for the mixed

extension of 4, as given in Lemma 3.5.1 (i), and define 0' = -y/L > 0. Lemma 3.5.2 (ii) and

Definition 3.5.2 imply that for large enough n, XM6+1 is contained in 0' neighborhood of

XM6, i.e., if y C XM 6+1 then there exists x C XM6 such that ||x - yll < 0'. Moreover, by

Lemma 3.5.1 (i), it follows that #(y) ;> (x) - LO' = #(x) - -y. Thus, we conclude that

there exists large enough n such that

min #(y) > min #(y) - 7. (3.19)
YEXM6+1/n YEXM3

Let z E C , for some n for which (3.19) holds. By definition of C, it follows that

#(z) > minYEXM -+l/ 0(y). Thus, (3.19) implies that #(z) > minycxMo #(y) - y. However,
as argued before such z belong to So. Hence, we have established that for large enough n,
if z C Ce, then z C So. Therefore, the claim follows. 0

Proof of Theorem 3.5.2: From the definition of f, it follows that the union of closed

balls of radius f(a), centered at equilibria, contain a-equilibrium set of the game. Thus,
intuitively, f(a) captures the size of a closed neighborhood of equilibria, which contains

a-equilibria of the underlying game. This is illustrated in Figure 3-7.

As stated in the theorem statement, we define the minimum pairwise distance between

the equilibria as d ^- minij I||xi - xyll, and a = sup{alf(a) < d/4}. Lemma 3.5.2 (ii)
implies (using upper semicontinuity at 0) that a > 0 such that f(a) < d/4 exists and hence

a > 0. Since d is defined as the minimum pairwise distance between the equilibria, it follows
that a-equilibria of the game are contained in disjoint f(a) < d/4 neighborhoods around

equilibria of the game (for a < a), i.e., if x C a, then ||x - xkI < f(a) for exactly one

equilibrium Xk. Moreover, for ai < a, since X,, c Xa, it follows that ai-equilibria of the

107



Figure 3-7: Consider a game with a unique equilibrium xk. The a-equilibrium set of the
game (enclosed by a solid line around xk) is contained in the f(a) neighborhood of this
equilibrium.

game are contained in disjoint neighborhoods of equilibria.

We prove the theorem in 5 steps summarized below. First two steps explore the prop-

erties of function f, and establish existence of S and i presented in the theorem statement.

Last three steps are the main steps of the proof, where we establish convergence of fictitious

play to a neighborhood of equilibria.

" Step 1: We first show that f is (i) weakly increasing, (ii) upper semicontinuous, and

it satisfies (iii) f(0) = 0, (iv) f(x) -> 0 as x -> 0.

" Step 2: We show that there exists some S > 0 and K > 0 such that the following

inequalities hold:

MS + i < a, (3.20)

and

f (MS + K)< .a-M) (3.21)24LM

We will prove the statement of the theorem assuming that 0 < 5 < 3, and establish

convergence to the set in (3.16), for any E such that 0 < c < i. As can be seen from

the definition of a and f (see (3.15)), the first inequality guarantees that MS + 7-
equilibrium set is contained in disjoint neighborhoods of equilibria, and the second

one guarantees that these neighborhoods are small. In Step 4, we will exploit this

observation, and use the inequalities in (3.20) and (3.21) to establish that the em-

pirical frequency distribution pt can visit the component of XA6+j contained in the

neighborhood of only a single equilibrium infinitely often.

" Step 3: Let ei, e2 be such that 62 > 61 > 0. Assume that (i) at some time instant T,
pt is contained in XM6+i, (ii) at time instants T and T 2 (such that T2 > T > T) Pt

leaves XM6+ei and XM6+ 2 respectively and (iii) at time instants T2 and T1' (such that
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Tj > T2 > T2 ) it returns back to XM3 6 2 and XMj+1 respectively. In Figure 3-8, the

path pt follows between T 1 and Tj is illustrated.

In this step, we provide a lower bound on #(prT) - #(pIT), i.e., the increase in the

potential when pt follows such a path. This lower bound holds for any E1 and 62

provided that E2 > Ei > 0. We use this result by choosing different values for Ei and

62 in Steps 4 and 5.

Our lower bound in Step 3 is a function of E2. In addition to this lower bound, in Steps

4 and 5, we use the M6 + Ei equilibrium set and Lipschitz continuity of the potential

to provide an upper bound on #(prT) - #(pT) as a function of E1. Thus, properties

of M6 + 61 and M6 + E2 equilibrium sets are exploited for obtaining upper and lower

bounds on #(prg) - #(Ti) respectively. We establish convergence of fictitious play

updates to a neighborhood of an equilibrium by using these bounds together in Steps

4 and 5. We emphasize that allowing for two different approximate equilibrium sets

leads to better bounds on #(prg) - #(pT), and a more informative characterization

of the limiting behavior of fictitious play, as opposed to using a single approximate

equilibrium set, i.e., setting E1 = E2-

Step 4: Our objective in this step is to establish that fictitious play can visit the

component of an approximate equilibrium set contained in the neighborhood of only

one equilibrium infinitely often.

Let Ei = e and 62 = a - MS. By (3.20) we have 61 < E2, and using the definition

of a we establish that XM6+ci and XMJ+ 2 are contained in disjoint neighborhoods

of equilibria. Assume that pt leaves the components of XM6+61 and XM6+ 2 in the

neighborhood of equilibrium xk, and reaches to a similar neighborhood around equi-

librium xk'. Using Step 3 we establish a lower bound on the increase in the potential

when pt follows such a trajectory. We also provide an upper bound, using the Lips-

chitz continuity of the potential and inequalities (3.20) and (3.21). Comparing these

bounds, we establish that the maximum potential in the neighborhood of equilibrium

Xk is lower than the minimum potential in the neighborhood of Xk'. Since, Xk and Xk'

are arbitrary, this observation implies that pt cannot visit the component of XM6+ei

contained in the neighborhood of Xk at a later time instant. Hence, it follows that it

visits only one such component infinitely often.

o Step 5: In this step we show that pt converges to the approximate equilibrium set

given in the theorem statement.

Let Ei, E2 be such that 0 < Ei < E2 < . We consider the equilibrium, whose neighbor-

hood is visited infinitely often (as obtained in Step 4), and a trajectory of pt which

leaves the components of XM6+i and XMJ+e 2 contained in the neighborhood of this

equilibrium and returns back to these sets at a later time instant (as illustrated in
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Figure 3-8). As in Step 4, Lipschitz continuity of # is used to obtain an upper bound
on the increase in the potential between the end points of this trajectory. Together

with the lower bound obtained in Step 3, this provides a bound on how far pUt can
get from the component of XM6+, 2 contained in this neighborhood. Choosing ei ar-
bitrarily small (for a fixed 62) we obtain the tightest such bound. Using this result,
we quantify how far pt can get from the equilibria of the game (after sufficient time)
and the theorem follows.

Next we prove each of these steps.

Step 1: By definition X, 1 c X, for any ai < a. Since the feasible set of the maximization

problem in (3.15) is given by XA, this implies that f (ai) < f (a), i.e., f is a weakly increasing

function of its argument. Note that the feasible set of the maximization problem in (3.15)
can be given by the correspondence g(a) = Xa, which is upper semi continuous in a as
shown in Lemma 3.5.2 (ii). Since as a function of x, minkC{1,...,l} x - Xk Is continuous it
follows from Berge's maximum theorem (see Berge (1963)) that for a > 0, f(a) is an upper
semicontinuous function.

The set Xo corresponds to the set of equilibria of the game, hence Xo = {x 1,... , x,}.

Thus, the definition of f implies that f(0) = 0. Moreover, upper semicontinuity of f implies

that for any 6 > 0, there exists some neighborhood V of 0, such that f(x) < E for all x C V.

Since, f(x) > 0 by definition, this implies that limx-o f(x) exists and equals to 0.

Step 2: Let S > 0 be small enough such that MS < a/2. Since lim-o ff(x) = 0, it follows

that for sufficiently small S and K, we obtain f(MS + K) < 48 < (a- )d and MS+ < a.48M 24LM ad

Step 3: Let Ei, E2 be such that 0 < 6i < E2. Assume T > 0 is large enough so that for

t > T,

0(pt+ - ?(pt) > 3(+1) if pt ( XM6+Ei, and similarly
3(t+1)(3.22)

( )- (pt) 3(t+1) if Pt XM6+E2 -

Existence of T satisfying these inequalities follows from Lemma 3.5.3, since for large T and

t > T, this lemma implies #([t+1) #(tt) > (+1) + O (1) > +1 if pUt V AM6+i, and

similarly if pt V XM6+e 2

Since #(pt) increases outside M6 + 6i-equilibrium set for t > T, as (3.22) suggests,
it follows that pt visits XM6+,1 (and XM6+e 2 since XM6+i C XM6+6 2 ) infinitely often.

Otherwise #(pt) increases unboundedly, and we reach a contradiction since mixed extension

of the potential is a bounded function.

Assume that at some time after T, pUt leaves XM6+,1 and XM6+E2 and returns back to
XM6+i at a later time instant. In this step, we quantify how much the potential increases
when it follows such a path. We first define time instants T 1 , T 2 , Tj, and T2 satisfying

T < T1 < T 2 < T2 < T1, as follows:
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" Ti is a time instant when it leaves XM+ 61 , i.e., pT1 -1 C XMj+i and pt ( XMj+i for

T1 < t < T11.

" T2 is a time instant when pt leaves XM6+ 2 , i.e., pT2 -1 C XM6+12 and pt ( XMJ+ 6 2 for

T2 < t < T2.

" T2 is the first time instant after T 2 when pt returns back to XMj+, 2 , i.e., prT-1

XM6+e2 and prTI G XMJ+ 2 -

" T1' is the first time instant after T when pUt returns back to XM6+,i, i.e., prTj-1 

XM+ 6 1 and pT j E XM61 i.

The definitions are illustrated in Figure 3-8. We next provide a lower bound on the quantity

#(pT) - 4(IT). Note that if there are multiple time instants between T and Tj for which

yt leaves XM6+ 2 (as in the figure), any of these time instants can be chosen as T 2 to obtain

a lower bound.

Figure 3-8: Trajectory of pt (initialized at the left end of
and T2 correspond to the time instants yt leaves XM6+i
T2 correspond to the time instants pt enters XM6+i and

the dashed line) is illustrated. T
and XM6+E 2 respectively. TI, and

XMJ+ 2 respectively.

By definition, for t such that T 2 < t < T2, we have pt V XM6+ 2 , and for t such that

T 1 < t < T 2 or T2 < t < T, we have pt V XM+ 6 1 . Thus, it follows from (3.22) that

( - #( 3t) +
3(t +1)

for T 2 < t < T2,1

and consequently,

T2-1 T2 -1 2C
45([tT ) - u(T2 ) = #(At+1) - #(pt) 21 .

t=T2 t=T2 3(t + 1)
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Similarly, since it V XM6+ei for t such that Ti < t < T 2 or T2 < t < T, using (3.22) we
establish

T-1 Tj-i: T&L±1 - I~'t 21  
(3.25#("T) -(PT;) 3(t± 1)' (3.25)

t=T2 t=T2

T2 -1 T2 -1 2

#(pT2) - (P1)= (t+1) - 4(pt) > 1:3(t +1). (.6
t=T1 t=T1

Since #(1T;,) - $( pT 1 ) -((pT ) - 'T + (#QpT) - #(pT 2 )) ± (# AT2 ) - I(T1)), it

follows from (3.24), (3.25) and (3.26) that

#$(pLTT;) - #(pT1 ) > 3 1 (3.27)
t=T2

Step 4: Let 62 = a - M6, and 61 = E. By definition of F and 6 (see Step 2), it follows

that 62 > 61 > 0. Assume that 6 < S. Since a = MS + E2 > M6 + E2 > MJ + e1 we obtain

XM6+ei C XM6+E2 C Xa. By definition of a, it follows that components of XM6+ei and

XM6+12 are also contained in disjoint neighborhoods of equilibria. Hence, the definition of

f suggests that if x E XvI+Ei then ||Xk - x| I f(M6 + E1) (similarly if x E XM6+e 2 , then

IXk - x|| I f (M6 + 62)) for exactly one equilibrium Xk.

Let T 1 , T2 , Tj and T2 be defined as in Step 3. In this step, by obtaining an upper bound

on #(pT) - #([T 1) and refining the lower bound obtained in Step 3 for given values of Ei
and 62, we prove that after sufficient time pt can visit the component of XM6+±i in the

neighborhood of a single equilibrium.

Assume that pt leaves the component of the M6 + ci-equilibrium set in the neighborhood

of equilibrium xk, and it reaches to another component in the neighborhood of equilibrium

xk'. Since, by definition pT1-1, pT E XM6+E1, and pT2 -1, pTt E XM6+ 2 , it follows that

[T and ptT2 -1 belong to neighborhoods of equilibrium xk, whereas, p1 T' and IT, belong

to neighborhoods of Xkf, i.e.,

||Xk - pT1-1|| < f(M6 + 61) and ||xk - pT2-1|| 5 f (M6 + E2), whereas, (3.28)

||xk' - pT| I< f (M 6 + Ei) and |x Jk' -PT| 115 f (M6 + C2). (3.29)

By definition of d we have Ixk -xkI| '> d. Since a > M6+e 2 , it follows that f(M6+E 2 ) <
d/4, and hence the second inequalities in (3.28) and (3.29) imply

d
PT2 - pT2 -1 > 2. (3.30)

Using this inequality, we next refine the lower bound on #(pTj) - (pT 1) obtained in

Step 3. By (3.9), with an update at time t, the empirical frequency distribution can change

112



by at most

1|pt+1 - pd = t +1 lipt - ItH + I (IIpt||+|It||) t+{1, (3.31)

where the last inequality follows from the fact that pt = {p}mEM, and It = {I}mEM, and

pm11, 11ItII < 1, since It, pm E AE m . Hence, if T2 is sufficiently large, then H|pT2 - pT2--1I

is small enough so that (3.30) implies H|pTr - pT2 || > 4. Using this together with (3.31), we

conclude

T2 -1 2M T2-1 T2- 1 2 d(.22M1 > ipt+ - pt|> 11 | At+1 -p r T > . (3.3
Ldt+ 1> EZ 1 -t1 'At+' >~t- ~i T 2

t=T2 t=T2 t=T 2

Thus, the lower bound on 4(pLT,) - #(pTi) provided in (3.27) takes the following form:

4) 2 31 12 ;> .A (3.33)0q1GIT) 0bOAT) >_1 3(t±+1) - 6M'
t=T2

Next we provide an upper bound on 4(prp ) - 4(pT), using Lipschitz continuity of the po-

tential and the properties of the MS+ci equilibrium set. Let Ok = max{x I lIx-xkIIf(M6+1)}

and define Yk as a strategy profile which achieves this maximum. Similarly, let Ok, =

min{x 1 IIX-XkII f(MJ+E1)} d(x) and define yk, as a strategy profile which achieves this min-

imum. Observe that

k' k 4 (Yk!) - O(Yk)

(O(Yk,) - p(PTp)) + (p(ATp ) - p(1pTi)) - ($(pTi) - $(Yk)).

Note that by (3.28) and (3.29), and the definitions of Yk and Yk', we have pT,,Ykt E

{x I lx - xk,|I < f (M6 + Fi)}, and AT 1 -1, Yk C {x | ||x - Xk| f (M6 + E1)}. Hence,

using Lipschitz continuity of # (and denoting the Lipschitz constant by L) it follows that

4(ykl) - 4(AT) > -2Lf (M6 + e1), and #(pT i) - 4(Yk) > -2Lf (M6 + e1). Moreover,

(3.31) and Lipschitz continuity of 4 imply that #(pT) - 4(1pTi1) = 0 ). Thus, using

(3.34) we obtain the following upper bound on #(Ar) - 4(pri):

k - k + 4L f (M6 + ei) + O # (pr ,) - #(pri). (3.35)

Using the lower and upper bounds we obtained in (3.33) and (3.35), it follows that

k' -k + 4Lf (M6 + Ei) + O (. (3.36)

Since E2 = a - MS, and Ei = i, using the fact that f is an increasing function and 6 < 8,
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it follows from (3.36) that

k k (a - M6)d 14fM6 + (a - MS)d 1 L M +
6M T1 6M T1

Note that (3.21) implies (a-M)d -4Lf(MS+) > 0. Thus, for sufficiently large T we obtain

- Ok > 0. Therefore, we conclude when pt leaves the component of XM6+,i contained

in the neighborhood of some equilibrium xk, and enters that of another equilibrium Xk',
then the minimum potential in the new neighborhood is strictly larger than the maximum
potential in the older one (for sufficiently large T1). Since this is true for arbitrary equilibria

Xk and Xk, it follows that after entering the component of XM3+E in the neighborhood of

Xk,, p cannot return to the component in the neighborhood of Xk, as doing so contradicts
with the relation between the minimum and maximum potentials in these neighborhoods.
Thus, after sufficient time, pt can visit the component of XM6+E (or equivalently XM5+E)
in the neighborhood of a single equilibrium.

Step 5: Let c, and E2 be such that 0 < ci < E2 < E. As established in Step 4, there exists

some T, such that for t > T, pit visits the component of XM6+±, in the neighborhood of a
single equilibrium, say Xk.

Assume that T1, T2 , Tj and T2 are defined as in Step 3, and let Ti > T + 1. Since

Ei < E2 < K, we have XM6+E C XM+IE2 c XAI5+E, and Ti > T + 1 implies that pt can only
visit the components of XM5+1 and XM6+ 2 contained in the neighborhood of xk. Following
a similar approach to Step 4, we next obtain upper and lower bounds on #(pT;) -(pT 1),
and use these bounds to establish convergence to the mixed equilibrium set given in the
theorem statement.

Define d* as the maximum distance of pt from XM6+2 for t such that T + 1 < T 2 < t <
T2 - 1, i.e.,

d max min ||pt-xI.
{tIT 2 <t<T2-1} XCXM6+ 2

Since pT2-1, pT C XM6±E 2 by definition, the total length of the trajectory between T 2 - 1
and T2 is an upper bound on 2d*, i.e.,

T2-1

2d* < E |pt+1 - pit||-
t=T2 -1

As explained in (3.31), pt+I - it < , thus the above inequality impliest+1

T2-1 2M T2-1 2M 2M
2d* < = +t 1 . (3.37)

ET- + t= + 1 T2t=T2-1 t+1 t=T2 T

114



Using this inequality, the lower bound in (3.27) implies

T2 -1 2C2 >( -M) 2E2 (.8#(pr )- > ( Ei) S 3(t + 1) T2 3M
t=T2

We next obtain an upper bound on #(pT) - #(pT). By definition of f, XM6+,i is

contained in f(M6 + E1) neighborhoods of equilibria. For T > T + 1, Pt can only visit the

component of XM6+E in the neighborhood of xk, as can be seen from the definition of T.

Thus, since pT-1, pT E XM6+i, it follows that pTi_1, pT C {X I ||X - Xk| I <(M6 + EI)}.

By Lipschitz continuity of the potential function it follows that #(pT;')-#(pT_1j) < 2f (M6+

c)L. Additionally, by (3.31) Lipschitz continuity also implies that #(pT)-#(PT_1 ) < 2ML

Combining these we obtain the following upper bound on #(pTr) - #(pT):

#(pT) - #(IT 1 ) < 2f (M6 + E1)L + 2ML (3.39)

It follows from the upper and lower bounds on #(p1;) - #(prI) given in (3.38) and (3.39)

that
M 2E22ML

d* - < 2f(M6 +,E 1 )L +
T2 3M - T1

Thus, for sufficiently large Ti (and hence T 2), we obtain

, 3f (M6 + Ei)ML 3M 2 L M 4f (M6 + Ei)ML (3.40)
62 E2T 1  T 2  62

Note that in the above derivation ei is an arbitrary number that satisfies 0 < 61 < E2.

Thus, (3.40) implies that

d* < lim sup 4f(M6 + c1)ML 4f (M6)ML (3.41)
f1-0 E2 C2

where the last inequality follows by upper semicontinuity of f. Thus, by definition of d*,

we conclude that pt converges d* neighborhood of XM6+E2 . Hence, using (3.41), we can

establish convergence of pt to

{4f (M6)ML (.2
xOx - yll < 4f, for some y XM 2 .(3.42)

62

Observe that definition of f implies if y E XM1+< 2 , then for some equilibrium Xk we have

Ixk - yl f(M6 + 62). Thus, using (3.42) and triangle inequality, we conclude that pt

converges to

|X - xk|| < 4f (M6)ML + f (M6 + 62), for some equilibrium xk (3.43)
E2
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Noting that in (3.43) E2 is an arbitrary number satisfying 0 < 62 < E, the theorem follows.
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Part II

Iterative Auction Design for

Graphical Valuations
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Chapter 4

Tree Valuations

4.1 Introduction and Background

Iterative auctions are a class of mechanisms that are commonly employed in practice. In

these auctions, the auctioneer sets prices for the items she is selling, bidders report which

items they are interested in at the given prices, and in response to these reports the auc-

tioneer updates the prices. This process terminates when the auctioneer determines a final

allocation of items to the bidders. Examples of iterative auctions include the auctions used

for selling art, antiquities, wine, jewelry, electricity, natural resources, bus routes, spectrum,

and the auctions used for procurement. 1

The well-known English and Dutch auctions can be viewed as examples of single-item

iterative auctions. When bidders have independent private values, these auctions allocate

the item efficiently, i.e., the bidder with the highest value receives the item. On the other

hand, in more general multi-item settings (such as spectrum or procurement auctions) the

iterative auctions that are present in the literature do not always have similar efficiency

guarantees. More precisely, they either implement the efficient outcome under restrictive

assumptions (such as the gross substitutes assumption (Gul and Stacchetti, 2000; Ausubel,

2006)), or they require complicated pricing structures that involve a different price for each

bundle of items (Ausubel and Milgrom, 2002; Bikhchandani et al., 2002; Vohra, 2011).

The auction formats in the first category do not allow for value complementarity between

different items, which is commonly observed in various practical auction environments.

Those in the second category may not be practical since they require the number of different

prices that are reported to the bidders at each stage of the auction to be exponential in the

number of items.

Motivated by these considerations, in this part of the thesis, we study the question of

'For specific practical examples of these auctions, see the websites of auction houses such as Sotheby's
(http://www.sothebys.com/) and Christie's (http://www.christies.com/), online retailers such as eBay
(http://www.ebay.com/), and auction service providers such as Power Auctions LLC (http://www.
powerauctions.com/).
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iterative auction design for multi-item environments. Our main contribution is to develop
simple iterative auction formats for settings that involve both value complementarity and
substitutability. In the auction formats we provide, bidders dynamically update their bids
in the course of the auction. Following a similar approach to that of the first part of this
thesis, we establish that the strategy updates of bidders converge to the efficient outcome.
Moreover, the auction formats we provide rely on a simple pricing rule.

We obtain our results by focusing on a special class of valuation functions, which we
refer to as graphical valuations. Graphical valuations allow for a compact representation of
the value functions of the bidders. In particular, value functions that belong to this class are
associated with a value graph, nodes of which correspond to the items that are being sold
by the auctioneer. There are edges between items that can exhibit value complementarity

or substitutability. We associate weights with the nodes and edges of the underlying graph.

Positive weights associated with an edge capture value complementarity between the nodes
(items) at the end points of this edge, and negative weights capture substitutability. The
value a player has for a set of items is equal to the sum of the node weights and the edge

weights of the subgraph obtained by restricting the original value graph to this set of nodes

(items).

It can be seen that graphical valuations are not fully general, i.e., there are value func-

tions that cannot be represented as a graphical valuation. On the other hand, we believe

that this class captures the value complementarity/substitutability in many practical auc-

tion settings reasonably well. For instance, consider the spectrum auctions, where the

items that are auctioned correspond to spectrum bands at different regions, and there is

value complementarity/substitutability between adjacent regions. In this setting, the values

of bidders can naturally be captured with graphical valuations, using a graph that has a

node for each region. There are edges in this graph between nodes representing adjacent

regions, and the associated weights capture the value complementarity/substitutability be-

tween these regions.

The standard approach in the literature (see Vohra (2011)) for developing iterative auc-

tions involves three main steps. Efficient iterative auctions implicitly solve an optimization

problem, and find the welfare maximizing allocation. Before we develop iterative auctions

for graphical valuations, we first focus on this optimization problem, and formulate it as

a linear program. Second, we consider iterative algorithms that can be used for solving

linear programs, and apply these to the solution of the linear programming formulation of

the efficient allocation problem. Finally, we establish that these algorithms suggest natural

iterative auction formats that converge to the efficient outcome, when bidders truthfully

reveal their demand. By charging bidders appropriate final payments, we show that it is an

equilibrium for bidders to truthfully reveal their demand in these auctions.

The existing iterative auction formats that follow this approach and allow for comple-

mentarity in valuations, rely on exponentially many prices for implementing the efficient
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outcome (Bikhchandani et al., 2002; De Vries et al., 2007; Mishra and Parkes, 2007; Vohra,

2011). In contrast, our main contribution in this part of the thesis is to develop efficient

iterative auction formats that rely on simple pricing rules. In order to accomplish this, we

follow the above outlined approach, and by exploiting the structure of graphical valuations,

we first obtain simpler linear optimization formulations for the efficient allocation problem

than the ones present in the literature. Then, using iterative solutions of these new formu-

lations, we develop novel iterative auction formats that rely on simple pricing rules, and

guarantee efficiency for graphical valuations.

In this chapter and Chapter 5 we focus on the first component of the iterative auction

design framework, and provide linear programming formulations that can be solved to

identify the efficient outcome. We defer the question of iterative auction design using these

LP formulations to Chapter 6. Additionally, in Chapter 6, we also address how to design

payment schemes that guarantee that the efficient outcome is implemented at an (ex-post

perfect) equilibrium of our auctions.

We start our exposition in this chapter by formally introducing our valuation model,

and discussing some structural properties of iterative auctions. An important component

of iterative auction design is the choice of the pricing rule used for running auctions. In this

chapter, we present an important pricing rule, anonymous item pricing, that is commonly

used in the literature for the design of iterative auctions (Ausubel, 2006). We also discuss

a natural termination condition for iterative auctions that rely on this pricing rule: the

auctioneer terminates the auction when a "market clearance" condition holds, i.e., when

all bidders demand disjoint sets of items, and all items are demanded by some bidder. At

such an outcome, no bidder needs not compete with the remaining bidders to acquire the

set of items that she demands (since the demand sets are disjoint), thereby making this

outcome a natural termination point for the auction. Moreover, this termination condition

is equivalent to convergence of the iterative auction to a Walrasian equilibrium. Hence, it

is possible to design iterative auction formats that rely on anonymous item pricing and the

aforementioned termination condition if and only if a Walrasian equilibrium exists.

The main contribution of this chapter is to establish that when the underlying value

graph is a tree, and satisfies an additional technical (sign consistency) condition, a Walrasian

equilibrium exists. Intuitively, the sign consistency condition suggests that if a bidder

views two items as complements (substitutes), so do the remaining bidders. It is known

that the existence of a Walrasian equilibrium is equivalent to existence of integral optimal

solutions to a linear programming formulation of the efficient allocation problem. Thus,
our result immediately leads to a linear program that can be solved to identify the efficient

allocation for sign-consistent tree valuations. Moreover, as we demonstrate in Chapter 6,

iterative solutions of this LP formulation can be used to obtain iterative auction formats

that terminate when a Walrasian equilibrium is identified, and allocates items to bidders

efficiently, when the underlying valuations are sign-consistent tree valuations.
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We also demonstrate that if we relax the sign consistency assumption, or the tree as-
sumption, solving this linear programming formulation no longer gives the efficient outcome

and a Walrasian equilibrium does not exist. This suggests that for more general graphi-

cal valuations, it is not possible to implement the efficient outcome using iterative auction
formats that rely on anonymous item pricing, and terminate when a market clearance condi-
tion holds. Interestingly, by considering more general pricing rules and linear programming

formulations, the efficient allocation can be implemented using iterative auction formats
that rely on a similar termination condition. We defer the discussion of such general pricing
rules and linear programming formulations to Chapter 5.

4.1.1 Related literature

In standard multi-item auction settings, the VCG mechanism can be used to implement

the efficient outcome in dominant strategy equilibria. Despite this desirable strategic fea-

ture, VCG mechanisms are rarely used in practice. On the other hand, iterative auction

formats which share similar equilibrium properties to VCG mechanisms are prevalent (see

for instance Ausubel and Milgrom (2006); Rothkopf et al. (1990); Engelbrecht-Wiggans and

Kahn (1991)), and have found applications in spectrum auctions, electricity auctions, on-

line markets (such as eBay) (McAfee et al., 2010; Ausubel and Cramton, 2004; Ausubel,
2004), as well as procurement settings (Hohner et al., 2003; Cramton et al., 2006). This has
stimulated significant interest in recent literature, and led to development of a number of

novel multi-item iterative auction formats. Examples include the package bidding auction

(Ausubel and Milgrom, 2002), clinching auction and its variants (Ausubel, 2004, 2006),
auctions that rely on universally competitive equilibria (UCE) (Mishra and Parkes, 2007),
and best response auction of Nisan et al. (2011a).

Many of the iterative auctions present in the literature implement the efficient outcome

under the restrictive gross substitutes assumptions. Intuitively, gross substitute valuations

suggest that if a bidder demands a set of items at given prices, and the price of one of these

items increases, the demand for the remaining items cannot decrease (Kelso and Crawford,
1982; Gul and Stacchetti, 1999). Under the gross substitutes property, a Walrasian equi-

librium exists and the prices that support it have a lattice structure. These results can

be exploited to define simple titonnement processes (and auction formats) that converge

to a Walrasian equilibrium and an efficient allocation (Gul and Stacchetti, 2000; Ausubel,
2006). The gross substitutes property, on the other hand, does not allow for any value

complementarity between different items, which is a key feature of important combinatorial

auction settings. A generalization of this class, which allows for a very specific value com-

plementarity structure, is the class of gross substitutes and complements (GSC), see Sun

and Yang (2006, 2009). The GSC structure suggests that items can be grouped into two

sets so that all items in a given set are gross substitutes, and items that belong to different

sets are complements. It is possible to establish the existence of a Walrasian equilibrium
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and provide simple iterative auctions (Sun and Yang, 2006, 2009) for such valuations. How-

ever, these results are limited to the particular complementarity structure imposed by the

GSC valuations, and do not overlap with our contributions (see Section 4.6 for a detailed

discussion).

The problem of finding the efficient outcome in a combinatorial setting is hard both

from a computational complexity and a communication complexity point of view (Lehmann

et al., 2006; Nisan and Segal, 2006; Cramton et al., 2006; Blumrosen and Nisan, 2010). This

motivated considering classes of valuation functions with additional structure (Blumrosen

and Nisan, 2010; Cramton et al., 2006). Recently, Zhou et al. (2009) and Abraham et al.

(2012) considered graphical valuation structures that are similar to those we consider in

this thesis. In these papers, authors characterize the complexity of auction design for

(hyper) graphical valuations, and develop approximately efficient auctions for settings that

do not exhibit substitutabilities. In contrast, in this part of the thesis, we adopt a similar

value model to the one present in these papers, but develop efficient iterative auctions for

valuations that allow for both complementarities and substitutabilities.

Efficient iterative auctions implicitly solve an optimization problem: they find a welfare-

maximizing allocation of goods to bidders. In many settings, it is possible to formulate

the underlying efficient allocation problem as a linear program (with possibly exponen-

tially many variables) (Bikhchandani and Mamer, 1997; Bikhchandani and Ostroy, 2002).

Bikhchandani and Mamer (1997) establish that a particular linear programming formula-

tion, which we also employ in this work, has optimal solutions that are integral, and can be

used to find the efficient allocation, if and only if a Walrasian equilibrium exists. However,
the associated integrality results present in the literature are restricted to settings, where the

gross substitutes condition holds. Interestingly, our results suggest that for sign-consistent

tree valuations, this LP formulation has an optimal solution that is integral, this solution

corresponds to an efficient allocation, and a Walrasian equilibrium exists.

The idea of developing iterative auctions by (i) first formulating the efficient allocation

problem as a linear program, (ii) then obtaining iterative algorithms for solutions of these

problems, and interpreting them as iterative auction formats, and (iii) guaranteeing incen-

tive compatibility by complementing these algorithms with appropriate payment schemes
is present in the earlier literature (Parkes, 1999; Bikhchandani et al., 2002; De Vries and
Vohra, 2003; Parkes, 2006; De Vries et al., 2007; Vohra, 2011). In the auctions present in
these papers, the auctioneer searches for the efficient outcome by modifying the price or
a temporary allocation of goods to bidders over time. In response to the price/allocation
change, bidders update their demand. When bidders truthfully reveal their demand, such
procedures correspond to applications of certain iterative algorithms to the solution of the
linear programming formulation of the efficient allocation problem. In order to guarantee
incentive compatibility and truthful demand revelation, the auctioneer uses the information
revealed in the course of the auction and computes final payments for bidders (that are of-
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ten equal to the VCG payments). Some of the auction formats that rely on this approach

implement the efficient allocation in settings that are more general than the gross substi-

tutes case, e.g., (Bikhchandani et al., 2002; De Vries et al., 2007; Ausubel and Milgrom,
2002; Mishra and Parkes, 2007; Vohra, 2011). However, the iterative algorithms (and the

corresponding iterative auctions) present in these papers rely on using exponentially many

prices at each step, as the underlying LP formulations do not admit a simple structure. This

leads to a serious drawback for implementation, since at each step the number of prices the

auctioneer needs to communicate to the bidders is exponential in the number of the items.

Consequently, this pricing rule is prohibitive in multi-item environments where more than

a few items are auctioned together. In contrast, our objective in this work is to develop

efficient iterative auction formats that rely on simple pricing rules. We accomplish this by

following a similar approach to the one outlined above in the context of graphical valua-

tions. Importantly, by exploiting the special structure of graphical valuations, we obtain

simpler linear programming formulations of the efficient allocation problem than the ones

present in the literature (that lead to offering exponentially many prices to bidders), and

novel efficient iterative auction formats that rely on simple pricing rules.

Finally, a related focus to ours is present in Bikhchandani et al. (2011), where an iterative

auction format that employs only a single price, and guarantees efficiency in settings with

an additional combinatorial structure (a matroid structure) is provided. We note that these

results are not directly applicable in our setting, since the valuations we consider do not

exhibit the required structure.

4.1.2 Outline

The rest of this chapter is organized as follows: In Section 4.2, we introduce the model

and notation that will be used in this part of the thesis. Additionally, we discuss the

Walrasian equilibrium concept and provide a condition for its existence. In Section 4.3,
we focus on cases where the underlying value graph is a (sign-consistent) tree graph. We

show that a Walrasian equilibrium exists for this class of valuation functions, and this leads

to a linear programming formulation for obtaining the efficient allocation. In Section 4.4,
we show that the solution of this LP formulation does not give the efficient outcome, if

we relax the sign consistency or tree valuation assumptions. This suggests that for general

graphical valuations more complex LP formulations may be necessary for obtaining the

efficient outcome. We defer the discussion of these more general LP formulations and the

iterative auctions that rely on iterative solutions of these LPs to Chapters 5 and 6. A

brief summary of the main contributions of this chapter is provided in Section 4.5. We

provide a comparison of our results with a well-studied class of valuation functions that

have a Walrasian equilibrium, and exhibit both value complementarity and substitutability

in Section 4.6. Some of the technical proofs are delegated to Section 4.7.
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4.2 Model and Preliminaries

In this section we first describe the valuation model that we focus on in this part of the

thesis (Section 4.2.1). Then, in Section 4.2.2 we discuss pricing rules and termination

conditions that can be used for the design of iterative auctions. In particular, we focus on

a natural termination condition that closely relates to the Walrasian equilibrium concept.

Additionally, we present necessary and sufficient conditions for the existence of a Walrasian

equilibrium.

4.2.1 Graphical Valuations

In this part of the thesis, we focus on settings where an auctioneer sells a number of

(heterogeneous) items to a finite set of bidders. In particular, our setting involves

" A finite set of items M, such that |NI = N,

" A finite set of bidders M, such that |M I = M,

" Value functions vm : 2V --> R+ for each player m, such that for a given set of items

S c K, vm (S) > 0 captures the value of player m E M.

We make two standard assumptions about the valuation functions: bidders have zero value

for receiving no items, and bidders have weakly larger valuations for larger bundles.

Assumption 4.2.1. We assume that vm(0) = 0, i.e., bidders have value zero, for not

receiving any items. Additionally, we assume that bidders have monotone increasing valu-

ations, i.e., v m (Si) 5 v m (S 2) if Si C S 2.

The value a player has for a set S need not be additive. That is, it may be the case

that vm (S) E s vm ({i}). If items i and j are such that vm({ij}) > vm ({i}) + v m ({j}),

then we say that these items are pairwise complementary. On the other hand, if i and j
are such that vm ({ij}) < vm ({i}) + vm({j}), we refer to them as pairwise substitutes. In

this work we are mainly interested in pairwise complementarity/substitutability, and unless

noted otherwise, we refer to pairwise complementarity/substitutability simply as comple-

mentarity/substitutability. We provide a discussion of the differences between graphical

valuations and other related special valuation classes such as gross substitutes, gross sub-

stitutes and complements (Kelso and Crawford, 1982; Gul and Stacchetti, 1999; Sun and

Yang, 2006); sub/superadditive valuations, and sub/supermodular valuations (Blumrosen

and Nisan, 2010) in Section 4.6.

In this thesis, we impose additional structure on the valuation functions. In particular,
we assume that the value functions admit a compact graphical representation. Before, we

explain this additional structure, we introduce the notion of value graph.
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Definition 4.2.1 (Value Graph). Let G = (N, E) be a graph such that the set of nodes

corresponds to the set of items M and there are edges between nodes (items) that may exhibit

value complementarity and substitutability. We refer to G as a value graph for set of items

M.

We next use the notion of value graph to introduce the notion of graphical valuations.

Definition 4.2.2 (Graphical Valuations). Let G = (K, E) be a given value graph. We say

that the value function v : 2V _R R+ is a graphical valuation (with respect to G) if:

" there exist positive node weights wi > 0 for each i C K

* there exist (positive or negative) edge weights wij for each (i, j) E E

* v is such that v(S) = ZiEs wi + E(i,j)CEi,jCs wij -

We refer to the weights {wij} {wi} as weights consistent with G.

This definition implies that a valuation function is graphical, if there exists node and

edge weights associated with the underlying value graph, such that the value of any bundle

S equals to the sum of the node weights and edge weights, for nodes and edges contained

in an induced subgraph of G with set of nodes S. For an example see Figure 4-1.

C

S={a,b,c}

Figure 4-1: For a graphical valuation v, the value of bundle S = {a, b, c} can be given as
v(S) = wa + Wb ± we + wab + wac + wbc.

Not all valuation functions are graphical valuations. In full generality, a value function

associates a value with each bundle of items, and hence can be thought of as a vector of

length 2 N. On the other hand, the definition of graphical valuations suggest that these

valuations can be uniquely defined by specifying N node weights and at most N 2 edge

weights. This implies that the set of graphical valuations has smaller dimension than the

set of general valuation functions, and hence is not fully general. On the other hand,

graphical valuations can be compactly represented by specifying the edge/node weights for

the corresponding value graph.
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Despite not being fully general, the graphical valuations can naturally capture the pair-

wise complementarity and substitutability in valuations. For instance, assume that i and j
are two items such that for graphical valuation v we have wij > 0. Then it can be seen that

v({i})+v({j}) = wi+wj < wi+wj+wij = v({i, j}), and hence i, j are pairwise complemen-

tary items. Conversely, if wij < 0, then v({i})+v({j}) = wi+wj > wi+wj+wij = v({i,j})

and i, j are pairwise substitutes.

In this work, we assume that all players have graphical valuations:

Assumption 4.2.2. There exists a value graph G = (K, E) such that the valuation function

of each player is a graphical valuation with respect to G. That is, for each player m E M,
there exists weights

* w' for each node i G K, and

a wg for each edge (i,j) E E,

such that v m (S) = EiCS WT + ,(i,)cElIi,jcS W;-

Observe that in the above definition, the assumption that the valuation functions of all

players are with respect to the same value graph is without loss of generality. To see this,
assume that the valuation function of each player m C M is consistent with some value

graph Gm = (K, E m ). It follows from Definition 4.2.2 that the value function of each player

is also consistent with the graph G = (N, U mE), and a set of weights d0' such that

mMg if (i,j Em
ij i

0 otherwise.

Thus, even if the valuation function of each bidder is derived from a different value graph,
it is possible to find a value graph and (bidder-specific) weights such that the valuation

functions are also consistent with this value graph.

We believe that graphical valuations appropriately capture the value complementar-

ity/substitutability in many practical auction settings, such as spectrum auctions, truck

route auctions, and real estate auctions. In these settings, the items that are auctioned
correspond to different geographical regions, and complementarities and substitutabilities

are between neighboring geographical regions. For instance, for spectrum auctions, com-
plementarities between adjacent geographical regions are present (Cramton et al., 1997;
Moreton and Spiller, 1998), due to considerations such as roaming and interference. Simi-
larly, different bands in the same geographical region can be viewed as substitutes, as the
bidders may only have limited demand for spectrum in each geographical region. Such
complementarities and substitutabilities can naturally be captured by graphical valuations
by associating a node with each spectrum band - geographical region pair, and an edge with
pairs of spectrum bands in adjacent (or the same) geographical regions (see Figure 4-2).
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Geographical Regions

Band A

Band B

Figure 4-2: Consider a spectrum auction where two bands (A & B), over six geographical
regions are sold. Agents view the bands in neighboring geographical regions as complements,
while they view different bands in the same geographical region as substitutes. This can be
captured using the graphical model in the above figure, and assigning positive weights to
the solid lines, and negative weights to the dashed ones.

When the true value structure cannot be captured by graphical valuations, it is possible

to consider their generalizations. In particular, assume that we associate a weight with each

k-clique of the underlying value graph for k E {1,... , r}, and the value a player has for a

bundle S is given by the sum of the weights of all k-cliques (k C {1, ... , r}), nodes of which

are contained in S. It can be seen that the graphical valuations defined above correspond to

the case of r = 2. Choosing larger values of r allows for generalizing graphical valuations,

and capturing more complicated structures of value complementarity and substitutability.2

In particular, it can be shown that it is possible to represent any valuation function using

generalized graphical valuations, by choosing the underlying value graph as a complete

graph, and associating a weight with all cliques of the underlying graph (i.e., the r = N

case). For simplicity, in this chapter we focus on graphical valuations (i.e., the r = 2 case).

In the next chapter, we will also discuss how our approach extends to the more general

setting where r > 2 (see Section 5.5).

We close this section by formally defining the objective of our iterative auctions. We

first introduce some relevant definitions.

Definition 4.2.3 (Feasible allocation). Given sets Sm C K, for all m C M, we say that

{S'm }mcm is a feasible allocation if

" Each player m E M receives a set of items Sm c N,

" Each item is assigned to at most one player, and hence Sm n Si 0 for m $ 1, and

m,l E M.

2 In (Abraham et al., 2012), motivated by similar considerations, authors focus on hyper-graph valuations,
characterize the computational complexity of auction design, and provide approximately efficient sealed bid

auctions for hyper-graph valuations that exhibit only complementarities.
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We say that a feasible allocation is complete if for every item i, there exists a bidder m

such that i C S'. We denote the set of complete feasible allocations by x.

An efficient allocation is a feasible allocation {Sm}mEM that maximizes the total value,

i.e.,

Z v"(S) = max (vM(ZM)
m {zm}m

s.t. Z m c M, for all m E M

Z m n Z' = 0, for all m, 1 E M, m # 1.

Note that under Assumption 4.2.1 there exists an efficient allocation that is also complete.

In this work, our objective is to obtain iterative auctions that allocate items to bidders

according to an optimal solution of the above optimization problem. In the subsequent

sections, we provide alternative (linear) optimization formulations for the efficient allocation

problem, and discuss how we can use those to develop iterative auctions for graphical

valuations.

4.2.2 Anonymous Item Pricing and Walrasian Equilibrium

In iterative auctions the auctioneer sets prices for the (subsets of) items she is offering,

collects demand reports from bidders, and adjusts the prices. Before we discuss the details

of the iterative auction design problem, a fundamental question to answer is the choice of

the pricing rule for these auctions.

An important pricing rule that can be used for iterative auction design is the anonymous

pricing rule, where the auctioneer offers the price pi for each item i C N, which is the same

for all bidders. Due to its simplicity, this pricing rule is commonly used in practice, and

various theoretical works develop iterative auctions based on it (Ausubel, 2004, 2006; Gul

and Stacchetti, 1999, 2000).

At given anonymous item prices, we say that a bundle S* is demanded by bidder m,

if maximum surplus is achieved for this bundle, i.e., vm(S*) - iEis, pi = maxs vm(S) -

Eics pi. We denote the set of bundles a bidder demands by Dm, i.e., Dm = arg maxs v'i(S)-

)zicsPi.

A natural termination condition for iterative auctions that rely on anonymous item

pricing rule is "market clearance". In particular, the auctioneer can terminate the auction

if bidders demand disjoint sets of items, and every item is demanded by a bidder. Observe

that in such an outcome, since demand sets are disjoint, bidders do not compete with the

remaining bidders for the items that they demand. Hence, the auctioneer can terminate

the auction by assigning each bidder the set of items she demands.

This outcome coincides with the well-known Walrasian equilibrium concept which we

discuss next:
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Definition 4.2.4 (Walrasian equilibrium). Let pi denote the price of item i, and S' denote
the set of items assigned to player n. The tuple ({pi}i, {S m }m) is a Walrasian equilibrium

if:~

P1,. -PN > 0,

- S1 , ... , SM is a feasible allocation, i.e., Sk n Sm = 0,

- Vt (SM) - ZjSm Pi > vt (S) - Zics pi for any S C N,

- pi = 0 if i V UmS m .

Observe that at a Walrasian equilibrium, Sm corresponds to a set of items bidder m

demands. By Assumption 4.2.1, it follows that if a Walrasian equilibrium exists, then there

exists one where {Sm} is a complete feasible allocation. This suggests that in such an

allocation, {Sm} clears the market by assigning each bidder a set of items she demands.

Additionally, it is known that if a Walrasian equilibrium exists the allocation {Sm} is

efficient (Gul and Stacchetti, 1999).
The above discussion and Definition 4.2.4 imply that iterative auctions that rely on

anonymous item pricing can naturally be terminated when a Walrasian equilibrium is

reached. Moreover, simple price update processes (such as titonnement) converge to a

Walrasian equilibrium and the efficient allocation. This observation was used in the exist-

ing literature (Ausubel, 2006) for iterative auction design.

On the other hand, in an economy with indivisibilities a Walrasian equilibrium need not

always exist. An important case, where it is known to exist, is the case of gross substitutes

(Gul and Stacchetti, 1999). However, valuation functions satisfying the gross substitutes

condition can only exhibit substitutability in valuations, and not complementarity.

A necessary and sufficient condition is present in the literature for testing the existence of

Walrasian equilibrium. In particular, in Bikhchandani and Mamer (1997) authors establish

that a Walrasian equilibrium exists if and only if the following linear program has optimal

solutions that are integral:

max ( xM(S)vM(S)
m S

s.t. 5xm(S) < 1 for all m

(LP1) S (4.1)

E Exm(S) < 1 for all i
m Slics

xm (S) > 0.

At a feasible integral solution of this optimization problem, xm (S) = 1 captures assignment

of bundle S to bidder m. The first constraint suggests that each bidder receives at most

one bundle. The second constraint, on the other hand, suggests that each item i can be
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present in at most one bidder's bundle. The objective value is the welfare generated by the

allocation suggested by {Xm(.)}m-

The corresponding dual program (D1) is stated below:

min pi -i- 7r m

(D1) s.t. 7m > vm() - p V S,m
ieS

pi, 7rm  0.

Observe that in the dual LP, we have a variable pi for each item i. This variable can be

interpreted as the price the auctioneer offers for the relevant item. We also have a variable

7rm for each bidder m. The constraints in the dual problem suggest that for any bundle

S, 7rm is an upper bound on om(S) - EicsPi, i.e., the surplus bidder m associates with

acquiring bundle S at the given prices. Moreover, at optimality, it can be seen that Trm

will be equal to the maximum surplus that can be associated with the bundle bidder m

demands. This suggests that 7rm can be interpreted as the surplus of bidder m. The results

of Bikhchandani and Mamer (1997) imply that when a Walrasian equilibrium exists the

{pi} variables at an optimal solution of D1, together with the allocation {S m } obtained

at an optimal solution of LP1 (such that x m (S m ) = 1 for all m) constitute a Walrasian

equilibrium.

In Chapter 6, we develop iterative auctions by obtaining solutions of the above primal-

dual LP pair (as well as a more general pair that we provide in Chapter 5) using iterative

algorithms. These algorithms start with a dual feasible solution, and iteratively adjust this

solution until optimal solutions to both LPs are found (hence a Walrasian equilibrium is

identified). They can be interpreted as setting prices ({pi}) for the items in the auction,

and collecting bidders' demand at these prices, and adjusting the prices appropriately at

each step of the auction. The corresponding auction formats rely on an anonymous item

pricing rule, where the auctioneer offers a price (pi) for each item i, and this price is the

same for all bidders.

4.3 Walrasian Equilibrium and Tree Valuations

In the rest of this chapter, we assume that the value functions are not arbitrary graphical

valuations, but they have additional structure. In particular, we assume that the underlying

value graph is a tree graph, i.e., it contains no cycles. Additionally we assume that if two

items are complements (substitutes) for a given player, they are complements (substitutes)

for all players. In this setting, we establish that a Walrasian equilibrium exists. This

result implies that LP1 of Section 4.2 can be used to identify the efficient allocation for

sign-consistent tree valuations.
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We start by formally stating the additional structure we impose on the valuation func-
tions in the rest of the section:

Assumption 4.3.1 (Tree valuation). Let G = (N, E) be the value graph associated with
the graphical valuations of bidders. We assume that G is a tree graph, i.e., it contains no
cycles.

Assumption 4.3.2 (Sign Consistency). The graphical valuations are sign-consistent. That
is, for some (i, j) E E and m E M, if wg > 0, then wk > 0 for all k E M, and similarly
if w} < 0, then wk < 0 for all k C M.

The tree graph assumption, given in Assumption 4.3.1, imposes additional restrictions
on the complementarity and substitutability structure. In particular, it disallows for com-
plementarity and substitutability cycles. This structure may be reasonable in some auction
settings. For instance, consider a spectrum auction, where one of the items correspond to a
band in a central region, and the remaining correspond to bands in peripheral regions that
are close to the central one. If the interference between the peripheral regions is negligible,
and the interference between the central region and the remaining ones is relatively strong,
then the corresponding value structure can naturally be represented as a tree graph.

The sign consistency requirement suggests that two items i and j are either substitutes

or complements for all players. Note that this assumption still allows for presence of both

complementary and substitutable items in the set of items, but it disallows having two items

as substitutes for some players and complements for the remaining ones. More formally, the

above assumption allows for positive and negative weights on different edges, but it requires

that all players have same sign weight on a given edge. Observe that this assumption can

also be satisfied by the spectrum auction example described above. For instance, if two
bands are complementary for a player (due to reduced interference), we expect them to be
complementary for all players.

We next show that under these assumptions a Walrasian equilibrium exists, or equiv-

alently LP1 has optimal solutions that are integral and that correspond to the efficient

allocation. In order to establish this result, in Section 4.3.1, we first consider a related LP

formulation, which more clearly makes use of the structure of graphical valuations, and es-

tablish that this LP has integral optimal solutions for sign-consistent tree valuations. Then,
in Section 4.3.2, we show that this result implies the existence of an integral solution of LP1

for the aforementioned class of valuation functions.

4.3.1 An Alternative LP Formulation

If the valuation functions of bidders were public knowledge, the efficient allocation could

be found by solving an integer program. One possible integer programming formulation

that can be used when the valuations of players are represented by graphical valuations is
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provided below:

max xMw" +( Z y wM
m iGN m ijcE

s.t. Zxi 1i
m

(IP) y < X, (4.2)
z3 E E,

XM + X7-1 < ym ij EE,
iGI/,jCof (E {0, 1}, yT 0 } i E Ar, ij E E

We use the shorthand notation (x, y) to denote a feasible solution of this problem given by

{Xf }meM,iCK, {YgJ}mCM,ijcE-

In this formulation, xT = 1 captures assigning item i to player m. We set yT = 1 if

both item i and item j are assigned to player m, and the corresponding edge weight needs

to be taken into account, when computing the total value of player m for her bundle. The

first constraint guarantees that each item is assigned to at most one player. The second and

third constraints guarantee that if y' = 1, then xo = xo = 1, i.e., if the weight of edge

(i, j) is taken into account when computing the value of player m for her bundle, then it

should be the case that this player receives both item i and item j. The fourth constraint

states that if xo = xT = 1, then y! = 1, i.e., if player m receives both item i and item j
then the value of edge (i, j) should be taken into account when computing the total value

she has for her bundle. We next establish that the optimization formulation IP can be used

to find the efficient allocation.

Lemma 4.3.1. (i) Every feasible allocation {SM}M, corresponds to a unique feasible so-

lution of IP, denoted by (x, y), and vice versa. Moreover, (x, y) is such that x' = 1

if i C S m , and xT = 0 otherwise.

(ii) Additionally, the objective value of (IP) for the feasible solution (x, y) equals to Em vM (S M ).

(iii) If (x, y) is an optimal solution of (IP), then the corresponding allocation {S m }m is

efficient.

Proof. (i) Observe that given x (such that x' C {0, 1} for all m, i), there is a unique y

such that (x, y) is feasible in (IP). To see this focus on edge (i, J) and consider the

following three cases: (a) xT = om = 0, (b) x' = ox = 1, (c) xm = 0, x7 = 1. In

cases (a) and (c) the (second and third) constraints of (IP) indicate that y' = 0 in

a feasible solution. Similarly, in case (b) the fourth constraint of (IP) indicates that

y = 1 in a feasible solution. Thus, in all cases, specifying x, uniquely identifies the

corresponding y in a feasible solution.
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Consider a feasible allocation {S m }m, and define x such that xT = 1 if i c S m , and

xT = 0 otherwise. Clearly the above mapping between the set of feasible allocations

{S m }m, and x (such that xm E {0, 1} for all m, i) is a bijection. Since, specifying such

an x uniquely identifies the corresponding y in the feasible solution, it follows that

there is a bijection between the set of feasible allocations and the feasible solutions of

(IP), and the claim follows.

(ii) Using the definition of graphical valuations, the total value corresponding to a feasible

allocation can be given as

vS I w 1 (4.3)
M m (iESm i~JESm|(i~j)E

It follows from our construction in part (i) that xT = 1 if and only if i E Sm , in the
solution (x, y) corresponding to {S m }. This implies that EiSsm Wm =>jjy .

Analogously, our construction suggests that i, j E Sm if and only if xT = xm = 1.
Moreover, the constraints of (IP) imply that this is the case if and only if y! = 1 (as-
suming (i,j) C E). Thus, Ei,jCSm(iJ)EE w? = (ij)EE w y . These observations

together with (4.3) imply that the objective value of (IP) for the feasible solution

(x, y) equals to EM (gM)

(iii) Let (x, y) be an optimal solution of (IP), and {S m } be the corresponding feasible al-

location. Consider any other feasible allocation {Zm}, and the corresponding feasible

solution of (IP). It follows from optimality of (x, y) that the solution corresponding

to {Z m } leads to (weakly) lower objective value in (IP), when compared to (x, y).

On the other hand, by (ii) this implies that the corresponding feasible allocations are

such that EM vtm (S m ) ;> Sm vm (Z m ). Since this is true for any feasible allocation

{Z m }, it follows that {Sm} is efficient.

We next focus on the LP relaxation of the problem (IP):

max xMw + ywM
m iEN m ijE

s.t. xi 1 iG EN,
m

(LP2) Y x ij c E, (4.4)

o x - yj,ij E

0<x m < 1 i EN,

05y1, 3ijCE.
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In general this LP relaxation is not exact, i.e., the relaxation may have non-integral solutions

and lead to a higher objective value than the optimal objective value of (IP). We provide

examples for this in Section 4.4. Interestingly, when Assumptions 4.3.1 and 4.3.2 hold, we

can establish that this LP relaxation always has optimal solutions that are integral. This

claim is formalized in the next theorem.

Theorem 4.3.1. Assume that valuation functions of bidders are graphical and Assumptions

4.3.1 and 4.3.2 hold. Then, LP2 always has an optimal solution, which is also optimal for

(IP).

Proof. We prove the claim by first considering a relaxation of LP2, and showing that this

problem has an optimal solution when Assumption 4.3.2 holds. Then, we show that the

extreme points of the feasible region of this new problem are integral, and they are also

feasible in LP2. The claim then follows from the linear structure of the problem.

Observe that by Assumption 4.3.2, it follows that for a given edge, either all players

have positive weights, or all players have negative weights. Let E+ C E denote the subset of

edges, for which player weights are nonnegative (w' > 0), and E- C E denote the subset,
for which the weights are nonpositive (w 0).

We consider a new optimization problem, LP2b, that is obtained by relaxing some of

the constraints in LP2:

max L xMw +Z yMwM

m icN m ijsE

s.t. xi M 1 i E N,

(LP2b) Mij E E+, (4.5)

xM + xM 1 < yg, ij E E-,
0 x7 i i iN,

0 y ij E~.

Observe that LP2b is obtained from LP2 by relaxing (i) the constraint y< < 1 for all

edges (i,j), (ii) the constraints xT < 1 for all nodes i, (iii) the upper bound constraints

yg <oXv, x7 for edges (i, j) E E-, and (iv) the lower bound constraints xm + x - 1 < yT

for edges (i, j) E E+. It can be seen that the constraints (i) and (ii) can be omitted without

changing the feasible region, as the constraints xo > 0, Z xT 5 1 and ym < xm imply

these constraints. Omitting the constraints in (iii) and (iv), on the other hand, changes the

feasible region. In particular, it can be seen that in LP2b, the feasible region is unbounded,
whereas the feasible region of LP2 is bounded. For instance, it can be seen that in LP2b

we can have Y > 1 for (i,j) C E- at a feasible solution.

We next establish that LP2b always has an optimal solution (see Section 4.7 for a proof).
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Lemma 4.3.2. Let Assumption 4.3.2 hold. Then LP2b has an optimal solution.

If LP2b has an optimal solution, it should be at one of the extreme points of its feasible
region. We next establish that the extreme points of this problem are all integral. The
following lemma, proof of which can be found in Section 4.7, allows us to characterize the
extreme points of the feasible region of LP2b:

Lemma 4.3.3. Let Assumptions 4.3.1 and 4.3.2 hold. Then, all extreme points of LP2b
are such that xT C {0, 1} for all m and i.

It also follows from this lemma that at an extreme point of LP2b, y' = min{xf, x7} C
{0, 1} for ij E E+. Assume that this is not the case, then no constraint that involves

is binding and we obtain other feasible solutions by just considering yT + e, ym - E instead

of yg, and keeping the remaining elements of the feasible solution (x, y) intact. Thus, we

obtain a contradiction and at an extreme point yT = min{x , xT} E {0, 1} for ij C E+.
Similarly, it follows that yT = max{xm + x7 - 1, 0} C {0, 1} for ij C E- at an extreme

point of LP2b.

We next show that any extreme point of LP2b is feasible in LP2 when Assumptions

4.3.1 and 4.3.2 hold. To establish this, note that it is sufficient to check that the extreme

points satisfy the relaxed constraints (i)-(iv) of LP2 (stated after (4.5)), as the remaining

constraints are already satisfied by feasibility in LP2b. As explained above, when the

assumptions hold, the extreme points are such that (a) xo C {0, 1}, (b) yT = max{xf +

X7 - 1,0} E {0, 1} for ij c E-, and (c) ym = min{xm, xm} E {0, 1} for ij C E+, is feasible

for LP2. Any such point immediately satisfies y< < 1 for all edges (i, j), and xm < 1 for

all nodes i (i.e., constraints (i) and (ii)). The upper bound constraints yT < xT, x7 for

edges (i, j) C E~ (i.e., constraint (iii)), hold since y = 1 only when xT = x7 = 1 (recall

that for (i, j) C E-, we have ym = max{xm + x7 - 1, 01). The lower bound constraints

x' + x7 - 1 yg for edges (i, j) C E+ (i.e., constraint (iv)), hold since yT = 0 only when

xm = 0 or x =0 (recall that for (i, j) E+, we have y7 = min{xm, xj}).

Summarizing, using Lemma 4.3.3 we conclude that when Assumptions 4.3.1 and 4.3.2

hold, any extreme point of LP2b is a feasible integral solution of LP2. In addition, when

Assumption 4.3.2 holds, an optimal solution to LP2b exists and is one of these extreme

points (Lemma 4.3.2). Hence, we conclude that when both assumptions hold the optimal

solution of LP2b is a feasible integer solution of LP2. Since LP2b is obtained by relaxing

some constraints of LP2, this solution is also optimal in LP2. Hence, we conclude that LP2

has an optimal integer solution under Assumptions 4.3.1 and 4.3.2. El

This result suggests that when Assumptions 4.3.1 and 4.3.2 hold, the efficient allocation

can be found by solving the linear optimization problem LP2. In Section 4.2.2, we establish

that this result also implies that LP1 has integral optimal solutions under these assumptions.
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4.3.2 Existence of a Walrasian Equilibrium

We next establish a relation between LP1 and LP2, and subsequently use this to conclude

that a Walrasian equilibrium exists, when Assumptions 4.3.1 and 4.3.2 hold.

Theorem 4.3.2. If LP2 has an optimal solution that is integral, then so does LP1.

The proof of this theorem can be found in Section 4.7. The main idea behind the proof

is to establish that for any feasible solution of LP1, it is possible to construct a feasible

solution of LP2 with the same objective value, and conversely for any feasible integral

solution of LP2, it is possible to construct a feasible integral solution of LP1 again with the

same objective value (see Figure 4-3). These two facts immediately imply that when LP2

has an optimal solution that is integral, this solution leads to a (weakly) larger objective

value than all feasible solutions of LP1. Moreover, there exists a feasible integral solution

of LP1 with the same objective value. Thus, this solution is an optimal solution of LP1.

Feasible set of LP1

Integer extreme point of
LP1

Integer
extreme

Feasible point o
set of LP2 LP2

Figure 4-3: A feasible solution {xT, ygj} to LP2 can be constructed from a feasible solution
{x m (S)} of LP1 (by setting xo = Esi sx m (S),y! = ESieCSxm(S)). These solutions
have the same objective values in the corresponding optimization problems. Additionally,
the feasible integer points of LP2 correspond to the feasible integer points of LP1. Thus, if
LP2 admits an optimal solution that is integral, then so does LP1.

An immediate consequence of this result is that a Walrasian equilibrium exists for tree
valuations that satisfy the sign consistency condition.

Corollary 4.3.1. Let Assumptions 4.3.1 and 4.3.2 hold. Then, LP1 has an integral optimal
solution and a Walrasian equilibrium exists.

Proof. It was established in Theorem 4.3.1 that under these assumptions LP2 has an integral
optimal solution. Theorem 4.3.2, implies that in this case LP1 also has an integral optimal
solution. However, as stated above this is a necessary and sufficient condition for existence
of a Walrasian equilibrium. 0
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Since graphical valuations can capture both value complementarity and substitutability,
this result implies that a Walrasian equilibrium exists in settings where both are present,
provided that the value structure satisfies Assumption 4.3.1 and Assumption 4.3.2.3 As

we demonstrate in Chapter 6, this result can be used to obtain iterative auction formats

that rely on anonymous item pricing, terminate at a Walrasian equilibrium, and guarantee
efficiency for sign-consistent tree valuations.

4.4 Relaxing the Assumptions

In the previous section, under Assumptions 4.3.1 and 4.3.2, we provided LP formulations

that can be used to find the efficient outcome, and established the existence of Walrasian

equilibrium. In this section, we show that if we relax these assumptions, then a Walrasian

equilibrium need not exist, and the LP formulations LP1 and LP2 need not have optimal

solutions that are integral.

4.4.1 Sign Consistency

We first focus on the sign consistency condition of Assumption 4.3.2, and show that if

players have edge weights with different signs, the LP formulations do not lead to integral

solutions.

Consider a setting with two bidders m, k and two items i, j. Assume that the valuations

of bidders are represented with graphical valuations (see Figure 4-4), such that

* wM =wm =w =5.

Swk = = 101, w = -10.

Observe that the graphical valuation in this example satisfies Assumption 4.3.1 but not

Assumption 4.3.2.

Wm= 5 5 5

Wk= 10 -10 10

Figure 4-4: The weights for player m is given above the nodes/edges, and those for player
k are given below them.

Note that the optimal integral solutions of LP1 result in a total welfare of 15 (this can

be obtained either by assigning both items to player m, i.e., x m {ij}) = xk(0) = 1, and
3 Another class of valuations for which a Walrasian equilibrium exists, and valuations can exhibit both

complementarity and substitutability, is the class of gross substitutes and complements (Sun and Yang,
2006). The class of valuations that satisfy Assumptions 4.3.1 and 4.3.2, on the other hand, is not contained
in this class, as explained in Section 4.6. Thus, our result here establishes existence of a Walrasian equilibrium
for a distinct and important class of valuations.
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X1(S) = 0, for remaining S and 1 E {m, k}; or assigning one item to m and the other

one to k, i.e., x m ({i}) = xk({j}) 1 and x1(S) = 0, for remaining S and 1 C {m, k}).

On the other hand, consider the following solution of LP1: x m (ij) xm(0) = 1/2,

Xk(I) = Xk({j}) = 1/2, and xm (i}) xm ({j}) = xk'ij) = xk(0) = 0. Feasibility of

this solution can be immediately checked. The objective value associated with this solution

equals to

x m ({i, j})vM ({i,j}) + xm(0)vm(0) + Xk ({}v({}±k({i})vi})

1
= -(15 + 0 + 10 + 10) = 17.5.

2

Note that the objective value associated with this solution is larger than the objective of

the optimal integral solution of LP1. Thus, LP1 does not have an optimal solution that is

integral. This implies that a Walrasian equilibrium does not exist for the given valuations.

Additionally, by Theorem 4.3.2, we conclude that for this example LP2 cannot have an

optimal solution that is integral.

Observe that the fact that the LP formulations do not have optimal integral solutions

imply that the underlying polytopes are not integral, and they have extreme points with

nonintegral coordinates. Remarkably, despite presence of such extreme points, Theorem

4.3.1 and Corollary 4.3.1 establish that LP2 and LP1 have optimal solutions that are integral

when Assumptions 4.3.1 and 4.3.2 hold (observe that Assumption 4.3.2 has no impact on

the underlying feasible region, hence extreme points with nonintegral coordinates exist even

when this assumption holds).

4.4.2 Value Graphs with Cycles

Next, we establish that if the underlying graph has a k-cycle (i.e., a cycle that involves k

nodes, where k > 2), then the LP formulations can have optimal solutions that are not

integral.

Assume that there are N nodes (items), and the nodes 1, . . . , k of the underlying graph

are in the form of a cycle.

We first consider the case where k is odd. Let there be M = k players. Further assume

that all players have weights equal to zero for all nodes. We associate nonzero edge weights

only with the edges contained in the cycle, i.e., edges (i, j) such that 1 < i, j < k, j = i + 1

in mod k. In particular,

" For players m E 1, ... ,k-1}, weassumethat w =c >0 if i=m, j=m±1 and

wm = 0 otherwise.

* For player m = k, we assume that w => 0 if i = m, j =1 and wm = 0 otherwise.

Observe that the value of the optimal integral solution of LP1 is upper bounded by

c[$J. This is because if the weight of edge (i, i + 1) contributes to the objective by c, it
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should be that player i (who is the only player with positive value for this edge) receives
the items at its end points. However, this implies that the weights of the neighboring edges
(i - 1, i) and (i, i + 1) do not contribute to the objective (since player i has value equal to
0 for these edges, but she acquires nodes i and i + 1, no other player can benefit from the
edge value of these edges). Thus, at most half of the edges can contribute to the welfare,
and the resulting welfare is bounded by E [j (where floor operation is present, since at an
integral solution the total welfare will always be an integer multiple of E).

On the other hand, consider the following solution of LP1:

* For players m E {1,. . . , k - 1} we assume that x m ({m, m + 1}) = x m (0) 1/2 and

xm (S) = 0 for the remaining bundles S.

" For player m = k, we assume that xm ({m, 1}) = xm (0) = 1/2 and x m (S) = 0 for the

remaining bundles S.

The feasibility of this solution in LP1 can immediately be checked. Observe that the

objective value of LP1 associated with this solution is

Zx (S)v"(S) = E = ek/2.
m S m

Thus, when k is odd, we observe that the optimal value of LP1 is larger than the value of

the optimal integral solution. Thus, LP1 does not have an optimal solution that is integral.

This implies that (i) LP2 does not have an optimal solution that is integral (from Theorem

4.3.2), (ii) a Walrasian equilibrium does not exist.

If k is even, we slightly modify the above construction. In this case, we assume that

there are m = k - 1 players. As before, players have zero weights for all nodes, and the
edge weights are such that

" For players m C {1, ... ,k - 2}, we assume that t = > 0 if i = m, j = m + 1 or

i = m + 1,j= m +2 and wT = 0 otherwise.

" For player m = k - 1, we assume that wn = c > 0 if i = k, j = 1 and w = 0
otherwise.

It can be shown that the value of the objective at an integral solution of LP1 is upper

bounded by E(k - 2). In particular, there are two cases to consider: (i) player k - 1 receives

a bundle containing edge (k, 1), (ii) player k - 1 does not receive a bundle containing this

edge. In case (i), it can be seen that the contribution of edges (1, 2) and (k - 1, k) to the

objective function is equal to zero (since at least one end point of these edges is assigned to

player k who has no value for the corresponding edges). Consequently, the maximum welfare

is bounded by c(k - 2). In case (ii), it can be seen that the total welfare is immediately

bounded by e(k - 1), since none of the other players other than k - 1 have a positive value
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for edge (k, 1). On the other hand, for total welfare to be equal to 6(k - 1), we need all

remaining edges to have a contribution of E to the objective. This requires assigning all

edges to a single bidder (otherwise, weights associated with some edges do not contribute

to the objective, since the end points of some edges are not assigned to a single bidder).

However, no single bidder has a strictly positive weight for more than 2 edges. Thus, it

follows that in this case the welfare is strictly less than e(k - 1). Since for integral solutions,

welfare is a multiple of E, it follows that in case (ii) the total welfare is bounded by E(k - 2).

We consider the following feasible solution of LP1:

* For players m E {1, .. , k - 2} we assume that xm({m, m + 1, m + 2}) = xm(0) = 1/2

and x m (S) = 0 for the remaining bundles S.

* For player m = k - 1, we assume that x m ({k, 1}) = xm(0) = 1/2 and xm (S) = 0 for

the remaining bundles S.

It can be checked that this solution is feasible in LP1. Moreover, the corresponding objective

value is given by

k-226 1(E= k-+ )

Z ZxM(S)v"(S) = Z2e+ ) = (k -2 + .)
m S m=1

As before, the optimal solution of LP1 leads to a larger objective value than the optimal

integral solution. Hence, LP1 does not have an optimal solution that is integral. Thus,

a Walrasian equilibrium does not exist, and LP2 cannot have an optimal solution that is

integral.

For k = 3 and k = 4, the above constructions are illustrated in Figures 4-5 and 4-6. To

simplify the figures, the nodes 1, 2,... in our construction are relabeled as A, B,... in the

figures.

We conclude that both the tree graph assumption, and the sign consistency condition are

critical for the existence of a Walrasian equilibrium, and the existence of optimal solutions

to LP formulations LP1 and LP2 that are integral. Hence, when these assumptions are

relaxed, it may not be possible to implement the efficient outcome using iterative auction

formats that rely on anonymous item pricing rule, and terminate when a market clearance

condition holds. In the next chapter, we establish that in those cases efficient iterative

auctions can still be developed by considering more general pricing rules.

4.5 Summary

In this chapter, we focused on a special class of graphical valuations, where the underlying

value graph is a tree, and edge weights satisfy a sign consistency condition. We established

that under these assumptions, a Walrasian equilibrium always exists. Additionally, the

existence of a Walrasian equilibrium immediately suggests a linear programming formulation
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IA00 01I0
1,0,0 0,1,0

B C B C

Figure 4-5: Value graphs for k-cycles (left k = 3, right k = 4). We assume there are three
players, and node weights are equal to zero for all players. The labels associated with the
edges designate the edge weights for players (scaled by 1/E). In particular, if the edge label
is the triple w 1 , W2, w 3 , this implies that each player i has weight wie associated with edge
i. For the figure on the left, the optimal integral solution of LP1 results in an objective
value of E, whereas for the figure on the right, this value is 2E.

Player I = (I/2) Player 2 = (I/2)

A A Player 3=(l/2)

A D

B C A
Player I=(I /2) Player 2=(1/2)

B C

Player 3 = (1/2) B C B C

Figure 4-6: For the valuations given in Figure 4-5, the optimal solution of LP1 is not integral.
It can be seen that the fractional assignments given above lead to larger objective values
than the integral solutions provided in Figure 4-5. The solution given on the left suggests
setting xl({AB}) = X2 ({BC}) = x 3 ({CA}) = 1/2 and x'(0) - X2(0) _ X3(0) 1/2.
The solution on the right suggests, setting xl({ABC}) = x 2 ({BCD}) = x3 ({DA}) = 1/2
and x1 (0) = X2(0) = X3(0) = 1/2. The objective value corresponding to the solution on
the left is e, the optimal value corresponding to the solution on the right is 2e. Observe
that in both cases the obtained solutions result in strictly larger objective value than the
corresponding optimal integer solution.
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that can be used to identify the efficient allocation. We also demonstrated that if the tree,
or the sign consistency assumption is relaxed, then the LP formulations that we provide in

this section may not allow for finding the efficient outcome, and a Walrasian equilibrium

need not exist. This suggests that in order to identify the efficient outcome for more general

graphical valuations, a different and more complex LP formulation may be necessary. We

provide such LP formulations in Chapter 5.

4.6 Appendix: Gross Substitutes and Complements Condi-

tion and Graphical Valuations

In this section, we explain how graphical valuations and tree valuations are different from

other well-studied classes of valuation functions in the literature. In particular, we focus

on the classes of gross substitutes and complements, gross substitutes, sub/superadditive,

sub/supermodular valuation functions, and compare those with graphical valuations.

It was established in Section 4.3 that when the underlying value graph has a tree struc-

ture, and the valuations satisfy sign consistency, a Walrasian equilibrium exists. This result

allows us to identify a class of valuation functions which exhibit both value complemen-

tarity and substitutability, and for which a Walrasian equilibrium exists. Gross substitutes

and complements (Sun and Yang, 2006, 2009), defined below, is another class of valuation

functions that satisfies a similar property.

Definition 4.6.1 (Gross Substitutes and Complements (GSC)). Assume that the set of

items is partitioned into two sets S1, S 2 such that S 1 n S 2 = 0, S1 u S 2 = N. Consider the

valuation function v : N -+IR. Denote by e(k) the kth unit vector, and D(p) the demand

function associated with price vector p G RN, i.e., D(p) A argmaxscg v(S) - EisPi-

We say that v has the gross substitutes and complements property if for j C {1, 2}, any

price vector p C RN, k C S, 6 > 0, and D1 C D(p), there exists D2 c D(p + 6e(k)) such

that (a) [DI n Sj] - {k} C D 2 and (b) Dc n Sc c Dc.

Intuitively, this definition suggests that the items in sets S1 and S2 are substitutes

among themselves (in the sense that if the price of a demanded item in one of these sets

increases, the demand for the other demanded items in the same set does not decrease,
[DI n S] - {k} c D 2 ). Additionally items are complements across Si and S2 (in the sense

that if the price of a demanded item in set Si increases, then fewer items are demanded in

set S 2 , Dc n Sj c D).

We next illustrate that tree (and hence graphical) valuations need not satisfy the GSC

property, by considering the tree valuation provided in Figure 4-7. Assume that this valu-

ation satisfies the GSC property. There are three different ways of choosing sets Si and S2

(due to symmetry all other cases follow from the analysis here): (i) Si = {A, B, C}, S 2 = 0,
(ii) Si {A}, S 2 = {B, C}, (iii) Si ={A, C}, S2 = {B}.
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WA=1 WB=2 WC=1

WAB=-l WBC=-l

Figure 4-7: A tree valuation that violates the GSC property.

We will show that the GSC property fails in all of these cases, and hence the value

function given in Figure 4-7 does not exhibit the GSC property for any choice of {Sj}.
Assume that

" Initially, the prices are pi(A) = 0.1, pi(B) = 0.5, pi(C) = 0.1, and the corresponding

demand is D(pi) = {A, C}.

" Then, the price of the first item is increased, and the new prices are p 2 (A) = 1,

p2 (B) = 0.5, p2 (C) = 0.1. It follows that the demand is D(p 2 ) = {B}.

This implies that the GSC property fails whenever A and C belong to the same Si (note

that by choosing Di {A, C}, D2 = {B}, k = A, the condition [Di n Sj] - {k} C D 2 fails).
Thus, to check the GSC property it is sufficient to focus on case (ii). On the other hand, if

S1  {A}, S 2 = {B, C} then the condition D, n Sj C D' fails (this can be seen by choosing

j = 1, Di {A, C}, D 2 = {B}, k = A). This implies that the GSC property fails in case

(ii) as well.

Hence, we conclude that for any choice of the {S,} sets, the GSC property fails for the

value function in Figure 4-7. Thus, it follows that tree valuations are not contained in the

class of GSC valuations. GSC generalizes the well-known gross substitutes class (Gul and

Stacchetti, 1999), where Definition 4.6.1 holds with S 2 = 0. Thus, our results also imply

that tree valuations do not satisfy the gross substitutes property.

We emphasize that this conclusion still holds, if edge weights are not restricted to be

negative as in the example, and allowed to be positive or negative. For instance, consider

the tree valuation provided in Figure 4-8. Observe that this graph is obtained from Figure

4-7 after relabeling the nodes, and setting a positive edge weight to edge (A, C). Here,

the nodes are relabeled in order to have the same demand sets as in the previous example

(Figure 4-7).

WA=1 Wc=2 WB=1

WAC=1 WBC=-l

Figure 4-8: A tree valuation that violates the GSC property, and has edge weights with

mixed signs.

Similar to the previous example assume that
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" Initially, the prices are pi(A) = 0.1, p1(C) = 1.5, pi(B) = 0.1, and the corresponding

demand is D(pi) = {A, C}.

" Then, the price of the first item is increased, and the new prices are p2 (A) = 4,

p2 (C) = 1.5, p2 (B) = 0.1. It follows that the demand is D(p 2 ) = {B}.

Since demand sets are identical to those in the previous example (and only the price of the

same item is increased), using similar arguments as before it follows that GSC condition

does not hold for the example in Figure 4-8.4

We next investigate the additional structural assumptions under which graphical val-

uations exhibit the GSC property. Assume that the underlying value graph consists of

connected components of size at most two. Note that in this case, valuations are additive

over different connected components, and hence in order to test the GSC condition it suffices

to restrict attention to subsets of the demand set that are contained in a given connected

component of the graph.

Consider a pair of nodes (i, j) connected with an edge. Assume that w < < 0 and at

a given price vector p item j belongs to a demand set D 1 . We claim that if the price of

item i increases, then the demand for item j cannot decrease. The claim is immediate if

i ( D1, i.e., i is not demanded at the original prices. Assume that i E D 1 . Observe that

this implies that w7 + wT - pj > 0, since otherwise bidder m. can improve her payoff by

not receiving item j at the price vector p, and hence j V D 1 . On the other hand, since

w, < 0, it follows that w - p3 > w ± w! -p > 0. Thus, at the updated prices bidder m

still maximizes her surplus by either receiving item j together with i or in isolation. Hence,

item j belongs to a demand set after the price update, and condition (a) of Definition 4.6.1

holds by assigning items (i, j) to the same set Si or S2.

Conversely, assume that w' > 0 and at price vector p, item j does not belong to a

demand set D1 . We claim that if the price of item i increases, then the demand for item j
cannot increase. As before, the claim is immediate if i V Di. If i E D 1 , and j V D 1 , then

it should be the case that w7 + w7 - pj < 0. Moreover, since wT > 0, this implies that

w7 - p, < w7 + w' - pi < 0. Note that after the price update this inequality continues

to hold. Thus, it should be the case that there is a demand set to which item j does not

belong after the price update. Hence, condition (b) of Definition 4.6.1 holds, by assigning

items (i, j) to different sets Si and S2 .

These observations imply that if the underlying graph consists of components of size at

most two, the GSC condition holds, by assigning items that are connected with a positive

weight to different sets Si and S2 (see Definition 4.6.1), and items that are connected with

4 Note that in this example, unlike the one in Figure 4-7, the case Si {A, B}, S 2 = {C} needs to be
handled separately, as the edge weights are no longer symmetric. However, it immediately follows that in
this case the GSC condition cannot hold. To see this consider increasing the price of item C (significantly),
as opposed to A, in the example. After the price update the demand set becomes {A, B}, violating the GSC
condition associated with this choice of the sets S1, S 2.
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a negative edge to the same set.5 Since our examples indicate that even for trees with three
nodes the GSC property can fail, this result suggests that only a restrictive subclass of tree
valuations (that consist of connected components of size at most two) satisfies the GSC
condition.

We close this section by discussing the relation of graphical valuations to subaddi-
tive/superadditive and submodular/supermodular valuations. A valuation function is sub-
additive if for any sets A, B c IV, it satisfies v(A U B) < v(A) + v(B), and superadditive,
if for disjoint A, B, it satisfies v(A U B) > v(A) + v(B). Similarly a valuation function
is submodular if for any sets A, B it satisfies v(A U B) + v(A n B) < v(A) + v(B), and
supermodular if v(A U B) + v(A n B) > v(A) + v(B). These inequalities imply that for
nonnegative valuation functions, submodularity implies subadditivity.

It can be easily checked that if all edge weights are positive (negative), graphical val-
uations are superadditive and supermodular (subadditive and submodular). On the other
hand, if there is an edge with negative (positive) weight, the supermodularity/superadditivity

(submodularity/subadditivity) condition cannot hold (consider A, B as singletons corre-
sponding to the end points of this edge). Since the weights of different edges in our model
can be positive or negative, it follows that even for the case of trees, graphical valuations
are not contained in these classes. Hence, we conclude that the results presented in this
chapter do not immediately follow from the known results for the aforementioned classes of
valuation functions.

4.7 Appendix: Proofs and Additional Results

Proof of Lemma 4.3.2: Note that due to the linear structure of the problem (and nonempti-
ness of the feasible region), it is sufficient to prove that the objective value of this problem

is bounded, to establish that the problem has an optimal solution.

Consider any feasible solution (x, y) of LP2b. Observe that E. z$ 1 and Zx > 0
implies that xm < 1. Since wT < 0 for (i, j) E E-, wo > 0 for (i, j) E E+; and y > > 0 for

(i, j) E E-, yT < x, xo < 1 for (i, j) E E+ it follows that the objective value for (x, y)
satisfies:

m iGN m ijEE m iEN m ijEE+ m ijEE-

m icN m ijCE+

(4.6)
Thus, the objective value is bounded for any feasible solution of LP2b, and it follows that

this problem has an optimal solution. E
5 A similar conclusion holds for gross substitute valuations: a graphical valuation satisfies the gross

substitutes condition, if the graph consists of connected components of size at most two, and the edge
weights are negative.
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Proof of Lemma 4.3.3: We make use the following claim, to establish the lemma.

Claim 1. Assume that there are at least two bidders, and Assumptions 4.3.1 and 4.3.2

hold. Let (x, y) be a feasible solution of (LP2b) such that for some node i, and player m,
xT E (0,1); and Emx = 1 for allj.

For any player k 7 m such that x > 0, and sufficiently small E > 0, there exist two

feasible solutions (2, y) and (t, 9) to (LP2b) such that:

e *M = xT + E, = Xk -E

"1M=X -l El = X +

= x for 1 t m, k

e(x, Y) = }(, ) + }2 )

We will prove this claim, but first we show how this claim implies the lemma.

Observe that this claim immediately implies that the feasible solutions of LP2b for which

(i) xm* E (0, 1) for some node i, and player m*, (ii) EmcM x7 = 1 for all j, cannot be an

extreme point. This is because, at any such solution there are at least two bidders (for the

second condition to hold at node i), and by the claim this solution can be expressed as a

convex combination of two other feasible solutions (z, g) and (:, y).
Consider an instance of LP2b with a set of agents M, and a feasible solution of this

problem for which (i) x'* E (0, 1) for some node i, and player m*, (ii) and EmcM xm < 1

for some j. We next construct a relevant problem instance, and applying the claim to this

problem instance, establish that the original solution to LP2b, denoted by (x, y), cannot be

an extreme point.

For each node j for which EmEM x7 < 1, we define a fictitious agent sj, and consider

LP2b with the addition of these new agents. We define a new solution for this problem

(z, () such that z' = x7, (g = y for all nodes j, k and agents m E M present in the

original problem. For each fictitious agent sj we set x' = 1 - EmcM xT, and x / = 0 for

nodes i' 7 j, (P, = 0 for all edges (i', j') E E. Observe that this solution is feasible in the

new instance of LP2b with fictitious agents. This is because, the new solution is identical

to the original solution for all agents but the fictitious ones. The variables corresponding to

fictitious agents, on the other hand, are set such that sum of z' variables over all players

m (m E M, or m is a fictitious agent) is equal to 1 at all nodes. Since every fictitious

agent m has nonzero z exactly at one node i (by construction), it follows that setting (
equal to zero for all edges of fictitious agents does not violate any constraints associated
with edges (i.e., constraints 2 - 4 in LP2b). These facts imply feasibility of (z, () in the new
formulation with fictitious agents.

Since xT* E (0, 1) in the original formulation, it follows that zT* E (0, 1) in our new
formulation. Note that Claim 1 implies that there are feasible solutions (2, () and (2, () to
LP2b with fictitious agents, such that (z, 2) ) } ), such that 4n* = zT* - E
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X* - cand 2"'* = Z* + = x* +. Let (x, g) and (s, i), respectively denote the restriction
of (2, C) and (2, () to agents other than the fictitious agents (i.e., 2, 1, correspond to the

component of i, 2 associated with bidders m E M, and similarly for g, #).
Observe that these solutions are feasible in LP2b with set of agents M. To show this,

we only need to establish feasibility of constraints EmeM 2 < 1 and EmeM sQ 1 for

every node j, since feasibility of the remaining constraints follow from feasibility of (z, C)
and (2, ) in the formulation with fictitious agents. On the other hand, the feasibility of

EZmeM 2 < 1 when the set of agents is M follows because feasibility of (2,C) in the

formulation with fictitious agents implies that

S m+' T3 5 +S
mEM mCM

and hence EmcM . T 1 - z' < 1. Similarly, feasibility of EmM < 1 follows from

the feasibility of (2,() in the formulation with fictitious agents.

Thus, we conclude that (z, g) and (2, Q) are feasible solutions of LP2b when the set of

agents is equal to M. Since, (z, () = ) + j(2, (); and (z, g), and (J, Q) are obtained

by restricting (2, ) and (2, ) to the set of agents M, it follows that

(x,y) = (z, g) + 1 ( , ). (4.7)
2 2

Finally, since T* =f* =zm* - E = * - E and xm* = im* = z* + c = om* + c, it

follows that (t, g) and (s, y) are feasible solutions that are different than (x, y). Equation

(4.7) implies that (x, y) can be expressed as a convex combination of two feasible solutions.

Hence, we conclude that (x, y) cannot be an extreme point of the feasible region of LP2b.

Thus, it follows that if Claim 1 holds, (x, y) such that xT* E (0, 1) for some m* and i,

cannot be an extreme point of the feasible region of LP2b. We next complete the proof of

Lemma 4.3.3, by proving Claim 1. L

Proof of Claim 1: We will prove the claim via induction over the number of nodes N of the

tree. Observe that for N = 1, the claim trivially holds by considering solutions ,2 and ;

described in the statement of the claim, since when there is only a single node, there are no

constraints associated with the edges, and feasibility in LP2b directly follows by observing

Assume the claim holds for a tree with at most N nodes. We next prove that it holds

for N + 1 node trees as well. The intuition behind the proof for N + 1 node trees can be

explained as follows: Assume that for some players m, k, and node i, in the N + 1 node

tree we have xT, X E (0, 1). We consider some node j adjacent to i and modify the initial

feasible solution (x, y) by perturbing xT, xo, of and x such that the feasibility conditions

related to edge (i, j) (i.e., constraints involving variables y.j) are satisfied. We consider the

tree graphs induced by cutting the original tree graph at this edge. For each of these tree
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graphs, the induction hypothesis suggests that it is possible to find solutions that satisfy

the claim, and that are consistent with the perturbed values of xo, x7, x and xk variables.

These feasible solutions can be used to construct feasible solutions to the problem for the

N + 1 node tree, and establish the result. Thus, the main idea behind the proof can be

summarized as follows: If the claim holds for tree graphs with at most N nodes, then the

claim for any N +1 node tree graph can be established, by adjusting the feasible solution at

the end points of an edge, and reducing the problem to constructing new feasible solutions

for tree graphs with fewer number of nodes. The induction hypothesis can be used to

construct such solutions for tree graphs with fewer number of nodes. Using these, we can

construct solutions for the N +1 node tree, satisfying the conditions stated in the statement

of the Claim. The proof idea is also illustrated in Figure 4-9.

+-E+8 -E

Figure 4-9: Assume that we can perturb the x, x, x and xk variables in two nodes, i
and j, such that feasibility conditions on the edge (i, j), and its end points are satisfied.
Consider the tree graphs induced after deletion of edge (i, j). For each of the induced
subgraphs, a solution that satisfies the feasibility conditions can be constructed using the
induction hypothesis. A feasible solution for the N +1 node graph can be constructed using
the feasible solutions for these subgraphs.

We next formally prove the claim. Let i be a node chosen as in the statement of

the claim. Denote a neighbor of i by j Consider the subtrees Ti (containing i), and T2

(containing j) that can be obtained by deleting edge (i, j). These trees have fewer than

N + 1 nodes. Observe that restriction of (x, y) to these subtrees, denoted by (x, Y)T, and

(x, Y)T 2 satisfy the feasibility conditions in LP2b, for these trees.

To prove the claim we make use of Lemma 4.7.1, (proof of this lemma is given after the

proof of the claim):

Lemma 4.7.1. Let {x'}i, {x} 1 and {y} be a restriction of a solution (x, y) of LP2b to

the induced subgraph of nodes {i, j} such that

(i) Ei x' 1, and Ei x=1,

(ii) For node i, there are at least two players m, k, such that xm,xi C (0,1),
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(iii) ({ t}i, {x}1 , {x }1 ) is such that the feasibility conditions associated with edge (i,j)
and nodes i and j, are satisfied (i.e., y* < 5 x. if (i, j) E E+ and 0, x + x - 1 y
if (ij) E E-, x, x '> 0

For some players b, c G M, constants a E [0,1], z c ER (for all 1), there exists another
solution {1}', { } and {Q 11 such that for any e where |e| > 0 is sufficiently small, this
solution satisfies conditions (i)-(iii), and

1. X' ± ey :k Xk ,S x for1 ,4k7 m,

2. = x +ac, Hc = x-ae (where potentially {k,m} n {b,c} f 0), x = for 1 $ b,c

3. Q = y + z e.

Consider bidders m, k, node i, and feasible solution (x, y) given in the statement of
Claim 1. Observe that for a node j adjacent to i, the feasible solution (x, y) is such that
{x1} 1 , {x}i, and {y}i 1 satisfy the conditions of Lemma 4.7.1. Thus, using this lemma, for
sufficiently small e, we can obtain { {I };, and {i}', satisfying conditions 1-3 given in
the statement of the Lemma. Similarly, replacing e by -e, we can construct {z}i, {

and that satisfy the conditions 1-3 for -e

Focus on the constructed {i }i and {z }1. The induction hypothesis suggests that when e
is sufficiently small, there exists two feasible solutions associated with the tree T 1 , denoted

by (;, i)T, and (z, g)T, that are consistent with the constructed {i and {2};. In
particular, these solutions are such that

*x m  ~ ± ; k Xk-

*xr T = j x k ± E+E

* s1 x1 for l 7 m, k

* (x, y) 1 = -2 , 1 T,)1.

Similarly, using the constructed {}and {}, and the induction hypothesis, we con-
clude that there exists two feasible solutions associated with the tree T2 , denoted by (, )T2 ,
and (., g)T2 that satisfies (where if a = 0, we have = = x and y y)

e*b = x- ae 7 = X + ae
33 3

l= = x for 1 7 b, c

S(x,y)T2 = W&zg)T2 + -(2,(')T 2

Let (1, i) be a solution to the original problem such that
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(i) it agrees with (i2, Q)T on nodes/edges of T1 , i.e., for any nodes ni, n2 C T and player

1, the variables xi and yi have identical values in (, ) and (, Q)T1 ,

(ii) it agrees with ( y)T2 on nodes/edges of T 2 ,

(iii) {yj }1 is as given above. It is constructed using Lemma 4.7.1, i.e., 1 ±y + zjge.

Lemma 4.7.1 suggests that (2, y) is a feasible solution of LP2b (for the original graph).

Feasibility of constraints, associated with nodes/edges of T1 follow since (2, Q) agrees with

(iz, y)T, over T1 . Similarly, feasibility of constraints, associated with nodes/edges of T2 also

follow. Finally, feasibility of the constraints involving edge (i, j) follow, since {yj }1 are

constructed using Lemma 4.7.1, and hence satisfy the feasibility constraints.

Similarly, we denote by (2, g) a feasible solution to the original problem such that it

agrees with (z, 9)r 1 on nodes of T 1 , it agrees with (J, g)T 2 on nodes of T 2 , and {pj-}1 is

constructed using Lemma 4.7.1 (i.e., yjg = yj - z)
We claim that (2, Q) and (z, g) are not only feasible, but also by construction they satisfy

the conditions of Claim 1. In particular, (x, y) = } (z, )+ (, 9). This is the case since by

construction (x, y)T and (x, y)T2 also satisfy a similar condition, and hence for (x, y) this

condition immediately holds for all nodes and edges except for (i, J). For edge (i, j), on the

other hand, this condition follows from Lemma 4.7.1, and the fact that i , = yj + zlc and

-Jl = yj - z 7e. The first three conditions of the Claim also immediately follow since, by

construction (x, Y)T, and (x, y)T2 also satisfy similar conditions. Thus, we establish that for

N + 1 node graphs, the claim still holds. Therefore, by induction, the claim follows for any

tree graph.

Proof of Lemma 4.7.1: We prove the lemma by focusing on two main cases: (ij) E E+

and (ij) C E-. In both cases, we specify a and {z .-} and use conditions 1-3 of the

Lemma to construct the new solutions. Consequently, the solutions we obtain immediately

satisfy conditions 1-3, and hence it is sufficient to show that the constructed solutions

satisfy conditions (i)-(iii) to complete the proof. Note that the conditions 1 and 2 of the

construction and the fact that El x = ' = 1, immediately imply that E1  .=E

1, i.e., requirement (i) is satisfied by the construction. Similarly since x', xi E (0, 1), and

m- zf, i - cl e as a consequence of condition 1 in the construction, it follows that

for sufficiently small lE1, 7, Ef E (0, 1). That is, requirement (ii) is always satisfied. Thus,
at each case we consider below, we only need to show that the constructed solution satisfies

condition (iii) of the lemma.

Case A: (i, j) E E+ In this case, we need to choose a, b, c, and {zb-} so that y. < x, x1-

for all 1. We complete the proof by focusing on three subcases:

A1: x' f on, x ' X :
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Let 7' = arg min,, 3 }I xm, and yk - arg minnEi} 4. In this case we choose a = 0

(so choice of b, c does not matter), z A = 1 if 7m = i, z.= 1 if 7k = i, and z' = 0

otherwise. Note that if 7m = j, then x" < xT, and hence for sufficiently small e

ij Yj- .7 .7- i

On the other hand if 7m = i, then x14 < x", and hence for sufficiently small E

By symmetry it also follows that Qk < - k, . These inequalities imply (iii) for

1 E {m, k}. This condition also trivially follows for 1 7 {m, k}, since for these bidders
i= , = x' and = y1 by construction.

A2: xi = x, ox = x:

In this case, we let a = 1, b = m, c = k, and z! = 1, zk = -1, and z = 0 for

1 : {m, k}. This construction suggests that

92 = yij + E < xT + C = xT" + E < &" = i ". (4.8)

By symmetry, the above inequality holds for k by replacing c by -E. These inequalities

imply (iii) for 1 C {m, k}. This condition also trivially follows for 1 $ {m, k}, since for

these bidders = z , 3 = x1, and Qj' = y by construction.

A3: x" # x4,xi =xk or x4 = xM X 4, o X .

Without loss of generality assume that x = x7, xo $ . The other case follows by

symmetry.

First assume that xo < x1 . In this case we choose a = 1, b = m, c = k, and zm = 1,
zk =-1, and z = 0 for 1 7 {m, k}. This construction implies that (4.8) holds for

bidder m. On the other hand, for bidder k, we have

; k k E< Xk _ =.k < XkC= k
Yij =Yij 2- .7 j

where the last inequality follows that E is sufficiently small and xi < o4. Thus, we

obtain (iii) for 1 C {m, k}. This condition also trivially follows for 1 # {m, k}, since

for these bidders xi =x, x = x3, and Q= yj by construction.

Next assume that 4f > xA. In this case, since E, x = 1. = 1, there exists some

bidder r such that Z[ < x. We choose a = 1, b = m, c = r, and z! = 1, and z1. = 0

for 1 7 {m, k}. As before, this construction implies that (4.8) holds for bidder m. On
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the other hand, for bidder k we have

where the second inequality holds for sufficiently small c, since .4 > i . By symmetry

it follows that < Z, J) as well. Thus, we obtain (iii) for 1 E {m, k, r}. This

condition also trivially follows for 1 ( {m, k, r}, since for these bidders I x
* = X , and Q- = by construction.

an I /i

Case B: (i, j) E E- In this case, we need to choose a, b, c, and {zj} so that + 1 <'

and 0 < Q for all 1. Once again, we obtain the proof by focusing on three subcases:

Bi: xo + xm 7 1, xF +xk 1.

In this case, we choose a = 0, z7 = 1 if y > 0,z= 1ify > 0, and z 0

otherwise.

Note that this construction implies that for sufficiently small E, QV > 0. Thus, we

only need to establish the constraint i + - 1 < 9.

Note that if of + x - 1 < 0, for sufficiently small e, we have f +.27 - 1 < 0 <y.

On the other hand, if xm +x -1>0 (recall that xo + f 1), then it follows from

feasibility of (x, y) that ym > 0. In this case we have

' n+.'n I= xM +x7 1 + E < Y ±6-+

Thus, for bidder m we have if + if - 1 < QT. Note that by symmetry we also have

x + 2 -- 1 < y, and hence condition (iii) follows for bidders {m, k}. Finally, since

for l V{m, k} we have - x1, I x1, and iV = y condition (iii) trivially follows

for these bidders as well.

B2: x + =1, o +x = 1.

Since xo, x E (0, 1), in this case we have x7,x E (0, 1). Let a = 1, b = k,

c = m, and z4j = 0 for all 1. Observe that this construction guarantees that for all 1,
&1 + I = x+ and - y**. Thus, the conditions of (iii) trivially hold for all 1.

B3: x + x-1, x +x k1, or x+x 1, + x =1.

Without loss of generality, we will assume that x ± z = 1, 4x + x 1. The other

case follows by symmetry.

Note that xo + x = 1, xk+x I implies that 4 +x < 1 since x x= X = 1.

Additionally, this suggests that for some r # m (and possibly r = k), we have x > 0,
and x' + x < 1.
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We let a =1, b r, c m, and z = 0 for all 1. Note that this construction
immediately implies Q - yj > 0 for all 1. Thus, we only need to establish the
constraint + 1 - 1 < .

Observe that for 1 # m, we have x + x1 < 1. Thus, for sufficiently small e, we obtain

x+ -1 < 0 < D'. On the other hand, for player m, we have &i + 7 = x+xT and
D yZ by construction. Thus, the constraint follows trivially. Thus, we conclude

that the conditions of (iii) hold for all 1.

These two cases cover all possible scenarios. Thus, we conclude that the conditions

stated in the lemma can always be satisfied for appropriate choice of a, b, c, and {z' }. El

Proof of Theorem 4.3.2. Denote the objective value at an optimal solution of LP2 by OP2,
and the value at an optimal integral solution of LP2 by OP12. Similarly, denote by OP1 and
OPI1 the objective values of an optimal solution of LP1 and an optimal integral solution

of LP1. If LP2 has an optimal solution that is integral, we know that OP2 = OPI2. Also,
since the optimal objective value cannot be larger after imposing the integrality condition,
we have OP1 > OPI1. We next show that OP1 < OP2 and OPI2 < OPI1 to establish

that OP1 = OPI1. Note that this immediately implies that LP1 has an optimal solution

that is integral.

OP1 < OP2: Consider a feasible solution {xm (S)} of LP1. We will show that it is possible

to construct a feasible solution of LP2 with the same objective value.

In particular, let x' = Eslies xm (S) for all m and S, and let yg = ESlijCSXM (S)
Since the feasible solution of LP1 satisfies E. Eslies xm (S) < 1, we conclude that

ZxT= Z x M(S) < 1.
m M slies

Additionally, since xm (S) > 0, we obtain

y> =Z2 x m (S) < E xm(S) <; xT.
sli,jes sliEs

Thus, it follows that the constructed solution also satisfies y! <xf, x7. Finally, for any

ij E E we have

x.+x M -y= M x"(S) + E x(S)- x"(S)

slies sljes slijes

< E x"'(S)+ x"((S)

sliES SljES,ifs

5 x M (S) + E x M (S) 1,
slies sligs
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where the last inequality follows since Es xm (S) < 1.

Summarizing, we established that the constructed x', y' is such that it satisfies: (i)

Em of l, (ii) Y7 < XT, XT, (iii) xT + oT - y< < 1. Additionally, since xm (S) > 0,
we have x >0. Finally, since Ex < l and xo > 0, we have x < 1, and since

ym< x we have y< < 1. These together imply that {xT, yg} is a feasible solution of

LP2.

We next show that the optimal objective values of LP1 and LP2 for the solutions

{x m (S)} and {xy, yg} coincide. Observe that

xm(S)vm(S) = xm(S)(wf + iE
m,S mS iES ijESijcE

S( w : xm (S) + Lmg S Xm(S) (4.9)
m i SlicS ijEE Sli,jES

m i ijCE

Hence, Ems xm(S)vm(S), the objective value of LP1 corresponding to {x m (S)}, is equal

to Em(~ vxV + v ym the objective value of LP2 corresponding to {xm, y}.

That is, given a feasible solution of LP1, there exists a corresponding feasible solution of

LP2, with the same objective value. Since this is true for the optimal solution of LP1 as

well, we conclude OPl < OP2.

OPI2 < OPI1 Consider a feasible integral solution {xT, yg} of LP2. Let Sm

1}. Since Em T < 1, it follows that if xo = 1 then x= 0 for all k # m. Hence,
S fn Sk = 0 for all k # m.

Define {x m (S)} such that for all m, x m (S m ) = 1, and xm (S) 0 for S h S m . Observe

that such a solution satisfies ES xm (S) < 1, and Em Eslies xm (S) = Emigm xm (S m)
1 (where the latter inequality follows since Sm n gk = 0). Thus, it follows that {x m (S)} is

a feasible integral solution to LP1.

Note that feasibility of {xm, ym} in LP2 implies that if xm, x C {0, 1}, then y> E {0, 1}.

More precisely for ij E E, if xo = xT = 1 then y = 1 (since x +xT -1 < y7). Similarly, if

S 0 theny 0(sinceyg x). This implies that y= 1 if and only if xo = x7 = 1.

Observe that the construction of {xm (S)} implies that x = EsliES m (S). This is

because, if xT = 0, then xm (S) = 0 for all S containing i, and if x m (i), there exists exactly

one S (denoted by Sm) for which i E Sm and xm (S m ) = 1. Similarly, our construction

implies that yT = Eslijes xm (S). To see this, note that x = x7 = 1 if and only if

Eslijes xm (S) = 1 (as before if xo = 0, then xm (S) = 0 for all i C S, and if xo= x = 1
then there exists exactly one S, denoted by Sm such that i, j E Sm and x m (S m ) = 1). On

155



the other hand, it was established before that for ij C E, we have y = 1 if and only if
x' = xy' = 1. These imply that ym = sissm(S).I 3 Z3 sic X S

Using xT = Eslics xm (S) and yJ = Eslij s xm (S), the objective value corresponding

to {xf, yZ} in LP2 (given by Em (Ei wi Z EicE wZy g)) and that corresponding to

{xm (S)} in LP1 (given by Em's xm (S)v"'(S)) can be related as follows:

E wEi ( w gy; =( (w ( W xM(S)+ Ew > xM(S)
m i ijEE m i SliGS ijEE SlijcS

=( Zxm(S)Zwrn+Zx 1:wmS)
m S icS S ijcE

=1 x"'(S)vM(S).
m,s

(4.10)

Thus, we conclude that given a feasible integral solution of LP2, there exists a corresponding

feasible integral solution of LP1, with the same objective value. Since this is true for the

optimal integral solution of LP2 as well, we conclude OPI2 < OPI1.

Summarizing, we have OP1 < OP2, and OPI2 < OPI1. Additionally, optimal value is

weakly higher without the integrality requirement (i.e., OP12 < OP2,OPI1 < OP1) and

if LP2 has an optimal integral solution, then OP2 = OP12. These imply that

OP1 < OP2 = OP12 < OPI1 < OP1,

and hence OPI1 = OP1. That is, when LP2 has an optimal solution that is integral, then

so does LP1. 0
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Chapter 5

General Graphical Valuations

5.1 Introduction and Organization

In the previous chapter, we established the existence of a Walrasian equilibrium, when the

underlying value graph is a tree, and the weights bidders associate with the edges of this

graph are sign-consistent. We also provided a linear programming formulation that can be

used to identify the efficient allocation for such value graphs. Moreover, we established that

when we relax the tree graph assumption, or the sign consistency assumption a Walrasian

equilibrium need not exist, and the linear programming formulation may have nonintegral

solutions. This suggests that if these assumptions do not hold, it may not be possible

to design an efficient iterative auction format that relies on anonymous item pricing, and

terminates when a "market clearing" condition holds (or a Walrasian equilibrium is reached).

This observation motivates considering more general pricing rules, and iterative auction

formats that rely on these pricing rules and terminate when a generalization of the market

clearance condition holds. In this chapter, we focus on progressively more general pricing

rules, and discuss generalizations of the Walrasian equilibrium (hereafter referred to as

pricing equilibria) concept, to settings where such pricing rules are employed. Additionally,

we provide linear programming formulations of the efficient allocation problem that have

integral optimal solutions, if and only if pricing equilibria with a given pricing rule exist. The

LP formulations we obtain in this chapter are stronger than LP1 of Chapter 4. Consequently,

one of the LP formulations we provide, has integral optimal solutions (and hence can be used

to identify the efficient allocation) for all graphical valuations. This allows for developing

efficient iterative auction formats that rely on simple pricing rules, as we discuss in detail

in Chapter 6.

More precisely, in this chapter we focus on three new pricing rules that generalize anony-

mous item pricing of Chapter 4. Recall the definition of anonymous item pricing:

* Anonymous item pricing {pi}iCg: the auctioneer offers a price pi for every item i C K,
which is the same for all bidders.
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In this chapter, we focus on the following generalizations of this pricing rule:

" Anonymous graphical pricing {pi,pij}ic(ij)CE: the auctioneer offers a price pi for
every item i C K, and a discount/markup term (pij) for every pair of items i, j that
are connected by an edge, i.e., (i, j) E E. These prices are the same for all bidders.

" Bidder-specific item pricing {p }mCM,ic: the auctioneer offers a price pT for every
item i C K, and bidder m.

* Bidder-specific graphical pricing {pT, pg}mcM,ic,(ij)EE: the auctioneer offers a price

pm for every item i C K and bidder m, and a discount/markup term (pc) for every
pair of items i, j that are connected by an edge, and bidder m.

Given these pricing rules, we use pm(Sm) as a short hand notation for the total price
bidder m needs to pay for acquiring bundle Sm of items. For instance for anonymous
graphical pricing, this quantity can more explicitly be stated as pm (S m ) = EiCSm Pi +

ijCSmijCEpjj, and for other pricing rules it can be defined similarly. We refer to {p m (.)}
as the total price function.

We focus on the following generalization of the Walrasian equilibrium (see Definition
4.2.4) concept to these pricing rules.1

Definition 5.1.1 (Pricing equilibrium). Let {p m (.)} denote the total price function asso-
ciated with a pricing rule, and S m denote the set of items assigned to player m. The tuple

({pM(-)}m,{Sm }m) is a pricing equilibrium with the given pricing rule if:

- pm ({i}) > 0 for every item i C K, and bidder m C M,

- Si,... , SM is a feasible allocation, i.e., Sk n S1 = 0,

- vtM(SM ) - ptm (S m ) > v"m(S) - ptm (S) for every S c K,

- Em pm (Sm ) ;> Empm (Zm ) for every feasible allocation {Z m }.

Observe that for a given pricing rule, the set of items a bidder demands can be stated as
Dm = arg maxs v m (S) - ptm (S). This suggests that at a pricing equilibrium the auctioneer
can assign every bidder a set of items she demands (hence a market clearance condition
holds).

We begin this chapter by studying the pricing equilibrium associated with the anony-
mous graphical pricing rule in Section 5.2. We provide an LP formulation of the efficient
allocation problem, which has an optimal solution that is integral, if and only if a pricing
equilibrium with this pricing rule exists. This LP formulation is similar to LP1, and can be
used to find the efficient allocation when it has optimal solutions that are integral. On the

See (Bikhchandani and Ostroy, 2002) for definition and properties of more general pricing equilibria
that potentially rely on offering a different price for every bundle of items.
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other hand, it is stronger, in the sense that it has constraints associated not only with the

nodes of the underlying value graph, but also with its edges. We show that when the un-

derlying value graph has a 5-clique (as a minor), an optimal solution of this LP formulation

may give the efficient outcome, while optimal solutions of LP1 fail to do so. Conversely, we

establish that if the underlying graph does not have a 4-clique (as a minor), an optimal so-

lution of this LP formulation gives the efficient outcome if and only if an optimal solution of

the LP formulation associated with anonymous item pricing does so. These results suggest

that this LP formulation cannot be used to identify the efficient outcome, even for simple

examples provided in Section 4.4, and a pricing equilibrium with this pricing rule may not

exist. Thus, it is necessary to focus on more general pricing rules and pricing equilibria, for

the design of iterative auctions that guarantee efficiency for general graphical valuations.

This motivates us to consider the bidder-specific generalizations of the anonymous

item/graphical pricing rules. In Section 5.3, we focus on the pricing equilibrium associ-

ated with the bidder-specific item pricing rule, and provide an LP formulation that has

integral optimal solutions when pricing equilibrium with this pricing rule exists. We es-

tablish that this LP formulation can find the efficient outcome if and only if LP1 can.

That is, considering this LP (and the associated more complex pricing rule) does not allow

us to identify the efficient outcome for a larger class of graphical valuations. In contrast,

in Section 5.4, we establish that a pricing equilibrium associated with the bidder-specific

graphical pricing rule always exists. We also provide an LP formulation associated with this

pricing rule, and show that this formulation has integral optimal solutions (and identifies

the efficient outcome) for all graphical valuations.

Importantly, in Section 5.5, we establish that the structure of the LP formulation in-

troduced in Section 5.4 can be systematically generalized to provide LP formulations that

obtain the efficient outcome for a generalization of graphical valuations, namely additively

decomposable valuations. Additively decomposable valuations allow for complementar-

ity/substitutability not only between pairs but also among larger subsets of items as well.

The LP formulation (and the associated pricing rule) we provide in this section becomes pro-

gressively stronger as the underlying additively decomposable valuation functions become

more general.

The results of this chapter provide a way of systematically obtaining LP formulations

that can find the efficient allocation for all graphical valuations (and additively decompos-

able valuations). Additionally, these results suggest that efficient iterative auction formats

that rely on bidder-specific graphical pricing, and terminate at a pricing equilibrium can be

used to implement the efficient outcome for general graphical valuations. We provide such

an iterative auction format in Chapter 6.

We close this chapter with a summary of its main contributions in Section 5.6. Some of

the proofs are delegated to Section 5.7, in order to simplify the exposition.
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5.2 Anonymous Graphical Pricing

In this section, we focus on pricing equilibria with the anonymous graphical pricing rule,
and characterize its properties. We start this section by providing an LP formulation of the
efficient allocation problem, whose dual suggests this pricing rule. We state our formulation
by making use of the notion of complete feasible allocation introduced in Definition 4.2.3.
Recall that the set of complete feasible allocations is denoted by x. Using this notation,
the LP formulation that we focus on in this section is stated below:

max E Jxm(S)vm(S)
m S

s.t. Zxm(S) < 1 Vm
S

EZEX M (S)Z E E J Vi
LP3: m sles m pcx m

ZEx m (S) = E 6Vij C E
m SlijEs m ,ExAijiEm

> , =5~ 1
hex

op > 0, xm (S) > 0.

In this LP formulation, similarly to LP1 of Chapter 4, the variable xm (S) captures an
assignment of bundle S to bidder m. On the other hand, unlike LP1, in LP3 we have a
variable 6, for every complete allocation p E x. The variable 6 , captures the allocation
that is preferred by the auctioneer, i.e., 6, = 1 if the auctioneer would like to assign bundle

Pm to bidder m, for every m E M.

Intuitively, the first constraint in LP3 suggests that each bidder m receives at most
one bundle S. The second constraint suggests that an item i is assigned to some bidder
if it belongs to a complete allocation that is preferred by the auctioneer. Observe that
by definition, for any complete allocation t, every item i is such that i E pm for some
bidder m. Since E/g o1 = 1, this implies that Em EyecXieg1m 6,= 1. That is, the second
constraint is equivalent to E. Eslies xm (S) < 1, which is also present in LP1. The third
constraint implies that if the auctioneer prefers to assign a pair of items (ij) together, then

the assignment of items ({x m (S)}) should be consistent with this preference.

Observe that the objective of this LP formulation is exactly the same as in LP1, i.e.,
maximizing efficiency. LP3 is closely related to LP1 but it is stronger, in the sense that
the projection of the set of feasible solutions of LP3 to the space of variables {xm(S)} is a
subset of the feasible set of LP1. On the other hand, any complete feasible allocation still
corresponds to a feasible solution of LP3, as we formalize in the next Lemma.

Lemma 5.2.1. (i) Let ({x m (S)}m,s, {6 ,},) be a feasible solution of LP3, then {x m g(S)
is a feasible solution of LP1.
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(ii) Let A be a complete feasible allocation, then xm (S) = 0 if S $ ft', x m (fim ) = 1 and

61 = 0 if p # A, = 1 is a feasible solution of LP3.

Proof. The feasibility of ({xm(S)}m,s, {6 }EX) in LP3 implies that Em ZopEXIC/im 6A < 1.

Consequently, it follows that ES xm (S) < 1 for all m, and Em Eslies xm (S) < 1 for all i.

Together with nonnegativity constraints, this implies that {Xm(S)}m,s is feasible in LP1,

and the first part of the lemma follows. The second part can be immediately verified from

LP3. l

Note that under Assumption 4.2.1, there exists an efficient allocation that is also com-

plete. Together with the above lemma, this observation suggests that if LP3 has an optimal

solution that is integral, then in this solution 6 . = 1 for some A, and the corresponding

allocation t is efficient. These imply that for classes of valuation functions for which LP3

has optimal solutions that are integral, this LP formulation can be used to identify the

efficient outcome. Moreover, the first part of the lemma implies that the optimal objective

value of LP3 is weakly lower than that of LP1. Hence, there may be classes of valuation

functions, where LP3 can be used to identify the efficient allocation, while LP1 cannot.

We next provide the dual of LP3:

min 7r + E M

s.t.7rm>vM(S)-Zp - ( pij VS,m
iES i,jcS~ijEE

D3: /

Es E (\ pi + E~m pix
m ictym icjpm

pi,7rm > 0.

Observe that in the dual problem we have a price variable for each node (item) i, and

edge (pair of items) ij C E. The quantity >iesPi + EijCSijEEPiij can be interpreted as

the price a bidder needs to pay for acquiring a bundle S of items at the given node and edge

prices. Intuitively, this corresponds to offering prices for each item, and complementing

these prices with additional discounts/markups for pairs of items. The variable 7rm is an

upper bound on the surplus (v m (S) - iESp - Zi,jESlijCEpij) a bidder can raise by

acquiring the bundle S of items at the given prices. Thus, in a similar fashion to D1, it

can be interpreted as the surplus of bidder m. The variable 7rs, on the other hand, is an

upper bound on the quantity EM (Zjim pi + Eipm Pij) for all complete allocations p.

The latter quantity is the revenue the auctioneer can raise by assigning items according to

allocation p at the given prices. At optimality 7r' is equal to the maximum revenue the

auctioneer can raise at those prices. This implies that this variable can be interpreted as

the revenue of the auctioneer.
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By Assumption 4.2.1, it follows that LP3 has an optimal solution that is integral if and
only if it has such a solution that also corresponds to a complete feasible allocation. Note
that LP3 has such an optimal solution if and only if there exists some allocation {Sm} such
that (i) x m (Sm ) = 1 and xm (S) = 0 for S # Sm, (ii) 6, = 1 for p = {Sm} and 6, = 0 for
y # {Sm}. However by complementary slackness this is equivalent to the existence of a dual
feasible solution such that 7rm = vm(Sm) _ pm(Sm) for all m, and 7r' = E >iESm pm(Sm).

On the other hand, this immediately implies that LP3 has an integral optimal solution if and
only if a pricing equilibrium with anonymous graphical pricing rule exists. This suggests
that by using iterative algorithms for the solutions of LP3 and D3, it is possible to develop
new iterative auctions that rely on anonymous graphical pricing rule, and terminate when
a pricing equilibrium with this pricing rule is identified.

We next characterize the class of valuation functions for which LP3 has optimal solutions
that are integral, while LP1 does not. Before we state our result we introduce some necessary
definitions.

Definition 5.2.1 (Forest). An undirected graph is a forest if its connected components are
trees.

Definition 5.2.2 (Series-Parallel Graph (Chopra (1994))). A graph is a series-parallel
graph if it can be obtained from a forest by repeatedly adding an edge in parallel to an
existing one or by replacing an edge by a path.

Observe that this definition allows the graph to have multiple edges between two nodes.
Such graphs are sometimes referred to as multigraphs. Graphs that are not multigraphs are
referred to as simple graphs. In this thesis we restrict attention only to simple graphs (even
when we focus on series-parallel graphs).

Definition 5.2.3 (Minor). An undirected graph G, is called a minor of the graph G if Gm
can be obtained from G by deletion of edges, vertices, and contraction of edges.

Definition 5.2.4 (Complete Graph). A graph is a complete graph if there is an edge

between any two pair of vertices. A complete graph with n nodes is denoted by Kn.

In our exposition K 4 and K 5 play a key role. It is known that these graphs are closely
related to series-parallel graphs. In particular, series-parallel graphs are equivalent to graphs
that do not contain K 4 as a minor (Chopra, 1994; Diestel, 2005; Duffin, 1965).

We start our analysis of LP3 by providing an example where LP3 has optimal solutions
that are integral, but LP1 does not. That is, for this example the efficient allocation can
be found by using the stronger formulation in LP3, but not the one in LP1.

Example 5.2.1. Let the underlying value graph be K 5 , and assume that there are 3 bidders.
We assume that all players have the same set of weights, and these weights are as given in
Figure 5-1.
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Figure 5-1: All players have the same weights, and the edge weights are as given in the
above figure. In order to simplify the figure, some weights are omitted. In particular, the
dashed lines have weight -30, and all nodes have weight 100.

In this example, the efficient allocation is obtained by assigning item A to the first bidder,

items B and E to the second one, and items C and D to the third one. The total welfare

corresponding to this allocation is 525. On the other hand, LP1 has a feasible solution with

higher objective value. Namely: x1 ({A,B}) = x1 ({A}) = 1/2, x 2 ({B, E, C}) = x 2 (0)
1/2, x3 ({E, D}) = x3 ({D, C}) = 1/2 and the remaining xm (S) variables are equal to zero.

It can be checked that the objective value of LP1 associated with this solution is 527. Thus,

LP1 does not have an integral optimal solution for this example.

On the other hand, a feasible solution to D3 is obtained by setting pi = wSm, and pij = w

for all nodes i and edges ij, rm = 0 for all m. It can be immediately checked from D3 that by

setting 7r* equal to the maximum welfare that can be associated with this example (525), the

feasibility of the constructed dual solution follows. Hence, we have a dual feasible solution

with objective value 525. This suggests that the maximum objective value of LP3 is bounded

by the value of the dual feasible solution, 525. On the other hand, Lemma 5.2.1 suggests that

the efficient allocation corresponds to a feasible solution of LP3 with this objective value.

Thus, it follows that LP3 has an optimal solution that is integral.

Note that in this example we chose the node weights large, in order to assure that mono-

tonicity of valuation functions (Assumption 4.2.1) holds. However, it is possible to choose

smaller node weights to construct examples where the gap between the optimal objective

values of LP1 and LP3 is larger.

This example shows that by employing LP3 it may be possible to find the efficient out-

come in cases where using LP1 does not suffice. Our next result provides general conditions,
under which this might be the case.

Theorem 5.2.1. (i) Assume that there are at least three bidders. For value graphs that

are series-parallel (or that exclude a K 4 as a minor) LP3 has an optimal solution that

is integral if and only if LP1 does.
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(ii) For value graphs that have a K 5 minor, for some choice of weights, LP3 has an optimal
solution that is integral, whereas LP1 does not.

The proof of this theorem is provided in Section 5.7. Since integral feasible solutions
of LP1 and LP3 correspond to feasible allocations, this result implies that, for graphs that
include K 5 as a minor, using LP3 may allow for finding the efficient outcome, even when
using LPl does not. On the other hand, it also suggests that for graphs that have a simple
structure, such as series-parallel graphs (or graphs that do not include K 4 as a minor),
using the more complex LP formulation (LP3) is not valuable, in the sense that this does
not allow us to find the efficient outcome for a larger class of graphical valuation functions.
Importantly, this implies that LP3 is not sufficient to find the efficient outcome, even for the
simple examples provided in Section 4.4, as the value graphs in these examples do not have
K 4 as a minor, and in these examples LP1 cannot find the efficient outcome. Since a pricing
equilibrium with anonymous graphical pricing exists only when LP3 has optimal solutions
that are integral, it follows that for the aforementioned examples a pricing equilibrium

with this pricing rule cannot exist. Thus, in order to be able to develop efficient iterative

auctions that terminate when a pricing equilibrium is reached, we need to consider more
general pricing rules. We explore such pricing rules in the subsequent sections.

5.3 Bidder-Specific Item Pricing

In this section, we focus on the bidder-specific item pricing rule, and provide an LP formu-

lation of the efficient allocation problem that has integral optimal solutions if and only if

a pricing equilibrium with this pricing rule exists. The main result of this section suggests

that the LP formulation associated with bidder-specific item prices can find the efficient
outcome if and only if the formulation associated with anonymous item prices can. This

suggests that a more general pricing rule may be necessary for the existence of a pricing

equilibrium, and LP formulations that identify the efficient allocation for general graphical

valuations.

The LP formulation that we focus on in this section (LP4), and its dual (D4) are

presented below:

max xm(S)v(S)
m S

s.t. Zxm(S) < 1 Vm
S

LP4: Zxm(S) <_ 6, Vi, m
s ecs pEXliipm

E 6, = 1

6, > 0, xm (S) > 0.
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min 7r8 + E 7 M
m

s.t. 7rm > vm(S) - [p V S,m

icS
D4:

7r" 2 pm VA E X

m iEm

p?,>r m >0.

Observe that LP4 is similar to LP3 in that it relies on {6,} variables that capture the

allocation preferred by the auctioneer. On the other hand, it imposes the second constraint

for all players m separately (as opposed to imposing a single constraint after summation

over all m, as LP3 does). Additionally, it does not impose constraints for the edges of the

underlying graph. Consequently, D4 has bidder-specific price (pr), and bidder surplus (7rm )

variables, and a seller revenue variable 7r'. However, it does not associate any dual variables

with the edges of the underlying value graph.

By Assumption 4.2.1, it follows that if LP4 has an optimal solution that is integral, it

also has such a solution that corresponds to a complete allocation. It can be seen that LP4

has such a solution if and only if there exists some allocation {S m } such that (i) x m (S m ) 1

and xm (S) = 0 for S # Sm, (ii) 5, = 1 for y = {Sm} and 6o = 0 for p # {S m }. However

by complementary slackness this is equivalent to existence of a dual feasible solution to D4

such that 7rTm = v tm (S m ) - p m (S m ), and rs = Em Em p m (Sm ). On the other hand, this

immediately implies that LP4 has an optimal solution that is integral if and only if a pricing

equilibrium with bidder-specific item pricing rule exists.

We next establish that LP4 is also closely related to LP1. In particular, we show that

LP4 has optimal solutions that are integral if and only if LP1 does.

Theorem 5.3.1. LP4 has optimal solutions that are integral if and only if LP1 does.

Proof. Consider any feasible solution {x m (S), 6,,} of LP4. Observe that

m SlicS m pCxIiCym pLx

Thus, it follows that {x m (S)} is feasible in LP1. Moreover, since LP1 and LP4 have the

same objective function, this implies that the optimal objective value of LP4 (denoted by

OPT4) is weakly lower than that of LP1 (denoted by OPT1),

OPT4 OPT1. (5.1)

Consider the dual optimal solution {7r m , 7rp} of D4. Observe that if pm > pk, then

for any t E x such that i C yk, we have El E/,, P1 < >T1 >J7i pl, where p x X is such that

p - ylk - f tAm = pm U {i}, and A = pl for 1 f k, m. This observation suggests that the

165



constraint involving 7r' is active for p such that for all items i C pm and bidders k we have

pm > pk. Thus, we obtain 7r' = maxk pf. We construct another dual feasible solution

( Vrm, fs, p) by setting p = maxk pk, -' = 7r, and im = 7rm. The solution satisfies the

first constraint of D4, since in our construction, we weakly increase pT, while keeping 7rm
intact. The feasibility of the second constraint follows since, by dual optimality of the

original solution we have 7r' =rE maxk pk. Observe that since Vr= 7r- , and rm = 7rm the

new solution has the same objective value as the original one, and hence is also optimal in

D4. In addition, the solution frm = -rm, P = pi is a feasible solution of D1 with the same

objective value. Thus, given an optimal solution of D4, we can construct a feasible solution

of D1 with the same objective value. This suggests that the optimal objective value of LP1

is weakly lower than that of LP4.

OPT1 < OPT4. (5.2)

It follows from (5.1) and (5.2) that LP1 and LP4 have the same optimal objective value.

Assume that one of them has an integral solution that is optimal. Note that there exists

an allocation associated with this solution (obtained in particular by assigning bundle S

to bidder m if and only if x m (S) = 1), and the optimal objective value of this problem is

equal to the welfare associated with this allocation. Moreover, Assumption 4.2.1 implies

that there also exists a complete feasible allocation {Sm} that leads to the same welfare.

The solution xm (S) = 1 for S = 5m and x m (S) = 0 otherwise is a feasible solution of LP1

that achieves the optimal welfare. Similarly, complementing this solution with 6, = 0 if

p # {$ m } and 6,, 1 otherwise we obtain a feasible solution of LP4 achieving the same

welfare. Thus, we conclude that if one problem has an optimal solution that is integral, then

we can construct a feasible solution to the other that achieves the same objective value. By

(5.1) and (5.2) we conclude that this is an optimal solution of the latter problem, and the

claim follows.

Note that nonintegral solutions of LP4 do not correspond to feasible allocations of items.

Thus, our result implies that LP4 cannot be used to find the efficient allocation in cases

where LP1 fails to do so. Additionally, a pricing equilibrium with this pricing rule exists,
only when a Walrasian equilibrium exists (and hence LP1 has optimal solutions that are

integral). Therefore, in order to be able to find the efficient outcome for general classes of

graphical valuations, we need more general pricing rules, and LP formulations. We provide

one such formulation in the next section.
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5.4 Bidder-Specific Graphical Pricing

In this section, we focus on bidder-specific graphical pricing, and provide an LP formulation

that has integral optimal solutions if and only if a pricing equilibrium with this pricing rule

exists. This LP formulation is stronger than all of the LP formulations we discussed so far

in this chapter. We establish that for all graphical valuations, this LP formulation has an

optimal solution that is integral, and hence can be used to identify the efficient outcome.

Our result also implies that for graphical valuations a pricing equilibrium with this pricing

rule always exists.

We start this section by providing the LP formulation (LP5) that we focus on in the

rest of this section, and its dual (D5).

max )7Y x m (S)v m (S)
m S

s.t. ZXm' (S) < 1 Vm
S

Zxm(S) S op Vi, m

LP5: S eS pepm

EXm(S)= E 6Vij C E, m
Si ES pEXjijCpm

E6p = 1

PCX

6p > 0, Xm (S) > 0.

min 7r' + Y .7fm

m

s.t. 7rm > v(S) - 5pi - pj V S, m

D5: i S i,jCSlij E

ITS>s M + M±p~ VfL C x
m \iEpm iEp

m

pi, 7rm > 0.

Observe that the main difference between LP5 and LP3, is that the node and edge

constraints (the second and third constraints) are imposed for every bidder m separately

in LP5, whereas they are aggregated over different bidders in LP3. This implies that every

feasible solution of LP5 is a feasible solution of LP3, i.e., LP5 is a stronger formulation.

The presence of different node/edge constraint for each bidder, on the other hand, leads to

bidder-specific price variables pT and pm in the dual problem.

Similar to LP3, LP5 is closely related to the existence of a pricing equilibrium. As before,

if LP5 has an optimal solution that is integral, then (by Assumption 4.2.1) it has an optimal

solution that corresponds to a complete allocation. That is, there exists some allocation
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{S m } corresponding to an optimal solution such that (i) x m (S m ) = 1 and xm (S) = 0 for S /
S m , (ii) c5, = 1 for p = {S m } and J,, = 0 for p , {S m }. Moreover, due to complementary

slackness, in this setting a dual feasible solution such that 7rm = v m (S m ) - p m (S m ), and
7rs = Em Eicsm pm(Sm) always exists. Note that this is equivalent to existence of a pricing
equilibrium. Hence, we conclude that the existence of a pricing equilibrium with bidder-
specific graphical pricing is equivalent to the presence of integral optimal solutions in LP5.

We next establish that provided that the valuations are graphical, this stronger formu-
lation has optimal solutions that are integral.

Theorem 5.4.1. Assume that bidders have graphical valuations. Then, LP5 has an optimal
solution that is integral.

Proof. Assume that a complete feasible allocation A is given. Consider the corresponding
feasible integral solution of LP5 that is obtained by choosing 6 , = 1, and x m (f m ) 1
for all m, and setting J,, = xm (S) = 0 for p $ A, S $, Am . Observe that the objective
value of LP5 at this solution is equal to the welfare associated with feasible allocation A.
Since this observation holds for any complete feasible allocation, it follows that the optimal
objective value of LP5 is at least the maximum welfare obtained by an allocation. Denote
the maximum welfare by W*.

Consider the following dual solution: pT w= , pT =wm, 7rm = 0, and 7r" = W*.
By construction this solution suggests vm (S) ~EispZ - Ei,jcSJijEEP = 0, thus the

first constraint of D5 is immediately satisfied. Additionally, the construction also implies

that W* ;> Em p ' + m for all complete feasible allocations p. Thus,
we conclude that 7r' = W* satisfies the second constraint, and feasibility of the suggested
solution follows.

Observe that the objective value associated with the feasible dual solution we con-
structed is W*. However, as we established earlier, the optimal objective value of LP5 is
at least W*. Thus, it follows that the dual feasible solution we constructed is optimal, and
the feasible integral solution of LP5 that corresponds to the welfare maximizing allocation

is optimal in the primal problem.

Note that any complete feasible allocation A corresponds to a feasible integral solution
of LP5 (where x m (f m ) = 1 for all m, og = 1, and x m (S) = 6, = 0 for remaining variables).

Thus, Theorem 5.4.1 implies that the efficient allocation can always be found by solving

LP5. Moreover, for graphical valuations a pricing equilibrium with bidder-specific graph-

ical pricing always exists. Interestingly, this result relies on having a dual problem which

suggests a pricing rule that has the same structure as the graphical valuations themselves,
i.e., a pricing rule that involves a bidder-specific price variable for each node/edge of the
underlying value graph. As we discuss in Section 5.5, this observation is more general, and
often it is the case that the efficient outcome can be found by solving a linear program,
whose dual suggests the same pricing "structure" as the valuation functions.
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5.5 Additively Decomposable Valuations

In this section, we extend the results of Section 5.4 to additively decomposable valuations,

which is a class of valuation functions that generalize graphical valuations. The valuations

in this class allow for complementarity/substitutability not only for pairs, but also for

larger sets of items. Moreover, they exhibit an additive structure over subsets of items. We

establish that in order to find the efficient outcome for additively decomposable valuation

functions, it is sufficient to solve an LP formulation whose dual suggests a pricing rule

with the same additively decomposable structure. Our result allows for systematically

formulating the efficient allocation problem as a linear program that has a simple structure,

whenever the underlying valuation functions exhibit a simple structure.

We start our analysis by formally defining additively decomposable valuations. Consider

a collection of subset of items B, i.e., B E B is such that B c M. Assume that the valuations

of bidders can be additively decomposed over these subsets as follows:

v"'(S) = E mgW (S n B), (5.3)
Bc3

where w' : 2B -> R, captures the component of the valuation of bidder m associated

with subset B. We refer to such valuations as additively decomposable valuations with

collection B.

We note that any valuation function can be represented using additively decomposable

valuations, by considering a collection B such that K E B. On the other hand, if B consists

of few sets of small cardinality, then the valuation functions can be compactly represented

by specifying their components {wg}. For instance, graphical valuations are a special class

of additively decomposable valuations, where

" B consists of singletons, and pairs of items that correspond to the edges of the under-

lying value graph,

* w"i(S) = 0 if S $ {i}, and it equals to the weight associated with node i otherwise,

* wT(S) = 0 if S $ {i, j}, and it equals to the edge weight for edge (i, j) otherwise.

Observe that in graphical valuations node weights are nonnegative, whereas edge weights

can be negative or positive. In order to capture a similar structure in additively decompos-

able valuations, we let B = B+ U Bo U B_, where B+, B0 , B_ are mutually exclusive sets such

that wg'(-) > 0 for B C B+, wm(-) < 0 for B E B_ and w"(.) can be positive or negative

for B E B0 .

We next provide a generalization of LP5 (denoted by LP5G) that allows for finding the
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efficient allocation for additively decomposable valuations, as we establish subsequently.

max Z:x'(S)vm(S)
m S

s.t. EZxm(S) 1 Vm
S

E X(S) 6, V m, B E Bo, S'c B
SIS'=SnB pExjpmnB=S'

LP5G: E x M (S) 6, V m, B B+, S'c B
SIS'=SnB pcxlh-mnB=S'

E x M (S) 5 6p V m, B C B_, S'c B
SIS'=SnB pcxIpmnB=S'

xM (S), 6, > 0 V m, S,.

The corresponding dual LP (D5G) is given as follows:

Min 7r' + E rm

s.t. 7r' 1 pm (Sm n B) V{S m }
m B

D5G:7r M v (S) - Epm(S n B) Vm, S
B

Tr"' > 0 V m

pm(-) > 0 for B e B+,pB(.) < 0 for B C B.

As mentioned earlier, for graphical valuations, we can focus on a collection B that

consists only of singletons, and pairs of items that are connected with an edge in the

underlying value graph. Moreover, the node weights are nonnegative, whereas edge weights

can be negative or positive. Thus, the components of the valuation function that are

associated with node weights belong to B+, whereas the components associated with edge

weights belong to Bo. These observations suggest that LP5G reduces to LP5 for graphical

valuations.

Our next theorem establishes that the primal LP always has integral optimal solutions,

and can be used to identify the efficient outcome for additively decomposable valuations.

Theorem 5.5.1. Assume that bidders have additively decomposable valuations. LP5G has

an optimal solution that is integral.

Proof. The proof is analogous to that of Theorem 5.4.1. It immediately follows by (i)

establishing the feasibility of the dual solution pm = w', rm = 0, rs = W* (where W*

denotes the maximum welfare that can be associated with a feasible allocation), and (ii)
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showing that there exists an integral primal feasible solution (that coincides with the efficient

allocation) which also achieves W*. Note that in establishing dual feasibility, the sign

constraints do not play a role, since by construction p' = wg < 0 for B C B_, and

p =w ;> 0 for B E B+. 

We conclude this section by noting an interesting implication of the above theorem: If

the valuations exhibit an additive structure over certain subsets of items, the auctioneer

can find the efficient outcome by using an LP formulation whose dual suggests a pricing

rule that also decomposes over these subsets. Moreover, using complementary slackness for

LP5G and D5G, it can be established that a pricing equilibrium that relies on a pricing rule

with this structure always exists. Thus, when valuations are additively decomposable over

a few sets with small cardinality (as in the case of graphical valuations), a simple pricing

rule can be used for iterative auction design.

5.6 Summary

In this chapter, we focused on various pricing rules, and investigated the existence of pric-

ing equilibria with these pricing rules. Additionally, we provided LP formulations of the

efficient allocation problem that have integral optimal solutions (and can find the efficient

allocation), if and only if such equilibria exist. More precisely, we first focused on the anony-

mous graphical pricing rule. We established that for series-parallel graphs (or graphs that

do not contain a 4-clique as a minor) the corresponding LP formulation is equivalent to the

anonymous item pricing LP (considered in Chapter 4), in the sense that the former iden-

tifies the efficient allocation if and only if the latter does. On the other hand, we showed

that if the underlying graph has a 5-clique as a minor, for some choice of weights, this

LP formulation can identify the efficient allocation, while anonymous item pricing LP can-

not. We then considered LP formulations associated with bidder-specific pricing rules. We

showed that in the context of item pricing, allowing for bidder-specific prices is not useful in

the sense that the LP formulation associated with bidder-specific pricing rule can identify

the efficient outcome, if and only if that associated with anonymous pricing does. On the

other hand, the LP formulation associated with bidder-specific graphical prices can find the

efficient outcome for all graphical valuations. This result implies that a pricing equilibrium

with bidder-specific graphical prices always exist. Hence, efficient iterative auction formats

that terminate at such an equilibrium can be developed. We also extended our results to

settings where valuation functions admit a general additively decomposable structure, and

provided LP formulations that can be used to identify the efficient allocation for such val-

uation functions. This formulation can be used to develop iterative auction formats that

implement the efficient outcome for more general classes of valuation functions.

In Table 5.1, we provide a brief summary of various pricing rules (discussed in this and

the previous chapters), and classes of valuations for which the associated LPs can find the
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Anonymous Bidder-specific
Item pricing Sign-consistent tree valuations Equivalent to anonymous item

pricing
Graphical pricing Equivalent to anonymous item All Graphical Valuations

pricing for series-parallel graphs

Table 5.1: A summary of classes of valuation functions and different pricing rules, for which
the associated LPs can find the efficient outcome.

efficient outcome. In this table, by "equivalent" we mean that the LP formulation associated
with one pricing rule can find the efficient outcome (as an integral optimal solution) if and
only if that associated with another can also do so. In Chapter 6, we discuss iterative
solutions of these LP formulations, and explain how they can be used to design iterative
auction formats that rely on simple pricing rules and implement the efficient outcome for
graphical valuations.

5.7 Appendix: Proof of Theorem 5.2.1

Before we prove Theorem 5.2.1, we cover some graph-theoretic preliminaries that will be
used in the proof, and establish an auxiliary result.

We start by defining a partition of a graph. Formally, a collection 7r = {A m }mEA is a
partition if (i) IAm I > 1, (ii) A m n Ak = 0 for all m, k C A, (iii) UmA m gives the set of all
nodes. We denote the set of all partitions associated with a graph G as H. Note that when
defining H, we do not restrict the cardinality of A. A partition where |AI = k, is referred
to as a k-partition of G.

Some of the edges of the graph can be cut by a given partition, i.e., the end points of
an edge may belong to different subsets of the partition. We denote the set of edges that
are cut by a partition 7r by E(7r), i.e., E(7r) {(i,j)i, j ( A m for any m E M }. We can
associate each partition 7r with an incidence vector z(7r) that captures the edges that are
cut by the given partition, i.e.,

Z.e(7r) 1 for e E E(7r) (5.4)
10 otherwise.

The graph partitioning polytope P(G) is the polytope associated with these incidence vec-
tors. In particular, for a given graph G, P(G) is the convex hull of the incidence vectors,
i.e., P(G) = conv{z(7r)|7r c II}.

For series-parallel graphs, this polytope admits an alternative characterization. Consider
a cycle C = (V, Ec) in a given graph. With any edge e* E Ec, we can associate the following
cycle inequality,

ze - Ze* > 0. (5.5)
eE E-e*
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The set of all such inequalities defines a polytope,

LP(G) = {z E RIEI|z satisfies (5.5) for all cycles C; 0 < ze < 1 for e E E}. (5.6)

An interesting result due to (Chopra, 1994) suggests that for series-parallel graphs

P(G) = L P(G), (5.7)

i.e., the cycle inequalities fully characterize the partitioning polytope for this class of graphs.

We next establish that for series-parallel graphs, the incidence vectors of partitions can

be characterized by restricting attention to 3-partitions.

Lemma 5.7.1. Let G be a series-parallel graph, and z* be an incidence vector associated

with a k-partition of G, where k > 3. Then, there exists a 3-partition of G with the same

incidence vector.

Proof. Consider a given partition {S m } of G with more than 3 sets, and the associated

incidence vector z*. Obtain another graph O by contracting every connected subset of

nodes of G that belong to the same Sm (for some m). For each node i of O, denote the

set of nodes of G that are contracted to i by O(i). Note that O is a minor of G. Since

G is a series-parallel graph, and series-parallel graphs are equivalent to graphs that do not

include 4-clique as a minor, it follows that C does not have a 4-clique as a minor, and is

a series-parallel graph. Series-parallel graphs have a chromatic number of at most three

(Jensen and Toft, 1995). Thus it follows that nodes of O admit a 3-coloring. Consider a

3-coloring of O, and the associated 3-partition {5 1, 52 , 3} of C where nodes of same color

are assigned to the same set. A corresponding partition { 52, 53} of G can be obtained

by defining Sk U 0Ek3) for k c {1, 2, 3}. We claim that the incidence vector associated

with this partition is also z*. To see this note that if z= 1, then it should be the case

that i and j belong to different sets in the original partition {S m }. Consequently, in O they

correspond to adjacent nodes. Thus in the coloring, they have different colors, and hence,

they belong to different sets of partition {$ m }. Thus, in the final partition {Sk} the nodes i

and j belong to different sets, and hence the incidence vector associated with this partition

satisfies zi = 1. Conversely, if z= 0, then nodes i and j belong to the same set in the

original partition {S m }. Consequently, in C they are represented by the same node and in

the final partition {5k} they belong to the same set. Thus, the incidence vector associated

with {5k} also satisfies zij = 0. Therefore, we conclude that it is possible to construct a

3-partition of G that has the same incidence vector z* as the original partition, and the

claim follows. E

Using Lemma 5.7.1 we next establish Theorem 5.2.1.

Proof of Theorem 5.2.1 (i). Assume that LP1 has an optimal solution that is integral. Con-

sider the associated feasible allocation, whose welfare is equal to the optimal objective value
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of LP1. Lemma 5.2.1 (ii) implies that in LP3 there exists a feasible solution that corre-
sponds to this allocation. Moreover, the objective value associated with this solution is
equal to the total welfare that can be raised by the aforementioned allocation. Note that
this solution is optimal in LP3, since Lemma 5.2.1 (i) implies that no feasible solution of
LP3 can have larger objective value than the optimal solution of LP1. Thus, it follows that
LP3 also has an optimal integral solution.

Conversely assume that LP3 has an optimal solution that is integral. We next show
that there exists an optimal solution in LP1 that is integral.

First, observe that if LP3 has an optimal solution that is integral, then due to Assump-
tion 4.2.1 it has another optimal solution that is integral and satisfies Em ESIeS x m (S) 1
for all nodes i. This suggests that if LP3 has an optimal integral solution, then the following
LP also has an optimal integral solution, with the same objective value:

max x m (S)vm (S)
m S

s.t. xm (S) 1 Vm
S

X3 Tnx(S) 1 1

LP3b: m SlicS

E E xm(S)= 6, Vij C E
m SlijcS m pIgX~ijgCpm

E6, = 1

/pEX

6P > 0, x m (S) > 0

Thus, in order to prove the claim it suffices to prove that if LP3b has optimal integral
solutions, then so does LP1.

We next show that it is possible to reformulate LP3b, in terms of the partition polytope

associated with the underlying value graph. This new formulation does not rely on the {6}
variables, and allows us to exploit the properties of the partition polytope (in particular

(5.7)) for the proof. In particular, we focus on LP3c given below:

max xm(S)vm(S)
m S

s.t. xm(S) < 1 Vm
S

LP3c: S xm(S =1 Vi
M SlicS

{1 x m (S)}ij E P(G)
m SijcS

x"(S) > 0.
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Our next lemma establishes the equivalence of LP3c and LP3b.

Lemma 5.7.2. Assume that there are at least three bidders. Then, LP3b and LP3c equiv-

alent, i.e., if {x m (S)} is feasible in LP3c, then for some {6, }, {x m (S), 6,,} is feasible in

LP3b, and conversely if {x m (S), 6,,} is feasible in LP3b, then {xm(S)} is feasible in LP3c.

Proof. Consider any feasible solution of LP3b. We claim that

{hij}iE = 1 -

m LCXIjEm ijCE

belongs to P(G). To see this observe that a complete feasible allocation y induces a partition

of items to k different sets, where k is the number of nonempty components of {pm}. Assume

that 6= 1 for some p. The definition of hij suggests that hij = 0 if i, j E pm for some m,

and hij 1 if i C pm , j E yk. This suggests that {hij} is an incidence vector associated

with p. For arbitrary {6,}, since > , = 1, it follows that {hij}ij belongs to the convex

hull of these incidence vectors, and hence is in P(G). This suggests that if {xm (S), 6, } is

feasible in LP3b, then {x m (S)} is feasible in LP3c.

Conversely, consider some z E P(G). Observe that by definition of P(G), we have

z = Ek akzk, where ak E [0,1], Ek ak = 1, and each zk is an incidence vector that

corresponds to a partition of G. Lemma 5.7.1 implies that each zk can be associated with

a 3-partition. Since there are at least three players, this observation implies that for some

choice of {6}, zz = 1 - Em EEX1ijym ,. Since this is true for any zk, and z is a convex

combination of {zk}, it follows that for some choice of Jp, we have

zij = 1 - 6,, for all ij. (5.8)
m pEX~Ij~ym

Consider a feasible solution {x m (S)} of LP3c. It follows from (5.8) that there exists

some {6,} such that {1-EmEsijsxi m (S)ij 1Z mPCXIijCem op for all edges (i,j).

This implies that {x m (S), 6,,} is feasible in LP3b.

These observations suggest that for any feasible solution {xm(S)} of LP3c we have a

feasible solution {x m (S), 6 ,} of LP3b and vice versa. Thus, the claim follows. LI

This lemma implies that the projection of the feasible sets of these optimization problems

onto {x m (S)} variables coincide. Since the objective is only a function of {x m (S)}, it also

suggests that they have the same objective value. Additionally, the lemma suggests that in

order to prove the claim it is sufficient to show that if LP3c has an optimal solution that

is integral, then so does LPl. We next establish this, by exploiting the properties of the

partition polytope.

It follows from (5.7) that when G is a series-parallel graph, we can replace the con-

straint {1 - Em EsiijS X m (S)} ij E P(G) with {1 - Em Eslijes X m (S)}ij C LP(G). The
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next lemma suggests that the latter constraint immediately follows from the constraints

ES x m (S) < 1 and Em EsliEs xm (S) = 1 in LP3c, and hence can be omitted.

Lemma 5.7.3. Assume that ES xm (S) < 1 and Em Eslics xm (S) = 1 for all i. Then,

{1 - Em Es5 jeS xm (S)}i E LP(G).

Proof. Note that it immediately follows from Em EslieS xm (S) = 1 that

1 x(S) 1 - E [ xM(S) > 0.
m SijEs m Slics

That is xe E [0,1) for all edges e E E. Thus, in order to establish the claim it suffices to

establish that {1 - Em ESje3 S xm (S)}ij satisfies the cycle inequalities (5.5).

Consider any cycle C and e* E C. The cycle constraint associated with {1-Em ESkieS XM (S)} 3

is given below:

1 --[ [ x"'(S) 2 1 - x"'(S).
eCEc-e* M Sle(s m Sse*CS

Rearranging the terms, we need to show

ICI - 2 "xm(S) xm (S). (5.9)
eEEc-e* m SlecS m SIe*eS

Let Em ESle*c3 xm"(S) = b for some real number b, and denote by e* the edge (i, j).

Note that

xm(S)=1= 5 "'(S)+ xm (S). (5.10)
m Suies m SIe*CS m SjicS,jgS

This suggests that

E x'(S) = 1 - b. (5.11)
m SjicS,jgS

On the other hand, a similar expression to (5.10) can be obtained for edge (i',j') E Ec,

implying Em ESj(',')CS x m (S) - m Esj'S x(S). Thus, we have

SE xm (S) = ICI - 1 - 5 5 xM (S). (5.12)
eCEc-e* m SjecS (i',j')CEc-e* m Sji'eS,j'S

Observe that

x(S) > x m (S) = 1 - b. (5.13)
(i',jI)GEc-e* m Sli'CS,j'gS m SjieS,jgS

Here the equality follows from (5.11). On the other hand, the inequality follows from the

fact that any set that contains i but not j, cuts the cycle at edge (i, j) and at another edge,
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i.e., if i C S, j S S, then there exists an edge (i', j') C Ec such that (i, j) , (i', j'), and

i' E S, j' V S. Together with (5.12) this implies that

S Xm(S) |CI - 1 - (1 - b).
eEEc-e* m SiecS

Hence, we conclude

E E S Xm (S) 5 xm (S) < |CI - 1 - (1 - b) - b = ICI - 2. (5.14)
eCEc-e* m SlecS m Sle*ES

Thus, (5.9) holds, and the claim follows. L

Thus, the constraint {1 - EmEslijcsx m (S)}ij E P(G) or equivalently (for series-

parallel graphs) {1- m Eslijcs xm(S)}ij C LP(G) in LP3c can be omitted. After omitting

the aforementioned constraint, LP3c becomes equivalent to LP1.

Summarizing if LP3 has integral optimal solutions, then LP3b has optimal solutions

that are integral as well. This optimization formulation, on the other hand, is equivalent to

LP3c. Thus, it follows that LP3c also has optimal solutions that are integral. On the other

hand, for series-parallel graphs, Lemma 5.7.3 suggests that some constraints of LP3c can

be omitted, without affecting the optimality of this solution. However, after omitting these

constraints we observe that LP3c is equivalent to LP1, and hence the integral solution we

have is also optimal in LP1. Therefore, we conclude that if LP3 has optimal solutions that

are integral, then so does LP1, and the claim follows. L

Proof of Theorem 5.2.1 (ii). We establish the result by showing that Example 5.2.1 can be

"embedded" into any graph that includes K 5 as a minor. The proof follows by an explicit

construction of weights for a given graph.

Assume that G has K 5 as a minor. This implies that initially some nodes and edges of

G can be deleted, then some of the remaining edges can be contracted to obtain K 5 from

G (Diestel, 2005).

We assume that there are three bidders, and all bidders have same weights at the

nodes/edges of the underlying graph G. We assign these weights as follows:

" Every node that is initially deleted has weight zero. Additionally, edges that are

adjacent to such nodes also have weight zero.

" Every edge that is initially deleted has weight zero.

" Assume that the set of nodes V are contracted to a single node in K 5 . All edges (that

are not initially deleted) between the nodes in Vi are assigned a large weight L.

" Assume that nodes i and j of K 5 , are obtained via contraction of sets Vi and V

respectively. Assume that there are Kij edges between Vi and V that are not initially
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deleted. Assume that in Example 5.2.1 the weight on edge (i, j) is wij. Assign each
of the edges between Vi and V weights that are equal to wi,/Kij.

* Set the node weight of one node in Vi equal to 100, and the remaining node weights
to 0.

Observe that for sufficiently large L, at the efficient allocation, all nodes in V will
be assigned to a single bidder, for all i. This implies that an efficient allocation can be
obtained by assigning {} according to the efficient allocation in Example 5.2.1 to the
bidders. Moreover, since all bidders have same weights, by choosing the price variables in
D3 equal to node/edge weights we obtain a dual feasible solution with objective value equal
to the welfare generated by the efficient assignment. Thus, (as in Example 5.2.1), it follows
that LP3 has an integral optimal solution for this problem instance. By construction, the
corresponding objective value is 525 (the optimal objective value in Example 5.2.1) + L
x Ei pi, where pi denotes the number of undeleted edges of G between the nodes in Vi.

On the other hand, there exists a feasible solution of LP1 with higher objective value,
obtained by choosing xm (S) in a similar fashion to Example 5.2.1. In particular, if xm (S) >

0 for some S and player m in this example, we construct a feasible solution {zm (S) } to
LP1 (formulated over G), by setting zm (UiEs ) xm (S). Observe that by construction
the corresponding objective value in LP1 is equal to 527 (the optimal objective value in
Example 5.2.1) + L x Ei p2 . Since a feasible solution of LP1 has higher objective value
than the welfare associated with the efficient allocation, we conclude that this problem does
not have optimal solutions that are integral.

Thus, it follows that for the above choice of weights, while LP3 has an integral solution,
LP1 does not. Since, G is an arbitrary graph that has K 5 as a minor the result follows. El

178



Chapter 6

Iterative Algorithms and Auction

Design

6.1 Introduction and Organization

In this chapter, we focus on iterative algorithms that can be used for solving two of the

LP formulations, LP1 and LP5, introduced in Chapters 4 and 5. Employing these iterative

algorithms, we design new iterative auctions where,

" The auctioneer sets prices for the items she sells,

" Bidders respond to the prices chosen by the auctioneer by revealing their demand,

" The auctioneer either terminates the auction with a final allocation, or updates the

prices.

The auction formats we obtain terminate when a Walrasian equilibrium or a pricing equi-

librium is identified, and implement the efficient allocation for graphical valuations. Im-

portantly, they do so while relying on simple pricing rules (anonymous item pricing or

bidder-specific graphical pricing).

Given LP formulations of the efficient allocation problem, our approach for developing

iterative auctions has two main components. First we focus on iterative algorithms (such

as the primal-dual algorithm) for solving the linear programming formulations of the effi-

cient allocation problem introduced in the previous chapters, and use them to develop new

iterative auction formats. Importantly, since bidders' valuations are private knowledge, the

convergence of these iterative auctions to the efficient outcome relies on bidders' revelation

of their demand truthfully. Secondly, we show that it is possible to guarantee that bidders

reveal their demand truthfully at an ex-post perfect equilibrium of these iterative auctions,

by charging final payments to bidders that are related to the prices that emerge at the

end of this iterative process. This approach for iterative auction design is also employed

in the existing literature (see Vohra (2011)). However, majority of the existing iterative
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auction formats rely on exponentially many prices for implementing the efficient outcome
(Bikhchandani et al., 2002; De Vries et al., 2007; Ausubel and Milgrom, 2002; Mishra and
Parkes, 2007; Vohra, 2011). In contrast, in our work, we follow a similar approach, but by
exploiting the properties of graphical valuations, we obtain iterative auction formats that
rely on simple pricing rules, and guarantee efficiency for all graphical valuations (including

those that exhibit complementarity).

For simplicity, we establish our results under an additional assumption which we impose

throughout the chapter: Value functions of bidders are integer-valued. 1 We start presenting

our approach, by briefly summarizing primal-dual algorithms in Section 6.2, in a general

abstract setup. The results and insights we discuss in this section, are used in subsequent

sections to establish convergence of iterative auctions we design to the efficient outcome.
In Section 6.3, we introduce the solution concept we use for analyzing the outcome of

iterative auctions. In particular, in this section we discuss the ex-post perfect equilibrium
concept. Additionally, we provide a sufficient condition, which can be checked to determine
if a given strategy profile is an ex-post perfect equilibrium. The results of this section
are applicable in general iterative auction environments, and do not rely on the graphical
valuation structure.

In Section 6.4, we focus on sign-consistent tree valuations, and LP1, which can be used
to find the efficient outcome for this class of valuation functions. We show that iterative
solutions of LP1 using primal-dual algorithms, suggest an iterative auction format where
the auctioneer offers an anonymous price for each item she is selling, and players report the
bundles that they demand at the prices set by the auctioneer. If an efficient allocation is
not found, the auctioneer decreases the prices of the "underdemanded" items, and increases
the prices of the "overdemanded" ones. This iterative process converges to a Walrasian
equilibrium and can be used to implement the efficient outcome when bidders reveal their
demand truthfully at each stage of the iterative auction. In order to guarantee truthful
bidding, we propose running a series of iterative auctions. In the serial auction setup, the
auctioneer uses the first auction to identify an efficient allocation of items to bidders, and
the subsequent auctions to find final payments that ensure that bidders have incentive to
truthfully reveal their demand. Our results suggest that by running serial auctions that
rely on anonymous item pricing, the efficient outcome can be guaranteed to emerge at an
ex-post perfect equilibrium for sign-consistent tree valuations.2 Additionally, we discuss

the problem of iterative auction design with anonymous item pricing, in settings where the

'This assumption is commonly made in the context of iterative auctions and it usually leads to auction
formats with unit price increments, see for instance (De Vries and Vohra, 2003; Ausubel, 2004; Mishra and
Parkes, 2007; Bikhchandani et al., 2011; Vohra, 2011).

2 In various iterative auction settings (such as Ausubel (2006)) in order to guarantee truthful bidding
by bidders, it is necessary to either run multiple iterative auctions (in series or parallel), or use a payment
scheme that potentially leads to negative payoffs for some bidders at the end of the auction (thereby deterring
entry to the auctions). While this feature is present in the iterative auctions we discuss in Section 6.4, in
Section 6.5 we establish that when the auctioneer relies on bidder-specific graphical pricing, it is possible to
implement the efficient outcome by running only a single iterative auction.
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auctioneer can run only a single iterative auction.

In Section 6.5, we consider general graphical valuations, and LP5 that can be used to find

the efficient outcome for all such valuations. By studying the solution of LP5 using iterative

algorithms we obtain iterative auction formats where truthful bids of agents converge to

a pricing equilibrium, and implement the efficient outcome. The prices that are employed

in the resulting iterative auction are bidder-specific graphical prices. In order to guarantee

that bidders participate in this auction truthfully, it is possible to run a series of auctions as

we suggest in Section 6.4. On the other hand, we show that when the auctioneer employs

bidder-specific graphical prices, there exists a price (or dual variable) update rule that the

auctioneer can use to solve LP5, such that at the end of the auction the prices converge

to a pricing equilibrium (with bidder-specific graphical prices) that reveals (i) the efficient

outcome, and (ii) the final payments which guarantee that bidders truthfully reveal their

information at each stage of the iterative auction. This price update rule closely relates to

primal-dual algorithms, as we explain in detail in Section 6.5. Using this price update rule

for the solution of LP5, eliminates the need to run a series of auctions for implementing

the efficient outcome. Consequently, in this section we obtain an iterative auction format

that relies on bidder-specific graphical pricing, and implements the efficient outcome for

general graphical valuations without running a series of auctions. The iterative auction

formats that we obtain in Sections 6.4 and 6.5 can be viewed as multi-item generalizations

of single-item efficient iterative auctions (e.g., English and Dutch auctions).

In Section 6.5, we are able to obtain iterative auctions that implement the efficient

outcome without employing a series of auctions, since the dual of LP5 (D5) has multiple

optimal solutions, some of which can be used to compute final payments that guarantee

truthful demand reports. On the other hand, there may be optimal solutions to D5, that

do not have this property. Hence, a special price update rule that converges to a particular

dual optimal solution is necessary in order to implement the efficient outcome. We provide,

in Section 6.6, a similar LP formulation, whose corresponding dual optimal solutions always

allow for computation of final payments that guarantee truthful bidding. Thus, solution

of this LP formulation with any primal-dual algorithm can be used to develop iterative

auction formats that implement the efficient allocation. Moreover, in Section 6.6, we show

that our final formulation can be generalized to obtain iterative auctions that implement the

efficient outcome for valuation functions that are not necessarily graphical. In particular,
in this section, we outline a framework that allows for implementing the efficient outcome

for general additively decomposable valuations.

We close the chapter in Section 6.7, with a brief summary of its contributions. Some of

the proofs are presented in Section 6.8 to simplify the exposition.
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6.2 Iterative Algorithms for Linear Programs

In this section, we focus on a generic linear program:

max dTy

s.t. Ay<b (6.1)

y > 0,

where b C R', d C R' and A E R"x" are given, and y C R" is the vector of decision
variables for this problem. We denote the element in the ith row and jth column of matrix
A by Aij, and the ith element of a given vector y by yi. Observe that the linear programs
that we presented for finding the efficient allocation (in particular LP1 and LP5) are special
cases of (6.1).

We next explain how this problem can be iteratively solved by using a primal-dual algo-
rithm. The results of this subsection are already present in the literature (for instance see

Papadimitriou and Steiglitz (1998); Bertsimas and Tsitsiklis (1997)), and our presentation

here closely follows that of Vohra (2011). The results of this section are used in subsequent

sections for developing iterative auction formats that implement the efficient outcome.

The dual of the linear program in (6.1) can be given as follows:

min bT A

s.t. AT A > d (6.2)

where A C R" is the vector of dual variables.

Assume that A* is dual feasible, y* is primal feasible, and these vectors satisfy comple-

mentary slackness conditions, i.e.,

A* > 0 -> Ajy = b

(6.3)
y > 0 -+ ( A* = dj.

Then, it follows that y* is optimal for the primal problem, and A* is optimal for the dual

problem (Bertsimas and Tsitsiklis, 1997).

The high-level idea behind primal-dual algorithms is to start with a dual feasible solu-

tion, and check if there exists a primal feasible solution that satisfies the complementary

slackness condition with the given dual solution. If this is the case, optimal solutions to

both problems are found, otherwise, another dual feasible solution with improved objective

value can be obtained. The primal-dual algorithm iteratively updates the dual solution,
when there is no primal feasible solution satisfying the complementary slackness condition
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with the current dual solution, and terminates when such a primal feasible solution can be

found.

More precisely, let A* denote the dual feasible solution at a given iteration. In order to see

if there exists a primal feasible solution satisfying the complementary slackness conditions

with A*, we consider the following set of constraints:

Ai yj = bi for all i such that A* > 0

yj = 0 for all j such that Ei AijA* > dj (64)

Ay < b

y > 0.

The first two constraints in the above system are obtained from (6.3) (by taking the com-

plement of the second statement), and the last two are the primal feasibility constraints.

If there exists a y* satisfying this system, then A* and y* are respectively dual and primal

optimal.

If this is not the case, we conclude that there does not exist y > 0, z > 0 such that

Ajjyj = bi for all i such that A* > 0

yj = 0 for all j such that Ej Aij A* > dj (6.5)

Ajjyj + zi = bi for all i such that A* = 0

y, z > 0,

where z is a vector of slack variables. In this case, the Farkas lemma implies that there

exists some A, y - R' such that

* ATX + y.> 0, where pj = 0 except for j satisfying E> Aij A* > dj,

" A2 > 0 for all i satisfying A = 0, and

e Tb < 0.

Let E > 0 be a small enough constant. Consider updating the original dual feasible

solution A* to A*+J. Here, we refer to A as the dual update direction, and E > 0 as the dual

update step size. Observe that for j satisfying E> Ai A* > dj , we have i Aij (A* + E) >

di.. On the other hand, for j satisfying E> Aij A* = dj, p, = 0, and hence the equation

AT + p > 0 implies that E> Aigli > 0. This suggests that E> Aij (A* + c) > dj for such j
as well. Additionally, since li > 0 for all i satisfying A* = 0, it also follows that A* + J > 0.

Thus, it follows that A* + cA is dual feasible. Moreover, since bTA < 0, we obtain

bT(A* + JX) = bTA* + EbTX < bTA*.
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That is A* + EA is a dual feasible solution with strictly better objective value than A*.
Summarizing, for a given dual feasible solution A*, either a solution of (6.4) exists and

A* together with this solution yield optimal primal and dual solutions, or we can construct

another dual feasible solution A* + eJ with strictly better cost (where E > 0, and bTA < 0).

Updating the dual solution to such a feasible solution (whenever a solution to (6.4) does

not exist), this process converges to optimal primal and dual solutions. Moreover, choosing

E appropriately, convergence takes place in finite time (Papadimitriou and Steiglitz, 1998).

We refer to such iterative algorithms as primal-dual algorithms. We note that in primal-

dual algorithms there are multiple ways of choosing the update direction A for the dual

feasible solution. 3

Applications of primal-dual algorithms to auction design appeared in the existing liter-

ature Vohra (2011), De Vries et al. (2007), and Bikhchandani et al. (2002). In these works,
authors model the problem of finding the efficient allocation as a linear program, in settings

where (i) valuations do not exhibit a special structure, or (ii) they satisfy a gross substitutes

condition (and hence do not allow for value complementarities). In these settings, they de-

velop iterative auction formats by considering iterative solutions of these linear programs

via iterative algorithms, such as primal-dual methods. The auction formats obtained in

the first setting rely on complex bundle pricing rules (where the auctioneer offers a price

for each bundle of items), whereas those in the second setting, do not guarantee efficiency

when valuations exhibit complementarities. In subsequent sections, we use primal-dual al-

gorithms to develop new iterative auction formats that guarantee efficiency in settings where

valuations of bidders can exhibit complementarities. In doing so, we exploit the structure

of graphical valuations, and the associated LP formulations (LP1 and LP5) developed in

Chapters 4 and 5. This enables us to have iterative auction formats that rely on simpler

pricing rules than the bundle pricing rule.

6.3 Ex-post Perfect Equilibrium

In this section, we introduce the solution concept that we use in our study of iterative

auctions. In particular, we discuss ex-post perfect equilibrium. We also provide sufficient

conditions for characterizing the ex-post perfect equilibria of iterative auctions. We start

by providing some necessary notation and definitions.

In iterative auctions, bidders participate in a multi-stage game. Let Ht denote the

history of the bidding process until time instant t. We denote the (behavior) strategy of

player m whose valuation is vm by sm(vm). This strategy maps every history to an action.

More precisely, with a slight abuse of notation, we denote by s m (Htlvm ) E Em (Ht) the

action player m, whose valuation is vm, uses at time t, after observing history Ht. Here,

E(Ht) denotes the set of actions player m can use after history Ht.
3 A systematic approach for obtaining a direction involves formulating the "restricted primal" problem,

and considering its dual. See Papadimitriou and Steiglitz (1998), and Vohra (2011).
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Consider a strategy profile {sm}m. For a realization of valuations of bidders {vk}k, the

payoff bidder m receives at the end of the auction game is denoted by um(sm(vm), s--m(v-7m)

where s- m (v- m ) denotes the strategies of all players but m. Similarly, denote by

um(sm(vm), s -m(v-m)IHt, v"i),

the payoff bidder m, who is of type v m , receives by using strategy sm (v m ), after history Ht,

given her opponents use strategies s-m(v-m).

Using this notation we next define two closely related solution concepts:

Definition 6.3.1 (Ex-post equilibrium). A strategy profile s = {sm} is an ex-post equilib-

rium if it satisfies

u"'(s"'(v"n), s-m(v-m)|vm) > Um(zm, (V-m)vm). (6.6)

for any realization {v"} of valuations of bidders, player m, and strategy zm.

This definition suggests that a strategy profile is an ex-post equilibrium, if for any

realization of types (or valuations {vm1), given strategies of her opponents, no agent has

incentive to deviate. In other words, the given strategy profile is a Nash equilibrium of

the game, where types are public knowledge. The second solution concept is a refinement

of ex-post equilibrium that ensures that players have no incentive to deviate from their

strategy, after any realization of the history.

Definition 6.3.2 (Ex-post perfect equilibrium). A strategy profile s = {s"} is an ex-post

perfect equilibrium if after any history Ht, it satisfies

UM(s'(v"'), s-m(v-"m)|Ht, v"') > u"'(zm, s-"(v-")|HA, om), (6.7)

for any realization {v'} of valuations of bidders, player m, and any strategy z".

This definition suggests that a strategy profile is an ex-post perfect equilibrium, if after

any history, for any realization of valuations, given strategies of her opponents, no agent has

incentive to deviate from her strategy. In other words, after any realization of the history

and payoffs, the given strategy profile remains to be a Nash equilibrium of the induced

subgame, where types of agents are public knowledge.

We next provide a sufficient condition for a strategy profile to be an ex-post perfect

equilibrium in an iterative auction game. Before we state our result, we need one more

definition (Nisan et al., 2007):

Definition 6.3.3 (VCG Mechanism). Consider a collection of valuation functions {v m }.

A mechanism is called a VCG (Vickrey - Clarke - Groves) mechanism if it

* chooses an efficient allocation, i.e., {S"} C argmax{zm}|zknzl=0 EM vm(Zm)
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* assigns each agent m a payment

7'({S"}, {vk}k=m)) = hm (v- m ) - ( ok(Sk),
khm

where h" is any real-valued function.

If hm is such that

h m (v- m ) max ( 5 k(Zk)
{Zk}|ZknZ=0 k54m

then, we say that payments of bidders (' m ({S m }, {vk}kgm)) = max{Zk}IZk nz =0 Ekm Vk(Zk)-

Ekfm Vk(Sk)) are VCG payments with the Clarke pivot rule. Intuitively, for a given agent,
the VCG payment with the Clarke pivot rule captures the opportunity cost she creates in
the system, i.e., the difference between the maximum welfare that can be achieved by the

remaining agents and the total welfare those agents have at the efficient allocation. In this
thesis we will only employ VCG payments with the Clarke pivot rule. For simplicity, we
refer to these payments as VCG payments. It is known that in sealed bid auctions, charging

bidders VCG payments guarantees that the efficient outcome can be implemented in ex-post

equilibrium (Nisan et al., 2007; Krishna, 2009).4

Consider any realization of valuations {vk}, where bidder m receives a set of items Sm

in the efficient allocation. Observe that efficiency requires allocating the remaining items
to bidders k $ m according to

arg max ( ok(Zk5.
{Z}k4m|ZknZ =0, ZknSm=0 #m

This suggests that for any realization {vk} where bidder m receives a set of items Sm in the

efficient allocation, her VCG payment can alternatively be expressed as _m({Sk}k, {Vk}kgm)) =

AM(Sm, {vk}km), where

im(S"M {Vk}kgm) A max ( v'k(Zk) - max ( 5 V(Zk.
{Zk}|Zknzl=0 km {Zk}|ZknZ=0, ZkknS-= km

Thus, under the Clarke pivot rule the VCG payment of an agent can be expressed only as

a function of her opponents' valuations, and the set of items she acquires in the auction.

We make this dependence explicit using the function im
The main result of this section makes use of the VCG payments to obtain a sufficient

condition for a strategy profile to be an ex-post perfect equilibrium in an iterative auction.

Theorem 6.3.1. Consider a strategy profile {sk}, and let {j>k} denote the realization of

payoffs of bidders. Assume that after any history Ht, if bidders k # m follow strategies

4 In fact, under this payment rule, in sealed bid auctions it is also a dominant strategy equilibrium for
bidders to bid truthfully, as explained in the aforementioned references.
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{Sk(ik)Ik#m, and

" If bidder m uses strategy sm (Dm ), then the auction terminates with the efficient allo-

cation.

" If bidder m uses a strategy z' (possibly identical to sm ('bm )), such that the auction

terminates with bidder m receiving a set of items S', then the corresponding payment

of bidder m is equal to m(Sm, {bk}kAm).

" If the auction does not terminate, then bidders do not make payments or receive items.

The strategy profile {s} is an ex-post perfect equilibrium.

Proof. Let {$k}

first and second

profile {sk(pk)}

um (SM~ P )i

denote the efficient allocation associated with valuations {k}. From the

conditions of the theorem it follows that for agent m, the payoff the strategy

leads to (after history He), is given by

m(b-m)IHtm) =b m (gm ) _ m ($m , {Vk}kAm)

=6"O$)+ max ( bOk(Zk) - max ( Z k(Zk)
{Zk}|ZkrnZl=0, ZknSm=0km {Zk}|Zknzl= km

= bk($k)- max E bk(Zk)
k {Zk}lZknZ=0 kphm

(6.8)

ince is the efficient allocation we have Ek ,k($k) - max{Z}ZZnZ0 Zkm I sk(Zk)
0, and hence (6.8) implies that u'm (sm (igm ), s m (i- m )|Ht,b m ) > 0. Thus, after history Ht,

bidder m has no incentive to use a strategy that prevents the auction from terminating.

Assume that after history Ht bidder m can use a strategy zm so that the auction

terminates with allocation {Sm}. The second condition of the theorem together with (6.8)

implies that

u M (,rn(fm)',s"p-r*||Ht,) = EOk ( Sk ) Max Zjk (Zk)
ks{(Zks }Zk} nzl=0 k m

k k

> 6"(S") + max Z k(Zk) Max k (Zk)
{zk}|ZknZ=0, ZknSm=0# {Zk}|ZknZl= k#m

= ,(Sm) _ m (gm , {gk}km) = um (z m , stm (f- m )IHt, fm),

where the inequality follows from the fact that {$k} is the efficient allocation, and the last

equality follows from the second condition of the theorem. Thus, we conclude that bidder

m cannot improve her payoff by deviating from sm(jr) to another strategy that leads the

auction to terminate. -Since bidder m, history Ht, strategy zm, and payoff realization {fk}

are arbitrary, the claim follows from Definition 6.3.2. El

This theorem suggests that if a strategy profile leads to the efficient outcome, and is

such that (i) when her opponents follow their strategies, the payment of an agent is only a
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function of her opponents' true valuations, and the final bundle of items she receives, and
(ii) corresponds to VCG payments specified by this bundle and the opponents' valuations,
then it is an ex-post perfect equilibrium. In Sections 6.5, we propose iterative auction
formats where the conditions of the above theorem are satisfied, and the efficient outcome
emerges at an ex-post perfect equilibrium.

6.4 Iterative Auctions for Tree Valuations

Corollary 4.3.1 suggests that an optimal solution of the optimization problem LP1 of Chap-
ter 4 provides the efficient allocation when the underlying valuation functions satisfy As-
sumptions 4.3.1 and 4.3.2, i.e., when the valuations are sign-consistent tree valuations. In
this section, we first explain how the primal-dual algorithm presented in Section 6.2, can
be used to solve this optimization problem (Section 6.4.1). We then use the resulting al-
gorithm to design an iterative auction format that implements the efficient outcome for
sign-consistent tree valuations (Section 6.4.2). In order to simplify exposition, throughout
this section, we assume that valuation functions are integer-valued.

6.4.1 An Iterative Algorithm for LP1

Recall that LP1 and its dual, which were introduced in Chapter 4, are as given below:

max Dix m (S)v m (S)
m S min pi + E rm

s.t. Zm(S) < 1 Vm i m

(LP1) S (D1) s.t. 7rm > v m (S) - piV S, m

E E x m (S) 1 Vi ics

m slis pi 7rm i 0.

xM (S) > 0.

In this section, we provide a primal-dual algorithm for solutions of these LPs. We adopt
the shorthand notations ir and p to denote the vectors of {rm}m and {pi}i of variables.

The primal-dual algorithm, presented in Section 6.2, involves a dual feasible solution

at each step of the algorithm. Observe that at an optimal solution of D1, the dual vari-

able 7rm is such that 7rm = maxscg vm (S) - Ei:S pi for all m c M. Motivated by this

observation, at each step of our primal-dual algorithm, we will choose the 7r vector so that

7M = maxscv vm(S) is pi for all m E M. Observe that this construction satisfies the

first constraint of D1 trivially.

As explained in Chapter 4, the variable pi can be thought of as the price of item i, and

7r can be thought of as the maximum surplus of player m, at the given prices. Also recall

that we say that a bundle S* is demanded by player m if irm = vm(S*) Es* pi, and the
set of items a bidder demands is denoted by Dm, i.e., D = {=S7rm = v tm (S) - icspi}.
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Given a dual feasible solution (p, 7r) of D1, the primal-dual algorithm first checks if a

primal feasible solution that satisfies the complementary slackness conditions with (p, 7r)

exists. In particular, following (6.4), we check whether a solution {x m (S)} to the following

system of equations exist:

>xm(S) = 1 for all m such that 7rm > 0,
S

E E xm (S) = 1 for all i such that pi > 0,
m sles

xm (S) = 0 for all m, S such that S V Dm,

E x m (S) < 1 for all m such that 7rm = 0,
S

Y5 xm (S) < 1 for all i such that pi = 0,
m sties

xm (S) > 0 for all m, S such that S E Dm.

As explained earlier, if this system of equations has a solution, then it is an optimal solution

of the primal problem LP1. Observe that in this formulation, we omit the primal feasibility

constraints >s xm (S) < 1 for m such that irm > 0, and Em Eslies x m (S) < 1 for i such

that pi = 0, since these constraints are implied by the equality constraints in (6.9) for such

i and m (see the first two lines of (6.9)).

By exploiting the structure of the optimization problems LP1 and D1, it is possible to

obtain additional properties for the solution of the system of equations (6.9). The following

lemma (which is proved in Section 6.8) states some of these properties.

Lemma 6.4.1. Let Assumptions 4.3.1 and 4.3.2 hold. Assume that for a feasible solution

(p, 7r) of D1, {x m (S)} is a solution to (6.9). Then, there exists another solution {in(S)}

to (6.9), such that (i) Es i(S) = 1 for all m, (ii) En Eslies 2n(S) = 1 for all i, (iii)

m(S) E{0, 1} for all m, S.

This lemma suggests that at a given dual feasible solution, if there exists a feasible

solution of (6.9), then there also exists a feasible integral solution such that Es jM(g) 1

for all m. Consider such a solution of (6.9) (assuming it exists). Observe that at this

solution, every bidder m has x m (S) = 1, for a bundle she demands (since by the third

constraint xm(S) = 0 for bundles that are not demanded), and the resulting allocation is

complete and feasible. This implies that finding an integral solution of (6.9) (and hence

an efficient allocation) is equivalent to finding a complete feasible allocation, which assigns

each bidder a set of items that she demands at the given prices.

Assume that a solution of (6.9) does not exist. Then, the primal-dual algorithm suggests

updating the dual variables to a dual feasible solution (p, 7r) + e(f, fr) using some step size

E > 0, and dual update direction (p, r) such that ~ fij5 + Em /Em < 0. Existence of such a
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dual feasible solution is guaranteed by Farkas lemma, as explained in Section 6.2. We next
show how an improvement direction can systematically be obtained.

Consider the following optimization problem:

min E i + hi

s.t. Sxm(S) 1 for all m
S

E E x m (S) + 7 - hi = 1 for all i such that pi > 0 (6.10)
m SzES (.0

55 X(S) - hi < 1 for all i such that pi = 0
m Slics

xm (S) = 0 for all m, S such that S V D'

xm (S), -i, hi > 0 for all m, S, i.

Lemma 6.4.1 suggests that if a solution to (6.9) exists, then there exists a solution for which

ES xm (S) = 1 for all m. This implies that if the system in (6.9) has a solution, then the

optimal value of (6.10) is zero. Conversely, if (6.9) does not have a solution, then the

objective value of the above problem is strictly positive (otherwise an optimal solution of

(6.10) gives a solution of (6.9)). Intuitively, the parameters -3 and hi measure how much the

constraints for item i present in (6.9) are violated, and the objective of the above problem

is to minimize the total violation of the constraints. This problem is sometimes referred to

as the restricted primal problem (Papadimitriou and Steiglitz, 1998).

Note that in (6.10) some xm(S) variables are set equal to zero (see the fourth constraint),
and this problem can be reformulated omitting these variables. The dual of the resulting

problem (also known as the restricted dual problem) can be given as follows:

max - E rm -

n i

s.t. frm + ;> 0 for m, S such that S E Dm

iES (6.11)
<i I for all i

- I1 for all i such that pi > 0,

flu> 0 for all i such that pi = 0.

Here -Im is the dual variable corresponding to the first constraint of (6.10), and fii is the

dual variable corresponding to the second and third constraints. In (6.10), -yj is the variable

corresponding to the dual constraint -pfi < 1 and hi is the variable corresponding to the

constraint Pi < 1.

If at an optimal solution of (6.10), hi > 0, then we will say that item i is overdemanded.

Similarly, if at an optimal solution 7; > 0, we will say that i is underdemanded. Intuitively,
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overdemanded items are demanded by more than one bidder, whereas the converse is true

for the underdemanded items. Note that (6.10) may have multiple optimal solutions, but

it is never the case that for some item i, hi > 0 in some optimal solutions, and 72 > 0

in the others. This is because, when hi > 0 at an optimal solution, the complementary

slackness conditions suggest that in the dual optimal solutions the constraint A < 1 is

active. Conversely if 'y, > 0 at an optimal solution, then the constraint fii > -1 is active.

The claim follows, since, at a given dual optimal solution, at most one of these inequalities

can be active. This suggests that an item can be either overdemanded or underdemanded

but not both.

Assume that (6.9) has no feasible solution. Then the optimal value of (6.10) is positive.

Additionally, by strong duality, (6.11) has an optimal solution (p, if) that leads to a positive

objective value that is equal to the optimal value of (6.10).

We next establish that (P, T) obtained by solving (6.11), is a valid dual update direction

for our primal-dual algorithm, i.e., it is such that Eii + Em Tm < 0 and for small enough

e > 0, (p, 7r) + e(fi, ii) is dual feasible. Moreover, this dual update direction leads to an

intuitive price update structure: the auctioneer increases the prices of overdemanded items,

and decreases the prices of the underdemanded ones.

Lemma 6.4.2. Let (p, r) be a dual feasible solution of D1 such that (6.9) has no solu-

tion corresponding to it. Consider an optimal solution ({x m (S)}, {i}, {hi) of (6.10) and

an optimal solution (p, -) of (6.11). The solution (p, f) is a valid dual update direction.

Moreover, (fi, t) satisfies the following conditions:

(i) If i is overdemanded, then 15i > 0.

(ii) If i is underdemanded then fi < 0.

(iii) Assume that irm maxs vi(S) - jiss pi for some player m. There exists some set

S* such that 7m v" (S*) - picss pi, and 7m + ef* = vm (S*) - Eis* (pi + ji9),

for any e > 0 such that (p, 7) + e(p, t) is feasible in D1.

This lemma (proof of which can be found in Section 6.8) implies that for solving LP1

using a primal-dual algorithm, a valid dual update direction can be found by solving (6.11).

Additionally, it suggests that for each player m there exists some set S that is demanded

both at the original prices, and the updated prices. Another implication of the third part of

the lemma is that if at the initial dual feasible solution, we have 7m = maxs v m (S) _Eics Pi,

then provided that the dual update direction is computed using (6.11) (and a sufficiently

small step size is chosen), this equality holds at all steps of the iterative algorithm.

The only unspecified step in our primal-dual algorithm is the choice of e, the step size

of the dual update. In general, in primal-dual algorithms, e is chosen as the largest step

size that does not violate the dual feasibility constraint (Papadimitriou and Steiglitz, 1998).

In our case this translates to choosing e equal to the largest 9 satisfying pi + 9pi > 0, and
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,rm + 0irm > v m (S) _ ZiEs(pi + opi) for all i,m, S. Denote such a 0 by 6*. Observe that
computing 0* requires knowledge of valuation functions. Our next result establishes that

when valuation functions are integer-valued, it is possible to choose a step size that is only

as a function of p and fi and that preserves dual feasibility.

Lemma 6.4.3. Assume valuation functions are integer-valued. There exists some function

# : RN xI N -- R++, such that for any dual feasible solution (p, 7r) of D1 that is not optimal,

and the corresponding update direction (i, r)'

(i) A dual feasible solution with improved objective is given by (P, fr) = (p, ,r)+(p, )(J, ir).

(ii) Either $(p,p) = 0*, or (i, r) is an optimal solution of (6.11) at the updated dual

solution (P, fr) as well.

(iii) If $(p,P) # 0*, after finitely many dual variable updates (using the update direction

(ji), and choosing the step size according to $), the dual solution (p, i) + 0* (p, i) is

reached.

A proof of this lemma is provided in Section 6.8. This lemma implies that the primal-

dual algorithm can be implemented by choosing a step size that does not depend on the

valuation functions.

Using the results obtained in this section, we next state a primal-dual algorithm (see
Algorithm 1) for solving LP1. We conclude this section by proving that Algorithm 1 can

be used to obtain an optimal solution of LP1 that is integral.

Algorithm 1 A primal-dual algorithm for solving LP1/D1.
SI: Start at a dual feasible solution, pi = 0 for all i, and ,rm = maxs vm(S) _ Ei'

S2: Given a dual feasible solution, construct sets Dm = {S|7rm = mn(S) i '

S3: Solve (6.10). If this problem has objective value 0, the solution (p, ir) is optimal in
D1. Moreover, there also exists an optimal solution of (6.10) that is integral. Go to
step S5.

Otherwise, go to step S4.

S4: Find a dual variable update direction (pi, r) by solving (6.11). Update dual solution
to (p, 7r) + qp(p, p)(p, Tr), go to step S2.

S5: Terminate returning the allocation of items, suggested by the optimal integral solution
of (6.10), and the dual solution (p, ir).

Lemma 6.4.4. Algorithm 1 terminates in finitely many steps with an optimal solution of

D1 and an optimal integral solution of LP1.
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Proof. Since at the initial dual feasible solution we have 7rm = maxs ym(S) - EiesPi,
it follows from Lemma 6.4.2 that the dual feasible solution satisfies this equality at each

iteration, and thus D m # 0.

It can be seen that if the objective value of (6.10) is equal to zero, then the solution

satisfies the complementary slackness conditions in (6.9). Moreover, Lemma 6.4.1 suggests

that there exists an integral solution of (6.9) as well, which also leads to an objective value

of zero at (6.10). Thus, we conclude that if the objective value of (6.10) is equal to zero,

then there exists an optimal solution, that is integral, and that satisfies the complementary

slackness conditions in (6.9). Since, it satisfies the complementary slackness conditions,

it follows that it is optimal in LP1 and the corresponding dual solution is optimal in D1.

Thus, Step S5 of the algorithm implies that if the algorithm terminates, the corresponding

primal and dual solutions are optimal.

If the objective value of (6.10) is not equal to zero, then as Lemmas 6.4.2 and 6.4.3

suggest the solution in Step S4 is dual feasible, and has a lower objective value. Moreover,

Lemma 6.4.3 implies that starting from a dual feasible solution (p, 7r), in finitely many steps

a dual feasible solution (p, 7r) + * (p, r) is reached. On the other hand, it is known that

using step-size 6* primal-dual algorithms converge in finitely many steps (Papadimitriou

and Steiglitz, 1998). Thus, it follows that the algorithm terminates in finitely many steps,

and the claim follows.

6.4.2 An Efficient Iterative Auction

In the previous section, we provided a primal-dual algorithm that can be used for solving

LP1/D1. In this section, we employ this algorithm to design iterative auctions that imple-

ment the efficient outcome for sign-consistent tree valuations. In particular, we first show

that the auctioneer can simply run Algorithm 1 by asking bidders the set of items that

they demand at the given prices (i.e., the sets D m in Algorithm 1), and adjusting prices

accordingly. This process can be interpreted as an iterative auction, which we refer to as

the one-stage auction game. We show that if bidders truthfully reveal their demand this it-

erative auction converges to a Walrasian equilibrium and implements the efficient outcome.

On the other hand, bidders may have incentive to misreport their demand, if the auctioneer

charges final payments to bidders that are equal to the prices that emerge at the end of the

auction. In order to resolve this issue, we propose another related auction, which we refer

to as the serial auction. This auction relies on running a series of one-stage auctions to find

the efficient outcome, as well as the payments that guarantee truthful revelation of bidders'

demand at each step of the auctions. We show that this iterative auction implements the

efficient outcome at an ex-post perfect equilibrium, for sign-consistent tree valuations.

In Section 6.4.1, Algorithm 1 implicitly makes use of the value functions {v m }. In

particular, in the first stage of the algorithm, we define 7r = maxsom(S) - Eiespi-
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Additionally, in Step S2 of the algorithm we construct sets D', which can be used to
formulate optimization problems (6.10) and (6.11). Note that Steps S1 and S2 are the only
steps of the algorithm, where information about payoffs is necessary.

We claim that in order to run this algorithm, it is not necessary to explicitly use variables

{7m}. In particular, assume that initially 7tm is defined as in Step S1. Lemma 6.4.2 suggests

that after each dual variable update these variables satisfy 7m = maxs yin(S) omhSpi.

Moreover, the algorithm does not make use of these variables except for identifying sets for

which the aforementioned equality holds. These observations imply that the algorithm can

be run by implicitly defining 7m = maxs vm(S) _ EiSspi for all bidders m and bundles

S at every stage of the algorithm, and constructing sets Di = arg maxs vm (S) - ics Pi
Note that this choice of itm ensures that D' = {5 im = maxs om(S) - Eicspi}, i.e., the

set of items each bidder m demands at the current prices.

Thus, it follows that Algorithm 1 can be reformulated by eliminating the it variables, and

and using the sets Di = arg maxs yin(S) - Eics pi for formulating optimization problems

(6.10) and (6.11). This suggests a natural iterative auction format, which we refer to as the

one-stage auction:

One-stage auction.
S1: Start with prices pi = 0 for all i.

S2: Ask each bidder m the set of items she demands Dm = arg maxs ym(S) - icS pi.

S3: Solve (6.10). If this problem has objective value 0, then there exists an optimal
solution of (6.10) that is integral. Go to step S5. Otherwise, go to step S4.

S4: Update the prices using p obtained by solving (6.11) to p + 0(p, p)f. Go to step S2.

S5: Terminate returning the allocation of items, suggested by the optimal integer solution
of (6.10). Assign each bidder m who receives a set of items Sm, a payment that is
equal to EiEsm A .

Observe that in the above iterative process, the auctioneer, who does not know the value

functions of bidders, sets prices, and bidders respond to these prices with their demand sets.

In response to these demand sets, the auctioneer adjusts the prices, until a final allocation

is obtained. Note that the price updates have an intuitive interpretation. The auctioneer

increases the prices of overdemanded items, and decreases the prices of the underdemanded

items as suggested by Step S4, and Lemma 6.4.2. The auction terminates, if the condition

in Step S3 holds, i.e., none of the items is under/over demanded (and hence (6.10) has

objective value zero).

We next use Lemma 6.4.4 to show that if bidders truthfully report their demand sets,
i.e., reveal sets Dm = argmaxs vm(S) - Eicspi at each step of the auction, then the

one-stage auction terminates with an efficient allocation. In fact, we establish a stronger

result: If a subset Mo of bidders reveal their demand truthfully, after some history Ht, and

194



the auction terminates with an assignment of items {Sm}, then {Sm}meMo is an efficient

assignment of items UmeMOSm to bidders in M 0 .

Lemma 6.4.5. (i) After any history Ht, assume that bidders in Mo C M reveal their

demand truthfully at the one-stage auction game, and the auction terminates with a

final allocation {Sm}. Then { Sm}mcMo is an efficient assignment of items UmcMO S'

to bidders in M 0.

(ii) After any history Ht, if all bidders reveal their demand truthfully, the one-stage auc-

tion game terminates with an efficient allocation of items.

A proof of this Lemma can be found in Section 6.8.

Observe that Step S2 of the one-step auction game implies that if bidders truthfully

reveal their demand, then the allocation and prices obtained at the end of the iterative

auction constitute a Walrasian equilibrium. Thus, we conclude that this iterative auction

terminates when a natural market clearance condition holds.

Despite the fact that the one-stage auction game converges to the efficient allocation,

when agents reveal their demand truthfully, the prices that emerge at the end of this iterative

auction may not guarantee truthful demand revelation. We next introduce an extension of

this iterative auction, which we refer to as the serial auction game. In this game, bidders

compete not in one but multiple one-stage auctions auctions, conducted in series. At the end

of this sequence of auctions, we guarantee that the auctioneer finds the efficient outcome, as

well as the payments that guarantee truthful revelation of demand sets at an equilibrium.

Before we explain our approach in detail, we introduce some additional notation.

Consider the one-stage auction game introduced above. Denote by p(t, S) the total price

of items in bundle S, at step t C Z++ of this auction, i.e., p(t, S) = Eis pi(t), where p(t)

is the price vector at step t. Let Dm (t) be the set of items bidder m reports as her demand

at time t, in response to prices p(t). For each bidder m, and t > 1, we define

max p(t + 1, S) - p(t, S) if D m (t) n D m (t + 1) # 0
q m (t) SEDm(t)nDm(t+1) (6.12)

L otherwise,

where L is a large constant. Observe that if bidders reveal their demand sets truthfully, and

D m (t) n D m (t+ 1) # 0, we have v m (S) -p(t, S) = vm (5) -p(t, 5) and v m (S) - p(t+ 1, S) =

vm (5) - p(t +1, 5) for any S, 5 E Dm (t) n D m (t + 1). These equalities imply that if bidders

are truthful, then p(t+1, S) --p(t, S) = p(t+1, 5) --p(t, 5) for any S, 5 E D m (t) n D m (t+1).
Hence, in this case maximization in (6.12) is unnecessary.

We denote by Qm the sum of qm (t) in the course of the auction, i.e., Qm  - m (t),

where T denotes the step at which the auction terminates. We next show that Qm reveals

useful information about valuations of bidders, when they bid truthfully.5 A proof of this
5 A similar result (with a slightly different definition for the quantity Qm ) that requires having piecewise
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Lemma can be found in Section 6.8.

Lemma 6.4.6. Assume that bidder m bids truthfully in the one-stage auction game, and
the auction terminates assigning bundle S m to bidder m. Then, QM =v m (A) - vm (S m ) +
pm(S m ), where p m (S m ) stands for the price associated with this bundle at the end of the

auction.

We next introduce the serial auction game. Let M {1, . . . , M} denote the set of all

bidders. The serial auction game involves:

" At stage zero, running a one-stage auction with bidders M (referred to as auction 0),

" At stage k running a one-stage auction with bidders M - {k} (referred to as auction

k).

Let Qm denote the Qm value associated with bidder m in auction k. Denote the assignment

obtained at the end of stage k by {Sk}, and the corresponding prices for these bundles at

the end of the auction by {pm(Sk7)}. If the serial auction game terminates, then

" Items are assigned according to the allocation that emerges at the end of stage 0, i.e.

* Final payment of each bidder m is equal to Ek$m(OQ - p0(S0)) - (QM -p

Observe that the final allocation of items to bidders is determined at the end of stage 0.

The subsequent stages are present to compute the final payments of the bidders.

A complete description of the game requires specifying payments of bidders for cases

where the auction does not terminate. If auction 1 does not terminate (1 > 0), then each

bidder m < 1 receives items as identified at the end of stage 0 ({S}), and has a final

payment of Ekym(Q0 - p 0(S$)) - (QM - pk (Sk)). Each bidder m > 1, on the other

hand, receives no items and has a payment equal to Ek$m(Qm - pe(S$)). If auction 0 does

not terminate, then no item is assigned, and the final payment of each bidder is equal to

supT Ek~m E= 1 k(t).

We conclude this section by showing that it is an ex-post perfect equilibrium for bidders

to bid truthfully in the serial auction game. Moreover, truthful bidding leads to an efficient

allocation of items to bidders.

Theorem 6.4.1. It is an ex-post perfect equilibrium for bidders to bid truthfully in the

serial auction game. Moreover, the corresponding final allocation is efficient, and payments

are the associated VCG payments.

The proof of this theorem is provided in Section 6.8. Running a series of auctions

may pose difficulties in practice. On the other hand, we demonstrate in Section 6.5 that

when bidder-specific graphical pricing is used, the efficient outcome can be implemented by

running a single iterative auction.

smooth and continuous price paths, and relies on computing a Stieltjes integral of prices is also present in
Ausubel (2006).
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Remark: Recall that the VCG payment of agent m acquiring bundle S m of items is given

by "y(S , {Vk}k m) A max{Zk}|Zknzl= 0 >k m vk(Zk)--max{zk}|zknzl=, zknsm=0 Zkymvk(Zk).

It follows from Lemma 6.4.6 that when agents k # m bid truthfully in the one stage auc-

tion game, the auctioneer can compute the quantity Qk - pk(Sm) = Vk(N) - vk(Sk) for

all k $ m. Since when bidders k # m bid truthfully {Sk}kom is an efficient allocation of

items M - Sm to bidders k f m (see Lemma 6.4.5), it follows that EkAm Qk - pk(Sm) =

Ektm Vk (N) vk (Sk) -- Ekm Vk (N) - max{Zk}|Zknzl=, Zknsm=0 EkAm Vk (Zk). This im-

plies that Im(Sm, {vk}k m) = rm + Ekgm(Q - pk(Sm)), where nm is a function of true

valuations of bidders k / m. Thus, by running a single iterative auction, the auctioneer can

learn the VCG payment of each agent (whose opponents truthfully bid) up to an additive

function of her opponents' valuations. It can be shown that if this quantity is charged to

bidders, as their final payments, then bidders still have no incentive to deviate from the

truthful bidding strategy. However, some bidders may have negative payoffs at the end of

the auction, and this may deter them from participating in the auction. Thus, if we allow

outcomes where some bidders have negative payoffs, it may be possible to implement the

efficient outcome by using a single iterative auction that relies on anonymous item-pricing.

An alternative approach involves running a single iterative auction, but not immediately

terminating the auction when a Walrasian equilibrium is identified. In particular, the

auctioneer can continue running the auction until she acquires sufficient information to

compute the VCG payments (or identifies the efficient allocation for sets of bidders M and

M - {k} for all k C M). The iterative auction format we present in the next section makes

use of this idea to implement the efficient auction by running a single iterative auction.

6.5 Iterative Auctions for General Graphical Valuations

In this section, we focus on solutions of LP5/D5 using iterative algorithms, and employ

these to develop new iterative auction formats that rely on bidder-specific graphical pric-

ing. The iterative auctions we develop in this section, have an ex-post perfect equilibrium

that implements the efficient outcome for all graphical valuations. Importantly, unlike the

auctions in Section 6.4, in these auctions, the auctioneer can compute the final payments

that guarantee truthful bidding, by conducting only a single auction (as opposed to a series

of auctions). Thus, our results imply that it suffices to run a single iterative auction which

relies on bidder-specific graphical prices to implement the efficient outcome for graphical

valuations.

An algorithm similar to that of Section 6.4 can be used for iteratively solving LP5

and finding the efficient allocation for graphical valuations. That is, we can start with

a feasible dual solution, and check if there exists a primal feasible solution satisfying the

complementary slackness condition with this dual solution. If such a solution exists, then we

identify a primal-dual optimal pair. Otherwise, we can focus on a restricted primal problem
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(similar to (6.10)), and the corresponding dual, and update the dual prices in accord with
the solution of these optimization problems. Since, primal-dual algorithms converge to
the optimal solution of the underlying optimization problem, and in LP5 there exists an
optimal solution that coincides with the efficient allocation, the approach we outline above

guarantees convergence to the efficient outcome.

Note that this approach requires solving the restricted primal/dual problems in order to
identify the dual variable update directions. On the other hand, the dual space of LP5 (or

the feasible set of D5) exhibits a special structure that allows for convergence to the optimal

solution, by updating the dual variables using a simple update rule that does not require

solving the restricted primal/dual problems. Before we explain this approach, we introduce

some necessary definitions, and present important properties of the optimal solutions of D5.
We define a restriction of a feasible solution ({pT, pT},M, {7rmmeM, 7rr) of D5 to a

set of bidders M 0 c M as the tuple ({pT,pT}meMo, {rm}mCMo, ir8 ). Similarly, we refer

to the tuple {pT,pT, r m m cmo as the restriction of prices and bidder surpluses to a set of

bidders M 0 C M. Additionally, we say that D5 is formulated with subset M 0 of bidders,
if (i) it has pT, pT, rm variables only for m c Mo, (ii) the first constraint is imposed only

for m C M 0 , and (iii) the second constraint is present only for allocations P, where bidders

m V Mo do not receive any items, i.e., p'm 0.
We next show that there exists an optimal solution of D5, whose restriction to any

subset of bidders gives prices and bidder surpluses that appear at an optimal solution of a

formulation of D5, for this set of bidders.

Lemma 6.5.1. (i) Assume that there are at least two bidders and one item, and the

efficient allocation is unique. Then, the prices that are part of an optimal solution of

D5 are not unique.

(ii) There exists an optimal solution of D5, such that for any M 0 C M, the restriction

of prices and bidder surpluses of this optimal solution to Mo agrees with prices and

bidder surpluses at an optimal solution of a formulation of D5 with set of bidders M 0 .

Proof. (i) Denote the unique efficient allocation by {S'}. Consider a solution of D5, where

pm= w, pm = wm, xm = 0, for m C M, and r, equals to the maximum welfare, i.e.,
s= W max{sm} Ek vk(Sk). It can be immediately checked that this solution is feasible

in D5. Additionally, the corresponding objective value is equal to W*. However, LP5 has

a feasible solution, associated with the efficient allocation, which has the same objective

value. This implies that the constructed dual feasible solution is also optimal.

Since the efficient allocation is unique, it follows that

7rs = + M >p (6.13)
m iEgm gjcm m icSm ijegm

for any other allocation {S m } {$ m }. For some player k, we have Sk - Sv $ 0. Let item j
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belong to this set. For sufficiently small c, consider the following solution of D5: - = p + ,

p' for all (m, i) $ (k, j), p' = p' for all (i, r) E E, -m = 7rm for all m, V = 7F.

Note that this solution is feasible since (weakly) increasing {p', p'} does not violate the

constraints involving 7rm. Additionally, the constraint involving mr is not violated since this

constraint is strict except for allocation {Sm}, j C Sm _ Sm, and c is sufficiently small. On

the other hand, it can be seen that the new solution achieves the same objective value as

the original solution, hence it is optimal, and the first part of the claim follows.

(ii) In order to prove the second part, consider the initial dual optimal solution we

constructed for the first part, i.e., pT = wf, p = wT, 7r = max{sm} Ek Vk(Sk), mm = 0

for all players m, nodes i and edges (i, j) E E. Observe that after restricting this solution

to a set of bidders Mo, and replacing mr with 7r' - max{sm}ism=0 for m V M 0 >k Vk(Sk),
we obtain a solution for D5 formulated with bidders Mo. Feasibility of this solution can

immediately be checked. Note that the objective value of D5 associated with this solution,
is equal to the maximum welfare that can be raised with set of bidders Mo. On the other

hand, when D5 is formulated with set of bidders Mo, the corresponding LP5 has a feasible

solution associated with the efficient allocation to set of bidders Mo, and the objective value

of this solution is equal to the maximum welfare (max{sm}Ism =0 for m V M o >k Vk(Sk)).

Thus, it follows that the solution we constructed is also optimal in a formulation of D5,
with set of bidders Mo. We conclude that the restriction of prices and bidder surpluses of

the optimal solution obtained in the first part to set M 0 , agrees with an optimal solution

to D5, formulated with set of bidders M 0 , and the claim follows. E

Since generically (i.e., except for possibly a measure zero set of node/edge weights)
there is a unique efficient allocation, the above lemma suggests that D5 almost always has
multiple optimal solutions. Moreover, it has an optimal solution whose prices and bidder

surpluses also appear in an optimal solution of D5 formulated with fewer bidders.

Consider an optimal solution of D5, such that for all m C M, the prices and bidder
surpluses of this solution agree with the prices and bidder surpluses at an optimal solution

of D5, formulated with bidders M - {m}. We refer to such a solution of D5 as a special

optimal solution.6 Intuitively, the dual prices and bidder surpluses in this solution remain to
be optimal, after removing at most one bidder from the formulation. Lemma 6.5.1 implies
that special optimal solutions exist.

Let ({pm}, {pm}, {r m }, 7r') be a special optimal solution of D5. By Theorem 5.4.1
it follows that LP5 has an associated integral optimal solution. Moreover, this solution

6 Special optimal solutions are closely related to the universal competitive equilibrium (UCE) price concept
of Mishra and Parkes (2007, 2009). In particular, UCE prices correspond to "competitive equilibrium" prices
for sets of bidders M and M - {k} (for every k). Moreover, they can be used for computing the VCG
payments of agents. On the other hand, UCE prices associate a bidder-specific price with every bundle of
items, and hence potentially consist of M2N distinct parameters. In contrast, the special optimal solutions
we focus on here, associate a bidder-specific price with each node and edge of the underlying graph (hence
consist of O(MN 2 ) parameters). Moreover, when valuations are graphical, as we establish in this section,
they are sufficient for the computation of VCG payments.

199



suggests an efficient allocation of items to bidders. We denote this efficient allocation by

{SOMImEM, and note that the optimal solution of LP5 has xm (So) = 1 for all m. Similarly,
when D5 is formulated with a set of bidders M - {k}, the corresponding LP5 has an integral

optimal solution that identifies an efficient allocation for these bidders. For every k C M,

denote this allocation by {Sk}mEM-{k}, and note that the associated optimal solution of

LP5 has xm (Sk) = 1 for all m = k. Since ({pT},{pq},{7rm},7rs) is a special optimal

solution, then by complementary slackness in LP5 and D5, it follows that

7r m = VM (SOm) _ Pm (O) = V' (ST) - Pm (ST),

where we use the shorthand notation pm (S) iESP jSp. This suggests that at

a special optimal solution we have:

vm (ST) - vm (SOT) = Pm (S _) - Pm (ST). (6.14)

Since by definition {Sk} is an efficient allocation for a set of bidders M - {k}, it follows

that VCG payment (see Definition 6.3.3) for bidder k is given by Em5k Vm (ST) -v m (SO)

Emok Pm(ST) - pm (Sm). This expression suggests that if a special optimal solution of D5

can be found, then this solution can be used to compute the VCG payments, in addition

to the efficient outcome. Additionally, complementary slackness implies that at a special

optimal solution the prices and the allocation {SOM} constitute a pricing equilibrium with a

bidder-specific graphical pricing rule.

We next propose an iterative auction format (see the table below) that implements the

efficient allocation for all graphical valuations. The prices in this auction are updated so

that when bidders reveal their demand truthfully, they converge to prices that are a part

of a special optimal solution of D5. This allows for charging bidders final payments that

are VCG payments, and guarantees that truthful demand revelation is an ex-post perfect

equilibrium.

We make two assumptions before we state our auction format: (i) the valuation functions

are integer-valued, (ii) there exists some integer 7D such that zv > wT, wm for all m, i, and

(i, j) E E. Observe that the first assumption also implies that the node and edge weights

are integers for all bidders. The second assumption simply suggests that an upper bound

on node/edge weights is known.

This auction starts with high prices, at which bidders who bid truthfully do not demand

any items. Intuitively, the auctioneer decreases the prices of items that are not demanded

in isolation (i.e., {i} V Dk), until bidders start demanding them. Once a bidder demands

such an item i, it is added to set pk. If two end points of an edge belong to this set (they

are demanded at some point), and the bundle {i, j} is not demanded, then the auctioneer

decreases the price associated with this edge. If the termination condition in Step S2 holds,
then the auction terminates with a final allocation, and payments that are only a function
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An iterative auction for general graphical valuations.
Sl: Set pT = pT = for all m, i and ij. Set Tm= 0 for all m.

S2: Ask every bidder m the sets she demands at the current prices, i.e., D'
arg maxs v'(S) - EiSs p - ijCs P-

If there exists an allocation {Som} such that

e Som E D m

" EmPm (Som) ' Em Pm (S m ) for any other allocation {Sm}

and allocations {Sk}gmk for every bidder k such that

" Sm E D m

* Emk Pm (Sk) > mk Pm (Sm) for any other allocation {S m }

then go to step S5. Otherwise go to step S3.

S3: For every bidder m, and item i, if {i} E Dm , then do not update pm, and set Tm
PTm U {i}. Otherwise decrement p7 by one.

For every bidder m, and edge (i, j) E E, If i, j E Jm, and {i, j} Dm, then decrement

pm by one. Otherwise do not update pm.

S4: For every bidder m, if (i) pm < 0 for some i C K, or (ii) S E D m but S' c S is such
that S' V Dm, then set pm = pT = 77v for all i E K, (i, j) C E, and Tm  0.

Go to Step S2.

S5: Terminate, by allocating items according to {SO}, and assigning a final payment for
each bidder k that is equal to Em,k Pm (Sk) _ Pm(gM).

of the prices that emerge in the last stage of the auction. The final payment of each bidder

k is the difference between the revenue the auctioneer can raise at the final prices, if this

bidder is not present (Emsk pm (Sm)) and the revenue the auctioneer can raise from the

remaining bidders, when she is present (Em k P m(Sm)). Finally, if a bidder m does not bid

truthfully, then the conditions of Step S4 may hold, and the auctioneer "resets" the prices

for bidder m, i.e., they are updated to the levels in Step S1. Note that if the auction does

not terminate, the auctioneer does not allocate any items, and bidders do not make any

payments. Hence, in this case we assume that bidders receive a payoff of zero.

An iterative solution of LP5/D5 using a primal-dual algorithm requires keeping a dual

feasible solution at each stage, checking if there exists a primal feasible solutions that

satisfies the complementary slackness conditions with the given dual feasible solution, and

updating the dual variables to obtain a dual feasible solution with an improved objective.

Additionally, as in Section 6.4, it is possible to implicitly define {r m , 7S} variables at each

stage of this iterative algorithm, by setting wm = maxs vtm(S) - Eics pT - Eijcs pm, and

rS = maxpc Jm Eiegm pT +ZEijm p!. Note that this choice of dual variables guarantees
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dual feasibility at each stage, and allows expressing dual variable updates, only in terms of

the updates of the price variables.

The steps of the above iterative auction are similar to a primal-dual algorithm, when

bidders truthfully reveal their demand. In particular, defining 7rm, and 7r' variables im-

plicitly, as given above, dual feasibility in D5 is always guaranteed. Additionally, the first
set of termination conditions in Step S2 (those involving Som), correspond to checking if

there exists a primal feasible solution satisfying complementary slackness conditions with

the given dual feasible solution. More precisely, it can be seen that if these conditions hold,
the primal feasible solution xm (S) = 1 for all m, 6 so.} = 1, and xm (S) = 6, = 0 for

remaining p and (m, S), satisfies complementary slackness conditions with the aforemen-

tioned dual feasible solution. Additionally, this solution is feasible in the primal, implying

that the given primal and dual feasible solutions are optimal, and {SO} is efficient.

On the other hand, the iterative auction proposed above is different than a primal-dual

algorithm in two aspects. First, even after an optimal solution is found the auction may

not terminate. This can be seen by observing that if the first set of conditions in Step S2

hold, but the second set of conditions do not, the price updates continue. This feature of

the auction guarantees that price updates terminate only when a special optimal solution

is found (and possibly after an optimal solution is found). Secondly, unlike primal-dual

algorithms, the dual updates need not strictly improve the objective. This can be seen by

noting that even after an optimal solution is found, price updates continue. Moreover, price

updates do not require explicitly formulating and solving restricted primal/dual problems.

Thus, we conclude that when bidders reveal their demand truthfully, the above iterative

auction imitates a primal-dual algorithm. However, it is slightly different from a primal-dual

algorithm, as it searches for a special optimal solution of D5 (as opposed to any optimal

solution).

We next show that when bidders truthfully reveal their demand this iterative auction

converges to a special outcome of D5. Additionally, when final allocation and payments are

chosen as in step S5, it is an equilibrium for bidders to reveal their demand truthfully.

Theorem 6.5.1. (i) Let {v m } denote the valuations of bidders. Assume that the above it-

erative auction terminates with prices ({p }, {p J}), and at the last step of the auction,

bidders' demand reports are truthful. The solution of D5 obtained by setting 7r'

maxs om(S) - - E and irjE maxCX En Eicrn pT + m ijc ,

is a special optimal solution.

(ii) In this auction, it is an ex-post perfect equilibrium for bidders to reveal their demand

truthfully. Moreover, the corresponding final allocation is efficient, and payments are

the associated VCG payments.

We conclude that the iterative auction format that is defined in this section guarantees

that the efficient outcome emerges at an ex-post perfect equilibrium. Additionally, it does
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so without running a series of auctions, and by relying on a simple pricing rule: bidder-

specific graphical pricing. In particular, this auction terminates at a pricing equilibrium

(with bidder-specific pricing rule), which also is a special optimal solution of D5. The

allocation at this solution is efficient, and the prices allow for the computation of the VCG

payments. These final payments ensure that bidders have no incentive to deviate from

truthful bidding, at any stage of the iterative auction.

The key enabler of our result is the special structure of graphical valuation functions,
and the existence of an LP formulation (LP5), which has a simple dual space, and can

be used to find the efficient allocation for all graphical valuations. In the next section,
we provide a generalization of our results and auction format to additively decomposable

valuations, and discuss how the "complexity" of the auction format changes, as we consider

more and more general valuation functions.

6.6 Generalization: An Alternative LP and Additively De-
composable Valuations

In the previous section we showed that D5 has some optimal solutions, which allow for

computing the VCG payments. We designed an efficient iterative auction by ensuring

convergence of prices to this special optimal solution. However, we also established that

the optimal solution is not unique. Hence, the iterative auction we developed relied on

convergence to the "right" optimal solution of D5.

In this section, we provide an alternative LP formulation of the efficient allocation

problem, whose dual both suggests a bidder-specific graphical pricing rule, and reveals

enough information at all of its optimal solutions to compute VCG payments. Iterative
solutions of this LP formulation provide an alternative approach for designing iterative
auctions systematically. Additionally, we show that it is possible to extend this approach
to additively decomposable valuation functions introduced in Section 5.5.

Before presenting the alternative formulation, we introduce some new notation. We
denote by Xk all complete allocations where bidder k does not receive any items, i.e., if
Pk C Xk then pk = 0. We use the variables { }k sk = 1 6k > 0,

to dnt a distributiontovetkhsk a tk
to denote a distribution over these allocations.
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Using this notation, the primal LP (LP6) we focus on in this section is provided next:

LP6:

max ((x'(S)v'(S)
m S

s.t. (x'(S) < M Vm

S

x(S) 61+ E E
SieS yCxOiEym k#myAkExkiiyCg

Exm"'(S) E 6,y+( (
SijeS yexiiC1m k~mykExkhiey47

ytcx(3 6,"' 1V

ym exm

o620,x"(S)>0.

Vi,m

6k Vij E, m

In this optimization problem, we jointly solve for the efficient allocation for bidders in

M, and for bidders in M - {k} for all k E M. We could formulate separate optimization

problems to compute these efficient allocations: (i) for the case involving all players in M, we

could use variables (x'(S), 6,) and formulate LP5, (ii) for bidders in M - {k} we could use

variables (x"'(S), ,k) and appropriately reformulate LP5 for bidders in M - {k}. Instead,

LP6 solves all of these optimization problems jointly, by aggregating their constraints and

coupling them. For instance, as opposed to imposing ES x'(S) < 1 as in the M separate

formulations of LP5 involving bidder m (mentioned above), LP6 imposes a single constraint

ES x'(S) < M. Consequently, in LP6 we have a single constraint for each bidder-item

or bidder-edge pair. This ensures that the corresponding dual optimization problem (D6),
presented next, leads to a graphical pricing rule.

min7r"+T 
Tm+MEnr"

s.t. ,r' > v'(S) - p;"-
iS i

D6: 7r2 >'M+

M (icym iCIym

V S,m
,j e S ijE

PMl

m >37 L" 2 (p~ + p:j)
k~m iey, iyk

Vp C X

Vym E Xm

pA", 7r"'20

Similar to our interpretation for 7r', in the dual problem, the variable 7r, can be inter-

preted as the revenue of the auctioneer when bidder m does not receive any items. The
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interpretation of the remaining variables/constraints is exactly the same as in D5.

We next show that for graphical valuations LP6 can always be used to jointly identify the

efficient outcome in problem instances with bidders M as well as M - {k}. Additionally,
the corresponding dual optimal solution of D6 can always be used to identify the VCG

payments.

Theorem 6.6.1. Assume that bidders have graphical valuations. Let {SmI} and {Sk}m#k

(for all k C M) denote the efficient allocation for set of bidders M and M - {k} respectively.

(i) LP6 always has an optimal solution that is integral. In this solution, we have 6{sm} =

6kSm}= 1 for all k e M, and 6m 0 for the remaining p,ypm,m; and

xm (S) = |{k c M|S = SJj}| + 13=3m for all m,S, where lS=Sm is an indicator

variable that is equal to 1 if S = S m , and 0 otherwise.

(ii) At any dual optimal solution of D5, for any bidders m, k, we have

rm=vm(Sm) - p- E pi=v m (S _)- p - 5_
ijSm ijES

m  
iGSm ijeSg

Er= P pg '(6.15)
M (icSm ijgsm

7rfe=( Mp+ M g
m~k iESm ijcSm

k km

(iii) At any dual optimal solution, for any bidder m, the quantity

p + p -5 p+E pj (6.16)
k=4m iCSk ijESk iESk ijCSk

is equal to the VCG payment of bidder m, for acquiring bundle Sm of items.

Proof. (i) Denote by W* and W* the total value generated by the allocations {Sm} and

{Sm} respectively. It can be immediately checked that the solution specified in the theorem

statement is feasible, and the associated objective value is equal to W* + Ek W,*. This

suggests that the optimal solution of LP6 is lower bounded by W* + Ek W*.
Consider the dual solution pT = w, pm = w , 7rm = 0, for all m, i c X, (i,j) C E,

and

7r m = max5 ( M±+ M)m ipm ijEpm

mf k iCAp ijctpg
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It follows from D6 that this solution is feasible. Moreover, by construction the corresponding

dual objective value is equal to W* + Ek W*. Thus, the optimal objective of the dual

problem is upper bounded by W* + Ek W*.
By strong duality it follows that the primal and dual feasible solutions we construct

above are optimal for LP6 and D6 respectively. Hence, the first part of the theorem follows.

(ii) Consider the optimal solution to LP6 given in part (i) of the theorem. Complemen-

tary slackness suggests that any dual optimal solution satisfies the conditions in the second

part of the theorem. Hence, the claim immediately follows.

(iii) It follows from part (ii) that (iESk P ijSk Vk - rk, and similarly

(iSk p + EijCSk P = vk(Sk) - k. Thus, the quantity in (6.16) is equivalent to

Z (vk(Sk) - sk) - (k(Sk) - rk) (Vk(S) -vk(Sk)).
k=m khm

Since allocations {Sm } and {Skm} are efficient (for set of bidders M and M - {k} respec-

tively), the quantity in the right hand side is equal to the VCG payment of bidder m, and

the claim follows. L]

This theorem suggests that iterative solutions of LP6/D6 via primal-dual algorithms can

be used to identify the efficient outcome, and VCG payments at the same time. Moreover,
solution of these LPs using primal-dual algorithms lead to natural iterative auction formats.

In these auctions, the auctioneer sets bidder-specific graphical prices, and the bidders report

the set of items that they demand, exactly as in Section 6.5. Given demand reports the

auctioneer can solve restricted primal/dual problems associated with LP6/D6 to find a dual

update direction (assuming 7m, ,', 7r' variables are implicitly defined, analogously to our

approach in Sections 6.4, 6.5). When the complementary slackness conditions associated

with these LPs hold (or restricted problems have objective value zero), the auctioneer

terminates the auction by assigning the allocation {Sm } (as defined in Theorem 6.6.1(i))

and final payments specified in Theorem 6.6.1(iii). Since by collecting demand reports,
and updating the prices as explained above, the auctioneer essentially runs a primal-dual

algorithm, it can be seen that after any history Ht if bidders truthfully reveal their demand,
this auction terminates at a pricing equilibrium with the pricing rule suggested by D6, and

and an efficient outcome is identified. Moreover, it can be easily checked that if the auction

terminates assigning bidder m some set of items S m , and if bidders k $ m bid truthfully, the

payments suggested in Theorem 6.6.1(iii) will be equal to ($ m, {Vk}k#m). Thus, it can be

shown that truthful bidding strategy satisfies conditions of Theorem 6.3.1, and hence in this

auction it is an ex-post perfect equilibrium for bidders to reveal their demand truthfully.

Since the approach outlined here for developing an iterative auction using a primal-dual

algorithm, closely follows the approaches in Sections 6.4 and 6.5, the details are omitted.

We conclude this section by providing a generalization of LP6 and D6 to additively
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decomposable valuations (denoted by LP6G and D6G). In particular, for a given collection

B = B0 U B+ U B_ of sets (see Section 5.5 for a definition of collections Bo, B+, B-), we

consider the following primal-dual LP pair:

max Z(x'(S)v'(S)
m S

s.t. E x'm(S) < M Vm
S

( xM(S) <_
SIS'=SnB p|l

( x"'(S) >_
SIS'=SnB p|

( x M(S)=
S|S'=SnB y|

1:6, <

( 6k < 1 Vk

x" A7A'(S),6p,6k > 0

1: 6,+±
p-nB=S'

(: Sy +
pnB=S'

panB=S'

k~m kykIxjplB=S'

(3 ( 3,
k=m IkCXkIplnB=S'

(3 ( 3,
kom pkCXkIpknB=S'

V m, S' c B, B E B+

V m, S' c B, B c B_

V m, S' c B, B c B0

V m, S, y, yk.

min 7" + (E" + ME g"
m m

s.t. wr" > v M (S) - (pm(S n B)
B

7r S >3>3pmlBT r ? (pmhp n B )
m B

rS( ( kB(p
k~hm B

VP yE X

Vm, pm E Xm

r 0 V m,

pm(-) > 0 for B B+, pm(-) < 0 for B E B_,

Observe that LP6G and D6G are immediate generalizations of LP6 and D6 respectively. In

particular, the latter optimization formulations can be obtained by restricting attention to

a formulation of LP6G and D6G, for a collection B that contains only singletons, and pairs

that correspond to edges.

Analogous to the results of Theorem 6.6.1, we show that this primal-dual LP pair can

be used to find the efficient allocation, and the VCG payments for additively decomposable

valuations with a given collection B.

Theorem 6.6.2. Assume that bidders have additively decomposable valuations with a col-
lection B. Let {S m }, and {Sk',#A (for all k E M) denote the efficient allocation for set
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of bidders M and M - {k} respectively.

(i) LP6G always has an optimal solution that is integral. In this solution, we have 6{s.} =
s = 1 for all k E M, and p = 0 for the remaining p, pm,m; andfsk } M, fo reaiin

xm (S) = |{k C MIS = S"'}| + ls=sm for all m,S, where ls=sm is an indicator

variable that is equal to 1 if S = S', and 0 otherwise.

(ii) At any dual optimal solution of D6G, for any bidders m, k, we have

r" = v"(S M ) - (pm(Sm n B) = vm(S") - m (S n B),
B B

r= pB(Sm n B),
m B

7rf= p (S" n B).
mok B

(iii) At any dual optimal solution, for any bidder m, the quantity

pB(Smk n B) -(pBS n B) (6.17)
k6m B B /

is equal to the VCG payment of bidder m, for acquiring bundle S" of items.

Proof. The proof of this theorem is identical to that of Theorem 6.6.1, and obtained follow-

ing the same steps, after replacing pm, pT by pm, and constructing a feasible dual solution

p *wM El

This result suggests that using primal-dual algorithms with the aforementioned LP

formulations, it is possible to jointly identify the efficient allocation, and VCG payments for

additively decomposable valuations. Moreover, these algorithms suggest iterative auction

formats that implement the efficient outcome for all graphical valuations. These auctions

rely on using bidder-specific prices that decouple over the underlying collection of sets, i.e.,
{pm}. Details are omitted, as this approach is an immediate generalization of our approach

for graphical valuations, and closely follows our results in Sections 6.4 and 6.5.

6.7 Summary

In this chapter, we focused on iterative solutions of the LP formulations provided in Chap-

ters 4 and 5, and showed that these can be used to design iterative auction formats where the

auctioneer sets prices, bidders reveal their demand, and the auctioneer adjusts prices until

a Walrasian/pricing equilibrium is found. When bidders truthfully reveal their demand, the

final allocation of items to bidders identified by this process is efficient. We complemented
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the iterative solutions of the LPs with appropriate payment schemes to guarantee truth-

fulness. Our results suggest that for sign-consistent tree valuations, the efficient allocation

can be implemented (at an ex-post perfect equilibrium) by running a sequence of auctions

that rely on the anonymous item pricing rule. On the other hand, if the auctioneer has the

flexibility to use the bidder-specific graphical pricing rule, she can implement the efficient

outcome (again at an ex-post perfect equilibrium) (i) for all graphical valuations, (ii) by

running a single auction. In order for auctions that rely on bidder-specific graphical pricing

rule to implement the efficient outcome, the auctioneer updates the prices in a way that

leads convergence to a "special" dual optimal solution of the associated linear program.

Motivated by this observation, we provided an alternative LP formulation of the efficient

allocation problem for general graphical valuations. This formulation still suggests em-

ploying bidder-specific graphical prices, and its solution simultaneously reveals the efficient

outcome (i) for all bidders, as well as (ii) for all bidders but one. Additionally, any dual

optimal solution of this LP formulation can be used to compute the VCG payments. Thus,

this LP can be used together with any primal-dual algorithm to develop iterative auctions

that implement the efficient outcome. Moreover, this formulation generalizes to settings

with additively decomposable valuations, providing a framework for developing iterative

auction formats that guarantee efficiency beyond graphical valuations.

The results of this part of the thesis imply that when valuation functions of bidders

exhibit some structure (such as the additively decomposable structure, or the graphical

structure), it is possible to develop efficient iterative auction formats that rely on pricing

rules which have a similar structure. Thus, the "complexity" of the pricing rule need

not exceed the "complexity" of the valuation functions for iterative auction design. We

close this part of the thesis by emphasizing that in practice it may be possible to develop

iterative auction formats that rely on simple pricing rules, by first identifying the structure

in valuations of bidders, and then following the framework provided here to exploit this

special structure.

6.8 Appendix: Additional Proofs

Proof of Lemma 6.4.1. If {x m (S)} is a solution to (6.9), then it satisfies complementary

slackness conditions, and this solution is optimal in LP1 and the associated dual solution

(p, 7r) is optimal in D1. On the other hand, Corollary 4.3.1 suggests that there exists an

optimal solution of LP1 {z m (S)} that is integral. Observe that if Es> 7m (S) = 0 for some

m, by setting x m (0) = 1, another integral feasible solution of LP1 with the same objective

value can be obtained. Thus, without loss of generality we can assume that the optimal

integral solution {z m (S)} is such that Es> zm (S) = 1 for all m. Moreover, Assumption

4.2.1 implies that if there exists an optimal solution of LP1 that is integral, another integral

optimal solution such that Em Eslis tm (S) = 1 for all i can be obtained. This can be
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seen by noting that given an optimal integral solution {z m (S)} such that m(Sm) = 1, and

Em Eslies zm (S) = 0 for node i, another feasible solution with weakly larger objective

value can be obtained by setting zm(sm U {i}) = 1, and zm(S) = 0, and keeping the

remaining components of the original solution intact.

These observations imply that an optimal solution of LP1 that is integral and that

satisfies Em Espies m(S) = 1 for all i, and Es zm(S) = 1 for all m can be obtained.

Denote this solution by {m(S)}. Since, (p, r) is optimal in D1, it follows that it should

satisfy complementary slackness conditions with ,m(S). These conditions are identical to

(6.9), and hence the claim follows. l

Proof of Lemma 6.4.2. First, we show that if (p, 7r) is feasible in D1, then for small enough

E, so is (p, 7r) + e(p, T). To see this first observe that if pi > 0, then for sufficiently small

E, we have pi + eiii > 0. On the other hand, if pi = 0, then feasibility of (p, T) in (6.11)

implies that fii > 0, and hence pi + efip > 0. Similarly, observe that for all m, S such

that 7 m = vm (S) - Eispi, we have -km + EicsPiZ > 0. This implies that 7rm + E'm >

vtm (S) - Eis (pi + efi). On the other hand, if 7m > v m (S)+ Ei s pi, then for sufficiently

small e, we have Tm + cZ > vm(S) + iE(pi + Ei). Thus we conclude that for all m and

S this inequality holds. Moreover, for S = 0, this inequality implies that 7rm + eT m > 0.

These observations imply that (p, 7r) + e(p, T) is a feasible solution of D1.

Second, we note that since (6.9) has no solution, the problem (6.10) and its dual (6.11)

have positive optimal values, and consequently we have - Em Tm - Ei ji, > 0 and Em Tm+

Ei i < 0. Thus, it follows that (p, t) is a valid dual update direction, and to complete the

proof of the lemma, it suffices to establish that (i), (ii), and (iii) hold.

Consider an optimal solution of (6.10). If i is overdemanded, then at this solution

we have hi > 0. Using complementary slackness conditions in (6.10) suggests that at the

corresponding dual optimal solution we have ii = 1 > 0. Similarly, if i is underdemanded,
then in the optimal solution of (6.10), we have 7 > 0. In this case the complementary

slackness conditions imply that 1i = -1 < 0. Hence, we conclude that the claims (i) and

(ii) both hold, for some dual update that can be obtained by a solution of (6.10) and (6.11).

In order to prove (iii), assume that 7rm = maxs ym (S) - Eis pi. Observe that in

the optimal solution of (6.11), for every player m, and some set S*, the first constraint is

active (i.e., met with equality). This is because, otherwise Wm can be decreased to obtain

a solution with better objective value. Thus, m, S* satisfy 7n = vi(S*) - >iS, pi, and
;m + Eiss Pi = 0. These imply that xm + Tm = vm(S*) - Eies. (Pi + Pi). El

Proof of Lemma 6.4.3. (i) Since, (p, t) is an improvement direction by construction, it suf-

fices to construct #(p, p) > 0 such that (p, 7n) + 0(p, p) (p, t) is feasible to establish the first

part of the result.

Observe that if for some m and S, 7m = v m (S) _ Zicspi, then by dual feasibility in

(6.11) we have t' > Ei s 1i, and hence 7nm + Otm > v m (S) - Zies((pi + Opi) for any
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0 > 0. Thus, feasibility constraint trivially follows for demanded sets S' A {S7rm

v m (S) - Eiespi}, for any choice of 0.

Let S C S m and S' V S" respectively be sets that are demanded and not demanded by

player m at prices p i.e., lr" = v" (S) - Egs pi > v"m(S') - E 8 s,pi. Observe that

Z pi -I pi > V"(S') - Vt (S), (6.18)
icS' iES

where the quantity in the right hand side is an integer, since valuations are integer-valued.

Let

1 if JEies pi ->ics pi is an integer

As,s' E EA) - [E - Ep J otherwise, (6.19)

icS' icS icS' ics

where [zj designates the largest integer that is weakly smaller than z. Observe that by

construction AS,s, > 0. Additionally, the definition of As,s, guarantees that Eics'Pi -

Css p - As,s > vn(S') - v"'(S). Rearranging terms, we obtain

vM(S) - Epi > v" (S') - m pi + As,s/. (6.20)
iES icS'

Assume that 0 is chosen so that (Ei sp - Ecs pi) > -As,s'. Then

irM + OirM > v"(S) - E(pi + ofi)

> V"'(S') - E P+As,s -EPi (6.21)
iES' iES

> vm (S') - Epi - EiPi = v"(S') - E(pi +pii)
icS' icS' icS'

where the second line follows from (6.20), and the last line follows from the assumption

on 0. Note that this inequality suggests that the new dual solution satisfies the constraint

7rM + 9rm > v" (S') - Eis'(pi + O).
Thus, defining #(p,p) A max 0 subject to

" 6(EiESPi - EiSipi) 2 -As,S, for all m and set S demanded by m, and S' not

demanded by m,

* pi + Oi > 0,

it follows that the updated solution (p, 7r) + #(p,p)(p, ir) remains feasible in D1. Note that

by (6.19), we have As,s, > 0. Additionally, by dual feasibility in (6.11) we obtain A = 0
when pi = 0. These imply #(p, p) > 0, and the first part of the claim follows.
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(ii) Assume that # (p, ) $ 0*, and (P, -) = (p. 7r) + #(p, f)(, -r). Since 0* the largest

real that guarantees feasibility of (p, 7r) + 0*(p, ir) in D1, it follows that #(p, f) < 0*.

By definition of 0* it follows that if pi > 0, then Pi > 0, and if 7rm > vtm (S) - EiA

then frm > v m (S) _ Eicspi, as well. These observations suggest that (p, r) is feasible in

a formulation of (6.11) associated with (P, fr). Additionally they imply that constraints of

(6.10) that are different under (P, fr) (when compared to (p, ir) ) are associated with (a) nodes

i, wherepi = 0, andpi > 0, or (b) bidder m and bundle S, where 7rm = vm(S)_Eispi but
7^rm > vtM (S)- Eics Pi. In case (a), for node i we replace the constraint Em Eslics xm (S) _
hi < 1 (associated with solution (p, ir)) with Em EsliEs xm (S) + -i h - = 1 (associated

with solution (P, fr)). In case (b) we include a new constraint x m (S) 0 for the solution

(P, fr). We next show that these changes in the constraint set do not change the optimal

objective of (6.10).

Observe that in case (a), it should be the case that jii > 0. Since (p,,-r) is an optimal

solution of (6.11), complementary slackness conditions imply that at optimal solutions of

(6.10) associated with (p,7r) we have

S E x'(S) - hi = 1. (6.22)
M sties

This implies that the optimal solution of (6.10) associated with the original dual solution

(p,7r) satisfies the new constraint associated with node i when we reformulate (6.10) for

(p, fr), namely Em Eslis x m (S) +2i - = 1.

Similarly, in case (b) it should be the case that -rm > EiES pi at an optimal solution

of (6.11) associated with (p,7r). Complementary slackness implies that x m (S) = 0 at the

corresponding optimal solution of (6.10). This implies that the new constraint in (6.10) in

case (b), namely x m (S) = 0, is trivially satisfied by the optimal solution of (6.10) associated

with the original dual solution (p, 7r).

These observations imply that optimal solution of (6.10) associated with the original

dual solution (p, 7r), remains feasible (after complementing it with 'i = 0 for i associated

with case (a)) in the same problem reformulated according to (P, f). On the other hand, it

follows that the new constraints added to (6.10) suggest that the optimal value of the new

problem should be weakly larger than that of the original one. This is because the addition of

constraint xm(S) = 0 for some m and S (in case (b)) can only make the feasible set smaller,

whereas the constraint Em Eslies x m (S) + 7i - hi = 1 replacing Em Eslies x m (S) - hi < 1

includes an additional penalty term -ti. Thus, the optimal solution of (6.10) associated with

the original dual solution (p, ir) is not only feasible but also optimal in the new problem

associated with (p, f). This implies that (p, r), which is feasible in the dual problem (6.11)

associated with (p, fr) is optimal in the same problem. Hence, the second part of the claim

follows.

(iii) Consider an initial dual feasible solution (p, 7r), and the associated dual optimal
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solution (i, r) of (6.11). Denote by (p(r), 7r(r)) the dual feasible solution obtained after

r dual variable updates, starting from (p, 7r). Observe that part (ii) suggests that at each

stage the dual updates take the form (p(r + 1), ir(r + 1)) = #(p(r), p)(p, tr) + (p(r), 7r(r)),

i.e., the dual update direction (f, fr) is used at each stage.

Observe that the construction of #(p(r), ir(r)) (presented in part (i)) suggests that after

the dual update at stage r, either pi(r+ 1) = pi(r) +#(p(r), p)p = 0 (while pi > 0) for some

i, or #(p(r), f)s(Eies fi - EiES f = ,s/ for some demanded set S, and undemanded set

S'. If it is the former, it follows from the definition of 9* and dual feasibility of (p(r), 7r(r))

at each stage that 1#1(p(1),P) = 9*, and the claim immediately follows. Assume that it

is the latter.

Observe that the definition of As,s, implies that in the latter case we have EZcs p (r +

1) - Eics, pi(r + 1) equal to an integer after the dual update. Thus, after the update As,s'
becomes equal to 1 (see (6.19)). Since there are at most 2 N choices for S, and 2 N choices

for S', it follows that after at most 2 2N iterations the latter case holds for the same S, S'.

These observation imply that after at most 2 2N iterations, K(ZiES'I - ZiEspi) < -1,
where K = E22 (p(l), p). This implies that after finitely many steps for some S, S' the

inequality (6.18) holds with equality. Let L denote the first iteration where this inequality

holds with equality for some set S' that is not initially demanded. On the other hand,

this suggests that S' (that is not demanded at the original solution) starts being demanded

at stage L. Note that by definition 9* is the smallest real number where at dual solution

(p, 7r) + 6*(p, r), a new set starts to be demanded or pi + 9*1 i = 0 (while pi > 0). Since

pj(r) + 6*fi(r) > 0 for all r, in our construction, and L is the first stage a new set starts to

be demanded, it follows that 9* = I (p(l), _).

This implies that the solution reached after finitely many updates (using step size

#(p(r), f) at stage r) is (p, 7r) + 9* (p, r). Thus the claim follows.

LI

Proof of Lemma 6.4.5. (i) If the one-stage auction game terminates with an allocation

{S'}, then the termination conditions in Step S3 imply that v"'(S') - Eicsm pi > v"'(S) -

ies pi for m E M 0 . Let {$m}mcMo denote another allocation of items in UmEMOSm to

bidders in M 0 . Observe that

I (vm(Sm) - p > V ($) pi
mEMo \ iS ) mEMo i-SP

or equivalently

I (vm(Sm) - vm($m)) > ( p2 - 5 pi > 0, (6.23)
mGMo jCUmEMOSm jEUmEMogm

where the inequality follows from pi > 0 and UmeMo5' C UmEMo S m . Since this is true for
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any {S'}mcMo, the claim follows from (6.23).

(ii) The first part implies that if the one-stage auction game terminates, then the out-

come is efficient. In order to prove the claim it suffices to prove that the process terminates

when bidders reveal their demand truthfully, after history Ht, starting from time t + 1.

Observe that if bidders reveal their demand truthfully at time t + 1, given prices p, we

can associate with this a dual feasible solution (p, 7r) of D1, where 7r' = v'(S) - Ecspi,
for any set S that is demanded. On the other hand, by construction, one-stage auction

updates the prices as suggested by Algorithm 1. This implies that from time t + 1 onwards,

the demand sets and prices that are revealed in the one-stage auction game coincide with

those of Algorithm 1. On the other hand, since it is a primal-dual algorithm, Algorithm

1 terminates with the efficient allocation starting from any dual feasible solution (Lemma

6.4.4). This implies that one stage auction game terminates with an efficient allocation of

items to bidders. l

Proof of Lemma 6.4.6. Recall that in the one-stage auction game price updates are identical

to those in Algorithm 1, and the price update direction is obtained by solving (6.11). On the

other hand, Lemma 6.4.2(iii) suggests that when bidder m reveals her demand truthfully

the price updates are such that there is a bundle that is demanded by this bidder at time

t and t - 1. This implies that if bidder m reveals her demand truthfully, then for all t, we

have q'(t) = p(t + 1, S) - p(t, S) for S E D'(t) n Dm (t + 1).

Let ir'(t) denote the surplus bidder m has for a bundle she demands at time t, i.e.,

w m (t) = v m (S) - Eiespi(t), for S C D m (t). Using the shorthand notation p m (t,S) =

Eics p(t), this implies that ir m (t)-r m (t+1) = p"m (t+1, S)-p m (t, S) for any S E D" n Dm1 .
Thus, it follows that Qm = i m (1) - 7"'(T) Note that at step 1, prices are equal to zero, and

hence M E D m (1). Consequently, substituting wm (1) = v m (A), and rm (T) = v t (S m ) -

pm (T, S m ), it follows that Qm = vm(N) - (v m (S m ) - pm (T, S')), where pm (T, S') is the

final price for bundle Sm, as the claim suggests. L

Proof of Theorem 6.4.1. We prove the ex-post equilibrium result by establishing that af-

ter any history, no bidder can improve her payoff by deviating from the truthful bidding

strategy, provided that her opponents bid truthfully.

Consider bidder m, and history Ht such that after time t, the auction is at stage 1 > m.

From the definition of the serial auction game it follows that bidder m's payoff is the same

for any strategy (the allocation is already determined by auction 0, and her payment is

determined by auction m). Hence, bidder m has no incentive to deviate from the truthful

bidding strategy after Ht.

Assume instead that after history Ht, the auction is at stage 1 such that 0 < 1 < m

(bidder m does not participate in auction m, so this case is excluded). Note that the

allocation is determined at stage 0, and bidder m does not participate in auction m, where

her final payment is determined. So, she can only impact her payoff in stages 0 < 1 < m, by
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using a strategy that prevents auction 1 from terminating. Let, um denote her payoff when

she bids truthfully, and ftm denote the payoff when she prevents termination of some stage

0 < 1 < n. Since her opponents bid truthfully, it follows that (recall that {S} and {S'}
are the allocations that emerge at the end of auctions 0 and m respectively, when auction

m terminates)

u m =vm(Som) - E (Qk - pk(S$)) - (Q - pk (Sk))

k#m

vm (So") - (Q - p0(S )) - (vk(N) vA(S )) (6.24)
k~m

> v'm (Som) _ EZ(Qk _P (S)) > - (Qk P -p(S) jy

khm kAm

where the second equality follows from Lemma 6.4.6 and the fact that bidders k #i m bid

truthfully (in auction m), and the inequalities follow from the fact that vk(.I) -Vm(Sk) > 0,

and vm (Sgm) > 0. Thus, bidder m has no incentive to deviate from truthful bidding after

any history Ht such that the auction is in stage 1 E {1, ... , m - 1} after Ht.

We complete the proof by showing that bidder m cannot deviate from truthful bidding

and improve her payoff after some history Ht, such that after t the auction is still in stage 0.
Observe that there are two cases to consider (a) she can use some strategy zm, and auction

0 terminates with bundles {S}, or (b) auction 0 never terminates.

First consider case (a). From the definition of serial auction (and the fact that bidders

bid truthfully for any history, after stage 0), it follows that bidder m's payment (denoted

by F m ) is equal to

k=m A 0(Q-p 5S)) (QM PM (6.25)
k~m

Denote by To the time at which stage 0 terminates. By definition, for every bidder
k #i m we have

To-1 t To-1

Q S qk(r) = q(r) + q0(r), (6.26)
r=1 r=1 r=t+1

where qk is defined according to (6.12) for auction 0. Let Sk(r) denote a bundle demanded
at step r of auction 0. Since bidders k #i m bid truthfully after time t, and in the auction
prices are updated according to Algorithm 1, it follows from Lemma 6.4.2 (iii) that at all
r > t there exist some bundle Sk(r) E Dk(r) n D'k(r + 1). Consequently, we obtain from
(6.12) that qk(r) = p(r + 1, Sk(r)) - p(r, Sk(r)). Denoting the surplus of bidder k at step
r of auction 0 by 7ro(r) =k(Sk(r)) - p(r, Sk(r)), we obtain q0(r) = n(r) - 0$(r ± 1),
since Sk(r) is demanded both at time r and r + 1. This implies that ETo-11 qk(r) =

1it2h 70 (r) - 0r(r ± 1) = xk(t ± 1) - ir(T). Since rk(r) is the surplus of bidder k
at r, and Sk(r) is a demanded set, we can rewrite this expression as ELi qk(r) -

(vk (Sk (t + 1)) - pk(t + 1, Sk(t + 1))) - (vk (Sk(T)) - pk (T, Sk (To))). Together with (6.26),
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this implies that

t

Q0 - pk(T0, Sk(T 0 )) = q0(r) + vk(Sk(t + 1)) - pk(t + 1, Sk(t + 1)) - vk(Sk(To)). (6.27)
r=1

Since bidders k # m bid truthfully, it follows from Lemma 6.4.6 that Qk - pk(Sk) =
vk(A/) - Vk(Sk), where {Sm} denotes the allocation that emerges at the end of auction

m. This equation, together with (6.25) and (6.27) implies that (note that by definition

pO(s) pk(To, sk(To))),

m = q(r) vk(sk(t + 1)) - pk(t + 1, Sk(t + 1)) -vk(Sk(TO)) - vk(S))

k (k(Sk(T0) - vk (N)) + np, (6.28)
k7 m

where f - Ekym (E=1 90) - pk(t + 1, Sk(t + 1)) + Vk(Sk(t + 1))) . Thus, in case (a)

payoff of bidder m is equal to

u v"(S Tm (To)) T)) -V 0v)SV -vk(A)) - t (6.29)
k kAm

Observe that Km is a function of Ht, and hence is independent of bidder m's strategy after

step t. On the other hand, the quantity Ektm (vk(Sm) - vk(N)) is only a function of the

outcome of auction m, which is also independent of bidder m's strategy. This implies that

by choosing a different strategy, bidder m can modify only Ek Vk(Sk(To)) component of

her payoff, provided that the auction terminates. On the other hand, Lemma 6.4.5 suggests

that {Sk(To)}k is an efficient allocation of items to bidders k = m, when z m is the truthful

bidding strategy. Thus, any deviation from the truthful bidding strategy after stage Ht

decreases bidder m's payoff, provided that the auction terminates (i.e., case (a)).

On the other hand, if after Ht, bidder m uses a strategy that leads to nontermination

in auction 0 (i.e., case (b)), then by definition of the serial auction game h'er payoff is

T

1nm = -sup E qk (r). (6.30)
T k=m r=1

Thus, it follows that fttm  - Zkstm r=1 qk(t) < - ± Zktm ok(Sk(t + 1)). Ob-

serve that if bidders bid truthfully after Ht, then {S$k} is the efficient allocation. Thus,

Zk:tm Vk (Sk) < Zktm Vk(So). This observation and Vk(Sk(t + 1)) < vk(N), imply that

k=m Vk(S(t + 1)) < ZkV (S (To)) Zk:tm (Vk(S) - vk(N)). Thus, (6.29) and (6.30)
imply fim <u m in case (b) as well.

We conclude that after any history, provided that her opponents bid truthfully, a bidder
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maximizes her payoff by bidding truthfully. Observe that if bidders truthfully reveal their

demand, at all steps (starting from Ho), we have m = km(-pk(1, Sk(1)) + Vk(Sk(1)),

and {Sj} is the efficient allocation for every auction 1 E {O, ... , M}. On the other hand,

since initially all prices are equal to zero, and bidders demand all items Nf, we obtain som

EkgmVo(N), and (6.28) implies that IFm =m({Sm(T)}|{vkkym), where ym denotes the

VCG payment of bidder m (see Definition 6.3.3). Therefore, the final allocation {SOM} is
efficient, and the corresponding payments are VCG payments, and the result follows. l

Proof of Theorem 6.5.1. (i) Observe that if the auction terminates, then the conditions of

Step S2 hold. Let {Som}, and {S'} be as defined in this step. Since bidders report their

demand truthfully, this implies that 7m , 7r given in the theorem statement can alternatively

be expressed as:

7rM = vm(S) - p -(pM, (6.31)
ics ijcS

for all S E Dm, and

7r - pm (gTm). (6.32)

m

Observe that Step S4 implies that pp > 0. Together with the construction of Irm, 7rs

variables, this implies that ({pf}, {p }, {irm }, 7r') is feasible in D5. Additionally, it can

be checked that this solution satisfies complementary slackness conditions with a primal

feasible solution of LP5 ({x m }, {6 }), such that for every m x m (Sm) = 1, xm (S) = 0 for

S $ Som, and 6 fS.} = 61, = 0 for y $ {Som}. Thus, it follows that ({pf}, {prg}, {7rmn}, r S)

is optimal in D5.

Consider a formulation of D5 with bidders M {k}. Observe that the restriction of

prices and bidder surpluses of ({p}, {pm}, {7 m }, 7rs) to M - {k} satisfies constraints of

D5 involving 7rm variables, since this solution satisfies same conditions in a formulation

of D5 with bidders M. On the other hand, Step S2 of the auction implies that 7r' ^

ZmskP(Sk) LmOkPm($j) for any other complete allocation {5jk7}mk of items to

bidders. Thus, it follows that ({Pm}mEM -{k}, {Pj IEM {k}, {7r m  EM-{k}, 7r) is feasible

in a formulation of D5, with bidders m E M - {k}. In addition, it can be checked that

this solution satisfies complementary slackness condition with the primal feasible solution

({zm~mEM4-{k}, 0,}) such that for every m = k, xm (Sk) = 1, x m (S) = 0 for S # Sk,

and 1{sm} = 1, 6p = 0 for y # {Sm}. This implies that the aforementioned solution is also

optimal in a formulation of D5 with bidders m E M - {k}.

Since a restriction of prices and bidder surpluses of ({pm}, {pT}, {7rm }, rs) to bid-

ders m E M - {k}, agrees with an optimal solution of a formulation of D5 with bidders

m E M - {k}, and k is arbitrary, we conclude that this dual solution is a special optimal

solution of D5.

(ii) We will establish the ex-post perfect equilibrium result by showing that after any

history Ht, the second condition of Theorem 6.3.1 holds, for the truthful bidding strategy.
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In obtaining a proof of this part, we will make use of some auxiliary lemmas. The proofs

of these lemmas can be found after the proof of the theorem.

We first show that if after Ht bidder m bids truthfully, then the condition of Step S4

can hold at most once for r > t for bidder m.

Assume that at T this condition holds, and for bidder m the variables pT, p', 'W are set

as suggested in Step S4. We claim that after t, we have p' > w', for all i, and p' > w'

for all (i, j) C E.

Lemma 6.8.1. Assume that at time t a condition of Step 4 holds, and pTpIF' are

updated accordingly. If bidder m bids truthfully after t, then at all times r > i we have

pT > w', for all i, and pm > w' for all (i, j) C E.

This lemma implies that pf > wp > 0 after T. Additionally, it suggests that if at some

time r > T we have S E D', then it should be the case that p7 = wT and p' = w7. On

the other hand, this implies that S' C D m for all S' c S. These suggest that conditions of

Step S4 cannot hold after t. Thus, we conclude if after Ht bidder m bids truthfully, then

the condition of Step S4 can hold at most once for r > t for bidder m. Since this is true

for all bidders, it follows that conditions of Step S4 do not hold for any bidder after some

> t.

Second, we show that if all bidders bid truthfully, and Step S4 does not hold after time

t for any bidder, then at some r > i, the conditions of Step S2 hold.

Lemma 6.8.2. Assume that all bidders bid truthfully after i. Then, at some time r > ,
the conditions of Step S2 holds.

Thus, if after any history Ht all bidders m bid truthfully, the auction terminates. On

the other hand, part (i) implies that the prices that emerge when the auction terminates

are special optimal prices. It can be checked that the primal feasible solution xm (SM) = 1,

6fs.I = 1, and xm(S) = 6, = 0 for remaining m, S, y satisfies complementary slackness

conditions with this dual solution. Thus, the allocation that the auction obtains at the end,
{So}, is the efficient allocation.

Next assume that bidder m uses strategy zm, after history Ht, and the auction ter-

minates by assigning bundles Sm to bidder m. The proof of part (i) suggests that when

bidders k $ m bid truthfully pk(Si) - pk(Sk) = ok(SM) - ok(S$). Thus, bidder m's final

payment is equal to Ekm MP(S) - P (So) = Ekgm k(S) - Vk (S) = (Sm, {vk}k#m).

This implies that the second condition of Theorem 6.3.1 holds after any history Ht.

Thus, truthful bidding is an ex-post perfect equilibrium strategy. Additionally, when bid-

ders bid truthfully the final allocation is efficient, and hence payments (S m , {vk}kym)

correspond to VCG payments, and the claim follows. 0

Proof of Lemma 6.8.1. Observe that the claim holds at T + 1, since at f prices are updated

as in Step S4. Assume that it holds until time r > T. We will provide an inductive proof
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for the claim by showing that the claim holds at r + 1 as well.

At time r the prices are updated either as suggested in Step S3, or as in Step S4. If it

is the latter, it immediately follows that at r + 1 we have p' > w', for all i, and p' > w'

for all (i, j) E E.

Assume that at r prices are updated as suggested in Step S3. Observe that if pT > wT

then after price update pT > wT. On the other hand if p' = w', then {i} c Dm (since

pm (S) > v m (S) at time r) and hence pm is not updated. Thus, we conclude that for node

prices pm > wm after T.

Consider an edge (i, j) such that i,j C qm and {i,j} V Dm. This implies that {i}, {i} C
D m before r. Since until time r the claim holds and p m(S) > v m (S), it follows that pm = wm

and pT = w'. Moreover, since {i,j} ( Dm, we have pm > wm. Thus, after the price update

pg > wm for edge prices as well.

Hence, it follows that pT > w for all i, and pT > w7 for all (i, j) C E holds at r + 1

as well. By induction, we establish the claim.

LI

Proof of Lemma 6.8.2. Consider some bidder m, and observe that at r > t if there exists

some i such that {i} ( D', then p' is decreased. Conversely assume that at time r, for

all i we have {i} E Dm. Then at time r + 1, we have Tm = N. Consider any edge (i, j)
after r + 1. If {i, j} ] Dm, then pT decreases. Since prices are lower bounded by weights,
as suggested by Lemma 6.8.1, it follows that if conditions of Step S2 do not hold, then

eventually, we have {i} E Dn, and {i,j} E D m for all i C K, and (i,j) E . Note that

by Lemma 6.8.1 this suggest that pm = wm, and pm = wm for all i E K, and (i, j) c E.

Hence, it follows that D m = 2V.

Since this is true for all bidders, it follows that if conditions of Step S2 do not hold,
eventually D m = 2M, for all bidders. On the other hand, it can be easily checked that the

conditions of Step S2 holds in this case. Hence, the claim follows. El
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Chapter 7

Conclusions

In this chapter, we conclude the thesis by providing an overview of its main contributions,

and outlining some interesting future directions.

7.1 Summary

In the first part of the thesis we provided a decomposition of space of games into three

orthogonal components: potential, harmonic, and nonstrategic. The first component cap-

tures the strategic properties of potential games, a well-studied class of games with desirable

equilibrium and dynamic properties. The second component is identified in our work, and

leads to a class of games with qualitatively very different properties from potential games.

The last component, on the other hand, does not have an impact on any of the strategic

properties of a given game, but it determines the efficiency of equilibria. We established

that the decomposition is a useful tool for approximating a given game with a potential

game, and characterizing its equilibria through this approximation. We also showed that

the approximation can be valuable for analyzing the convergence of adaptive dynamics in

multi-agent settings. In particular, we provided a characterization of outcome of better/best

response dynamics, logit-response dynamics, and fictitious play in an arbitrary game, by

exploiting properties of nearby potential games. The results of this part of the thesis both

reveal some fundamental topological structures of games, and show how these can be ex-

ploited for characterization of equilibria and outcome of dynamics in various game-theoretic

settings.

In the second part of the thesis, we focused on developing iterative auction formats that

guarantee efficiency in multi-item settings. Since this problem is intractable in general, we

restricted our attention to a special class of valuation functions, where preferences of agents

can be expressed by using a graphical model. We obtained different linear programming for-

mulations for finding the efficient outcome, and exploited algorithms that iteratively solve

these linear problems for the design of iterative auctions. In particular, following this ap-

proach, we provided iterative auction formats that rely on an anonymous item pricing rule
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to implement the efficient outcome when the underlying value graph has a tree structure

(and satisfies a sign consistency condition). Additionally, we showed that for general graph-

ical valuations it may be necessary to employ a more general pricing rule (bidder-specific

graphical pricing) in order to implement the efficient outcome. Accordingly, we designed

new iterative auction formats that rely on bidder-specific graphical pricing, and guarantee

efficiency for all graphical valuation functions. Our results in this part of the thesis provide

means of developing simple iterative auction formats by exploiting the special structure of

graphical valuations.

7.2 Future Research: Decomposition & Dynamics

We next outline some interesting research directions related to the first part of the thesis.

Dynamics in harmonic games: While the behavior of multi-agent dynamics in poten-

tial games is reasonably well-understood, there seems to be a number of interesting research

questions regarding their harmonic counterpart. In (Candogan et al., 2011c), we made some

partial progress in this direction, by showing that in harmonic games, the uniformly mixed

strategy profile is the unique equilibrium of the continuous time fictitious-play dynamics,

and that this equilibrium point is locally stable. The global stability of this equilibrium in

two-player harmonic games (which are also zero-sum games) follows from known results on

the convergence of fictitious play dynamics in zero-sum games. Analyzing global stability

of equilibrium under fictitious play dynamics for harmonic games with M > 2 players and

convergence of other adaptive dynamics are interesting research directions.

Heterogeneous update rules: In the first part of the thesis we only analyzed dynamics

in settings where all players update their strategies using the same rules. For instance, we

assumed that all players adopt best response, or logit response dynamics with the same

parameter. The limiting behavior of dynamic processes, where players adhere to different

update rules is still an open question, even for potential games. An interesting future

research question is whether the techniques in the first part of the thesis can be used to

understand the limiting behavior of such update rules. For example, consider a potential

game where all players update their strategies using a logit response with different but

"close" T parameters. Can the outcome of this dynamic process be approximated with

the outcome of logit response in a related potential game where all players use the same

parameter for their updates?

Guaranteeing desirable limiting behavior: Another promising research direction is

to use our understanding of simple update rules, such as better/best response and logit

response dynamics, to design mechanisms that guarantee desirable limiting behavior, such

as low efficiency loss and "fair" outcomes in various game-theoretic settings. It is well known
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that equilibria in games can be very different in terms of such properties (Roughgarden,

2005). Hence, it is of interest to develop mechanisms that ensure that strategy updates

of agents converge to an equilibrium with desirable properties. It has been shown that

in some cases simple pricing mechanisms can ensure convergence to desirable equilibria in

near-potential games (Candogan et al., 2010b). It is an interesting research direction to

extend such mechanisms to general game-theoretic settings.

7.3 Future Research: Graphical Valuations and Mechanism

Design

An outline of future research directions, related to the second part of the thesis is provided

below.

Robustness of iterative auctions: The results provided in the second part of this

thesis rely on the assumption that the valuations of bidders can be modeled by graphical

valuations. However, in practical settings, we expect graphical valuations to be only approx-

imations of reality. How sensitive are the results presented in this thesis to the deviations

from the graphical valuation assumption? For instance, do the auction formats we provide

lead to inefficiency, if the true valuations of the bidders are not graphical valuations, but

are approximated by graphical valuations? If so, is it possible to provide bounds on the

resulting inefficiency? What are the qualitative properties of valuation functions for which

the auctions we provide achieve approximate efficiency?

Auctions with value externalities: It is interesting to see if the results of this thesis

can be extended to settings that allow for value externalities between bidders. For instance,
assume that the value a bidder has for the set of items she acquires, not only depends on

the items she receives, but also on the items that are acquired by her opponents.1 In this

case, can we formulate the efficient allocation problem as a linear program, and develop

iterative auctions following the approach presented in this thesis?

Interdependent valuations: It is known that in single-item settings where valuations

of bidders are interdependent, iterative auctions have interesting revenue properties. In

particular, for such valuation functions, single-item iterative auctions may lead to higher

revenues for the seller than the sealed bid alternatives, while preserving efficiency (Krishna,
2009). Do similar conclusions hold for multi-item auctions? A simple class of valuation

functions for which this question can be studied, is the class of graphical valuation. It is an

interesting future direction to understand revenue properties of various auction formats, in

settings where valuations of bidders are graphical.

'Such value externalities are commonly found in settings where bidders are competitors in different
markets. A notable example is the case of patent auctions.
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Empirical work: For what type of auction environments are graphical valuations a good
approximation of the true valuations of bidders? How do the auctions, introduced in this

thesis, compare with other multi-item auctions employed in such environments? These ques-

tions require a rigorous empirical analysis. We believe that this is an interesting direction

for future work.

Special preference structures and market design: Graphical models, and other mod-

els that capture special preference structures of agents, provide us with a compact represen-

tation of complex systems. As we demonstrate in this thesis, these compact representations

can be employed together with tools from operations research and game theory to systemat-

ically design simple and improved mechanisms. What are the scope and limitations of this

approach? Can we rely on structured models to improve market design in settings other

than auctions? For instance, is it possible to use similar simple preference models, in the

context of matching markets, or markets with many sellers and buyers?
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