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Abstract

Femtosecond fiber lasers have become an important enabling technology for
advances in many areas including: frequency combs, precise timing distribution, optical
arbitrary waveform generation, and high bit rate sampling for analog to digital conversion.
Experiments and applications like these put demanding requirements on the source laser
oscillator; such as operating near 1550 nm in wavelength, multi-gigahertz repetition rates,
sub 100 femtosecond pulse widths, and sub 10 femtosecond timing jitters.

This thesis describes the design, fabrication, and characterization of three different
iterations of mode-locked laser sources utilizing erbium doped fibers and semiconductor
saturable absorbing mirrors to form pulse trains in the 1550 nm wavelength band. The first
systems took advantage of a highly doped erbium fiber in a sigma cavity configuration to
generate 100 fs pulses at up to a 300 MHz repetition rate through polarization additive pulse
mode-locking. At the time, this was the highest fundamental repetition rate to be reported
for a fiber cavity in a ring configuration.

The next two systems are variations on a linear cavity fiber laser design. In the first,
the fiber coupling was achieved through free space optics and the saturable absorbing
mirror was also imaged through lenses. Once mode-locked, repetition rates of just beyond 1
GHz were demonstrated with this design; however the laser output was relatively low
power. The second version coupled the input and output light through fiber components
and coupled the fiber directly to the saturable absorbing mirror. This laser mode-locked in
several different states and a study to characterize and understand these states was
undertaken.

Ultimately, it was understood which conditions minimized the cavity noise and
pulse widths thus allowing for the achievement of a 1550 nm, 1 GHz, sub 10 fs jitter,
femtosecond fiber laser. This laser is more compact than competing technologies and could
be constructed with relatively low cost.

Thesis Supervisor: Erich P. Ippen

Title: Elihu Thomson Professor of Electrical Engineering and Computer Science, Professor of
Physics
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Chapter 1 Introduction

1.1 Mode-locked Fiber Lasers

Since the initial development of the laser over fifty years ago [1], [2], researchers

have continued to push the technology to the physical limits of optical power, pulse energy,

and pulse duration. Pulsed lasers were developed that initially took advantage of active [3]

and passive [4], [5] Q-switching and eventually active [6] and passive [7], [8] mode-locking

techniques to create extremely regularly spaced pulses trains at ever decreasing pulse

widths [9], [10], [11]. The introduction of the erbium doped optical fiber [12], [13] brought

these advances to the telecommunications wavelengths around 1550 nm. A variety of mode-

locking mechanisms have been discovered and implemented in erbium doped fiber lasers

that lead up to the systems described in this thesis.

One development to take advantage of creating erbium doped fiber lasers was the

concept of the soliton laser [14]. This theory postulates a careful balance of the cavity

dispersion and nonlinearity such that the pulse settles into a soliton wave and remains there

while propagating through the laser medium [15]. The implications of this strong pulse

shaping are, given enough energy, femtosecond duration pulse widths with extremely low

pulse-to-pulse timing jitters.

Other outcomes are possible given the strong dispersion and nonlinearities available

within a mode-locked fiber laser-such as stretched pulse lasers taking advantage of

additive pulse mode-locking (APM) [16] and polarization additive pulse mode-locking [17],

[18]. These techniques use the Kerr nonlinearities of the optical fiber to affect pulses

differently depending on the instantaneous optical intensity. These lasers are also capable of

generating short, femtosecond optical pulses but at relatively low repetition rates [19].
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1.2 Motivating Applications

In recent years, the repetition rates of some erbium doped fiber lasers have been

continuing to increase from 500 MHz [20], to 1 GHz [21], to 3 GHz [22] and the technological

hurdles to maximize gain and minimize coupling losses are being overcome to stabilize and

integrate these types of femtosecond laser sources into a system for a veriety of

experimental uses.

Fiber lasers producing femtosecond pulses have also found use in many fields of

basic research and are beginning to make an impact commercially. Specifically, ultrafast

lasers operating near the telecommunications band (1550 nm wavelength) are important

sources for high speed optical communications, frequency metrology [23], time resolved

spectroscopy [24], optical arbitrary waveform generation [25], optical analog-to-digital

conversion [26], frequency combs [27], [28], and other applications where an ultrafast time

scale or a very stable frequency standard is needed.

In general, the above applications all demand short (100 femtoseconds or less),

powerful pulses (tens of picojoules) at the fastest possible repetition rates (over 1 gigahertz)

with close to zero pulse-to-pulse timing jitter. The goal of this work is to continue the

development of optical sources at telecommunication wavelengths that meet these stringent

requirements.
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1.3 Thesis Organization

This thesis is arranged in the following manner to further explain important

background information before presenting an evolution of erbium doped fiber lasers that

increase in repetition rate while maintaining femtosecond regime pulses with tens of

femtoseconds or less of timing jitter.

" Chapter 2 - Background Principles

Mode-locking is defined and two mode-locking methods are explained.

Advanced experimental techniques used to collect or analyze data in the

subsequent experiments are broken down and explained.

" Chapter 3 - High Repetition Rate, High Average Power, Femtosecond

Erbium Fiber Sigma Lasers

A modification to the P-APM fiber laser is introduced and physically scaled

to 300 MHz repetition rate.

* Chapter 4 -1 GHz Linear Cavity Laser - Free Space SBR

A 1 GHz repetition rate mode-locked fiber laser with a free space collimated

beam section is detailed and used to conduct a comprehensive SBR

performance study. Other cavity variations are explored to answer questions

raised by the results of the first study.

* Chapter 5 -1 GHz Linear Cavity Laser - End Abutted SBR

Three distinct mode-locking states of a 1 GHz repetition rate mode-locked

fiber laser with an end-abutted SBR are investigated and an understanding of

the optimum operating conditions for a high repetition rate, low jitter,

femtosecond fiber laser begins to emerge.

* Chapter 6 - Conclusions and Future Work

The conclusions learned from three distinct generations of fiber laser designs

are detailed and some promising directions for furthering this technology are

discussed.
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Chapter 2 Background Principles

2.1 Introduction

This chapter includes definitions and explanations of theory and measurement

techniques helpful to understand the results presented in Chapters 3, 4, and 5. Mode-locking

mechanisms used in this thesis work are introduced. Next, the measurement techniques to

acquire data on pulse widths and timing jitter are detailed. Once the pulse widths are

measured, those numbers are compared with the expected output including the influence of

fiber propagation between the laser and the measurement apparatus as determined by a

split step time domain pulse propagation simulation. That technique and assumptions used

in the output modeling are also explained here in Chapter 2. Finally, the concept of a vector

soliton and the resulting modulation it places on the RF spectrum is demonstrated along

with the recommended methods of eliminating it.

2.2 Mode-Locking

Chapter 1 mentioned a few applications for mode-locked lasers, but what exactly is a

mode-locked laser? This section provides a high level overview of the topic and leaves

further explanation to the copious available references on the topic [1], [2], [3], [4]. The

purpose of this section is to introduce the reader to the specific mode-locking techniques

applied to the lasers constructed and characterized in this thesis.

2.2.1 Laser Cavity Modes

Gain

Figure 2-1 Basic laser cavity block model.
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Assume a simple block model for a laser cavity: an optical gain medium placed

between two parallel mirrors--like the diagram in Figure 2-1. Now consider what

electromagnetic theory states about fields that may exist in the cavity. The primary

constraint is that the electric field return to the same value in a round-trip so modes that

may oscillate must have a frequency as defined in Equation 2-1.

fm *C Equation 2-1
2 * L

Which means that the frequency of any allowed cavity mode is the number of optical

cycles (m) times the speed of light (c) divided by one cavity round trip (2 times the optical

length L because it is a linear cavity). Two of infinitely many possible modes are sketched in

Figure 2-2.

m = 16

L m=8

Figure 2-2 Diagram of two possible cavity modes. (Original figure courtesy of Jason
Sickler)

The feedback constraints that keep an infinite number of modes from acquiring

energy and rising out of the continuum are the frequency bandwidths of the mirrors and the

gain medium. These two factors contribute high loss to frequencies outside the pass-bands

and thus only a finite number of modes are preferred and will compete to absorb all of the

energy the gain medium provides. These conditions describe the frequencies of the electric

fields but say nothing about the phase.
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For the simple block diagram of Figure 2-1, there is no element in the cavity to

control the phase of the excited modes. If by some method the phases of the sinusoidal

oscillations of each mode were synchronized correctly in time the superposition of those

modes would form pulses. According to Fourier theory, the more sinusoidal frequencies

available to sum together, the shorter the pulses will become. Finally, with the correct

synchronization (i.e. mode-locking) the pulse will travel back and forth in the cavity.

<-TR

time

Figure 2-3 Sketch of a single intracavity pulse and the output pulse train (not to scale).

Figure 2-3 illustrates the output of a linear laser cavity with one intracavity pulse. At

each reflection from the partially transmitting end mirror a fraction of the energy exits the

cavity in the form of an output pulse. The periodicity of the output pulse train is determined

by the group velocity of the pulse in the cavity and the length of the cavity and defines the

repetition rate (1/TR) of the laser.

2.2.2 Mode-Locking Mechanisms

The previous section described an overview of the formation of pulses from a simple

two mirror laser cavity. The key element was control over the phase of each lasing cavity

mode. However, it did not explain how those phases were synchronized. This section

mentions several methods of aligning the phase of the lasing cavity modes-also known as

mode-locking.
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2.2.2.1 Active Modelocking

One straightforward way to force the phases of all the cavity modes together is to

periodically introduce high loss in the cavity through some physical means like an optical

chopper or an electro optic modulator. This is known as active mode-locking and the

technique is widely used to generate pulses [5], [6], [7], [8], [9], [10]. However, active

modelocking has limitations that typically restrict the shortest pulses to the picosecond

regime.

It has the additional drawback of requiring bulky and complicated feedback

electronics to synchronize the pulse modulation with the cavity repetition rate to generate a

consistent pulse train. These locking electronics have good timing jitter performance at

lower frequencies but beyond about 1 MHz they begin to introduce more noise to the pulse

timing than a free running ultrafast optical oscillator. Therefore in the pursuit of high

repetition rate, low jitter, femtosecond laser sources active modelocking is not a viable

approach.

2.2.2.2 Passive Modelocking via Saturable Absorption

The idea behind mode-locking is using a temporal "gate" to add more loss to low

intensity fields between pulses than to the higher intensity pulses themselves. The method

we are interested in uses the optical pulse itself as the trigger of that "gate," and is able to

produce pulses below 10 fs in duration [11]. The term given to this "self-gating" is passive

mode-locking [12] and it is enabled by optical saturation of an absorption process within the

cavity. This "saturable absorber" may be a real absorbing element or a result of optical

interactions within a transparent nonlinear medium. Two variations of saturable absorbers

are utilized in the lasers of this thesis and briefly described below.

2.2.2.2.1 Semiconductor Saturable Absorber

One example of a so-called "real" saturable absorber is a semiconductor material

engineered to have quantum well absorption around the central wavelength the laser's gain

medium. If deposited on a reflecting mirror this combination is known as a semiconductor
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saturable absorber mirror (SESAM) [13]. If the mirror is formed of alternating high and low

index of refraction layers of approximately wavelength thickness, it is known as a

saturable Bragg reflector (SBR). As an example of an SBR structure, Figure 2-4 shows a

schematic of the MIT VA86 SBR mirror stack and absorber with a protective pump reflecting

coating deposited.

InGaAs
Laser signal
(1540-1600nm)

GaAs C>
wafer ..
(150 pm)0

High reflectivity
mirror

pump-reflective
coating

Figure 2-4 Side view schematic of the MIT VA86 SBR with pump reflection coating

applied. (Figure courtesy of Michelle Sander)

SBR's have become a staple technology in the ultrafast laser field [13], [14], [15], [16],

[17], [18], [19], [20], [21] and there are large parts of Ph.D. theses [22], [23] dedicated to their

design and fabrication. Though an entire chapter on the SBR's used in the lasers of this

thesis could be written, it is unnecessary and redundant to the explanations available in

Hanfei Shen's [23], Hyunil Byun's [24], and Michelle Sander's [25] theses. The mirror

specifications, designs, and fabrications for the MIT VA series are found in detail there.

They are brought up in this chapter because SBR's play a critical part in the operation of the

fiber lasers of this thesis and their origin and function needs to be addressed before the

lasers can be introduced and explained.

The single quantum well SBR, such as the VA86 in Figure 2-4, functions as an

intensity dependent optical window. When light with intensity below the saturation fluence
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of the indium gallium arsenide (InGaAs) layer is incident, it is mostly absorbed. However,

as the intensity increases (as for a forming pulse) then the InGaAs layer will optically

"bleach" and allow the light to pass through where it will reflect off the mirror stack and

stay in the cavity for further amplification by the gain medium.

As long as the InGaAs recovery time (nominally between 2 ps and 12 ps) is shorter

than the time it takes the pulse to make one round trip (approximately 1 ns for a 1 GHz fiber

cavity) the mirror is able to act as a repetitive intensity dependent loss mechanism which

acts to keep the lasing cavity modes in phase. The SBR's characteristics such as linear loss

and modulation depth play a significant role in maintaining pulsed operation and those

effects are studied in detail in Chapters 3 and 4.

2.2.2.2.2 Polarization Additive Pulse Modelocking

One example of a so-called "artificial" saturable absorbing mechanism is

polarization additive pulse mode-locking (P-APM) [26], [27], [28], [29], [30], [31]. This is a

variation on additive pulse mode-locking (APM) where the nonlinearity affects the

polarization of the pulse in an intensity dependent manner. The definitive description of

this process is given in reference [32], but because the lasers in Chapter 3 utilize this

technique it is summarized below.

Polarizer

0 Kerr Medium

Figure 2-5 Temporal polarization evolution of the pulse when passing through a Kerr
medium and a linear polarizer. The pulse peak is left unattenuated but the wings are
reduced in amplitude-shortening the pulse. (Figure courtesy of Jason Sickler)

As illustrated by Figure 2-5, an optical pulse propagates through a Kerr medium, in

this case an optical fiber. The state of the polarization of the pulse changes along the time
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axis depending on its instantaneous power. If the pulse is intense enough, the nonlinear

interactions with the glass will cause the polarization of the peak of the pulse to slightly

rotate from the original polarization still propagating in the wings. Aligning a linear

polarizer in the cavity after the fiber that aligns optimally with the polarization in the peak

of the pulse will act as an amplitude filter on the wings and effectively shorten the pulse.

The lost energy is regained in the next trip through the amplifying gain fiber.

This type of saturable absorption is instantaneous and has no relaxation time.

However, its effects are small and require hundreds or thousands of round trips in the fiber

to reach a steady state pulse width where the P-AMP effects are balancing the cavity's

losses, gain, self-phase modulation, and dispersion effects. These effects are reduced when

the fiber length is shortened, and the laser may be unable to self-start in such a state. One

way to address this is to integrate another kind of saturable absorption that would seed the

P-AMP pulse formation. The idea of combining a SBR into a P-APM mode-locked fiber laser

is the topic of Chapter 3.

2.3 Measurement Techniques

For many of the laboratory measurement results presented in this thesis the

procedure for collecting the data is straightforward. In the case of an output power reading,

an optical spectrum recording, or a RF spectrum trace the signal light is directed into a

detector or a fiber input port on the instrument and the data is recorded. Data processing

occurs in software (adjustments like centering, normalization, and noise filtering) and the

plotted results are available as figures in the thesis.

For some measurements, however, the information sought is not straightforward to

obtain and an advanced instrument or procedure is necessary. This section details the

theory and explains the procedure for the intensity autocorrelation, the phase-noise to

timing-jitter conversion, the soliton theory pulse width model, and the split step time

domain numerical simulation techniques.
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2.3.1 Autocorrelation

To measure the time domain width of an optical pulse, physical principles require

you to have a reference that is shorter than that pulse. What if that pulse is shorter than any

available electrical reference source? One option is to use the pulse itself as a reference to

determine how short it is. A technique to do just that was first developed in 1967 [33] and is

known by the term "background free intensity autocorrelation". This thesis refers to it as

autocorrelation, for brevity. Autocorrelation has become a standard pulse width

measurement technique and detailed descriptions may be found in the standard textbooks

on nonlinear and ultrafast optics [34], [1], so I will only briefly touch on it here. Figure 2-6 is

a schematic of the measurement borrowed from Professor Kartner's 2008 Ultrafast Optics

class notes [2] that illustrates the process well enough for the purposes of this explanation.

Osdecope

B"M NL-Crystal

input 2e PMT -

Figure 2-6 Basic schematic of an autocorrelation measurement. (adapted from Figure 9.1 in
[2])

The concept behind the measurement is not complex-take the optical pulse you

want to measure and split it into two copies. Design one beam path to be fixed and the other

to be variable in length. Cross the beam paths of these two pulses together in a nonlinear

medium where second harmonic frequency generation will occur. Position a detector

sensitive to this higher frequency in the path so that only the light resulting from the

momentum conserving nonlinear interaction of the two beams will propagate. Thus, the two

input pulses and any second harmonic light they individually self-generate will be blocked
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by the iris and only light generated by their interaction will be recorded. As the variable

beam path is altered in length, the electrical signal output by the detector (photomultiplier

tube (PMT) in this case) will rise and fall proportional to the overlap of the pulses in the

nonlinear medium.

The measurements reported in this thesis use this technique to record

autocorrelation traces with a small addition. To reduce the noise floor of the measurement,

an optical chopper synchronized to a lock-in amplifier was used for the PMT signal

measurement. The chopper was placed in the path of the variable path length beam which

was of lower intensity than the other beam. This enabled autocorrelations to be taken down

to 35 dB below the peak.

Once the output of the PMT is recorded and plotted a pulse-shaped image displays

on the screen. This autocorrelation pulse is not the same width as the original input pulse to

the beam splitter however. It must be deconvolved to account for the fact that this is an

optical pulse convolved with itself. Mathematically that is a solved problem for both

Gaussian and sech pulse shapes with the formulas below.

2.3.1.1 Gaussian pulse shape

For a Gaussian pulse, if the input pulse is assumed to be Equation 2-2, the

autocorrelation is the Gaussian of Equation 2-3.

(t) = exp - 2Vf2 * t Equation 2-2

LATFWHM /]2

A e2p( e 2n * T Equation 2-3

FWH M

AFW HM __A Equation 2-4
T 1.41
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Equation 2-4 is the relationship between the full width at half maximum pulse width

for a Gaussian pulse shape. Practically, this means that the pulse width of the

autocorrelation pulse (which is measured) is divided by the factor of 1.41 to obtain the

width of the original input pulse.

2.3.1.2 Sech pulse shape

The same operation can be done for a sech pulse; if the input pulse is assumed to be

Equation 2-5, the autocorrelation of that pulse is shown in Equation 2-6.

I(t) = sech2 1.7627 * t Equation 2-5

A 2 (T) =3 2.7196 * T (2.7196 * T 1
sinh2 2.7196 TFWHM * COth ATFWHM Equation 2-6

ATWAFWHM

AFWHM - _A___ Equation 2-7
P 1.54

Equation 2-7 is the relationship between the full width at half maximum pulse width

for a sech pulse shape. Practically, this means that the pulse width of the autocorrelation

pulse (which is measured) is divided by the factor of 1.54 to obtain the width of the original

input pulse.

2.3.2 Phase Noise and Timing Jitter

An important characteristic of femtosecond lasers is their capability of supporting

very low pulse-to-pulse timing drift-also known as timing jitter. Therefore, it is useful to

have a measurement method for characterizing the timing jitter of a laser oscillator. One

method to calculate jitter is to directly measure the phase noise of the laser output signal.

This is done by mixing the electrical signal from a biased photodetector with a very stable

electronic oscillator. Jitter is obtained by integrating that phase noise from the highest
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frequency of interest down to the frequency below which you could remove any noise

through detection and correction techniques.

For the timing jitter measurement the technique is to isolate one of the harmonics in

the RF domain, amplify and filter it, then feed that signal into a Signal Source Analyzer' to

obtain the phase noise, Sp over a wide range of frequencies (fmax -fmin). Figure 2-7 diagrams

the measurement procedure in the lab.

EoTech RF Filter RF Agilent E5052
From Laser Detector Tuned to 1.037 Amplifier Signal Source

GHz Analyzer

Figure 2-7 Schematic of phase noise measurement. The tuning of the RF filter can be
changed to any desired frequency by choosing the proper filter.

In an example measurement from the 1560 nm state of the linear cavity end abutted

laser (Chapter 5), the fundamental harmonic - 1.0367 GHz - from the detected RF signal

was isolated by a tunable bandpass filter2 tuned to 1.04 GHz (analog dial) and passed

through a RF amplifier3 before being passed to the signal source analyzer. The SSA does

several steps but basically mixes the incoming signal with a very low noise local electrical

oscillator and records the output through a range of frequencies. This can then be displayed

as a plot of phase noise as a function of frequency. Figure 2-8 is a captured screen shot of the

SSA after saving the data trace.

I Agilent, Model: E5052A
2 Telonic Industries Inc., Tunable bandpass filter Model TTF 1550-5-5EE
3 Mini Circuits, Model 2KL-2 RF amplifier
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Figure 2-8 Sample screenshot of the Agilent E5052A Signal Source Analyzer.

This phase noise can be integrated and scaled according to Equation 2-8 [2].

1 2Ifmax
At =2 S df Equation 2-8

2
1w * fR fmin

The timing jitter, At, is obtained by integrating the phase noise from fmin to fmax and

factoring in the laser repetition rate, fR. For the data shown in Figure 2-8, fmin was chosen to

be 1 KHz because noise sources below that frequency can be corrected for though local

reference sources, feedback electronics, and piezoelectric cavity mirrors for example. fmax was

chosen to be the point where the downward trending line meets the noises floor of the

measurement. For the example data, that frequency was chosen to be 1 MHz. Once the
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calculations of Equation 2-8 are carried out and plotted together with the phase noise we

obtain Figure 2-9.
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Figure 2-9 Phase noise and integrated timing jitter for the sample dataset.

The final number to report is the value of the jitter at thefmin frequency--5.75 fs in this

example. This procedure was carried out in the same manner for all timing jitter

measurements reported in the following chapters.

2.3.3 Soliton Theory Pulse Width Model

In the Haus master equation [35] (based upon the nonlinear Schrodinger equation)

the pulses propagating in an optical cavity undergo influences from gain, loss, dispersion,

self-phase modulation, and self-amplitude modulation. Recalling that the hyperbolic secant

pulse shape is a valid analytical solution to the master equation, the following constraint

upon that solution is imposed.
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2 *1|"|
T= * Equation 2-9

STot * E p

Equation 2-9 is a variation on the soliton area theorem which roughly states that the

width of the pulse (t) is proportional to the total dispersion (P") and inversely proportional

to the nonlinearity (b) and the total energy (Er) contained within the pulse. Others have

explained this equation and its derivation in depth ([36], [37]) so it is presented here to

explain where the "soliton theory" pulse width estimations in Chapter 5 originate.

The literature writes this equation in a few different variations depending upon the

conditions being tested. It was challenging to determine what proper form of the

relationship to use so that the units of the equation all came out correct. Presented here are

the values used for simulating soliton pulse widths that result from one round trip through

the cavity of the 1 GHz linear cavity end-abutted erbium fiber laser presented in Chapter 5.

As this is an ultrafast laser, the final pulse width, T, has the units of femtoseconds

(fs). The dispersion is represented by P", which in this equation represents the total

dispersion in the cavity (units of fs2). This is the sum of the fiber group velocity dispersion

and the dispersion introduced by the saturable mirror. Hynil and Michelle have measured

and confirmed that the MIT pump reflection coated VA86 SBR has a GVD of -1300 fs2 [38]

around the 1550 nm wavelength. The manufacturer data sheets state the dispersion of the

Er80 - (8/125) erbium doped gain fiber to be -20 fs2/mm, and the dispersion of SMF is

stated at -20.7 fs2/mm. Accounting for the 92 mm of gain fiber, the 7 mm of SMF and the fact

that this is a linear cavity and the pulses pass through each fiber twice in one round trip, the

total dispersion value comes out at -5270 fs 2.

The next term in the equation is the nonlinearity. It is not straightforward to

properly define this term. Various sources use differing symbols and different units but call

it the same thing. What was decided upon for this analysis is the following: the nonlinearity

(b) divided by the effective area leads to the self-phase modulation per unit length (bL)

which when multiplied by the fiber length becomes the total self-phase modulation (bTot) to

input to Equation 2-9.
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Because the nonlinearity depends upon the center wavelength (Ao), the bTot term will

be wavelength dependent in the final formula. To begin we assume that the nonlinear index

(n2) of silica glass fiber is 3*10- 20 m 2/W and the wave vector (Ko) equals 2*7n/ Ao. Since 6 = Ko*n2

we arrive at Equation 2-10 for the nonlinearity in the fiber.

= 61 * 10-
1 1

Equation 2-10

Dividing the nonlinearity by the effective mode field diameter in each fiber (70.9 m2

for Er80 and 84.9 jm 2 for SMF) and multiplying by two times the length of each fiber (92

mm and 7 mm) yields the formula in Equation 2-9 for the total self-phase modulation

present in one round trip of this fiber laser cavity.

0.520(1
6rot = 0

Equation 2-11

The final term is the pulse energy, something obtained from knowing the laser

output power (Po), the output coupler factor (10%), and the repetition rate (frep) by the

relationship in Equation 2-12.

= PO * 10

frep
Equation 2-12

Combining Equation 2-10, Equation 2-11, and Equation 2-12 into Equation 2-9 and

properly accounting for the units and orders of magnitude yields a formula for the soliton

pulse width given the central wavelength (in nanometers), the output power (in milliwatts),

and repetition rate (in gigahertz) as the only necessary inputs.

2.027

PO - (fs)

frep * X0

Equation 2-13
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The nonlinear index of the fiber is not the same, however, for different polarizations.

The above number is an average often used but the more accurate number for the case of

linear polarization in the fiber is 3.2*10-20 m2/W [39]. If the polarization is elliptical or circular

the value of the nonlinear index can be reduced by as much as 1/3rd of this upper limit.

Therefore Equation 2-13 is modified to allow flexibility in the values of n2 as well to attempt

to calculate the most accurate possible pulse width predictions for any given set of laser

state output powers.

6.081
PO * n2 (fs) Equation 2-14

frep * 0

Finally we arrive at Equation 2-14, the formula used to generate the data for the

soliton theory pulse width plots in Chapter 5.

2.3.4 Split Step Time Domain Numerical Simulation

Modeling an optical pulse traveling down a medium like an optical fiber is a

straightforward simulation that can be done via a mathematical technique known as split-

step time-domain modeling. This technique is powerful but standard enough to be taught in

the normal nonlinear and ultrafast optics textbooks [1], [34] and graduate courses [2]. The

model can be written for effects as simple as linear dispersion or as complex as nonlinear

effects like self-phase modulation and Raman shifts. The purpose for explaining it in this

section is not to break down how the simulation is done, the references above do that; but to

detail what inputs were used and what assumptions were made to take the measured laser

characteristics and attempt to model the ideal transform limited pulse propagation down

the fiber used in the laboratory experiment in Chapter 5.
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2.3.4.1 Pulse Inputs

The split step simulation MATLAB code used came from a working sample of code

graciously shared by Katia Shtyrkova. This script is written to take the following pulse

inputs:

" Initial Pulse Width (fs)

" Average Power (mW)

* Repetition Rate (GHz)

* Center Wavelength (nm)

Once the input pulse characteristics are entered, the choice of a sech or Gaussian

pulse envelope is selected as both pulse shape options are available in the code.

2.3.4.2 Fiber Speifications

The electric field vector for a simulated pulse in the selected shape is passed through

three different lengths of fiber with appropriate dispersions and mode field diameters.

Figure 2-10 illustrates the geometry and configuration of the fiber lengths the pulses passed

through prior to any measurements being taken.

10% Output SFM28e Fiber

Coupler Coating

35 cm 70 cm 100 cm
Laser Cavity

Lucent 980 Coupler Fiber - 70 cm To Measurements

Figure 2-10 Schematic of fiber coupled linear cavity erbium fiber laser output fiber
sections.

As seen in Figure 2-10, the pulses exit the laser cavity at the output coupler and pass

through 275 cm of fiber before being measured or characterized in any way. The first 35 cm

and the final 170 cm is Corning SMF28e single mode fiber with its wavelength dependent

dispersion following Equation 2-15.
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D(X) = - Equation 2-15
4 P nm km

The dispersion is a function of the wavelength (A), the zero dispersion wavelength

(Ao), and the zero dispersion slope (So). For this fiber, the specification sheet states that the

zero dispersion slope is 0.086 (ps/(nm2*km)) and the zero dispersion wavelength is located

at 1313 nm. The mode field diameter is 10.4 4m 2, the nonlinearity is 3*10-16 (cm 2/W), and the

linear loss coefficient is 0.2*10-5 (dB/cm).

For the WDM packaging and connecting fiber pigtails, a different fiber 4 was used

that has very low dispersion around the 1550 nm wavelength. The wavelength dependent

dispersion for this fiber is not calculated but comes from a linear fit of experimental data

taken by the manufacturer, OFS. Special thanks to Dr. John Fini of OFS for providing the

experimental data plot.

D (X) = 0.04032258 * X - 63.75 ( m Equation 2-16
nm km

The dispersion values obtained by the linear fit of Equation 2-16 are only valid for A

values from 1550 nm to 1580 nm but that window is sufficient for these simulations.

To complete the fiber specification section of the simulation code, the mode field

diameter of the Lucent 980 Coupler fiber is given to be 7.5 tm 2 for 1550 nm wavelength

light, the nonlinearity is 3*10-16 (cm 2/W), and the linear loss coefficient is 0.2*10-5 (dB/cm).

2.3.4.3 Simulations

To obtain reasonable results from the simulation requires careful choices and

multiple iterations of the number of simulation steps, the time and frequency domain vector

sizes, and the choice of the estimated losses at the fiber splice points. The calculated electric

field vector with the chosen pulse shape envelope is stepped through first 35 cm of SMF

fiber, then 70 cm of Lucent 980 Coupler fiber, then 170 cm of SMF fiber and the effects of

4 OFS, Model: "Lucent 980 Coupler" or BF05635-02, CL 980 16 Photonic Fiber
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linear group velocity dispersion and nonlinear self-phase modulation are calculated at each

step. The final output field is squared and the real pulse envelope plotted with the input

and output FWHM pulse widths displayed to determine how the pulse width evolved

through the fiber propagation.

2.4 Vector Solitons

One undesirable characteristic that began to emerge from the linear cavity fiber

lasers of Chapter 4 and Chapter 5 was the tendency for modulation sidebands to be detected

around the otherwise clean lines of the RF spectral data. Depending upon the state or fiber

configuration or coupling of the laser, the sidebands would appear in varying number and

varying distances (in frequency) from the main line. A good example of this behavior is

visible in Figure 2-11(a).
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Figure 2-11 Example data from Chapter 4, notice the sidebands in figure (a) and their
absence in figure (b).

When this behavior was first noticed the cause of it was unknown. It became a

problem because it was showing up in the spectrum of every high repetition rate linear

cavity laser we would build. Sometimes the side bands could be suppressed but unless their
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cause was determined we could not know for certain how to eliminate them. In addition,

these sidebands correlated to highly increased timing jitter measurements and that meant

they had to be eliminated to achieve our objective of low jitter laser sources.

Fortunately, tests performed by Hyunil Byun and Michelle Sander helped to narrow

down the cause to a phenomenon known as vector solitons [40]. This is a consequence of

using non-polarization maintaining fiber in the cavity. In a standard single mode fiber, there

are two equally valid polarization eigenmodes and light will generally propagate in both of

them simultaneously. If the fiber was perfectly symmetrical and unstressed, these modes

would co-propagate and the overall polarization would not change in the fiber. However,

real fibers are all slightly birefringent due to manufacturing stresses and the result is two

polarization states propagating at slightly different rates through the fiber. As they travel,

the ellipticity of the overall optical mode in the fiber evolves at a period much longer than

the round trip time of the cavity. This polarization evolution produces a small amplitude

modulation on the pulse train that manifests as frequency sidebands in the RF spectral

measurements.

This effect is understood [41] and can be controlled [42]. Independently controlling

the two polarization states within a laser cavity is usually straightforward- a polarization

controller is put in the cavity. In a free space laser this would be a PBS or a linear polarizer.

In a long fiber laser polarization control paddles or fiber compression polarization

controllers could be used. In these very short fiber lasers with either zero or very little free

space available for an optic, controlling the fiber polarization becomes more of a challenge.

The one option available is the simple action of bending and twisting the fiber [43] until the

period of the slowly evolving polarization is matched to the round trip length of the cavity.

This is called forming polarization-locked vector solitons (PLVS's) and is the technique used

to minimize and eliminate the polarization sidebands detected on the output measurements

of the high repetition rate linear cavity fiber lasers.
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2.5 Conclusions

This chapter detailed definitions and explanations of theory and measurement

techniques helpful to understand the results presented in Chapters 3, 4, and 5. There was a

brief review of mode-locking and how it can occur within a laser cavity. Many mode-

locking techniques exist and descriptions of the two mechanism used by the systems in this

thesis-SBR mode-locking and P-APM-were presented.

The next sections dealt with laboratory measurement techniques. The background-

free intensity autocorrelation, used to measure pulse width, is detailed along with the

necessary pulse shape deconvolution factors. Next, timing jitter calculations from phase

noise measurements are explained with example data from a system described in Chapter 5.

Finally, the inputs and assumptions behind the split-step time-domain pulse

propagation simulation used to predict the output pulses from the coupling fibers were

listed, and the concept of vector soliton behavior within a laser cavity was introduced.

As the explanations of the different lasers are presented throughout the subsequent

chapters, the reader is encouraged to return to this Chapter to address any confusion that

may arise as to how certain measurements or calculations were made and what assumptions

went into them.
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Chapter 3 High Repetition Rate, High

Average Power,

Femtosecond Erbium Fiber

Sigma Lasers

3.1 Introduction

What makes ultrafast lasers uniquely useful is the duration of the time domain

pulse. Pulses on the order of 100 femtoseconds (fs) in duration or less are now common. By

Fourier duality, an ultra-short event in time corresponds to an unusually large range of

frequency components. The previous chapter detailed some of the practical applications of

these systems.

Femtosecond lasers constructed out of optical fiber components are particularly

interesting because of their compact size, ruggedness, and insensitivity to mechanical

misalignment. There are several methods that can be employed to construct a femtosecond

fiber laser but the primary differentiator is the direction the light is traveling through the

fiber. Recall, that to create an optical laser cavity the light has to have a path that returns the

pulse to the same physical place each round trip. If the light travels down a fiber, reflects

from a mirror or some other device, and then back through the same piece of fiber, such a

photonic device is usually described as a linear cavity fiber laser. However, if the light is

able to travel in a continuous loop without crossing back on itself, the system is a type of

ring cavity laser. This chapter describes two versions of a ring cavity laser- specifically

sigma ring lasers. [1]

Sigma cavity fiber lasers are versatile because the light travels through both fiber and

free space optical components. This conveys the advantages of fiber amplification to the

flexibility of free space waveplates, mirrors, or other components. The designation sigma is

used because, from an overhead view, the laser cavity looks like the lower case Greek letter

"C-." What differentiates a sigma cavity from a traditional unidirectional ring laser is the
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"arm" off of it enabled via a polarizing beam cube or a circulator. Usually a plane mirror on

a translation stage is placed at the end of the arm to enable dynamic cavity length

adjustments.

To obtain ultra-short pulses in what would otherwise be a continuous wave (CW)

fiber laser, both polarization additive-pulse mode-locking (P-APM) [2] and/or saturable

Bragg reflector (SBR) mode-locking [3], [4] can be used. These schemes have been applied

successfully to soliton [5], [6], and stretched-pulse [7] fiber lasers. Our first sigma laser

(taking advantage of both mode-locking mechanisms) was constructed using mostly

standard optical components [8], [9] and operated at a repetition rate of 234 MHz. This

design was compressed into a physically smaller system that scales the repetition rate

beyond 300 MHz using many custom built components [10]. This was the first time to the

author's knowledge that a fundamentally mode-locked erbium fiber sigma laser had

exceeded 300 MHz while maintaining high output power of 60 mW.

The 234 MHz and 300 MHz lasers are similar so it follows that their output

characteristics be reported side-by-side rather than one full description followed by a

second mostly identical one. Thus the following sections reflect that logic. First, the laser

designs are described and illustrated. Then their standard output measurements are plotted

and compared. Finally conclusions are drawn about the system limits and possible future

developments.
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3.2 Laser Designs

3.2.1 Initial Sigma Laser Design

The laser, illustrated in Figure 3-1 and photographed in Figure 3-2, is pumped by

two, 750 mW, 980 nm diodes 5 that are polarization multiplexed via fiber coupler 6. This

assembly is capable of an output of up to 1.2 watts of single mode 980 nm light. No pump

isolator was necessary because the ring design prevents any significant power feedback to

the pump diodes.

Figure 3-1 Initial design schematic for sigma fiber laser.

5 Bookham, Inc., Model: LC96UF74-20R
6 SIFAM Fibre Optics (via Optimark Fiber Optics), Model: FFP-5M3280G10
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Figure 3-2 Photograph of the complete 234 MHz fiber laser in operation. The blue colors

are scattered pump light picked up by the camera's sensor and the purple and red lines

represent the free space beam path.
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The pump light is coupled into the laser cavity via free space optics 7 to avoid the

need for WDM fiber couplers that would extend the overall cavity length. Specifically, the

gain fiber is optically pumped through a short-wave-pass 980 nm/1550 nm dichroic mirror.8

This mirror maintains the 1550 nm signal in the cavity while passing the pump light

through to the fiber. The erbium-doped fiber that is used is a high absorption specialty

fiber.9 This fiber was epoxied and wet polished into standard FC/APC connectors and

screwed into a fixed collimation package10 for mounting. The second short-wave-pass

dichroic mirror allows unabsorbed pump light to exit the cavity, and the anti-reflection-

coated silicon windows1 ensure that no pump light will interfere with SBR operation as

silicon absorbs strongly below 1 micron but transmits clearly at 1.55 microns. Once the

erbium is pumped and signal pulses form, they must be carefully controlled in the cavity.

Pulse control is accomplished via a variety of interacting components. The first half-

wave plate (HWP)12 controls the input to the polarization beam splitter (PBS) by reorienting

the primary axis of the polarization ellipse. The PBS 13 thus acts both as the cavity output

coupler and the polarization-dependent loss mechanism. The horizontally-polarized

(relative to the optical table) components of the beam are passed straight through the beam

cube and thus constitute the laser output. The vertically-polarized (relative to the optical

table) portion of the beam is reflected by the interface in the beam cube and enters the linear

arm of the cavity; where it is focused on the SBR by an aspheric lens 4 . The linear path

includes a quarter-wave plate (QWP) oriented so that the vertically-polarized beam returns

to the PBS horizontally-polarized. After passing again through the PBS, a polarizing

7 Thorlabs, Model: LA1708-B (1st) and LC1120-B (2nd)
8 CVI Melles-Griot, Model: SWP-45-RU1550-TU775-PW-1025
9 Liekki Corporation, Model: ER80-8/125
10 Thorlabs, Model: F240APC-1550
11 ISP Optics Corp., Si windows, size 12.7x5
12 All waveplates are zero-order at 1550 nm
13 Coated for 1550 nm, Unknown origin
14 Thorlabs, Model: C220-TM, f = 11 mm
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isolator 5 ensures unidirectional operation. Finally, a HWP and QWP pair enable full control

over the polarization state that is launched into the gain fiber.

3.2.1.1 Saturable Bragg Reflectors (SBRs)

One purpose of this laser was to test the performance characteristics of several

commercial semiconductor saturable absorbing mirrors (SESAMS) -usually referred to as

saturable Bragg reflectors (SBR's) in this thesis. Table 3-1 lists the part numbers and some

design characteristics of four BATOP commercial SBRs we tested in this laser.

Table 3-1 BATOP SBR characteristics that were tested in this laser.

1 1 20% 12% 50 pj/cm2 12 ps

23% 14% 25 pJ/2 2 ps

'0e 35% 21% 50 pJ/cm 2  2 ps

All four of these mirrors were tested in the cavity and all resulted in mode-locking.

See the 234 MHz results section for discussion and plots.

3.2.2 Reduced Size Sigma Laser Design

The first generation laser demonstrated that stretched-pulse mode-locking could be

achieved with a saturable absorber mirror and P-APM effects in the gain fiber. This second

laser was built with the purpose to test how high the repetition rate could be pushed while

maintaining the ability to generate ultra-short pulses.

Figure 3-3 illustrates the full layout of the reduced cavity length 300 MHz sigma

fiber laser.

15 Isowave, Model: I-16-JM-3.5-4, Single Stage Round
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Figure 3-3 Compact sigma cavity mode-locked fiber laser design.

This compact laser was designed for the smallest possible free space cavity. This

allowed us to keep a longer length of gain fiber, which enabled higher intra-cavity gain

leading to high output powers. The short cavity was achieved by a combination of ordering

the smallest components available and custom mounting. Every optic in the beam path is

held by a mount that we designed and machined ourselves. Each mirror, waveplate, etc. is

approximately one millimeter from its neighboring components. By these extensive efforts

we were able to reduce the free space cavity beam path to just 16 cm. That length includes

the double pass in the linear section of the sigma arm. Figure 3-4 is a photograph of the

laser layout.
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' 5cm '
Figure 3-4 Photograph of 300 MHz cavity. Almost all component mounting parts were
custom manufactured to decrease the cavity length. Quarter placed for size comparison.

There are minor differences between the original system and this updated one. First,

5 cm was removed from the length of the erbium gain fiber. This reduced the optical path

length by -7.5 cm due to the index of refraction of the glass fiber being greater than one.

Shortening the fiber also reduces the number of pump photons that can be absorbed before

the fiber is "bleached" so a careful balance between the cavity losses and gain must be

maintained to ensure proper operation.

In addition, almost every optic in the free space section was replaced for space

reasons. The dichroic mirrors have the same optical coating on the same substrate material

as the previous system; we simply ordered them sized to fit a " mount instead of the

previous 1" diameter mount. As you can see in the system photograph (Figure 3-4) the

mounts for the mirrors were milled at 45 degree angles to gain precious millimeters of path
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length. The waveplates and the beam cube are also new for this laser. Small, thin quarter

and half waveplates16 were ordered and thin aluminum discs with insets were custom made

to hold them. Dual sided Teflon@ disk holders were designed and fabricated in house to

hold these small parts in the laser cavity and still allow for in-situ rotation (through the use

of a custom aluminum and rubber band tool created for the task). The 10 mm beam cube

was replaced with an extra small polarizing beam cube17 that acts as the central anchor of

the laser and the point through which all of the critical beam alignment had to occur.

Fortunately, the 3 mm cube was sufficiently larger than the 1.5 mm beam diameter to allow

for some alignment adjustments. All other components are the same as used in the 234 MHz

laser system.

All four BATOP SBRs were implemented in the laser, but the one that yielded the

shortest pulses is SAM-1550-09-25.4s. Recall from Table 3-1 that this is the lowest linear loss

SBR at 9% and only 6% modulation depth. All data and results from the 300 MHz laser use

this SBR.

In typical stretched-pulse erbium fiber ring lasers [7] the normal group-velocity

dispersion (GVD) gain fiber is balanced by anomalous GVD single-mode fiber. The net

cavity GVD is small, but the alternating sign of the GVD causes the pulse width to stretch

and compress dramatically as it traverses the cavity. Alternatively, as can be seen in Figure

3-5, this design balances the gain fiber's anomalous GVD with the large normal GVD of

silicon windows.

The large dispersion of the silicon enables stretched-pulse operation at this higher

repetition rate because it replaces the long piece of normal dispersion single-mode fiber

with a (relatively) thin window of silicon. This means the laser can accommodate a longer

gain fiber length and maintain high output powers.

16 Thorlabs, Models: WPQ501 and WPQ502
17 Thorlabs, Model: PBS3
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Figure 3-5 Dispersion profile of the 300 MHz laser cavity.

3.3 Results and Discussion

3.3.1 234 MHz Laser

The laser is self-starting and stably mode-locks with all four test SBRs. Because the

laser does not mode-lock when the SBR is replaced by a broadband high reflectivity silver

mirror, we can conclude that the SBR's pulse shaping effects enable self-starting. However,

when the polarization launched into the gain fiber is in a linear state, mode-locking could

not be achieved while using the SBRs, which indicates that polarization additive-pulse

mode-locking (P-APM) is occurring and necessary for pulsed operation.

3.3.1.1 Opical Spectra

The left side of Figure 3-6 plots the transform-limited pulse duration as derived from

the optical spectrum as a function of the output pulse energy. All optical spectra were

measured and recorded on an optical spectrum analyzer (OSA) 18 by collecting the laser

18 Hewlett Packard Inc., Model: 70004A
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output beam into a single mode fiber with an aspheric lens and then screwing the fiber into

the OSA fiber coupled input port. From this data, it appears that the modulation depth of

the SBR does not affect pulse shaping because the results (with the exception of the highest

modulation depth SBR) lie along the same contour. This indicates that pulse shaping is

dominated by P-APM. Also, the 12% modulation depth SBR absorber has a 12 ps recovery

time, whereas the other SBRs have a 2 ps recovery time. The fact that these differences do

not affect the pulse characteristics further supports the assumption that P-APM is shaping

the final pulse.

The right side of Figure 3-6 plots the maximum bandwidth optical spectra obtained

with each SBR. The absence of resonant sidebands (a wider scan window was checked) and

the measured normal chirp on the output pulses are clear indications that the laser is

operating in the stretched-pulse regime. The net GVD is -630 fs2, excluding any phase

response of the SBR, so sub-100 fs pulses with moderate pulse energies should be expected,

and are measured through autocorrelation.

Max Spectral WIdths for Various Modulation Depths
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Figure 3-6 (Left) Bandwidth-limited pulse duration as a function of pulse energy. Single

and Double refer to the number of intracavity pulses, and the values refer to the linear loss

and modulation depth of the SBR tested. (Right) The broadest optical spectra using

various SBRs. The values refer to the linear loss and modulation depth of the SBR tested.

One will also notice in the spectra of Figure 3-6 that the SBR with 21% modulation

depth provides a distinctly different operating state. The rectangular spectrum and higher
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pulse energies are consistent with a stretched-pulse laser with net normal GVD [11]. This

makes sense as the normal GVD contribution comes from the phase response of the SBR,

which is dominated by the absorption resonance, and hence, increases with the strength of

that resonance. Given that the location of the SBR band edge is at 1550 nm, the normal GVD

contribution should be on the long wavelength side of the band edge. The location of the

spectrum, relatively to the band edge, is consistent with these expectations.
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Figure 3-7 Optical spectra for the best state obtained with the 14% modulation depth SBR.

The "Tap" traces refer to the spectral shape at different locations inside the laser cavity

while the "Output" trace is a trace of the output beam.

Figure 3-7 helps to provide a more complete characterization of the laser operation

using the 14% modulation depth SBR. In Figure 3-7 the optical spectrum of the output port

and (dichroic) tap ports before and after the gain fiber are shown. To obtain the "tap" port

data, a glass slide was placed in the cavity beam path at that location at a small angle. The

slide results in -4% of the beam power being reflected out of the cavity where it was
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collected and measured. Calculating the Fourier transform of the output optical spectrum

yields an 86 fs transform-limited pulse width.

3.3.1.2 Autocorrelations

The free space output beam is also sent into a custom, in-house intensity

autocorrelator. This system was built following the principles found in reference [12],

Chapter 9. A nonlinear crystal and photomultiplier tube are utilized to generate and detect

the second harmonic nonlinear interaction of the pulse with a time shifted copy of itself. The

autocorrelation trace plotted in Figure 3-8 (left) is curve fitted and decorrelated to indicate a

Gaussian-shaped pulse with a duration of 100 fs. This pulse was measured after passing

through -16,250 fs2 of GVD outside of the cavity.
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Figure 3-8 Autocorrelation measurement data (black squares) and a Gaussian curve fit
corresponding to 100 fs pulses (left). Finding the minimum pulse duration by increasing
GVD compensation (right).

The pulse was guided through free space mirrors into a length of single mode silica

fiber' 9. The fiber is anomalously dispersive at the 1550 nm wavelength (p2= -20.6 fs2/mm) so

it is possible to linearly recompress a normally chirped pulse by passing it through the

appropriate length of fiber.
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Several pulse width measurements were taken by varying the fiber lengths to the

autocorrelator. Figure 3-8 (right) plots the data and curve fit data of the pulse duration as a

function of external chirp compensation and points to an optimally compressed pulse of 93

fs using ~-18,000 fs2 of GVD. The real data point of 100 fs is close to that and within

experimental and measurement error.

3.3.1.3 iF Spectra

Figure 3-9 is a trace of the RF spectrum of the laser output. The output light is

detected on a DC-biased photo detector 20 and the resulting electrical signal is recorded by a

RF spectrum analyzer 21 . The generally flat spectral envelope combined with the smooth

optical spectrum of the left side of Figure 3-9 verifies single-pulse operation. The photo

detector does not have a perfectly flat frequency response and that is cause for the slight

amplitude shaping evident in the plot.
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Figure 3-9 Full span RF spectra showing a smo
single-pulse operation and fundamental RF 1
frequency.
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The right side of Figure 3-9 is an enhanced view of the fundamental frequency of the

cavity. The main peak is clean and any noise is suppressed over 50 dB so we can say with

20 Discovery Semiconductor, Model: DSC-40S, Serial: 402307
21 Avantest, Model: R3565
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confidence that the laser is operating in a single pulse mode-locking state with a repetition

rate of just below 234 MHz.

3.3.1.4 Jitter

Recall that an important characteristic of femtosecond lasers is their low pulse-to-

pulse timing drift-also known as timing jitter. Chapter 2 explained how jitter was

calculated from phase noise data. In this measurement, the 9* harmonic - 2.1 GHz - from

the detected RF signal was isolated by a tunable bandpass filter22 tuned to 2.1 GHz and

passed through a RF amplifier 23 before being passed to the signal source analyzer (SSA) 24.

The SSA performs several steps and displays a plot of phase noise as a function of

frequency.
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Figure 3-10 Phase noise and RMS timing jitter as integrated from 1 kHz to 10 MHz.

Figure 3-10 plots the phase noise in black and the RMS timing jitter in red. The phase

noise was integrated from 10 MHz down to 1 kHz. Integrating this range is a reasonable

22 Telonic Industries Inc., Tunable bandpass filter Model TTF 1550-5-5EE
23Unknown which amplifier was used for this data
24 Agilent, Model: E5052A
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assumption because most noise sources below 1 kHz are removable through electronic

feedback techniques and are also likely caused by electronic noise in the filtering and

amplifying process to begin with. Noise above 10 MHz is generally below the noise floor of

the detection process. Thus, integrating in the range described resulted in sub 100 fs timing

jitter measurements for this laser. The plot in Figure 3-10 for example shows a timing jitter

measurement of 73 fs.

3.3.1.5 Output Power and Pulse Energy

As configured above, the laser operates at a repetition rate of 234 MHz. The

measured average output power is 57.6 mW corresponding to an output pulse energy of 246

pJ. The power measurement is obtained by connecting the collimated fiber output and

directing the light into the detector head of an optical power meter 25. The measured pulse

duration full-width half-maximum is 100 fs, and that is reasonably close to the theoretical

optical spectrum Fourier transfer limit of 89 fs. Increased efforts to perfectly match the

dispersion compensation to what is exiting the laser could have possibly pushed the

measured pulse width down to 90 fs but that was deemed an unnecessary undertaking as

the data we have is sufficient to verify our claims.

3.3.2 300 MHz Laser

The purpose of this laser is to find the highest possible repetition rate while

maintaining single pulse mode-locking operation. This section reports on the performance

of the cavity when it is scaled to 300 MHz. Figure 3-11 is a plot of the laser output power

and operating states of the 300 MHz configuration as the pump power is varied from zero

mW to the maximum 1.2 W. The lasing threshold is approximately 100 mW of pump after

which the output power climbs linearly with a continuous wave output. Around 400 mW of

pump the intracavity power is high enough to be affected by nonlinear effects of the SBR

and fiber and the laser begins to single pulse mode-lock. This state is stable and holds until

around 900 mW of pump. At that point there is an excess of energy in the cavity for the

25 Hewlett Packard Inc., Model: 8152A
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single pulse condition and some higher order cavity modes begin to lase as well. This

results in a multiple pulsing condition where the frequency comb is no longer stable or flat

and the output pulse train is no longer uniform in intensity or timing.
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Figure 3-11 Laser operating states and output power for increasing pump power

All of the data presented from this point forward were collected with the laser

operating at 61.1 mW-the maximum output power and minimum pulse width obtained

while still single pulse mode-locked. This point is marked with an orange diamond in

Figure 3-11. The output pulse optical spectrum, RF spectra, autocorrelations, and power

measurements of this laser proceed in the same manner and on the same instruments as for

the previous system.

3.3.2.1 Optical Spectra

Figure 3-12 is the measured optical power spectrum, which a Fourier transform

indicates would support a time domain pulse as short as 84 fs.
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Figure 3-12 OSA trace of the optical power spectrum. The Full Width at Half Maximum
(FWHM) is marked on the plot.

Looking at a wider wavelength window indicated no significant power outside this

peak. The spectral shape, the absence of resonant sidebands, and the significant normal

chirp of the output pulses reinforce that the laser is operating in the stretched-pulse regime.

[7]

3.3.2.2 Simulation

Jeff Chen, one of the collaborators and co-authors performed a brief simulation of the

pulse width for the 300 MHz laser as it would travel through the dispersive and non-linear

effects of the cavity.
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Figure 3-13 Time domain pulse width simulation as energy travels around the cavity.

This simulation is mostly for illustrative purposes as the characteristics of the fiber,

SBR, and other elements were not modeled perfectly. The model predicts that the pulse will

enter the gain fiber with some amplitude and experience amplification and pulse shortening

by the end of the fiber. The highly normally dispersive silicon will broaden the pulse prior

to the beam cube but the length of anomalously dispersive fiber in the output will

recompress the pulse for measurements. Figure 3-7 from the previous 234 MHz system

provided evidence of this in fact being the case because the optical spectrum was broadened

as it evolved through the gain fiber. Recall that a broader spectrum correlates to a shorter

pulse width in time.

Subsequent measurements of the pulse widths will demonstrate that the pulses are

indeed exiting the cavity in a normally chirped state and require recompression to achieve

the shortest pulse width measurements.
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3.3.2.3 Autocorrelations

Figure 3-14 (left) provides an autocorrelation and Gaussian fit of the shortest

observed pulse, which corresponds to a 108 fs pulse. This was obtained using -11,240 fs2 of

GVD to compensate the output pulse chirp. The pulse was again guided through free space

mirrors into a length of single mode silica fiber26. The fiber is anomalously dispersive at the

1550 nm wavelength (p2 = -20.6 fs2/mm) so it is possible to linearly recompress a normally

chirped pulse by simply passing it through a length of optical fiber.

108.4 fs

0.45-

0.40.

0.35-

030-

0.25 -

0.20-

0.15 -

0.10-
-1000 -5; 0 500 1000

Pulse Delay (fs) 0 20 4o 60
Length of SMF28e (cm)

Figure 3-14. (Left) Autocorrelation data with Gaussian pulse shape fit. (Right) Decreasing

pulse duration with increasing GVD compensation.

Various lengths of connectorized fibers were available and Figure 3-14 plots some of

those pulse width results. The pulse duration data points were obtained from curve fitting

autocorrelation traces. The pulse duration versus compensating GVD measurements

indicate that perfect dispersion compensation might yield pulses as short as 86 fs. As with

the larger system, the extra work necessary to achieve that exact measurement was not

necessary to demonstrate the function of the laser.

26 Corning, Inc., Model: SMF-28e
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3.3.2.4 RF Spectra

Figure 3-15 shows the RF spectra of the laser output. On the left, the flat spectral

envelope, combined with the smooth optical spectrum verifies single-pulse operation. On

the right is a tight trace of the 301 MHz fundamental mode beat, which displays greater than

40 dB of noise suppression and provides further evidence of a single-pulsing mode-locked

state.
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Figure 3-15. Detected RF frequency from DC to 4 GHz demonstrating flat envelope.

Detected fundamental RF line. (left) The direct measurement of the repetition rate. (right)

3.3.2.5 Output Power and Pulse Energ

By taking the 61.1 mW of measured output power and dividing by the 301 MHz

repetition rate, a pulse energy of 203 pJ is demonstrated. This is about 85% the pulse energy

of the longer 234 MHz system but that is reasonable due to the shorter length of erbium gain

fiber in this cavity and the higher repetition rate.

3.3.2.6 Jitter

Using the same measurement technique and instruments as the previous system, the

pulse-to-pulse RMS timing jitter of this system is 33 fs if you integrate the phase noise from

1 kHz to 10 MHz. Since laser noise below 1 kHz can be compensated for with feedback
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electronics and piezo actuators, the jitter accumulated from those frequencies can be omitted

from the reported jitter. Figure 3-16 plots the relevant regions of the phase noise and

integrated timing jitter.
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Figure 3-16 The phase noise and integrated RMS timing jitter of the 300 MHz laser.
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3.4 Conclusions

In conclusion, this chapter has described the design, construction, and test results of

two similar fundamentally mode-locked erbium fiber sigma cavity lasers operating at

repetition rates of 234 MHz and 301 MHz, respectively.

The idea of using a sigma cavity enabled longer fiber lengths and a free-space optical

section allowing for the in-cavity placement of a semiconductor saturable absorbing mirror.

This mirror's properties shortened the pulses being formed out of the continuum enough

that the P-APM effects in the gain fiber were able to dominate and shorten the pulse further.

The actual assembly and tuning of the lasers was fairly involved but did not require

inventing any new alignment or measurement techniques. Many custom parts did have to

be sourced or manufactured to properly hold everything in place but those were solvable

challenges.

As for performance, both systems could be pumped and settled into single pulse

mode-locking states. Output powers were in the tens of milliwatts and pulse energies were

around a couple of hundreds of picojoules which make these laser systems potentially

useful as the source light for a variety of laboratory experiments.
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Chapter 4 1 GHz Linear Cavity Laser -

Free Space SBR

4.1 Introduction

New theoretical research in our group had concluded that existing technologies

(such as single mode pump diodes) and components (highly doped fibers, SBR's, etc.) could

be combined to attain fundamentally mode-locked multi GHz repetition rate fiber lasers [1].

Based upon the success of other high repetition rate linear fiber lasers in our research group

[2], Dave Chao and I initially believed we could construct a 1 GHz fiber laser that would

function as a seed oscillator for his frequency comb experiment. That effort was successful

and is detailed here in section 4.2, but ultimately it was not the source he used for the 1550

nm fiber frequency comb [3].

Hyunil Byun's linear cavity fiber laser [4] demonstrated that a relatively short length

(few tens of millimeters) of Liekki specialty Erbium doped gain fiber (Er-80 - 8/125) could

have enough gain to overcome losses and achieve lasing when placed between two mirrors.

Moreover, if one of those mirrors was a saturable absorber, pulsed operation was possible.

We tried to experimentally determine if similar performance was possible when instead of

being end abutted, the SBR was instead free space coupled to the fiber through the uses of

lenses.

Metrics used to determine performance of these systems include: the optical

spectrum's shape and 3 dB point bandwidth, the RF spectrum's flat harmonic envelope and

smooth noise floor around the fundamental harmonic, and the laser's output power. Timing

jitter measurements of these experiments were not systematically taken and therefore

cannot be reported.

This chapter describes and explains six versions of this short erbium doped fiber,

linear cavity, GHz repetition rate laser, free space SBR coupled laser.

* The first generation - free space pumping and output coupling

" The second generation - fiber coupled pumping for SBR experiments
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* "L" cavity fiber coupled pump rejection and polarizer test cavity

* Highest possible repetition rate - 1.25 GHz cavity

" Experimental Oxidized SBR test system at 314 MHz

" Second generation - Reengineered with intra-cavity polarizer

Each of these systems will be diagramed, described, and their results analyzed in the

following sections.

4.2 Generation One: Free Space Pump and Output

4.2.1 Linear Laser Cavity Design

The first generation linear cavity 1 GHz fiber laser's design is straightforward. The

entire optical cavity consists of one piece of optical fiber, two mirrors, and two lenses. Figure

4-1 is a sketch of the initial design for this cavity.

Output

Focusing Lens Focusing Lens
980 Pump 80 dB/m Er-doped Fiber
(350 mW) n (90 cm) =

980/1550 OC (10%) Collimating Lens Uncoated SBR
Dichroic (23% MD)

Figure 4-1 Initial test design schematic of a free space coupled linear cavity fiber laser.

There are many practical challenges associated with building this design into a laser.

One challenge of a linear cavity is finding the optimal way to insert the pump light into the

cavity and extract the signal light out of the pump light's beam path. Free space pumping

through a dichroic mirror27 had worked in the past [5] so we chose to use the same

27 CVI Melles-Griot, Model: SWP-45-RU1550-TU775-PW-1025
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implementation here. There were several other design logistics in figuring out how to turn

the ideas of Figure 4-1 into an actual system.

Output 80 dB/m Er-doped Fiber
(8.5 cm)

980 Pump ~ -~~~~~~~~~ ~ ~
(350 mW)

980/1550 IiOC (10%)I I I :Uncoated SII
D ichroic |_..... _.._ _ _ 3: (23 %e d

----- ----- ---- ----- ---- (23% M D)

xyz-translation stage fixed fixed xy-tilt

xyz-translation
xy-tilt

Figure 4-2 Practical stage mount layout of free space coupled linear cavity fiber laser.

As illustrated in Figure 4-2, two sensitive alignments were required to physically

couple light into the fiber and then image the other end onto the SBR through two aspheric

lenses. It took some trial and error; Figure 4-3 is a photograph of one of our early attempts at

mounting the optics. It was known from previous work that mounting the pump collimator,

dichroic mirror, and fiber coupling aspheric lens together on the table of a NanomaxTM

stage28 was the best way to align the light into and out of the fiber. This fiber end could be

secured in a mount directly tied to the optical board, along with the output coupler and

collimator package on the other side. Since the collimator defined the fixed beam path

however, the SBR and the focusing lens needed careful mounting to both have the necessary

degrees of freedom for adjustment; but also to mechanically fit in the small physical space

allocated to those parts.

28 Thorlabs, Model: MAX312D NanoMax300 with differential drives and piezo adjustment
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Figure 4-3 Photograph of early attempts to construct the 1 GHz laser design. The fiber is
not yet installed, nor is the output coupler.

Figure 4-4 Schematic of 1 GHz fiber laser with free space output and SBR coupling.
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After several iterations the design was settled upon and built into a working laser.

Figure 4-4 is a more complete diagram of the final laser as set up in the laboratory.

This laser is pumped by a single 750 mW 980 nm pump diode29 . This diode is fusion

spliced to a fiber coupled isolator3 which is subsequently fusion spliced to a 1.064 tm

collimating lens package31 . Including an isolator will reduce the amount of pump energy

available by about 20% - 30 % but the benefit is no back reflected light can re-enter the diode

and damage or destroy it.

The pump beam is now spatially collimated and passes through the dichroic mirror

to the aspheric focusing lens3 2 . This lens focuses the 1.5 mm beam (diameter) into a 10 pim

spot at the 11 mm focal distance. Eleven millimeters is enough space to fit a thin silica

window layered with a 95% reflective / 5% transmitting coating on one side33. This coating is

referred to as the "output coupler" since it primarily acts as a cavity mirror but it allows a

small percentage of the cavity energy to leak out with each reflection.

The end of the erbium doped fiber has been epoxied into an FC/PC connector and

carefully polished to a flat surface. The flat surface can be mechanically placed square

against the output coupler in an attempt to eliminate any gap in the mirror to fiber interface.

Once the pump light has been focused into the fiber core, the erbium atoms begin to absorb

and emit photons around the 1550 nm wavelength. This light is waveguided to the end of

the 75 mm long fiber and here it is imaged onto a saturable absorbing mirror with two

lenses.

The SBR-facing end of the fiber has been epoxied and polished into an angled, or

FC/APC connector. This enables the fiber end to be directed screwed into a collimator

package34 that both serves to hold the fiber in place and collimate the beam via its integrated

29 Bookham, Inc., Model: LC96UF74-20R
30 Thorlabs, Model: IO-F-980
31 OFR, Model: CFS-T-5-1064
32 Thorlabs, Model: C220-TME-C
33 CVI Melles-Griot, Model: PR1-1550-95-0512
34 Thorlabs, Model: F240FC - 1550
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aspheric lens. One more aspheric lens35 is necessary to focus the 1550 nm collimated light

down to a diffraction limited spot on the SBR. This lens pair also compresses the spot size

from a 10 jam diameter in the fiber core to a 3.4 jam diameter spot on the SBR. This helps

initiate mode-locking by providing a 7 times increase in optical fluence on the SBR with no

increase in pulse energy.

Once the saturable absorber influences the pulses by attenuating the lower energy

modes in the "wings"; the more intense central part of the pulse travels back down the fiber

toward the output coupler. The fiber is short, the pulse energies low, and there is no

polarizing element to enable P-APM to occur. However, the fiber still contributes to the

pulse shaping. SBR enabled soliton mode-locking is the dominant mechanism in this and all

subsequent short, linear laser cavities. Nonlinear effects, primarily self-phase modulation

serve to balance the linear effect of anomalous dispersion as the soliton pulse propagates

through the fiber.

At the output coupler, 5% of the pulse energy is transmitted through the mirror and

out into free space. This light is collimated by the aspheric lens and reflected out of the

pump light beam path by the dichroic mirror. At this point, there remains a small portion of

the pump light in the reflected beam and the signal can be passed through an anti-reflection-

coated silicon window to fully block all remaining 980 nm light that might interfere with the

resulting measurements.

4.2.1.1 SBR Choice

The only SBR that worked to mode-lock this laser was the BATOP SAM-1550-35-

25.4s. This SBR was high linear loss (35%) but also had a lower saturation fluence (20 jaJ/cm 2)

and short recovery time (2 ps). Its deep modulation depth of 21% however, is the reason this

SBR was able to enable mode-locking behavior in this high loss cavity. Thus, all results

obtained for this laser came with SBR in the cavity.

35Thorlabs, Model: C330TME-C

96



4.2.2 Linear Laser Results

Once the full component configuration was carefully aligned, the system was able to

achieve a self-starting soliton mode-locked state. Because focusing a free space beam into

the core of a single mode fiber is a sensitive procedure, alignment, stability, and

repeatability were issues that needed to be addressed. In addition, focusing a beam down to

a 3.4 itm spot on the surface of a mirror and getting it to reflect perfectly back upon its

incident path also requires special alignment care and techniques. Initial results for the

power output of the laser are plotted in Figure 4-5.

2.0-

t5'

E -
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0,0
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Pump Power (mW)

Figure 4-5 Laser operating efficiency. Note the laser threshold at -10 mW of pump and the

steady linear trend in the data.

Overall, the system operated at 1% efficiency and had a continuous-waye lasing

threshold of 10 mW of pump power. The output power was low due to the large intra-

cavity losses inherent in the design that images the fiber end on a mirror.

The state detailed in the rest of this section was taken at full pump power of the

single diode- approximately 200 mW of pump power into the fiber after isolator and

coupling losses.
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4.2.2.1 Optical Spectra

The free space coupling and SBR interfaces meant this laser had large losses and as

such it did not settle into a mode-locked state.

0-

-10-

-20-

-30.

0

-0
-40 -

1580

Wavelength (nm)

Figure 4-6 Optical spectrum of the best performing mode-locked state.

For example, the optical spectrum of Figure 4-6 is not symmetrical about the center

wavelength of 1560 nm. This may be due to wavelength dependent filtering by the gain

window or one of the components in the optical cavity. This state sustained a 3 dB

bandwidth of 5 nm which corresponds to 510 fs transform limited pulse widths.

4.2.2.2 RF Spectra

Next the output beam was collected and detected by a photodetector for RF spectral

analysis. The left plot of Figure 4-7 plots the clean and flat harmonic beat lines

demonstrating that single pulse mode-locking is occurring.
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Figure 4-7 Full span RF spectra (right) and Fundamental RF line (right) for the best

performing mode-locked state.

Enhancing the fundamental frequency on the right side of Figure 4-7 reveals a cavity

repetition rate of 1.047 GHz. The line appears broadened in the figure because the data was

saved on a RF spectral analyzer with an incorrect setting for the resolution bandwidth.

Unfortunatley this is the only recorded data avalible for this laser in this state. Looking at

the lines in the long range plot clearly shows sharp peaks with no sidebands or broadening

and the fundamental line data would have as well had the resolution bandwidth been set

narrower.

4.2.2.3 Ou/put Power / Pulse Energy

In its optimal operating state the laser produced approximately 2 mW of 1560 nm

output power. The laser is just above a 1 GHz repetition rate so that corresponds to 2 pJ

pulse energies. The pulses were estimated to be ~500 fs in duration based upon the OSA

trace data. This was an experimental system that we did not fully characterize before

redesigning, thus autocorrelations or timing jitter measurements were not taken of this state.

4.2.3 Discussion

The objective was to take some of the ideas from previous high repetition lasers our

group had built and see if a 1 GHz linear cavity fiber laser could be built. After design
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tweaks and testing, a mode-locked state was obtained with an OSA measured spectral

width of 5 nm and a repetition rate of 1.047 GHz. Two milliwatts of output power were

possible from 200 mW of input power. This 1% efficiency is mostly due to the high coupling

losses in the cavity and the high linear losses of the SBR that was needed to mode-lock the

laser. The next generation design optimizes the input coupling losses leading to a test

platform for different SBR mirrors.

4.3 Generation Two: Fiber Coupled Pump and
Output

4.3.1 Laser System Design

The entire pumping and output coupling parts of the system changed for generation

two of the GHz linear cavity free-space SBR-coupled fiber laser. This fiber coupling is a

large improvement on the coupling losses the free space setup experienced. The initial ideas

for this design were first documented by Jeff Chen in his Ph.D. thesis [6]. Figure 4-8 is the

schematic of the entire system.

Pump
Diodes Fiber FerruleAu i Aspheric
977 nm Isolator WMA Erbium Fiber Lens

Fiber Is 4m 1550 nm

Coupler 10% Output Collimator SBR
Coupler Coating

1550 nm
Output Detector

Collimator

Figure 4-8 Schematic of the fiber coupled free space SBR 1 GI-z linear cavity fiber laser.
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4.3.1.1 The Pump

Since this laser was to be a test system for the performance of commercial and new

in-house designed and fabricated saturable absorber mirrors, it needed more power than the

first generation system had. Single mode pump diodes were still limited to approximately

600 mW of power, so we used two of them36. It is possible to take two single mode pump

diodes and combine their power into the core of a single fiber as long as they couple into

orthogonal polarization modes of the fiber. This is accomplished by fusion splicing the

polarization maintaining fiber's fast axis to fast axis for one diode and fast axis to slow axis

for the other one. These splices are made to the input pigtails of an all-fiber polarization

combiner3 7. The output fiber of the device has both diodes' light traveling down the same

single mode core in orthogonal polarizations.

Now that all 1.2 W of our pump light is in the polarization maintaining (PM) fiber, it

can be spliced to a fiber-coupled isolator38. This isolator happens to use non-PM fiber but

that is acceptable for our application of non-PM erbium fiber pumping. The isolator is a

necessary part that prevents any pump or signal light from back reflecting into the pump

diodes possibly damaging or destroying them. Unfortunately, the isolator also reduces the

pump power available by about 20%. This combined with the slight losses at all of the

fusion splice points means that the real, available 980 nm pump power is limited to

approximately 800 mW. This level of pump power is usually sufficient for the testing

purposes of this laser as there was typically still more available pump at powers where the

mode-locking states would begin to break down.

4.3.1.1.1 Pump Diode Characterization

The 660 mW JDSU single mode 977 nm pump diodes used to pump the laser are

designed to be stable and linear as long as the drive current is within a manufacturer

specified range. For these diodes, that range was ~35 mA for the laser threshold up to 1200

36 JDSU, Model: 30-7602-600
37 SIFAM Fibre Optics (via Optimark Fiber Optics), Model: FFP-5M3280G10
38 OFR, Model: IO-F-980
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mA for the maximum stable operation. Since two diodes are being used to pump the laser

cavity, the question was raised as to how linear the combination of these diodes really is. A

test was done to ascertain this information.

First, a high reflecting, non-saturable absorbing 1550 nm mirror was placed at end of

the cavity so there would be no Q-switching and no power artifacts from attempts at mode-

locking in the output. Then, for the "serial" test the first diode was brought up to full power

before the second diode was turned on and also brought up to full power. Figure 4-9(a)

plots the laser's 1550 nm output power for this test. Next, for the "parallel" test both diodes

were slowly stepped up in current together up to their maximum stable output power.

Figure 4-9(b) plots the results of the parallel test.

Diodes Powered up in Serial Diodes Powered up in Parallel
4.0- 4.0-

3.5- 3.5

3.0- 3.0-

2 .5 - 2 .5

(a) (b)

o 2.0 0 2.0
0- 0.

0 0
1.0- 1.0-

outpu1550 p f ipu th Per tmes ad a1550 caiut Poe em
0.0c 0.0

0 500 1000 1500 2000 2500 0 500 1000 15100 20100 2500

Diode Pump Current (mA) Diode Pump Current (mA)

(a) (b)

Figure 4-9 Dual pump diode operation experiment. The output power was measured out of
the CW laser where a 1550 nm high reflecting mirror was in the position of the SBR.

Fortunately, both diodes performed linearly as designed and the results do not show

much difference between the two pumping methods. Yes, there is a slight concavity to the

output power for the first diode in the serial test and a very slight concavity to the entire

curve in the parallel test but linear fits of each data set had R2 values of over 0.99. The

conclusion is that the pump diodes are linear and it does not matter if they are used in a

serial or parallel manner.
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4.3.1.2 The Coupling

The next important change that makes this fundamentally more of a "fiber" laser is

the use of a wavelength division multiplexer (WDM) as the input/output coupler. This

WDM is constructed to allow 980 nm light to stay in the same fiber and pass right through

the device with essentially no loss. 1550 nm light, however, is evanescently coupled from

the combined port fiber to the 1550 mode fiber, again with very little loss. Practically, this

means that one fiber can bring both the pump light to and the output light away from the

cavity's output coupler. In addition, the output light can be separated and measured

without the free space optical losses of the previous system's dichroic mirror.

Figure 4-10 Photograph of fiber coupled free space SBR 1 GHz linear cavity fiber laser.

Figure 4-10 is a photograph of the setup that shows clearly the WDM and fiber coils

that guide the pump and signal light. The small blue cylinder in the top center of the white
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card is the WDM package and the white fiber leading to the suspended piece of gain fiber is

the input/output fiber with the output coupler coating.

That fiber and coating is the second advance this system has over the free space

coupling system. Instead of using a free space optic consisting of a silica glass window and a

partially reflective coating to serve as a cavity end mirror and output coupler; we had the

coating deposited directly on to the polished end of a standard FC/PC single mode fiber.

The coating layers were designed to allow 10% of the light at the 1550 wavelength to be

transmitted and the remainder of the power to be reflected. As a result, we have a fixed 10%

output coupler with excellent mechanical alignment and repeatability for any future fiber

coupled lasers which use this input/output scheme.

One final note about the new WDM design involves the output beam. Since this

generation-two design uses a fiber coupled WDM to guide and separate the pump and

signal beams, the output beam is already in a guiding fiber. Spectral measurements of the

output revealed a significant percentage of the power was 980 nm pump light that coupled

into the signal fiber. Although the WDM is designed to be efficient at separating the

wavelengths, a small percentage of the light does cross couple and in this case that really

did matter as our signal was on the order of 1% of our pump power. Figure 4-8 illustrates

how this was addressed -an anti-reflection coated silicon window was simply placed in the

output beam path prior to further measurements being taken.

4.3.1.3 The Caviy

The fiber and SBR end of the schematic in Figure 4-8 appear identical to the fiber and

SBR end of the schematic of Figure 4-4. But the actual opto-mechanical setup is very

different. These differences were implemented to simplify alignment, enhance the ability to

exchange SBR's, and decrease the cavity losses as much as possible.

The same fiber (Liekki Er-80 - 8/125) is used with similar connectorization-the

ceramic core of an FC/PC connector on the input end and a complete FC/APC connector on

the SBR end to eliminate back reflections. Instead of holding the flat polished fiber connector

against an output coupling optic we only have to slide the FC/PC core into a standard
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ceramic fiber mating connector until it makes contact with the input/output fiber screwed

into the other side. Figure 4-10 shows the two fibers mated in the connector.

One advantage this design has over the end abutted SBR cavity is the short section of

collimated light between the two focusing lenses. This space allows the flexibility to fine

tune the repetition rate to anything within the physical limits of the lenses physically

touching or the beam diverging so much that it doesn't focus onto the SBR properly. The

generation one design did not have the ability to take advantage of this degree of freedom

without misaligning the focal length of the SBR lens. This design integrates a linear

translation ring39 into the mount that holds the screw in collimation package. The 4 mm

travel range corresponds to a repetition rate tuning bandwidth of 27.5 MHz.

The translation ring is attached to the frame of the aspheric focusing lens mount 0 .

This mounting system was chosen because it eliminates some of the alignment variations

seen in the generation one design. The collimating lens and the focusing lens are held

parallel to each other within the constraints of the machined tolerances. The LM1XY mount

is designed to center a lens normal to a collimated beam and it does it well with the proper

thread adaptor rings.

4.3.1.4 The Saturable Bragg Reflector

One further challenge was to enable a simple exchange of SBR mirrors without

disturbing the other critically aligned components. The LM1XY mount also serves to anchor

the end of the fiber and the lenses to the long range translation stage bolted to the optical

breadboard. As seen in Figure 4-10, the other end of the fiber is also bolted to this stage.

Therefore, the stage allows the entire laser to be moved several centimeters away from the

SBR without losing any other alignments or risking damage to the delicate fiber. The nature

of this design also means that this stage adjustment screw also provides for course

adjustment of the focal plane of the aspheric lens.

3 9 Thorlabs, Model: SM1ZM non-rotating zoom housing
40 Thorlabs, Model: LM1XY translating lens mount
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For fine SBR position adjustments, a precision tip/tilt mount41 is mounted to a high

resolution 3-axis stage42. This stage is also connected to the optional piezo controller unit43

that enables sub-micron position movements via piezoelectric actuators in the stage. The

tight spot of the 3.1 mm focal length lens necessitated having this fine level of control,

especially in the axial, or "Z" direction of motion.

At the mirror mounting end of the cavity, the SBR samples are mounted to 1" or "

diameter copper blocks with either silver epoxy or double sided tape. These blocks hold the

mirror and help dissipate the thermal load on the chip (when attached with silver paste).

The 1" mounting blocks are directly mounted in the Ultima and a " to 1" adaptor ring is

needed if the block is small. An involved alignment procedure was developed to ensure the

mirror surface was properly normal to the incident beam and it was found that this was the

most critical step in lowering the coupling losses within the laser cavity.

4.3.1.5 SBR's Tested

The purpose of the first generation laser was to see if a 1 GHz cavity was even

possible with this type of fiber and configuration. The purpose of the second generation

cavity was to learn how different SBR's affected the cavity dynamics and ultimately give us

information to design the optimal SBR's for our lasers. Table 4-1 is a full summary of the

specifications of the SBR's tested.

41 Newport, Model: U100-A2K Ultima clear edge mirror mount
42 Thorlabs, Model: MAX312D NanoMax300 with differential drives and piezo adjustment
43 Thorlabs, Model: MDT693A Open-Loop piezo controller
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Table 4-1 Saturable absorbers tested and their performance characteristics.

9% 6% 50 p/cm 2 ps

20% 12% 50 pj/cm2  12 ps

23% 14% 25 p/cm2  2ps

35% 21% 50j/cm2  2 ps

1.1% 3.9% 11 p1/cm2  9 Ps

1.1% 12% 3.7 yJ/cm2  9 ps

8% 7.5% 4.7 pj/cm2  10.5 ps

6.2% 4% 5.4 pJ/cm2  10.5 ps

4.3.2 Second Generation Linear Laser Results

The generation-two free-space SBR 1 GHz linear cavity erbium fiber laser system

performed, in general, better than the generation-one system. Its purpose was to test

different SBR's. Results from the eight different mirrors are detailed in this section.

4.3.2.1 BA TOP 21% Modulation Depth

It is reasonable to assume that the same mirror that worked in the first generation

laser would also enable mode-locking in the lower loss improved version. So the BATOP

SAM-1550-35-25.4 mirror was aligned in the cavity and the pump power slowly brought up.

It did yield a mode-locking state and representative examples of the results are discussed in

the following sections.
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4.3.2.1.1 Optical Spectrum

A range of optical spectra were recorded, Figure 4-11 plots the optimal laser state, as

achieved with 214 mW of pump power. This spectrum is more symmetric than the

generation-one spectrum (recall Figure 4-6) but it still retains slight attenuation in the longer

wavelengths.
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Figure 4-11 Optical Spectrum for 1 GHz laser with BATOP 21% modulation depth SBR.

The 5.85 nm 3 dB bandwidth centered at a wavelength of 1557 nm corresponds to a

transform limited pulse duration of 436 fs. No autocorrelation traces were taken of this state.

4.3.2.1.2 RF Spectra

The multi-harmonic "long-range" detected RF spectrum for this state is plotted on

the left side of Figure 4-12. There is a low frequency spike that can be attributed to noise in

the detection system. Overall, the envelope of the fundamental and subsequent harmonic

frequencies is flat indicating single-pulse mode-locking operation.
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Figure 4-12 Long range RF spectrum (left) and fundamental RF line (right) for 1 GHz laser

with BATOP 21% modulation depth SBR.

Enhancing the plot of the fundamental frequency we arrive at the right side of Figure

4-12. Here we see measured evidence that the laser repetition rate is a clean 1.009 GHz.

4.3.2.1.3 Output Power / Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser mode-

locked with the 21% SBR BATOP SAM-1550-35-25.4. For a pump power of 214 mW this laser

output 1.06 mW of 1550 nm light. This corresponds to a pulse energy of 1.05 pJ and an

efficiency of 0.5%.

4.3.2.1.4 SBR Burning

For this high loss SBR the upper limit on output power and performance appeared to

be SBR failure in the cavity. As the pump was increased beyond 214 mW the output power

plummeted and the laser fell out of mode-locking. Upon microscope inspection of the

mirror however, no visible damage was found and the previous mode-locking states could

be regained by moving to a new focal spot on the mirror. This became a trend that held

through the entire SBR study.
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4.3.2.2 BATOP 14% Modulation Depth

Following the successful 21% modulation depth BATOP SBR test, the BATOP SAM-

1550-23-25.4 mirror was placed and carefully aligned in the cavity. This mirror, as specified

in Table 4-1, has less linear loss and a lower modulation depth. The assumption going into

the test was that the output powers would be higher because of the reduced cavity losses.

The question was: would the modulation depth be enough to enable mode-locking. It

turned out it was, and the results of the broadest spectral bandwidth state are detailed in the

following sub-sections.

4.3.2.2.1 Optical Spectrum
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Figure 4-13 Optical Spectrum for 1 GHz laser with BATOP 14% modulation depth SBR.

Once the laser achieved mode-locking, the optimal laser state was located and

recorded. For this SBR that was achieved with 400 mW of pump power. The shape seen in

Figure 4-13 is somewhat narrow in the wings relative to a sech spectrum and asymmetry

near the peak but overall it is a spectrum indicative of a mode-locking state.

The 6.98 nm 3 dB bandwidth centered at a wavelength of 1556 nm corresponds to a

transform limited pulse duration of 365 fs. No autocorrelation traces were taken of this state.
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4.3.2.2.2 RF Spectra

The multi-harmonic "long-range" detected RF spectrum for this state is plotted on

the left side of Figure 4-14. Overall, the envelope of the fundamental and subsequent

harmonic frequencies is flat indicating single-pulse mode-locking operation. The low

frequency noise sidebands are still present and some of them are attributed to vector soliton

behavior and others to the detection setup.
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Figure 4-14 Long range RF spectrum (left) and

with BATOP 14% modulation depth SBR.
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Fortunately, the vector solitons could be minimized through cavity manipulation

and the trace of the fundamental frequency (1.009 GHz) is plotted on the right of Figure

4-14.

4.3.2.2.3 Output Power/ Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser also

mode-locked with SBR BATOP SAM-1550-23-25.4. Given a pump power of 400 mW this

laser output 2.80 mW of 1550 nm light for a pulse energy of 2.78 pJ and an efficiency of 0.7%.
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4.3.2.3 BATOP 12% Modulation Depth

Following the successful 14% modulation depth BATOP SBR test, the 12% BATOP

SAM-1550-20-25.4 mirror was then placed and carefully aligned in the cavity. This mirror, as

specified in Table 4-1, has yet again less linear loss and a slightly lower modulation depth.

However, the important difference between this SBR and the 14% SBR is both the saturation

fluence and the recovery time. The 12% SBR needs twice the fluence to saturate and initiate

pulse shaping effects. Also, the recovery time is much longer for this mirror so its effects at

filtering continuum modes will be reduced compared to the other BATOP mirrors. We did

not know if these effects would inhibit mode-locking but the experiment revealed that they

did not. The results of the broadest spectral bandwidth state are detailed in the following

sub-sections.

4.3.2.3.1 Optical Spectrum

Once the laser achieved mode-locking, the optimal laser state was located and

recorded. For this SBR that was achieved with 336 mW of pump power. The spectrum

plotted in Figure 4-15 is centered at 1557 nm and has the same narrow shape as the other

BATOP mirrors. There is less asymmetry near the peak and overall it is a spectrum

indicative of a solid mode-locking state.
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Figure 4-15 Optical Spectrum for 1 GHz laser with BATOP 12% modulation depth SBR.
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The 6.60 nm 3 dB bandwidth centered at a wavelength of 1557 nm corresponds to a

transform limited pulse duration of 386 fs. No autocorrelation traces were taken of this state.

4.3.2.3.2 RF Spectra

The multi-harmonic "long-range" detected RF spectrum for this state is plotted on

the left side of Figure 4-16. Overall, the envelope of the fundamental and subsequent

harmonic frequencies is flat indicating single-pulse mode-locking operation.
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Figure 4-16 Long range RF spectrum (left) and Fundamental RF line (right) for 1 GHz laser

with BATOP 12% modulation depth SBR.

As the laser length has not changed between tests, the repetition rate remains a solid

1.009 GHz and the right hand plot of Figure 4-16 confirms that nicely. Also, the 50 dB

suppression of any sidebands confirm that any vector soliton effects have been eliminated

for this state as well.

4.3.2.3.3 Output Power / Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser also

mode-locked with 12% SBR BATOP SAM-1550-20-25.4. Given a pump power of 336 mW

this laser output 1.75 mW of 1550 nm light for a pulse energy of 1.73 pJ and an efficiency of

0.5%.
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4.3.2.4 BA TOP 6% Modulation Depth

The final BATOP SBR tested had only 6% modulation depth. Following the

successful 12% modulation depth BATOP SBR test, the BATOP SAM-1550-09-25.4 mirror

was then placed and carefully aligned in the cavity. This mirror, as specified in Table 4-1,

has yet again less linear loss and a lower modulation depth. It has the same higher

saturation fluence as the 12% mirror but less loss and the faster, 2 ps recovery time. It was

hoped that reducing the loss of the mirror would increase the intra-cavity power and enable

stronger soliton effects for shorter pulses but unfortunately that was not the case. Results of

the broadest spectral bandwidth state are detailed in the following sub-sections.

4.3.2.4.1 Optical Spectrum

Once the laser achieved mode-locking, the optimal laser state was located and

recorded. It took the maximum pump power of 740 mW to obtain this state. The spectrum

plotted in Figure 4-17 is centered at 1556 nm and is much narrower than the state the other

BATOP mirrors produced. At least it is still a clean spectrum indicative of a mode-locking

state.
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Figure 4-17 Optical Spectrum for 1 GHz laser with BATOP 6% modulation depth SBR.
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The 4.50 nm 3 dB bandwidth centered at a wavelength of 1556 nm corresponds to a

transform limited pulse duration of 565 fs. No autocorrelation traces were taken of this state.

4.3.2.4.2 RF Spectrum

The multi-harmonic "long-range" detected RF spectrum for this state is plotted in

Figure 4-18. Overall, the envelope of the fundamental and subsequent harmonic frequencies

is flat indicating single-pulse mode-locking operation. Unfortunately, the data for a zoom in

view of the fundamental frequency was not available for this state but the repetition rate

was still 1.009 GHz and there are no strong beat lines around the fundamental in Figure 4-18

so we can conclude this was a stable mode-locking state.
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Figure 4-18 Long range RF spectrum for 1 GHz laser with BATOP 6% modulation depth

SBR.

4.3.2.4.3 Output Power / Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser also

mode-locked with 6% SBR BATOP SAM-1550-09-25.4. Given a pump power of 740 mW this
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laser output 2.08 mW of 1550 nm light for a pulse energy of 2.06 pJ and an efficiency of just

0.3%.

4.3.2.5 MIT VA86

Now that a characterization of the commercial SBR's was complete, this laser could

be used to test the in-house SBR's fabricated by our collaborators at MIT. The first mirror to

test is designated VA86. This mirror's design was described in detail in Chapter 2 and its

results are presented in the following sub-sections. These results were challenging to obtain

and almost impossible to repeat because the mirror surface would burn very easily as the

power was increased. However, these figures do demonstrate what is possible if the mirror

survives through the initial Q-switching phase of the pulse forming process.

4.3.2.5.1 Optical Spectrum

This is the first spectrum out of this soliton laser that actually had the sech 2 pulse

shape predicted by soliton theory [7]. The bandwidth is comparable to the BATOP results

but there is a more gradual roll-off of the spectral shape (see Figure 4-19) for this mirror

possibly indicating a broader bandwidth reflectivity to the mirror.
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Figure 4-19 Optical Spectrum for 1 GHz laser with MIT VA86 SBR.
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The 4.42 nm 3 dB bandwidth centered at a wavelength of 1556 nm corresponds to a

transform limited pulse duration of 576 fs. No autocorrelation traces were taken of this state.

4.3.2.5.2 RF Spectra

The long range RF spectrum is plotted on the left of Figure 4-20. Notable features of

this plot include the flat spectral envelope, and the strong sidebands on the fundamental

and first harmonic. These sidebands are indicative of vector soliton behavior and can be

reduced through inducing birefringence in the fiber or introducing another means of

polarization preference within the cavity.
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Figure 4-20 Long range RF spectrum (left)

with MIT VA86 SBR.
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The right side of Figure 4-20 is an enhancement of the fundamental frequency with

the sidebands visible in the scan window. The repetition rate is constant at 1.009 GHz and

the sidebands are spaced exactly 400 MHz around the fundamental.

4.3.2.5.3 Output Power / Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser also

mode-locked with the MIT VA86 SBR. Given a pump power of 740 mW this laser output

6.50 mW of 1550 nm light for a pulse energy of 6.44 pJ and an efficiency of 0.9%.
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SBR Burning

Unlike the BATOP mirrors, there are no layers of protective material in front of the

sensitive mirror and absorbing layers of VA86. Therefore, the mirror is very sensitive to

thermal and mechanical damage. Figure 4-21 is a microscope image of the mirror after

attempts were made to mode-lock the laser.

Figure 4-21 VA86 bum damage spots under 50X magnification in microscope.

These attempts all failed as the laser fell into a Q-switching state and the energy in

those long pulses were enough to destroy the layers of the mirror and leave the circular

spots seen in the image. There are many such spots because the mirror was translated

around in the X and Y dimensions while searching for a mode-locking state. The laser did

not always do this and on the (rare) occasions that it survived the Q-switching states it did

mode-lock but we learned from this that the mirror will need some kind of protection

against damage if it is to be a reliable part of this technology.

4.3.2.6 MIT VA86 PRC

With mirror protection in mind; and with the thought that perhaps the unabsorbed

980 nm pump light was thermally damaging the SBR, a protective dichroic optical coating
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was deposited on some of the VA86 wafers. This coating, also described in Chapter 2,

altered the VA86 characteristics as seen in Table 4-1.

4.3.2.6.1 Optical Spectrum

The addition of the pump reflective coating decreased the saturation fluence by 66%

and increased the modulation depth by a factor of 3. This makes the VA86 PRC SBR more

similar to the BATOP 14% SBR than the MIT VA86. Ultimately this resulted in a more

rectangular pulse shape as seen in the BATOP mirrors. Figure 4-22 plots this spectrum.
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Figure 4-22 Optical Spectrum for 1 GHz laser with MIT VA86 PRC SBR.

The 4.5 nm 3 dB bandwidth centered at a wavelength of 1555 nm corresponds to a

transform limited pulse duration of 565 fs. No autocorrelation traces were taken of this state.

4.3.2.6.2 RF Spectra

The long range RF spectrum is plotted on the left of Figure 4-23. Notable features of

this plot include the relatively flat spectral envelope, and mild sidebands on the

fundamental line. These weak sidebands suggest vector soliton behavior and should be

removable through inducing birefringence in the fiber or introducing another means of

polarization preference within the cavity.
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Figure 4-23 Long range RF spectrum (left) and Fundamental RF line (right) for 1 GHz laser
with MIT VA86 PRC SBR.

The right side of Figure 4-23 is a zoom in of the fundamental frequency with no

sidebands visible in the scan window. The repetition rate remains at 1.009 GHz.

4.3.2.6.3 Output Power / Pulse Energy

The generation-two linear cavity, free-space SBR-coupled, erbium fiber laser also

mode-locked with the MIT VA86 PRC SBR. Given a pump power of 740 mW this laser

output 5.00 mW of 1550 nm light for a pulse energy of 4.96 pJ and an efficiency of 0.7%.

4.3.2.7 MIT VA147 and VA148

Michelle Sander had developed some new SBR designs [8] based upon lessons we

learned with our VA86 design and resulting tests. VA147 and VA148 are both new designs

with two InGaAs absorbing layers and they were both tested in this cavity to see how they

performed. Ultimately, the Q-switching states were too much and the laser was never able

to enter a stable mode-locking regime before the mirror surfaces burned.
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(a) (b)

Figure 4-24 Burn damage marks resulting from mode-locking attempts with (a) MIT

VA147 and (b) MIT VA148

Figure 4-24(a) is a microscope photograph taken at 20X magnification demonstrating

the results of attempts to translate the mirror along the X and Y directions searching for a

stable state on VA147. We did not realize how rapidly the mirror was burning as the mirror

was being translated so the nice "lines" of bum holes was the experimental result. Figure

4-24(b) is a microscope photograph taken at 30X magnification demonstrating the burn

damage to VA148 as the mirror was moved around in a search for a mode-locking state.

Our conclusion for these double absorber mirrors is that without any protective

coating layers there is no chance of obtaining mode-locking in the free space coupled SBR

versions of the 1 GHz linear fiber laser.

4.3.3 Summary of Results

The following tables summarize the results reported in the above sections. Table 4-2

is a comparison of the maximum spectral bandwidths obtained and the corresponding pulse

widths if the output were Fourier transform limited.
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Table 4-2 Summary of laser bandwidth and pulse widths for all tested SBR's.

Table 4-3 is a summary of the power input and output from the laser given the

various SBR's tests. Output pulse energies are also listed.

Table 4-3 Summary of laser power levels and pulse energies for all tested SBR's

0 6% 740 mW 2.08 mW 2.06 pJ- 12% 336 mW 1.75 mW 1.73 pJ

14% 400 mW 2.80 mW 2.78 p1

21% 214 mW 1.06 mW 1.05 pj

3.9% 740 mW 6.50 mW 6.44 pj

12% 740 mW 5.00 mW 4.96 pJ

7.5% N/A N/A N/A

4% N/A N/A N/A
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4.3.4 Discussion

The objective of the second generation 1 GHz linear cavity erbium fiber laser was to

reduce some of the losses of the first generation laser and identify the optimal saturable

absorbing mirror to use for the shortest pulses. Eight different SBR's were tested and their

results presented.

In this laser configuration, using the components listed in section 4.2.1, the SBR that

yielded the shortest pulses was the BATOP SAM-1550-23-25.4s. This SBR had a large linear

loss at 23% but the 14% modulation depth was necessary to generate the right cavity

conditions to support a broad spectrum. The 14% BATOP SBR did not yield the greatest

pulse energies, however. The highest pulse energies occurred, naturally, with the lowest

loss SBR tested-the MIT VA86. However, the VA86 was not a reliable mirror due to its

tendency to bum when being brought up to the mode-locking operating state. Efforts to

protect the mirror structure with a pump light reflecting coating altered the properties of the

mirror in such a manner as to restrict the bandwidth and reduce the output power of the

laser.

4.4 Generation Two: Increase SBR Focal Spot Area

4.4.1 Cavity Design Changes

We next chose to test what would happen if the optimal SBR from the first set of

tests was used with a different aspheric focusing lens in the laser. A lens with a significantly

longer focal length would both a) lengthen the cavity by 12.19 mm and thus lower the

repetition rate by 74 MHz and b) increase the size of the focal spot on the SBR thus reducing

the optical fluence incident on the SBR.

The 3.1 mm focal length lens" was replaced with a 15.29 mm focal length lens4 5.

Whereas the previous lens would focus the spot on a 3.84 tm diameter spot; the new lens

would expand that to an 18.9 tm diameter spot. This lessens the incident fluence on the

* Thorlabs, Model: C330 TME-C 3.1 mm focal length aspheric lens
45 Thorlabs, Model: C260 TME-C 15.29 mm focal length aspheric lens
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mirror by a factor of 24 and should decrease the coupling losses seen from going fiber to

mirror to fiber in this laser. That would in turn result in greater intra-cavity pulse energy

and greater output power.

4.4.2 Results

The decreased fluence on the SBR was not so much as to eliminate the mode-locking

effects and a continuum of states was observed for this laser configuration as well. At the

upper edge of the single pulse mode-locking stability region, the laser found a particularly

low loss state that resulted in the broadest spectrum and highest power yet seen from this

fiber/SBR combination. This state is reported in the following sub-sections.

4.4.2.1 Optical Spectrum

Accepting the high linear loss of the 14% modulation depth BATOP SBR usually

meant narrow spectral traces with little power in the high and low wavelength spectral

"wings." Changing the spot size incident on the SBR and turning up the pump all the way

resulted in something new-the broadest spectrum yet seen from this fiber. Figure 4-25

plots this broad, sech 2 shaped spectrum that sharply contrasts with the other spectral shapes

produced with the BATOP family of SBRs.
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Figure 4-25 Optical Spectrum for the 935 MHz laser with BATOP 14% modulation depth
SBR.
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This state supported an uncharacteristically large 9.3 nm 3 dB bandwidth centered at

a wavelength of 1557 nm. That spectral width corresponds to a transform limited pulse

duration of 274 fs. No autocorrelation traces were taken of this state.

4.4.2.2 RF Spectra

The optical spectrum looks smooth but what about the RF traces? Figure 4-26 has the

long range RF trace on the left and its envelope is typical of single pulse mode-locking with

the small vector soliton beats around the first few harmonics.
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Figure 4-26 Full span RF frequency spectrum (left) and Fundamental RF line

935 MHz laser with BATOP 14% modulation depth SBR.
(right) for the

Enhancing the fundamental frequency on the right side of Figure 4-26, we see that

this laser cavity operates at a repetition rate of 935 MHz and has over 60 dB suppression of

the vector soliton beats. Slight changes to the fiber birefringence may be able to completely

eliminate those beats.

4.4.2.3 Output Power / Pulse Energy

Finding this broad laser state meant using the full stable output power of the pump

diodes-measured to be 740 mW into the gain fiber. At this pumping level, this laser output

3.70 mW of 1550 nm light for a pulse energy of 3.96 pJ and an efficiency of 0.5%.
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4.4.3 Discussion

The initial idea in replacing the focusing lens without changing any other laser

components was to see if increasing the spot size incident on the SBR would assist or hinder

mode-locking efforts in the cavity. Because of the mechanical design constraints and the

challenge of cutting and polishing new fiber pieces, changing the lens meant also decreasing

the repetition rate such that it was no longer technically a GHz laser.

Other than that caveat, this cavity performed very well. It found a state with

broadband reflectivity and lower loss than any previous test with the BATOP 14% SBR.

However, this state was at the extreme edge of the operation regime, it was very sensitive to

cavity adjustments, and it was difficult to repeat.

The continuing search for a stable, repeatable, non SBR damaging laser system that

had a broad bandwidth, short pulses, and high output power would continue as this

variation of the cavity would not satisfy those criteria.

4.5 Generation Two: "L" Cavity

4.5.1 "L" Cavity Design

In a parallel effort to the development of a stable 1 GHz erbium fiber laser source,

our group was working to determine the real cause of the saturable absorber mirrors

burning within the laser cavities. Dave Chao and Jeff Chen performed a few experiments

[private communication] where the mirrors were subjected to continuous wave and pulsed

sources of both 980 nm and 1550 nm light. In those tests, no mirrors burned. No amount of

excess pump light caused thermal failure of the test mirror layers. Yet, when put into a laser

cavity, the mirrors fail at predictable and somewhat repeatable amount of pump energy.

So a new experiment was conceived that attempted to isolate the pump light from

the signal light within a linear cavity laser. Previous efforts included coating the MIT VA86

absorber with a pump reflective coating (PRC) and while that should have in theory

reflected all of the unabsorbed pump back into the fiber, the mirrors still burned in some
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instances. The burning could be caused by the 1550 nm signal light, but we needed to

completely eliminate the 980 pump incident on the SBR to be sure.

One known and proven way to do that is to pass the combined beam through a

dichroic mirror. In this case, the pump light passes through the mirror while the signal is

completely reflected. Taking full advantage of the collimated section of this laser design, the

focusing lens and SBR are turned 90 degrees and one of the 980 num transmitting, 1550 num

reflecting dichroic mirrors from the generation one laser was placed in the beam path.

Figure 4-27 is the schematic of this experimental test cavity.

Pump
Diodes

Fiber Ferrule Polarizer

977 nm Isolator WDM A Erbium Fiber Dichroic
84mm Mirror

Fiber 1550 nm
977nm Coupler 10% Output Coupler Collimator Aspheric Lens

1550 nm
Output Detector

Collimator

Figure 4-27 Schematic of the "L" cavity erbium fiber laser. The polarizer is optional and
the dichroic mirror is the primary change between this and the previous linear fiber lasers.

The only other alteration this system has over the generation two design is the

possibly of inserting a polarizer into the beam path. This might be desirable in that it can

minimize the vector soliton behavior that is sometimes observed in these systems.

Figure 4-28 is the photograph of this cavity as built in the laboratory. Careful

comparison of this image and that of Figure 4-10 reveals that the same components and

stages are utilized to support and align this laser. It took a little time but eventually a

procedure was found to align the optics and SBR in this cavity as well as they could be

aligned in the straight line version.
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Once everything was aligned, the pump power was turned on and the SBR's

exchanged to explore both the burning issue and the feasibility of inserting a free space

polarizing element into this already high loss cavity. The results are detailed in the

following sub-sections.

Figure 4-28 Photograph of the "L" cavity erbium fiber laser. There is no polarizer element
in this photo.

4.5.2 "L" Cavity Results

The cavity rearrangement, while retaining the same length of erbium gain fiber,

means the repetition rate of the laser will drop. In this case it reduced to 780 MHz. A longer

cavity does mean fewer pulses per unit time and the intra-cavity pulse energy can be
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increased thus aiding in the mode-locking effects of the SBR. Keeping this in mind, the

following results were obtained:

" The BATOP 14% SBR mode-locked with vector soliton issues

e The BATOP 14% SBR mode-locked and the polarizer eliminated the vector

solitons at the cost of bandwidth and power.

" The MIT VA86 SBR mode-locked very well and did not burn.

* MIT VA86 and polarizer did not mode-lock at all.

m MIT VA148 still burned with every attempt to pump it.

The recorded spectral and power data below elaborate on these results.

4.5.2.1 BATOP 14% SBR Results

4.5.2.1.1 Optical Spectra

The BATOP 14% modulation depth SBR produced the most reliable spectrum in the

previous tests so it was chosen as the mirror to use in testing the polarizer. Both of these

results occurred at the same pump diode power level.

BATOP 14% SBR BATOP 14% SBR - With Polarizer
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Figure 4-29 (a) optical spectrum of the 780 MHz "L" cavity with BATOP 14% SBR. (b)

optical spectrum of the 780 MHz "L" cavity with BATOP 14% SBR and intra-cavity
polarizer.
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Figure 4-29(a) and Figure 4-29(b) demonstrate the spectral change that introducing a

polarizer into the cavity produced. As can be seen by comparing the two figures, the

bandwidth is narrower and the spectral shape altered by that additional loss element in the

cavity.

Without a polarizer, we see a 7.2 nm 3 dB bandwidth centered at a wavelength of

1556 nm. This data corresponds to a transform limited pulse duration of 353 fs. With a

polarizer, the reduced 3 dB bandwidth measures 5.4 nm also centered at 1556 nm. 5.4 nm

corresponds to a transform limited pulse duration of 471 fs.

4.5.2.1.2 RF Spectra

Reducing the intra-cavity power and narrowing the spectrum is the consequence of

adding the polarizer. The benefit is seen in the RF spectral data.
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Figure 4-30 (a) RF spectrum of the 780 MHz "L" cavity with BATOP 14% SBR. (b) RF
spectrum of the 780 MHz "L" cavity with BATOP 14% SBR and intra-cavity polarizer.

Figure 4-30(a) and Figure 4-30(b) are the full span RF scans demonstrating a

(detector limited) flat spectral envelope for single pulse mode-locking operation in each

case. There are some detected lines around the fundamental frequency in Figure 4-30(a);

those are examined further in the zoomed-in data.

130

10.

0-

-10-

-20-

-30-

-40-

-50-

-70 -

-80 -

4)

V

1.11

0 2 4

Frequency (GHz)

... ... ...... .... . ....... ........ ......... _ ___ . ..... ......... .



BATOP 14% SBR BATOP 14% SBR - With Polarizer
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Figure 4-31 (a) RF spectrum of the fundamental line of the 780 MHz "L" cavity with
BATOP 14% SBR. (b) RF spectrum of the fundamental line of the 780 MHz "L" cavity with
BATOP 14% SBR and intra-cavity polarizer.

Figure 4-31(a) and Figure 4-31(b) are the close up traces of the detected fundamental

RF frequencies. From these, we confirm that the repetition rate is now 780 MHz. More

importantly, we see the desired benefit of the polarizer in the cavity. Figure 4-31(a) clearly

has strong sidebands indicating undesirable vector soliton behavior while they are

eliminated by the polarizer in Figure 4-31(b).

4.5.2.1.3 Output Power / Pulse Energy

For each test case, the full diode output of 740 mW was pumped into the cavity. The

non-polarizer cavity produced 6 mW of output while the polarizer dropped the output to

3.7 mW. The corresponding pulse energies and efficiencies are 7.7 pJ at 0.8% and 4.7 pJ at

0.5%.

4.5.2.2 MIT VA86 SBR Results

4.5.2.2.1 Optical Spectrum

In previous tests, the commercial BATOP mirrors did not demonstrate the level of

burn damage that the MIT ones did. So, as a way of testing if the excess pump light is
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causing the burning, an uncoated VA86 mirror was aligned in this new cavity and the pump

power brought up. Surprisingly, it did not burn but instead yielded a clean output. Figure

4-32 plots the recorded spectrum for this state.
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Figure 4-32 Optical spectrum of the 780 MHz "L" cavity with MIT VA86 SBR.

This state supported a broad 6.8 nm 3 dB bandwidth centered at a wavelength of

1556 nm. That spectral width corresponds to a transform limited pulse duration of 374 fs.

There is no spectrum for VA86 with a polarizer because the increased losses in the cavity

prevented any mode-locked pulses from forming.

4.5.2.2.2 RF Spectra

The clean harmonics seen in the long range RF scan on the left of Figure 4-33 further

support the single pulse mode-locking state. The noise spikes around and below 500 MHz

are associated with the detection equipment and are not from the laser cavity.
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Figure 4-33 Full span RF frequencies (left) and Fundamental RF line (right) for "L" cavity

laser with MIT VA86 SBR.

Confirmation that this state is free of vector solitons and that the repetition rate is

782 MHz is seen on the right in Figure 4-33.

4.5.2.2.3 Output Power/ Pulse Energy

Given a pump power of 725 mW this laser output 8.60 mW of 1550 nm light for a

pulse energy of 11.0 pJ and an efficiency of 1.1%.

4.5.3 Discussion

This experiment was designed to test two different variations to the free space

coupled high repetition rate linear cavity erbium fiber laser. The first was to see if adding a

polarizer to the cavity would eliminate the polarization sidebands without detrimentally

affecting the mode-locking states. The second was to gather further information about the

possible source of the burning observed on some of the SBR's when they are tried in the

cavity.

We learned that adding a polarizer to the cavity will increase the intra-cavity losses,

decreasing the output power and the available optical bandwidth. However, it will also

suppress the vector soliton behavior as seen in Figure 4-31. If that trade-off is acceptable,
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then adding a polarizer is a possible solution to the vector soliton issue in this type of fiber

laser.

Regarding the mirror burning; the MIT VA86 and MIT VA147 SBR's were tested in

the new "L" cavity to see if burns would still occur. VA86 did not burn but in fact settled

into a good mode-locking state. This may have been due to the pump light being removed

prior to hitting the SBR. Further tests will be needed to isolate the exact reason this mirror

burns in the 1 GHz linear cavity but not in this slightly lower repetition rate system.

The MIT VA147 mirror, however, continued to burn with every test. The conclusion

to this data is that the VA147's double absorber layers are absorbing very well and are being

damaged solely by the 1550 light. One possible explanation is that the laser is passing

through a Q-switch mode-locking state and this condition of long, high energy pulses is

causing an excessing thermal load on the mirror structure and it delaminates and fails as a

reflector.

4.6 Generation Two: 1.25 GHz

In an effort to continue to push the limits of this fiber laser technology and

understand where the gain/loss balance tips out of mode-locking, shorter pieces of fiber

were cut and polished into connectors. One piece still provided enough gain for mode-

locked pulses and its results are detailed in this section.

4.6.1 1.25 GHz Cavity Design

For this experiment, the only change made to the generation-two laser was the

length of the erbium doped gain fiber. Instead of 84 mm, a 62 mm piece was inserted into

the cavity. Figure 4-34 details the entire layout of this laser. No set up photograph was

available but it looked almost identical to Figure 4-10, just with a shorter piece of fiber.
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Figure 4-34 Schematic of 1.25 GHz linear cavity erbium fiber laser.

For this laser, the BATOP 12% modulation depth SBR demonstrated the broadest

spectrum so the results shown use that SBR.

4.6.2 1.25 GHz Cavity Results

This test was meant to be a brief test to see if a 1.25 GHz laser could work. Once a

positive result was obtained then my collaborator, Michelle Sander, would be able to try to

develop it further for one of her ongoing experiments.

4.6.2.1 Optical and RF Spectra

Figure 4-35 plots the broadest optical spectrum achieved with this laser

configuration on the left. The pulse shape is not symmetric and this is consistent with

previous results using this SBR. This state supported a 5.9 nm 3 dB bandwidth centered at a

wavelength of 1556 nm. That spectral width corresponds to a transform limited pulse

duration of 431 fs.

The right plot of Figure 4-35 is the long range RF spectral plot for this state. Data for

the enhanced view of the fundamental frequency was not available. This plot has enough

detail to see that the vector soliton issue is suppressed and the envelope is flat to the extent

of the RF analyzer can record.
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Figure 4-35 Optical spectrum (left) and full span RF spectrum (right) of 1.25 GHz linear
cavity erbium fiber laser.

4.6.2.2 Output Power / Pulse Energy

The optimal state was found for a pump power of 390 mW. The 1550 nm output

power was very weak - 0.78 mW. That corresponds to a pulse energy of 0.6 pJ and an

efficiency of just 0.2%.

4.6.3 Discussion

Based upon the success of the 1 GHz linear fiber laser cavity, an experiment to see

how high the repetition rate could be pushed while maintaining mode-locking pulses was

undertaken. Different lengths of the specialty erbium doped gain fiber were constructed and

one of them was able to support enough gain to lase. The shortest pieces corresponding to

1.5 or 2 GHz did not support mode-locking. However, a 62 mm long piece of fiber-which

corresponded to a 1.25 GHz repetition rate-did weakly mode-lock when paired with the

BATOP 12% modulation depth SBR. The results were not overwhelming but encouraging

enough that further work could be done with this laser as the source of high repetition rate

pulses.
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4.7 314 MHz Custom SBR Test Laser

One reason this linear cavity erbium fiber laser was developed was to test new SBR

mirrors for their performance in a high repetition rate environment. With this in mind,

collaborator Shelia Nabanja designed and fabricated two alternate versions of the MIT VA86

mirror. These variations have oxidized layers of the semiconductor and this oxidation

increases the index contrast between layers to greatly increase the reflectivity bandwidth of

the mirror. The design and fabrication details of this mirror may be located in reference [9].

The part of these experiments relevant to this thesis are the test laser set-up and

results with these experimental mirrors.

4.7.1 Linear Laser Cavity Design

The initial efforts at mode locking the 1 GHz laser cavity with the new mirrors failed.

The reflectivity was too low and the modulation depth too shallow to form and sustain

pulses in that short cavity. One solution to low pulse energy is to increase the length of the

cavity so the pulses have more time to build up sufficient energy for the mode-locking

effects of the saturable absorber and the soliton effects in the fiber to act to shorten the

pulses.

Pump
Diodes Fiber Ferrule A Aspheric
977nm Isolator Erbium Fiber SMF Fiber Lens

WDM84mm 22.1cmn
11: 11 Fiber7 1550 nm

977 nm Coupler 10% Output Coupler Collimator SBR

Coating

1550 nm 
Slcj

Output Detector
Collimator

Figure 4-36 Schematic of 314 MHz VA176 Oxidized SBR test laser.
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There are two experimentally straightforward ways to increase the repetition rate by

lengthening the cavity-adding more fiber to the cavity or increasing the path length of the

collimated free space section of the beam. We chose to add more fiber to the cavity to take

advantage of increased soliton shortening effects. Figure 4-36 is the schematic of the test

laser used for these experiments.

The only changes made between this cavity and the previously described second

generation linear cavity fiber laser are the addition of 22.1 cm of single mode fiber and the

experimental SBR mirror. The fiber length was chosen because that was the shortest piece of

FC/APC connectorized SMF-28 fiber we could quickly locate in the laboratory. The mirrors

were the devices under test for this system.

There were two different versions of a new mirror design tested in this experiment.

Both are classified under the designator VA176. The first mirror consists of reflective "mesa"

structures atop a substrate. These are 500 iim diameter columns of mirror layers arranged

symmetrically on the substrate plane. The reason for this geometry is to permit physical

access to the sides of the mirror stack so that during processing an oxidizing step can be

employed whereby oxygen is diffused through the aluminum layers to create aluminum

oxide. This oxidation alters their optical properties in a controllable fashion. Unfortunately,

it means the mirror surface is not a uniform reflector, but an array of pillars on one of which

the laser light will need to be carefully focused.

The second mirror design alleviates that concern. This time, a large array of small

holes is patterned into the mirror layers. These 10 tm holes provide enough access for the

oxygen to diffuse through the entire layer structure, given the proper conditions during

fabrication. And since their spacing is 150 pam apart, there is plenty of mirror surface area

for the laser beam to focus and reflect from, thus greatly simplifying this mirror's alignment

in the cavity. Figure 4-37 is a photo demonstrating the holes and their proportions to each

other on the mirror surface.
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Figure 4-37 Microscope image and dimensions of the hole array found on MIT VA176

Inverted structure mirror.

Full descriptions of the design and fabrication of both mirror structures are found in

Shelia's Ph.D. thesis [10]. The laser results that come from the use of these mirrors are found

in the following sub-sections.

4.7.2 Linear Laser Results

When the 1 GHz linear cavity had 22.4 cm of fiber added to the length, it became a

314 MHz cavity. In this configuration, both versions of the MIT VA176 oxidized SBR's

yielded mode-locking results. The design of the mirrors is such that the results should have

been the same for both versions, and the results we see are very similar. Plotted below, in a

side by side manner, are the outputs of these two fiber lasers.

4.7.2.1 Optical Spectra

First, the optimal optical spectra were recorded for both mirrors.
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Figure 4-38 Optical spectra for (a) the VA176 Mesa structure and (b) the VA176 inverted
mesa structure mirrors. Both plots show a similar state in the laser.

Figure 4-38 plots the widest optical spectrum recorded for each mirror. The reflective

structures of the mirrors were designed to be the same so similar results were expected, and

recorded. The mesa structure mirror resulted in a 3 dB bandwidth of 8.4 nm and that

corresponds to a 303 fs transform limited pulse width. The inverted structure mirror

performed nearly as well with a 7.5 nm 3dB bandwidth. 7.5 nm corresponds to 339 fs pulses

in the transform limited case.

4.7.2.2 RF Spectra

The long range detected RF Spectra for these two lasers are plotted below. Both

demonstrate a flat spectral envelope and sharp harmonic lines. Figure 4-39(a) plots the first

four harmonics of the RF spectrum. Longer range scan data was unavailable for this state.

Figure 4-39(b) plots the full 8 GHz span for the inverted mesa structure SBR.
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Figure 4-39 Long scan RF spectrums for (a) the VA176 Mesa structure and (b) the VA176

inverted mesa structure mirrors.
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Figure 4-40 Fundamental frequency RF spectrums for (a) the VA176 Mesa structure and (b)

the VA176 inverted mesa structure mirrors. Both plots show a similar state in the laser.

Zooming in on the fundamental frequency for the mesa structure mirror in Figure

4-40(a) indicates some slight vector soliton lines 5 MHz out. Figure 4-40(b) demonstrates

that changing the SBR and modifying the cavity slightly can eliminate the sidebands. Both

plots indicate a repetition rate of 314 MHz for this version of the linear laser.
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4.7.2.3 Output Power / Pulse Energy

The optimal state for the laser with the mesa structure SBR was found at a pump

power of 400 mW. The 1550 nm output power was pretty good at 4.11 mW. That

corresponds to a pulse energy of 1.3 pJ and an efficiency of 1.0%. The optimal state for the

inverted structure SBR laser required 490 mW of pump power and only produced 2.7 mW

of output power. Those figures equate to a pulse energy of 0.86 pJ and an efficiency of 0.6%.

4.7.2.4 SBR Burn Damage

These mirrors were not designed to be protected against Q-switching or excess

pump light impingement. Therefore, they were prone to burn damage and that is what we

observed. Attempts to align and optimize these cavities for mode-locking behavior were

fraught with burned spots on the mirrors. Figure 4-41(a) is a photograph of one of the mesa

structures of the first VA176 run. Alignment in the cavity was difficult but as can be seen in

the image, it was possible to get fairly close to the center of the mirror. Attempts to use too

much pump power would burn the mirror and result in having to find a new spot to try

again.

VA176 Mesa Structure SBR - With Burns VA176 Inverted Mesa SBR - With Burns

(a) (b)

Figure 4-41 Photographs of the mirror structures and resultant bum spots from mode-
locking tests. (a) An elevated mesa with burn marks. (b) The inverted mesa with burn
spots.

142

... .. ............. . . ... ..... . .. ... ......... _ .. -__ - - I



Figure 4-41(b) clearly shows the mirror surface and hole pattern. The center of the

image also shows a "T" shaped patter of burns that resulted from failed mode-locking

efforts. Good states were found but if the pump power was increased too much the mirror

would fail at that location and a new spot would need to be found by translating the mirror.

4.7.3 Discussion

As an experimental set up, the linear cavity erbium fiber laser has proven very

versatile and useful. Though the VA176 SBR's would not work at a 1 GHz repetition rate,

the simple addition of a length of single mode fiber produced some nice results.

Two different versions of the same mirror structure were fabricated and both tested

in the cavity. The results were very similar and this encouraging result led to publications

for the SBR's designer and fabricator, Shelia Nabanja. During testing, we learned more

about how these systems respond when the intra-cavity power is too high and what the

physical limits on the mirror surfaces were.

The higher loss of this type of laser cavity limited the advantages the oxidized mirror

structure was supposed to bring-broader reflectivity bandwidth. One sacrifice to this

broader bandwidth was the linear loss; VA176 had more linear loss than VA86 and that was

enough of a difference to limit the mode-locking to a low power state. Further work would

need to be undertaken to both reduce the mirror linear loss and harden the surface against

burn damage before this mirror design could be reliably integrated into a high repetition

rate fiber laser for regular use.

4.8 970 MHz Custom SBR Test Laser

The attempts to create a stable, repeatable 1 GHz linear cavity erbium fiber laser had

all been stymied by the vector solitons that would sometimes creep up during what was

otherwise a very good state. Some success at minimizing their effects had been seen in the

end abutted fiber lasers being developed in parallel with this laser. Also, data gathered with

the "L" cavity version of this laser demonstrated that a linear polarizer in the cavity was
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successful (though with performance tradeoffs) in eliminating the vector soliton sidebands

and their corresponding noise.

With this knowledge, one more try was made at building a free-space SBR-coupled

linear cavity erbium fiber laser at 1 GHz with a polarizer in the free space section. This laser

would be difficult to build to 1 GHz, and the increased loss introduced by the polarizer

might prevent mode-locking from occurring at all. The new design and the results follow.

4.8.1 Linear Laser Cavity Design

As illustrated in Figure 4-42, the design change made to the standard second

generation laser is trivial: insert a polarizer into the collimated free space section of the

beam. This is easier said than done as dropping a polarizer in and maintaining the ability to

rotate it to find the optimal state, of course, was not easy to accomplish. Because the first

build of this laser was already very compact, there was very little space to work with.

Several versions of opto-mechanical redesigns were necessary to realize this design. The

changes were significant so it is useful to describe them here.

Pump
Diodes Fiber Ferrule

Erbium Fiber Aspheric
977 nm Isolator CE i e Lens

'WDM 
84mm

CFiber 1550 nm t
97 m Coupler 10% Output Collimator 1 B

1550nm Siic. Coupler Coating Polarizer

1550 nm
Output Collimator Detector

Figure 4-42 Schematic of 970 MHz linear cavity erbium fiber laser.
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Figure 4-43 Photograph of 970 MHz linear cavity erbium fiber laser.

It would be informative to follow along in Figure 4-43, the photograph of the new

laser. Beginning next to the SBR: the aspheric lens mount was thin, but it was much thicker

than the lens itself. So, precious millimeters were saved by manufacturing a new mounting

ring for that lens. An important consideration for this cavity design is the ability to remove

the SBR and insert a different one without disturbing the alignment of the rest of the cavity.

Previously, this was done by sliding the cavity far enough away from the SBR to allow

fingers to reach in and change it. Alternately, a rear loading SBR mount could have been

used but these mounts keep the surface of the mirror recessed and away from the focusing

lens, a sub-optimal solution. Adding the polarizer mount meant a new way to remove the

focusing lens was needed. This new way turned out to be mounting the lens in a tip/tilt
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mount connected to a magnetic plate46 attached to a precision XYZ stage in a vertical

orientation. Now the entire mounting assembly of the focusing lens could be simply lifted

away for SBR replacement.

Next follows the new polarizer rotation assembly. The first attempts to hold the

polarizer in a fashion that allowed for rotation also rotated the focusing lens. It was learned

through failures that this rotation moved the focal point of the lens too much on the SBR

and made locating the optimal operating state impossible since it coupled two of the

important degrees of freedom. The polarizer had to be completely independent and

removable from the cavity. This was accomplished by using a solid rotation mount bolted to

a fixed XYZ stage assembly. Now the fiber part of the laser could be backed away on the

long range linear stage for polarizer insertion and removed without loss of alignment of the

fiber or focusing lens.

Lastly, the fiber collimation package that was once held by the Z-ring in the lens

mount is now simply bolted to the long range translation stage. This minor change retains

the ability to fine tune the repetition rate of the cavity through the adjustment knob on the

long range stage. Previously, that knob would only change the focal length of the SBR lens

but now that degree of freedom is decoupled from this stage.

Overall, the extensive opto-mechanical overhaul of this laser resulted in no loss of

adjustments or degrees of freedom within the laser. Every fine tuning alignment capability

was maintained and the option of rotating a linear polarizer in the free space part of the

beam was added. Regrettably, enough free space section was lost that the repetition rate

dropped by 30 MHz. The only way to get back to a full 1 GHz would have been to fabricate

a shorter fiber and that was decided to be an unnecessary step to take at this point in the

experiment.

4.8.2 Linear Laser Results

Adding the linear polarizing element to the 1 GHz linear cavity free space SBR

coupled fiber laser increased the intra-cavity losses. There appeared to be no truly low loss

46 Thorlabs, Model: KB3X3 Kinematic base
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mode of the laser corresponding to any linear polarization set by the polarizing element.

There proved to be almost too much loss for the laser to mode-lock.

The only SBR that yielded any results was the MIT VA86 PRC. The uncoated VA86

burned when aligned in this system. The 20% coupling losses inherent with the fiber

collimation process, the polarizer losses, and the linear losses of the coated SBR really held

down the bandwidth of the optical spectrum.

4.8.2.1 Optical Spectrum

Figure 4-44 plots the narrow spectrum obtained for this laser configuration.

2.3 nm

1520 1530 1540 1550

Wavelength

' I

1560

(nm)

1I 1580
1570 1580

Figure 4-44 Optical spectrum of the 970 MHz linear cavity laser with VA86 PRC SBR.

This weak state supported a 2.3 nm 3 dB bandwidth centered at a wavelength of

1557 nm. That spectral width corresponds to a transform limited pulse duration of 1.1

ps. This doesn't even classify as a femtosecond laser anymore.
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4.8.2.2 RF Spectra

For completeness, the detected RF spectra are plotted in Figure 4-45. The full span

plot shows a nice flat spectral envelope for the harmonic lines but the fundamental beat line

is actually a little noisy around the base. The fundamental does confirm the repetition rate to

be 970 MHz. The mode-locking mechanisms are just barely able to form pulses and the noise

seen in the RF scan is evidence of that.
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Figure 4-45 Full span RF spectrum (left)
linear cavity laser with VA86 PRC SBR.
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4.8.2.3 Output Power / Pulse Energy

The only operational state was found for full pump power of 780 mW. The 1550 nm

output power was low for that level of pumping - 2.25 mW. That corresponds to a pulse

energy of 2.3 pJ and an efficiency of 0.3%.

4.8.3 Discussion

Recent work on similar lasers in our group had shown that controlling the

polarization of the light in the cavity was necessary to reliably eliminate the vector soliton

behavior sometimes observed in this laser. Therefore, a serious effort was undertaken to

remake this cavity with a rotating polarizer element while maintaining as high a repetition

rate as possible.
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The resulting setup turned out to be solid, useful, and retained all of the adjustments

necessary to alighting and mode-locking the cavity with a SBR. Unfortunately, the increased

loss introduced by the polarizer made stable mode-locking almost impossible and the only

result that was obtained was very weak and not particularly useful as a course for future

laboratory experiments.

4.9 Conclusions

This chapter described and explained six versions of an experimental laser with an

erbium doped gain fiber, a linear cavity configuration, approximately GHz repetition rate

laser, and a free space SBR coupling feature.

0 The first generation - free space pumping and output coupling

0 The second generation - fiber coupled pumping for SBR experiments

0 "L" cavity fiber coupled pump rejection and polarizer test cavity

* Highest possible repetition rate - 1.25 GHz cavity

0 Experimental Oxidized SBR test system at 314 MHz

* Second generation - Reengineered with intra-cavity polarizer

Each of these systems was diagramed, described, and analyzed. The first generation

laser was intended as a "see if we can build it" experimental system. The output was a weak

mode-locked pulse train. Primary weaknesses were identified such as the coupling losses

into the fiber and a second generation system was built to address those issues.

This system was primarily used to test a variety of different saturable absorbing

mirrors to ascertain their performance in a high repetition rate environment. The most

reliable results came from the BATOP 14% modulation depth SBR which yielded 365 fs

pulses at 2.8 mW of output power. The conclusions of this study, as often is the case, were

more questions. So further tests were conceived and carried out.

To test the source of the mirror burning a cavity modification was made to integrate

a dichroic mirror into the laser. This also opened up space for a polarizer to be placed in the

cavity thus two separate tests could be made to the same laser. For the MIT VA86 mirror the

new cavity did perform better and was much less prone to burning; however the MIT
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VA148 double absorber mirrors still burned so we are able to conclude that the Q-switching

process plays a part in the mirror burning issue. The polarizing element, when introduced

into the cavity did attenuate the power but it did not prevent all mode-locking from

occurring. Also, it accomplished the goal of eliminating the vector solitons seen in the laser

prior to its insertion. Now that some answers were obtained, we could try to see how high

the repetition rate could be and still support pulsed output.

For the fixed gain per unit length of the Liekki erbium doped gain fiber we found

that about 60 mm was the shortest piece we could get to mode-lock in this cavity

configuration. Including the glass and air of the free space section of the cavity the repetition

rate maxed out at 1.25 GHz. Since this laser was operating just on the threshold of mode-

locking, its output was not directly useful though amplification and filtering did make this

laser a viable source for a few integrated waveguide experiments carried out by Michelle

Sander [8].

When this laser had been established as a good SBR test system, another new SBR

design could be tested. These SBR's were designed fabricated by collaborator Shelia

Nabanja and their results were self-consistent enough for her to demonstrate that her

process worked well. We built a slightly modified version of the test laser to have a lower

repetition rate and that enabled these SBR's to have the necessary pulse shaping effects to

enable mode-locking states. No further tests with these mirrors were undertaken.

In one final attempt to demonstrate that the free space SBR coupling method could

produce a reliable, turnkey, femtosecond pulsed fiber laser source the entire cavity was

redesigned to integrate a polarizing element. Ultimately, the system was unsuccessful in

fulfilling the goals. The repetition rate demands required the fiber be relatively short which

limited our available gain and the coupling and intra-cavity losses were ultimately too high

to enable a useable mode-locking state.
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Chapter 5 1 GHz Linear Cavity Laser -

End Abutted SBR

5.1 Introduction

One demanding possible application for femtosecond fiber lasers is as sources for

optical frequency combs. Promising results in our group took Dave Chao down the research

path to building a fully referenced and stabilized 1 GHz frequency comb centered around

the 1550 nm wavelength. Details of his successful results are in reference [1], and a more

complete description of the experiment and setup is located in his Ph.D. thesis [2]. While

carrying out the amplification and filtering portions of his experiment, Dave noticed that the

fiber laser source he was using had some interesting noise characteristics depending on

which mode-locked state the laser was in. He iterated and discovered the lowest noise state

for his experiment but this did raise some questions as to what was happening within the

laser oscillator.

Therefore, a study was conceived that attempts to ascertain what the intracavity

conditions were in each of these distinct mode-locking states. The experimental set up and

results of that study constitute this chapter. Three mode-locking states were identified for

testing. They are named for the approximate central wavelength of the optical spectra

recorded for that state. Those wavelengths are 1560 nm, 1565 nm, and 1570 nm. Each state

was sampled across the stable single pulse mode-locking regime to study how the output

pulses evolved for changing intracavity energies. At each pumping power level, the

complete laser performance was recorded including: output power, OSA trace, RF traces,

autocorrelation, and phase noise. These data were subsequently run through the analysis

procedures described in Chapter 2 to extract the repetition rate, time domain pulse shape,

time domain pulse width, and RMS timing jitter.
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5.2 Generation One: Free Space Pump and Output

The first fundamentally mode-locked linear cavity fiber laser to break the 1 GHz

threshold in our laboratories evolved by adapting an existing 500 MHz laser [3]. Hyunil

Byun and Michelle Sander continued that initial work and coaxed a pulsing state out of 10.4

cm of Liekki Er80-(8/125) erbium doped gain fiber. The best description of this first result is

found in Hyunil's Thesis [2] and I summarize it in this section to properly segway into the

fully fiber coupled devices.

5.2.1 Cavity Design

The design of this laser is structurally the same as the 491 MHz system detailed in

reference [3], but with a shorter fiber to increase the repetition rate. The pump and output

coupling section is also the same as described in Chapter 4 for the first generation free space

coupled SBR laser. Figure 5-1 is a diagram of the basic essential parts to the system.

DBS L1 O-C SBR
980nm EDF

Cpump
output

measurement

Figure 5-1 Rough schematic of the first generation linear cavity fiber laser design. (Figure
courtesy of Hyunil Byun)

5.2.2 Results

The best performance achieved from this laser cavity is shown in Figure 5-2. The

optical spectrum spanned a 3 dB bandwidth of 5.4 nm corresponding to a transform limited

pulse width of 470 fs. The fundamental RF harmonic was detected at 974.6 MHz and there
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are what we later recognized to be strong polarization-mode sidebands in the spectrum.

This state was recorded quickly before the SBR suffered burn damage and the input and

output power and pulse energy numbers were not readily available.
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Figure 5-2 Optical and RF spectral results for the
(Figure courtesy of Hyunil Byun)
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frequency (GHz)

generation one linear cavity fiber laser.

5.2.3 Discussion

As a proof-of-concept laser, this system demonstrated that there was a path to take

short fiber linear cavities up to and possibly beyond the 1 GHz repetition rate. The result

was not clean but it did mode-lock and several ideas to solve the SBR burning and

polarization sideband issues were investigated. Implementing some of these ideas resulted

in the next generation linear cavity end abutted fiber laser.

5.3 Generation Two: Fiber Coupled Pump and
Output

A through and complete study of the second generation version of this fiber laser as

performed by Hyunil Byun and Michelle Sander can be found in several sources. Hyunil
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describes the 976 MHz version of the laser in references [1] and [2]. A summary of this work

is included here as an introduction to the output state study of the following sections.

5.3.1 967 MHz Cavity Design

The most significant advances from the first generation to the second were the pump

and output coupling components. As a parallel to the free space SBR coupled lasers

described in Chapter 4, WDM and coated fiber ferrule ideas were introduced to reduce the

coupling losses and simplify the alignment. Figure 5-3 illustrates the design of the cavity.

Output Partial Erbium Fiber
Reflector + SMVF28e
OC 10% (92mm + 11 mm)

977 nm

WDIVIFC/PC
SBR+PRC

connector SBRPRC150pm
substrate

Figure 5-3 Schematic of 967 MHz linear cavity erbium fiber laser (Figure courtesy of
Michelle Sander)

The laser is pumped with one 700 mW pump diode centered at the 977 nm

wavelength. This pump was put through a 980/1550 WDM and passed into the gain fiber

through the output coupling coating applied to the fiber ferrule. The coating was optimized

as a 90% reflecting mirror for the 1550 nm wavelength, and 980 nm light passes through

mostly unattenuated.

Ninety two millimeters of erbium doped fiber is fusion spliced to 11 mm of standard

single mode fiber to form the 103 mm all-fiber cavity. A short piece of SMF is added to

reduce the thermal load on the absorbing layers of the mirror. A full study into how to best

manage the SBR thermal load is explained in reference [1] but is beyond the scope of this

thesis and will not be described further.
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Finally, the optical coating that functions as the cavity mirror and output coupler

allows 10% of the cavity energy to escape each round trip. This light is coupled out through

the WDM's 1550 nm fiber port for measurement.

After several iterations of mechanics to assemble the fiber to the SBR and reliably

align the cavity, the following results were obtained.

5.3.2 967 MHz Laser Results

Figure 5-4 is a comprehensive plot of all relevant data for this laser's optimal

operating state. A solid fiber to SBR coupling could be maintained that, coupled with an

undamaged SBR mirror sample, resulted in a state that later proved difficult to replicate.

This state's optical spectrum (Figure 5-4(a)) was centered at a 1573 nm wavelength and

supported a 150 fs pulse with its 17.5 nm bandwidth. Interferometric autocorrelation

measurements plotted in Figure 5-4(b) confirmed a 150 fs pulse width for the assumption of

a sech pulse shape. The RF spectra in Figure 5-4(c) and Figure 5-4(d) confirm a clean single

pulse mode-locked state at a repetition rate of 967 MHz. The output power was 27.4 mW

given 380 mW of pump for an efficiency of 6.5%.

This laser is not only high repetition rate and reasonably high power, but its pulse to

pulse timing jitter is low as well. Figure 5-5 plots the single sideband phase noise and the

corresponding integrated RMS timing jitter for this state. For the span of 1 KHz to 10 MHz

only 22 fs of timing jitter accumulates.
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Figure 5-4 a) Optical spectrum and sech 2 fit. b) Interferometric autocorrelation
measurement. c) Long range RF spectrum. d) Fundamental frequency RF spectral line to
confirm repetition rate. (Figure courtesy of Michelle Sander)
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5.3.3 967 MHz Laser Discussion

The lessons learned from the free space coupled end abutted fiber laser of section 5.2

were applied to create a successful 967 MIHz linear cavity fundamentally mode-locked

erbium fiber laser. This laser maintained a broad optical bandwidth supporting

femtosecond pulses, high pulse energy and output power, and low timing jitter-exactly the

attributes our group searches for in a next generation laser source. Therefore, a new version

of this laser would be built to be used as a source in further experiments requiring

femtosecond pulses and new questions would arise as a result of these experiments.

5.4 Output Pulse Characterization

The objective of this study was to complete a characterization of the 1 GHz linear

cavity erbium fiber laser's performance through the different mode-locking states that we

could force it into. To further that purpose, the design and one set of performance results are

detailed to provide a baseline of comparison.

5.4.1 1.0367 GHz Cavity Design

This laser technology had greatly matured by the third generation version. The

repetition rate was slightly above 1 GHz, the output pulses could be high energy and low

jitter, and the laser itself was stable for long time periods if left undisturbed.

Pump Fiber Ferrule
Diode Isolator Erbium Fiber

111111.oatrWDMV 92 mm
977 nm SBR - VA86 Pump Reflective

SM Fiber/
10% Output 7 mm

1550 nmCoupler Coating

1550pnm To: OSA, Detector,
or Autocorrelator

Figure 5-6 Schematic of 1 GHz linear cavity fiber laser as used for operating state testing.
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Since this version of the laser is the source of this chapter's subsequent data; it is

appropriate to fully diagram and carefully explain every component chosen. To begin, the

system is diagramed in Figure 5-6.

The 980 nm pump diode manufacturers have been continuing to improve their

product offerings and for this laser a 700 mW diode from EM447 was chosen. The

polarization maintaining fiber from this pump is spliced to a FC/APC SMF fiber pigtail

allowing for easily connecting and disconnecting the pump from various test systems. The

pump isolator48 is placed in the system to protect the diode from any back-reflections that

may damage or destroy it. This isolator is also fiber connectorized on both ends for

interchangeability.

The next component that changed from previous generations was the wavelength

division multiplexer (WDM). This particular WDM49 was chosen for the low dispersion

fiber5 0 used in its manufacture. Instead of Corning SMF-28e single mode fiber with a

dispersion of +18 ps/(nm km), this OFS specialty fiber has a dispersion of -1.25 ps/(nm km)

around 1550 nm. Low dispersion is important in keeping the laser output pulses from

dispersing too much between the laser output coupler and the end of the output fiber.

To minimize loss, the combined input/output fiber of the WDM was fusion spliced to

the SMF of the ferrule with the output coupler coating applied. This ferrule was then

attached with a ceramic mating sleeve to the polished ferrule at the end of the gain fiber 1.

This gain fiber remains 92 mm long, as in the second generation system, but the piece of

SMF spliced to it has been reduced in length from 11 mm to 7 mm to bring the laser

repetition rate over the 1 GHz mark.

The end of the gain/SMF fiber piece is epoxied and polished into a standard 126 tm

core FC/PC fiber connector and this connector is pressed against the SBR mechanically

47 EM4, Model: 0700-0980-PM 700 mW 980 nm pump diode
48 OFR, Model: IO-F-980 fiber coupled isolator
49 AFW Technologies, Model: WDM-SM-2-9815-L-1-L-0 980/1550 WDM
50 OFS, Model: "Lucent 980 Coupler" or BF05635-02, CL 980 16 Photonic Fiber
1 Liekki, Model: Er80 - 8/125 erbium doped fiber
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through the threads in the fiber coupler 2 and lens tube 3. It is this connection that provides

the necessary degree of freedom to change the laser's mode-locking states.

Figure 5-7 Photograph of 1 GHz linear cavity fiber laser. The pump and isolator are on the
left, the WDM in the center, and the laser cavity on the black board to the right.

Figure 5-7 displays a photograph of the entire laser setup as it sat on the optical

breadboard for testing. Several measures were in place to minimize the noise. First, the

entire board was encased in a polycarbonate enclosure to eliminate any lab air movements.

In addition, the fiber piece that composes the cavity sits on a separate aluminum board

supported by alternating layers of lead and foam to further minimize any vibrations the air-

floated vibration isolating optical table may fail to suppress. Not pictured is a foam covered

52 Thorlabs, Model: SM05FC threaded fiber adaptor
53 Thorlabs, Model: SM05L05 lens tube

161



cardboard box placed over the fiber board to further dampen air currents and maintain a

more steady temperature during operation. These efforts do pay dividends when the

optimal laser state yields a power level with only 5.75 fs of RMS timing jitter.

5.4.2 SBR Reflectivity

When the fiber is mechanically pressed against the SBR, the coupling may not be at

an exact 90' angle. If it is not, the 125 lim diameter of the fiber means that an air gap of up to

tens of microns between the fiber core and the mirror surface will form. This gap will

introduce an index of refraction mismatch between the fiber glass and the PRC material

altering the functional reflectivity of the mirror.

D = 1000 * sin(6)

SAir gap (um)

0 0

0.2 3.5

0.6

0.8

1.0

10.5

14.0

17.5

x 22

Figure 5-8 Illustration of fiber to mirror air gap. Simulations also done for mirrors with

pump reflective coating layers.

Hanfei Shen and Michelle Sander had investigated this phenomenon when

designing the mirrors originally and, using MATLAB@ code from Hanfei's Thesis [4] which

calculates reflectivity based upon material indices and thicknesses, further simulations were
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done to learn if this effect could be responsible for the different states we observe in the

output spectra.

Reflectivity vs. Wavelength 0 deg Incidence Angle Reflectivity vs. Wavelength 1 deg Incidence Angle
I - - -- - - - - -- j -- - --L -- -- I -- -- --- -- -- - -- -- - - -- - -- -- -- ---- -- --I - -- -- -- -- --11 -- -- -

0 .8 ------ -------- ---- ----- - 0 .8 --- -- -- -

Ua) b)02 13--- 14 15--- 162 17-- 181-415 1- 7 1

Incident Wavelength (j xn) Incident Wavelength (pLm)

a) b)

Figure 5-9 Calculated mirror reflectivity for a fiber incident at a) 0 degrees and b) 1 degree.
The air gap introduced in b) causes the change in reflectivity.

As demonstrated in Figure 5-9a) and b), even a 10 tilt of the fiber to the mirror

surface introduces ripples across the main pass-band of the reflectivity curve. These

amplitude modulations will affect the optical pulse by shifting the center wavelength of the

pulse slightly as the laser tries to settle into the lowest loss state. Based upon these

simulation results, it is reasonable to assume that small changes in the fiber to SBR coupling

will result in different mode-locking states within the laser cavity.

5.4.3 1.0367 GHz Laser "Best" Results

As a baseline with which to compare the three mode-locking states, the following

data is presented because it represents the laser in the optimal state for seeding Dave Chao's

frequency comb experiment. This state is spectrally centered around 1560 nm and it varies

in 3 dB bandwidth from 4.3 nm to 7 nm. Figure 5-10 plots the evolving spectra as the pump

power is steadily increased.
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Figure 5-10 Spectral array displaying optical spectrum evolution for increasing pump
power in the 1 GHz laser. The boxed spectrum represents the state used for frequency
comb generation.

As highlighted in the green area, the clean mode-locking state exists for a range of

approximately 100 mW of pump and the "best" state is in the center of the stability region.

This state is considered best because it had the lowest timing jitter when the output pulses

were filtered and amplified for use in the frequency comb. Its output power was a modest 7

mW from a pump of 350 mW for a 2% efficiency. The output pulse energies were 6.9 pJ and

autocorrelation of the 6.15 nm 3 dB bandwidth yielded a 420 fs pulse width. Figure 5-11

plots the optical spectrum and the raw autocorrelation data from which the 420 fs number is

extracted by assuming a sech pulse shape.
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Figure 5-11 Optical spectrum (left) and autocorrelation trace (right) of 350 mW pump 1560
nm state.

As confirmation of a clean single pulse mode-locking state operating at a repetition

rate of 1.0367 GHz we consult the RF spectrum analyzer data in Figure 5-12.
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Figure 5-12 Full span RF spectra (right) and Fundamental RF line (right) for 350 mW pump

1560 nm laser state.

This is the "best" mode-locking state that Dave could obtain. The question as to why

this was the best state is complicated and is partially answered by the results of the data

analysis of the three states of the following sections.
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5.4.4 1560 nm State

Centered around 1560 nm, this mode-locking state proved to be the lowest jitter

operating mode the laser would settle into. The 1560 nm state does not have the most

powerful output pulse energy or the broadest spectrum. This implies the mirror to SBR

coupling is not as efficient and the cavity as a whole has higher losses. In addition, this is

not the default state that a new construction of the cavity would naturally fall into when a

SBR was screwed to the fiber and the power brought up. That coupling needed to be very

carefully manipulated to get the angle such that a spectrum centered at 1560 would be the

dominate cavity mode.

Once found and stabilized, the state was usually repeatable over several days and

power cycles. It was our procedure to turn off the laser at the end of experiments rather than

leave it running over night and the following day it would return to the same state by

simply turning the pump current back on to the pump diode.

5.4.4.1 Optical Spectrum

This state is best visualized by Figure 5-13. Here the OSA plots of each input power

level are plotted around a graph plotting spectral 3 dB bandwidth as the power level is

increased from mode-locking threshold through cavity noise spikes breaking the clean

single pulse state.
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Figure 5-13 Spectral array displaying optical spectrum evolution for increasing pump
power for the 1560 nm mode-locked state.

The difference between the two broadest bandwidth plots may look slight but that is

due to the spectra being plotted in dBs to accentuate the details of the spectral wings.

However, for both power levels there is a break through of a CW mode centered at 1570 nm

that interferes with the primary mode and heavily influences the jitter. Visually this CW

mode is more easily seen in the high power plots of Figure 5-10 as that figure shows more of

the noise spiking spectra than Figure 5-13.

Let us choose the "best" state and examine it further. The closest state here to Dave

Chao's state occurred for 385 mW of pump power.
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Figure 5-14 Optical spectrum with sech and Gaussian fits of the 385 mW pump 1560 nm

state.

Figure 5-14 zooms in on the spectrum for the 385 mW pump power state. This state

spanned a bandwidth of 7.79 nm and that corresponds to a transform limited pulse width of

328 fs. The spectrum fits a sech pulse shape very well as expected from a soliton laser. The

Gaussian fit is plotted to demonstrate that the pulse shape is sech.

5.4.4.2 Autocorrelations

Autocorrelation data were taken via the free space path method and the resulting

trace for the 385 mW state is plotted and fitted for both a sech and Gaussian pulse shape in

Figure 5-15.
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Figure 5-15 Normalized autocorrelation data for the 385 mW 1560 nm laser state. A sech

pulse shape fit is plotted in red (left plot) and a Gaussian pulse shape fit is plotted in blue

(right plot). The boxes are the fitting function results and are not intended to be readable.

Recall that the optical spectrum predicts a 328 fs pulse. Ultimately, a sech fit (red

line) deconvolution yields 439 fs and a Gaussian (blue line) deconvolution fits to a 496 fs

pulse width. This difference in inferred pulse widths is a consequence of the measurement

process and the shape of a hyperbolic secant pulse verses a Gaussian pulse shape. It also

continues across every power level of the 1560 nm state.

Figure 5-16 plots the same autocorrelation data with the same fits on a dB vertical

scale. It is seen from this plot that the data fit a Gaussian shape down to 27 dB and a sech

shape only down 10 dB. This trend also continues across every power level of the 1560 nm

state and while not readily explained, must be a result of pulse propagation in fiber to the

measurement apparatus and/or to filtering in the measurement itself.
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Figure 5-16 Normalized autocorrelation data and sech and Gaussian pulse shape fits
plotted in dB for the 385 mW pump 1560 nm state.

5.4.4.3 RF Spectra

Figure 5-17 plots the RF spectra for the 385 mW pump state. The full span plots show

clean lines and a relatively flat envelope. The fundamental frequency line is detected at

1.0367 GHz and since the fiber length does not change this repetition rate is steady and

repeatable across all power levels of the 1560 nm laser.
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Figure 5-17 Full span RF spectra (left) and Fundamental RF line (right) for 385 mW pump

1560 nm laser state.

Notable for their absence, the polarization side bands due to vector solitons have

been eliminated through purposeful manipulations of the cavity fiber's birefringence. The

photograph of Figure 5-7 shows the strong bend the fiber is held in; that is the optimum

position we found to eliminate the sideband behavior and suppress their noise

contributions.

5.4.4.4 Timing Jitter

Regarding noise, the 1560 nm state of this laser had by far the lowest pulse to pulse

timing jitter. Figure 5-18 plots the recorded phase noise and the integrated RMS jitter

calculated from each power level of the 1560 nm laser state. Note that Figure 5-18(c) is the

very lowest noise state at 5.75 fs of jitter. The data independently confirms that this laser

state at this power level results in the lowest possible jitter. It is not coincidence that 350 mW

of pump power into the 1560 rm state alignment is the laser configuration used by Dave

Chao to create his frequency comb [5].
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Figure 5-18 (a-e) Phase noise and integrated RMS timing jitter plots for six recorded power

levels of the 1560 nm state.
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Figure 5-19 (a) Output power for increasing pump powers of the 1560 nm state. (b)

Integrated RMS timing jitter for the recorded power levels of the 1560 nm laser state.

For a more comprehensive look at the laser's performance, note the interesting dip in

power illustrated by Figure 5-19(a). This dip in output power occurred when the intracavity

mode-locking state jumped from its most stable single pulsing condition to a state also

supporting the 1570 nm CW modes. As that CW spike becomes visible in the optical spectral

data (top right plot of Figure 5-13), the timing jitter explodes from 10.3 fs to almost 270 fs.

Figure 5-19(b) then makes much more sense in the context of this CW state jump. The forth

recorded pump power level resulted in the highest pulse energy but the jitter remained low

for one more power level before breaking down and because the jitter is plotted by pulse

energy and not pump power the plot takes on that staggered look.

5.4.4.5 Pulse Width Analysis

The purpose of this laser state study is to determine how well each state agrees with

soliton mode-locking theory and, if it deviates, how and why. Chapter 2 explained some of

the mathematical techniques and formulas used to extract information from the raw spectral

and autocorrelation data.

This short cavity fiber laser operates via SBR initiated soliton mode-locking. Soliton

mode-locking theory postulates that the pulses will conform to a hyperbolic secant (sech)
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pulse shape [6]. Within the cavity the pulse broadening anomalous dispersion fiber and the

anomalous dispersion of the pump-reflection-coated MIT VA86 SBR balance the pulse

shortening self-phase modulation effects of the fiber to produce a clean soliton pulse train.

These pulses pass through 2.7 meters of single mode fiber before being free space coupled

into to any measurement devices and that fiber needs to be allowed for in pulse width

measurements. Figure 5-20 plots measured, calculated, or predicted pulse widths at a given

pulse energy for the assumption that the laser is outputting sech shaped pulses.

1560 nm State Sech Pulse Widths
600 -

-U- Soliton Theory (n2 = 2.25) Pulse Width (fs)
-0- OSA Sech Fit Pulse Width (fs)

550- A Post-Fiber Sech Pulse Width (Split-Step Model) (fs)
--- AC Sech Fit Pulse Width (fs)
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300 I
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Figure 5-20 Data and simulations of the output time domain pulse width of the 1 GHz
laser's 1560 nm state given increasing output pulse energies. This data assumes a
hyperbolic secant pulse envelope shape.

The baseline plot is the soliton area theorem predicted pulse widths shown with blue

squares in Figure 5-20. This calculation assumes that the average polarization state in the

cavity is somewhere between linear and circular. Recall that, as explained in Chapter 2, we

know that the effective nm for circular polarization is 2/3 that for linear polarization. Setting

the n2 at 2.25 instead of 3.2 results in pulse width calculations that agree very well with
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spectral data and split step simulation results. Notice how the blue line of the soliton theory

and the green line of the transform limited sech fits of the OSA trace data basically overlap.

The data from the OSA fits are input to a split step simulation of passing through the

WDM and output fiber and the calculated pulse widths are plotted in red triangles. These

pulses are broadened slightly by passing through the fiber.

As can be seen, the soliton theory, the spectral measurements, and the fiber

simulations all roughly agree on pulse widths varying from 520 fs down to 350 fs at the

maximum available pulse energies. The final plot showing the longest pulse widths are the

real autocorrelation traces curve fitted and deconvolved assuming a sech pulse shape. These

pulse widths are all about 50 fs longer than the other curves predict. However, they follow

the same basic sloping trend as the pulse energy is increased implying that the underlying

assumptions are correct but there must be a variable in the measurement itself that is

slightly increasing the measured pulse widths.

The conclusions to draw from all of this information are that this laser state is in fact

outputting sech shaped pulses conforming to SBR soliton mode locking theory and the

autocorrelation measurements confirm a shortening pulse for increasing pulse energy-just

with a small offset likely due to an experimental factor.

5.4.5 1565 nm State

This is what the author considers to be the "default" state of this laser cavity. The

coupling loss is the lowest of all the states because the output powers are highest for this

state. If a different sample of SBR or fiber is tried, the first time the mirror is physically

screwed into the mount and pump power applied, the first state to demonstrate mode-

locking is centered around 1565 nm. This state is also stable and repeatable. Any laser

constructed with the fiber and SBR in a position favorable to support the 1565 nm modes

could hold that for weeks as long as the box was not removed and the fiber manipulated.
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5.4.5.1 Optical Spectrum
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Figure 5-21 Spectral array displaying optical spectrum evolution for increasing pump

power for the 1565 nm mode-locked state.

The 1565 state is visualized by Figure 5-21. Here the OSA traces of 6 input power

levels are plotted around a graph plotting the spectral 3 dB bandwidth as the pump power

level is increased from mode-locking threshold through cavity noise spikes. When this data

was collected an effort was made to obtain 5 clean spectral traces and one trace just into the

noise spiking mode-locking regime. The clean spectral states were only obtainable for a 100

mW pump power window from 210 mW to about 310 mW. As seen by the dip in increasing

bandwidth from 300 mW of pump to 315 mW, the laser had actually already dropped into

the noise spiking state at this power level. The timing jitter results confirm this observation.

So there are four clean power levels recorded and analyzed for the 1565 nm laser state. The
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"best" power level was for 300 mW of pump power and results for that laser are detailed

here.
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Figure 5-22 Optical spectrum with sech and Gaussian fits of the 300 mW pump 1565 nm

state.

Figure 5-22 plots the recorded optical spectrum of the laser pumped with 300 mW of

980 nm light. The 3 dB spectral bandwidth of 9.71 nm corresponds to a transform limited

sech pulse width of 265 nm. Sech and Gaussian pulse shape fits are plotted as well, and it is

clear that the spectral shape fits the red sech line better than the blue Gaussian one. This is

the case for all six recorded power levels of this state.

5.4.5.2 Autocorrelations

Autocorrelation data were taken via both the dispersion compensating fiber and the

free space path methods and the resulting free space path trace for the 300 mW state is

plotted and fitted for both a sech and Gaussian pulse shape in Figure 5-23.
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Figure 5-23 Normalized autocorrelation data for the 300 mW 1565 nm laser state. A sech
pulse shape fit is plotted in red (left plot) and a Gaussian pulse shape fit is plotted in blue

(right plot). The boxes are the fitting function results and are not intended to be readable.

The optical spectrum predicts a 265 fs pulse. Ultimately, a sech fit (red line)

deconvolution yields 445 fs and a Gaussian (blue line) deconvolution fits to a 503 fs pulse

width. These large pulse width differences continue across every power level of the 1565 nm

state.

Figure 5-24 plots the same autocorrelation data and fits on a vertical scale in dB. It is

seen from this plot that the data fit a Gaussian shape down to 33 dB and a sech shape only

down 10 dB. This trend also continues across every power level of the 1565 nm state as

indicated above for the 1560 nm state.
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Figure 5-24 Normalized autocorrelation data and sech and Gaussian pulse shape fits

plotted in dB for the 300 mW pump 1565 nm state.

5.4.5.3 RF Spectra

Figure 5-25 plots both recorded RF spectra for the 300 mW pump state. The full span

plot on the left shows clean lines and a relatively flat envelope. The fundamental frequency

line on the right is always detected at 1.0367 GHz across all power levels of the 1565 nm

laser.

179

...... ......... - .. ............. ..........



-10-

-20 -
-20-

-40- -30-

Ea
< E -40-

-60-
_50-

-80- -60

-70 -T -p

0 2 4 6 8 1.01 1.02 1.03 1.04 1.05 1.06 1.07

Frequency (GHz) Frequency (GHz)

Figure 5-25 Full span RF spectra (left) and Fundamental RF line (right) for 300 mW pump
1565 nm laser state.

Elimination of the polarization sidebands (note their absence on both plots) is also

achieved through fiber positioning introducing birefringence, exactly as in the 1560 nm laser

state. This helps to ensure the laser is in a low noise state for the jitter measurements.

5.4.5.4 Timing Jitter

Regarding noise, the 1565 nm state of this laser had fairly low and consistent pulse to

pulse timing jitter (below 100 fs) as long as it remained in the stable single-pulse mode-

locking regime. Figure 5-26 plots the recorded phase noise and the integrated RMS jitter

recorded from each power level of the 1565 nm laser state. Note that for this state Figure

5-26(a) demonstrates the lowest noise at 23.7 fs of jitter.
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Figure 5-26 Phase noise and integrated RMS timing jitter plots for six recorded power

levels of the 1565 nm state.

It is notable just how much the jitter jumps in this laser state as well when the 1570

nm CW noise spike starts to dominate the cavity. Figure 5-27 attempts to make the
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difference between the two recorded operating modes clear. Figure 5-27(a) plots the nicely

linear increase in output power given increasing pump power. Figure 5-27(b) plots the jitter

associated with each of those power levels. Although the output power was monotonically

increasing-giving no indication of changing cavity states-the timing jitter markedly

increases at the 315 mW pump power level.

Optical Power Integrated Timing Jitter

700

600

500

400
0D
.C

E 300

or 200-

100-

0
9 10 11 12 13

Pulse Energy (pJ)

(b)

14

Figure 5-27 (a) Output power for increasing pump powers of the 1565 nm state. (b)
Integrated RMS timing jitter for the recorded power levels of the 1565 nm laser state.

This is further evidence that 310 mW of pump was the maximum pumping the clean

and stable single-pulsing mode-locking state could absorb before breaking into other, high

noise cavity modes.

5.4.5.5 Pulse Width Analysis

Keeping in mind that the core of this study are the pulse width numbers, the same

data were assembled for this laser state as was done for the 1560 nm state. Plotted below is

a summary of the relevant results of the pulse width calculations and measurements.

The 1565 nm state of this short cavity fiber laser still operates via SBR initiated

soliton mode-locking. Figure 5-28 plots the measured, calculated, or predicted pulse widths
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at a given pulse energy for the assumption that the laser is outputting these sech shaped

pulses.

1565 nm State Sech Pulse Widths

- Soliton Theory (n2 = 2.5) Pulse Width (fs)

500 - OSA Sech Fit Pulse Width (fs)
,- Post-Fiber Sech Pulse Width (Split-Step Model) (fs)
-v- AC Sech Fit Pulse Width (fs)

450 -

-~ 400-

350-

300-

5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
Pulse Energy (pJ)

Figure 5-28 Data and simulations of the output time domain pulse width of the 1 GHz

laser's 1565 nm state given increasing output pulse energies. This data assumes a

hyperbolic secant pulse envelope shape.

The soliton area theorem predicted pulse widths for the measured pulse energies are

shown with blue squares in Figure 5-28. As done for the 1560 nm state, the blue line is for

the assumption that the polarization state is elliptical but with larger m. For this laser setting

the average mu at 2.5 results in pulse width predictions that agree very well with spectral

data. Due to this state's higher output powers and broader spectra than the 1560 nm state,

the pulses should spread more if traveling through the same length of fiber. The split step

simulation pulse widths were indeed proportionally longer than their 1560 nm counterparts.

Remember, to create the red triangles of the split step simulations the data from the green

OSA fit plot is run through the simulation assuming transform limited pulses initially. It is
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notable that the general slope of these fiber broadened pulses still trends downward at

about the same rate as the spectral bandwidth increase.

The measured data, calculations, and simulations are all consistent with theory up to

this point in the experiment. The final numbers to compare are the sech pulse widths

extracted from the autocorrelation traces. Every autocorrelation was curve fitted assuming a

sech pulse input and the resulting pulse width extracted from the fitting equation. These

data are plotted as the "AC Sech Fit Pulse Width" line in purple down arrows. For the 1565

nm state, the autocorrelation data does not match the theory or simulations. The pulse

measurements are too long by 100 fs at low powers and over 250 fs at the highest pump

powers.

Essentially, the pulses that are measured through the autocorrelation technique are

not shortening despite the increased energy in the pulses. Within a few tens of femtoseconds

the pulse widths are the same across the entire single pulse mode-locking regime for the

1565 nm laser state. This could be due partially to the increasing pulse spreading effects of

the output fiber for the higher pulse energies. This could also be related to the large jump in

timing jitter within the cavity at the higher pulse energies and increased deviation from the

transform limit. The data from the next state will help establish a trend regarding this

deviation from soliton theory in the pulse width measurements.

5.4.6 1570 nm State

A third distinct state that could be obtained from the SBR-to-fiber coupling

manipulations produced much broader bandwidths and was spectrally centered around the

1570 nm wavelength. However, the output powers were similar to the 1560 nm state

indicating that the cavity losses are higher and the SBR coupling losses were likely the

cause. The first versions of this laser, as detailed in section 5.3.2, displayed almost twice the

output power for a similar 3 dB spectral bandwidth of 17 nm.

The reasons for this difference have to do with the number of times the components

have been used in experiments. Those second generation results were obtained by Michelle

Sander immediately after the spliced and polished fibers were fabricated. Also, fresh and
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new pieces of the VA86 PRC mirrors were used. This meant the best possible coupling

results could be recorded because there was no burning or damage to the fibers or the

mirrors yet. Over time, we have observed that the ends of the fibers will accumulate damage

that cannot be cleaned off. The end must be repolished -a tedious task that carries risks of

breaking the fiber completely.

Also, the SBR's begin to look like the lunar surface when viewed under the

microscope due to mechanical and optical damage to the material layers. This is illustrated

in Figure 5-29. It is still possible to manipulate the mirror into a highly reflective area; it is

just more difficult.

These factors combined to make actually recording this 1570 nm state challenging.

The gain fiber sample that was used for the previous two states developed visible burn

damage and was unusable during continuing attempts to isolate a stable 1570 nm state.

Fortunately, one other sample of the fiber was available and it had less damage to it and was

yet able to couple well enough for mode-locking; just at a reduced power level.

Used and Damaged SBR Surface of the Moon

Source: NASA
http://quest.nasa.gov/challenges/cross/preilm/nishantsp/
nishantspl.Jpg

Figure 5-29 SBR mirror damage after many uses and realignments in cavity (on left). For
visual reference, the lunar surface (on right).
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This laser state was stable, but very sensitive to alignment and prone to component

damage. The following state was recorded despite the CW mode trying to break out because

it was the only version of this state that could be found with the components and time

available for the study. Removal of the CW spike might be possible through delicate fiber

manipulations but attempts to do that ended up losing the state and it was not recoverable.

Therefore, this version of the 1570 nm mode-locked state data is presented in the following

sections.

5.4.6.1 Optical Spectrum

The 1570 state is visualized by Figure 5-30. Here the OSA traces of 5 input power

levels are plotted around a graph plotting the spectral 3 dB bandwidth as the power level is

increased from mode-locking threshold through pulse break up. Compared to the previous

two states, the 1570 nm state mode-locks over a broad range of input power levels-from

less than 200 mW to over 350 mW.
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Figure 5-30 Spectral array displaying optical spectrum evolution for increasing pump

power for the 1570 nm mode-locked state.

As mentioned previously, there is a small CW mode centered at 1600 nm that is

present in the cavity and it remains at 1600 nm as the pulse broadens around it. Ultimately,

this mode causes instabilities that result in large timing jitter for the pulses in the cavity.

For the purpose of equal comparisons, the power level in the middle of the stable

mode-locking regime is detailed in the follow sections. Figure 5-31 plots the optical

spectrum and both sech (in red) and Gaussian (in blue) curve fits. In this plot, as with every

OSA trace for this state, the sech fit is better than the Gaussian and contributes evidence to

the theory that the pulses are sech shaped in the cavity.
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short however.
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spectrum with sech and Gaussian fits of the 270 mW pump 1570 nm

shape, the 3 dB bandwidth of 11.6 nm corresponds to a 223 fs

Pulse width measurements, ultimately, did not find pulses that

5.4.6.2 Autocorrelations

Autocorrelation data were again taken via the free space path method to reduce fiber

nonlinearities and the resulting trace for the 270 mW state is plotted and fitted for both a

sech and Gaussian pulse shape in Figure 5-32. The optical spectrum predicts a 223 fs pulse.

A sech fit (red line) deconvolution yields 496 fs and a Gaussian (blue line) deconvolution fits

to a 550 fs pulse width. These are quite different numbers and the analysis in the pulse

width sections attempts to explain this situation.
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Figure 5-32 Normalized autocorrelation data for the 270 mW 1570 nm laser state. A sech

pulse shape fit is plotted in red (left plot) and a Gaussian pulse shape fit is plotted in blue

(right plot). The boxes are the fitting function results and are not intended to be readable.

To get a better visual idea which pulse shape better describes the data, Figure 5-33

plots the autocorrelation data and curve fits on a vertical scale in dB. This pulse shape data

shows a new trend. It is seen from this plot that the Gaussian and the sech fits both

approximate the data equally well down to about 15 dB before deviating one way or the

other. For the two lower power level data states taken the Gaussian fits are better than the

sech, as in the 1560 nm and 1565 nm states. However, for the two higher power level data

states, the sech fits better trace the autocorrelation data and that is a new phenomenon not

seen in any other states. The implications of this information are discussed in the pulse

width section of this state.
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Figure 5-33 Normalized autocorrelation data and sech and Gaussian pulse shape fits

plotted in dB for the 270 mW pump 1570 nm state.

5.4.6.3 RF Spectra
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Figure 5-34 Full span RF spectra (left) and Fundamental RF line (right) for 270 mW pump

1570 nm laser state.
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Figure 5-34 plots both recorded RF spectra for the 270 mW pump state. The full span

plot on the left shows clean lines and a relatively flat envelope. A small variation in the exact

length of the fiber package resulted in a different repetition rate for this laser sate. Plotted on

the right of Figure 5-34, the fundamental frequency is now detected at 1.0408 GHz across all

power levels of the 1570 nm laser.

A different fiber does not change the issues introduced by vector solitons however,

Elimination of the polarization sidebands (note their absence on both plots) is still achieved

through fiber positioning introducing birefringence, exactly as in the other two laser states.

This should help to ensure the laser is in a low noise state for the jitter measurements,

however for this laser the vector solitons did not appear to be the primary source of pulse to

pulse timing jitter.

5.4.6.4 Timing Jitter

Regarding jitter, the 1570 nm state of this laser had rather high pulse to pulse timing

jitter when compared to the other recorded states. Even in the stable single-pulse mode-

locking regime the 1600 nm CW spike was the probable cause of the excessive jitter.

Figure 5-35 plots the recorded phase noise and the integrated RMS jitter recorded

from each power level of the 1570 nm laser state. Note that for this state Figure 5-35(a)

demonstrates the lowest noise at 141 fs of jitter and it gets progressively noisier as the power

is increased.

191



10 10' 10 10p 10 10

-- Phase Noise (dBc/Hz)
95- RMS Jitter (fs)

-100-

RMS Jitter
-110

-115141 fs
-120

-125- 50

-130-

-135-

-140
---- ------ 0

-145

-150
10 10 10" 10 10, 10,

Frequency (Hz)

a) 5.71 pJ State
10, 10' 10" 10" 107 10,

. . . . . . . . . . . I

-55-110-

-85-

-100-

-10
R -110-
.U 115-

-1 -

z -120-

S -125-

-130-

-135

-140 -
-145-

-150-

K
Phase Noise (dBc/z)
RMS Jitter (fs)

RMS Jitter
198 fs

50

0

30

03

Sc

I

0

z

0-

200

150

100

50

0z

--------*-

100" 10 10"

Frequency (Hz)

-90- Phase Noise (dBc/Hz)

-95- RMS Jitter (fs)

-100 -

100- .RM S Jitter
-110 --
110 ,159 fs

-120

-125-

-130-

-135-

-140-

-145 ..-- -- - --- --- -

-150

10a 10 10, 10f 10, 10,

Frequency (Hz)

b) 7.57 pJ State
1

3  
10' 10, 10, 10, 10

-7r, , ,.. . . . . ...

- Phase Noise (dBc/Hz)
------ RMS Jitter (fs)

RMS Jitter
513 fs

1o 10' 10o 101 107

Frequency (Hz)

d) 10.96 pJ State
10 10,

a

.0

-80 -

-85-

-0 -

-95-
-100-
-105-

-110-

-115-

-120-
-125-
-130 -

-135-

-140-

-145-

-150-

c) 9.37 pJ State

.5

z

(L

10, 10 10, 10,

-so Phase Noise (dBc/Hz) 450

-85 ------ RMS Jitter (fs) 400
-90-
- RMS Jitter "-100 300

-105-
* 428 fs 250

-115 -200
-120

-125 150

-130 100

-135
50

-140-

-145 -- - -- - - 0
-150

,. . .. -50

10a 1 10, 10,

Frequency (Hz)

e) 12.25 pJ State

10 10

Figure 5-35 Phase noise and integrated RMS timing jitter plots for six recorded power

levels of the 1570 nm state.

Figure 5-36(a) plots the reasonably linear increase in output power given increasing

pump power. Figure 5-36(b) plots the jitter associated with each of those power levels.
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Although the output power was monotonically increasing-giving no indication of

changing cavity states-the timing jitter markedly increases for the 314 mW and 358 mW

pump power levels.
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Figure 5-36 (a) Output power for increasing pump powers of the 1570 nm state. (b)

Integrated RMS timing jitter for the recorded power levels of the 1570 nm laser state.

5.4.6.5 Pulse Width Analysis

This state did not really agree with soliton mode-locking theory. Plotted below is a

summary of the relevant results of the pulse width calculations and measurements.

The 1570 nm state of this short cavity fiber laser should still operate via SBR initiated

soliton mode-locking. Figure 5-37 plots the measured, calculated, or predicted pulse widths

at a given pulse energy for the assumption that the laser is outputting these sech shaped

pulses.
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1570 nm State Sech Pulse Widths
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Figure 5-37 Data and simulations of the output time domain pulse width of the 1 GHz
laser's 1570 nm state given increasing output pulse energies. This data assumes a
hyperbolic secant pulse envelope shape.

The measurements and curve fits for this laser state were different from the previous

two. First, as the pump power was increased and the optical bandwidth increased the

measured pulse widths also increased. One would expect they should have been decreasing

or at least remaining about the same as in the previous state. Also, the soliton area theorem

does not appear to be valid for the optical spectral measurement of this state. The only

uncertainty in the calculations was the fiber nonlinearly, n, and the largest value that can

reasonably assumed for a perfect linear polarization state is 3.2 [7]. Thus, assuming that

perfectly linear polarization state in the cavity (likely not valid because the fiber was

contorted in the usual birefringence inducing position) the soliton theory predicted pulse

widths for an m of 3.2 is plotted in blue squares. Using a smaller (more reasonable) value of

m would only move the curve up and indicate an even worse fit.

Since the spectral widths, fitted assuming sech pulses and plotted as green circles,

yield pulse durations much shorter than the soliton theory widths (plotted as blue squares),
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it is assumed some other mechanism must also be affecting this cavity. Despite this, for

completeness, the optical spectral widths were still input to the split step simulations to see

what output pulse widths might be expected after propagating through the 2.7 m of output

fiber. Results of those simulations are plotted as red triangles in Figure 5-37. For these

broader bandwidths and moderate power levels, the nonlinearities of the fiber were

significant enough to theoretically broaden the pulses by as much as 200 fs. Interestingly,

the broadening spectrum and the increasing power influences that should have been

decreasing the pulse widths were evenly balanced by the nonlinear response of the fiber to

basically keep the simulated pulse widths at the same value through the entire range of

input powers. Would the autocorrelation measurements in the lab confirm this prediction?

Plotted in purple down arrows, the sech fitted autocorrelation data recorded

continually increasing pulse widths for increasing pump power. We do not have a

satisfactory explanation for these results but we can point to the CW modes in the cavity

and perhaps greater pulse broadening effects from the fiber or other measurement

components in the autocorrelation system as possible causes of this behavior.

5.4.7 Gaussian Pulse Shape

The other common pulse envelope shape that is possible from a mode-locked laser is

the Gaussian. A Gaussian pulse, for the same 3dB bandwidth, will be broader near the peak

and narrower down in the wings of the pulse than a sech shape. Curve fitting optical spectra

or autocorrelation traces will typically yield a broader pulse width for the Gaussian fit than

for the sech and thus the sech fits are more commonly reported in the literature. However,

despite the optical spectra for every recorded power level of all three laser states curve

fitting a sech pulse shape, the autocorrelation data for almost all recorded power levels of all

three laser states fitted a Gaussian pulse shape. Therefore, in an attempt to see if perhaps the

laser is outputting Gaussian pulses the pulse width analysis was also carried out assuming a

Gaussian pulse shape and the results for the 1560 nm state are plotted in Figure 5-38.
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1560 nm State Gaussian Pulse Widths
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Figure 5-38 Data and simulations of the output time domain pulse width of the 1 GHz
laser's 1560 nm state given increasing output pulse energies. This data assumes a Gaussian
pulse envelope shape.

For the sake of visual comparison and reference, the same soliton theory line from

Figure 5-20 is plotted in blue squares. These data points are really not valid for a Gaussian

pulse shape assumption so it is not an issue if the other Gaussian data points do not match.

The green circle line plots the ideal transform limited pulse widths calculated from a

Gaussian fit of the optical spectrum. Recall from Figure 5-14 for example that the Gaussian

fit was not as good as the sech but it was a decent fit for about 10 dB so it is used as the

starting number for the simulations while keeping in mind this caveat.

Next, with the OSA Gaussian fitted pulse widths as the seed pulse, and assuming

that linear dispersion is not the only process shaping the pulses in the fiber, the OSA pulse

widths are input along with their corresponding pulse energies and central wavelengths

into the split step simulations. Surprisingly, for these power levels the nonlinear effects of

the fiber were significant enough to theoretically shorten the pulses by as much as 10% as
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they traveled down the 2.7 meters of fiber. Those results are plotted in red triangles.

Interestingly the pulse width predicted by this method nearly matched the measured

autocorrelation data pulse width (for a deconvolved Gaussian assumed curve fit) for the

lowest pump power state.

This trend did not continue as the autocorrelation measurements (plotted in purple

down arrows) trended along a different slope than the spectral and theoretical data

generally followed. As the pulse energy increased, the measurements stopped getting

shorter like they were expected to. Basically, since the data trend for the 1560 state or any

other state (calculated but not included here) does not match the slope trend or any of the

spectral or simulation pulse width results the assumption that this laser was outputting

Gaussian pulses does not appear valid.

5.4.8 Discussion

The purpose of this laser state study was to determine how well each state agreed

with soliton mode-locking theory. We can say that Gaussian and sech curve fit results of the

optical spectra confirm to the soliton mode-locking theory postulate of sech shaped soliton

pulses. This was consistent across all collected data sets as in every case the sech fit was

much more accurate to the data down to the noise floor than the Gaussian.

We can also say that the three laser states all followed the trend of greater intra-

cavity powers and higher energy solitons yielding correspondingly broader bandwidths.

These broadening bandwidths should have led to a steady decrease in the measured output

pulse widths. This was not always the case however.

The data indicate that the pulse to pulse timing jitter correlated with the pulses

widths reaching a minimum beyond which they would not shorten. This situation was not

so evident in the 1560 nm state data because the pulses were somewhat longer. The timing

jitter within this stable mode-locking regime was very low. At the same time as pulses

corresponded less to the transform limit, jitter increased. These observations are all

consistent with possible filtering and nonlinear phase effects that result in increased

shedding tot the continuum.
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Also, the fitted pulse shape of the autocorrelation data conformed better to a

Gaussian than a sech. Since sech pulses do not just transform to Gaussian shapes while

propagating through fiber or being frequency doubled in a nonlinear crystal some other

pulse shaping effects have taken effect during the autocorrelation measurement process.

Further experiments would need to be designed and implemented to conclusively know the

exactly reasons for this pulse shape transformation.

5.5 Conclusions

The 1 GHz repetition rate end-abutted SBR linear cavity erbium doped fiber laser

technology developed here at MIT is a positive advance in compact, turnkey, low jitter fiber

source development. The first generation version of the laser taught valuable lessons about

the critical points of the system to improve. The input/output coupling and the importance

of the fiber to SBR interface being the important upgrades necessary to reducing losses and

improving the pulse quality.

Once those improvements were implemented in the second generation system, more

subtle issues began to become evident. The RF sidebands on the fundamental frequency and

its harmonics pointed toward polarization related vector soliton behavior over many round

trips in the cavity. Techniques were developed to minimize and eliminate those modes via

fiber birefringence control [8]. The SBRs developed issues with burning when the laser was

being powered up and a series of solutions were implemented for that issue. Applying a 980

nm pump light reflective coating to the mirror, insulating the mirror from the erbium fiber

by splicing a short piece of undoped single mode fiber, thinning the wafer substrate, and

mounting the SBR with thermally conductive silver paste all contributed to reducing the

thermal load on the mirror and preventing burn damage.

Despite these refinements, the laser still demonstrated some interesting behavior. It

would favor not just one center wavelength for mode-locking; several independent stable

states could be isolated if the SBR to fiber coupling was manipulated carefully. Hyunil and

Michelle had demonstrated the 1570 nm state to have the broadest output spectrum. Dave

Chao discovered through his thesis work that the state centered on 1560 nm was by far the
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lowest timing jitter. A comprehensive pulse width study was initiated to attempt to

characterize and understand these different laser states and their output characteristics.

The purpose of the pulse width laser state study was to determine how well each

mode-locking state agreed with soliton mode-locking theory. Overall, several lessons were

learned regarding the important connection between jitter and pulse width. Basically, the

less transform limited the pulses are the more jitter there is. If the oscillator is very quiet, the

spectrum broadens and pulses shortened with increasing energy at the rate expected from

the spectral data and the soliton theory. As pulse shortening deviates from theory, jitter

increases.

Therefore, to increase the usefulness of this high repetition rate laser source

technology the following points are important in locating and maintaining a stable, low

jitter state.

" Eliminate CW mode break through

* Eliminate RF spectral sidebands

* Careful control over fiber to SBR state coupling

There were two different types of continuous wave (CW) modes that could manifest

themselves on the optical spectrum trace. One would be a mode separated in wavelength

from the main pulse that would appear throughout the mode-locking regime. The other is a

mode that only appears as pulse energy is increased too far. The only way to avoid the

excess energy spike is to not pump the laser beyond the maximum soliton energy the cavity

can support. The primary way to avoid the off-wavelength CW spikes was careful cavity

polarization management.

Fortunately, polarization management is the same approach required to eliminate

the vector soliton behavior. Tuning the cavity polarization through fiber birefringence can

synchronize the multi-round trip polarization rotation frequency with the repetition rate

and eliminate the beat frequencies that appear in the RF data traces.

Lastly, to optimize the laser state and minimize the timing jitter, careful control over

the SBR to fiber coupling is required. For this laser package to be truly useful it would need

to be packaged in a robust manner and that means the mechanics securing the fiber to the
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mirror would need to be reengineered from what we have built in the lab. The lab device is

capable of obtaining the low jitter state but maintaining it is delicate and not possible if the

fiber is moved around. The fiber position also requires careful positioning and mechanics in

order to hold the lowest jitter mode-locking states. Polarization maintaining fiber

throughout could solve this problem.

Overall, this 1 GHz repetition rate fiber laser represents a solid advance in the field

of 1550 nm femtosecond pulse laser sources and it has already been put to use as the source

laser of experiments ranging from frequency comb generation [5] to on-chip pulse

interleaving [9] to optical analog to digital converters [10]. With further engineering

refinement it could find further real world applications as a compact, portable, turnkey,

GHz femtosecond fiber laser.
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Chapter 6 Conclusions and Future

Work
The work presented in this thesis details steps taken along the evolving path toward

increasing the repetition rate of erbium-doped femtosecond fiber lasers while maintaining

strong output powers and low timing jitter. A stable, 1 GHz, low jitter, femtosecond pulse

linear cavity erbium-doped fiber laser is demonstrated. The improvements were made

through a combination of careful design and the use of new components (highly doped

erbium gain fibers, powerful single mode pump diodes, custom SBR's). As a review; the

following presents the primary lessons taken from each laser design.

" Chapter 3 - High Repetition Rate, High Average Power, Femtosecond

Erbium Fiber Sigma Lasers

A modification to the P-APM fiber laser was introduced and scaled to 300

MHz. GHz repetition rates will be difficult to achieve with a P-APM system.

" Chapter 4 -1 GHz Linear Cavity Laser - Free Space SBR

A 1 GHz repetition rate SBR performance study reveals that soliton pulse

shaping effects influence the pulse as much as the SBR effects. Also, the SBR's

require protection from heat and Q-switched operation to avoid burn

damage and total failure.

* Chapter 5 -1 GHz Linear Cavity Laser - End Abutted SBR

Three distinct mode-locking states of a 1 GHz repetition rate mode-locked

fiber laser with an end abutted SBR were investigated. The cavity was

sensitive to the SBR-to-fiber coupling mechanics, and one state shows

markedly less jitter than the others.

An understanding of the optimum operating conditions for a high repetition rate,

low jitter, femtosecond fiber laser begins to emerge. Overall, a great deal has been learned

by these studies, however many questions remain and further investigation into how Q-

switching is affecting the SBR burning, what the dispersion balance within the short cavity
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is doing to the soliton pulse shaping, and exactly why the autocorrelation pulse shapes

fitted a Gaussian shape better than the expected sech shape could provide interesting clues

to why these systems performed the way they did.

Future directions the linear cavity erbium doped femtosecond fiber laser technology

could be taken primarily include the use of better fibers and further optimized absorbing

mirrors. The fibers would need to be polarization maintaining and doped more heavily to

enable higher gain in less length. The mirrors will need to be more thermally resilient and

the protective coating's contributions to the pulse shaping fully understood. Finally,

engineering techniques to fuse the mirror to the fiber in a repeatable fashion to always

ensure operation in the low jitter 1560 nm state would open the door to integrating the 1

GHz laser system in a commercial package that could be utilized as a femtosecond source in

real-world applications.

204


