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Abstract

Myerson's seminal work provides a computationally efficient revenue-optimal auction for sell-

ing one item to multiple bidders. Generalizing this work to selling multiple items at once has

been a central question in economics and algorithmic game theory, but its complexity has

remained poorly understood. We answer this question by showing that a revenue-optimal

auction in multi-item settings cannot be found and implemented computationally efficiently,

unless ZPP = P. This is true even for a single additive bidder whose values for the

items are independently distributed on two rational numbers with rational probabilities.

Our result is very general: we show that it is hard to compute any encoding of an optimal

auction of any format (direct or indirect, truthful or non-truthful) that can be implemented

in expected polynomial time. In particular, under well-believed complexity-theoretic as-

sumptions, revenue-optimization in very simple multi-item settings can only be tractably

approximated.
We note that our hardness result applies to randomized mechanisms in a very simple

setting, and is not an artifact of introducing combinatorial structure to the problem by

allowing correlation among item values, introducing combinatorial valuations, or requiring

the mechanism to be deterministic (whose structure is readily combinatorial). Our proof is

enabled by a flow interpretation of the solutions of an exponential-size linear program for

revenue maximization with an additional supermodularity constraint.

Thesis Supervisor: Constantinos Daskalakis

Title: Associate Professor
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Chapter 1

Introduction

Consider the problem facing a seller who is looking to sell items to bidders given distribu-

tional information about their valuations, i.e. how much they value each subset of the items.

This problem, called the optimal mechanism design problem, has been a central problem in

economics for a few decades and has recently received considerable attention in computer

science as well. The special case of a single item is well-understood: in his seminal paper [18],

Myerson showed that the optimal single-item auction takes a simple form-when the values

of the bidders for the item are independent. Moreover, if every bidder's value distribution

is supported on rational numbers with rational probabilities, the optimal auction can be

computed and implemented computationally efficiently-see e.g. [6]. On the other hand,

the general (multi-item) problem has been open since Myerson's work and has remained

poorly understood despite significant research effort devoted to its solution-see [16] and its

references for work on this problem by economists.

More recently, the problem received considerable attention in computer science where

algorithmic ideas have provided insights into its structure and computational complexity.

Results have come in two flavors: approximations [8, 9, 4, 1, 15, 11], guaranteeing a constant

fraction of the optimal revenue, and exact solutions [10, 6, 2, 7], guaranteeing full revenue

extraction. These results provide comprehensive solutions to the problem, even under very

general allocation constraints [7], but do not pin down its computational complexity. In par-

ticular, all known exact mechanisms can be computed and implemented in time polynomial

in the total number of valuations a bidder may have-i.e. the size of the support of each

13



bidder's valuation-distribution; so they are computationally efficient only when the valuation

distributions are provided explicitly in the specification of the problem, by listing their sup-

port together with the probability assigned to each valuation in the support. But this is not

always the computationally meaningful way to describe the problem. The most trivial set-

ting where this issue arises is that of a single additive bidder1 whose values for the items are

independent of support two. In this case, the bidder may have one of 2" possible valuations,

where n is the number of items, and explicitly describing her valuation-distribution would

require Q( 2 ") vectors and probabilities. However, a mechanism with complexity polynomial

in Q(2") is clearly inefficient, and one would like to pay complexity polynomial in the dis-

tribution's natural description complexity, i.e. the bits required to specify the distribution's

n marginals over the items. Such efficient mechanisms have not been discovered, except in

item-symmetric settings [10].

1.1 Our results

In this work, we study situations where we are given a more succinct description of the

distribution of possible valuations. Previous work [5, 20, 11] has provided hardness results

but only for special classes of mechanisms or complicated classes of valuations, failing to

characterize the computational complexity of the optimal mechanism design problem. We

achieve this by showing that optimal mechanism design is computationally intractable, even

in the most trivial settings.

In particular, we consider the case where we only have one bidder who is additive over

the items and her value for every item comes from an independent distribution of support

two. As argued before, there is an exponential number of different valuation functions that

the bidder may have but there exist implicit ways of describing them that are polynomial in

the number of items, for example by writing down the marginal for each item.

Our work is divided in two parts. In the first part, we focus on deterministic mechanisms

where we need to compute the price for one or multiple items while in the second we study

'An additive bidder is described by a value-vector (vi,... , Vn), where vi is her value for item i E [n), so
that her value for a subset S of items is ZiES vi.
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much more general mechanisms which are allowed to be randomized and may involve many

phases of interaction between the seller and the bidders.

1.1.1 Pricing mechanisms

We consider first the problem of optimally pricing a single good for a single buyer whose val-

uation is a sum of independent random variables. In our context, the probability distribution

of the good's valuation has an exponentially sized support, but has a succinct description

in terms of each component variable's distribution. The seller must choose a price to offer

the good. The buyer will accept the offer (and pay the amount the seller asked for) if her

valuation for the good is at least the price, and will reject the offer otherwise (giving the

seller zero revenue). The seller's goal is to choose a price to maximize his expected revenue.

By Myerson [18), the best such pricing scheme is in fact the the optimal mechanism in this

setting.

This problem occurs fairly naturally. When selling a complex product (for example, a

car), there are a number of attributes (color, fabric, size, etc) that a buyer may or may not

value highly. The buyer's overall valuation of the car may be the sum of her valuation of the

individual attributes. Assuming independence of the buyer's preferences for each attribute,

her overall valuation of the car can be modeled as a sum of independent random variables.

We show that it is #P-hard to compute the optimal price. For our reduction, we consider

a class of instances where we prove that there are only two candidate prices for extracting

the optimal expected revenue. However, we show that distinguishing which of the two prices

is better is equivalent to the counting version of the subset sum problem which is known to

be #P-hard [22].

This hardness result can be directly translated to the multi-item setting. It corresponds

to the simple case we described above, where there is one additive bidder and all items are

independently distributed, under the restriction that items cannot be sold separately so a

single price must be found for the bundle of all items.

15



1.1.2 General Mechanisms

The previous result for multi-item mechanisms only applies to mechanisms of a restricted

format, selling all items for a single price. In fact, if this restriction is dropped, for all

instances considered in our reduction, there exist different simple mechanisms that are easily

computable and achieve higher revenue.

To show a much more general result, we consider general mechanisms under the very sim-

ple setting we described above, making no assumptions about the format of the mechanism

or how it is specified. We only require that the mechanism can be computed and executed

in expected polynomial time. The main difficulty in proving hardness for this very relaxed

problem is that, in contrast to the single-item case, the structure of the optimal mechanism

is poorly understood. Even when there are only two items, the optimal mechanism may be

very complicated and counter-intuitive and may require randomness to achieve high expected

revenue. Therefore, a necessary step to analyze the problem is to identify a simple class of

instances, for which we can understand the form of the solution. At the same time though,

this class needs to be rich enough so that we are able to embed a hard problem and perform

a hardness reduction.

In this work, we develop a framework that allows us to compute a class of instances whose

solutions correspond to solutions to a well known combinatorial problem, the minimum-

cost flow problem. This flow-interpretation enables us to understand the solution behavior.

However, the flow instances we obtain are defined on exponential-size graphs with succinct

description and therefore we cannot directly apply a flow algorithm to solve them efficiently.

Using this class of instances, we obtain our main hardness result for Optimal Mechanism

Design. We show that, unless ZPP = PO, we cannot efficiently compute a revenue-optimal

mechanism that can be executed in expected polynomial time.

1.2 Contribution

The contribution of our results is two-fold. First, we give a definitive proof that approxi-

mation is necessary for revenue optimization beyond Myerson's single-item setting. Approx-

imation has been heavily used in algorithmic work on the problem, but there has been no

16



justification for its use, at least in simple settings that don't induce combinatorial structure

in the valuations of the bidders (sub-modular, OXS, etc.), or the allocation constraints of

the setting. Second, our results represent advancement in our techniques for showing lower

bounds for optimal mechanism design. Despite evidence that the structure of the optimal

mechanism is complicated even in simple settings (see Section 3.3), previous work has not

been able to harness this evidence to obtain computational hardness results. Our approach,

using duality theory and flows to narrow into a family of instances for which this is possible,

provides a new paradigm for proving hardness results in optimal mechanism design and, we

expect, outside of algorithmic game theory. Again we note that complexity creeps in not

because we assume correlations in the item values (which can easily introduce combinatorial

dependencies among them), or because we restrict attention to deterministic mechanisms

(whose structure is readily combinatorial), but because our approach reveals combinatorial

structure in the optimal mechanism, which can be exploited for a reduction. See further

discussion in Chapter 3.

1.3 Related Work

We have already provided background on optimal mechanism design in economics literature,

as well as algorithmic solutions to the problem. We summarize the state of affairs in that

exact, computationally efficient solutions are known for broad multi-item settings, as long

as the bidder types are independent and their type-distributions are given explicitly. In

particular, the runtime of such solutions is polynomial in the size of the support of each

bidder's type-distribution, which may be exponential in the natural description complexity

of the distribution, e.g., when the distribution is product over the items.

There has also been considerable effort towards computational lower bounds for the

problem. Nevertheless, all known results are for either somewhat exotic families of valuation

functions or distributions over valuations, or for unnatural correlated distributions.

In the first vein, Dobzinski et al. [11] show that optimal mechanism design for OXS

bidders is NP-hard via a reduction from the CLIQUE problem. OXS valuations are described

17



Number of Items Simple Distributions [Simple Valuations I Unrestricted]

[DFK'11] many yes no yes

[Briest'08] many no yes no
[PP'11] one no yes no

Thm 1 one yes (implicit) yes yes
many yes yes no

Thm 2 many yes yes yes

Table 1.1: Summary of lower bounds for Optimal Mechanism Design. We provide the most
general setting in which every result applies. For this purpose we compare the results based
on different properties: Number of Items indicates whether the result is for single- or multi-
item auctions. Simple Distributions indicates that the result does not depend on complicated
correlated distributions to show hardness. Simple Valuations indicates that the result does
not rely on artificial and highly combinatorial valuation functions to show hardness but
instead uses simple valuation functions, e.g. additive or unit-demand. Unrestricted indicates
that the result does not apply only to restricted classes of mechanisms (e.g. deterministic)
but holds true for all possible mechanisms (even randomized). The more of these properties
a lower-bound satisfies the more general it is.

implicitly via a graph, include additive, unit-demand2 and much broader classes of valuations,

and are more amenable to lower bounds given the combinatorial nature of their definition.

(See further discussion in Chapter 6.)

Other related work shows lower bounds for mechanism design when the bidder valuations

are simple but distributions are allowed to be correlated. Briest [5] shows inapproximability

results for selling multiple items to a single unit-demand bidder via an item-pricing auction,3

when the bidder's values for the items are correlated according to some explicitly given

distribution. More recently, Papadimitriou and Pierrakos [20] show APX-hardness results

for the optimal, incentive compatible, deterministic auction when a single item is sold to

multiple bidders, whose values for the item are correlated according to some explicitly given

distribution. We note that for the settings of Briest [5] and Papadimitriou-Pierrakos [20] the

restriction to deterministic mechanisms is crucial. The instances considered are polynomial-

time solvable via linear programming when the determinism requirement is removed [11, 10].

2 A unit-demand bidder is described by a vector (Vi,... , Vn) of values, where n is the number of items.
If the bidder receives item i, her value is vi, while if she receives a set of more than one item, her value for
that set is her value for her favorite item in the set.

3An item-pricing auction posts a price for each item, and lets the bidder buy whatever item s/he wants.
It is clearly a deterministic auction as there is no randomness used by the auctioneer. A randomized auction
for this setting could also be pricing lotteries over items.
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Compared to these lower bounds, our goal is instead to prove intractability results for

very simple valuations (namely additive) and distributions over them (namely the item

values are independent and the distribution of each item is given explicitly) which have no

combinatorial structure incorporated in their definition. Moreover, we aim to provide very

general lower bounds without making any assumptions on the format of the mechanism or

how it is specified. Table 1.1 summarizes the comparison between the different lower bounds.

Furthermore, in a slightly different line of work, Hart and Nisan [14] introduce an alter-

native notion for analyzing the complexity of auctions. They think of an auction as a large

list of choices given to the buyers where each choice corresponds to a (possibly randomized)

allocation of the items and a price. Given this representation, they study the menu-size

complexity of auctions where mechanisms are ranked according to the number of choices

they offer to the buyers.

We note that our results, translated to this setting, imply that menu-size complexity

is not compatible with the notion of computational complexity that was considered above.

Even when focusing on mechanisms with a menu of size one, it can be computationally

hard to compute the optimal such mechanism. It is not difficult to verify that the optimal

mechanism of menu-size one is deterministic and offers the bundle of all the items for the

optimal bundle price [14]. However, as we show in Theorem 1, computing the optimal such

price is #P-hard.

1.4 Further Results and Discussion

In addition to our main results, we show that, beyond additive valuations, computational

intractability arises for very simple settings with submodular valuations, namely even for a

single, budget-additive, 4 quasi-linear bidder whose values for the items are perfectly known,

but there is uncertainty about her budget. This is presented as Theorem 3 in Section 6.1.

Interestingly, the hard instances constructed in the proof of Theorem 3 have trivial in-

direct mechanism descriptions, but require NP power for the bidder to determine what to

4A budget-additive bidder is described by a value-vector (vi, ... , v), where vi is her value for item i E [n],
and a budget B so that her value for a subset S of items is min{EiES vi, B}.
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buy. We show that this phenomenon is quite general, discussing how easily implementable,

optimal, indirect mechanisms may be trivial to compute, if the bidders are assumed suffi-

ciently powerful computationally. This is discussed in Section 6.2, and further justifies the

assumptions about the computational abilities of the bidders made in our framework (in

Section 3.1) for studying the complexity of optimal mechanism design.

20



Chapter 2

Hardness of Pricing Mechanisms

2.1 Preliminaries

To illustrate the problem that arises when considering implicitly defined distributions, we

first consider the problem of optimally pricing a single good for a single buyer whose valuation

is a sum of independent random variables with support 2. In our context, the probability

distribution of the good's valuation has an exponentially sized support, but has a succinct

description in terms of each component variable's distribution. The seller must choose a

price P to offer the good. The buyer will accept the offer (and pay P) if her valuation is at

least P, and will reject the offer (giving the seller zero revenue) if her valuation is strictly less

than P. The seller's goal is to choose P to maximize his expected revenue. By Myerson [18],

the best such pricing scheme is in fact the the optimal mechanism in this setting.

This problem occurs fairly naturally. When selling a complex product (for example, a

car), there are a number of attributes (color, fabric, size, etc) that a buyer may or may not

value highly. The buyer's overall valuation of the car may be the sum of her valuations of the

individual attributes. Assuming independence of the buyer's preferences for each attribute,

her overall valuation of the car can be modeled as a sum of independent random variables.

Definition 1 (Sum-of-Attributes Pricing). We define the Sum-of-Attributes Pricing

problem as follows: Given n pairs of nonnegative integers (u 1 , v1 ), (u2 , v2 ),- -, (un, vn) and

rational probabilities P1,P2,... ,Pn, determine the optimal price P* which maximizes P*

21



Pr[Z'l Xi > P*], where the Xi are independent random variables taking value ui with

probability pi and vi with probability 1 - pi.

Equivalently, we can view the Sum-of-Attributes Pricing problem in the multi-item

setting as a Grand Bundle Pricing problem. In this setting, there is a seller with n

items and a buyer whose values for the items X 1 , ... , Xn are independent random variables

drawn from known distributions. We seek the optimal price to sell the "grand bundle",

i.e. the collection of all n goods, such that the seller maximizes his expected revenue. We

assume that the buyer is additive, meaning that her value for the grand bundle is simply

the sum E Xi of her values for the individual items. As discussed in [17], selling only the

grand bundle is optimal in several natural contexts. Furthermore, bundling oftentimes has

a revenue guarantee close to the optimal mechanism [13]. The problem of optimally pricing

the grand bundle is furthermore interesting in its own right [12].

2.2 Hardness of Sum-of-Attributes Distributions

The next theorem shows that the task of determining the optimal price P can be hard, even

in this simple setting.

Theorem 1. The Sum-of-Attributes Pricing problem and the Grand Bundle Pricing

problem are #P-hard.

Proof. We will show how to use oracle access to solutions of the GBP problem to solve the

counting analog of the subset sum problem, which is #P-complete. 1

The idea of our proof is to design an instance of the GBP problem for which the optimal

price is one of two possibilities. A single parameter (in this case, the probability Pn+1 for

the last good) determines which of these two options is optimal. By repeatedly using a GBP

oracle and varying the value of Pn+1, we can determine the exact threshold value of Pn+1,

which provides sufficient information to deduce the answer to the #-subset sum problem.

Given an input {ao, a1 ,... , an_1 } and a target T < E ai of positive integers to the #-

subset sum problem, our goal is to determine the number of subsets of the ai's which sum

'Indeed, the reduction from SAT to SUBSET-SUM as presented in [22] is parsimonious.
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to at least T.

We create an input to GBP containing n + 1 items, where each of the first n items have

ui = ai and vi = 0. The value of item n + 1 has un+1 = T + 1 and v"+1 = 1-

For the first n items, we fix

A 1

2"n(n+1+E" ai)2-

Observe that each of these items has the same pi value. The probability of all n of these

items being 0 is:

n a.)2) 1
2nn(n + 1 + E>1- 2n(n + 1 + E" 1 a)2

which is very close to 1.

We denote by p the (currently undetermined) probability pn+1 for the last item having

value T + 1.

Consider pricing the grand bundle at value B. We have the following claims:

1. If B = 1, the expected revenue is 1.

2. If 1 < B < T + 1, then the expected revenue is at most

B p+ 1 + P n
2"(n + 1 + E"= ai)2

3. If B = T + 1, then the expected revenue is at least p(T + 1).

4. If T + 1 < B < T ± 1 + " aj, then the expected revenue is at most

n1 1 + E" aiT + 1 + ai < 1 a < 1.
2n(n +1 + E" ai)2J 2n'(n + 1 + ai2

5. If B>T±+1+ " aj, then the expected revenue is 0.

The fourth and fifth cases are never optimal, since they are both dominated by setting

B = 1. We claim that the second case is likewise never optimal. Suppose for the sake of

contradiction that some integer grand bundle price value B strictly between 1 and T + 1
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were optimal. Then we would have the following two constraints:

* B (P + 2n(n±1±Z 1ai)2 >

* B (p+ 2"(n+1+n ja)2) > (T + 1)p.

Let

2n(n +1+ ai)2

We will now show that no value of p exists for which both of the above constraints are

simultaneously satisfied. From the first constraint, we deduce p + E(1 - p) > 1/B and thus

1/B - e 1/T - E
p-c;> >- > 1/T -c.

Since T < E aj, we know that

1 1 1 1 1
1/T - E > 1 - > >

-Ea a 2"(n=+1+ a) 2 ~E a 2nEaj - 2Eai'

Therefore, the first constraint implies that p > 2 -

From the second constraint, we deduce B(p + e(1 - p)) > (T + 1)p and thus

Be
- T + 1 - B + BE

Since B < T, we know that T + 1 - B + BE > 1. Therefore,

p < BE <Te <EajE= * , < .
2n(n + 1 + En ai)2 2 E a;

Both constraints on p cannot be satisfied simultaneously.

In summary, we have shown the following:

For any p, the optimal grand bundle price is either 1 or T + 1.

We note the monotonicity property that if, for some p, the optimal bundle price were

T + 1, then the optimal price would be T + 1 for any p' > p.2 Therefore, for any T, there

2This follows from the fact that the expected revenue from selling the bundle at T + 1 will only increase
as p increases.

24



exists a unique p' for which the expected revenue of selling the bundle at price T + 1 is

exactly the same as the expected revenue of selling the bundle at price 1.

We denote by V the total value of the first n items. Suppose that we have found a p*

such that the expected revenue of selling the grand bundle at T + 1 is exactly 1. (We notice

that such a p* must satisfy p*(T + 1) < 1.) Then

1 = (T + 1) (p* + (1 - p*)P[V > T])

and thus

1- (T + 1)p*
P >p*

Furthermore,

P* 1/(T + 1) - P[Vn >: T]
1 - P[V > T]

Therefore, if we could solve for p*, it would be simple arithmetic to compute P[V ;> TI.

We notice that
n

P[Vn > T] = p1 - p1)n-k - S(k,T)
k=0

where S(k, T) is the number of subsets of the ai which sum to at least T. By our choice

of pi being sufficiently small, we know furthermore that (1 - pi)/pi > 2"n, and therefore

p1- pi)i > 2"p-- 1 (1 - pi)n-i- for all i. This means, in particular, that we can greedily

compute S(k, T) for each k by starting with k = 0 and setting S(k, T) to be as large as

possible consistent with the already assigned S values and the computed value of P[V, > T].

We exactly solve for p* using binary search: In each step of the search, we use an oracle

for the GBP problem to determine if the optimal grand bundle price is 1 or T +1. Since there

are only 2" possible values of P[V > T] (and specifying each requires only a polynomial

number of bits3 ), we would need at most n calls to the GBP oracle to exactly determine p*.

E

This result demonstrates the difficulty of designing multi-dimensional distributions when

the joint distribution of the items is not expilicitely given in the input. However, it does not

3 1n particular, each term of the form p'(1 - pi)"-i has polynomial length.
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completely pin down the complexity of multi-dimensional mechanism design, since one could

come up with a better mechanism, not restricted to selling all items together, that is easier to

compute and achieves higher revenue. In fact, for all instances considered in the reduction,

the simple mechanism that sells each item independently achieves higher revenue than selling

the grand bundle. In the next few chapters, we tackle this problem and provide much more

general complexity results making no assumptions about the format of the mechanism or

how it is specified.
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Chapter 3

Overview of General Mechanisms

The results of the previous chapter apply to multi-item mechanisms of a restricted format,

selling all items for a single price. If this restriction is dropped it is not clear whether there

is an efficient mechanism that computes and runs the optimal auction. Our goal in the

following two chapters, is to investigate the behavior of general mechanisms and provide

lower bounds on their complexity. We characterize the optimal mechanism for a sufficiently

large class of input instances and then use those to reduce a computationally hard problem

to the problem of optimal mechanism design. Our main result is the following:

Theorem 2. There is no expected polynomial-time solution to the optimal mechanism design

problem (formal definition in Section 3.1) unless ZPP D P#P.

Moreover, it is #P-hard to determine whether every optimal mechanism assigns a specific

item to a specific type of bidder with probability 0 or with probability 1 (at the Bayesian

Nash equilibrium of the mechanism), given the promise that one of these two cases holds

simultaneously for all optimal mechanisms.

The above are true even in the case of selling multiple items to a single additive, quasi-

linear' bidder, whose values for the items are independently distributed on two rational num-

bers with rational probabilities.

'A bidder is quasi-linear if her utility for purchasing a subset S of the items at price ps is vs - Ps, where
vs is her value for S.
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3.1 The Optimal Mechanism Design Problem

To explain our result, we describe the Optimal Mechanism Design (OMD) problem more

formally. As we are aiming for a broad lower bound we take the most general approach on the

definition of the problem placing no constraints on the form of the sought after mechanism, or

how this mechanism is meant to be described. Hence, our lower bounds apply to computing

direct revelation mechanisms as well as any conceivable type of mechanism.

INPUT: This consists of the names of the items and the bidders, the allocation constraints of

the setting (specifying, e.g., that an item may be allocated to at most one bidder, etc.), and

a probability distribution on the valuations, or types, of the bidders. The type of a bidder

incorporates information about how much she values every subset of the items, as well as

what utility she derives for receiving a subset at a particular price. For example, the type

of an additive quasi-linear bidder can be encapsulated in a vector of values (one value per

item). We won't make any assumptions about how the allocation constraints are specified.

In general, these could either be hard-wired to a family of instances of the OMD problem,

or provided as part of the input in a computationally meaningful way. For the purposes

of our intractability results, the allocation constraints will be trivial, enforcing that we can

only allocate at most one copy of each item, and we restrict our attention to instances with

precisely these allocation constraints. As far as the type distribution is concerned, we restrict

our attention to additive quasi-linear bidders with independent values for the items. So, for

our purposes, the type distribution of a bidder is specified by specifying its marginal on each

item. We assume that each marginal is given explicitly, as a list of the possible values for

the item as well as the probabilities assigned to each value.2

DESIRED OUTPUT: The goal is to compute a (possibly randomized) auction that optimizes,

over all possible auctions, the expected revenue of the auctioneer, i.e. the expected sum

of prices paid by the bidders at the Bayes Nash equilibrium of the auction, 3 where the

2There are of course other ways to describe these marginals. For example, we may only have sample

access to them, or we may be given a circuit that takes as input a value and outputs the probability assigned

to that value. As our goal is to prove lower bounds, the assumption that the marginals are provided explicitly

in the input only makes the lower bounds stronger.
3 Informally Bayesian Nash equilibrium is the extension of Nash equilibrium to incomplete-information

games, i.e. games where the utilities of players are sampled from a probability distribution. We won't
provide a formal definition as it is quite involved and is actually not required for our lower bounds, which
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expectation is taken with respect to the bidders' types, the randomness in their strategies

(if any) at the Bayes Nash equilibrium, as well as any internal randomness that the auction

uses.

We note that there is a large universe of possible auctions with widely varying formats,

e.g. sealed envelope auctions, dynamic auctions, all-pay auctions, etc. And there could be

different auctions with optimal expected revenue. As our goal is to prove robust intractability

results for OMD, we take a general approach imposing no restrictions on the format of the

auction, and no restrictions on the way the auction is encoded. The encoding should specify

in a computationally meaningful way what actions are available to the bidders, how the items

are allocated depending on the actions taken by the bidders, and what prices are charged

to them, where both allocation and prices could be outputs of a randomized function of

the bidders' actions. In particular, a computationally efficient solution to OMD induces the

following:

AUCTION COMPUTATION&SIMULATION: A computationally efficient solution to a

family I of OMD problems induces a pair of algorithms C and S satisfying the following:

1. [auction computation] C : I -+ S is an expected polynomial-time algorithm map-

ping instances I E I of the OMD problem to auction encodings C(I) E E; e.g.

C(I) may be "second price auction", or "English auction with reserve price $5",

etc.

2. [auction simulation] S is an expected polynomial-time algorithm mapping in-

stances I E I of the OMD problem, encodings C(I) of the optimal auction for I,

and realized types ti,.. . , tm for the bidders, to a sample from the (possibly ran-

domized) allocation and price rule of the auction encoded by C(I), at the Bayes

Nash equilibrium of the auction when the types of the bidders are ti, ... , tm.

Clearly, Property 1 holds because computing the optimal auction encoding C(I) for an in-

focus on the single-bidder case.

For the purposes of the problem definition though, we note that, if an auction has multiple Bayesian Nash

equilibria, its revenue is not well-defined as it may depend on what Bayesian Nash equilibrium the bidders

end up playing. So we would like to avoid such auctions given the uncertainty about their revenue. Again

this complication won't be relevant for our results as all auctions we construct in our hardness proofs will

have a unique Bayes Nash equilibrium.
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stance I is assumed to be efficient. But why does there exist a simulator S as in Property 2?

Well, when the auction C(I) is executed, then somebody (either the auctioneer, or the bid-

ders, or both) need to do some computation: the bidders need to decide how to play the

auction (i.e. what actions from among the available ones to use), and then the auctioneer

needs to allocate the items and charge the bidders. In the special case of a direct Bayesian

Incentive Compatible mechanism,4 the bidders need not do any computation, as it is a Bayes

Nash equilibrium strategy for each of them to truthfully report their type to the auctioneer.

In this case, all the computation must be done by the auctioneer who needs to sample from

the (possibly randomized) allocation and price rule of the mechanism given the bidders'

reported types. In general (possibly non-direct, or multi-stage) mechanisms, both bidders

and auctioneer may need to do some computation: the bidders need to compute their Bayes

Nash equilibrium strategies given their types, and the auctioneer needs to sample from the

(possibly random) allocation and price rule of the mechanism given the bidders' strategies.

These computations must all be computationally efficient, as otherwise the execution of the

auction C(I) would not be computationally efficient. Hence an efficient solution must induce

an efficient simulator S. Notice, in particular, that S requires that the combined computa-

tion performed by bidders and auctioneer be computationally efficient. This is important as

placing no computational restrictions on the bidder side easily leads to spurious "efficient"

solutions to OMD, as discussed in Section 6.2.

In view of the above discussion, Theorem 2 establishes that, even in very simple special

cases of the OMD problem, there does not exist a pair (C, S) of efficient auction computa-

tion and simulation algorithms, i.e. the optimal auction cannot be found computationally

efficiently, or cannot be executed efficiently, or both. We note that our hardness result is

subject to the assumption ZPP 2 P#P (rather than P Z P#P) solely because we prove lower

bounds for randomized mechanisms.

Remark 1 (Hardness of BIC Mechanisms). A lot of research on optimal mechanism design

has focused on finding optimal Bayesian Incentive Compatible (BIC) mechanisms, as focusing

on such mechanisms costs nothing in revenue due to the direct revelation principle (see [19]

4A mechanism is direct if the only available actions to a bidder is to report a type in the support of her
type-distribution. A direct mechanism is Bayesian Incentive Compatible if it is a Bayes Nash equilibrium
for every bidder to truthfully report her type to the auctioneer.

30



and Section 4.1). As an immediate corollary of Theorem 2 we obtain that it is #P-hard to

compute the (possibly randomized) allocation and price rule of the optimal BIC mechanism

(Corollary 1 in Section 4. 1). However, Theorem 2 is much broader, in two respects: a. in the

definition of the OMD problem we impose no constraints on what type of auction should be

found; b. we don't require an explicit computation of the (possibly randomized) allocation and

price rule of the mechanism, but allow an expected polynomial-time algorithm that samples

from the allocation and price rule.

3.2 Structure of Optimal Mechanisms

There are serious obstacles in establishing intractability results for optimal mechanism de-

sign, the main one being that the structure of optimal mechanisms is poorly understood even

in very simple settings. To prove Theorem 2, we need to find a family of mechanism design

instances whose optimal solutions are sufficiently complex to enable reductions from some

#P-hard problem, while at the same time are sufficiently restricted so that solutions to the

#P-hard problem can actually be extracted from the structure of the optimal mechanism.

However, there is no apparent structure in the optimal mechanism even in the simple case

of a single additive bidder.

To gain some intuition, it is worth pointing out that the optimal mechanism for selling

multiple items to an additive bidder is not necessarily comprised of the optimal mechanisms

for selling each item separately. Here is an example from Hart and Nisan [13]. Suppose

that there are two items and the bidder's value for each is either 1 or 2 with probability j,
independently of the other item. In this case, the maximum expected revenue from selling

the items separately is 2, achieved e.g. by posting a price of 1 on each item. However, offering

instead the bundle of both items at a price of 3 achieves a revenue of 3 -4 4*

On the other hand, bundling the items together is not always better than selling them

separately. If there are two items with values 0 or 1 with probability i, independently from

each other, then selling the bundle of the two items achieves revenue at most j, but selling

the items separately yields revenue of 1, which is optimal.

In general, the optimal mechanism may have much more intricate structure than either
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selling the grand bundle of all the items, or selling each item separately, even when the item

values are i.i.d. In fact, the optimal mechanism might not even be deterministic: we may

need to offer for sale not only sets of items, but also lotteries over sets of items. Here is an

example. Suppose that there are two items, one of which is distributed uniformly in {1, 2}

and the other uniformly in {1, 3}, and suppose that the items are independent. In this case,

the optimal mechanism offers the bundle of the two items at price 4, and it also offers at

price 2.5 a lottery that with probability j gives both the items and with probability } just

the first item.5

3.3 Techniques

Given that optimal mechanisms have no apparent structure, even in the simple case of an

additive bidder with independent values for the items, the main challenge in proving our

hardness result is pinning down a family of sufficiently interesting instances of the problem

for which we can still characterize the form of the optimal mechanism. To do this we follow

a principled approach starting with a folklore, albeit exponentially large, linear program for

revenue optimization, constructing a relaxation of this LP, and showing that, in a suitable

class of instances, the solution of the relaxed LP is also a solution to the original LP, which

has rich enough structure to embed a #P-hard problem. In more detail, our approach is the

following:

" In Section 4.2.1 we present LP1, the folklore, albeit exponentially large, linear program

for computing a revenue optimal auction.

" In Section 4.2.2 we relax the constraints of LP1 to construct a new, still exponentially

large, linear program LP2. The solutions of the relaxed LP need not provide solu-

tions to the original mechanism design problem. We prove however that an optimal

LP2 solution is indeed an optimal LP1 solution if it happens to be monotone and

supermodular.

* In Section 4.2.3 we take LP3, the dual program to LP2. We interpret its solutions as

solutions to a minimum-cost flow problem on a lattice.

5That this is the optimal mechanism follows from our techniques; see Section 4.3.4.
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" In Section 4.3.1 we characterize a canonical solution to a specific subclass of LP3

instances. This solution requires ordering of the subset sums of an appropriate set of

integers.

* In Section 4.3.2 we use duality to convert a canonical LP3 solution to a unique LP2

solution. We are therefore able to characterize the unique solution for a variety of LP2

instances.

" In Section 4.3.3 we show that the LP2 solutions obtained above are also feasible and

optimal for the corresponding LP1 instance. Thus, we gain the ability to characterize

unique optimal solutions of a class of LP1 instances.

" Finally, using the previous characterization, in Chapter 5 we show how to encode a

#P-hard problem into the class of LP1 instances that we have developed.
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Chapter 4

Computing General Multi-Item

Mechanisms

4.1 Preliminaries

We restrict our attention to instances of the mechanism design problem where a seller wishes

to sell a set N = {1, 2, . . ., n} of items to a single additive quasi-linear bidder whose values

for the items are independent of support 2. In particular, the bidder values item i at aj, with

probability 1 -pi, and at ai + di, with probability pi, independently of the other items, where

aj, di, and pi are positive rational numbers. If she values i at aj, we say that her value for i

is "low" and, if she values it at ai + di, we say that her value is "high." The specification of

the instance comprises the numbers {ai, di, pi} 1.

A mechanism M for an instance I as above specifies a set A of actions available to the

bidder together with a rule mapping each action a E A to a (possibly randomized) allocation

A, E {O, 1}", specifying which items the bidder gets, and a (possibly randomized) price

-o E R that the bidder pays, where A, and -r could be correlated. Facing this mechanism, a

bidder whose values for the items are instantiated to some vector V E Xi{ai, ai + di} chooses

any action in arg maxEA{- E(Aa) - E(ra)} or any distribution on these actions, as long as

the maximum is non-negative, since iI. E(A0 ) - E(r) is the expected utility of the bidder for

choosing action a.' In particular, any such choice is a Bayesian Nash equilibrium behavior

lIf the maximum utility under V is negative, the bidder would "stay home." To ease notation, we can
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for the bidder, in the degenerate case of a single bidder that we consider. 2 If for all vectors V

there is a unique optimal action ag E A in the above optimization problem, then mechanism

M induces a mapping from valuations f E x i{ai, ai+di} to (possibly randomized) allocation

and price pairs (Aa, r ,). If there are i's with non-unique maximizers, then we break ties in

favor of the action with the highest E(T) and, if there are still ties, lexicographically beyond

that.3

In Section 3.1 we explained in detail what it means to solve an instance I = {ai, di, pi}'

computationally efficiently. In short, the solution needs to encode the action set A as well

as the mapping from actions a E A to (Aa, Ta), in a way that given an instantiated type

i E xi{ai, ai + di} we can computationally efficiently sample from Aa, and from Tar,.

It is convenient for our arguments to first study direct mechanisms, where the action set

available to the bidder coincides with her type space xi{ai, ai + di}. In this case, we can

equivalently think of the actions available to the bidder as declaring any subset S C N,

where the correspondence between subsets and value vectors is given by if(S) = EiEN aiei +

EiS die, where ei is the unit vector in dimension i; i.e. S represents the items whose values

are high. For all actions S C N, the mechanism induces a vector q'(S) E [0, 1]n of probabilities

that the bidder receives each item and an expected price r(S) E R that the bidder pays. The

expected utility of a bidder of type V(S) for choosing action S' is given by V(S) - (S') - T(S').

We denote by u(S) = if(S) - i(S) - r(S) her expected utility for reporting her true type. The

following are important properties of direct mechanisms.

Definition 2. A direct mechanism for the family of single-bidder instances we consider in

this thesis is Bayesian Incentive Compatible (BIC) if the bidder cannot benefit by misreporting

the set of items he values highly. Formally:

VS, T C N : (S) -i(S) - r(S) ;> (S) -q(T)- T(T).

include in A a special action "stay home" that results in the bidder getting nothing and paying nothing. If
all other actions give negative utility the bidder could just use this special action.

2As mentioned earlier, we opt not to define Bayesian Nash equilibrium for multi-bidder mechanisms as
this definition is involved and irrelevant for our purposes.

3We can enforce this tie-breaking with an arbitrarily small hit on revenue as follows: For all a, we decrease
the (possibly random price) -r output by M by a well-chosen amount-think of it as a rebate-which gets
larger as E(r) gets larger. We can choose these rebates to be sufficiently small so that they only serve the
purpose of tie-breaking. These rebates won't affect our lower bounds.
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Or, equivalently:

VS, T C N: u(S) > u(T) + (V(S) - U(T)) -e(T).

Definition 3. The mechanism is individually rational (IR) if u(S) 0, for all S C N.

We note that an immediate consequence of our proof of Theorem 2 is the following.

Corollary 1. Given an instance I = {ai, di, pi } of the optimal mechanism design problem

(i.e. the same setting as Theorem 2), it is #P-hard to compute circuits (or any other implicit

but efficient to evaluate description of) q : x{ai, ai+diJ -+ [0, 1]" and T : xi{ai, ai+di -+ R

inducing a revenue-optimal, BIC, IR mechanism.

Note that, for a meaningful lower bound, we cannot ask for q(S), r(S) for all S, as there are

too many S's-namely 2". Instead we need to ask for some implicit but computationally

meaningful description of them, such as in the form of circuits, which can be evaluated on

an input S in time polynomial in their size and the number of bits required to describe S-if

we don't require that q and r can be evaluated efficiently on any given S we would allow for

trivial solutions such as "I is itself an implicit description of the optimal q and r for I." We

conclude with the following remark.

Remark 2. For the single-bidder instances we consider in this thesis, a direct mechanism

that is Bayesian Incentive Compatible is also Incentive Compatible and vice versa.4  As

all our hardness results are for single-bidder instances, they simultaneously show the in-

tractability of computing optimal Bayesian Incentive Compatible as well as optimal Incentive

Compatible mechanisms.

4.1.1 Our Proof Plan

To prove Theorem 2 we narrow into a family of single-bidder instances (of the form de-

fined in the beginning of this section) for which there is a unique optimal BIC, IR, direct

4For the reader who is not familiar with these concepts here is a brief explanation. A direct multi-bidder
mechanism is Incentive Compatible if, for all bidders i and all ti, it is optimal for bidder i to truthfully report
ti no matter what the other bidders report. It is a stronger notion than Bayesian Incentive Compatibility
which requires that, for all bidders i and all ti, it is optimal for bidder i to truthfully report ti, if the other
bidders also truthfully report their types in expectation with respect to their realized types. I.e. the latter
concept requires that it is Bayesian Nash equilibrium for every bidder to truthfully report their type, while
the former concept requires that it is a Dominant Strategy equilibrium for every bidder to truthfully report
their type. Clearly, the two concepts collapse if there is just one bidder.
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mechanism, and this mechanism satisfies the following: for a special item i* and a special

type S*, qj. (S*) E {0, 1} but it is #P-hard to decide whether q. (S*) = 0. Our approach for

narrowing into this family of instances was outlined in Section 3.3 and is provided in detail

in Sections 4.2 through 5. These sections establish two hardness results: First, they show

Corollary 1 that it is #P-hard to compute circuits for q and r, as if we could compute such

circuits in polynomial time then we would also be able to answer whether qi.(S*) = 0 in

polynomial time. Second, they establish Theorem 2 restricted to BIC mechanisms. Indeed,

if there were expected polynomial-time algorithms C, S (see Section 3.1), then we would

plug in type S* and get one sample from the allocation rule for that type. Notice that this

sample will allocate item i'* if and only if qi.(S*) = 1, which is #P-hard to decide. Details

are provided in Chapter 5.

Finally, it is straightforward to translate this hardness result to general mechanisms by

making the following observation, called the "Revelation Principle" [19]:

9 Any (possibly non-direct) mechanism M has an equivalent BIC, IR, direct mechanism

M' so that the two mechanisms induce the exact same mapping from types V to

(possibly randomized) allocation and price pairs. Indeed, as explained above, given

the (possibly randomized) allocation rule A and price rule r of M we can define the

mapping V '-* (Aa,, r,). This mapping is in fact itself a BIC, JR direct mechanism

M'. Clearly, M and M' have the same expected revenue.

As mentioned above, the hard instances we narrow into in our proof satisfy that their optimal

BIC, IR direct mechanism is unique and it is a #P-hard problem to tell whether qj* (S*) = 0

or 1 for a special item i* and a special type S*. The above observation implies that, for any

instance in our family, any (possibly non-direct) optimal mechanism M for this instance

needs to induce an optimal direct mechanism. Since the latter is unique, M needs to give

the same (possibly randomized) allocation to type S* that the unique direct mechanism

does. As argued above, getting one sample from this allocation allows us to decide whether

qj* (S*) = 1, a #P-hard problem. As any efficient solution to our family of OMD instances

would allow us to get samples from the allocation rule of an optimal mechanism in expected

polynomial-time, we would be able to solve a #P-hard problem in expected polynomial-time.

This establishes Theorem 2 (for unrestricted mechanisms).
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4.2 A Linear Programming Approach

Our goal in Sections 4.2 through 5 is showing that it is computationally hard to compute a

BIC, IR direct mechanism that maximizes the seller's expected revenue, even in the single-

bidder setting introduced in Section 4.1. In this section, we define three exponential-size

linear programs which are useful for zooming into a family of hard instances that are also

amenable to analysis. Our LPs are defined using the notation introduced in Section 4.1.

4.2.1 Mechanism Design as a Linear Program

The optimal BIC and IR mechanism for the family of single-bidder instances introduced in

Section 4.1 can be found by solving the following linear program, which we call LP1:

max Es[V(S) - f(S) - u(S)]

subject to :
VS, T C N: u(S) > u(T) + (V(S) - V'(T)) -q(T) (BIC)
VS C N: u(S) 2 0 (IR)
VS C NiE N: 0 < ql(S) < 1 (PROB)

Figure 4-1: LP1, the linear program for revenue maximization

Notice that the expression V(S) - i(S) - u(S) in the objective function equals the price r(S)

that the bidder of type S pays when reporting S to the mechanism. The expectation is taken

over all S C N, where the probability of set S is given by p(S) = ILES Pi - HS(1 - Pi). We

notice that this program has exponential size (variables and constraints).

4.2.2 A Relaxed Linear Program

We now remove constraints from LP1 and perform further simplifications, making the pro-

gram easier to analyze. Later on we identify a subclass of instances where optimal solutions

to the relaxed program induce optimal solutions to the original program (see Lemma 3).

As a first step, we relax LP1 by considering only BIC constraints that correspond to

neighboring types (types that differ in one element). We also drop the constraint that the

probabilities qi(S) are non-negative:
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max Es[fi(S) -q(S) - u(S)]

subject to :

VS C N, i V S: u(S U {i}) u(S) + diqi(S) (BIC1)

VS C N, i V S: u(S) u(S U {i}) - diqi(S U {i}) (BIC2)

VS C N: u(S) > 0 (IR)

VS C N, i E N: qi(S) < 1 (PROB')

Since the coefficient of every qi(S) in the objective is strictly positive, no qi(S) can be

increased in any optimal solution without violating a constraint. We therefore conclude the

following about qi(S):

" If i E S, then qi(S) is only upper-bounded by constraint PROB', and thus qi(S) = 1

in every optimal solution.

" If i V S, then qi(S) = min{1, u(su{l})-u(s)} from (BIC1) and (PROB'). Furthermore,

from (BIC2) we have u(sufi})-u(s) < qi(S U{i = 1, and thus q (S) - u(sufi})-u(s)

So the program becomes (after setting q(S) = 1 whenever i E S, removing the constant

terms from the objective, and tightening the constraints (BICI) to equality):

max Es [z vi(S)qi(S) - u(S)

subject to :

VS C Ni V S : qi(S) = u(Su{i})-u(S) (BIC1')di

VSC N,i V S: u(SU{i})-u(S) 5di (BIC2)

VS C N: u(S) > 0 (IR)

VS C N, i V S : qi(S) < 1 (PROB')

Notice that the constraint (PROB') is trivially satisfied as a consequence of (BIC') and

(BIC2).

We now rewrite the objective, substituting qi(S) according to (BIC') and noting that

vi(S) = ai for i V S:
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Es [z aiU(S U {i}) - u(S) (5)
Es ( s d-

Es U(S) -1 a + -
.igs di es di ()

obtained by grouping together all coefficients of u(S), adjusting by the appropriate proba-

bilities.

We now note that P(S\I}) = -1 + , and our objective becomes:

[U(S) (iZ
ES U (S) -1- a +E a

iEN d iES

We now perform a change of notation so that the program takes a simpler form. In

particular, we set

ai Xi s ai

where K is some positive constant, and the objective becomes

'Es[(Eis xi - B)u(S)]. Since 1/r, is constant, we are lead to study the following program,

LP2:

max Es [(E xi - B)u(S)]
iES

subject to :
VS C N, i S: u(S U {i}) - u(S) ; di (BIC2)
VS C N: u(S) > 0 (IR)

Figure 4-2: LP2, the relaxed linear program

In constructing LP2, our new constants B and x were a function of p, d, a, and a newly

introduced constant K. We note that, by adjusting K, we are able to obtain a wide range of

relevant B and x values.

Lemma 1. For any B, -, p and d such that B > ZiCNPiXi, there exist (efficiently com-

putable) a and K such that B =(1+) and x . If B, z, p and d are rational,
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then a and r, are rational as well.

Proof. We want that xi = K and B = K + KEN i= K+IENpXi. Indeed, these

equalities follow from setting

K +- B -L pixi; ai +- K

iEN

4.2.3 The Dual of the Relaxed Program as a Min-Cost Flow

To characterize the structure of optimal solutions to LP2, we use linear programming duality.

Consider LP3, LP2's dual program, which has a (flow) variable fsu{i-+s for every set S and

i V S.

min Z fsu{i}-+sdi
S igs

subject to
VS C N: - Zgs fsuI}-*s + ZEjs fs-s\{i} p(S) (EiS Xi - B)
VS C N,i (S: fsui}-+s 2 0

Figure 4-3: LP3, the dual of LP2

We interpret LP3 as a minimum-cost flow problem on a lattice. Every node on the latice

corresponds to a set S C N, and flow may move downwards from S to S \ {i} for each i E S.

The variable fs-s\{i} represents the amount of flow sent this way, and the cost of sending

each unit of flow along this edge is di.

For nodes S with p(S) (ZEis xi - B) > 0, we have an external source supplying the

node with at least this amount of flow. We call such a node "positive." Nodes with

p(S) (Zies Xi - B) < 0, which we call "negative," can deposit at most tp(S) (EiS xi - B) I

to an external sink.

Since di > 0 for all i, an optimal solution to LP3 will have net imbalance exactly

p(S) (EiEs xi - B) for each positive node S.
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4.3 Characterizing the Linear Programming Solutions

For the remainder of the chapter, we restrict our attention to the case where N is the only

positive node in LP3. We notice that there is a feasible solution if and only if

(N xi -B)_ 5-(Ep(S) (xi- B
\()iGN / SgN \iGS /

which occurs when ES[EiES xi-B] < 0. Since the components of S are chosen independently,

the program is feasible precisely when EiEN pixi - B < 0.

4.3.1 The Canonical Solution to LP3

When there is a single positive node, we can easily construct an optimal solution to LP3 as

follows. Define the cost of each node S to be cost(S) = EiEN\s di, and order the negative

nodes S1 , S2,... in non-decreasing order of cost (and lexicographically if there are ties). We

greedily send flow to the negative nodes in order, moving to the next node only when all

previous nodes have been saturated. (The flow can be sent along any path to the node, since

all such paths have the same cost.) We stop when a net flow of p(N) (EiEN Xi - B) has

been absorbed by the negative nodes we sent flow to. We call this the canonical solution to

LP3, and notice that the canonical solution is the unique optimal solution to LP3 up to the

division of flow between equal cost nodes.

4.3.2 From LP3 to LP2 Solutions

We now show how to use a canonical solution to LP3 to construct a solution to LP2. In

most instances, this solution is unique.

Lemma 2. Let S* be the highest-cost negative node which absorbs non-zero flow in the

canonical solution f of LP3, and suppose that S* is not fully saturated by f . Then the utility

function u(S) = max{cost(S*) - cost(S), 0} is the unique optimal solution to LP2.

Proof. Consider an arbitrary optimal LP2 solution u. We will use linear programming com-

plementarity to prove that u is uniquely determined by the canonical solution f.
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For any node S that receives nonzero flow in f, there is a path N = So, S1, S 2 , . -- , Sk = S

from N to S that has positive flow along each edge. By complementarity, the (BIC2)

inequalities corresponding to these edges in the primal program are tight in u. That is, for

all i = 1, ... , k, we have u(Si_1) - u(Si) = d., where x is the unique element of Si_1 \ Si.

So, for any S which receives nonzero flow in f:

u(N) - u(S) = Z di = cost(S).
iEN\S

For all nodes S' which are not fully saturated in f (i.e. S* as well as all nodes which receive no

flow), u(S') must be 0 in u by complementarity, since the corresponding LP3 constraints are

not tight. In particular, since S* receives flow but is not fully saturated, we have u(S*) = 0

and hence:

u(N) = u(N) - u(S*) = cost(S*).

Therefore, any node S which receives flow in f must have u(S) = u(N)-cost(S) = cost(S*)-

cost(S).

Furthermore, a node S always receives flow in f if its cost is less than cost(S*), and

receives no flow if its cost is greater than cost(S*). Moreover, those nodes S with cost(S) =

cost(S*) either receive no flow in which case u(S) = 0, or receive flow in which case u(S) =

cost(S*) - cost(S) = 0. Thus, we have shown that for any node S, u(S) = max{cost(S*) -

cost(S), 0}. It is easy to verify that this utility function satisfies all the constraints of

LP2. E

If the highest cost node S* to receive flow in f is fully saturated, then the utility function

described above is still an optimal LP2 solution. However, in this case, if the cheapest

unfilled node in f has strictly greater cost than S*, then the optimal primal solution is not

unique.

4.3.3 From LP2 to LP1 Solutions

We now show that, in certain cases, a solution to LP2 allows us to obtain a solution to LP1

where p, a and d are as in Lemma 1.
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Lemma 3. Suppose B > ZiN pixi and an optimal solution u to LP2 is monotone and

supermodular. Then there is some q such that (u, q) is an optimal solution to LP1 where p,

a, d are as in Lemma 1. If u is the unique optimal solution to LP2, then (u, q) is the unique

optimal LP1 solution.

Proof. We set

qj ( 1, if i E S;

u(Sui})-u(s) otherwise.

With this choice, as explained in Section 4.2.2, (u, q) is an optimal solution to a relaxation

of LP1. So to establish optimality of (u, q) for LP1 it suffices to show that (u, q) satisfies all

the constraints of LP1.

We first notice that the (IR) constraints are satisfied, since u(S) 0 for all S in LP2.

We now show that the (PROB) constraints are satisfied. Indeed, if i E S, then qi(S) = 1.

If i g S, then qj(S) > 0 follows from monotonicity of u. The inequality qi(S) <; 1 follows

from constraint (BIC2) of LP2.

Finally, we show that the (BIC) constraints of LP1 are satisfied. By supermodularity of

u we have that for all S, all i V S and all j = i:

u(S U {i} U {j}) - u(S U {j}) u(S U {i}) - u(S).

Dividing by di we obtain qi(S U {j}) qi(S) for all i g S and j $ i. Since the inequality is

trivially satisfied if i E S (since both sides are 1), or j = i (since qi(S U {i}) = 1) we conclude

that q is monotone.

Now pick any distinct subsets S, T C N. We must show that:

u(S) 2 u(T) + (ii(S) - i(T)) - (T).

Consider an ordering 1 ,i 2 ,- - , ik of the elements of T \ S and an ordering ji, j2, - - , Je of

the elements of S \ T.
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By (BIC2), we know that, for all r = 1,k...:,

u S U it u S U {it) + di,.
t=1 t=1

Summing over r and cancelling terms, we conclude u(S U T) u(S) + E,$Zi dj,.

From our definition of q it follows that for all r = 1, ... ,:

U T Uj = ( T U U{ t} + djrqjr (T U U{t}).
t=1 t=1 t=1

By monotonicity of q, it follows that

U T U {jt}) u TU {jt}) +d,q,(T).
\ t=1 /t=1

Summing over r, we conclude that u(S U T) u(T) + E, 1 drqj,(T).

Combining this with our earlier upper bound for u(S U T), we conclude that

f k

u(S) > u(T) + ( dqj,(T) - Z dir
r=1 r=1

Since qi, (T) = 1 for all r, we have

u(S) > u(T) + E dq,(T) - E diq(T)
jES\T iET\S

and thus the (BIC) constraint of LP1 is satisfied.

If u is the unique optimal solution to LP2, then the (u, q) constructed as above is the

unique optimal solution to LP1, as it is the unique optimal solution of a relaxation of LP1. L

4.3.4 Putting it All Together

In summary, we have shown that if the canonical solution of LP3 has a partially saturated

node S*, then LP2 has a unique optimal solution, namely u(S) = max{cost(S*) -cost(S), 0}.

Since this utility function is monotone and supermodular, it also defines a unique optimal
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solution of the corresponding LP1 instance.

Corollary 2. Let S* be the highest-cost negative node which absorbs non-zero flow in the

canonical solution of LP3, and suppose that S* is not fully saturated. Then the original

mechanism design problem with p, a and d as in Lemma 1 has a unique optimal solution,

and the utility of a player of type N in this solution is cost(S*).
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Chapter 5

Hardness of Multi-Item Mechanisms

We use the results of the previous Chapter to establish the computational hardness of optimal

mechanism design. Our reduction is from the lexicographic rank problem, which we show to

be #P-hard.

Definition 4 (LEXRANK problem). Given a collection C = {c 1,... , c} of positive integers

and a subset S C {1,... , n}, we define the lexicographic rank of S, denoted lexre(S), by

lexre(S) S' : IS' = SI and

c < c or ( c = ci and S' <iex S
(E jES r ES jCS

where S' <iex S is with respect to the lexicographic ordering.1 The LExRANK problem is:

Given Q, S, and an integer k, determine whether or not lexre(S) < k.

5.1 Hardness of LEXRANK

We now show that the LExRANK problem is #P-hard by a reduction from #-SUBSETSUM.

Definition 5 (#-SUBSETSUM problem). Given a collection W = {w1,... , wn} of positive

integers and a target integer T, compute the number of subsets S C {1,. .. , n} such that

'To be precise, we say that Si :5e, S2 iff the largest element in the symmetric difference S1S 2 belongs

to S 2 -
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Eics wi<T.

The #-SUBSETSUM problem is known to be #P-hard. Indeed, the reduction from SAT

to SUBSETSUM as presented in [22] is parsimonious.

Lemma 4. LEXRANK is #P-hard.

Proof. Given an oracle for the LExRANK problem, it is straightforward to do binary search to

compute the lexicographic rank of a set S. We will prove hardness of LEXRANK by reducing

the #-SUBSETSUM problem to the computation of lexicographic ranks of a collection of sets.

Let (W, T) be an instance of #-SUBSETSUM, where W = {wi,..., w,} is a collection of

positive integers and T is a target integer. We begin by defining, for m = 1,..., n:

countw(T, m)A S {1 ... n} : ISI = m and ti < T}.
iGS

Note that the number of subsets of W which sum to at most T is simply E"M countw(T, m).

So it suffices to compute countw(T, m) for all m.

To do this, we define n different collections 1,.. . , en, where e = {c', . .. , cn+t} is given

by:

4nwi if 1 < i' < n

c= 4nT + 2n if i = n + 1

1 if n + 2 < i < n +.

We also define a special set St A {n + 1, n + 2, ... , n + f}. Notice that EiES, ct = 4nT +

2n + f - 1. Furthermore, for every subset S { .f. . , n}, we have

E ci = 4nEwi.
iES icS

Hence, for all 0 f S C {1, ... . n}:

1. if ZieS wi > T, then KEgS ci > Ees, cj;

2. ifZEgswi T, then for all U C {n+2,n+3,... In+e} we have EiESuU ci < Escj;
3. for all U C {n + 2, n + 3, ... , n + f}, ZieSUUu{n+1} cf > EZEs, cj.
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Given that I SI = f the above imply

lexre (Se) = 1 ± countw(T, m) - .
m=1

Suppose we have an oracle which can compute the lexicographic rank of a given set.

We first use this oracle to determine lexrcl (Si) and thereby compute countw(T, 1). Next,

we use the oracle to determine lexrt2 (S 2 ) and thereby compute countw(T, 2), using the

previously computed value of countw(T, 1). Continuing this procedure n times, we can

compute countw(T, m) for all m = 1, ... , n. This concludes the proof. 0

5.2 Hardness of Mechanism Design: Reduction from

LEXRANK

We will prove hardness of the OMD problem via a reduction from LEXRANK. Let (c, S, k)

be an instance of LExRANK where Q = {ci,...,cn} is a collection of positive integers,

S C {1, ... , n}, and k is integer. We wish to determine whether lexr(S) < k. We assume

that |S| 1 0, n as otherwise the problem is trivial to solve.

We denote by [n] the set {1, 2, ... , n} and [n +1] = [n] U {n + 1}. We construct an OMD

instance indirectly, by defining an instance of LP3 with the following parameters:

Sdi = 2n+1 (ciE c) + 2, for i = 1, ... , n;

" dn+1 = 1;

" xi = 2, for all i;

* B=2n+1;

pi = p for all i, where we leave p E [0.5, 1 - 1±) a parameter.

We note that B > Ei xipi, and thus Lemma 1 implies that, for all p, an instance of LP3 as

above arises from some OMD instance {ai, di, pi}7_1 , in the notation of Section 4.1.

Denote by S' the set [n] \ S.2 Suppose that, for some value p, there is a partially filled

node T* in the canonical LP3 solution such that T* C [n] and IT*I = n - SI. Using Lemma 2

2 Note that {n + 1} is in neither S nor Sc.
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we have

(SC) u*(Sc U {n + 1}) - u*(Sc)
1

= max{cost(T*) - cost(Sc U {n + 1}), 0} - max{cost(T*) - cost(Sc), 0}

= max{cost(T*) - cost(Sc) + 1, 0} - max{cost(T*) - cost(Sc), 0}

Therefore, since the cost of each set is an integer,

if cost(Sc) > cost(T*)

if cost(Sc) < cost(T*).

Since n + 1 is in neither Sc nor T*,

qn+1 (SC) =

if Eis di > ZjE.n] dj

if diE d! . djE[n]\Td3 .

By our construction of the di's we can see that since IT*I = n - IS

0

qn+
1 (S") =

1

0

if Eis c

ifEs

if EiS c

if EiESc

> Z jE[n]\T* Ci

* ZElE[n]T* C3

Z jEfr.\T* c3 and S ie, ([7n] \ T*)

.jE[n]\T* cj and S >iex ([n] \ T*)

Therefore, qn+1(Sc) = 1 if lexre(S) 5 lexre([n] \ T*) and 0 otherwise.

So our next goal is to set the parameter p such that there is a partially filled node T* in

the canonical LP3 solution such that T* C [n], IT*I = n - S|, and lexre([n] \ T*) = k. For

such p, distinguishing between qn+ 1 (Sc) = 0 and qn+ 1 (Sc) = 1 would allow us to solve the

LExRANK instance. The next lemma shows that a p as required can be found in polynomial

time.
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Figure 5-1: Lattice of types for an instance with 3+1 items. By construction, the order in

which each type is filled doesn't depend on the fourth item, so in the figure, the types are

grouped based on the first three items. When the only positive type {1, 2, 3, 4} sends flow,

each type is filled in a priority depending on the group it belongs to. Each group is filled

in increasing order of cost. Groups of a higher level always get filled first since they have

lower cost. Within each group, the type that contains item 4 is filled first and then the type

that doesn't contain it. In this example, the flow has reached the groups of level 1. It has

completeley filled type {1, 4} and has partially filled type T* = {1}.

Lemma 5. In polynomial time, we can identify a P E [0.5, 1 - 2) with O(n log n) bits

of precision such that the partially filled node in the canonical LP3 solution with parameter

p = P is a set T* C [n] of size n - SI and lexrr([n] \ T*) = k.

Proof. In our construction, the lowest cost negative node is [n]. Furthermore, the cost of

every negative node is unique, and for any T C; [n] there is no node with cost between that

53

Level 3

Level 2

Level 1

Level 0



of T U {n + 1} and T. Also, if T and T' are proper subsets of [n] and if |TI > IT'I, then

cost(T) < cost(T').

For each i between 1 and n -1, let T1, T2,... be the ordering of the size-i subsets of [n] in

increasing order of cost. In the canonical LP3 solution, [n] fills first, and T fills before T,' if

it has larger size (i > i') or the same size but smaller cost (i = i' and j <j'). Furthermore,

each node Tj U {n + 1} fills immediately before the node T.

Our goal is to choose p so that Tkn-Isi is partially filled. Indeed, the sets [n] \Ti"-lSI through

[n] \ Tkn-isI are precisely the sets counted in the computation of lexre([n] \ Tn-s'). Notice

that lexicographic tie-breaking of lexr is enforced by construction of adding an additional 2'

to di.

The only positive node, [n + 1], emits a net flow of pn+l, and the node [n] absorbs at

most p" (1 - p) flow. For each size i between n - 1 and n - S+I 1, there are () sets T C [n]

of size i, each of which can absorb

Ip(T)(21T - B)I = (2(n - i) + 1)p'(1 - p)n+l-i

flow. Furthermore, each set T U {n + 1} can absorb

Ip(T U {n + 1})(2|T + 2 - B)| = (2(n - i) - 1)pi+(1 - P)

Thus, in total, T and T U {n + 1} can absorb

pi(1 - p)"-i ((1 -p)(2n - 2i + 1) + p(2n - 2i - 1))

=p(1 -p)"(2(n - i - p) + 1).

Finally, we notice that T is responsible for at least a 1/(2n + 2) fraction of the quantity

above, since
(2(n - i) + I)pi(1 - p)n+l-i 1

(2(n - i - p) + 1)pi(1 - p)"-i ~2n + 2'

using that p < 1 - 1.

If all nodes strictly preceding (i.e. with smaller cost than) Tin-isi U {n + 1} have been
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saturated, the amount of flow still unabsorbed is

pn+ _ i -(2(n - i - p) + 1)
=n-ISI+1

- n ()Pi(1 - P)n-i(2(i + p - n) - 1).
i=n-Is|+1

Therefore, a sufficient condition for TIsito be partially filled in the canonical solution is

E Z=n-Is|+1 ()Pi(I - p)"i(2(i + p - n) - 1) lk1\
f(P - Pn-ISI(l _p)ISI(2|SI - 2p+ 1) E k 2n + 2 , k)

We claim that there is such a p* E [0.5, 1 - 1 ) such that f(p*) = k - 1. Indeed,

for p < 0.5, only [In] will ever receive flow, so in this case, f(p) < 0. Furthermore, we can

lower-bound f(p) by the following ratio (where we add a negative quantity to the numerator)

=n-s+1 ()pi(1 - p)"l (2 (i +p - n) - 1) + n-ISI-1 ()p"-i(1 - p)i(2 (i + p - n) - 1)

pn-ISi(1 _ p)ISI(2|SI - 2 p + 1)

j=o (f)pi(1 - p)f (2 (i + p - n) - 1) - (S "-)pnIsi(l _ ) 2ISI + 2p - 1)

pn-ISI(l - p)ISI(21S - 2p + 1)

and thus

(n n - o (7)pi(1 - p)"-i(2n - 2i - 2p + 1)
S|} (n) j pa-IS|(1 _ p)ls|{(2| S|- 2p +1)

S|} pn-ISI(1 _ p)ISI(2|SI - 2p + 1)

(In, 2n - 2p +1 - 2pn

|S| k} p Is-(1 p)IsI (2|SI - 2p + 1)

Hence, for p 1 - we get f(p) > (") > k. Using this, the continuity off, and that

f(p) < 0 forp < 0.5, we conclude that there is ap* E [0.5, 1- such that f (p*) k-

We now considerp =p* ± E [0.5,1 - +). We claim that f(p) E (k - n, k) as long

as c = 0 .4n+4. To show this, we bound the absolute value of the derivative f at all

points in [0.5, 1 - +). The numerator of d is a polynomial in p of degree 2n + 1, where
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the coefficient of each term is, in absolute value, O(2In -poly(n)) O(24")-using the crude

bound (n) < 2". Furthermore, the denominator (pn-ISI(1 - p)ISI( 2 1SI - 2p + 1))2 of d isi - dp

greater than (+)2n, since p E [0.5,1 - 2 ). Therefore, we can bound the magnitude of

the derivative by O((2n+ 2) 2"(2n+ 1)24") = O((4n)4"). Since this bound holds for all points

in [0.5,1 - 1+), we conclude that

f () E (f(p*) - EO((4n)4n) f(p*) + cO((4")4n))

and thus, for E = 0 (4"n) we have that f(P) E (k - 1 , k).

Thus, we can find the desired P in polynomial time via binary search on f(p), requiring

0(n log n) bits of precision in p. El

We conclude our reduction as follows: First, we compute p as in Lemma 5. Next we solve

the OMD instance resulting from this choice of parameter. The solution (see Section 3.1)

induces expected polynomial-time algorithms C and S. We use them to sample (in expected

polynomial-time) from the allocation and price rule of the optimal auction for type Sc. We

have proven that this type receives item n + 1 with probability 1 if (L, S, k) E LEXRANK

and with probability 0 otherwise. So a single sample from the allocation rule of the optimal

auction suffices to tell which one is the case, since if qn+i (SC) = 1 then every sample from the

allocation rule should allocate the item and if qn+1(SC) = 0 then no sample should allocate

the item. So if we can solve OMD in expected polynomial-time, then we can solve LExRANK

in expected polynomial-time by a. finding P using Lemma 5; b. solving the resulting OMD

instance; c. drawing a single sample from the allocation rule of the auction for type SC and

outputting "yes" if and only if item n + 1 is allocated by the drawn sample. l
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Chapter 6

Beyond Computationally Bounded

Bidders

6.1 Budget-Additive Bidders

We have already remarked in Section 1.3 that when the bidder valuations have combinatorial

structure, it becomes much easier to embed computationally hard problems into the optimal

mechanism design problem. In this spirit, Dobzinski et al. [11] show that optimal mechanism

design for OXS bidders is NP-hard. While we won't define OXS valuations, we illustrate the

richness in their structure by recalling that in [11 the items are taken to be edges of a graph

G = (V, E), and there is a single bidder whose valuation is drawn from a distribution that

includes in its support the following valuation:

a A C E', every connected component of ' C
f(E') = max |Al , VE'CGE.

G' = (V, A) is either acyclic or unicyclic

While the valuations used in [11 are quite rich, we notice here that the techniques of [11]

can be used to establish hardness of optimal mechanism design for a bidder with very mild

combinatorial structure, namely budget-additivity. Indeed, consider the problem of selling

a set N = {l,... ,n} of items to a budget-additive bidder whose value xi for each item is

some deterministically known integer, but whose budget is only probabilistically known. In

particular, suppose that, with probability (1 - e), the bidder is additive, in which case her
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value v(S) for each subset S is Eics xi. With probability c, however, she has a positive

integer budget B: she values each subset S at Vb(S) = min{ZXes xi, B}. That is, when she

has a budget, she receives at most B utility from any subset. We claim that the optimal

mechanism satisfies:

Claim 1. Suppose E < Then every optimal individually rational and Bayesian in-

centive compatible direct mechanism for the budget-additive bidder described above has the

following form:

e If the bidder is unbudgeted, she receives all items and is charged ZieN Xi-

" If the bidder is budgeted, she receives a probability distribution over the subsets T of

items such that ZiET xi is as large a value as possible without exceeding B. She is

charged that value.

This claim follows from a lemma of [11], showing that if the bidder has no budget she

must receive her value maximizing bundle, while if she is budgeted she must receive some

bundle T maximizing vb(T) - (1 - E)va (T). Determining the optimal direct mechanism is

clearly hard in this context, as it is NP-hard to compute a subset T with the largest value

that does not exceed B. Using the same arguments as in Section 4.1 we can extend this lower

bound to all mechanisms, by noticing that any sample from the allocation to the budgeted

bidder answers whether there exists some T such that ZiET xi = B.

Theorem 3. There is a polynomial-time Karp reduction from the subset-sum problem to

the optimal mechanism design problem of selling multiple items to a single budget-additive

quasi-linear bidder whose values for the items are known rational numbers, and whose budget

is equal to some finite rational value or +oo with rational probabilities.

6.2 Further Discussion: Powerful Bidders

6.2.1 NP Power

We observe that if the budget-additive bidder described in the previous section has the ability

to solve NP-hard problems, then there is a simple indirect mechanism which implements the
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above allocation rule: The seller offers each set S at price EiEs xI, and leaves the computation

of the set T to the bidder. (As remarked in Section 4.1 we can use small rewards to guarantee

that the same allocation rule is implemented.) Such a mechanism is intuitively unsatisfactory,

however, and violates our requirement (see Section 3.1) that a bidder be able to compute her

strategy efficiently. While an optimal indirect mechanism is easy for the seller to construct

and to implement, it is intractable for the bidder to determine her optimal strategy in such

a mechanism. Conversely, implementing the direct mechanism requires the seller to solve a

subset sum instance. Thus, shifting from a direct to an indirect mechanism allows for a shift

of computational burden from the seller to the bidder.

6.2.2 PSPACE and Beyond

Indeed, we can generalize this observation to show that optimal mechanism design for a

polynomial-time seller becomes much easier if the bidder is quasi-linear, computationally

unbounded, and has a known finite maximum possible valuation for an allocation. The intu-

ition is that, if some canonical optimal direct mechanism is computable and implementable

in polynomial space, then we can construct an extensive form indirect mechanism whereby

the bidder first declares her type and then convinces the seller, via an interactive proof with

completeness 1 and low soundness, what the allocation and price would be for her type in the

canonical optimal direct revelation BIC and IR mechanism.1 In the event of a failure, the

bidder is charged a large fine, significantly greater than her maximum possible valuation of

any subset. The proof that this protocol achieves, in a subgame perfect equilbrium, expected

revenue equal to the optimal direct BIC and IR revenue follows from IP = PSPACE [211. In

particular, we note that the canonical solution of the mechanism design instances in the

hardness proof of Chapter 5 can indeed be found in PSPACE, and thus we can construct

an easily-implementable extensive form game which achieves optimal revenue in subgame

perfect equilibrium. Reaching this equilibrium, however, requires the bidder to have PSPACE

power.

Indeed, if there are two or more computationally-unbounded bidders, then we can replace

'We have fixed a canonical direct mechanism to avoid complications arising when the optimal mechanism

is not unique.
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the assumption that the optimal direct mechanism is computable in PSPACE with the even

weaker assumption that it is computable in nondeterministic exponential time, using the

result that MIP = NEXP [3] to achieve the optimal revenue in a perfect Bayesian equilibrium.

The intuition is that our mechanism now asks all players to (simultaneously) declare their

type. Two players are selected and required to declare the allocation and price which the

canonical optimal direct mechanism would implement given this type profile, and they then

perform a multiparty interactive proof to convince the seller of the correctness of the named

allocation and price.

Since the optimal allocation might be randomized and the prices might require expo-

nentially many bits to specify, we must modify the above outline. The rough ideas are

the following. First, a price of exponential bit complexity but magnitude bounded by a

given value can be obtained as the expectation of a distribution that can be sampled with

polynomially many random bits in expectation. Now, after the bidders declare their types,

the seller reveals a short random seed r, and requires the bidders to draw the prices and

allocation from the appropriate distribution, using r as a seed. The bidders must prove the

actual deterministic allocation and prices that the optimal direct mechanism would have ob-

tained when given seed r to sample exactly from the optimal distribution. If r does not have

sufficient bits to determine the sample, then the bidders prove interactively that additional

bits are needed, and further random bits are appended to r. If the bidders ever fail in their

proof, the mechanism terminates and they are charged a large fine. Regardless of whether

or not the players ever attempt to prove an incorrect statement, the protocol terminates in

expected polynomial time.

We omit a formal proof of the above observations. We also note that we do not present

the mechanisms of this section as practical. But we want to point out that the complexity of

the optimal mechanism design problem may become trivial if no computational assumptions

are placed on the bidders.
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Chapter 7

Conclusion

Prior to this work, the complexity of computing revenue-optimal mechanisms was poorly

understood despite considerable effort in both economics and algorithmic game theory. Exact

solutions were known only in restricted classes of instances or for constrained input models,

yet complexity lower bounds were known only for instances which injected rich combinatorial

structure on the valuations or the allowable allocations. In this thesis, we provide compelling

lower bounds for one of the simplest settings: a single additive bidder with independent values

for the items. Our lower bound applies to the most general computational model, placing no

restriction on the type or encoding of the mechanism, except that its outcomes be efficiently

samplable. The proof technique is in itself interesting, developing relaxations to a folklore

LP for revenue-optimization to narrow into a family of instances that are rich enough to

encode #P-hard problems, yet are amenable to analysis.

The results of this thesis indicate that the structure of multi-dimensional mechanisms is

very combinatorial and complex. The optimal mechanism cannot be found and implemented

computationally efficiently, unless ZPP = P#P. However, we note that our results apply

only for computing the exact optimal mechanism and don't preclude fully polynomial-time

approximation schemes (FPTAS) for the problem. In fact, it remains an open question to

investigate whether efficient solutions exist that achieve constant factor approximation, even

for the case of a single additive bidder.

Another interesting research direction is to provide structural results for multi-dimensional

mechanism design. Better understanding of the structure will give insights for techniques
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to increase revenue in practical problems by better exploiting prior information about the

bidders. To this end, a promising approach is to identify general conditions or large classes of

distributions for which the optimal mechanism design problem can be solved explicitly. We

expect the tools developed in Chapter 4 will be useful in future work for revealing structure

in the problem and proving optimality for mechanisms.
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