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Abstract

Transient signals naturally arise in numerous disciplines for which the decay rates
and amplitudes carry some informational significance. Even when the decay rates are
known, solving for the amplitudes results in an ill-conditioned formulation. Transient
signals in the presence of noise are further complicated as the signal-to-noise ratio
asymptotically decreases in time.

In this thesis the Discrete-Time Transient Transform and the Discrete Transient
Transform are defined in order to represent a general signal using a linear combination
of decaying exponential signals. A common approach to computing a change of basis
is to make use of the dual basis. Two algorithms are proposed for generating a dual

basis: the first algorithm is specific to a general exponential basis, e.g., real exponen-
tial or harmonically related complex exponential bases are special cases of the general
exponential basis, while the second algorithm is usable for any general basis. Several
properties of a transient domain representation are discussed. Algorithms for com-

puting numerically stable approximate transient spectra are additionally proposed.
The inherent infinite bandwidth of a continuous-time transient signal motivates in

part the development of a framework for recovering the decay rates and amplitudes of
a discrete-time lowpass filtered transient signal. This framework takes advantage of
existing parameter modeling, identification, and recovery techniques to determine the
decay rates while an alternating projection method utilizing the Discrete Transient
Transform determines the amplitudes.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

Exponential signals are often used to model relationships for which a constant change in the

independent variable corresponds to a constant proportional change in the dependent variable. This

property, and the fact that the derivative of an exponential signal is itself an exponential signal, are

just two of the many reasons that this class of signals plays an important role in a broad range of

disciplines. For example, exponential signals play a fundamental role in: the solutions to differential

equations, the study of radioactivity in nuclear physics, the behavior of various electronic compo-

nents, compounding interest in finance, tunneling in quantum physics, the behavior of atmospheric

pressure in geophysics, and in a number of other places.

In the field of signal processing, exponential signals play a fundamental role in characterizing

the behavior of signals and systems, e.g., Fourier and Laplace transforms, eigenfunctions of Linear

and Time-Invariant (LTI) systems, etc. With respect to exponential-based transforms, exponential

signals are used as a basis for representing a set of data, irrespective of the quantities represented by

the data. Consistent with this methodology, an important contribution in this thesis is the derivation

of a representation for a useful class of discrete-time signals based upon linear combinations of real,
decaying exponential signals. After establishing this representation, important key properties and

consequences of such a representation are identified and discussed.

Digital signal processing has enjoyed widespread use on both standard computers and special

purpose hardware, e.g., application-specific integrated circuits, field-programmable gate arrays, etc.

In order to use digital processing techniques on a continuous-time data source, the signal must be

appropriately sampled. However, the process of sampling a transient signal inherently includes the

effects of aliasing due to the infinite bandwidth of each exponential component. More commonly,
it is often only the low frequency content of any signal that can be measured due to the lowpass

characteristic of numerous physical sampling systems. In general, a signal is not guaranteed to be

uniquely recovered from the output of a non-invertible system, e.g., an ideal lowpass filter (LPF),

without further knowledge of the input signal prior to the system. In other words, the heavily

attenuated portion of the frequency spectrum cannot be recovered in any meaningful sense. As

a consequence, the process of sampling a transient signal cannot completely avoid aliasing effects.

Therefore it is of particular interest in many fields that rely upon transient signals to convey infor-
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mation to account for this effect. For this reason, an important aspect of this thesis deals with the

recovery of a transient signal after it has been processed by an LPF. As we will show, by exploiting

prior knowledge on the structure of transient signals, it becomes possible to recover transient signal

parameters under fairly broad conditions relating the passband of the lowpass filter and the fastest

decaying exponential component of the filtered transient signal.

The algorithms developed in this thesis are easily extendable to a more general structure of sig-

nals, specifically a linear combination of damped complex exponentials, all of the same frequency.

Given a signal of this structure, the algorithms in this thesis are directly applicable by simply imple-

menting a pre-processing stage where the signal to be analyzed is frequency-modulated to baseband,

therefore becoming a real, transient signal.

1.1 Organization of Thesis

This thesis progressively discusses three stages of parameter recovery for transient signals in

which each stage builds upon the previous. The remainder of this section outlines this progression

as well as the organization of results.

Chapter 2 defines the structure of transient signals and motivates the need for the algorithms

and techniques proposed in this thesis. In addition, detailed definitions of successful parameter

recovery are presented for the three stages discussed below. A transient signal, in what follows,

is completely characterized by its decay rates and amplitude coefficients, where each amplitude

coefficient corresponds to an exponential component with a unique decay rate.

The first stage of this thesis considers determining the amplitude coefficients of a transient signal

given both the samples of the signal and the decay rates present in the signal. Chapter 3 proposes

two algorithms for determining the amplitude coefficients for this case, one of which avoids solving

an ill-conditioned formulation using matrix operations, but instead exploits the structure inherent in

exponential signals. Although the linear system of equations derived for the amplitude coefficients

is uniquely invertible, the solutions found using the proposed algorithms result in fewer numerical

errors.

The second stage considers determining the amplitude coefficients and decay rates of a transient

signal given only the samples of the signal. (Definitions 1 and 3 in Table 2.2) Two approaches

used to solve for the decay rates are considered in this thesis. The first approach is discussed in

Chapter 3 where the transient transform is defined in order to use spectral analysis techniques,

similar to Fourier spectral analysis, in order to determine which decay rates are present in the

transient signal. Due to the numerical instability of implementing this transform for large data sets,
several approximate transient spectral analysis techniques are proposed in Chapter 4. The second

approach considered is to make use of well known parameter recovery algorithms, a survey of which

is presented in Appendix B. The result of either of these approaches is the set of decay rates present

in the transient signal. The algorithms presented for the first stage may then be used to determine

the amplitude coefficients.

The third and final stage of this thesis considers determining the amplitude coefficients and decay
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rates of a transient signal given samples of the transient signal after lowpass filtering. (Definitions

2 and 4 in Table 2.2) Chapter 5 presents a framework for determining the decay rates in this

scenario based upon overdetermined parameter recovery. The recovery of the decay rates is shown

to be possible under a broad range of cutoff frequencies of the LPF. This framework requires the

number of exponential components present in the signal to be known a priori. To address this, an

algorithm for determining the model order when it is unknown is proposed. Further, an alternating

projection-based algorithm is also proposed which utilizes both the transient transform and the

Fourier transform, i.e., representations using both real exponential and complex exponential bases,

in order to determine the amplitude coefficients.

Chapter 6 provides a summary of the key results within this thesis as well as highlighting several

potential directions for future research.

17

C HAPT ER 1. INT RODUCT ION 1.1. ORG ANIZ AT ION OF T HESIS



1.1. ORGANIZATION OF THESIS CHAPTER 1. INTRODUCTION

18

1.1. ORGANIZATION OF T HESIS CH APT ER 1. INT RODUCTION



Chapter 2

Transient Structure, Spectra, and

Parameter Recovery

This chapter defines the transient structure of signals as well as identifies the need for transient

parameter recovery through example applications. The concept of a transient domain representa-

tion of a signal is also motivated by an example. Further, the full definitions of successful parameter

recovery under various scenarios are defined.

2.1 Multi-Component Decaying Exponential Signal Structure

The structure of signals under consideration in this thesis is that of a linear combination of

decaying, real exponentials with distinct decay rates. Specifically, the dth-order continuous-time

model is defined by

d

Xd(t) = ake-Akt, t > 0, (2.1.1)
k=1

where Ak # Aj, for j # k, for a finite order d. The parameters ak and Ak are real, non-zero

amplitude coefficients and positive decay rates, respectively, for 1 < k < d. A time-series is defined

as a sequence of uniformly spaced samples of a continuous-time model. For the remainder of this

thesis, unless otherwise stated, the signal in Eq. (2.1.1) is assumed to be uniformly sampled,

producing a time-series of the form

d

Xd[n] = ak(ok)n, n > 0. (2.1.2)
k=1

The shorthand notation {ak}1:d and { k}d will be used to denote the set of amplitude coefficients,

ak, and the set of decay rates, 9k, for 1 < k < d, respectively. The decaying restriction of each

exponential component implies that the value of each Uk must lie within the open interval of (0, 1).

Eq. (2.1.2) is henceforth referred to as the transient signal structure.

Consider N samples of the transient signal Xd[n] over a finite and possibly non-consecutive

19



2.1. TRANSIENT STRUCTURE CHAPTER 2. TRANSIENT SIGNALS

interval of support, e.g., for n = ni,...,nN, ni < nj for 1 < i < j < N. This observed set of

transient data, using the notation in Eq. (2.1.2), is completely characterized using the structure of

a generalized Vandermonde matrix and is given by

Xd[Th1] 01 ni n ... U i a1

Xd [n~l (T n2 01 2 ... C 2 a1 2 ad (2.1.3)

_ d[nN _ _ fN ,nN ... aN

In this formulation, the decay rates, {Jk}ld, are seen to have a non-linear relationship with the

observed sample values, while the amplitude coefficients, {ak}1ld, have a linear relationship to the

samples- given that the decay rates are fixed. An important special case of Eq. (2.1.3) is considered

next.

A convenient and commonly appropriate interval of support is given by

ni%=i-1, forl<i<N (2.1.4)

in which case Eq. (2.1.3) becomes

[ X[0] ~ 1 1 ... 1 ai

Xd[1] 1 oi 2 -'- d a 2  (2.1.5)

N- N-N11 N-1.ad[N - 1] _ _N ad 

or expressed in matrix notation as Xd = V (CT) a, where oT = [oi, - , Ot] is defined as the pole

vector, V ( 0 T) is a Vandermonde structured matrix defined by [V (T)] - -1, a = [ai, . - - , ad]T

is the amplitude vector, and Xd = [Xd [0] ,.. . , Xz [N - 1 ]]T is defined as the observation vector. For

this special case, the structure of the decay rates is completely characterized by the geometric

progression in each column of the Vandermonde matrix. Unless indicated otherwise, the interval of

support in Eq. (2.1.4) is assumed for the remainder of this thesis.

When N = d the determinant of the Vandermonde matrix in Eq. (2.1.5) is given by [25]

J7 (o -o), (2.1.6)
1<i<jsd

which can be seen by induction on d. Since the decay rates are distinct, the determinant is guar-

anteed to be non-zero and strictly less than one, which is equivalent to stating that the columns of

the Vandermonde matrix are linearly independent. These facts will be exploited in various places

throughout this thesis.

In order to represent the physical process of sampling a continuous-time signal, we consider a

model which includes the presence of additive Gaussian noise to account for possible effects of the

sampling hardware, e.g., jitter or thermal noise. The model of a sampled continuous-time dth-order
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multi-component real decaying exponential signal with additive noise is given by

zd[n] = xd[n] + n[n], (2.1.7)

where q [n] is an additive white Gaussian noise process with constant finite spectral density.

2.2 Motivation and Need

The values taken by the amplitude coefficients and decay rates in a transient signal typically

have some physical significance with respect to the origin of the signal. In these applications it

is often of greater importance to accurately identify these parameters rather than, for example,
model the observed data samples. This is especially true when the observed samples are known to

contain additive noise and/or aliasing effects. In the following two examples, various disciplines,
both scientific and otherwise, use a physical model or a mathematical description best represented

by a sum of real, decaying exponentials. In the third example, the need for a parametric spectrum

based upon decay rate is motivated.

2.2.1 The Smart Grid: Non-Intrusive Load Monitoring

A Non-Intrusive Load Monitoring (NILM) system provides the capability of recording and/or

reacting to different electrical components being added or removed from an electrical grid. One

approach for identifying which component is added to the system is to classify the initial transient

signature of each component, resulting from the sudden change in impedance seen by the grid when

a component is added or removed. This signature dies off in steady-state. Therefore proper identi-

fication of this transient signal is important to a NILM system. In the United States, the electric

grid operates at 60 Hz, and therefore the recorded signal must be appropriately modulated to base-

band in order to abstract the transient envelope from the data. The NILM systems described in

[19] use this approach followed by a least-squares comparison to each template signal in order to

identify which component was added or removed from the grid. An alternative to this procedure,
using several algorithms proposed within this thesis, would be to store the exponential decay rates

corresponding to each electrical component in place of the template signals. Then a transient signal

would be analyzed to identify if each possible decay rate was present. The resulting amplitude

coefficients would then signify which electrical component was added or removed from the electrical

grid accordingly.

2.2.2 Economic Recession Intervention

A common measure of the economic growth of a country is the percentage change in that coun-

tries real Gross Domestic Product (GDP), i.e., a measure of the goods and services produced by

that country within a fixed time period using a fixed price for the good or service. For example, the

United States real GDP per capita has been approximately growing by two percent per year for over

200 years, implying an exponential rate of growth. Various methods for predicting a countries GDP

during a fiscal quarter are often used to indicate whether market regulation is needed to prevent
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major economic recession. This process requires the estimation of an exponential parameter in a

noisy signal, motivating the recovery of decay rates when the signal is time-reversed.

2.2.3 Dual Tone Multi-Frequency

In what follows, as an illustration of an advantage to using a parametric spectrum based upon

decay rate, we consider a comparison to the commonly used frequency spectrum using an example

of when each spectrum is best utilized. In order to do so, we define a periodic signal and a transient

signal, over the finite-duration interval 0 < n < N - 1, by

vi [n] = a cos (waen) + ab cos (wbn) (2.2.1)

V2 [n] = aa (Oaa)" + ab (9b) . (2.2.2)

In many contexts, a received signal may convey information through identifying which signal, if

any, out of a set of template signals was received. This may be accomplished through comparing

distinguishable characteristics of the received signal to the characteristics of each of the possible

template signals. For example, v2 [n] has the structure of a template signal of a specific load in a

NILM system for fixed values of aa, Ob E (0,1). In this scenario it is useful to define a parameter

spectrum in which the calculated coefficients describe the amount of each of the specific decay

rates present in the received signal. Henceforth the parameter spectrum based upon decay rate

will be termed the transient spectrum, an example of which is shown in Figure 2.2.1(b). As a

second example, vi [n] has the form of the template signals used in Dual-Tone Multi-Frequency

(DTMF) signaling, the current industry standard for landline telecommunication service. [6, 22]

This communication scheme uses the presence of a pair of frequencies to distinguish one template

signal from another.

DTMF is a multi-frequency tone dialing system by which the push button keypad used for

dialing in a landline telephone call, or in response to an in-call menu, conveys the number or

keys dialed by the caller. With DTMF, each key pressed transmits the linear combination of two

sinusoids comprised of predetermined frequencies; one from a high frequency group and one from a

low frequency group. The high frequency group ranges in frequency from 1209 - 1633 Hz and the

low frequency group ranges from 697 - 941 Hz. Two frequencies are used per transmitted signal to

ensure that a human voice cannot imitate one of the template signals. The sinusoidal component

from the high frequency group is slightly louder than the sinusoidal component from the the low

frequency group to compensate for the high-frequency roll off of most communication channels.

Table 2.1 shows the pairs of frequencies used in each of the template signals corresponding to the

transmittable symbols.
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1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 1 # D

Table 2.1: Dual-tone multi-frequency signaling codebook

For DTMF, one method for identifying which symbol was transmitted is to check the received

signal for the presence of each of the eight possible frequency components by computing the Discrete

Time Fourier Transform (DTFT) coefficient at each frequency. Then, each of these coefficients is

compared to a threshold to determine which pair of frequencies is present, or if no key was pressed.

A plot of the DTFT coefficients with respect to these frequencies is termed the parameter spectrum

for DTMF. An example is shown in Figure 2.2.1(a).

Many techniques are available to compute the DTFT coefficients needed to produce the param-

eter spectrum corresponding to DTMF. Among these techniques, with respect to efficiency in terms

of the number of multiplications and additions, the Goertzel algorithm is often used. The Goertzel

algorithm simultaneously computes the real and imaginary portions of a sample of the DTFT of a

finite length signal using a second order recursion followed by a correction term. [101 Note that the

Goertzel algorithm is often more efficient than using a Fast Fourier Transform (FFT) algorithm to

compute the Discrete Fourier Transform (DFT) followed by discarding the non-relevant frequency

bins. The Goertzel algorithm also has the advantage of not having to compute DTFT coefficients

at evenly spaced points on the unit circle in the z-plane, but can be used instead for any harmonic.

Finally, an understanding of additive noise in a communication channel is well understood in the

frequency domain- the parameter spectrum based on frequency. This allows for symbol decoding

to take the effects of noise into account.

Figure 2.2.1 displays the resulting parameter spectra of these two signals; the spectra in Figure

2.2.1(a) are for the sinusoidal signal vi [n] while the spectra in Figure 2.2.1(b) are for the transient

signal v2 [n]. Each spectrum has N possible components present. Although both signals are com-

pletely represented using either spectrum, we see that in Figure 2.2.1(a) it is straightforward to

identify which frequencies are present in vi [n], however, identifying the two decay rates in v2 [n]

is not as straightforward. Likewise, in Figure 2.2.1(b) it is straightforward to identify which decay

rates are present in v2 [n] while it is not straightforward to identify which frequencies are present

in vi [n] . Therefore, for selecting which decay rates are present in a template signal, e.g., v2 [n], a

transient spectrum is advantageous.
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Figure 2.2.1: A comparison of parametric spectra based upon (a) frequency and (b) decay rate

2.3 Transient Spectra

Consider the scenario in which computing the amplitude coefficients is of interest when both

samples from the signal in Eq. (2.1.1) and the decay rates, {O-k}1d, are known. This is equivalent to

computing the transient spectrum for the signal Xd [n] as discussed in Section 2.2.3. Procedurally,

this involves solving the system of equations described by Eq. (2.1.5) for a. In Section 3.7 we show

that solving for a using a matrix inverse is a poorly conditioned approach, resulting in considerable

error in the amplitude vector found. In Section 3.4, two algorithms are proposed that exploit the

structure of these equations to produce the solution without requiring the direct inversion of the

matrix V (oT).

An inefficiency arises when a matrix inverse is used to to solve for a in Eq. (2.1.5) and only a

subset of the amplitude coefficients corresponding to a subset of the decay rates is desired, suggest-

ing that a technique which allows each amplitude coefficient to be found independently would be

advantageous, rather than solving for the entire set and discarding the undesired coefficients. To

address this inefficiency, the two algorithms proposed are each capable of solving for an amplitude

coefficient corresponding to a specific decay rate independent of the other coefficients.

We next consider the scenario in which computing the amplitude coefficients is of interest when

only samples from the signal in Eq. (2.1.2) are known. In this case, the transient spectrum may be
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computed using any set of values for the decay rates. Peaks in the resulting transient spectrum pro-

vide an indication of which decay rates are present in the transient structured signal. Interpreting

the results of a transient spectrum, similar to spectral analysis in the frequency domain, is discussed

in Section 3.8.

2.4 Parameter Recovery

Distinguishing between a parameter identification algorithm and a parameter estimation algo-

rithm is often quite subtle, depending on the context. In the context of this thesis, parameter

estimation is defined to be parameter identification in the presence of noise, where a parameter

identification algorithm processes data in order to identify the parameter values of a model which

the data is known to fit. Therefore, a parameter estimation algorithm attempts to approximate

the values of model parameters based upon measured or empirical data containing a random noise

component, where the data is known to fit the model if the noise component was not present. Under

these definitions, a specific algorithm is not classified as strictly an identification or estimation al-

gorithm, but can be either depending on the relationship between the data and the model. In other

cases, a set of samples, with or without a random component, does not accurately fit the model

selected, but the model is chosen for other reasons. This thesis does not consider the determination

of model parameters for this scenario.

The term "parameter recovery" is used in this thesis as an umbrella for which both parameter

identification and parameter estimation, as defined above, fall beneath. Regardless of the algorithm

or data used, the objective of a parameter recovery algorithm is to determine transient signal pa-

rameters by processing a set of observed samples. Appendix B provides a summary of several well

known parameter recovery algorithms, which are later used in Chapter 5.

2.5 Parameter Identification

The successful recovery of the decay rates present in a transient signal is defined next when only

the samples from a transient structured signal in Eq. (2.1.2) and the model order d are known.

Because the observed samples are guaranteed to satisfy Eq. (2.1.2), this scenario is classified as

parameter identification, as described in Section 2.4.

Definition 1. Successful Recovery in the Identification Case: Given a set of observed samples

that exactly fit the model in Eq. (2.1.2), successful recovery corresponds to accurately determining

the full set of decay rates, {k}1kd, that were used to generate the observed samples, {xd [n]}0:N-1'
Equivalently, accurate recovery of the pole vector o-.

Several existing methods, summarized in Appendix B, achieve successful recovery of the decay
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rates as defined above.

The next scenario considered is an extension of Definition 1 where the samples available are from

the result of lowpass filtering the transient structured signal. In order to simplify the upcoming

definition, define the signal gd [n] as the output of an LPF when the input is the signal xd [n], and

let {g [n]}0:N-1 be the set of N observed samples for n = 0, ..., N - 1.

Definition 2. Successful Recovery in the Identification Case Post-Lowpass Filtering:

Given the cutoff frequency of the LPF and the set of observed samples, {gd [n]}0:N-1> corresponding

to the output of the LPF when the input exactly fits the model in Eq (2.1.2), successful recovery

corresponds to accurately determining the full set of decay rates, {ok}ld, that were used to generate

the samples prior to the LPF. Equivalently, accurate recovery of the pole vector o-.

One approach for achieving successful recovery, as stated in Definition 2, is to perform a two step

procedure of signal recovery followed by parameter identification. The first step is to recover the

signal Xd [n] prior to the LPF. The second step is then exactly the parameter recovery formulation

in Definition 1. This approach inherently requires the extrapolation of frequency content from a

non-bandlimited signal and is considered in Section 5.5.

Another approach for achieving successful recovery is to use the observed samples, {gj Ino10:N-1
to directly solve for the desired parameters. By defining a parametric model 2d [n], e.g.,

d

;d[n] E= Z (&k), 0 < n < N - 1, (2.5.1)
k=1

where the parameters {&k}lld and {&k}1d: are to be determined, we can formulate the second and

more direct approach as an optimization problem. Doing so yields

(6, &) C arg min |gd - xd * fiP| (2.5.2)

where * denotes linear convolution and fi,[n] represents an ideal LPF. This formulation determines

parameters that produce a residual signal with minimum f 2-norm, where the residual signal is

defined to be

r [n] = gd [n] - --a [n] * fi, [n] .(2.5.3)

The residual signal, depending on the cutoff frequency of the LPF and the form of the parametric

model 'ld [n], can be either the sequence of modeling error or the sequence of linear prediction

error. [15, 18] These two interpretations and their relation to one another are further discussed in

Appendix B. The following two subsections formulate direct parameter recovery in two ways: first

26



CHAPTER 2. TRANSIENT SIGNALS 2.6. PARAMETER ESTIMATION

in the time domain and then in the frequency domain. From the frequency domain formulation we

conclude that the parameters that minimize the e2-norm of the residual signal are unique. A proof

of this uniqueness is presented in Appendix A.

2.5.1 Time Domain Formulation

Denote the cutoff frequency of the ideal lowpass filter, fp,[n], as wc, 0 < wc < 7r. Directly solving

for the parameters of a transient structured signal, as in Eq. (2.1.2), yields the non-linear set of

equations

9d[n] = fp [n] * Xd[n] (2.5.4)

- sin (wcn) dak(o)"u[n] (2.5.5)
7rn E ka

k=1

1 I sin (wel) ±n + sin (wel) )=- aiai all- + - - - + do o--d (2.5.6)

For each value of n, 9d [n] is an equation of the 2d parameters to be determined. Note that for a

fixed set of decay rates, the amplitude coefficients still maintain a linear relationship to the lowpass

filtered sample values.

2.5.2 Frequency Domain Formulation

An equivalent formulation of this problem is to consider the DTFT of each signal involved.

Define the DTFTs of xd[n], f 1 [n], and gd[n] as Xd(ejw), Fp(ejw), and Gd(ejw), respectively. This

optimization problem is then formulated by selecting the parameters of Xd(ejw) that minimize the

energy in the DTFT of the residual, Gd (eiw) - Xd (eij) Fl, (eiw). The parameters of the signal

Xd[n] are related to Xd(ejw) by,

d d

Zar H (1 - o-e-iw)

Xd(eiW) r=l 11,I' (2.5.7)

H (1 - o-ke-ju)
k=1

Writing this as an explicit optimization problem yields

(6, 6-) earg min|Gd (ew) - Xd (ew) Fip (ejw) 1|. (2.5.8)

2.6 Parameter Estimation

The successful recovery of the decay rates present in a transient signal is defined next when only
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noisy samples of the transient structured signal in Eq. (2.1.2) and the model order d are known.

Because the observed samples are guaranteed to satisfy Eq. (2.1.7), this scenario is classified as

parameter estimation, as described in Section 2.4.

Definition 3. Successful Recovery in the Estimation Case: Given the set of observed sam-

ples {d [n]}0:N-1> corresponding to samples which fit the model in Eq. (2.1.7), successful recovery

corresponds to determining the full set of decay rates, {o-k}1d, that produce a recovered pole vector,
&, that is closest to the true pole vector, o, for a given distance metric.

This parameter estimation formulation motivates the discussion of robustness for each of the

algorithms presented in Appendix B.

The final scenario considered is an extension of Definition 3 where noise is added to the result of

a transient structured signal processed by an LPF. Denote 9d [n] as the output of the lowpass filter

with the inclusion of additive white Gaussian noise, i.e., g [n] gd [n]+ r [n] and {gd [n]O:N-1 as

the set of N observed samples for n = 0, ... , N - 1.

Definition 4. Successful Recovery in the Estimation Case Post-Lowpass Filtering: Given

the cutoff frequency of the LPF and the set of observed samples {gd [n]}0:N-11 corresponding to the

sum of additive Gaussian noise and the output of the LPF when the input exactly fits the model in

Eq (2.1.2), successful recovery corresponds to determining the full set of decay rates, {-k}1d, that

produce a recovered pole vector, &, that is closest to the true pole vector, o-, for a given distance

metric.

Both Definitions 3 and 4 use a distance metric in order to measure the distance from a recovered

pole vector to the true pole vector. Two examples of possible distance or error metrics include the

Chebyshev distance and the E,-norm.

Table 2.2 summarizes the four definitions pertaining to successful recovery of the decay rates,

{o-k1 . For each definition, the structure of the data assumed is stated for the interval 0 < n <

N - 1. Figure 2.6.1 depicts the generation of the available data for the different cases where the

signals are also observed over the same interval of support.
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Definition Data

Definition 1: Successful Recovery in the Identification Case Xd [n]
Definition 2: Successful Recovery in the Identification Case Post-Lowpass Filtering gd [n] = fip [n] * Xd [n]
Definition 3: Successful Recovery in the Estimation Case zd [n] = Xd [n] + 77 [n]
Definition 4: Successful Recovery in the Estimation Case Post-Lowpass Filtering g [n] = gd [n]+'r;[n]

Table 2.2: Summary of the definitions for successful transient parameter recovery

Figure 2.6.1: Summary of the formulations of transient parameter recovery
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Chapter 3

Transient Spectral Analysis

This chapter formally defines the transient transform in order to represent a signal using a basis

comprised of real exponential signals. For finite-length signals, several algorithms for converting

to this representation are derived. Further, several properties of the algorithms for generating the

transient spectrum as well as properties of the transient spectrum itself are discussed. In order to

establish notation, a brief review of orthogonal and non-orthogonal change of bases is first presented.

3.1 Background on Basis Expansions

Consider representing a general discrete-time signal using a basis expansion of the form

x[n] = akk [n]. (3.1.1)
k

The set of signals {#k [n] is a countable set of pre-specified basis signals while the scalar

coefficients {ak}_-O.oo are the expansion coefficients with respect to the corresponding basis signals.

The representation of a signal by its expansion coefficients with respect to any basis will be referred

to as a spectrum. For example, consider the discrete sifting equation, i.e.,

x [n] = Z x [k] [n - k] . (3.1.2)
k

Here the standard sampling basis is used, i.e., #k [n] = 6 [n - k], and the resulting expansion co-

efficients are the observed data values. In this example, note that the expansion coefficients, with

respect to the standard sampling basis, provide a complete characterization of the signal x[n] . As a

second example, the representation of a signal by its DTFT completely characterizes a signal with

respect to a complex exponential basis.

The following two subsections describe a change of basis for the cases of an orthogonal and

non-orthogonal basis.

3.1.1 Orthogonal Basis Expansions

For any two signals u [n] and v [n] in a vector space V defined over the field T, the standard
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inner product, (-,-) V x V -* F, is defined by

(u, v) = Lu [n] v* [n] vHU (31.3)
n

where v* and vH denote the complex conjugate and complex conjugate transpose of v, respectively.

Note that the standard inner product is a sample of the cross-correlation between the two signals,
which is often implemented using linear convolution. When the basis signals { k [n]}_e:e are

chosen such that they are orthogonal, i.e., (#k,#) = 0 for k # 1, the resulting transformation is

an orthogonal transform. When the basis signals are additionally normalized such that the basis

signals also satisfy the set of constraints

1, if k=1

0, otherwise

then the basis expansion is an orthonormal basis expansion. For either the orthogonal or the

orthonormal case, the expansion coefficients may be directly computed using the standard inner

product, as defined in Eq. (3.1.3). This allows the signal x [n] to be decomposed by

x[n] = NS ( 00 Ok [n] . (3.1.5)
k (k, Ok)

The second example of an orthogonal basis expansion given above was the DTFT where the

basis signals are complex exponentials. In Section 3.9 the algorithms proposed in this chapter, for

finite-length signals, will be seen to hold for a complex exponential basis. Additional examples of or-

thogonal basis expansions include the Discrete Cosine Transform and the Hadamard Transform. 1141

3.1.2 Biorthogonal Basis Expansions

When the basis signals selected are not orthogonal under the standard inner product, then

Eq. (3.1.5) cannot be used to represent x [n]. Several alternative approaches are discussed in the

following section. One approach, which is taken in this thesis, is to generate a different set of signals

with a desirable inner product structure with respect to the original set of basis signals in order to

determine the desired expansion coefficients. That is, given a non-orthogonal basis {k [n] o,

define the set of signals {@k [n]}_,c,0 such that they satisfy the set of constraints

(#k, 01) = #k [n] 0* [n] = 'ki. (3.1.6)
n

These constraints will be collectively referred to as the biorthogonality constraints. The set of

signals {'Ok [n]} is the dual basis of {#k [n]}_- c, and each signal is a dual signal. Given

{k [n] }_e:e, the expansion coefficient al, for a fixed index 1, is determined by performing the

standard inner product of x [n] with 1 [n], resulting in the desired coefficient, i.e.,
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(X, i1) = akk, (3.1.7)
k

=---+ al_1(#01_1, 01) + al (#1, 01) + al+1(f01+1, 01) + -- -(3.1.8)

=al. (3.1.9)

The second equality comes from the linearity of an inner product in the first argument, and the third

equality comes from the biorthogonality constraints. Therefore, the signal x [n] may be represented

by

x [n] =Z (x, 00'k #[n] . (3.1.10)
k

The dual signal corresponding to an orthogonal basis signal is easily obtained from the orthogonal

basis signal, e.g., @k oc #*. This result implies that if the dual basis can be obtained, then a

non-orthogonal basis expansion may be computed using a similar procedure to the orthonormal

case.

If we choose the set of linearly independent, non-orthogonal signals {#k [n] as the basis

for a vector space V, then the vector space V may be decomposed as

V = V E Vli

where e is a direct sum, V = span {#0 [n]} and V 1 = span {{#k [n]}_., \ {#o [n]}} where \ de-

notes set subtraction. From the definition of the biorthogonality constraints we have that the dual

signal 01 [n], for a fixed index 1, is orthogonal to the space V- 1, i.e., if we denote @~i to be any

onto linear map from V to Vl 1 , then 4'l [n] c R (4~i), where 7Z (-) is the range of a linear map.

Using the adjoint equivalence identities, the dual signal 01 [n] equivalently lies in the nullspace of

the adjoint of 4 ~i, i.e., #1 [n] c N (4K*), where K (.) is the nullspace of a linear map and 4*l is the

adjoint of 4~i. [24]

3.2 The Exponential Bases

This section defines the general exponential basis, using which we define two special cases: the

complex exponential basis and the real exponential basis. The orthogonality of each of these two

special cases of the general exponential basis is then discussed.

Definition. The General Exponential Basis. The general exponential basis is defined as the

set of signals denoted by

{#0 (o-, n]} ,E (3.2.1)
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where I is either a continuous contour in the complex plane or a finite set of distinct complex

numbers, and, for each value of o-, # (o-, n] is a general exponential signal of the form

# (o-, n] = (o)f , n ;> 0, o- e C. (3.2.2)

Consider the general exponential basis {#5 (o, n] } when 1 is a continuous contour in the complex

plane. For any finite value of N, the first N non-zero samples of any N basis signals with distinct

values of o E I form a valid basis for CN. This means that a finite general exponential basis may be

constructed using values of OCk that are samples along a contour in the complex plane. Specifically,
define the set of signals {#k [n] } 1:N such that

1

o'k

(#k [n]}1:N=#1n,---,#N n}, #k [n] = o 1<k N, 0-k j for k j. (3.2.3)

N-1

Define the matrix 4, where each column corresponds to a general exponential signal, to have the

structure

01[n .. N [n] (3.2.4)

The matrix 4 takes the form of a Vandermonde matrix with [D]ij = (o-j)i, hence the columns of

are linearly independent. This implies that the general exponential signals {#k [n] } 1:N are also

linearly independent, and since CN is finite dimensional, this is sufficient to show that {#k [n] } 1:N

forms a basis of CN.

Unless otherwise stated, the notation # is used to denote an exponential signal for the remain-

der of this thesis. The first special case of the general exponential basis considered is the complex

exponential basis, which is the basis used in Fourier analysis.

Definition. The Complex Exponential Basis. The complex exponential basis is defined to be

structurally identical to the general exponential basis where the interval I is chosen to be

Iinf = {o- I Re2 (a.) + Im 2 (o.) = 1} (3.2.5)

for the infinite complex exponential basis, or
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Ifin =Ok O ek = NeJ , k=0, ,N -1 (3.2.6)

for the finite complex exponential basis.

Under the definition of the standard inner product in Eq. (3.1.3), it is straightforward to verify

that both the finite and infinite complex exponential bases are orthogonal.

The second special case of the general exponential basis considered is the real exponential basis,

which is the basis used in the transient domain representation of a signal. For brevity, this basis

will often be referred to as simply the exponential basis.

Definition. The (Real) Exponential Basis. The (real) exponential basis is defined to be struc-

turally identical to the general exponential basis where the interval I is chosen to be

Iinf ={- 1 u (0, 1)} (3.2.7)

for the infinite (real) exponential basis, or

fina = {ok I -k E (0, 1), k = 0, -, N - 1, Ok < ajfor k < j} (3.2.8)

for the finite (real) exponential basis.

We denote the transient spectrum of a signal by A (a) or A [k] depending on whether the basis

{ (o, n]},E(o,1) or {# k [n]}1:N is used, respectively. Consider the standard inner product (-,-) given

in Eq. (3.1.3), for which it immediately follows that

(0- (ak) , 4 (Ol)) # 61k I, for any # (ok) , # (o-l) E {# (a, n]}E(0,1), (3.2.9)

and

(#k, #1) / 4k1, for any #,k,$, {#1 [n]}1:N- (3.2.10)

Consequently, in order to compute the transient spectrum, i.e., A (a) or A [k], several alternative

approaches may then be taken. For example, the exponential basis may be orthogonalized through

the Gram-Schmidt procedure, or we may generate the closest orthogonal basis to the exponential

basis in a least squares sense using Inner Product Shaping. [7] These two approaches are considered

in Section 4.6. Alternatively, we may define a new inner product under which the basis is orthogonal.

The existence of such an inner product is guaranteed because for any set of linearly independent

signals an inner product always exists under which the signals are orthogonal. This thesis takes the
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route of deriving the dual basis signals under the standard inner product. However, the possibility

of a finite exponential basis being orthogonal under a weighted standard inner product is ruled out

next.

For any two signals u [n] and v [n] in a vector space V defined over the field F, the weighted

standard inner product, (-, -), : V x V -* F, is defined by

(u, v)" = u [n] v* [n] w [n],
n

where w [n] is a non-negative weighting function. For V - RN, an equivalent

weighted inner product is given by, for u [n] , v [n] E RN

(3.2.11)

formulation of the

w[0] 0 ... 0

0 w[1] --- 0
where W = . .

0 0 ... w[N-1] _

(3.2.12)

We are interested in determining if a non-negative weighting function w [n], or a positive semi-

definite, diagonal matrix W, exists such that #k [n] and #1 [n] are orthogonal for k # 1.

We denote G, as the matrix of weighted inner product constraints, meaning [Gw]ij = (#i, #j).
The desired orthogonality constraints are given in matrix notation as

<bTW(b = Gw (3.2.13)

where Gw is a diagonal matrix with strictly positive elements on the principal diagonal. The fol-

lowing proposition shows that under this definition of a weighted inner product, there exists no

non-negative weighting function w [n] such that the elements of {#k [n] }1:N are orthogonal. This is

equivalent to saying there is no matrix W which is both diagonal and satisfies Eq. (3.2.13).

Proposition. Given a real exponential basis {$k [n] }1:N, then there exists no non-negative weighting

function w [n] such that

(#k, #i)w = 9k ,

0,

k = 1

k: 1
(3.2.14)

for any strictly positive scalars {gk}1:N

Proof. The weighted inner product for two elements of an exponential basis reduces to

N-1

(#k,#1) w= 5 (o~ko-1)n w [n].
n=O

(3.2.15)
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The terms in the summand resulting from the exponential signals are strictly positive. This implies

that the only non-negative weighting function that can be used in order to sum strictly positive

terms and result in 0 is w [n] = 0.

Therefore this proposition shows that there exists no weighted standard inner product, including

the standard inner product, for which the exponential basis signals are orthogonal.

3.3 Transient Transforms

In this section we formally define the Discrete-Time Transient Transform (DTTT) -a reversible

mapping through which a causal, transient signal is represented by a linear combination of expo-

nential signals.

Definition. The Discrete-Time Transient Transform.

A (o) =Z X [n] (o-, n], 0 < < 1, (3.3.1)
n

Xd [n] =j A (-) (o-, n] do, n > 0, (3.3.2)

where {$ (o-, n]}C(O) is the real exponential basis and {0 (-, n]},CO,1, is the corresponding dual

basis. Furthermore, we refer to Eq. (3.3.1) as the D TTT analysis equation and Eq. (3.3.2) as the

DTTT synthesis equation.

No known method for generating a dual exponential signal 0 (o, n] exists for any value of

a- c (0, 1), and it appears that without access to the dual basis the DTTT cannot be used for

analysis. However, for any finite-duration signal the dual exponential basis may be found. Thus

we define the Discrete Transient Transform (DTT)-a reversible mapping through which a general

finite-length signal is represented by a linear combination of exponential signals. Algorithms for

generating the dual finite exponential basis are derived in Section 3.4. The DTT is a set of samples

of the DTTT where the spacing of these spectral samples is determined by the decay rates selected in

the finite exponential basis used, i.e., {-k}1:N. The invertibility of the DTT follows by substituting

the analysis equation into the synthesis equation and simplifying.
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Definition. The Discrete Transient Transform.

N-1

A [k] =E x[n]#i [n), 1 5k<5N, (3.3.3)
n=O

N

x[n]=EA[k]#k[n], O<n<N-1, (3.3.4)
k=1

where {#k [n]I1:N is the real exponential basis and {4k [n]Il:N is the corresponding dual basis. Fur-

thermore, we refer to Eq. (3.3.3) as the DTT analysis equation and Eq. (3.3.4) as the DTT synthesis

equation.

The DTT, as defined, possesses both homogeneity and additivity with respect to the input. To

see this, denote the DTT pairs vi [n] ++ Vi [k] and v2 [n] ++ V2 [k], corresponding to signals of length

N; if x [n] = a - v1 [n] + b -v 2 [n] then A [k] = a - V1 [k] + b - V2 [k], for any real scalars a and b.

Therefore this transformation is linear.

Given the dual signals {k [n}1:N, a transient analysis filter bank may be constructed to com-

pute the transient spectrum A [k] according to Eq. (3.3.3). This process is identical to the filter bank

implementation of the DFT where the dual signals correspond to the finite complex exponential

basis. Computationally the standard inner product is a single sample of the correlation sequence,
which can be implemented using convolution. For example, to compute the standard inner product

of a transient signal Xd [n] with @k [n], for a fixed index k, a linear convolution is performed with

the time-reversed dual basis signal Ik [-n]. Denoting the output of this linear convolution as sk [n],
the output is given by

N-1

sk [n] Xd [n] * k -n] ZXd [1]?k [1- n] . (3.3.5)
1=0

By sampling the output sk [n] at n = 0, the expansion coefficient ak is computed, i.e., sk [0]

(xd, 0k). A signal flow graph representing this procedure for transient spectral analysis is depicted

in Figure 3.3.1.
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Xd[fl] 3 0-F7-1-i si[] = ai

t 40 F V)[-n]82[0] = a2

>1[-n] sk[0] = ai

SN [~ = aN

Figure 3.3.1: The DTT analysis filter bank used to generate the transient spectral coefficients A [k]

The definition of another mapping, referred to as transient filtering, is established by the fol-

lowing procedure. First, compute the DTT of the signal x [n], i.e. A [k] = T{x [nI]} where T{-}

is the transient analysis mapping in Eq. (3.3.3). Next, modify the transient spectrum A [k] by

multiplying it element-wise by a function N [k], for each value of k. Finally, the output is defined by

y [n] where y [n] = T- 1 {A [k] W [k]} and T- 1 {-} is the transient synthesis mapping in Eq. (3.3.4).

The input-output relationship of this mapping depends on the structure of W [k], which may be

designed freely. This mapping describes the procedure for a novel signal processing algorithm. Note

that the mapping is linear but not circularly time-invariant, and therefore cannot, in general, be

represented as the circular convolution of an input signal with any impulse response. As a trivial

example, N [k] = 1, for 1 < k < N, results in an identity mapping.

As a more interesting example, the design of a high decay pass filter is given by

NHP [k]={1, O1 <k < 9c

0, ac :5 Uk < UN

for some 0 < uc < 1. This choice of a transient domain scaling sequence passes all transient

components in a signal which decay faster than the cutoff decay rate ue, and rejects all transient

components decaying slower than oc. The design of the complementary low decay pass filter is then

defined by NLP [k] = 1 - NHP [k] for the same value of ac. Using these two filters to separate a

signal into two transient channels allows for different processing of the slowly decaying and rapidly

decaying components. In a similar fashion to this example, numerous different regions of decay rate

may be selected, emphasized, or attenuated depending on the desired processing of the input signal.

In Chapter 5, an adaptive transient filtering algorithm is proposed.

3.4 Algorithms for Generating Dual Exponential Bases

We have shown that in order to compute the expansion coefficients with respect to a general
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exponential basis, the orthogonality of the basis cannot be assumed. Therefore, the standard inner

product of the corresponding dual basis signals may be taken with the signal to be analyzed in

order to produce the desired expansion coefficients. In practice, this requires the dual signals to be

available for computation. This section derives the dual basis signals using three algorithms: the

first generates the dual signals for any basis while the remaining two are specialized to generating

the dual basis of a general exponential basis specifically. Before presenting these algorithms, the

uniqueness of a dual basis is presented in order to confirm that the three algorithms all theoretically

result in identical bases, though in practice the resulting bases are often different due to implemen-

tation errors.

3.4.1 Uniqueness of the Dual Basis

We begin by defining a linear map ( from a vector space to the field of scalars over which the

vector space is defined, i.e., ( (.) : V -+ F. The uniqueness of a dual basis is established by showing

that the biorthogonality constraints define a unique linear map ( for each dual signal. In order

to understand how a dual signal paired with the standard inner product acts as the linear map

(, consider Figure 3.3.1. This figure depicts the transient spectral coefficient A [k] as the result of

sampling the correlation of two signals at a specific time, i.e.,

N-1

A [k] = Sk[] = Xd [1bk [= (Xd, Vk (3.4.1)
1=0

In this example, the combination of the dual signal Ok E V and the standard inner product is then

interpreted as taking a linear combination of the input signal Xd [n] to produce a scalar A [k] c F,

i.e., C(-) = (, @k). We next show that there is a unique signal v E V such that

( (u) = (u, v) (3.4.2)

for every u E V. To see this we first show that there exists a vector v E V such that ( (v) = (u, v)

for every u c V, and then we show that only one vector v c V has this desired behavior.

Let {# k} be an orthonormal basis of V. Then decompose the transformation as

S(U) = (Y' (U, 00~ Ok) (3.4.3)
k/

(u, k)Q (#k) (3.4.4)
k

U K0k k. (3.4.5)
\ k 

By setting v = Ek V* (0k0 Ok we have ( (u) = (u, v) for every u EV, as desired.
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To see that only one vector v c V has this behavior we define v1, v2 C V such that

( = (u, vi) = (UV2) (3.4.6)

for every u E V. Then

0 = (U, vi) - (u, v2) = (u, v1 - v2) (3.4.7)

for every u E V. Taking u = vi - v2 shows the uniqueness. In other words, v1 = v2.Therefore we

may conclude that the dual signals are the unique set of signals as defined by the biorthogonality

constraints.

3.4.2 Generating Dual Bases by Matrix Inversion

The algorithm for generating the dual basis by matrix inversion may be used for any basis,

however we specialize the discussion below to a general exponential basis {k [n]j}1:N in order to

establish useful notation. Define the set of dual signals {Nk [n]}1:N to satisfy the biorthogonality

constraints given by

(Okp, i1) = 4k, (3.4.8)

for 1 < 1, k < N, i.e., there are no inner product constraints between the original basis signals or the

dual signals themselves. The only inner product constraints are pairwise between the exponential

basis signals and the dual basis signals. This is distinct from enforcing orthogonality between

elements of the dual basis, as will be explored in Section 4.6 on Inner Product Shaping. In matrix

notation the biorthogonality constraints in Eq. (3.4.8) are

<hWjH = IN (3.4-9)

where the matrix IQ is defined by

01 [] .. ON[n](3.4.10)

and IN is the identity operator on V. Therefore the dual signals {)k [n] }1:N may be determined by

taking the columns of the matrix IF given by

=(Hyl (3.4.11)

The matrix <hH is guaranteed to be invertible as its columns form a basis, i.e., are linearly

independent. The uniqueness of a matrix inverse, when a matrix is full rank, is consistent with

the uniqueness of the dual basis previously discussed. Solving this system of equations using a

matrix inverse provides the entire set of dual signals. Each of the expansion coefficients are found
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simultaneously by taking the inner product of Xd[n] with each dual signal, or equivalently

a = W H d- (3.4.12)

Note that when the decay rates of a transient structured signal are known, we may choose

<b = V (U-). In this case a is the solution for the amplitude coefficients by directly solving Eq.

(2.1.5) using matrix operations.

The canonical procedure for finding the dual basis signals, given in Eq. (3.4.11), has two major

disadvantages. First, the dual basis signals must all be computed simultaneously, which is inefficient

if only specific expansion coefficients are of interest. Second, for the real exponential basis, the ma-

trix to be inverted, <kH, has a Vandermonde structure, for which it is well known that Vandermonde

structured matrices are poorly conditioned when they are constructed with real distinct roots, as

will be discussed in Section 3.7. [9] As a consequence, the solutions found using matrix inversion

may contain large amounts of computational error. Motivated largely by these these two factors,
two alternative algorithms for generating the dual basis signals for a general exponential basis is

proposed in the following two subsections.

3.4.3 Generating Dual General Exponential Bases by Modulation

The algorithm proposed in this subsection eliminates both of the disadvantages discussed when

the dual exponential basis is generated by matrix inversion. Specifically, it avoids computing the

inverse of a potentially ill-conditioned matrix and allows for the dual signals to be found indepen-

dently. To begin developing this method, define the mapping r, : V x V -> F as

r (x, y) = x [n] y* [n] p (y* [n]) (3.4.13)
n

for any x, y c V and where the function pt (-) V -- V will be defined shortly. Note that , is

linear in its first argument and non-linear in its second. Also, note that r, is structurally identical

to the standard inner product given by (x, y o y (y)), where o denotes element by element vector

multiplication, or equivalently, signal modulation.

Given a finite general exponential basis {#O [n]}1:N, our interest lies in determining a set of

modulating signals {p (k [n])}1:N, such that the biorthogonality constraints hold, i.e., K(#k, #1) =
k1 for 1 < 1, k < N where V51 [n] = #1 [n] o p (1i [n]). Thus the modulating signals, {A (#1 [n])} 1:N

are named primarily because of their interpretation as the set of signals used to modulate the basis

signals in order to generate the dual signals. Note that this algorithm relies upon the basis signals

being non-zero for all sample values, which is guaranteed for the general exponential basis. For

42

3.4. DUAL BASIS GENERATION CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS



CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS 3.4. DUAL BASIS GENERATION

1 < 1, k < N, the biorthogonality constraints are then given by

(#* [0]) 0 -.-- 0

1, k = l 0 0
, (#k, #i1) = #4k (#i )q#k = ,, where K (#1) )

0, k # 1 .

. 0 0 -..-p. #i [N - 1])
(3.4.14)

The following proposition states that for a general exponential basis, the set of modulating

signals, {p (#k [n])}1:N I which satisfy the desired biorthogonality constraints exist and are unique.

However, for simplicity in the following proposition, the constraint of K(i, #1) being unity is relaxed

such that any non-zero scalar is accepted. In this way an appropriate normalization of the resulting

modulating signal can be applied later to enforce the biorthogonality constraints as defined in Eq.

(3.4.14). These unnormalized modulating signals are denoted by {v (#k [n])}1:N, i-e., V (#k [n]) oc

p (#k [n]).

Proposition. Given a general exponential basis {#k [n]}1:N, then a set of unnormalized modulating

signals {v (#k [n])}i:N exists such that

N-1 - 1

S(#k,41) = 4k [n] #* [n] v (#* [n]) 1' (3.4.15)
n=0 0, k: 1

for 1 < 1, k < N and for some non-zero constants {yk}I1:N. Furthermore, the unnormalized modu-

lating signals are unique to within a scaling.

Proof. We have previously shown that the dual signal V1 [n], for a fixed index 1, lies in the orthogonal

complement of any linear map 4~, : V -* Vi , where the vector space V is decomposed as

where VI = span {#i [n]} and V-1 = span {{Ik [n]}1:N \1 [n]}}. For each 1, 1 < 1 < N, repeat the

following argument. We choose @~i to be the linear transformation

~ 0 1 - - 1 #1+1 ''' #N

By definition we have that 41 [n] oc #? [n]ov (#? [n]), therefore the modulating signal v (#i [n]) must be

in the orthogonal complement to the space spanned by {10io,, ... , 41-io401, #1i10#i1, -'' , ONo?1},
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i.e.,

v(# 1 [n]) e R-L
+ #] [0]0

--- #N

I -- 0

Written in matrix notation this is v(# 1 ) E 7' ((D145). The product @~,tP is guaranteed to span

an N - 1 dimensional space because each of the N - 1 basis signals are modulated by the same

non-zero signal, so no two basis signals end up being collinear after the modulation. Therefore

dim (1I? (4V~it'4)) = 1 by the Rank Plus Nullity Theorem, meaning the modulating signals are

unique to within a scaling.

The proof of the above proposition not only shows the existence of the unnormalized modulating

signals, but also suggests an algorithm to determine them one at a time. In order to compute a

nullspace we define the full Singular Value Decomposition (SVD) next. However, any technique to

determine the nullspace of a linear map may be used in the following algorithm.

Definition. The Singular Value Decomposition (SVD). If A is an N x N, rank r matrix,
then there exists an N x r matrix U and an N x r matrix V such that UHU - VHV = Ir and

A = UIIVH , where Ir is an r x r diagonal matrix whose diagonal entries, called singular values,
satisfy

(3.4.16)

The extended or full SVD can be written as

A= [u ur f1[... ]N-r

The vectors Uk and vk
comprise the columns

and A, respectively.

H

V1HVr

-H

V 
--

VNr

r
7kukvk +

k=1

N-r

k=1

By definition, all N values of 0-k are distinct. Therefore, o-o1 - # o._154 # o1 1 0+1U-
- ONO-l, so all N - 1 of these values are also distinct. Define the function (j [n] = (olo-)" for

0 < n < N - 1 and 1 = j. The standard inner product of v (#1 [n]) with (j [n], for each j, must be
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0 for the desired constraints to be met. Writing these constraints in matrix notation, we have that

v (#1 [n]) must satisfy

(1[0] [N - 1] 0

(~-1[0 ... (1N 1] v ($i [0] 0

C(1+ [0] ... (i+I [N - 1] J 0

Ci+[0] -- NL+1N-1] '0
. . .v (4t[N - 1]).

(N 10 ''' (N [N - 1] jL0

The matrix above is Vandermonde with N - 1 linearly independent rows. Therefore the null space

of this matrix contains exactly one non-trivial vector corresponding to v(#I[n]).

Denote the matrix in Eq. (3.4.18) as Q1. The vector ;VN in the full SVD representation of Qi

is a basis for the null space and consequently is a scalar multiple of A (#1 [n]), i.e., VN = V (1).
Therefore, the modulating signal, for a fixed index 1, is found to be

p (#1 [n]) = 7 -v (di [n]) (3.4.19)

for some scalar 'yi. In order to use Eq. (3.1.10) to produce the transient spectrum we enforce that

#o (#')) = 1. Therefore we find that, for each 1,

1
yri = . (3.4.20)

(#i, V (pi) o0i

If the entire transient spectrum is desired, then this process only needs to be repeated for each

1, 1 < 1 < N. The normalization by -yi is the appropriate scaling for the set of biorthogonality

constraints to be met.

This algorithm has the advantage of enabling the separate computation of the modulating signal

corresponding to each exponential basis signal. The ability to produce the dual basis signals one at

a time is given by

for 1 < k < N. This resolves the first of the two limitations discussed when the dual basis is

constructed by matrix inversion by allowing the dual signals to be computed independently. The

second issue of computational noise can be mitigated by using either algorithm based upon whether

computing the nullspace of the matrix Qi or inverting the matrix 4 H results in lower computational

error.

3.4.4 Generating Dual General Exponential Bases by Polynomial Expansion

The derivation of the algorithm for generating the dual general exponential basis by modulation
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took advantage of the structure of a general exponential basis such that a matrix inverse was

avoided. However, any technique for finding the null space of a matrix may be used to find the

dual signals. A third algorithm, also specific to a general exponential basis, is now proposed for

generating the dual exponential signals directly by exploiting the structure in the unnormalized

modulating signals {v (#k [nl)}1:N. This results in a formulation where the dual basis signals are

determined using polynomial expansion and knowledge of the parameters {o-k}1:N used to define

the general exponential basis.

An important observation about Vandermonde structured matrices and their relation to zeros

of polynomials, which will be useful in the ensuing discussion, is highlighted first. This approach is

based on the fact that a polynomial P of degree N < oc with scalar coefficients of the form

N

P (z) = Zbkzk (3.4.22)
k=O
N

= flbN (z -k) (3.4.23)
k=1

has N, not necessarily distinct or real, zeros {#kI}1:N. P evaluated at each zero, #k, must equal

0, i.e., P (k) = 0, for 1 < k < N. Consequently, the polynomial coefficients must also satisfy the

matrix equation

1 1 - # 0

- . bN ] [i (3.4.24)
1ON #2 .. ' N bN _ 0

where the matrix above has a Vandermonde structure. Note that in Eq. (3.4.24), the N roots of P

appear explicitly in the second column of the N x N + 1 matrix. Further, the vector of coefficients

b = [bo, - -- , bN]T lies in the nullspace of the Vandermonde structured matrix. When the roots of

the polynomial are unique, the vector b is a basis for the nullspace as well.

We use the relationship between a polynomial and a Vandermonde matrix to generate a dual

basis signal by exploiting the matrix Qi to find the unnormalized modulating signal v (#1 [n]), for

a fixed index 1, using polynomial expansion. The matrix Qi in Section 3.4.3 is Vandermonde with

[Qi];- = ( , where

(3.4.25)
Eloi+1, < i < N

Using the relationship between a polynomial and a Vandermonde matrix established in Eq. (3.4.24),
we construct a polynomial in z- 1 given by
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N-1

p(0r (z) = 1 - ( ) - (3.4.26)
j=1

N

= HJ (I - (Oj'Or)- 1 Z-1 (3.4.27)
j=1, jyf61
N-1

= v(#1 [n]) z-" (3.4.28)
n=o

where for each 1, 1 < 1 < N, Eq. (3.4.27) defines an expression for the z-transform of v (#i [n]),
denoted by V(1) (z). Therefore the z-transform of the modulating signal p (#1 [n]), denoted by

M(M (z), is defined by M C1 (z) = yjV( (z). Using Eq. (3.4.27) is an improvement upon the previous

two algorithms for dual basis construction in the sense that neither a matrix factorization nor a

matrix inverse need to be computed. Instead, any computational error arising in this calculation

is due only to the multiplication of the inverse parameters {}1:N used to define the general

exponential basis signals.

Continuing further with the interpretation of Eq. (3.4.27) as the z-transform of v (#i [n]), for

some fixed index 1, the product of N - 1 binomial terms in the z-domain is equivalent to N - 1

convolutions of length-two signals in the temporal domain. Each length two signal has the form

hl [n] = Z- 1 {1 - (ko-)- 1 z- (3.4.29)

= 6 [n] - (Uk9c)-1 6 [n - 1] (3.4.30)

for 1 < k < N, k # 1. The convolutional procedure for generating an unnormalized modulating

signal is given by

v (#i [n]) = h [n] * . * hl'), [n] * hl) [n] * .. )* [n] (3.4.31)

for 1 < 1 < N. Together Eqs. (3.4.30) and (3.4.31) yield an expression for determining the unnor-

malized modulating signals {v (#k [n])I1:N using only knowledge of the parameters {k}I1:N

Figure 3.4.1 shows a signal flow graph depiction of the algorithm for dual exponential basis

generation by polynomial expansion. The dual basis signals are given by 'k [n] = ykPk [n], for

1 < k < N, where the unnormalized dual signals 4k [n] are generated independently by constructing

scalar multiples of the unnormalized modulating signals, V (#k [n]), and then modulating each by

the appropriate exponential basis signal. Also depicted is the construction of the scaling coefficients

in Eq. (3.4.20), where the summation needed for the inner-product is performed by sampling a

rectangular window filter at the appropriate sample value.
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p [n]

................................. u[n] - u[n - N ] +7 [N - 1] = {
6[n] 1 ni

........... u[n] -u[n -N]+72[N -1] = 1
* vQ(#2[n])

h 2 [n] h [n] ** h _[n][h n] 2nn

141

h [n * h [n] - h [n --- - h [n] n

-p 2 [n]

...............u[n] - u[n - N+ 7N2[N - 1] = 72

4bN [n]

Figure 3.4.1: The signal flow graph for generating the unnormalized dual exponential basis signals

{ /k n 1:N and the normalization constants {'Yk}1:N directly using the modulation algorithm

Consider the zeros of the z-transform of an unnormalized modulating signal v- (<pi [n]), for a

fixed index 1. The zeros possess additional structure in the sense that every zero in Eq. (3.4.27) is

a multiple of the parameter og-1. This additional structure is exploited next.

Vieta's formula [261, which gives the relationship between the coefficients of a polynomial and

functions of its zeros, states that, using the notation of Eqs. (3.4.22) and (3.4.23),

(3.4.32)

Consider the zeros of V('0 (z) for a fixed index 1. Each of the zeros are of the form #31 - -1,

as defined in Eq. (3.4.25). Therefore a factor of the form (r-l)k, for some positive power k, can be

factored out of each of the equations above when specialized to V('0 (z). Without loss of generality
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assume that 1 = 1. The left-hand side of the set of equations above reduces to

(Or-1)2 (j(U2 1 031+
1 1 1 1 r

ci(4+... +C7 12 0 ) + (or-1 01-1 + . + or- 1 or-) + . .+ (7"-i1

(3.4.33)

This representation is interpreted as the coefficients of the z-transform of a signal u (#1 [n])

modulated by 4i [n] = (,-1)fl for 0 < n < N - 1. Denote the z-transform of u (#1 [n]) as U(1) (z),

then U(1) (z) has zeros at o,..., o-. Generalizing to an arbitrary index 1, 1 < 1 < N, define

N

U(M (z) =J (1 - j-Z)
k=1, k7l

(3.4.34)

to be the z-transform of u (#1 [n]), a signal that when modulated by q5 [n] produces v (#1 [n]). That

is

(3.4.35)

for 1 < 1 < N. Next, the product of N - 1 binomial terms in Eq. (3.4.34) is interpreted as N - 1

convolutions of length two sequences in the sample domain where each length two sequence has the

form, for 1 < k < N,

9k [n] -Zf 1 -uk z-1}

=6 [n] - 1 6 [n -1]

(3.4.36)

(3.4.37)

These length two sequences have many advantages over those defined in Eq. (3.4.30), as they are

reused in the process of generating each dual basis signal. Therefore the convolutional expression

for u (#1 [n]) is given by, for 1 < 1 < N,

u (#1 [n]) = 91 [n] - -* 9I- [n] * gi+1 [n] * - - * 9N [n]. (3.4.38)

Directly using Eqs. (3.4.35) and (3.4.38) in order to generate the unnormalized modulating

signals {v (#1 [n])}1:N is shown next in Figure 3.4.2.

49

CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS 3.4. DUAL BASIS GENERATION

(al1)N 021..ON)

v (#1 [n]) = u (#1 [n]) o j [n]



3.4. DUAL BASIS GENERATION CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS

g[] 2[n]- g3[rL] - g* N-1[n 9Nn] U(1[]---------------------------------------------- - - 1 n

u(#2 [n])
91] ..3. ** 9N-1 n v ($2[n|)

* $ [n]

* ~b 1 [n]

* u(S [n])

gi1[n] ..] gN2n Nl[n] X v(SN[n])

qN n

Figure 3.4.2: The signal flow graph for generating the unnormalized modulating signals
{v (#g [n])}1:N using the modulated signals {u (#k [nl)}1:N

Combining the signal flow graphs in Figures 3.4.1 and 3.4.2, note that the modulating terms

cancel, i.e., #1 [n] 4i [n] = 1, for 0 < n < N - 1 and 1 <1 < N. An expression for the dual signals

{0i [n]}1:N is obtained then by directly using knowledge of the parameters {Ok}1:N used to define

the general exponential basis instead of pairs of these parameters. That is, for 1 < 1 < N,

01 [n] = 7y/ - u (#1 [n]) , (3.4.39)

where 7y is the scalar in Eq. (3.4.20) and u (#1 [n]) is given in Eq. (3.4.38). A signal flow graph

implementation of this system is depicted in Figure 3.4.3. Again, the figure shows the procedure

used to calculate the normalization parameters {yk}1:N-
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u(0 1[n])

92[n]H 9n] -.. 9N-1 [n 9N[r]

u(4N n)

91 9 2 9 ' 9N n 9--- -U(0N[&])

91[fl] g3 [n] .. [. ] 9N1[l

41[n]

F [n] - u[n - N] -+71[N - 1] 1

V), [n]

021 [n]

u[n] - u[n - N] - 2[N - 1] 1

2N [n]
un] - u[n - N ] -+-o N7 [ N - 1]=

VN [n]

Figure 3.4.3: The simplified signal flow graph for generating the unnormalized dual exponential

basis signals {4k [nj 1:N and the normalization constants {yk}1:N

One final simplification of the signal flow graph representation of dual basis generation shown in

Figure 3.4.3 involves the re-use of the sub-system components {gk [n]}1:N. Consider the polynomial

in Eq. (3.4.34) where we reformulate it to be a rational function given by, for 1 < I < N,

N

1 - Z

U(1) (z) -=1 _ _
(1 - og z 1)

The numerator of this function is invariant to 1, meaning it may be used for each U(M (z), 1 <1 < N.

Utilizing this fact gives another implementation for generating the dual basis signals and is shown

in Figure 3.4.4.
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01 [n]

u[n] - u[n - N] 71[N - 1]
'71

6[n]-.fnIT3n V) [n]~] N~l

02[n]n

u[n] - u[n - N] -+9[N - 1]=g

u[n] -u[n -N 77[N -1]-

1IN

-E VbN [n]

Figure 3.4.4: The signal flow graph optimized for computational savings for generating the unnor-
malized dual exponential basis signals { bk [n] 1:N and the normalization constants {yk}1:N

3.5 Pole-Zero Interpretation of Polynomial Expansion

This section describes an alternative algorithm for generating the unnormalized dual signal,

4k [n], using a modification of the algorithm presented in Section 3.4.4 for generating the dual

exponential basis using polynomial expansion. The discussion in this section is specialized to the real

exponential basis, although similar arguments hold for the general exponential basis. This algorithm

uses a straightforward argument based upon the pole-zero representation of signals and systems. To

begin, consider the set of N infinite duration exponential signals, { k [n] }:N, where k [n] = 0-nu [n],

for 1 < k < N. The process of designing a filter bank to detect which ck [n] E f(Nk [n] I1:N is the

input to the filter by looking at an output snapshot is described next. Once this process has been

stated, the system function for each channel in the filter bank is shown to be equivalent to the

unnormalized dual signals found by polynomial expansion. The primary difference in this section

and the derivation of the algorithm in Section 3.4.4 is that for finite-length exponential basis signals

the arguments used here do not hold.

Define the structure of the 1th channels system function by F(1) (z), where F(') (z) has a zero

at each of the decay rates in the infinite duration exponential basis, except for decay rate 0-.

The impulse response of the 1th channels system function is denoted by f(1) [n]. Therefore, the

z-transform representation of the 1th channel is given by

N

Z {f() [n]} = 1 (1 - OkZ- 1 ) . (3.5.1)
k=1, k:l

The implication of the N - 1 zeros of F(1) (z), corresponding to N - 1 of the decay rates in the
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infinite duration exponential basis {Jk [n] 11:N, is that f(1) [n] has a non-zero length corresponding

to 0 < n < N - 1. The pole-zero representation of FM (z) is shown in Figure 3.5.1(a), for a

fixed index 1. Each infinitely long exponential basis signal has the z-transform structure given by

Dk (z) = <_cikz 1 1 k < N. Therefore, for k # 1, F' (z) -e(Dk (z) results in a pole-zero cancellation

at Uk. Equivalently, the convolution of f() [n] and &g [n] results in a signal of non-zero length for

0 < n < N - 2. The pole-zero representation of this case is depicted in Figure 3.5.1(b). For the

case where k = 1, F(') (z) - (4 (z) does not result in a pole-zero cancellation. The convolution of

f () [n] and &5 [n] results in an infinitely long non-zero output due to the pole at 0 k in the pole-zero

representation. The pole-zero plot for this case is depicted in Figure 3.5.1(c).

ImaginaryAxis FM' (z) z-plane

1
- pRealAxis
U1 02 0l1-1 U1+1 UN-1 UN

(a) Pole-zero representation of the 1th channels system function FM (z)

ImaginaryAxis F()(z)'i'k(z), k # 1 z-plane

1
RealAxis

j71 F2 Uk-1 0k+1 0"1-1 Crl+1 UN-1UN

(b) Pole-zero representation of the output of the lth-channel using the input

bk [n] when k $ 1

ImaginaryAxis F (z)'J'k(z), k = 1 z-plane

1
- S RealAxis

or1 a2 Uk-1 Ok 01k+1 UN-1 UN

(c) Pole-zero representation of the output of the lth-channel using the input

bk [n] when k = 1

Figure 3.5.1: Pole-zero representations for understanding the dual exponential basis generation by
polynomial expansion

To detect which of the infinitely long exponential signals is the input into the filter bank is easily

obtained by looking at the snapshot of outputs at time n = N - 1. The index of the channel with

non-zero output at this sample corresponds to the index of the infinitely long exponential signal

that was the input into the filter bank. Note that without an appropriate scaling, the value of the

output at this sample is not the expansion coefficient, but just an indication of presence. This means

that if the linear combination of two infinitely long exponential signals are put into the filter bank,
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then the two corresponding channels would have non-zero output at n = N - 1. However, the two

output values would not necessarily indicate which exponential component had greater magnitude.

Note that the 1th channel of the filter bank described above, i.e., F(1) (z), is structurally identical

to U(') (z) in Section 3.4.4.

3.6 Desirable Properties of Transient Spectra

The expansion coefficients resulting from a change of basis often have some physical significance

with respect to the structure of basis signals selected. For example, one decomposition commonly

used in a broad range of engineering disciplines is the Discrete Fourier Transform. The DFT has

been successfully used across numerous disciplines; the importance of the DFT needs no elaboration.

The orthogonal basis signals used in the DFT are harmonically related complex exponentials, and

the expansion coefficients correspond, in amplitude, to the specific frequencies present in a sampled

signal. The Fourier spectrum computed by the DFT has many properties that have aided it in its

widespread success, only a subset of which are described in what follows. In discussing the DTT,
many of the same properties exhibited by the DFT are desired.

As we saw in Section 3.1, the expansion coefficients for an orthogonal basis are easily determined

through the standard inner product. Consequently, the dual signals of a purely imaginary complex

exponential basis have a simple structure-they are also harmonically related complex exponentials.

Specifically, each dual signal is the complex conjugate of its corresponding complex exponential ba-

sis signal, to within a scaling. As a result, both the basis signals and the dual basis signals remain

numerically stable, even for large values of N. Parsevals theorem provides a simple relationship

between the energy content of a signal in the standard sampling basis and the complex exponential

basis. For signals with only a few large DFT coefficients, Parsevals theorem is helpful for determin-

ing an approximation to a signal while preserving as much energy content as possible, laying the

foundation for many transform coding methods.

With regard to systems theory, the convenient result that an exponential signal is an eigenfunc-

tion of an LTI system means that the action of an LTI system, described by linear convolution, is

restricted to a possibly complex scaling when the input is a complex exponential. This fact allows

the Fourier spectrum to be interpreted as a spectrum of eigenvalues. Additionally, any finite-length

signal can be represented using a complex exponential basis, where the correct "amount" of each

complex exponential is the expansion coefficient, i.e., the DFT coefficient. Using this fact, lin-

ear convolution may be performed by multiplying the DFT of an input signal with the DFT of

an LTI system's impulse response, assuming the degrees of freedom of the output are preserved

in the resulting spectrum. Using an FFT algorithm for this procedure provides an alternative to

the computationally intensive linear convolution by multiplying the possibly zero-padded DFTs of

the signals involved. This procedure, referred to as Fast Convolution, motivates the design and

implementation of numerous LTI systems directly in the complex exponential basis. Many physi-

cal systems, such as the human auditory system, are easily understood in the frequency domain,
therefore designing directly in this basis is often advantageous.
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The ability to resolve two closely spaced complex exponentials is well understood; the longer

the interval of support, the higher the spectral resolution will be. Additionally, the ability to reduce

spectral leakage, which occurs when a complex exponential being analyzed doesn't correspond to

one of the basis signals, is mitigated by pre-processing the signal via windowing in the sample

domain. When a signal acquired contains additive noise, the signal-to-noise ratio is invariant with

respect to the number of samples acquired. This provides a meaningful indication of the distortion

in the samples accounted for by the noise.

In parallel with the discussion above for the complex exponential basis, many similar properties

will be presented for the exponential basis. In order to meaningfully discuss the transient spectrum,
the dual exponential basis signals must be available and thus their structure was derived in Section

3.4. The remainder of the chapter discusses the numerical stability, transient resolution, spectral

leakage, and the effects of additive noise with respect to the transient spectrum.

3.7 Ill-Conditioning of the Matrix Inversion Algorithm

In addition to miss-modeling and physical measurement errors, numerical errors in the imple-

mentation of algorithms for solving systems of linear equations often arise. Such errors are inherent

in finite precision computer representations, and can play a significant role in the final error of an

obtained solution. Previously, the algorithm for generating the dual exponential basis using matrix

inversion labeled the process of inverting a Vandermonde structured matrix as an ill-conditioned

procedure, potentially resulting in large computational errors. This section describes the sensitivity

and conditioning of this matrix inversion problem as it was formulated in Section 3.4.2. In this

section the SVD is used to analyze a system of equations in the form of Eq. (2.1.5) in order to

understand the effect of noise on the matrix V(o-T). Note that V (-T) is structurally equivalent to

the matrix <} which was used to find the dual signals in the matrix inversion algorithm. For the

remainder of this section, A denotes a general square matrix, which includes the class of square

Vandermonde matrices.

Every linear transformation possesses a Moore-Penrose pseudo-inverse, given by

r

At = VII-lUH __ -lU H (3.7.1)
k=1

When the matrix A is full rank, the inverse and the pseudo-inverse are identical. The Frobenius

norm of a matrix, a straightforward generalization of the f 2-norm of a vector, is defined by

N N rank(A)

|1A l12 = [ [IAj 12 =r2 = tr (AHA) (3.7.2)
i=1 j=1 k=1

where tr(A) = E I [A]gk. A second matrix norm, known as either the f2 or spectral norm, is given
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by

|lA1l 2  max ||Ax1 H. (3.7.3)

The spectral norm has the form of maximizing the gain of the matrix A, measured by IlAxI, over

all possible directions x. It is straightforward to verify that the spectral norm of the matrix A is

bounded by JA1| 2 < 71r, where equality is achieved when x = vi, the first right singular vector.

These tools enable us to determine the smallest perturbation that makes A singular in both

the Frobenius and spectral norm sense. Because the solution to the system of equations given by

Ax = b is not unique when A is singular, when A is close to singular the solution is sensitive to

small errors in b, even though it is unique. Consider a perturbation or error in b of 6b. The solution

is then perturbed to x + 6x, where

||6X1|2< At 2 ||b112. (3.7.4)

Using the pseudo-inverse, we find that the spectral norm of At is bounded above by 7rk, therefore

|6x| 2 < - |16b| 2 . (3.7.5)

Note that the bound of a small error in b is inversely proportional to the smallest singular value;

this bound is typically very large for Vandermonde structured matrices. However, we also know

that |lx1|2 is at least as large as i1-1 |1b1| 2 . Therefore the relative change in the solution, 1 , is

upper bounded by the ratio . When this bound is met the system is said to be well-conditioned,
because the relative perturbation in the solution x is never larger than the relative perturbation in

the measurement vector b. In general, we have that

6X1 2 <r, 16b1 2 = ||Al2 At 2 (3.7.6)
||x|| 2  - 7N flbfl 2  2 2 ||b12 (

In order to quantify the extent by which a small error in the right hand vector b can effect the

solution to the linear system of equations, a metric known as the condition number is established.

The definition of the condition number of a square matrix A is given by

Km (A) = ||A1l 2 At 2 - (3.7.7)
2 EN

where the condition number rm (A) = 1 is ideal. Note that the condition number does not depend

on the right hand side of the system of equations Ax = b, but only on the matrix A. Also, note

that the condition number of a matrix A, given this definition for the condition number, is the same

as the condition number of At. This means that the condition number of <b is the same as IF, i.e.,

Km (<b) = r'm (T).-

From a numerical standpoint, solving for the inverse of a Vandermonde matrix is usually a

bad approach, even though the matrix is guaranteed nonsingular. The condition number of Van-
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dermonde systems has been shown to grow exponentially with the system size, yielding terribly

ill-conditioned problems even for relatively small system complexities. [9] For example, the expo-

nential basis with decay rates {a} i=7 {0.1, 0.15,- , 0.9} yields rm (<D) = 8.1512 x 1014.

3.8 Transient Spectral Leakage

In many scenarios, the amplitude coefficients of a transient signal are desired when a finite set of

possible decay rates present in the signal is either unknown or unobtainable. When this occurs, one

approach is to use the DTT with any set of any N distinct decay rates. In this case, the resulting

transient spectrum will generally exhibit spectral leakage. This section introduces the effects of

spectral leakage by way of an example, followed by a comparison to the spectral leakage exhibited

in the complex exponential basis. In addition, the effects of noise on the transient spectrum are

discussed.

Consider computing the transient spectrum of the signal x, [n] = 3 (0.41)" using an exponential

basis with decay rates {k};iy7 = {0.1, 0.15,... , 0.9}. Note that for this example, the decay rate

of the signal is not in the exponential basis, i.e., 0.41 0 {k}1 1 7. The magnitude of the resulting

transient spectrum is depicted in Figure 3.8.1. One desirable attribute that was discussed in Section

3.6 is observed in this example, namely, the behavior of a broadened peak around the true decay

rate. The maximum magnitude found in this example corresponds to decay rate o = 0.4 and the

second highest is found corresponding to decay rate a8 = 0.45. For decay rates further from U7 and

78 , the expansion coefficients decay to 0.

Transient Spectral Leakage
2

1 .8 - i-- ------- - - --- --- - - -- -- ---- ---- -

0 .2 - ---- -- - - - - ------ --- - -- -------- - -------- ---- - - --- - ---- --...

181

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.9

Decay Rate

Figure 3.8.1: Transient Spectrum of a single exponential signal depicting the effects of spectral

leakage

A natural question arising from the transient spectrum in the previous example is whether or not

any techniques exist to reduce the effects of spectral leakage. For example, a common pre-processing

technique used in the DFT is to change the shape of the window the signal is multiplied by in the
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sample domain, or equivalently a circular convolution in the frequency domain, which introduces a

bias into the spectrum. A technique which reduces the spectral leakage for the transient spectrum

is proposed in Section 4.1. Instead of modifying the signal to be analyzed, a relaxation of the

biorthogonality constraints leads to reduced spectral leakage. Spectral leakage also arises due to the

effects of additive noise contaminating the transient structured signal, such as in Eq. (2.1.7).

In order to explore the effects additive noise, we define the signal-to-noise ratio (SNR) of a

finite-length noisy transient signal as

/N-1

1:(za [n])

SNRdB (.td [n]) = 10.- logio n= 13.8'1)S(x9 [n])2

n=o

Consider the signal t1 [n] = #k [n] + 7 [n], for some k, 1 < k < N. The denominator of the

logarithm in SNRdB (21 [n]) is invariant to k while the numerator is monotonically increasing as

ck approaches 1, meaning that the SNR monotonically increases as ak approaches 1 for a fixed

amplitude coefficient. Given a fixed noise power, the transient spectral results are more accurate

for slowly decaying exponentials for this reason; they contain more energy. However, with transient

structured signals, the longer the interval of support for which sample values are obtained, the worse

the SNR becomes. This behavior is demonstrated next as the data size grows large.

The following demonstrates one of the inherently difficult problems faced when dealing with

noisy transient signals: the SNR, as calculated in Eq. (3.8.1), does not remain constant as the data

size increases. Specifically, consider the SNR in the limit of the data record. A general transient

signals instantaneous energy decays towards 0 as n -* oc while the noise power remains fixed. In

the limit we find that

/N-1\

E(afMAX (0-MAX ))
lim SNRdB (td [n]) 5 lim 10 -logio r 0  (3.8.2)

N-+oo N-*oo N 1

E (77 [n] )2
\n=o

/2
aMAX

< lim 10 -logi 0  MAX (3.8.3)Noo N -1

E(77 [n])2
\n=o /

(3.8.4)

d

where aMAX S k and O7MAX = max {UkI1:d. This result demonstrates an important property
k

k=1
when working with transient signals: it is often best to use a shorter data record rather than longer,
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because the overall SNR decreases to the extent that the recorded sample values contain strictly the

effects of noise. When signal quantization is taken into account this phenomena results, in many

cases, relatively quickly.

3.9 Dual Basis Generation for the Complex Exponential Basis

In this chapter three algorithms have been presented for generating a dual basis given a finite

general exponential basis, two of which were derived explicitly for generating a dual exponential

basis. This section shows that these two algorithms for dual basis generation, i.e., by modulation

and by polynomial expansion, reduce to producing the expected dual signals used in the DFT.

The finite complex exponential basis signals are denoted by {ek [n] 1O:N-1, where

{ek [n}ON-1 = {e no [n]** , eN--1 [n], ek [n] = e-jnk, 0 <n < N - 1. (3.9.1)

In what follows, the dual basis signals for the complex exponential basis are derived in three ways.

First, a straightforward argument using the standard inner product is used to uncover the structure

of the dual basis signals from first principles. This is equivalent to understanding the change of basis

undergone by the DFT, discussed in Section 3.6. Second, the algorithm for dual basis generation by

modulation is used to derive the correct structure of the unnormalized modulating signals for the

complex exponential basis. Finally, the algorithm for dual basis generation by polynomial expansion

is shown to be consistent by producing the correct dual basis signal structure.

We have previously seen that {ek []}O:N-1 is an orthogonal basis. Therefore the dual signal

structure is given by a scalar multiple of the complex conjugate of the original basis signal, specifi-

cally, denote the set of dual signals by {dk [n]}O:N-1 where

=~~~~~ ~ ~ f o[]2,- nr -IeAn
{dk [n]O:N-1 = {d0 n,- ' , dN-1 nj}, dk [n] e N 0 < n < N - 1. (3.9.2)

By inspection, computing the dual basis by matrix inversion leads to the same result. Using Eq.

(3.4.11) to generate the dual basis signals by matrix inversion inverts <}H when the structure of <b

is the canonical DFT matrix. One well known property of the DFT matrix is that it is a unitary

operator when appropriately scaled by , thus the dual signals are a scaled version of the complex

conjugates of the complex exponential basis signals.

Next, we find the unnormalized modulating signals, {v (ek [n])O:N-1, that satisfy Eq. (3.4.21)

specialized to the complex exponential basis. This is given by, for 0 < n < N - 1,

dk [n] 7 k * ek [n] o v (ek [n]) , (3-9-3)

where -yj- = N, for 0 < k < N - 1. To find the unnormalized modulating signal v (ek [n]),

for a fixed index k, the complex signal V (ek [n]) = x1 [n] + jX2 [n] is found such that e* [n] =

ek [n] (xi [n] + jX2 [n]). Setting up the system of equations to determine x1 [n] and X2 [n] yield, for
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0 < n < N - 1,

cos (ink)
- sin (Znk)

sin (ink) 1 i [n] cos (link)

cos ( Nnk) X2[n] sin ( Nnk)
(3.9.4)

The solution to this system of equations is given by x1 [n] - cos2 (!nk) - sin 2 (rink) and x 2 [n] =

2 sin (?-nk) cos (2nk) . Converting to polar representation, v (ek [n]) = ej2( )nk. Thus the signal

modulated against ek [n], for a fixed index k, is (ek [n])-. Therefore, for 0 < k < N - 1,

V(ek [n]) = e 2(g)nk, 0 < n K N - 1. (3.9.5)

By substituting Eq. (3.9.5)

generating the dual basis for

into Eq. (3.9.3), it is straightforward to verify that the method of

a complex exponential basis using modulation is valid.

Finally, we show that the dual complex exponential basis signals, {dk [n] }:N-1, that result from

polynomial expansion are also generated from the dual basis generation algorithm by polynomial

expansion. Solving for U(1 (z) = Z {u (el [n])}, for a fixed index 1, yields

N-1

U(0 (z) = 11(1 - (0-k)-l Z-1)
k=O,kpl

N-1

= Q (1 - e (k) Z- 1)
k=0,kfl

N-1

k=0

(3.9.6)

(3.9.7)

(3.9.8)

This procedure can also be verified using Vieta's formula as described in Section 3.4.4.
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Chapter 4

Approximate Transient Spectral Analysis

In order to compute the DTT, as defined in Section 3.4, a number of practical issues related

to numerical stability, transient resolution, and spectral leakage must be addressed. This chapter

proposes various algorithms for computing approximate transient spectra which mitigate many of

these issues. Of course, nothing is gained without consequence, and each algorithm presents a

fundamental tradeoff between conflicting properties. For example, just as with harmonic spectral

analysis, in order to reduce spectral leakage, a biased transient spectrum is developed in Section

4.1, however the approximate spectrum is no longer uniquely invertible. As another example, recall

the algorithm for generating dual signals using polynomial expansion where the zeros of the defined

polynomials were both real and strictly greater than one. The resulting dual signal coefficients

inherently alternate in sign and grow numerically unstable as the size of the exponential basis is

increased. Section 4.3 proposes an unconstrained optimization problem whose solution is a set of

numerically stable approximate dual signals, even for large basis sizes. This stability is gained at

the expense of limiting transient resolution. An approach for creating an orthogonal basis closest

to an exponential basis in a least squares sense is presented in Section 4.6. Finally, an approximate

transient spectrum for continuous-time transient signals in the form of Eq. (2.1.1) based upon or-

thogonal polynomials is considered in Section 4.7.

4.1 Parametric Biorthogonal Constraint Relaxations

The techniques proposed in this section utilize various parametric relaxations to the biorthog-

onality constraints resulting in a set of approximate dual signals, denoted by { k [ni } 1:N. The

approximate dual signals are then substituted into the DTT in place of the dual exponential signals,
resulting in an approximate transient spectrum. Several reasons for relaxing the biorthogonality

constraints exist: to decrease computational errors when computing the transient spectrum for large

N, to improve transient resolution in the presence of additive noise, and/or to reduce spectral leak-

age. Two of these properties are highlighted for each relaxation: transient resolution and spectral

leakage.

Three relaxations of the biorthogonality constraints are presented, where each relaxation is

parameterized by a single parameter 0. This parameter is then restricted to a range of values for
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which desirable spectral resolution guarantees can be made. Recall that the transient spectrum of

a signal of the form

x1 [n] = ac (oa)", 0 < n < N - 1, (4.1.1)

where a g {'7k}1:N and a,, / 0 has been previously demonstrated to contain a broadened peak in

the expansion coefficients corresponding to the decay rates nearest to aa. For signals with multiple

exponential components, such spectral leakage could possibly interfere with the identification of

other decay rates. Each relaxation addresses this issue using an example in which the approximate

spectrum is computed for a signal consisting of two closely spaced exponential components. En-

forcing spectral resolution requires that the two components produce two visually distinguishable

peaks in the approximate spectrum. Though in general the decay rates of a signal being analyzed

are unknown, this analysis will provide the ratio of amplitudes guaranteed to be resolvable for each

biorthogonality relaxation as it relates to the parameter 0.

4.1.1 Uniform Relaxation

Define the approximate DTT analysis equation using a uniform relaxation of the biorthogonality

constraints to be

N-1

Au [k) = x [n] U,k [n] = X, U,k), 1 < k < N, (4.1.2)
n=O

where the uniformly relaxed approximate dual basis, { U,k [n] 1:N, satisfies the uniformly relaxed

biorthogonality constraints given by

11=k
Nyk) = u, ' ,4k 1 < kl < N, (4.1.3)

for 9u E TU, for some interval 1 u. Only positive values of 0u are considered in limiting the domain

of 9u based upon spectral resolution. Towards this end, consider X2 [n] = a1 #o1 [n] + a2#k2 [n]

ali + a2k2 with ai, a 2 > 0, 1ki - k2 | > 1 (non-adjacent), and k1 , k 2 E {1, ... N}. The uniformly

relaxed approximate transient spectrum of X2 [n] is given by

Au [k] a1(#ki, /U,k) + a2(#k2 , * yk) (4.1.4)

ai + a26 U, k = ki

a2 + a10u, k = k 2  - (4.1.5)

(ai + a2) 6u, otherwise

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires

distinct peaks in the spectrum when Ik2 - kI = 2. Without loss of generality, assume that k2 > k1 .
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In order to resolve the two spectral peaks, 9 u is constrained such that the following conditions hold:

Au[ki] > Au[ki - 1] +> a + a2U> (a1 + a 2) 9u

Au[k1]> Au[ki + 1] 4=- ai + a2U> (a + a2) 9 u

Au[ki+2]>Au[ki+1] -+ a2+a16U> (ai+a2)9U

Au[ki+2]>Au[ki+3] <-> a2+a10U>(ai+a2)U.

Figure 4.1.1 depicts the resulting approximate spectrum. Specifically, Figure 4.1.1(a) and Fig-

ure 4.1.1(b) depict the approximate transient spectrum of the exponential components a 1 #ki [n]

and a2#k2 [n], respectively. Figure 4.1.1(c) depicts the result of adding the two previous spectra,

equivalent to the approximate transient spectrum of the signal x2 [n].

Au[k] ~iAu[k]

alou a1Ou aiou al1U a20U a20U a2
6

U a26U

I k -k

ki -1 ki ki+1 k1 +2 k1+3 ki -1 k1  ki+1 k1 +2 k1 +3

(a) Approximate DTT of the signal a1#kj [n] using a uni-(b) Approximate DTT of the signal a24k2 [n] using a uni-
form relaxation of the biorthogonality constraints form relaxation of the biorthogonality constraints

Au k] a1+c a2U a2 + a16U

(a1 + a2)OU (ai + a2)OU (ai + a2)OU

ki -1 ki ki+1 k1 +2 k1 +3 k

(c) Approximate DTT of the signal X2 [n] using a uniform
relaxation of the biorthogonality constraints

Figure 4.1.1: Spectral resolution of X2 [n] using a uniform relaxation of the biorthogonality con-
straints in the limiting case

Taking the symmetry of the desired spectral constraints into account, the domain of Oy is

restricted to the interval Iu = (0, 1). Note that the value of 9 u is invariant to the amplitude of

the transient spectral components to be resolved. This property is not true for the remaining two

constraint relaxations. The manifestation of bias in this spectrum is evident in looking at, for

example, AU[ki], where the spectral amplitude is ai + a29U and the contribution of a2Ou is the

result of spectral leakage. Note that the approximate spectrum is asymptotically unbiased, meaning

the true transient spectrum is found as 0 u -+ 0.

The effect of the uniform relaxation of the biorthogonality constraints on spectral leakage for
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an exponentially decaying signal where the decay rate does not match one of the exponential basis

signals is now presented. Specifically, to illustrate this effect, define an exponential signal of the

form x1 [n] = a1 (,)", 0 < n < N - 1, where a V {k}1:N and a 1 # 0. The set of exponential basis

signals {k[nl]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9 and we

select N = 17. Additionally, let x1 [n] have a decay rate of a = 0.38. The resulting approximate

transient spectrum, Au [k] is shown in Figure (4.1.2) for 6u = 0.05 and 0u = 0.2. For comparison

the transient spectrum using the DTT is shown as well. The magnitudes of the transient spectra

are also included. As is demonstrated in the figure, the uniform relaxation of the biorthogonality

constraints does not produce a significant advantage in terms of spectral leakage, and actually

increases the spectral leakage at further decay rates from the decay rate present.

3

2.5

2

1.5

0.5

0

-0.5

-1

(Approximate) Transient Spectrum

-u 0.O

AO,-0.2

- -- ------- --- 0 - .-.-. ..
- - - -- - -- -- - ------ ---- ---------- -------- -... ...-. . --- ---------- ---------- ----.. ... ... ... ..

D.1 0.2 0.3 0.4 0-5 0.6 0.7 0-8 0.9

Decay Rate (a)

Figure 4.1.2: Approximate DTT of x 1 [n] using
straints for different values of 0

4.1.2 Linear Relaxation

Define the approximate DTT analysis equation

constraints to be

(Approximate) Transient Spectrum

3

2.5

6J2

9b1.5

0.5

0

soi =

-*Qu - 0.05

-AOf! - U.2

................ ..1..............
..... ~ ......I.. ......1......

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decay Rate (a)

a uniform relaxation of the biorthogonality con-

using a linear relaxation of the biorthogonality

N-1

AL [k] = E x [n] H L,k[In] = Kx, L,k)1 1 < k < N,
n=o

(4.1.6)

where the linearly relaxed approximate dual basis, {4L,k n 1:N , satisfies the linearly relaxed

biorthogonality constraints given by

f1,
(#1, IL,k) = 1(

l= k

1 k
1 < k, l< N,

for OL c -L, for some interval 1 L. Only positive values of OL are considered in limiting the domain

of OL based upon spectral resolution. Towards this end, consider x 2 [n] = al1ki [n] a2#k 2 [n] =
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aiot + a 2 0 with ai, a 2 > 0, |k i - k2 | > 1 (non-adjacent), and k1 , k2 E {1, . .. N}. The linearly

relaxed approximate transient spectrum of x2 [n] is given by

AL [k] = a1(#k1 , 4L,k) + a2 (k 2 , /L,k)

a 1 + \k2k1 L, k = k1

= a2'+ i 2 OL, k = k2

kki + ak-k2 OL, otherwise

(4.1.8)

(4.1.9)

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires

distinct peaks in the spectrum when Ik2 - kIl = 2. Without loss of generality assume that k2 > k1 .

In order to resolve the two spectral peaks, OL is constrained such that the following conditions hold:

AL~k1] > AL[kl - 1] ,= 1 + 1a20L > (a1 + la2) OL

1
AL[kl] > AL kl + 1] -> l + 1C20L > (a1 + a2) OL2

1
a2 + 1a10L >

2
1

a2 + Ia10L >
2

(a 2 + al) OL

(a 2 + 1 ) OL-

Figure 4.1.3 depicts the resulting approximate spectrum. Specifically, Figure 4.1.1(a) and Fig-

ure 4.1.1(b) depict the approximate transient spectrum of the exponential components a1 k [n]

and a20k2 [n], respectively. Figure 4.1.1(c) depicts the result of adding the two previous spectra,

equivalent to the approximate transient spectrum of the signal x2 [n].
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AL[k] AL [k]
a16L a16L a2

0
L a2L

~c2L

a1 1 ka20k

k 1 -1 k1  ki+1 k1 +2 k1 +3 ki -1 k1  ki+1 k1 +2 k1 +3

(a) Approximate DTT of the signal a14k, [n] using a lin-(b) Approximate DTT of the signal a2#k 2 [n] using a lin-
ear relaxation of the biorthogonality constraints ear relaxation of the biorthogonality constraints

AL [k] ~1 2 QL Q2Q

(a1 + a2)OL

(a1 + ia2)6L (a2 + -a1)OL

0 11. 
0 0 0 k

ki -1 ki ki+1 k1 +2 k1 +3

(c) Approximate DTT of the signal X2 [n] using a linear
relaxation of the biorthogonality constraints

Figure 4.1.3: Spectral resolution of X2 [n] using a linear relaxation of the biorthogonality constraints
in the limiting case

The second spectral constraint restricts the domain to 0 L E (, 2+ while the third spectral

constraint, by symmetry, restricts the domain to OL E (, 22+1 Exploiting monotonicity and
symmetry, the first and fourth spectral constraints are met if the second and third are. Therefore,
the domain of OL is restricted to

. 2ai 2a 2i 2a - 2 2a 2 - ai

For example, if ai = 5a2 then IL ~ (0, 0.2857), however if ai = a 2 then IL = (0, 2). The

manifestation of bias in this spectrum is evident in looking at, for example, AL [ki], where the

spectral amplitude is a1 + - a2OL and the contribution of Ia2OL is the result of spectral leakage. Note

that the approximate transient spectrum is asymptotically unbiased, meaning the true transient

spectrum is found as 6 L -+ 0.

The effect of the linear relaxation of the biorthogonality constraints on spectral leakage for an
exponentially decaying signal where the decay rate does not match one of the exponential basis

signals is now presented. Specifically, to illustrate this effect, define an exponential signal of the

form x1 [n] = a1 (a)", 0 < n < N - 1, where a g {Uk}1:N and al = 0. The set of exponential

basis signals {#k[n]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9
and we select N = 17. Additionally, x1 [n] has a decay rate of a = 0.38. The resulting approximate

66

4.L. BIORTHOGONAL RELAXATION CHAPTER 4. APPROXIMATE TSA



CHAPTER 4. APPROXIMATE TSA 4.1. BIORTHOGONAL RELAXATION

transient spectrum AL [k] is shown in Figure (4.1.4) for OL = 0.05 and OL = 0.2. For comparison the

transient spectrum using the DTT is shown as well. The magnitudes of the transient spectra are also

included. As is demonstrated in the figure, the linear relaxation of the biorthogonality constraints

does not produce a significant advantage in terms of spectral leakage, and actually increases the

spectral leakage at further decay rates from the decay rate present.

(Approximate) Transient Spectrum

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decay Rate (a)

3

25

2

0.5

0

(Approximate) Transient Spectrum

- .... . -.. .. . -.. .... .... ... .. ..---- -= 0 .0 5
. OL = 0.2

---------- - -.. . - - - 0 2 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.8 0.9

Decay Rate (a)

Figure 4.1.4: Approximate DTT of x1 [n] using a linear relaxation of the biorthogonality constraints
for different values of 0

4.1.3 Exponential Relaxation

Define the approximate DTT analysis equation using an exponential relaxation of the biorthog-

onality constraints to be

AE [k]
N-1

E [n] PE,k [n i, E,k ), 1 < k < N,
n=o

(4.1.10)

where the exponentially relaxed approximate dual basis, {SE,k n } 1:N, satisfies the exponentially

relaxed biorthogonality constraints given by

(#1, OE,k) = {1-kl
E

l= k

l k
, 1 k l < N,

for OE c 1E, for some interval _E. Only positive values of OE are considered in limiting the the

domain of OE based upon spectral resolution. Towards this end, consider X2 [n] = al14k [n] +

24k2 [n] = a1, n± a2o- with ai, a2 > 0, 1ki - k 2 | > 1 (non-adjacent), and k1, k2 C {1, ... N}.
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The exponentially relaxed approximate transient spectrum of x 2 [n] is given by

AE ] 1 (ki, /E,k) - a2 (k 2 , E,k)

S ai+ a 202-ki, k - ki

= a 2 aE2kil, k = k2

Ea0-ki + a2ek2, otherwise

(4.1.12)

(4.1.13)

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires

distinct peaks in the spectrum when Ik2 - ki = 2. Without loss of generality, assume that k2 > k1 .
In order to resolve the two spectral peaks, OE is constrained such that the following conditions hold:

AE~~~klj~0 >Ek-1 ±a9> (a 0-2~9
AE[kl] > AE[kl - 1 a- , 1 a2 E> (a1 + a2 E E

AE[k] > AE[k + 1 4- a 02 > (a, + a2) OE

AE [k 1 2] > AE [k 1 1] a- 2 + al10>2 1 2)G

AE [k 2] > AE 1 4- 2 3] a 2 1 E> (a2 +a1,) OE-

Figure 4.1.5 depicts the resulting approximate spectrum. Specifically, Figure 4.1.5(a) Figure
4.1.5(b) depict the approximate transient spectrum of the exponential components a1lk, [n] and

a2 k2 [n], respectively. Figure 4.1.5(c) depicts the result of adding the two previous spectra, equiv-
alent to the approximate transient spectrum of the signal X2 [n].
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JAE[k] AE[k]

a1OE a1OE a20E a20E

a 16i a1 6 a2O i a 2 02

__ __ __ __ _ - I I k
ki -1 k1  ki+1 k1 +2 k1 +3 ki -1 ki ki+1 k1 +2 k1 +3

(a) Approximate DTT of the signal al01 [n] using an(b) Approximate DTT of the signal a24k2 [n] using an

exponential relaxation of the biorthogonality constraints exponential relaxation of the biorthogonality constraints

AE[k] al+ a2 E +1 & +a 2

(a1 + a2)OE

(a1 + a2 E)OE (a1OE + a2)OE

k
ki-1 ki ki+1 k1 +2 k1 +3

(c) Approximate DTT of the signal x2 [n] using an expo-
nential relaxation of the biorthogonality constraints

Figure 4.1.5: Spectral resolution of x 2 [n] using an exponential relaxation of the biorthogonality
constraints in the limiting case

The second spectral constraint restricts the domain to

OE 0, m in 1 , - U max 1, a-) ,00 . (4.1.14)
a2 a2

By symmetry, the third spectral constraint restricts the domain to

EE 0, min 1,0) U max 1 .0) . (4.1.15)

The first spectral constraint factors into the form (1 - OE) (a1 + 2 O[) > 0 therefore it restricts

OE E (0,1). By symmetry the fourth constraints make the same restriction. Therefore we define

the domain of OE to be 1E (0, min 1, g The manifestation of bias in this spectrum
(012 01 1 1

is evident in looking at, for example, AE [kj], where the spectral amplitude is ai + a260 and the

contribution of a29 is the result of spectral leakage. Note that the approximate transient spectrum

is asymptotically unbiased, meaning the true transient spectrum is found as OE -+ 0.

The effect of the exponential relaxation of the biorthogonality constraints on spectral leakage

for an exponentially decaying signal where the decay rate does not match one of the exponential

basis signals is now presented. Specifically, we illustrate this effect using an exponential signal of

the form x 1 (n) = aio-", 0 < n < N - 1, where o g {tk}1:N and al c R. The set of exponential

basis signals {#k[n]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9
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and we select N = 17. Additionally, x1 [n] has a decay rate of 0- = 0.38. The resulting approximate

transient spectrum, AE [k], is shown in Figure 4.1.6 for OE = 0.05 and OE = 0.2. For comparison the

transient spectrum using the DTT is shown as well. The magnitude of the transient spectra are also

included. As is demonstrated in the figure, the spectral peaks closest to decay rate a are improved

(heightened) and the spectral values of other decay rates are generally decreased, especially the

values of high leakage, which is advantageous. This parametric technique is the only one with a

clear advantage with respect to spectral leakage.

(Approximate) Transient Spectrum

2.5

2

1.5

1

-0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decay Rate (a)

Figure 4.1.6: Approximate DTT of x1 [n] using
constraints for different values of 0

(Approximate) Transient Spectrum

2.5 -- --- -- -------- -- ---IF ------ - -- U E 0

OE - -05

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0-8 0.9

Decay Rate (a)

an exponential relaxation of the biorthogonality

4.1.4 Implementation

The previous three subsections contained examples of approximate transient spectra computed

using various approximate dual signals without discussing how these signals were obtained. The

algorithms for generating dual exponential bases in Chapter 3 can easily be extended to generate

these signals using only an additional matrix multiplication. Let the columns of the matrix [

represent the approximate dual signals {bk [n] I1:N and denote G (0) as one of the relaxed biorthog-

onality constraint matrices given in Table 4.1, where 0 is the design parameter. Then, the relaxed

biorthogonality constraints are written as

H = G (0) or (#j, j) = [G (0)] . (4.1.16)

Therefore the approximate dual signals are the columns of T given by

i = (<DH) -1 G (0) . (4.1.17)

Any of the algorithms proposed in Chapter 3 for computing (<bH)-1 may be used. The main result

of this section is not necessarily the ability to produce these approximate dual signals, but to use
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the spectral resolution guarantee equations to understand the spectral resolution of a stable set of

dual signals produced through a well conditioned algorithm. An example of this use is presented in

Section 4.3.

Uniform Relaxation Linear Relaxation Exponential Relaxatio:

1, i=j1, =j1 i
[Gu ()]i = [GL (0)9 i, O [ 4 =)[GE (0)ij = l ,

By, i E 6

Table 4.1: Parametric relaxation structures for the biorthogonality constraints

4.2 The Equal Energy Exponential Basis

In developing the parametric biorthogonal constraint relaxations in Sections 4.1.1, 4.1.2, and

4.1.3, the parameters ai and a2 in X2 [n] are interpreted as scalings of the amplitudes of two

exponential basis signals where each basis signal contains a different amount of energy. That is,

the derivation for spectral resolution used an exponential basis where each of the exponential basis

signals #k [n] has equal initial amplitude, i.e., #k [0] = 1 for 1 < k < N. This section extends

all of the results for transient spectra thus far using the equal initial amplitude exponential basis,

{k [n9]1:N, to an exponential basis where each basis signal has equal energy.

The energy in an exponential basis signal #k [n], for a fixed index k, is

N-1

= () (4.2.1)
n=O

2N
= k (4.2.2)

k-1

Therefore, the energy in the basis signal monotonically increases as Uk approaches 1. In order to

create a set of exponential basis signals with equal energy, define the equal energy exponential basis,

k 1:N as

{ k [n]} {k (krij5[in]} (4.2.3)
1:N VE (#k [n]) 1:N

The equal energy exponential basis signals are each a scaled version of the equal initial amplitude

exponential signals using the scalar &k = 1/ l(Ok[n]). This definition allows a straightforward exten-

sion of the results for an equal initial amplitude exponential basis to the equal energy exponential

basis. For example, the bounds on transient resolution derived in the previous section can be ex-

tended to the equal energy exponential basis by incorporating the scalars {dk}1:N into the expansion

coefficients, consequently adjusting the range of resolution.
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4.3 Unconstrained Optimization Formulation

The approximate transient spectra derived in Section 4.1 utilize approximate dual basis signals

in the DTT which are capable of larger basis sizes than the dual exponential basis before numerical

errors cause noticeable distortion in the resulting spectra. However, the procedure for generating

these bases required first generating the dual exponential bases. Therefore, for large values of N, the

numerical stability gained by using these approximate dual signals is lost. The algorithm proposed

in this section generates a numerically stable approximate dual exponential basis as the solution

to an unconstrained optimization problem. Again, in order to gain numerical stability, a trade-

off with spectral resolution is made. This algorithm uses a non-parametric approximation of the

biorthogonality constraints and includes an approximate enforcement of orthogonality between the

approximate dual signals. To accomplish this, an optimization problem is formulated by trading off

between these two forms of orthogonality.

4.3.1 Quadratic Penalty Formulation

Given the exponential basis {#k [n]I1:N the inner product structure of the dual basis is un-

constrained, meaning the dual signals do not satisfy both the biorthogonality and orthogonality

constraints simultaneously. That is, for 1 < i, k < N, the 2N 2 constraints

(0i, k) = 6ik (orthogonality) (4.3.1)

(#A, k) = 6ik (biorthogonality) (4.3.2)

have no solution for {Vk [n]}1:N. We then settle for finding an approximate dual basis that is closest

to meeting these constraints, for some definition of closest. It has been observed experimentally

that approximate orthogonality of the dual exponential signals significantly improves the behavior

of the transient spectrum when analyzing a signal that contains additive noise, e.g., td [n]. In order

to relax these constraints, a quadratic penalty formulation' is proposed, i.e., instead of enforcing

the constraints directly, we penalize solutions that do not meet them and optimize over the space

consisting of all sets of N length N signals to find the set of approximate dual signals that are

closest to meeting the constraints for the given penalization values. [4] This yields an optimization

problem given by

N N

{k [n1:N E arg min 1 Z [A] - ((i, /k) - 6ik)2

{k[nl]lN i= k=1 k

N N

+ Q2 E E [A(21] ik ((Oi , 00,~ - 6 ik), (4.3.3)
i=1 k=1

1A quadratic penalty formulation is also referred to in some texts as a Lagrangian method, while in other texts a
Lagrangian method is defined by only a linear penalty.
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where the optimal approximate dual signals are denoted by { [n] }1:N '

This formulation allows an emphasis to be placed on meeting a specific constraint with respect

to the other constraints using the 2N 2 Lagrangian multipliers, {A(k) }1:2. Even for reasonable values

of N, the number of penalty coefficients required is quite large and a parametric penalty structure is

often useful, but not necessary. A few simple parametric structures are listed in Table 4.2, where each

penalty structure is parametrized by the design parameter A. In each of the structures given, selecting

0 < A < 1 emphasizes penalizing deviations from the constraints given by (#k, 4k) = (bk, ?k) = 1,

for 1 < k < N. The coefficients {g}1:2 are used to emphasize the set of biorthogonality constraints

with respect to the set of orthogonality constraints.

Equal Penalty Linearly Decreasing Penalty Exponentially Decreasing Penalty

Table 4.2: Structures of Lagrangian coefficients for the biorthogonal and orthogonal constraints in

the quadratic penalty optimization formulation

The examples presented in this thesis using the solution to the optimization problem in Eq.

(4.3.3) use a non-linear conjugate gradient algorithm to find the approximate dual basis. This

algorithm is briefly described in Section 4.3.2.

Let the objective function in Eq. (4.3.3) be defined by F = C1 + C2 , where C1 represents the N 2

biorthogonality constraints, with associated Lagrangian multipliers AM, given by

N N

C1= 91 [ ( [()] ((k , k) - 6ik)2 , (4.3.4)
i=1 k=1

and where C2 represents the N 2 orthogonality constraints, with associated Lagrangian multipliers

A(2), and is given by
N N

C2 = P2 1 E (2 - (('@i , 4k ) - 6ik )2. (4.3.5)
i=1 k=1

Any optimization technique utilizing gradient descent can be used to at least find a local minimum

of this formulation. Gradient descent algorithms require the gradient of the objective function, VF,

to move from one solution to the next. The derivative of the objective function, with respect to one

approximate dual signal Ok [n], for a fixed index k, is given by

= C1 + - C2  (4.3.6)
whek t alk aik

where the derivatives with respect to a single signal O/k are given by
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N

a C1  =g 2 [A(')] ((, ) - 6 ik) -#i (4.3.7)
i=1

and

C2 =2 (# 2 [Al k (, ?P) -- ik) - + 4 [(2)] kk ((4k, /)-k) - -0 p . (4.3.8)
(i=1, if4k

The following subsection details the non-linear conjugate gradient optimization algorithm used in

this thesis. For a detailed treatment of this, or other possible gradient descent methods, see [4, 3, 13].

4.3.2 Conjugate Gradient Method

A simple unconstrained formulation of the non-linear method of Conjugate Gradient (CG) op-
timization is to solve the problem given by

E arg min.F (x) (4.3.9)

where .F(x) is the objective function. When the form of F (x) = |Ax - b|| then a CG algorithm

attempts to find a solution to the system of equations ATAx = ATb, which may be found from

either taking the gradient and solving, i.e., VxF (x) = 2AT(Ax - b) = 0, or from the orthogonality

principle of least squares.

The non-linear CG algorithm used in this thesis is presented in summary next, a more thorough

treatment may be found in [1]. Given a multi-objective function F (x), where x represents N length

N signals, an initial feasible solution x0 is assumed. In this thesis, the initial solution used is the

dual exponential basis as found by polynomial expansion. The initial step is to move to a solution

in the direction of steepest descent, i.e. negative of the gradient of F (x). This direction is given by

Axo = -- V.F (xo) (4.3.10)

where the partial derivatives of F (x) with respect to a single dual signal is given in Eqs. (4.3.7)

and (4.3.8). Next, the size of the step in this direction is computed by a line search of the form

ao = arg min F (xo + aAxo) (4.3.11)
o, aeEZ

where ao is the step size and the region 7 is selected using the Armijo Rule. The current solution

is updated to x1 by the formula

x = 0o + aoAXo. (4.3.12)

Once the first step has been taken, an iterative procedure begins where all following directions are

conjugate directions, denoted by s,. Note that so = Axo. This iterative procedure is described in
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Algorithm 4.1. The procedure is stopped when the change in the objective function is less than a

predetermined threshold in making the next move.

Algorithm 4.1 Update step of the non-linear conjugate gradient algorithm

For each iteration t:

1. Find the direction of steepest descent: Axt -VT (zt).

AxT 1AXt
2. Determine the value #t by the Fletcher-Reeves formula: /t = Axt 1Axt-~1

3. Update the conjugate direction st: st = Axt + #tst-1

4. Perform a line search to determine the step size at: at = arg min f(xt + ast)
a, ca1Z

5. Move to the new solution: xt+1 = xt + atst.

4.4 Bounds on Transient Resolution

The tradeoff made in Section 4.1 resulted in a reduction of the space of transient signals for

which spectral resolution is guaranteed. The derivation of the spectral resolution guarantees relied

upon the symmetric properties of the relaxed biorthogonality constraints. The solution to the

optimization problem in Eq. (4.3.3) results in a set of approximate dual signals, { k [n] }l:N, for

which the resulting biorthogonality structure cannot be guaranteed to be symmetric. This is because

the feasible space includes all possible sets of N signals where each signal is of length N. If we denote

the standard inner product of #i [n] with 4j [n] as [GLij, then, for i # j, we have, in general,

=O, j [GLj~ 7 [GL1ji = 0, i (4.4.1)

As a result, the biorthogonality structure resulting from {'k [n] I 1:N is generally unlike the biorthog-

onality structures defined in Sections 4.1.1, 4.1.2, and 4.1.3, for which simple expressions of spectral

resolution guarantees were found. However, the analysis tools and expressions developed in those

sections allow bounds on spectral resolution to be given for any approximate dual basis, including

{ k [n] I 1:N. The remainder of this section describes a procedure to provide spectral resolution

guarantees for any solution to the optimization problem in Eq. (4.3.3).

Define GB to be structured as either the equal penalty, the linearly decreasing penalty, or

the exponentially decreasing penalty, as defined in Table 4.2, where AR was previously a design
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parameter. Instead, we now solve for AB such that

AB = arg min A (4.4.2)
A

s.t. [GB (A)]ij [GLij (4.4.3)

for 1 < i, j, N. The value of AB that minimizes the right hand side of Eq. (4.4.2) provides an
indication of what range of transient coefficients are guaranteed to be resolved in the same way that

0 did in the aforementioned three sections. Often the spectral resolution bounds given by AB are

only tight for a few values of GL. This means that signals with larger ratios of transient coefficients

are sometimes able to be resolved, but the guarantee of such resolution is not possible. Therefore,
the bound on AB is typically due to restrictions between only a few specific neighboring decay rates.

Consider the simple example when AB = 0 is found. Then, the resulting approximate dual signals

correspond to the exact dual signals. This solution is found when 02 = 0.
Next, a tractable example is considered for which the unconstrained optimization formulation

is solved using parameters: {o-k}1: 5 = {0.1, 0.3, 0.5, 0.7, 0.9}, gi = 104 , the equal penalization

structure is used for the biorthogonal constraints with A = 10, 02 = 1, and the equal penalization

structure is used for the pairwise orthogonality constraints with A = -. The initial solution chosen

is the exact dual basis, which was computed using the algorithm in Section 3.4.4. The numerical

results of the inner product structure [GL]ij = (0j, j) are displayed in Table 4.3.

1 0.32734 -0.17458 -0.058744 0.02121
0.21947 1 0.70888 -0.10421 -0.003078
-0.08127 0.59807 1 0.50362 -0.082594

-0.050135 -0.1401 0.67168 1 0.093969
0.027698 -0.0063279 -0.15898 0.14038 1

Table 4.3: Inner product structure of the approximate dual signals from the quadratic penalty
optimization formulation

The inner product structure in this example is bounded from above, in absolute value, by an

exponential bound with AB = 0.7088, i.e., (0. 7 08 8 8 )I1-jI > I (0, 'j)I for 1 < i, j < 5. From Section

4.1.3 we have that 0.70888 E 0, min (l 2)). Without loss of generality assume that a2 > a 1.
Using this exponential bound on the inner product structure given in Table 4.3, transient signals

with amplitudes related up to a2 = 1.4107 - a1 are guaranteed to be resolved using the approxi-

mate dual basis {k [i 1:5. Notice that the exponential bound is only tight for a few values in

the table, and for some it is a large over-estimate, meaning signals of greater amplitudes may be
resolved. However, signals with transient coefficients larger than this ratio cannot be guaranteed to
be resolved.

4.5 Visualization of Approximate Dual Signals

This chapter has proposed several algorithms for generating approximate dual exponential sig-
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nals for use in the DTT. For each algorithm, a fundamental tradeoff between conflicting properties

was identified and then discussed. In order to demonstrate the numerical instability of the dual

exponential basis, as well as the stability of the approximate dual basis from solving the optimiza-

tion problem in Eq. (4.3.3), Figure 4.5.1 depicts the exponential basis signals, dual exponential

signals, approximate dual signals using a linear relaxation of the biorthogonality constraints, and

the approximate dual signals found from the unconstrained optimization formulation. Each axis

of this figure depicts one dimension of the corresponding length N = 3 vectors. The exponential

basis is defined using the decay rates {a}1:3 = {0.3, 0.5, 0.8}. The numerical instability of the

dual basis is clearly evident, even given the low model complexity. Note that the approximate

dual basis produced by the linear relaxation to the biorthogonality constraints appear to be less

numerically unstable than the dual basis, but still relatively unstable. The approximate dual signals

resulting from the unconstrained optimization formulation are both numerically stable and seen to

be approximately orthogonal to the exponential basis signals as well as to one another, as desired.

Visualization of Signals

- Exponential Basis
-buaif-ais ....---
- Linearly Relaxaed

6 - .. " as .
- -Ouadratic Penalty

Basis

4 .....---

0

S 0 10 Sample n = 1
Sample n = 0

Figure 4.5.1: Visualization of the numerical instability of various dual bases

4.6 Inner Product Shaping

Inner product shaping is used to create an orthogonal basis, under the standard inner product,

using which we may compute an approximate transient spectrum. Specifically, the result of inner

product shaping on the exponential basis {#$O [n]}1:N is an orthogonal basis, denoted {" [n]}1:N'
where the orthogonal basis signals are chosen to minimize the distance from exponential basis signals

in a least squares sense. For a more thorough and general treatment of inner product shaping see

[7]. The following discussion is specialized to an exponential basis.
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The inner product shaping formulation considered in this thesis is given by

N

{?i [n] }11:N = arg mi n ($k -- ?k,$Ok -- Vk) (4.6.1)
($k[n]}1:Nk=1

s.t. (gbk, /bl) = kI

An equivalent formulation of the inner product shaping problem, using matrices, results in

S= arg min tr ((<b - 1 )H (D _ (4.6.2)

s.t. WHQ = IN-

Note that approximately enforcing orthogonality of the approximate dual signals was observed in

Section 4.3 to improve the transient spectra found when the signal to be analyzed contains noise.

The resulting signals, {k [n] } 1:N , are known as the Orthonormal Least Squares Vectors (OLSV).

In order to solve the formulation in Eq. (4.6.2), we perform a unitary change of basis using the

linear map U such that

yDW = (DU and Wu = 'IU. (4.6.3)

Note that unitary matrices preserve inner products, which can be seen by definition: (Ux, Uy) =

(Uy)HUX = yHUHUX = (x, y). Therefore, the constraints in Eq. (4.6.2) become W15Iu = IN. Fur-

ther, it is straight forward to verify that the objective function is equivalent to tr (((Du - IF u)H (.U - y -

We shall denote the optimal Ju and -Du as xyu and <iu, respectively. The following relation then

holds to convert the optimal solution back from this new basis,

X = FuUH (4.6.4)

The SVD may be used in order to find a suitable unitary change of basis. Denote the SVD of <D by
<b = WHVH where both W and V are unitary matrices. By selecting 1U = 4V = WH, we find

that the unitary map U in Eq. (4.6.3) is equivalent to V in the SVD of (D.

Now that we have constructed <ku, we may solve for 'I' in the optimization problem given by

$y = arg min tr ((<Du - T)H (DU - Iy) (4.6.5)

s.t. PUjj' = IN.

Re-writing the objective function in terms of basis signals yields

N N N

((pu,k - uk, $U,k - U,k) = N +( E r2 - 2 (($U,k, Uk) (4.6.6)
k=1 k=1 k=1

78

4.6. INNER PRODUCT SH APING CH APT ER 4. APPROXIMAT E TSA



CHAPTER 4. APPROXIMATE TSA 4.6. INNER PRODUCT SHAPING

Next, from the Cauchy-Schwartz inequality, the relation

(OU,k, OUk) <_ U ,k, V)U,k) I< ()Uk,OUk) 1/2 (OU, k, NU,k) 1/2 =7Tk -(4-6-7)

is maximized when the inequalities are made equality. This occurs when /U,k = Wk, where Wk is the

kth column of W. This implies that $u = W. Therefore the solution to the optimization problem

is given by

,= WVT.

An example is considered next which demonstrates the use of inner product shaping to produce

an approximate transient spectrum. Consider the signal x1 [n] = 1 (0 .3 5 )n and the exponential

basis with decay rates {0k}117 = {0.1, 0.15, 0.2,- - ,0.9}. The resulting approximate transient

spectrum is depicted in Figure 4.6.1. The figure exhibits a peak corresponding to the correct decay

rate, however the amplitude is incorrect and there is significant spectral leakage throughout the

spectrum. In fact, it has been observed for general transient signals Xd [n] with d > 1 the peaks

generally correspond to incorrect decay rates due large amounts of spectral leakage.

Approximate Transient Spectrum by Inner Product Shaping

0.9

0.8 -- -- - --- - -- - -- --- -- - - - ----- -

0.7- - - - --

0.6 -- ---- -- - - -- -

0.5 --- - - - - - - ---- - -- -- ---

0.3 -- ---- - ---- - - - --- -

0.2 -- ----- -- --- -- --- ------- 
-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decay Rates

Figure 4.6.1: Spectrum of x 1 [n] using inner product shaping on the exponential basis

Another well known algorithm for generating an orthogonal basis given a non-orthogonal basis

is the Gram-Schmidt procedure. The inner product shaping algorithm has a distinct advantage over

the Gram-Schmidt process of generating an orthogonal basis given a non-orthogonal basis in that it

is not order dependent. The Gram-Schmidt algorithms initial iteration uses the first original basis

signal as it's first orthogonal basis signal and subsequent signals reflect only the space not spanned

by the first signal. The inner product shaping algorithm does not have an ordering of original basis

signals, meaning that there is no optimal ordering to be solved for, as in the case of Gram-Schmidt.
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4.7 Polynomial Based Algorithms

This section considers the generation of an approximate transient spectrum for continuous-time

signals. Neither an exponential basis nor a dual exponential basis is used directly in this section. The

general outline of this approach is to select a known orthogonal polynomial structure, orthogonal

over the domain [0,1], and perform a substitution of variables such that the resulting functions are

polynomials of real, decaying exponentials. The domain is then mapped such that these exponential

polynomials are orthogonal over [0, oo). This technique is known in the literature as the Orthogonal

Exponential Transform. [17]

This type of algorithm is now presented by an example using Jacobi polynomials. Jacobi polyno-

mials are used to define a specific structure of functions, which are both orthogonal and polynomials

of decaying exponentials, to play the role of an approximate dual signal in order to compute transient

spectral coefficients. Towards this end, consider the nth-order Jacobi polynomial, defined by

Jn (a, clx) = x ( )ca (c) dn (Xc+n- 1 (1 - X)a+n-c) (4.7.1)
IF(c + n ~

where F (.) is the Gamma function and a and c are design parameters. Jacobi polynomials also

satisfy the recurrent relationships below. [16]

- J(a, clx) (na) J_ (a + 2 , c + 1x) (4.7.2)
d z c

zJn (a, clx) = [Jn (a - 1, c - 1|z) - Jn+1 (a - 1, c - 1|Ix)] .(4.7.3)2n + a

The orthogonality of two Jacobi polynomials, for x E [0, 1], requires a weighting function of the

form

wj (x) = xC- 1 (1 - z)c. (4.7.4)

The Jacobi orthogonality equation is given by

f 1C 1 (- X)ac Jm (a, clx) Jn (a, clx) dx =n![(C)] (n ac±) . 6ma, (4.7.5)
J (a+2nIF(a(a+2n)F(anr)F(c +n)

and is only defined for a > 0 and a + 1 > c. Next, we simplify the expression by selecting a = c in

order to vanish the term (1 - x) in the weighting function. This simplifies the expression to

/ a_1 n! [F (a)]2 F(n + 1)
Jm (a, alx) Jn (a, alx) dx = 2 - 6mn. (4.7.6)

(a 2n)[F(a+n)]

Performing a change of variables where x -+ e-t requires a change in the domain; when t ranges

from 0 to oc, e-t goes from 1 to 0, the same domain as x. Therefore, substituting x = e-t and thus
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dx = -e-tdt into Eq. (4.7.6) results in

j e-atJ (a, ae-t) J, (a, ae-t) dt= 2(a) ]2 (+ mn (4-7-7)
(a + 2n) [F (a + n)]2

We now consider selecting a value for a. Note that for any order n, Jn (a, a|0) = 1. Therefore it

is desirable to have the Jacobi polynomials multiplied by the expression e-t, this way the resulting

functions approach 0 as t goes to infinity. One simple choice results from selecting a = 2. Continuing

with this choice the expression simplifies to

j (e-tJm (2,2|e~t)) (e-tJn (2,2|e-t)) dt = 2(1I)3 -6mn. (4.7.8)

Using this simplified equation, the structure of functions which take the role of the dual signals

in creating an approximate transient spectrum based on Jacobi polynomials is defined. Define the

order (k + 1) function to have the structure

2/k+1 (t) = ( 1 )k 2 (1 + k) 3e-tJk (2, 21e-t) (4.7.9)

for k > 0. Substituting these functions into the continuous inner product, it is straightforward to

verify that

(S'k~ ,$) = j Sk (t ) S* (t) dt =6k. (4.7.10)

Therefore a continuous-time transient signal xd (t), as in Eq. (2.1.1), may be represented by

00

zd (t) = E 40' (t) (4.7.11)
k=1

where we compute A as the continuous inner product of Xd (t) with the approximate dual function

Sk (t) as

k = xd (t) 'k (t) dt. (4.7.12)

[2] showed that Xd (t) may be represented in the following manner.

00 k

Xd (t)= S E E 3kckle

k=1 1=1
00

= ale-It.
l=1

Therefore the approximate transient spectrum using Jacobi polynomials is defined as the al values

as a function of 1. In practice, an infinite number of coefficients cannot be computed, so a finite

approximation is used instead.

It has been observed that the spectrum produced using the approximate dual signals formed
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by Jacobi polynomials generally does not exhibit meaningful spectral results. When the transient

spectrum is generated for a linear combination of exponentials with integer decay rates the transient

spectrum is often well behaved. On the contrary, when the decay rates are not integer, the resulting

spectrum may have wildly varying behavior. The following example demonstrates these phenomena.

Consider the transient signal x1 (t) = e-" for A = 2 and A = 2.1. The resulting transient spectrum

for A = 2 is shown in Figure 4.7.1(a) while the spectrum for A = 2.1 is shown in Figure 4.7.1(b).

In the second case, it is clear that the transient spectrum produced does not exhibit a broadened

peak between A 2 and A = 3 and provides no indication of the true decay rate of x1 (t).

Transient Spectrum Using Jacobi Polynomials

1
0.8

0.6

0.4

0.2

0

-0.2
1 2 3 4 5 6 7 8 9 10

Decay Rate (A)
(a) Spectrum of x1 (t) = e -2tu (t) using the OET with Jacobi Polynomials

Transient Spectrum Using Jacobi Polynomials

----- ----------------------- ---7--- - ------ - --- ---.......

40

20

0

-20

-40
1 2 3 4 5 6 7 8 9 10

Decay Rate (A)
(b) Spectrum of x (t) = e -2.u (t) using the OET with Jacobi Polynomials

Figure 4.7.1: Spectra produced using the OET using Jacobi polynomials to form a basis
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Chapter 5

Overdetermined Recovery

The successful recovery of the decay rates present in a transient signal given only samples of

the lowpass filtered transient signal was previously defined in Chapter 2 under Definitions 2 and 4.

These definitions were motivated by noting that the process of sampling a causal, continuous-time

transient signal, i.e., the signal in Eq. (2.1.1), to produce the transient time-series in Eq. (2.1.2)

unavoidably included aliasing effects due to the infinite bandwidth of the continuous-time signal.

Furthermore, most physical sampling systems have a lowpass characteristic and often include an

anti-aliasing LPF as the first stage of the sampling process. Many signal processing systems also

include a sample rate conversion system in which a signal is lowpass filtered as a part of this

conversion process, e.g., oversampled noise shaping. This chapter develops a parameter recovery

framework for transient signals inspired by these types of scenarios. The general approach is to

solve for a larger number of decay rates than the true order of the transient signal in such a way

that from this larger set of parameters the correct parameters are identifiable. This procedure is

defined as overdetermined recovery.

In order to use the overdetermined recovery framework, the order of a transient model must

be known a priori. The parameter recovery algorithms presented in Appendix B each require

the model order to be established before determining values for the decay rates. Each recovery

algorithm assumes a fixed model order of d, meaning that each method produces d values for

the decay rates as a function of the available data. However, it is often the case that the order

of a transient signal acquired is not known a priori, resulting in a need to estimate it. To do

this, a typical approach begins by postulating several potential model orders. Based on these

educated guesses, one computes some error criterion that indicates which model order to select.

The process of determining a model order encompasses the use of intuition and insight into the

structure of the problem-a prime example of the art in engineering. In many cases there is no

obvious solution, and thus an engineering judgement must be made. Selecting too low a model

order produces a smooth estimate of the Fourier spectrum of the data while selecting too high a

model order increases the resolution and introduces spurious detail into the frequency representation.

The issues associated with selecting an appropriate model order demonstrate the classic tradeoff

scenario between increased resolution and decreased variance.
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The algorithms for model order selection presented in this chapter may be used as a guideline for
initial order selection. The techniques presented are known to work well for computer generated,
synthetic transient signals, but may or may not work well with actual data depending on how

well such data is modeled by a transient structured signal. Section 5.1 begins by providing a
qualitative insight into why the structure of the SVD is useful for de-noising a set of transient data.

Taking advantage of this representation, Section 5.2 proposes an algorithm which uses the SVD in
conjunction with the Eckart-Young theorem in order to use the numerical rank of a data matrix to
determine the transient model order as a function of the available data.

In Section 5.3, several typical examples of the overdetermined recovery framework are high-

lighted using different lowpass filters, recovery algorithms, data lengths, and overdetermined model

orders. These examples provide insight into the recovery process, where the correct decay rates
are visually identified from the larger set of parameters, as described in Section 5.4. Finally, an

alternating projection algorithm is proposed in Section 5.5 in order to solve the transient recovery

problem for the amplitude coefficients utilizing both the DFT and the DTT.

5.1 SVD-like Transient Representation

The singular value decomposition, which was defined in Section 3.4.3, is an extremely powerful

tool for determining the order of a transient signal given data. The exposition in this section leads
directly to an algorithm for determining the order of a transient model as a function of available

data using an SVD-like representation. The following discussion specifically pertains to the transient
structure of signals. However, a straightforward generalization may be used to extend this insight
to other structures, e.g., sinusoidal or damped sinusoidal signal models. Note that the model order

determination algorithms in this chapter rely on access to the transient signal prior to the lowpass
filter. If this data is unavailable, Section 5.5 presents an algorithm that attempts to recover a
transient signal prior to the lowpass filter, for which the following model order determination may
be used.

Suppose, for example, that a transient signal is acquired over the interval 0 < n < N - 1, where
the true order d is unknown. In order to use a parameter recovery algorithm, an estimated model

order d is chosen such that the data, either {Xd [n]}0:N-1 or {Xd [n]10:N-1, can be modeled as a
sum of d decaying exponentials with distinct decay rates and real amplitudes. We first present a
structural understanding of why the SVD is useful for identifying a model order, d, in the noiseless
case. An understanding of the noiseless case can then easily be extended to include when the
available data contains additive noise, which is discussed in the next section.

We begin the process of determining the model order by defining an order d Toeplitz data
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matrix, which will provide much insight into this problem, by

Xd - Xd d - 2

() Xd d Xd d- 1

Xd [N -1] x [N - 2]

-. -- Xd [0]

S- Xd-1]

... Xd[ N - d]

The range of values taken by the integer d will momentarily be restricted. First, consider the case

of a simple transient signal with a single decay rate, i.e., xi [n]. In this case, the structure of the

transient signal is known to be x1 [n] = ai (o1)", for 0 < n < N - 1. Plugging this model for xi [n]

into the definition of X(d) yields

d1

X d = (ai)

N-1
L al

- o-1 1

.. . . ,

which is valid for d > 1 = d. It is straightforward to verify that

into an outer product in the following manner:

X () = ai f (o-1) h (o-)T

(5.1.2)

the matrix in Eq. (5.1.2) factors

(5.1.3)

where the dimension N - d + 1 vector f (o1) is defined by

(5.1.4)

and the dimension d vector h (o1) is defined by

(5.1.5)

The decomposition of the matrix X(a) into this form makes clear that the matrix has unit rank.

By exploiting linearity, when xd [n] = Zak (O-k)", for 0 < n < N - 1, the expression for X(d) is

k=1
expanded to be

(5.1.6)
d

X = af (k) h (0-k )T,
k=1
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or equivalently as

X () = F (u) A (a) H (a)T  (5.1.7)

ai 0 0 1 h(O-i)T

0 as2  - 0 hI 2
= [f (0-i) , f (0'2) ,-- ,f (Od)] . .2 .. . . .02) (5.1.8)

0 0 ... ad _ _ h(a0TI

From this factorization, specifically the structures of F (a), H (a), and A (a), it is straightforward

to verify that rank (X ())= d. Consequently, when initially selecting values for d, any prior

knowledge on the transient model order should be used to select a value d which is believed to

satisfy d < d < N - d. Generally, because the value of d is unknown, several values of d are often

attempted in hopes that one may fall into this range.

The matrix decomposition in Eq. (5.1.7) is similarly structured to the SVD of the matrix X

It is important to understand that these two decompositions are not equivalent. This is easily

understood by considering either the matrix F (a) or H (a). For example, the matrix F (0-) is guar-

anteed not to be unitary. In fact, when the matrix X(a) is populated with a transient structured

signal, F (a) has columns corresponding to transient structured signals, which we have shown to be
non-orthogonal. A decomposition of this structure would be extremely useful for transient model

order determination, but unfortunately no known method decomposes a general Toeplitz matrix

into this form.

5.2 Model Order Determination Algorithms

The factorization of the Toeplitz data matrix in Eq. (5.1.7) is structured similarly to the SVD
factorization in Eq. (3.4.17). This section combines this similarity with the fact that the procedure

to compute an SVD is well-known in order to discuss a commonly used algorithm for determining
the model order of available transient data and to propose a new method. [23]

In Eq. (5.1.2) the decomposition of the Toeplitz data matrix X (), populated using the signal

x1 [n], was not necessary for determining the true model order d. In fact, only the rank of that
matrix needed to be determined. Now the application of the SVD becomes clear. First, choose an

initial integer value for d which is believed to satisfy d < d < N - d. Next, form the matrix X (d) for

this initial value of d. The rank of X(a) is easily determined by computing the SVD and counting
the total number of non-zero singular values. For the case of noiseless transient data, the transient

model order d= d is determined once the following condition is satisfied:

rank (X (d))= d. (5.2.1)

In fact, due to the noiseless assumption, any value of a such that d> d may be used where the rank
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of X( is d and therefore the model order can be determined immediately.

In practice, the Toeplitz data matrix is often populated with noisy transient data corresponding

to the underlying transient signal corrupted by measurement noise, i.e., {zd [n] }0:N-1. Using the

intuition developed in the noiseless case, this procedure is now extended to the case of a noisy

Toeplitz data matrix of the form

Xd ... XdLO [0 *]... 0

XXd .] X.1 + 4a (5.2.2)

xd[N-1] . XdIN-d] [N-1] ... ?IN-d] -

In general, x will always have full rank for any valid choice of d. Therefore, the stopping criterion

in the previously described algorithm must be altered in order to overcome this obstacle.

The most straightforward extension of the previous stopping criterion is to determine the nu-

merical rank in place of the rank of the data matrix. We previously defined the rank of a matrix by

the total number of non-zero singular values in the SVD representation of that matrix. However,

taking into consideration numerical representation used in computation and the effects of additive

noise, the numerical rank of a matrix is an important quantity in practice. The numerical rank of

a general M x N matrix A, denoted rank, (A), is defined by

rank, (A) = {rk > max(M, N) * E ||A||211:min(MN) (5.2.3)

where 1. represents the cardinality of a set of singular values and E represents the relative machine

precision for the hardware the algorithm is computed on, e.g., E = 2.22 x 10-16. Therefore, the

modified stopping criterion is to find the value of d for which

rank, (X (d+)) = d. (5.2.4)

Note that alternative thresholds to max(M, N) * E |A l2 may be used, but the observation that the

smallest singular values of noiseless data matrices are quite small should be taken into account when

designing such a threshold.

Next, an alternative model order estimation algorithm is proposed by considering the application

of the Eckart-Young theorem, as discussed in Appendix B.2, to the matrix X(d) in Eq. (5.2.2).

An inherent assumption in this procedure is that the smallest non-zero singular value in the SVD

representation of X(d) corresponds to the noise in the samples and not one of the exponential

components. If we denote the result of this de-noising process by GO), then the matrix Ed) =

X (d) - G (d) corresponds to the smallest unit rank reducing perturbation of the noisy data matrix

in a Frobenius norm sense. This estimate of the noise matrix is generally not Toeplitz structured,

although we know from Eq. (5.2.2) that the true noise matrix is.. Therefore, we produce a new
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Toeplitz noise estimate by

h (E(d ) (5.2.5)

where h is the diagonal-averaging operator in Eq. (B.3.4). Using this estimate for the noise, we

create an estimate of the underlying noiseless transient data as

This estimate of the de-noised data is guaranteed to remain Toeplitz. X ( can then be used in the

same way X(a) was previously for model order determination, i.e., a comparison of the number of

singular values larger than a given threshold. This proposed method is summarized by determining

the model order of the data given by

X$ - h ( (d)
- f ( )) (5.2.6)

where f is the unit rank reduction operator from Eq. (B.3.5).

Consider the signal t4 [n] over the interval 0 < n < 28, using decay rates {-L}14 = {0.3, 0.5,0.7, 0.9}
and amplitude coefficients {ak}1 . 4 = {3, -5, 7, 2}. Figure 5.2.1 depicts the singular values of the
matrix X(8) from Eq. (5.1.1), the average singular values of the matrix X(8) from Eq. (5.2.2), and
the average singular values of the proposed algorithm in Eq. (5.2.6) with d = 8, where the averages

are over 100,000 trials for various SNRs. Note that in all 3 cases, the singular values drop off sharper

for the proposed algorithm, making the underlying model order d = 4 easier to identify.
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(a) Average singular values for three transient model order estimation
matrices with an SNR of 10 dB
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Singular Value Number

(b) Average singular values for three transient model order estimation
matrices with an SNR of 0 dB
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(c) Average singular values for three transient model order estimation
matrices with an SNR of -10 dB

Figure 5.2.1: Singular values of a noisy transient signal using the proposed model order estimation

algorithm for different SNR values

5.3 Illustrating Overdetermined Recovery

Consider the following example in which the overdetermined recovery framework is applied

using the Tufts-Kumaresan parameter recovery algorithm on the data {g4 [n]}O:29 for several values

of d. The signal g4 [n] is produced by lowpass filtering the transient signal X4 [n] with decay rates

{lk} = {0.3, 0.5, 0.7, 0.9} and amplitude coefficients {ak} 1 4 = {-1, 2, 7, 3} by a truncated sinc

filter of length 65536 and cutoff frequency wc = 0.87r. Figure 5.3.1 depicts the resulting decay rates

where in parts (a), (b), (c), and (d) the values 4, 8, 12, and 16 are used for d, respectively. This

example shows that as the value of d increases from the model order d, the desired decay rates are
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easy to visually identify in the z-plane. However, it becomes increasingly difficult to identify the

decay rates when the value of d becomes too high.

E E

0.5

0

-0.5

Real Axis
-0.5 0

Real Axis
0.5 1

E

-1 -0.5 0 0.5
Real Axis

Figure 5.3.1: Pole-zero representation of the estimated
Kumaresan method for various values of d

2

-1 -0.5 0 0.5
Real Axis

decay rates resulting from the Tufts-

The decay rates resulting from the overdetermined recovery framework are presented in the

following three examples for the same signal x4 [n] as above, but for different LPFs, data records,
parameter recovery algorithms, and overdetermined model orders.

Example. Figure 5.3.2 depicts the decay rates resulting from the overdetermined recovery frame-

work where the signal X4 [n] is lowpass filtered using a length 512 Parks-McClellan LPF with cutoff

frequency w = 3, the overdetermined model order d 13 is used, the data record length is N = 34,
and the covariance method of linear prediction is used for recovering the decay rates.
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-1 -0.5 0
Real Axis

0.5 1

Figure 5.3.2: Overdetermined recovery results after lowpass filtering X4 [n]
LPF

by a Parks-McClellan

Example. Figure 5.3.3 depicts the decay rates resulting from the overdetermined recovery frame-

work where the signal x4 [n] is lowpass filtered using an 18th-order Butterworth LPF with cutoff

frequency we = !, the overdetermined model order d = 20 is used, the data record length is N = 44,

and the extended method of Prony is used for recovering the decay rates.

True Poles
0 Estimated Poles

0.5

00
-0.5-

-1
-1 -0.5 0 0.5 1

Real Axis

Figure 5.3.3: Overdetermined recovery results after lowpass filtering X4 [n] by a Butterworth LPF

Example. Figure 5.3.4 depicts the decay rates resulting from the overdetermined recovery frame-

work where the signal x4 [n] is lowpass filtered using a 10th-order Elliptic LPF with cutoff frequency
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3e the overdetermined model order d 23 is used, the data record length is N = 50, and

Cadzows method for recovering the decay rates.
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Figure 5.3.4: Overdetermined recovery results after lowpass filtering X4 [n] by an Elliptic LPF

A simple qualitative explanation of the overdetermined recovery procedure is now proposed with

regard to the spectral matching property of the Yule-Walker method of all-pole modeling. Con-

sider breaking the frequency spectrum of the signal gd [n] into the passband and stopband regions

of the lowpass filter. The frequency spectrum over the passband can be completely characterized

using d poles placed along the real line between 0 and 1 in the z-plane. However, if we only use d

poles to model the entire frequency spectrum, then the poles also attempt to model the stopband

attenuation, and thus will not model the passband exactly. By allowing d - d additional poles to

model the stopband, the original d poles may completely characterize the passband. At a high

level, this explanation hints at the fact that the estimated poles should be easily separated into two

groups: the decay rates and the extraneous solutions. A systematic way to differentiate between

the decay rates and the extraneous solutions is considered in Section 5.4. The preceding examples

demonstrated typical results of the overdetermined recovery framework where the two sets of poles

were easy to visually separate in the z-plane: the decay rates were found on the real axis between

0 and 1, while the extraneous solutions were found in regions corresponding to the lowpass filters

high frequency attenuation. Note that when a lowpass filter has a narrow passband, the decay rates

corresponding to quickly decaying exponentials are not recoverable.
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5.4 Overdetermined Recovery Framework

The key criterion in selecting an order for the overdetermined recovery framework, defined as

d*, is that the underlying model order has already been established and we need to select d* to

be meaningfully larger than the true order d, with respect to the size of the LPF's passband.

The general procedure of overdetermined recovery simply uses the parameter recovery algorithms in

Appendix B with the overdetermined order d* where an additional step is needed to sort through the

resulting parameter estimates in order to identify the correct decay rates, {-}kld. This additional

step is discussed in the remainder of this section.

Note that an overdetermined parameter recovery algorithm produces a set of d* decay rate es-

timates for which none of the estimates are guaranteed to be real or positive. Generally, when

the wrong number of recovered parameters are on the positive real axis in the z-plane, one of two

problems most likely occurred: (1) the passband of the LPF may be too narrow to recover a quickly

decaying component and/or (2) the value of d* may have been chosen either too high or too low

for the given LPFs passband. A useful heuristic is that the larger the stopband of the LPF, the

higher the overdetermined order d* should be. Often several choices for d* must be attempted

in a trial-and-error type procedure. Section 5.4.1 describes process of separating the decay rates

from the extraneous solutions where the locations of the extraneous solutions are unconstrained

and the value of d* has been chosen appropriately for the passband of the LPF. Subspace based

parameter recovery algorithms, e.g. the Tufts-Kumaresan method or Cadzows method, are capable

of producing d* - d sets of d* parameter estimates. In the noiseless case, each estimate has the

same d decay rates, but the extraneous solutions are often different. Section 5.4.2 identifies one set

of parameter estimates for which the extraneous solutions are guaranteed to be within the unit circle.

5.4.1 Classifying Roots

Recall the Toeplitz data matrix from Eq. (5.1.1) with the structure

Xd [d*] Xd[d* -1] ... Xd[0] 1
X(d*±l) Xd [d* + 1] Xd [d*] Xd [1] (5.4.1)

x [N - 1] Xd [N - 2] - xd[N-d*-1]

The homogeneous solution to the linear system of equations given by

X(d*+1= 0, (5.4.2)

where 6 = [1,01, -. - -, ]T, lies in the nullspace of the matrix X(d*+1), and consequently in the

nullspace of the matrix [X(d*+1)] TX(d*+1) too. If the matrix X(d*+1) contains noise, i.e., X(d*+1),

then, with high probability, the data matrix has an empty nullspace. In this case, the right singular

vectors corresponding to the d* - d smallest singular values are defined to be the approximate

nullspace of X(d*+1). In either of these cases, the d* - d solutions are easily obtainable via the SVD.
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Next, define the monic, order d*, characteristic polynomial using the coefficients from any solu-

tion 0 by
d*

8 (Z) = 1 + Y 6kz-k. (5.4.3)
k=1

Section 5.3 illustrated that for a broad range of cutoff frequencies, d of the zeros of 8 (z) corre-

sponded to the desired decay rates {0k}1d. However, the characteristic polynomial also has d* - d

additional zeros, which we defined to be the extraneous solutions. Therefore, the order d* charac-

teristic polynomial can be factored such that

E) (z) = E)1 (z) 82 (Z) (5.4.4)

where the two sub-characteristic polynomials are defined by

d d

81 (z) = PkZ-k = 1 (1 - Ukz1) , (5.4.5)
k=0 k=1

where we select po = 1, and

d* -d d* -d

E2 (z) = = J1 (1 - okz- 1) , (5.4.6)
k=O k-I

where we select q 1. The zeros of E2 (z) are the extraneous solutions.

Consider the case where d* is selected such that d* - d > 1. As a consequence, there are at least

two vectors in the nullspace of X(d*+l), or at least two vectors that span the approximate nullspace

of X(d*+1), depending on whether the data contains noise or not. We proceed by assuming noiseless

data, although the following procedure is similar in both cases where approximations are made

accordingly.

We would like to separate the zeros of ( (z) into {Ok}1d and {19k}1.d*d, or equivalently to factor

E (z) into 81 (z) and E2 (z), using any solution 0. One procedure for doing so is to systematically

discard the extraneous solutions for each 0. The decay rates appear in each solution while the

extraneous solutions are typically different, therefore, a systematic procedure for identifying the

decay rates is to identify the zeros that are real, in the range (0, 1), and common to each of the

characteristic polynomials formed by homogeneous solutions to Eq. (5.4.2).

5.4.2 Special Case of the Extraneous Solutions

When multiple homogeneous solutions 9 exist for the system of equations in Eq. (5.4.2), one of
these solutions has an identifiable property for which the locations of the extraneous solutions are

guaranteed to be within the unit circle. [11] This subsection uses the correlation method of linear

prediction in order to identify which solution guarantees this property. Specifically, we show that if
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the solution 9 with coefficients that minimize the sum of squares, i.e.,

d*

||0| 12 +2 [ 10k2 (5.4.7)
k=1

is used to form the polynomial E (z), then the zeros of 8 2 (z) are found to lie strictly inside the

unit circle. Note that each vector must be normalized such that 0o = 1 for the comparison.

We previously factored the polynomial E (z) into the product of the two polynomials 9 1 (z)

and 8 2 (z), therefore the coefficients in the vector 9 are the result of a linear convolution between

the coefficients of the two sub-polynomials. Using the notation in Eqs. (5.4.5) and (5.4.6), the

coefficients of 9 are given by

On = EPkqn-k. (5.4.8)
k

We consider the the coefficients Pk to be fixed, as they correspond to the desired decay rates. By

interpreting this convolution as linear prediction, where the input sequence is the signal with co-

efficients from 8 1 (z), we select the coefficients qn in order to minimize the sum of squares of the

linear prediction error, On. Thus the solution, i.e., coefficients for 8 2 (z), is the solution to the Yule-

Walker equations in Eq. (B.4.3), where the autocorrelation sequence is structured as the biased

autocorrelation estimator in Eq. (B.4.4). A well-known result states that the solution to this set of

equations always results in a set of roots that have magnitude less than 1. Therefore, by selecting

the solution 0 with minimum f 2-norm, the extraneous solutions are guaranteed to be found inside

the unit circle. In Figure 5.3.1(a)-(d) the solution 9 was chosen with minimum E2-norm, resulting

in the parameter estimates being contained in the unit circle.

5.5 Iterative Transient Spectral Projection

This section proposes an alternating projection algorithm for the lowpass filtered transient pa-

rameter recovery problem in order to recover the signal Xd [n] from samples of the signal gd [n].

This algorithm exploits two inherent properties of the underlying transient signal Xd [n] in order

to iteratively project a signal between two spaces in anticipation of converging to the underlying

signal, for which a parameter recovery algorithm will identify the desired parameters. Each of these

spaces satisfies one of the known properties of xd [n]. To begin, define the space of all dth-order

transient structured signals as

Vd {Xd[n] : Xd[n] of the form of Eq. (2.1.2)}

and the space Wd to be the space of all signals with the same Fourier transform as the signal g [n]

over the passband regime of the lowpass filter. Therefore, this algorithm can be summarized by

find x* [n] (5.5.1)

s.t. xd [n] c Vd n Wgd.
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Appendix A establishes the uniqueness of the solution to this formulation. To solve this formulation,
the parametric estimator of a dth-order transient signal, defined in Eq. (2.5.1), is iteratively updated

as its parameter estimates are updated. Therefore, the tth iteration of the parametric estimate of

the underlying transient structured signal is given by

d

it [n] = t) (o , (5.5.2)
k=1

where the parameters {a t) and o M are the tth iterative estimates of the amplitude

coefficients and decay rates, respectively. The overall methodology used here is to iteratively update

the signal gt) [n] by

gt+l) [n] = P {PV {g) [n]}} (5.5.3)

until g5) [ni] =g~ [n], where Pvd {-} and PW, {-} are projections into the spaces Vd and We,

respectively.

We initialize the algorithm by defining the projector Pvd to satisfy an input-output relationship

given by

2i0) [n] = Pvd {(g) [n]}. (5.5.4)

Given the filtered transient data, denote g() [n] = g [n]. The initial step of this algorithm is

to first estimate the location of d* > d decay rates using the overdetermined recovery framework.

Define the mapping D{-} as this procedure. Then the initial step of this algorithm is then given by

{o 0) 1:d* _ go) [n]}. (5.5.5)

Using the real decay rates between 0 and 1 from this overdetermined recovery mapping as the

decay rates of an exponential basis, the exponential basis is extended to include d* total real decay

rates. The additional decay rates may be chosen arbitrarily, though a good heuristic is to place a

single decay rate relatively close to each side of the recovered decay rates. The DTT of gO) [n], is

then computed, and is denoted as

G(0) [k] = T {g() [n]}. (5.5.6)

Next, an adaptive transient filter W [k], as discussed in Section 3.3, is defined by

1, for the largest d peaks of A [k]
N [k] = (5.5.7)

0, otherwise

where A [k] is the DTT of the transient filters input. Therefore, the output of the projector pVd is

given by

,0) [n] = T- 1 {G() [k] N [k]}. (5.5.8)
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This parametric signal contains d real exponentials, which means that it sits in the space of all

dth-order transient signals, i.e., Vd. However, the passband frequency is not guaranteed to match

the known frequency content of the underlying transient signal. Therefore, in order to enforce this

property, define the input-output relationship of the projector Pw, by

gd [n] = w 0{s [n]) (5.5.9)

In this projection, the known frequency band is inserted in place of the estimated band while

the out of band estimate is left unmodified. The result of this procedure is denoted GTJf) [k] and is

given by

G(') [k] = (1 - F [k]) $50) [k] + F {g0) [n]} (5.5.10)

where F {-} denotes the DFT, F [k] represents the lowpass filter, and

Zd0 [k] = F {i [In] . (5.5.11)

Finally, the first iteration is completed by transforming the signal with correct frequency content

over the passband region, but possibly no longer in Vd, to the sample domain by

) [n] {G) [k]}. (5.5.12)

The iterative update procedure to update the signal g [n] to g+l [n] is given in Algorithm 5.1.

Algorithm 5.1 Update procedure for the iterative transient spectral projection algorithm

1. () [n] = -Pv {g7 [n]}:

(a) {o=t) D {gt) [n]}

(b) G(' [k] =T {g) [n]}

(c) 4) [In] T- 1 {G) [k] Q [k]

2. g t+l) in] {t) In]

(a) .0) [k] = F{ ) [n]

(b) Gt+) [k] =(1- F [k]) [k]+ n]

(c) gt+') [n -1 {G t+' [k]
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Chapter 6

Conclusions and Future Directions

In this thesis, we have considered the recovery of amplitude coefficients and decay rates for

transient structured signals under three stages of recovery. The accurate determination of these

parameters is closely aligned with valuable information in many applications.

In Chapter 3, the first stage of parameter recovery was presented in which we determined the

amplitude coefficients of a transient signal given both samples of the signal and the decay rates

associated with the signal. This process led to the definition of the exponential basis and the concept

of a transient transform. For finite-length signals, the dual exponential basis was derived using two

novel algorithms such that the DTT became computationally feasible. Using these algorithms,

numerical improvements were observed for a commonly solved ill-conditioned system of equations.

The DTT then became the standard procedure to solve for the amplitude coefficients for the second

stage of parameter recovery once the decay rates were recovered.

Chapter 4 extended the generation of the dual exponential basis such that several approximate

dual bases were defined by trading off between properties. For example, the solution to an un-

constrained optimization problem provided a stable approximate dual basis at the cost of reducing

transient resolution. Section 4.4 provided bounds on guaranteed transient resolution for any ap-

proximate dual exponential basis. The use of Inner Product Shaping and orthogonal polynomials

were unsuccessfully considered for creating a meaningful approximate transient spectrum.

The second stage of parameter recovery, for which the decay rates of a transient signal given

samples of the signal, is presented in Appendix B. This appendix provides a tutorial on several

existing parameter recovery algorithms for determining the decay rates. The DTT is then utilized to

accurately determine the amplitude coefficients when desired as an alternative to Shanks Method.

In Chapter 5, the third and final stage of parameter recovery was presented in which we es-

tablished a framework for determining the amplitude coefficients and decay rates of a transient

signal given samples of the lowpass-filtered transient signal. We saw that this framework heavily

relied upon selecting an overdetermined model order to be meaningfully larger than the underlying

transient signals model order with respect to the severity of the LPF. An alternating projection

algorithm was presented in order to recover the transient signal prior to the lowpass filter using

the overdetermined recovery procedure. In order to use this algorithm, a novel model order deter-
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mination algorithm was presented which may be used to identify the number of parameters to be
determined.

6.1 Future Directions

The DTT uses an exponential basis in order to represent a finite-length signal with any set

of decay rates for the exponential basis signals. Research for understanding the effects of different

spacing structures of the decay rates is needed to provide a deeper sense of the conditioning issues of

exponential signals. For example, clustering of the decay rates has a significantly undesirable effect

on the numerical stability of the dual exponential basis. Understanding the consequences of different

spacing structures may lead to improved stability of the DTT. In addition, it has been observed by
simulation that different spacings of the decay rates often has noticeable effects on spectral leakage

and resolution of the approximate DTTs in Chapter 4. Finally, identifying applications that can

take advantage of transient filtering is a potentially rich area for future research encompassing a
broad range of fields.

Another potential area for future research involves utilizing functional composition such that ad-

ditional parameter recovery algorithms become of use. For example, the forward-backward method

of linear prediction exploits the fact that a sample from a periodic time-series is linearly predictable

using either previous or future sample values [15]. This results in recovered parameters which are

guaranteed to be on the unit circle in the z-plane. Borrowing inspiration from this algorithm, it may

be advantageous to utilize the information that the poles are located on the real axis to ensure that
recovered parameters are all on the real axis as well. If the z-domain representation of the transient

signal could be modified in such a way that the real line over (0, 1) was uniquely mapped to the
unit circle, then the forward-backward method would produce pole estimates on the unit circle that
would then be mapped back to the real line. One way of implementing this transformation is to use

the functional composition given by

Xd(z) = Xd (G (z)) (6.1.1)

= Zxd[n] G z) (6.1.2)

where Xd (z) is the z-transform of the transient signal Xd [n], G(z) is a warping function, and we
denote zd [n] as the inverse z-transform of Xd (z). If G(z) is a rational function in z, then Eq. (6.1.1)
represents a rational composition when both inner and outer functions are ratio's of polynomials

in z. Table 6.1 lists several potential mapping functions and the image of one of the Nth roots of
unity.

100



CHAPT ER 6. CONCLUSIONS AND FUTURE DIRECTIONS 6.1. FUTURE DIRECTIONS

Warping Function G(z) Image of one of the Nt roots of unity e

G1(z) = !z + CO cos() eJ -I
G2(z) = L(z-' + 2 + z) Cos2 N

G3(z) = (1 + K)z + 1(1 - K)z-1 cos (rk)+ j (K) sin M
KCO K(cos +a-j sin 2r 2,)

G()=z+a (cos(27r)+a) +sin (T)O

Table 6.1: Warping functions and the image of one of the Nth roots of unity

Figure 6.1.1 depicts the relationship between computing the DFT of the signal zad [n] with the

equivalent z-plane evaluation Of zd [n] for different warping functions G(z). Note that G3(z) is

shown with a value of K = } and G4(z) uses K = -1.5 and a = -3.

X(z) o G1 (z) X (z) o G2 (Z)
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Figure 6. 1. 1: Mappings for rational functional composition

,li

101



6.1. FUTURE DIRECTIONS CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

102



Appendix A

Proof of Uniqueness for f2 Minimization

The uniqueness of the solution for the linearly and decay rates in Eq. (2.5.6) is verified in the

following proposition. In order to see this, we define the space of all dth-order transient structured

signals as

V = {xd[n] : Xd[n] of the form of Eq. (2.1.2)}.

Proposition. If g [n] = fip [n] * x [n] and x [n] G Vd, then there exists a unique x [n] that produces

9d [n] -

Proof. Let x(l) [n], X(2) [n] E Vd where x(l) [n] f X(2) [n]. Denote the DTFTs of x() [n] and X(2) [n] as

X1 (ei') =i(eiw) and X 2 (eiw) = (ejw) , respectively, where each Ni (eiw) , N 2 (ejw), Di (ejw),

and D 2 (eiw) are polynomials in e-iw of maximum order d. Let Gd (ei") be the DTFT of g [n].

By definition

Gd (eiw) = Ni (eiw) - N2 (eiw)
D1 (eiw) D2 (eiw)

Next, define AX (eiw) as

N1 (eiw) N 2 (ei")
X (eiw) - Di (ejw) D 2 (ejw)

N1 (eiw) D 2 (eiw) - N 2 (ei") D1 (eiw)

Di (ejw) D 2 (eiw)

R (ejw)

D1 (eiw) D 2 (ejw)

=0

for |wl < we. Therefore N (ejw) may be written as a polynomial of maximum order 2d, given by

2d

(eiw) = cle-j5l.

i=0
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Let w1 , ... WW2d+1 be 2d + 1 distinct samples of w in [0, we). Consider the set of equations

2d

(ejwi) =- E cj, i = 1,., 2d + 1,
1=0

where yj = e-ji. Expanding this into matrix form yields

~1

1

1

'72

72d+1

2d
... Yi

2d

2d
72d+1

~ICO 1
cl

C2d .

01
0

0_

Written in matrix form this is 0 = rc where F is a Vandermonde matrix of full rank and therefore

has only the trivial vector in it's null-space. The only set of cl that satisfy the above equation are

cl = 0 for 0 < 1 < 2d. Thus we have that R (eiw) = 0 for all w, which implies

X1 (es') - N1 (eiw) N2 (ew) X2 (eiw
Di (eiw) D2 (eiw)

Therefore x(1) [n] = X(2) [n] which contradicts the original assumption, so the input to produce gd [n]
must be unique.

E

One result of the above proposition is that Eq. (2.5.8) is simplified to

(&, 8) arg min |Gd (ejw) - Xd (eiw) F, (eiw) |2

as the uniqueness of the solution has been established.
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Appendix B

Parameter Recovery Algorithms

Parameter modeling is a powerful tool with which a set of observed samples is fit to a predefined

model of a specific structure using only a limited number of parameters. Often, the number of

parameters determined is fewer than the number necessary for an exact representation of the data.

Therefore the parametrization results in some form of modeling error. In this case, the model

parameters are determined through minimization of an error function for some definition of error.

Solving this formulation results in the set of model parameters that best represent the observed

samples in some sense. Different error criteria result in different recovery algorithms and solutions.

The general procedure of parameter recovery is summarized into two primary stages: model

selection and parameter determination. First, the structure and order of a parametric model need

to be selected. Once the structure is fixed, the model order must be carefully chosen when it is not

known a priori. Selecting too low an order leads to a poor representation of the data, while selecting

too high an order, in general, leads to over fitting to the observed samples, including fitting to noise.

Generally, if the data does not exactly fit the model assumed, diminishing reductions in modeling

error are obtainable by continually increasing the model order. The order selection process can

be thought of as a tradeoff between parameter parsimony and tolerable modeling error. Chapter

5 proposes an algorithm for estimating model order using insight based upon the transient signal

structure, and where the model order is computed as a function of the available data. Once the

model structure and order are fixed, the recovery algorithm used for determining the model parame-

ters must be selected in order to minimize an error criterion. The assumptions made in formulating

each recovery algorithm are very important in practice when deciding which recovery algorithm is

appropriate for a given application; selecting an algorithm whose inherent assumptions best match

known facts about the source from which the data is obtained often leads to better results. For

the remainder of this chapter the model structure corresponding to the source of data is either the

transient structure in Eq. (2.1.2) or Eq. (2.1.7). Additionally, the model order is assumed to be

fixed to d. The algorithms presented in this appendix are directed at solving the problems stated in

both Definitions 1 and 3 alike.
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B.1 Prony's Method

After defining Eq. (2.1.5), we saw that directly solving for the set of decay rates, given a

set of observed sample values, requires solving a non-linear system of equations. Prony's method

reformulates this problem such that the decay rates are found by solving a linear system of equations

instead. This method originates from recognizing that a signal with the structure in Eq. (2.1.2) is

also the structure of the solution to a homogeneous Linear Constant Coefficient Difference Equation

(LCCDE) of order d. [21] Specifically, Prony's method fits N observed samples to a pre-determined

exponential model, containing d exponentials, through a three stage procedure, outlined as follows:

1. Solve a homogeneous LCCDE of order d for the coefficients {Ok}1d.

2. Use the coefficients found in stage one to form a dth order polynomial whose roots give the

decay rates {Ok}l:d.

3. Use the decay rates found in stage two to solve the linear system of equations in Eq. (2.1.5)
for the amplitude coefficients {ak}ld.

The algorithms presented in this chapter only describe the recovery process for the decay rates, i.e.,
stages 1 and 2 above. Shanks method then uses these methods to solve stage 3 in a least squares

manner. However, for transient structured signals, this involves solving the ill-conditioned system

of equations in Eq. (2.1.5). Solutions obtained by using the algorithms proposed in Chapter 3 often

have lower numerical error, and thus make an improvement over the stage 3 recovery problem.

To develop the insight used in Prony's method for stages 1 and 2, define a characteristic poly-

nomial as

d

E(z) = fl(1 - okz 1 ) (B.1.1)
k=1

d

= 0mz-m = 0, (B.1.2)
m=o

where we choose 6 0 = 1 without loss of generality. Next, the result of manipulating Eq. (2.1.2) by
delaying by m, multiplying by 0m, and summing over m, yields

d d d

5 OmXd [n - m] = ak dk 1 0mo' (B.1.3)
m=0 k=1 m=0

d

= akE(Ck) = 0 (B.1.4)
k=1
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for n > d. For notational convenience, define 0 = [01,.-- , 9 d]. This equation says that the coeffi-

cients {0k}1d: are exactly the same coefficients found by solving a dth order homogeneous LCCDE

for 0, starting from n = d. Prony's method is not restricted to solving for the parameters in Eq.

(2.1.2) for only transient signals, but is also applicable for more general curve fitting with complex

exponentials and complex amplitudes. The LCCDE is defined, over some interval of support, by

Xd [n] + 61Xd [n - 11 + 62Xd [n - 2] + - - - + OdXd [n - d] = 0. (B.1.5)

Different intervals of support lead to different algorithms and consequently different solutions. The

zeros of the characteristic polynomial 8(z), i.e., {0}1:d, are the decay rates in Eq. (2.1.2). There-

fore if the coefficients of the LCCDE are correctly identified, then the decay rates of the signal

Xd[n] may be correctly determined. Two intervals of support are considered in the following two

subsections.

B.1.1 Prony's Original Method

The original formulation of Prony's method defines the interval of support for Eq. (B.1.5) to be

d < n < N - 1 where N = 2d. As a result, Prony's original method exactly fits 2d observed sample

values to a linear combination of d exponentials. There is no modeling error either with respect

to representing the data in this method. However, when the data doesn't exactly fit the transient

structure, e.g., -td [n], then modeling error with respect to the transient structure is unavoidable.

Solving for the coefficients 0, in order to form the characteristic polynomial, requires the solution

to the linear system of equations given by

xd [d] Xd [d-1] Xd[d-2] ... xd[0] 01

Xd[d+1] Xd[d] Xd[d-21] --- x [1] 02(B.

LXd[2d-1] Xd [2d--2] Xd[2d-3] - x..X[d-1] j _ d.

The solution {9 k}1:d is extended to include 0o = 1 and is subsequently substituted into Eq.

(B.1.2). Then a polynomial factoring algorithm solves for the zeros of 8(z). It has been observed

that the first two stages of Prony's original method perform poorly in estimating the correct values

of {k}1.d when the observed samples contain additive noise, i.e., {d[n]}o:2d-1. [8] This is attributed

to the fact that this algorithm makes no separate estimates of the noise and the underlying signal,

but fits exactly to the noise included in each sample. As a result, Prony's original method achieves

successful recovery as in Definition 1 exactly and performs poorly in Definition 3. It is for Definition

3 that the extended Prony's method makes improvement upon this original formulation.

B.1.2 Extended Prony's Method

Consider the case where the number of exponentials to be modeled is fixed to d while N > 2d
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samples of a transient signal are available. Prony's original method cannot utilize any of the

additional N - 2d samples without increasing the model order to d> d. Extending the system of

equations in Eq. (B.1.6) to include all available data while holding the model order fixed results in

an overdetermined system of equations given by

~ xd[d] xd[d--1] Xd[d-2] ... Xd[0] 1 01

x[d +d1] x[d] Xd[d-1] ... xd[1] 02- .±1 ] . . .. . .2 (B.1.7)

Xd[N-1] _ xd[N-2] xd[N-3] --- xd[N-d-1] _ _ J
Eq. (B.1.7) is compactly written as -xd,o = X9, and the least squares solution, i.e., 6LS
-(XTX)-lXTxd,o, is referred to as the Extended Prony Method solution. [20] The same procedure

for producing the decay rates as the original Prony method is then used here, however the estimates

for the decay rates may be different.

A common interpretation of the least squares solution to Eq (B.1.7) is to select the vector 0 that

minimizes ||X9 + xd,o ll = ||e|| where e [n] is the parametric modeling error, e [n] = Xd [n] - sd [n],
for 0 < n < N - 1. This method has been observed to outperform the original Prony method in

the presence of noise, such as in the formulation of Definition 3.

B.2 Tufts-Kumaresan Method

The Tufts-Kumaresan method is a natural extension built upon the framework of the stage one

extended Prony method, detailed above. [121 Towards developing this extension, Eq. (B.1.7) is

re-written as

-- zdo = X (B.2. 1)

0 [.td,o | X] [ (B.2.2)

where [zd,o I X] is a concatenated Toeplitz matrix and zd [n] has been used in place of Xd [n] to

emphasize the advantage this method provides when the data contains additive noise. The key

insight exploited in the Tufts-Kumaresan algorithm is to utilize the low rank of the concatenated

data matrix in Eq. (B.2.2) when the samples do not contain additive noise in order to perform a

de-noising like procedure. This is a more realistic formulation than in the extended Prony method

because the sample values that populate zd,o also populate X. Previously, error was only assumed

to be present in zd,o. This insight suggests an unstructured Total Least Squares (TLS) solution to

Eq. (B.2.2). Systematically, this means solving the system of equations for the coefficients of the

characteristic polynomial while taking into account that there is noise in both the data matrix X
as well as the observation vector zd,O.

108

B.2. TUFTS-KUMARESAN APPENDIX B. PARAMETER RECOVERY ALGORITHMS



The advantage of this algorithm becomes apparent by writing Eq. (B.2.2) as

' d,O [d] Td [d - 1] Xt [d - 2] .2[0] 1 1 1
- 1~ d,0 [d +1] 2d [d] td [d - 11 -d -[1] 01 =0,

_ 2d,0 [N - 1] -; [N -- 2] -d [N - 3] --- d[N-d -1]1 0d .
(B.2.3)

and noting that in the noiseless case, i.e., the problem in Definition 1, the observed samples that

populate the concatenated data matrix produce a matrix with a null space of dimension one, i.e.,

dim {A ([xd,o I X])} = 1. Solving for the non-trivial vector in the null space results in a scalar

multiple of the concatenated vector [1 | 0 T]T . Re-scaling of this non-trivial vector, such that the

leading coefficient is 1, is an unnecessary step in forming the characteristic polynomial as the roots

of a polynomial are invariant to scalings of the coefficients by a constant, though appropriate scaling

may help numerical errors when solving for the roots of large polynomials. It is straightforward

to verify that this algorithm yields the same solution as both versions of the Prony method in the

noiseless case.

When the observed samples, {td [] 0:N-1, contain additive noise, i.e., the problem in Definition

3, the joint matrix [2td,o X] will have rank d+1 with high probability. Consequently, the only vector

in the null space of this noisy concatenated matrix is the trivial solution, i.e., K ([td,o IX]) = 0.

To overcome this, the Tufts-Kumaresan algorithm finds the smallest perturbation matrix, in a

Frobenius norm sense, of the joint matrix which yields a unit rank reduction. The Eckart-Young

Theorem proves that the closest rank reduced matrix is easily obtainable through manipulating the

SVD of the joint matrix. [23] To find the resulting matrix, consider the SVD of the joint matrix,

given by

d+1

[z-,o HkukkH (B.2.4)
k=1

where 7r1  . .. rd 7rd+1 > 0. The estimate of the noise is then given by the unit rank matrix

Wd+1Ud+1ud 1. The rank 1 reduced matrix, [2td,o | d, is then given by

d

[jd,0 |ld = Z7rkukk. (B.2.5)
k=1

The smallest singular value is assumed to be due to additive noise and not one of the transient

components in order to interpret this as a de-noising process. Further, the de-noising is guaranteed

to be unique if ird > rd+1-

Reconstructing the de-noised matrix and solving for its null space is unnecessary; the null space

of the rank reduced matrix is 0f 1 . Therefore, computing the SVD of the joint matrix in Eq.

(B.2.3) results in the coefficients necessary for the characteristic polynomial to be formed, i.e,
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dg+1 C [IOT.

This algorithm generally out performs both versions of Prony's method when noise is present in

the samples. One drawback of this algorithm is that the de-noising process does not consider the

structure known for the joint matrix in the noiseless case. This is demonstrated by noting that, for

all i,j such that [zd,o I X] i = [zd,o |X i+1,j+1 before the de-noising process, there is no guarantee

that the resulting rank-reduced matrix has the Toeplitz structure, which is a property of the rank d

joint matrix formed by the underlying transient signal structure, i.e., [xd,o | X]. This is equivalent

to saying that the joint Toeplitz matrix [zd,o | X] is formed by adding the noiseless Toeplitz matrix

[xd,o | X] and a Toeplitz noise matrix but the de-noising algorithm produces a non-Toeplitz estimate
both the noise and underlying signal.

B.3 Cadzow's Method

Cadzow's method builds additionally upon the Tufts-Kumaresan framework by artificially en-

forcing properties that the noiseless transient signal, Xd [n], is known to possess. [5] As discussed

in Section B.2, the noiseless joint matrix [xd,o I X] has two intrinsic attributes which are exploited

in this algorithm: a rank of d and a Toeplitz structure. The algorithm presented in this section

uses an iterative procedure to alternate between enforcing these two attributes. A structured TLS
projection to the closest Toeplitz matrix of rank d is ideally desired, however, enforcing both of
these constraints simultaneously is difficult. The Tufts-Kumaresan method provided a projection of

the noisy joint data matrix to the closest matrix of rank d, in a Frobenius norm sense, without im-
posing any structure on the resulting matrix. Generally, the resulting projection does not have the

Toeplitz structure. The iterative procedure used by Cadzow's method is presented next, in which a

method for imposing the Toeplitz structure without any constraints on the resulting matrices rank

is presented.

First, define the mapping f as the projection of a noisy rank d + 1 joint data matrix to the

closest rank d matrix in the Frobenius norm sense. Therefore, the base iteration of this algorithm

is given by

[zd,o = f ([z,o X]) (B.3.1)
d

=ZrkUkvk. (B.3.2)
k=1

Next, in order to impose the Toeplitz structure on [zd,o | X] (0, define the mapping h such that
the resulting matrix has, for each of it's diagonal entries, the average value from the corresponding

diagonal of the input matrix. This mapping will take any general input matrix and produce a

Toeplitz matrix, e.g.,

h(= . (B.3.3)
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Using these two mappings, the iterative procedure from the nth iteration to the (n + 1)st is

given by:

[2d,o ] X n) = h(([zd,o ] (n)) (project to Toeplitz strucutred matrices) (B.3.4)

[Zd,o (n+1) = f ([,o |j7() (project to rank d matrices). (B.3.5)

(n)
Note that after projecting to the space of Toeplitz structured matrices, the resulting matrix [zd,o | T
with high probability, has a rank of d + 1. This iterative procedure has been shown to converge, as

the number of iterations grows large, to a solution which possess both desired attributes, i.e., a rank

of d and a Toeplitz structure. In practice, the number of iterations is often fixed to some number

L. The result of the Lth iteration, [zd,o I (L) is guaranteed to have a non-trivial null space but

not guaranteed to have a Toeplitz structure. Given this matrix, the same procedure for finding

the decay rates from the Tufts-Kumaresan method is used by computing the null-space. Cadzow's

iterative method has been shown to work extremely well in practice for problems such as harmonic

retrieval in noise. However this must be balanced with the increased complexity of performing an

iterative alternating projection algorithm.

B.4 Autoregressive Algorithms

An autoregresive model assumes that a time-series current value depends linearly on its previous

values. This section provides the general procedure for computing the stage one solution for the

characteristic polynomial coefficients {0}1:d by solving different autoregressive models. [15] To

being this exposition, define a dth order linear predictor, Xlp,d [n], as

d

Xlp,d [n] = -( kXd [n - k] . (B.4.1)
k=1

The structure of this linear predictor is known as the forward or causal predictor because it computes

each sample as a linear combination of strictly previous samples. The error criterion used in linear

prediction is defined to be the sum of squares of ei, [n] where

d

elp [n] = Xd [n] - Xlp,d [n] = xd [n] + E OkXd [n - k] . (B.4.2)
k=1

B.4.1 The Yule-Walker Method

The Yule-Walker method is an all-pole parameter modeling algorithm based upon a least squares

inverse model. This method is straightforward to derive from the orthogonality principle, and thus

a derivation of the Yule-Walker Equations, or Autocorrelation Normal Equations, is not presented
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here, but can be found in [18]. The linear prediction coefficients, {Ok}1d, of a time-series are found

by solving the system of equations given by

~ rXd[1] 1 ~ rXdd [0] rCdXd [1] ... r d4d [d - 1] i 01 1
[ r r xdxd [0] - - - 12]-X-j I. =d-d 1] .j .0 .. , (B.4.3)

L dddd r -dtd [d - 1] rtdtd [d - 2] .. r -d-td [0] 1L Id
where r-ded [im] is the true autocorrelation sequence of zd [n]. In practice the autocorrelation se-

quence is rarely known, therefore it must be estimated using the finite amount of data available.

One autocorrelation estimator, using the data {zd [n]}0:N-1, is defined by

N-Im|-1

,tdxd [IM] = ( xd[n+|mld[n] (B.4.4)
n=O

This estimator is readily shown to be biased with ' {f e [in]} =(1 - N) rXdsd [m]. For a fixed

lag m, the variance asymptotically approaches zero as the number of samples N grows large. A

second autocorrelation estimator is defined by modifying the biased estimator to form an unbiased

estimator structured as

N-Im|-1
dd [iM] = N -m i t XI [n + m|] Xd [n]. (B.4.5)

n=o

The unbiased auto-correlation estimator yields sequences for which there is increasing statistical

uncertainty at increasingly large lags. When either Eq. (B.4.4) or Eq. (B.4.5) is used, the algorithm

is referred to as the Yule-Walker method of autoregressive parameter recovery using a biased or

unbiased estimator, respectively.

Both of the autocorrelation estimators yield identical values for lag m = 0, i.e., td-td [0]=
frsdd [0]. Despite the estimator in Eq. (B.4.4) being biased, it is often preferred because it produces

an autocorrelation matrix that is guaranteed to be positive semi-definite. This results in a stable

set of estimated pole locations, which can be seen by using the biased estimator to solve for the

k-parameters of a lattice filter, in which the k-parameters are guaranteed to be strictly less than

one. [18] The estimator in Eq. (B.4.5) may yield autocorrelation sequences which are invalid, in

that they violate the the property that rXdXd [0] > rxdxd [1]. For example, consider the sequence

{xd [0] , Xd [1] , Xd [2]} = {1, 2, 1}. The resulting unbiased autocorrelation sequence samples are

{FXdXd [0], Fxdxd [1]} {2.4167, 2.5}.

B.4.2 Linear Prediction

For each value of n, the linear prediction error is an equation of d unknowns. Immediately, we

have that elp [0] = xd [0] because the input sample at n = 0 has no preceding samples from which

to be predicted. Writing the linear prediction error as a system of equations, over the interval
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O<n N+d-1, yields

e [0] Xd [01 0 --- 0

e[1] Xd[11 Xd[0] --- 0

e-d] [ Xd[d] xd[d-1] --- x[0] 01 I*. - (B.4.6)

e[N-1] Xd[N-1] Xd[N-2] Xd[N-d-1] _

e[N+d-1] _ 0 --- Xd[N-1]

This equation is compactly denoted as ei, = D(d) , and the error criterion to be minimized is

simply given by

S= I elp [n]|2 . (B.4.7)
nEl p

Different choices for the interval 1I1p result in different linear prediction algorithms. When the

signal Xd [n] is only known over the interval 0 < n < N - 1, the zeros present in the upper and

lower anti-diagonals of the data matrix D(d) above represent an implicit assumption of rectangular

windowing on an infinitely long underlying signal. It is often the case that this assumption, that the

signal takes value 0 for n < 0 and n > N, is unrealistic. However, for transient structured signals,

the trailing zeros are only marginally unrealistic, especially for data sets with large N. Using a

discrete representation transient signals never reach the value 0, but when quantization is taken

into account, noise free digital transient signals typically reach 0 relatively quickly.

The correlation method of linear prediction defines the interval I1, = {0 < n K N + d - 1}.

It is straightforward to show, from Eq. (B.4.7), that this choice of interval produces the same

solution as if we chose the interval 11p = {n c (-oo, oc)}. Further, Eq. (B.4.6) uses elp [n] = 0 for

1 Kn < N + d - 1. Therefore, the least squares solution is given by

D() Dd [D(d)T eip. (B.4.8)

With this form of the solution, we find that [D(d)]T D(d) is structurally equivalent to the same

Toeplitz matrix derived in Eq (B.4.3) when the biased estimator of Eq (B.4.4) is used. Therefore

the Yule-Walker method of autoregressive parameter recovery using a biased estimator is structurally

equivalent to the correlation method of linear prediction.

The covariance method of linear prediction avoids the pre- and post-windowing of the data

which was assumed in the correlation method. [15] The use of the term covariance is misleading;

this technique does not use covariance in the traditional sense, i.e., correlation with the product of
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the means subtracted. The difference between this method and the correlation method comes from

the choice of the region of support for the error term. The interval chosen for minimizing the sum

of squares of the linear prediction error is selected to be ip, = {d < n < N - 1}. To understand the

consequence of this choice, partition the matrix D(d) in Eq (B.4.6) as

D(d=

L'

T

U
(B.4.9)

where the partitioned matrices are defined by

Xd [0]

L(d)= Xd

_ Xd [d - 1]
(B.4.10)

0

Xd [0]

Xd [d -2]

-0
. 0 T(d)-

- - 0 _

Xd [d]

Xd [N - 1]

Xd[d -1]

Xd [N -2]

--- Xd [0]

--. ,d 1and
--- xd[N-d-1]

0

_0

Xd [N - 1]

0

0

--- Xd[N-d-2]'

Xd [N-d-3]

--- Xd[N 1] _

The windowing of the infinitely long underlying signal is only apparent in the lower triangular

matrix L and the upper triangular matrix U.

any windowing, and thus does not make any

known. This gives rise to the following system

[0

0I Xd [d]

Xd [N - 11

Xd [d - 1]

Xd [N - 2]

The intermediate Toeplitz matrix T does not have

assumptions about the signal outside of finite set

of equations

-. -- Xd [0]

- Xd [N - d - 1]

1

Od

(B.4.11)

This system of equations is denoted in matrix-vector form as el, = T(d) [ The system of

equations in Eq. (B.4.11) is then re-structured to be equivalent to the system of equations in

Eq. (B.1.7). Therefore the covariance method of linear prediction and the stage one equations of

the extended Prony's method are structurally equivalent. It is due to this relationship that the

characteristic polynomial defined in Prony's method is also referred to as the prediction polynomial

as well.
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Epilog

The unique research style within DSPG appears to me to be difficult to characterize, and may

possibly be best described via an example. In the following discussion I have summarized my

personal reflections on the progression of my masters thesis and its supporting research. In it I hope

to convey a different story than one might expect, given the presentation of results in the thesis

itself.

The results in this thesis were initially inspired by a question posed by Al during one of our first

research meetings: "What can wave tunneling teach us about signal processing?" My initial response

was an interesting and enjoyable dive into the literature about wave propagation and quantum

physics, yet I returned to Al with more questions than answers about wave tunnelings relationship

with signal processing. We spent the next several research meetings discussing variations of this

question, which eventually led us to an analogy involving wave tunneling and wide-band signals

passing through narrow-band channels. In essence, we agreed that because a propagating wave

tunnels through an energy barrier by transforming into an evanescent wave within the barrier, it

may be possible for a wide-band signal to use a similar transformation to "tunnel" through a lowpass

channel. In the spirit of the Dr. Seuss cartoon in the DSPG library1 , we decided that this idea was

worth pursuit. In doing so, we identified a more refined question that needed to be addressed before

we tackled the wave tunneling question: Assuming we can transform a signal into an evanescent

like signal, if this signal is processed by a lowpass filter is it even possible to recover the signal at

the output of the filter? If the answer was no, then our analogy would have needed modification.

This question clearly played an important part in the development of this thesis, as our starting

point became the recovery of signal parameters post lowpass filtering of linear combination of real,

decaying exponentials.

The remainder of my first year was spent learning the background and supporting material to

similar questions. One of the first papers I read related to the topic of parameter identification

was a 1795 publishing by Gaspard Riche de Prony, whose work laid the foundation for Appendix

B. At this point I felt that a deeper familiarity with parameter modeling and linear prediction

techniques would benefit me, so I began to catch up on the 200+ years of literature that followed

that paper. During this time, at a weekly meeting with Al, we attempted to postulate what a filter

that passes only slowly or quickly decaying exponentials would look like. At that time, I mistakenly

L"ONE plus ONE adds up to TWO if that is all you think it can do... But ONE plus ONE could equal THREE

or anything else you'd like it to be!"
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tried envisioning what characteristics the impulse response of such a system would have. However,
the process of answering this question got me to begin to pull on a string that eventually led to the
Transient Transform and algorithms for generating dual exponential bases. It wasn't for over an
entire year before I returned to Al with exactly how this system would work.

The summer after my first year I interned at Bose Corporation, and was fortunate enough to
be supervised by a former DSPG member, Steve Isabelle. My primary project at Bose was quite
distant from my thesis research, however the modeling algorithms I had studied were of use in a side
project I collaborated on. In a different context, I developed an overdetermined framework similar
to the one presented in Chapter 5.

During the fall semester of my second year, in various group meetings and personal discussions
with Sefa and Guolong, I developed a healthy curiosity about the applications of functional and/or
polynomial composition to signal processing. As they independently developed results in this area, I
briefly looked where the light was brightest and began thinking about using functional composition
to warp my problem into a well-studied harmonic retrieval problem. I even got as far as some
preliminary simulations before other directions began developing quickly into interesting results. I
hope someone takes the functional composition approach at some point.

At the same time, I had been working on ways to solve the linear system of equations for the
amplitude coefficients of a transient signal when the decay rates are known which result in as little
computational error as possible, compared to built in software routines, e.g., inverse routines in
MATLAB. This work was motivated by simulations I had been running using large synthetic data
sets, in which the recovered amplitude coefficients were far enough from correct to raise concern.
This work solidified the algorithms for dual basis generation proposed in this thesis, which eventually
became the DTTT and the DTT. In discussing my findings with Al, we realized that the algorithms
I developed were more broadly applicable for spectral analysis using a general exponential basis,
making the DTT and the DFT special cases of my algorithms. Following this, several discussions
with Tom eventually led me down an algebraic road which helped me to solidify interpretations
for many of my proposed algorithms as well as provide statements of uniqueness I had otherwise
been neglecting to establish. Towards the end of the fall semester, Al and I continued making
many comparisons between the DTT and Fourier spectral analysis techniques in order to identify
both applications for the DTT as well as understand the issues of transient spectral resolution and
leakage.

As the final semester began, I developed methods for computing stable approximate transient
spectra for large data sets, which led to many of the approximate algorithms and spectral resolution
bounds in Chapter 4. Once these techniques had been developed, I began an intense writing period,
during which discussions with Al significantly assisted with shaping the thesis into its final form. We
had established that the algorithms for dual basis generation also worked for a complex exponential
basis, but it wasn't until the editing process, only a couple weeks before the document was submitted,
that the proofs and explanations were changed to correspond to a general exponential basis.
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