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Abstract

Recently there has been a growing interest in quantifying the effects of random in-
puts in the solution of partial differential equations that arise in a number of areas,
including fluid mechanics, elasticity, and wave theory to describe phenomena such
as turbulence, random vibrations, flow through porous media, and wave propagation
through random media. Monte-Carlo based sampling methods, generalized polyno-
mial chaos and stochastic collocation methods are some of the popular approaches
that have been used in the analysis of such problems.

This work proposes a non-intrusive reduced-basis method for the rapid and reliable
evaluation of the statistics of linear functionals of stochastic PDEs. Our approach is
based on constructing a reduced-basis model for the quantity of interest that enables
to solve the full problem very efficiently. In particular, we apply a reduced-basis
technique to the Hybridizable Discontinuous Galerkin (HDG) approximation of the
underlying PDE, which allows for a rapid and accurate evaluation of the input-output
relationship represented by a functional of the solution of the PDE. The method has
been devised for problems where an affine parametrization of the PDE in terms of
the uncertain input parameters may be obtained. This particular structure enables
us to seek an offline-online computational strategy to economize the output evalu-
ation. Indeed, the offline stage (performed once) is computationally intensive since
its computational complexity depends on the dimension of the underlying high-order
discontinuous finite element space. The online stage (performed many times) pro-
vides rapid output evaluation with a computational cost which is several orders of
magnitude smaller than the computational cost of the HDG approximation.

In addition, we incorporate two ingredients to the reduced-basis method. First, we
employ the greedy algorithm to drive the sampling in the parameter space, by com-
puting inexpensive bounds of the error in the output on the online stage. These error
bounds allow us to detect which samples contribute most to the error, thereby en-
riching the reduced basis with high-quality basis functions. Furthermore, we develop
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the reduced basis for not only the primal problem, but also the adjoint problem. This

allows us to compute an improved reduced basis output that is crucial in reducing
the number of basis functions needed to achieve a prescribed error tolerance. Once

the reduced bases have been constructed, we employ Monte-Carlo based sampling
methods to perform the uncertainty propagation. The main achievement is that

the forward evaluations needed for each Monte-Carlo sample are inexpensive, and
therefore statistics of the output can be computed very efficiently. This combined

technique renders an uncertainty propagation method that requires a small number

of full forward model evaluations and thus greatly reduces the computational burden.

We apply our approach to study the heat conduction of the thermal fin under

uncertainty from the diffusivity coefficient and the wave propagation generated by
a Gaussian source under uncertainty from the propagation medium. We shall also

compare our approach to stochastic collocation methods and Monte-Carlo methods

to assess the reliability of the computations.

Thesis Supervisor: Jaime Peraire
Title: Professor

Thesis Supervisor: Ngoc Cuong Nguyen
Title: Research Scientist
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Chapter 1

Introduction

The analysis of physical and engineering systems is often carried out by mathematical

modeling and numerical simulations. For a given system, the corresponding model

requires certain input data. Input data may consist of model parameters, forcing

terms, boundary conditions, geometry information, etc. The most common approach

has been to analyze the mathematical models under the assumption that such input

data was deterministic, i.e. precisely known. However, in many situations input in-

formation is not known precisely. In these cases, one needs to consider uncertainty in

the input data. Mathematical models represented by differential equations which in-

corporate uncertainty are known as stochastic ordinary/partial differential equations

(SODE/SPDE), see [51, 99].

Uncertainty in the input data may come from different sources. It can be that

the physical system under study has itself some intrinsic variability, for example

uncertainty in the wind and seismic loadings on civil structures or uncertainty in the

mechanical properties of materials and fluids. Another possible source of uncertainty

arises when data comes from experiments. In this case, observed quantities must be

considered in a probabilistic setting. In some cases we may have to infer the values of

a certain field (e.g. permeability, porosity) from limited experimental measurements.

Furthermore, it is also possible that we are unable to effectively characterize the

17



physical system with a mathematical model. For instance, we may have errors in

geometry, roughness or multiscale behavior that we are unable to capture.

Therefore, there is a growing need to represent the uncertainty in the data and

effectively propagate it through the mathematical model (SODE/SPDE). The goal of

this probabilistic approach resides in computing statistical moments of the solution,

or statistics of some observable output, or quantity of interest. In particular, one is

interested in the prediction of moments and probability density function (PDF) of

the quantity of interest, which are usually defined as real-valued functionals of the

solution of the SODE/SPDE. This quantity of interest may consist of average values

of the solution in certain regions, fluxes across boundaries, physical quantities derived

from the solution (drag on an airfoil), etc.

1.1 Problem definition

1.1.1 Stochastic PDE

Following the notation used in [ 123], we define a complete probability space (Q, 9, 2),

where Q is the space of events, 9 E 2Q is the u-algebra of subsets (events) in Q, and

P : 9 -+ [0, 1] is the probability measure. Define also a d-dimensional bounded

domain D C Rd (d = 1, 2,3), with boundary F. The goal is to find a stochastic func-

tion u : Q x D -+ R, such that for 'P-almost everywhere (a.e.) w C Q, the following

equation holds

L (w, x; u) = f (w, x) , Vx E D (.a)

B(w, x; u) = g (w, x), Vx C F (1.1b)

where x = (X,.. . , Xd) refers to the spatial coordinates in Rd, L is a linear or nonlinear

differential operator, f is the forcing term, B is the boundary operator and g is the

boundary data. This boundary operator may be different on different boundary
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subsets, for instance B 3 u on Dirichlet subsets, B = n -Vu on Neumann subsets and

B - n - Vu + u on Robin subsets. We shall impose no limitation on the location of

the randomness, that is all terms in equations (1.1) may be stochastic. Furthermore,

we assume sufficient regularity on the boundary F and the terms f, g, such that (1.1)

is well-posed for ,-a.e. w E Q 1.

The solution of the SPDE (1.1) is used to define quantities of interest. The general

form of a quantity of interest is expressed as

s(w) = J(u(x,,w), W) (1.2)

where J is a real-valued functional. Note that, besides the implicit dependence of

the output on both x, w via the solution u(x, w) of the SPDE, we also allow for an

explicit dependence on the stochasticity.

1.1.2 Input uncertainty

The stochasticity in the problem is represented by a vector of random variables ((w) =

((1(w), . .. , &(w)), where N is the dimension of the stochastic space. These random

variables represent different forms of uncertainty.

One case that we shall consider is where the mathematical model depends on

some unknown parameters, that are taken as random variables with a certain joint

probability density function. For instance, we might think of the scattering of a

planar wave interacting with a certain object or scatterer, where the incidence angle

and the wavenumber of the incident wave are random variables.

'The incorporation of the time derivative is straightforward by considering an extra dimension
D C Rd+1 for time-dependent terms.
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Random processes

A different situation may arise if the input data is assumed to vary randomly from one

point of the physical domain to another. In this case, uncertainty is usually expressed

in terms of a random process. Given a physical space D and a space of events Q, a

real-valued random process 9 is defined as

S: (x, uw) E D x Q 4 M(x, w) E R (1.3)

where for any x E D, (x,- represents a random variable. Usually only second-order

processes are considered, that is processes such that

R(x, -) C L2 (Q, 29), Vx E D (1.4)

where L2 (Q, Y) is the space of second-order random variables defined on the complete

probability space equipped with the following inner product and norm

(, ) j I(w)r(w) dY(w) = E[], V , 1, E L2 (Q, ) (1.5)

( L2 (Q, ;) -+ ( =| < (1.6)

where E is the expectation operator. Random processes are defined together with a

mean N(x) and a spatial correlation structure W : D x D -+ R that is real, symmetric

and positive definite.

The most common representation for stochastic processes is the Karhunen-Loeve

(KL) expansion [57, 58]. The KL expansion, which exists provided that the random

field has bounded second moments [2], represents the stochastic process as an infinite

linear combination of functions and coefficients, similarly to a Fourier series. The KL

expansion chooses a basis such that it minimizes the total mean squared error. The

coefficients for the KL expansion are uncorrelated random variables, whereas functions

are deterministic continuous and real-valued , and form a complete orthogonal set with
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respect to the L2 norm. In the special case where 9 is a Gaussian process, then the

random variables are independent Gaussian random variables.

The functions in the KL expansion are closely related to the spectrum of W. The

general form of a KL expansion is

i(x, w) = N(x) + 1 &i(x)(i (1.7)
i>1

where Ai, #i are the eigenpairs of W, and can be retrieved by solving the homogeneous

Fredholm integral equation of the second kind

J c(x, z)#i (.) dt - Ai i(x) (1.8)

In order to reduce the complexity of dealing with an infinite number of variables,

the usual approach is to resort to a reduced-order representation, that is truncate

the spectral expansion of the stochastic process, which is commonly known as finite

dimensional noise assumption [2, 123], that is

N

R(x, w) = P(x) + T #i (x)(i (1.9)
i=1

The number of terms retained in the expansion depends on the decay of the eigen-

values (see [26]) of the correlation function V of the random process 9, which is

associated to the spatial variation of the input data. Rapid decay of eigenvalues leads

to only a few terms needed to reproduce the behavior of the random field. Elliptic

problems where the diffusivity field on a certain medium is expressed as a truncated

KL expansion have been widely studied in [1, 3, 4, 2, 61, 92, 93, 123, 124].

Either considering parametric uncertainty or a truncated spectral expansion of a

random field, we assume that the random inputs are described by a set of N random

variables ( = ((), . . ., &N(w)). Let E be the support of (, which can in principle be

unbounded (e.g. gaussian or exponential random variables). We shall define the joint

probability density of the input random variables as -r (() with support E. The special
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case where all the random variables are uncorrelated reduces the latter expression to

7r( )= Zl'i 7rj( i), V( EE= j ti E, i.e. the density and the support factorize.

Therefore the problem defined in (1.1) may be recast as

L (,x; u) =f (,x) , V (x, G) D x E(1.10Oa)

B3 (,X; u) = 9( x) , V (x, G) D x (L (1.1b)

with quantity of interest

s(() = J(u(x,(), ) (1.11)

which is a reduction of the initially infinite-dimensional stochastic problem (1.1) to a

finite-dimensional one. To solve the latter problem, a number of methodologies have

been developed, which are briefly reviewed below. These methodologies fall into two

groups: uncertainty propagation techniques, which employ the full forward model

in various ways, and reduced order modeling and reduced-basis techniques, which

aim to construct a surrogate for the input-output model to economize the forward

evaluations.

1.2 Uncertainty Propagation Techniques

In this section, we will provide an overview of the most common numerical methods

available to solve problem (1.10). These methods can be classified in two different

ways: statistical versus non-statistical and intrusive versus non-intrusive, depending

on the information that they provide or the nature of the implementation itself. The

three main families of methods that are described here are Monte Carlo methods,

stochastic Galerkin methods and stochastic collocation methods.

Apart from these methods, it is worth mentioning the second moment analysis [56]

and the perturbation method [36, 49]. These methods, which are non-statistical and

intrusive, are usually only valid for small ranges of the uncertainty. Henceforth, they
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are not adequate for complex or non-linear problems, where small values of the input

uncertainty could translate in large output uncertainty.

1.2.1 Monte Carlo methods

The Monte Carlo (MC) simulation [24] is perhaps the most popular method for solving

partial differential equations. It is a statistical non-intrusive method, in the sense that

it gives access to the complete statistics and that it only requires repetitive evaluations

of a deterministic code.

Algorithm

The procedure of applying the MC simulation to a stochastic problem like (1.10)

where randomness is represented by ( = (1, -.. ., N) is straightforward

" Draw M independent identically distributed (i.i.d.) samples from the input

probability density function i-r( ), such that we have a collection of M realiza-

tions of a random variable of dimension N, eM = =1

" For each realization (j perform a deterministic solve of (1.10), obtaining u2 =

u( ', x) or more directly s_ = s( ; 0);

" Once all realizations have been computed, perform a trivial postprocessing to

obtain the desired statistics of either the solution or the quantity of interest.

For example, the k-th moment of the output is easily computed as

M

P
1k = =[ (1.12)

j= 1

Pros, cons and improvements

MC methods are simple to implement and are embarrasingly parallel. It is also

important to stress that the simplicity of MC methods ensures robustness, i.e. that
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if the deterministic solver works, so will MC methods.

Furthermore, another interesting feature of MC methods is that the convergence

rate is not influenced by the dimension of the stochastic space, therefore they are

especially appealing for problems with a large number of random variables. Con-

versely, since the convergence rate is O (1/VIM), where M is the number of samples

considered, it takes a large amount of realizations to acquire good results. More-

over, for cases where the deterministic problem is complex and expensive to solve,

the computational work required to obtain accurate solutions quickly becomes in-

tractable. Therefore, MC methods are appropriate whenever the desired accuracy in

the computations is not very high, but the dimension of the problem is large.

This slow convergence has in part been mitigated by the introduction of several

techniques. Quasi-Monte Carlo methods (using low-discrepancy quasi-random se-

quences) [25, 90, 42, 14] produce convergence rates of order 0 ((log M)' /M), where r

is a linear function of the stochastic dimension. In addition to that, stratified sampling

techniques such as Latin Hypercube Sampling [29, 45, 59, 109] retain the 0 (1/v M)
rate of convergence, but significantly improve the constant for certain response func-

tions. Other techniques include importance sampling [14, 37], Markov chain Monte

Carlo [27, 68] or the sensitivity derivative enhanced Monte Carlo [15, 16, 29].

1.2.2 Stochastic Galerkin Methods

The stochastic Galerkin methods (SGM) generalize the theory of Wiener-Hermite

polynomial chaos expansion, developed by Wiener in [118], and combine it with a

finite element method to model uncertainty in a stochastic PDE. The SGM were

first introduced by Ghanem et al. in [36], and are a type of non-statistical intrusive

methods.
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Polynomial space

This method uses a set of orthogonal multi-variate polynomials that span the stochas-

tic space ., of dimension N. Since the set of orthogonal multi-variate polynomials

is typically infinite dimensional, a finite dimensional subspace is used in computa-

tions. The two most common approaches include the complete polynomial space

[36, 34, 72, 104, 124, 126, 127] and the tensor product space [1, 3, 20, 26, 104].

The complete polynomial space WN considers only N-variate orthogonal polyno-

mials of degree up to p

p(W)= 171 #ps( ) p = (p1,... ,PN) (1-13)

Note that this expression includes all possible combinations of the multiindex p sat-

isfying
N

1 = Y~ _ p (1.14)
i=1

Where pi is the degree of the univariate polynomial #p, in the ith dimension. The

dimension of W is given by N, + 1= N+p).

On the other hand, the full tensor product space ZW considers all possible com-

binations of univariate orthogonal polynomials of degree p in each dimension, that

is

p(( = opi( i) p = (pi, ... ., PN) (1.15)
maxpi=p

with total dimension dim ZNP = (p + I)N. Note that WN C ZN.

Orthogonal polynomials

In the early work by Wiener only Gaussian random variables were considered, leading

to a basis of Hermite polynomials. The first applications of the SGM with Hermite

polynomials were in solid mechanics [36, 33, 32, 35]. In order to consider random
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distributions other than Gaussian, the SGM has been extended into the generalized

polynomial chaos expansion (gPCE) [125, 117].

For a general one-dimensional random variable (i with density function 7ri and

support Ei, the set of orthogonal polynomials used in the gPCE satisfy

E [#mbn] = 7ri( i)#On(i)Om((i) (1.16)

where 6n is the Kronecker delta. The orthogonal polynomials are defined by the

integration weight ir (or density function). Therefore, uniform random variables are

best represented by Legendre polynomials, Gaussian random variables by Hermite

polynomials, Gamma random variables by Laguerre polynomials, etc.

Stochastic Galerkin projection

By choosing an approximation space and a family of polynomials we may approximate

the solution of (1.10) as
N,

U (x, L) ~ i u(x) 4() (1.17)
i=O

where ui are the (deterministic) spectral coefficients or PC coefficients, and each i is an

admissible multiindex according to (1.14). Plugging expression (1.17) into equation

(1.10) we arrive at

Np Ny Ny

L aix; ui~ =D f 00)k, X , V (x, () Ez D x E (1. 18a)
i=0 j=0 k=0

Np Ny Np

B3 ),-Wi, x;>,jD -~ = g Aak, X , V (x,() E D x E (1. 18b)
(i=0 j=0 (k=0

where the coefficients ai, 3, y Ai are zero if there is no explicit dependence on

and are otherwise easy to compute. Furthemore, by performing a stochastic Galerkin

projection of the system above using all the elements in the basis 4D and the inner
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product defined by (1.16), we arrive to

' Np Ny p NP

E L ai(i, x; uYIU) 4i] E f 4 ( kkx) , V (x,) E D x E
. i=0 j=0 . . k=0

(1. 19a)

Ny Ny p Np

i=0 j=0 .. . k=0

(1.19b)

which can be reduced to a system of Np +1 deterministic equations for the coefficients

un. Using a similar expansion for the objective function (1.11) an approximation may

be obtained
Np

)= ZSii() (1.20)
i=O

where si can be computed using ui. The mean and the variance of the quantity

of interest can be analytically computed from this expression, whereas high order

statistics may be obtained by sampling (1.20) using a Monte Carlo approach, which

is an inexpensive operation.

Pros, cons and improvements

This methodology has proven to be very effective when solving PDEs in a broad

range of applications, such as diffusion problems and heat conduction [33, 124, 127],

structural dynamics [351, transport in random media [32] and fluid dynamics [126,

17, 70]. These methods converge exponentially fast with increasing order of the

expansions, whenever the solution is sufficiently smooth in the stochastic space, as

numerous studies [3, 4, 20, 128] have shown. Therefore, they provide much more

accurate solutions for simple and smooth problems than Monte Carlo.

On the contrary, if the solution or the Qol exhibits discontinuities on the random

space, gPCE loses the exponential convergence, and may even fail to converge. To

overcome this situation, approaches based on local polynomials have been devised.
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Some examples include the hat functions in finite elements [3, 4, 20, 71], wavelet basis

expansions [55, 54] or a multi-element generalized polynomial chaos expansion [116].

There are, however, some drawbacks in the use of gPCE. Firstly, note that the

number of expansion terms grows combinatorially for the polynomial order p and the

stochastic dimension N. This fact, combined with the coupled nature of the equa-

tions (1.19), makes the solution of the problem very expensive for large dimensions.

Furthermore, the intrusive nature of the polynomial chaos expansion implies that for

each application considered, a robust stochastic solver needs to be coded. Apart from

the extra coding work involved, for complex nonlinear PDEs the coupled equations

resulting from Galerkin projections in (1.19) may have very complicated forms (see

[17, 70]), and they may also present numerical instabilities (see [21]). Therefore, gPCE

is not suitable for complex problems with a large number of stochastic dimensions.

1.2.3 Stochastic collocation methods

The coupled nature of the final equations is definitely a big challenge for gPCE

approaches. To overcome this limitation, collocation methods have been introduced.

The goal of these methods is to combine the strength of Stochastic Galerkin methods

of using a polynomial approximation in the stochastic space with the simplicity of

implementation of Monte Carlo methods by sampling in the random space.

The stochastic collocation method, first introduced in [69] as a deterministic sam-

pling method and further developed in [123], computes independently deterministic

solutions of the stochastic PDE at certain points in the stochastic space and then

builds an interpolation function to approximate the desired solution. Therefore, they

may be classifed as non-statistical and non-intrusive.
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Lagrange interpolation

The idea of the stochastic collocation method is to construct an interpolating function

of the stochastic dependent variables in problem (1.10) employing the value of these

variables at certain points in the random space. Consider a set of points in the

N-dimensional random space, Om -- { ,Ji and the set of N-variate polynomials

of degree at most p, IFN. The Lagrange interpolation problem of a smooth function

f :RN -4 R consists in finding the polynomial 1(f) E 1IN such that I(f)(j) =

f(C), j = 1, ... , M. Using the Lagrange interpolation polynomials 1(f) is expressed

as
M

I(f)() = f ()(), (C) = 6os, Vz,= 1,. .. M (1.21)

The convergence of the interpolation is not guaranteed for any distribution of the

interpolation nodes. The quality of the approximation, and therefore the interpolation

error, ind 1D (N = 1), are described by the Lebesgue theorem, namely

|| (- p*( )||o < |1f() - I(f)( )||o < (1 + A( )) |f() - p*( )||0 (1.22)

where p*( ) is the best approximating polynomial and A( ) = maxeE j_ 1 |( )| is

known as the Lebesgue constant. This constant depends solely on the location of the

interpolation points, and its determination is nontrivial even for N = 1. Distributions

of points with small A include the Clenshaw-Curtis points (located at the extrema of

Chebyshev polynomials) and the Gauss quadrature points (see [12, 50, 110] for more

details).

Formulation

Interpolating the solution of (1.10) using Lagrange polynomials we write

M

U, ) ~ (x ( (1.23)
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which can be inserted in equation (1.10). By the interpolative nature of the solution,

we readily obtain a set of M decoupled deterministic problems

E ( i, x; u) = f ( i, x) , Vx E D (1.24a)

B ((i, x; u) = g ((i, x) , Vx E D (1.24b)

for each node (i. For quantities of interest the formulation is similar

M

() = Zs(()Z(), s(( ) = (z(x, )) (1.25)
i=1

Once the deterministic problems have been solved, the k-th moment of the output

may be computed as

M

Ik -E [ak] = sk (j)] ( )7r ( ()d (1.26)
i=1

To evaluate these integrals we need explicit knowledge of the Lagrange polynomials.

A possible alternative is to choose the nodal set 8M to be a cubature set. Therefore

the integrals in (1.26) are reduced to

M

JE [ k] = k ( 8 k)Wi (1.27)

where {wi} are the integration weights. Note that if the cubature is of order q it will

introduce errors whenever the integrals cannot be evaluated exactly, i.e. if they are

not polynomials of order at most q.

Note that the complexity of the SCM relies on the computation of M deterministic

problems, corresponding to solving equation (1.24) for each point in the nodal set aM.

Therefore the objective is to minimize the number of model evaluations, provided that

there is sufficient accuracy in the interpolation.
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Tensor product grids

A straightforward way to extend the Lagrange interpolation polynomials to the mul-

tidimensional case N > 1 is to use the tensor product of the unidimensional nodal

set. Let MI,... , MN be the number of collocation points in each dimension. The

multidimensional interpolation formula for the quantity of interest can be written as

Mi MN

I(s)() = (Ti...--- N)(8 ''' s ....., N

il=1 iN=1

(1.28)

where k is the interpolation formula in the k direction and (f is the kth point in

the lth coordinate. This method is used in [2], providing also the first rigorours error

estimate for elliptic SPDEs. Clearly, if we are using the same number of points in

each dimension, this methodology requires MN problem evaluations. Therefore, it

should only be used for a small number of dimensions, e.g. N < 5.

Sparse grids

For a moderately large number of random variables, instead of tensor product grids

one should resort to sparse grids, first introduced by Smolyak [108], and further

analyzed by [7, 30, 96, 97, 98, 50].

The Smolyak algorithm provides an efficient construction of multidimensional in-

terpolative functions based on a linear combination of product formulas, rendering

a nodal set with a substantial reduction on the number of nodes compared with the

tensor product grid (see [123]). For the explicit construction of the sparse grid, the

reader should refer to [28, 123, 93].

The implementation of the SCM using sparse grids has been widely used for many

applications, including elliptic problems [93, 123], stochastic ODEs [122], parabolic

problems [91], natural convection problems [28] and the wave equation [74, 75].
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Pros, cons and improvements

The notorious advantages of the stochastic collocation methods, either utilizing full

tensor product or sparse grids, are the exponential convergence, proved in [21, which

makes them attractive for elliptic and parabolic problems with smooth data on the

stochastic space. Furthermore, the non-intrusive nature of the method is also very

advantageous, as it opens the possibility of reusing existing deterministic codes.

Nevertheless, the SCM also suffers from the curse of dimensionality as the gPCE.

In fact, as shown in [123], the SCM has more degrees of freedom than the intrusive

polynomial chaos, even for the sparse grids case. The influence of dimensionality on

the cost is equivalently bad for both approaches (but with a clearly differentiated

coding effort).

Some techniques have been devised to alleviate the influence of the dimension.

The most common is the inclusion of anisotropy in the sparse grid. Adaptivity on

sparse grids has been discussed by [31, 41, 50], and recent research has been devoted

to applying adaptivity techniques on sparse grids for uncertainty propagation. The

usual approach is to detect which dimensions are relevant to the problem and weigh

them unequally, since the classic Smolyak algorithm prescribes an isotropic weighting

for all dimensions. The detection is either done on-the-fly [28] or found by a combi-

nation of a priori and a posteriori information [92]. The results presented in [28, 92]

above cover the case of truncated KL expansions of random fields, and for situations

with rapid decay of eigenvalues the adaptive approach allows to consider a great num-

ber of stochastic dimensions with just a mild dependence on the dimensionality. An

alternative is the procedure presented in [61]. This approach uses an adaptive piece-

wise linear hierarchical basis that allows to detect singular local behavior -otherwise

impractical to capture when using global polynomials such as Lagrange- and scales

linearly with dimensions. Although for elliptic problems the extension to multiple

dimensions is straightforward with these anisotropic approaches, a general extension

for more complicated problems remains unresolved.
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1.3 Model Order Reduction

Model order reduction (MOR) is a necessary tool for simulating large-scale dynam-

ical systems where full forward evaluations are expensive. The idea is to develop

a surrogate that is efficient to evaluate and yet produces accurate solutions. This

becomes necessary in the event that repeated simulations are required, since multi-

ple evaluations of the full model may be prohibitive. The issue of how to create a

model that is faithful, especially when the dimension of the input parameter space

is large, is a challenge. The basic idea behing these methods relies on projecting the

high-dimensional state space onto a very-low dimensional state space that renders the

reduced-order model.

1.3.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) has been widely used to obtain a low-

dimensional representation of dynamical systems. The basic idea is to form a basis

by a set of state solutions, usually called snapshots, obtained by numerically solving

the full forward model for certain values of the input parameters. The idea behind

the POD method is to capture the dominant dynamics of the system, which will then

produce a more accurate reduced model [107]. The issue of choosing the snapshots

is critical to the quality of the model. The model is then obtained using a Galerkin

projection onto the subspace spanned by these snapshots. The POD method has

been used for several large-scale dynamical systems, e.g. in CFD and aerodynamic

applications [8, 44, 119], optimal control of fluids [60, 103], turbomachinery flows

[22, 120]. Furthemore, research has been devoted into extending POD for nonlinear

systems and nonlinear structural dynamics [52, 73].

However, the issue of sampling the parameter space is still a challenge, especially

if high-dimensional inputs are considered. It is obvious that uniform sampling (ten-

sor product grids) quickly become computationally intractable due to the exponen-

tial dependence on the dimensionality. Another choice may be random sampling,
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amongst which Latin Hypercube Sampling and quasi Monte Carlo sequences are

good candidates. Recently, the greedy sampling method introduced by Patera et.

al. [40, 38, 114, 111] has proved to be an efficient alternative to adaptively select

the snapshots based on inexpensive estimates of the error. The greedy sampling

method has been applied to incompressible Navier-Stokes equations [111], parabolic

and time-dependent PDEs [114, 111], noncoercive and nonlinear operators [76, 114].

Recently, the greedy approach has also been reformulated as a sequence of adaptive

model-constrained optimization problems [13], being advantageous from the point of

view that the sample space is treated as a continuous and not discrete.

1.3.2 Krylov Subspace Methods

Krylov subspace-based methods is an alternative approach for efficient modeling and

simulation of dynamical systems. The idea underlying these methods resides in ap-

proximating the transfer function of the original system by a subspace spanned by

orthogonal basis functions and projecting the original system onto this subspace.

Krylov-subspace methods are robust and have a low computational cost, therefore

have been widely used in various engineering applications [5, 53, 121].

Furthermore, Krylov-subspace methods have also been extended to deal with non-

linear problems [18], by linearizing the original nonlinear system using Taylor ex-

pansions [100] that represent the nonlinear model as a combination of linear models,

generated at different linearization points in the state space. These approaches allow

for a treatment of nonlinear systems using standard linear MOR methodologies.

Although MOR methods have been widely used in the study of large-scale systems,

they do present some weaknesses. Firstly, it is difficult to efficiently characterize

and develope a reduced-order model for highly nonlinear problems without incurring

in excessive computational complexity. Moreover, only a priori bounds have been

derived for the linear case, therefore there is no guarantee in the quality of the model

via a posteriori bounds even for the linear case. Finally, most MOR approaches
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focus on large-scale dynamical systems, i.e. considering time-variation, and not many

techniques have been devised for parametric applications.

1.4 Reduced-Basis Approach

The reduced-basis method is a technique to obtain rapid yet accurate approximations

of functional outputs of parametrized PDEs. In fact, a stochastic PDE (1.10) can

also be seen as a parametrized PDE, where the parameters are endowed with some

probability distribution. The basic idea is to detect some underlying patterns in

the solution of the PDE as a consequence of the parametric dependence. That is,

the solution will not in general be an arbitrary member of the true space X, but

rather live in a much lower dimensional manifold. If such structure can be detected,

a reduced basis of solutions may be constructed, where each solution corresponds

to one realization of the input parameter. Provided that the basis is sufficiently

rich, approximations of both the solution field and the output can be sought on this

low-dimensional space.

The reduced-basis method was first introduced in the early 1980s by Noor [94, 95]

for single and multiple parameter problems in nonlinear analysis of structures. Further

work was developed to include a priori error analysis [23, 1011, although at the

time no rigorous a posteriori analysis of the error had been introduced, thereby

incapacitating the certification of the computations. Recently, a lot of work has been

devoted to reduced-basis methods by Patera et. al. [6, 76, 40, 38, 39, 63, 65, 66,

102, 105, 115, 114, 113, 111], introducing several new concepts that have greatly

developed these techniques, such as the use of global approximation spaces based

on snapshots of the solution for the full governing equations; rigourous a posteriori

error estimators to certify the quality of the approximation; and the exploitation of

an offline/online strategy to improve computational efficiency. The first theoretical a

priori convergence results by Maday et.al. [66] demonstrated exponential convergence

of the reduced-basis. The method was developed for linear elliptic problems with
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affine parametrization [62] and for eigenvalue problems [63]. Extensions to include

nonlinear and noncoercive elliptic and parabolic problems were developed by Rovas,

Veroy et al. [105, 115, 114, 112], together with developing rigorous and sharp error

estimators. New error estimation methods for linear and nonlinear time dependent

problems have been developed by Grepl [40, 38].

The reduced-basis method has been applied to a broad range of areas, from non-

linear analysis of structures [23, 94, 101], fluid flow problems [48, 47], thermal fin

problems [65, 67] and steady incrompessible Navier-Stokes [111].

The inclusion of a posteriori error estimation is of vital importance to guarantee

the quality of the approximation performed by the reduced-basis method. The work

by Patera et. al. [63, 102, 76, 115, 114, 113] introduces rigorous error estimators for

a wide variety of partial differential equations, i.e. linear elliptic, noncoercive linear,

nonaffine noncoercive and even highly nonlinear monotonic elliptic equations. The

combination of rigorous a posteriori error estimates, which are inexpensive to com-

pute, with the greedy algorithm introduced in [40, 38, 114, 111] constitutes a powerful

tool for constructing a surrogate for the input-output relationship in parametrized

PDEs.

The approach proposed in this work is to construct a reduced-basis for stochastic

PDEs with affine dependence on the parameters to predict quantities of interest de-

fined as linear functionals of the solution of (1.10). The reduced-basis is computed

in a fully automated manner using a greedy approach sampling strategy driven by a

posteriori error estimates of the quantity of interest, which are computed inexpen-

sively. Furthermore, the reduced-basis is also built for the adjoint problem, rendering

the opportunity to compute an enhanced output approximation that is of vital impor-

tance in reducing the number of basis functions needed to attain a prescribed error

tolerance, thus minimizing the number of full model evaluations. The basic ingredi-

ents and the algorithm for the reduced-basis approach are presented in great detail

in Chapter 2.

In this thesis a reduced-basis approach for uncertainty propagation (RBUP) is
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devised. The goal of this work is to develop a non-intrusive method for uncertainty

propagation that relies on a reduced-basis to economize the input-output evaluation.

One of the main disadvantages of non-intrusive methods is the number of full model

evaluations that are required to attain a prescribed error in the moments of the

output. If the model is very expensive to evaluate, or if the dimensionality of the

input parameter space is large, the uncertainty propagation problem can become

computationally inefficient. The objective of the method here proposed is to mitigate

the cost of uncertainty propagation by constructing a surrogate of the input-output

map using a reduced-basis that leads to significant savings in computational cost.

Reduced-basis techniques have already been applied to uncertainty propagation by

Boyaval et.al. [10, 11, 43], and variance reduction strategies have been proposed

to accelerate the convergence of Monte Carlo [9]. The novelty introduced here is

the application of high-fidelity finite element solvers to the reduced-basis, and the

incorporation of the adjoint problem to achieve superior convergence of the reduced-

basis. Finally, the reduced-basis uncertainty propagation is also applied to wave

propagation problems to demonstrate its performance for noncoercive cases.

1.5 Thesis Outline

The two central themes in this thesis are the application of reduced-basis methods on

Hybridizable Discontinuous Galerkin (HDG) methods for solving parametrized differ-

ential equations with an affine dependance of input parameters, and the application of

the reduced-basis HDG approach for input-output uncertainty propagation employ-

ing Monte Carlo techniques. In Chapter 2 the basic concepts for the reduced-basis

method are presented, together with a posteriori error bounds, sampling strategy and

implementation. Futhermore, the procedure to apply the reduced-basis method to

uncertainty propagation is also described. In Chapter 3 the HDG method is reviewed

for the Helmholtz and the diffusion equation, the examples that will be analyzed

in depth. The application of reduced-basis approaches to the HDG method is also
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introduced here, together with the derivation of the adjoint equation that will be

of great interest in the computations. In Chapter 4 numerical results are presented

for both the performance of the reduced-basis applied to HDG and for the Reduced-

Basis Uncertainty Propagation compared to the Stochastic Collocation method. For

both comparisons the Helmholtz and the diffusion equation are used as model prob-

lems. Finally, we conclude in Chapter 5 with the summary of the work presented and

provide some guidelines for future work.
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Chapter 2

Reduced-Basis Methods

In this chapter we address the issue of computing the solution of the forward problem

in an efficient way. The main focus is on stochastic partial differential equations where

an affine parametrization in terms of the uncertain input parameters may be found.

In general, the goal of the computation is to obtain an estimate for a certain output

or quantity of interest. Throughout this thesis we will assume that the quantity of

interest may be computed as linear functional of the solution of the stochastic PDE.

Extension to nonaffine parametrized PDEs has already been studied in [6, 76, 39, 64]

with the introduction of the empirical interpolation method (EIM). Furthermore,

Nguyen et.al. [89] presented a "best points" interpolation method for an optimal

approximation of parametrized functions.

The reduced-basis methods allow a rapid yet reliable evaluation of a certain input-

output relationship induced by a parametrized partial differential equation. Following

the work by Patera et. al. [76, 40, 38, 39, 63, 65, 66, 102, 105, 115, 114, 113] the

method presented in this Chapter has three important aspects that differentiate it

from the initial work in reduced-basis introduced in the 1980s. Firstly, the use of

global approximation spaces, i.e. members of the reduced-basis constitute solutions

for the full governing PDE; second, the use of rigorous a posteriori error estimators

to not only certify the quality of the approximation, but also to adaptively enrich the
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approximation space; and third, we exploit the structure of the problem to devise an

offline/online computational strategy to economize the output evaluation. Further-

more, we also include adjoint techniques that greatly accelerate the construction of

the reduced-basis. The method is reviewed for the simplest case of a coercive elliptic

linear operator with compliant output, although it is extended for a coercive ellip-

tic operator with noncompliant output and for noncoercive and nonsymmetric linear

elliptic equations.

Finally, we propose a strategy for propagating uncertainty in stochastic PDEs that

relies on a reduced-basis surrogate of the input-output map constructed applying

the greedy algorithm on sparse grids combined with Monte Carlo techniques. This

approach allows us to inexpensively evaluate a large amount of samples using the

surrogate to obtain the statistics of the output.

2.1 Coercive symmetric linear operator: Diffusion

problem

2.1.1 Abstract Formulation

Let us consider a parametrized PDE in its weak form

a(ue((), v; ) = f(v; (), Vv E Xe (2.1)

where ne(() is the exact solution (the superscript e represents exact) of the PDE and

B E E C RN represents the parametric dependence of the PDE. Note that for many

problems the stochasticity can be reduced to parametric dependency, e.g. using the

finite-dimensional noise assumption of KL expansions of random processes, or just

simple parametric uncertainty. The problem that we aim to solve reads: find

se -- ( ( )) (2.2)
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where sC( ) is the (exact) quantity of interest; ue() is the (exact) field variable;

X' is an associated Hilbert space defined over a suitably regular physical domain

D E Rd, d = 1, 2,3 (independent of the parameter space E), where we can define an

associated inner product (w, v)xe and norm ||w||xe = V(w, w)xe; and finally a(-,-)

and f (-), l(.) are X- continuous bilinear and linear forms, respectively. We also require

the linear functionals to be bounded.

Throughout this work we will focus only on second-order PDEs, therefore the

function space required must satisfy Xe C (Hl(D))V, where v is the dimension of

the field variable e ( ).

For approximation purposes, the infinite-dimensional space Xe is replaced by a

high-order discontinuous finite element approximation space X, X c Xe 2 , of dimen-

sion K. Problem (2.1)-(2.2) is restated as evaluating

s( ) = l(u( )) (2.3)

where the field variable u(s) E X is the solution of the discretized weak form

a (u(), v; ) = f (v; ), IVv E X (2.4)

for a given E E. We shall denote (., .)x and ||-||x the inner product and the norm

associated with the finite element space X. Furthermore, we shall also assume that

the high-order discontinuous finite element space X used to approximate the true

solution ue by u is sufficiently rich, therefore s -+ se, U a ne as K -+ oc. The dual

functional space X' is given by

|f |x' -= sup f , Vf EX' (2.5)

Furthermore, we shall assume that the bilinear form is symmetric, a(w, v;)

'The space H 1 (D) is the space of functions v that are square-integrable and its gradient is also
square integrable, i.e. v E L 2 (D), Vv E L 2 (D)d

2The usual notation would be to consider X the real space and Xh the finite element space, where
h is the size of the discretization, but in here we shall drop this subscript for a simplified notation
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a(v, w; (), Vw, v E X, V( E B, continuous

a(w,v;) y( )||w||x||v||x o||w||x||v||x, V E (2.6)

and coercive

0 < ao () = inf a(v, v;) V EE (2.7)
XC

The constant a( ) is the minimum singular value associated with the differential

operator (coercivity constant) and -y( ) is the continuity constant. Even though they

are referred to as constants, they do depend on the parameter . Proof of existence

and uniqueness follows from the application of the Lax-Milgram theorem, assuming

enough regularity of the domain and the source f.

Finally, the key assumption is that the parametric dependence of a, f may be

expressed, for finite (small) integers Q, Q, as

Q
a(w, v;) =L oq()a (w,v), Vw, o E X, V E E (2.8a)

q=1

f (v,) = ( q( )fq(v) Vv C X, V E (2.8b)
q=1

for some real-valued functions oq, Uq E -+ R continuous, differentiable and parameter-

dependent, whereas the forms aq X x X -+ R, fq : X --> R are parameter-

independent. This affine parametrization is crucial in the computational savings

that are described below. Nonetheless, reduced-basis methods allow for non-affine

dependence of the parameters, but this discussion is beyond the scope of this work.

2.1.2 Reduced-Basis Approach

The reduced-basis method relies on the fact that the field variable u(s) is not an

arbitrary member of the infinite-dimensional space X associated to the underly-

ing partial differential equation; but instead resides on a low dimensional manifold
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MU {u(C)|( E E} that is induced by the parametric dependence. In fact, the

approximation space X may in general contain solutions to the PDE that are not

relevant to our interest, since they do not lie on this manifold. The idea is to further

reduce the dimension approximation space X by focusing solely on the manifold of

solutions Mu, therefore economizing the computations.

The idea behind the reduced-basis method resides in constructing an approxima-

tion space to the manifold of solutions of the parametrized PDE. This approximation

space is constructed using global solutions to the PDE at selected points ( in the

parameter space E, usually known as snapshots. Thereby, for any parameter in the

parameter space the field variable u(C) and the output s( ) may be computed by a

suitable projection onto the approximation space, see Figure 2-1. The Lagrangian

reduced-basis approximation space is constructed as WM span{(m = u( m), m =

1, .. ., M}, for a certain collection of samples SM = f1, . . ,m E E}. Due to the

nature of the reduced-basis described above, it is required to orthogonalize the basis

with respect to the inner product (., -)x to avoid conditioning problems of the basis.

U( N

U(6) U( J)

x

Figure 2-1: Sketch of the low-dimensional manifold Mu and the approximation space

formed by snapshots

The reduced-basis space WM seeks to approximate the manifold of solutions MU

of the parametric PDE, which has very low dimensionality. The reduced-basis bene-

fits from this low dimensionality, allowing to approximate the field variable u( ) by

a linear combination of elements of the basis (m. The reduced-basis approximation

to the field variable is denoted as um( ). Furthermore, we also expect rapid conver-
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gence (in some cases, exponential [63, 66, 102]), i.e. using a total number of basis

functions M significantly smaller than the dimension of the finite element space K.

The reduced-basis solution uM( ) for an arbitrary parameter dm is obtained using a

Galerkin projection onto the reduced-basis space Wm

a(uM ( ), v; ) = f (v; ), Vv E Wm (2.9)

Indeed, let us denote by 4 m the matrix for the reduced-basis space WM

(1 ...- ( (2.10)

where (4T, p)X = ][m, that is the basis' members are properly orthonormalized with

respect to the inner product associated with the space X. Choosing as trial functions

the basis of WM, we may express um = E 1 Am(m = 4A. If the test space is the

same as the trial space, we recover a Galerkin projection

DTADA = 4 0TF (2.11)

where A, F are the matrices corresponding to the forms a(.,-), f(.), using as test and

trial functions the ones corresponding to the high-order discontinuous finite element

space X. Note that the dimensionality of the system has been reduced to M, which

is typically < K, and although it is no longer sparse, the orthogonalization of the

snapshots ensures good conditioning properties. Once system (2.11) is solved, the

approximate output for dM may be easily evaluated as

SM( ) = l(uM) = LT A (2.12)

where L is the matrix corresponding to the linear functional 1(.).

Naturally, a crucial point in the reduced-basis approach is to decide which snap-
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shots should form the basis. Ideally, one would like to choose the field variables

containing the maximum amount of information about the manifold MU in order to

minimize the number of elements in the basis, thus reducing the computational effort

in solving (2.11)-(2.12). Therefore the issue of selecting the values of the parameters

that render a better reduced-basis is of great importance, and care must be taken in

order to effectively explore Mu to extract the best candidates. The strategy pursued

here differs from the one used in POD procedures, in the sense that we use inex-

pensive error bounds that serve as indicators to choose potential new candidates to

optimally enrich the basis. The procedure for enriching the basis is described below.

2.1.3 A Priori Convergence Results

We consider here the convergence rates of the solution uM(() -+ u( ) and the output

SM( ) -s 3($). It is simple to prove optimality of the reduced-basis approximate

solution um( ) in the X-norm, that is

||u( ) - um((R lx :5 inf jju( ) - wm(()||x (2.13)
a(( ) wmEWm

which follows from Galerkin orthogonality a(U) - UM(W), v; = 0, Vv E WM,

symmetry, continuity and coercivity. From now on, let us denote the error in the

approximation as e( ) = U( - um ( ). The convergence of the approximated output

highly depends on whether the output is or not compliant.
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Compliant output

For the special compliance case I = f one can prove optimal convergence of the

approximated output sm( ) to s(s) in the X-norm

s(4) - sm( ) - l(u( ) - uM( )

= a(u((), e((); () (1 = f)

= a(e((), e();() (symmetry and Galerkin orthogonality) (2.14)

< y( )I|e() 112 (continuity)

" inf 1u(() - WM( )1|2 (result (2.13))
a() WMEWM

one can readily see the convenience of result (2.14), since the quantity of interest con-

verges as the square of the error in the reduced-basis approximation. Unfortunately,

this is a rather special case, because in general the quantity of interest may have

nothing to do with the forcing term.

Noncompliant output

In the more general noncompliance case, the approximated output sM() converges

to s( ) in the X-norm as

sW - SM()| = 1(e(W)| H x' heW) Ox x 1x / inf u() - wAm()J x
a(() WMeWM

(2.15)

which follows from the boundedness of the functional output and result (2.13). This

error bound is definitely worse than (2.14), since the square effect is lost. For certain

problems the error bound may suffice to satisfy a prescribed error tolerance, provided

rapid convergence of the reduced basis. However, for some applications this slow

convergence may imply a large amount of functions in the basis, therefore losing the

property of representing the manifold Mu with a very low-dimensional basis. To

overcome this limitation, adjoint techniques are applied.
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2.1.4 Adjoint Problem

For noncompliant symmetric problems (and for nonsymmetric problems in general),

the optimal convergence of the output, and thus the "square" effect, may be regained

by the introduction of adjoints. The adjoint problem is defined as the dual problem

of (2.4): for a given E E, find the dual field variable @( ) satisfying

a (v, 0( );) = -1(v), Vv E X (2.16)

The purpose is to build a reduced-basis approach for the dual problem as well. There-

fore we introduce an adjoint reduced-basis approximation spaces Wd span{ (nd

( Md)} md = 1,..., Md}. Similarly, the basis is formed by snapshots of the dual

solution for some certain values of the parameters. Even though the parameter space

is the same, the set of snapshots may very well differ between the primal and the

adjoint. The error of the adjoint problem is defined as ed( ) = 4@( ) -- Que ).

To prove the a priori convergence result for the output, we apply a Galerkin

projection for both the primal and the adjoint problems onto both the primal Wm

and the adjoint Wd approximation space

a(um(=), v; f(v; ), Vv E Wm (2.17a)

a (v, Omd ((); _)=1-(V), VV E Wd, (2.17b)

and define the optimal or enhanced output that will be used in the computations

sII d () = 1uM(W) - r(bMd ()) (2.18)

where r(. ;() = f(-) - a(uM( ), -;() is the residual of the primal problem (2.17a).

Recalling the a priori convergence result of the reduced-basis approximate solution

3 From now on the subscript/superscript d stands for dual
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in (2.13), a similar statement may be derived for the adjoint problem

7( )
||5() - Md(d) inf - wMd() K. (2.19)

a(() WMdEW

Then convergence of the enhanced output can be proven optimal

s( ) - sM,Md(I I (e(.)) , f(4Md( )) - a(um M

-a(e( ),4 ( ); () + a(e( ), oMd

-a( e() ed Hx

( ) W le(()||xlle d 2I

< inf flu( ) - wM(( x inf 10( ) - wMd x
a(- ) WMWM w dew J

(2.20)

using the definition for both the primal and the dual problems, Galerkin orthogonality

and continuity. Thanks to the incorporation of the adjoint, we recover the 'square'

effect because the output converges as the product of the primal and the dual errors.

2.1.5 A Posteriori Error Estimation

Although the a priori convergence theory introduced above is useful for estimating the

convergence of the reduced-basis approach, in practice a posteriori error estimation

is more useful. Indeed, we need a tool to know how many snapshots need to be

incorporated in the reduced-basis to achieve a prescribed tolerance on the output for

all parametric inputs. It is in principle expensive to compute Is( ) - gM,Md (I for all

possible parametric points to verify the quality of our reduced-basis, therefore rigor

in the bounds is necessary. On the other hand, having an excessively large reduced-

basis may result in an intense computational complexity, hence sharpness of the a

posteriori error bounds is also required.

We shall assume that we are given a lower bound of the coercivity constant a(),
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denoted by &((), which depends on the sample in the parameter space, such that

a( ) > &() > ao > 0. The general computation of &((), different for the symmetric

and for the nonsymmetric case, will not be addressed here. Efficient techniques for

computing it for the both the symmetric and nonsymmetric case have been developed

in [76, 46, 65].

The residual of the adjoint problem is defined as rd(.; ) - -l(-) - a(-, @M( W ).

Using the primal and the adjoint residuals, we shall define the dual norm of these

residuals

r(v;()
EM = r(v;)x' = sup r , (2.21a)

vex ||v||x

E Md( ) =rd(V.)HX/ = SUP . (2.21b)
Md ~ Vex |1v||x

The error bounds associated with the field variable, or energy bounds, are defined by

AM() -- ,MW (2.22a)

And finally, recalling expression (2.20), the enhanced output error estimator is defined

as

It can be proven [76] that the above error bounds are both sharp and rigorous. It

is important that the bounds are rigorous, in order to certify the quality of the ap-

proximations using the reduced-basis. Sharpness is crucial to ensure that the number

of snapshots needed is not unnecessarily large, thereby improves efficiency of the

method. Finally, in order to compute the dual norm of the residuals needed for the
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output bounds, we resort to duality arguments

||r(v; )||x, = ||y( )||x, where (v, y( ))X = r (v; ), (2.24a)

||r d(v; )||x, = ||z( )||x, where (v, z( ))X = rd (v;). (2.24b)

Once these classical bounds have been reviewed, the computational procedure must

be addressed. The key idea used in the reduced-basis context is to pursue an offline-

online stage decoupling that allows us to greatly economize the output evaluation

and associated error bounds.

2.1.6 Computational Procedure

The assumption of affine parametric dependency is of key importance for achiev-

ing significant computational savings. In general, even though for some problems

M, Ma may be small, we would like that the surrogate model constructed for the

input-output relation is independent of the dimension of the underlying finite element

approximation K. To this end, efficient offline-online computational procedures are

developed, allowing for a full exploitation of the dimension reduction. We first express

uM(a), @Md ( ) as a linear combination of the reduced-basis functions as

M

UM( Am(m, (2.25a)
m=1

Md

kMA md d. (2.25b)
Ma=1

For simplicity, we adopt the matrix notation already introduced in (2.10)-(2.11).

Galerkin projections (2.17) are used for both the primal and the adjoint problem,
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Q1( &q ( ) Fq
q=1

thus the latter coefficients A, Ad satisfy the following M x M, Md x Md systems

o-TE q( ) Aq 41)A = 41T

_q=1d

o-T q(()Aq Qa Ad = -4

q=1

recalling the affine dependency of the parameters for a(-, -), f(-). The reduced-basis

enhanced output is evaluated as

( O-q(()Aq] A) (2.27)

finally, we define the dual norm of the residuals. It follows from (2.24) that

Y=X- - q( )Fq - o-q( )Aq
q=1 ( q=1 )

Z = X- -L-(oq( )Aq (DdAd
(q=1

DA] (2.28a)

(2.28b)

where X is the matrix of the inner product associated with the finite element space

X, and Y, Z represent vectors y( ), z( ). Inserting these values into (2.24) we obtain

CJQ

q=1 q'=1 q=1 q'=1

Q Q
+ Y Y -q( Jqi (() (ItA)T AqiX- 1 AqA

q=1 q=1

(2.29)

for the primal and

ed() L X- L + 2 Uq()LTX-AqdAd+

q=1 q=1

(2.30)
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for the dual. Expressions (2.26)-(2.30) clearly suggest an offline-online strategy to

effectively minimize the computational cost of evaluating the output and the error

bounds for any parameter (. Note that there should also be a strategy for evaluating

the lower bound of coercivity constant &((). We shall only consider the simplest form

of "bound conditioner", introduced by Veroy et. al. [115, 112], suited exclusively for

symmetric coercive operators where o-q( ) > 0, V C -. Given this rather restrictive

conditions, the lower bound for the coercivity parameter may be expressed as

o~q ( ) -
min -- a(s) (2.31)

for a certain value of (. For problems where the positivity condition of o-q( ) is not

satisfied, or for more general nonsymmetric it becomes more expensive to compute

these bounds. This issue is later discussed.

Offline Stage

The offline stage, performed only once, is computationally very expensive, since it

depends on the dimension .N of the underlying high-order discontinuous finite element

space X. The key part is that the offline stage computes all quantities independent

of the parameter (. Firstly, the matrices and vectors corresponding to the bilinear

and linear forms are precomputed, that is Aq, 1 < q < Q, Fq, 1 q < Q, L

and the matrix of the inner product X. In addition, we also calculate the matrices

involved in the computation of the residuals (2.29)-(2.30), FTX-1 Fq,, 1 < q, q' <

Q, IFTXAq,, 1 < q < Q,1 < q' < Q, LTXIL, LTX-Aq, 1 < q < Q.

Secondly, we start solving for ( ( for appropriate values of the parameter

set 4 . Furthermore, on the offline stage we also compute @DTAq(I, (DTAq', 1 q <

Q, L , @TFq, q) F, 1 q < Q and finally @TAq,X-1Aq@, @jAq,X- 1AqDd, 1 <

q, q' < Q. Note that these structures are updated on-the-fly as more elements in the

basis are being incorporated. The computational intensity is clear for this second

4 The choice of such values is later addressed
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set of matrices, since it needs M + Md expensive high-order finite element solutions,

o (QM 2 + QMd2 ) high-order discontinuous finite element vector inner products and

o (Q 2M 2 + Q 2 Md 2 ) high-order discontinuous finite element vector inner products

with the inverse of the inner product matrix X.

Online stage

The online stage will in general be performed multiple times -for each new value of

the parameter (E '- in the context of uncertainty quantification, where a great

number of independent deterministic solves of the problem are needed. Once the

offline quantities have been precomputed and stored, each online solve is very simple.

For each ( values of oq( ), q(() are known, therefore systems (2.26) are readily

assembled and solved for A, Ad. These values are used to compute the enhanced

output for the new sample using (2.27), just by assembling the precomputed units.

Moreover, the a posteriori estimates of the error may be easily obtained assembling

(2.29)-(2.30) and evaluating for A, Ad, and the lower bound of the coercivity constant

is obtained using (2.31).

For each new parameter, the operation count is 0 (QM2 + QM + QMd) to as-

semble the systems, O (M 3 + Mg) to invert them and 0 (M + QMd + QMMd) to

evaluate the enhanced output. It should be pointed out that the systems to invert

are full, since whichever sparsity structure arises from the PDE is no longer pre-

served after the Galerkin projection. Even though the systems are full, they are

very well-conditioned if the orthogonalization procedure described below is carried

out for the members of the basis. The online cost for the a posteriori error bounds

isO (Q2M2+ QdM + Q2 M +QM). The power of these bounds is that for any

new parameter we can inexpensively evaluate a sharp error bound of the real error in

the output, therefore assessing the quality of our reduced-basis.

The essential point of this offline-online strategy is to eliminate the AN contami-

nation in the online stage, which leads to large computational savings if the problem
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needs to be solved for a number of parameters. For cases where M, Md < AF, the

reduced-basis approach leads to computational savings of several orders of magnitude

relative to classical standard finite-element (or high-order) approaches.

2.1.7 Orthogonalization

The reduced-basis is computed by solving the underlying PDE (and its adjoint) on

a certain set of parameters. Each function in the basis is a solution of the very

same PDE for a different parametric value, therefore it is reasonable to think that

they have a strong linear dependency. This dependency translates into the matrix <D

(2.10) (and the one formed by the adjoint solutions <Dd) being very ill-conditioned.

This ill-conditioning, which usually grows exponentially with the size of the basis,

introduces an additional penalty in solving systems (2.26), which inherit the condi-

tioning properties of the reduced-basis, see [76].

To overcome this drawback, Gram-Schmidt orthonormalization is applied to the

original reduced-basis, thus conserving the approximation properties and improving

the conditioning of the subsequent systems. The basis is orthonormalized with respect

to the inner product defined by our high-order discontinuous finite element space X,

i.e.

((i, (j) = og, I 1 i, j, < M (2.32a)

((i , (q)x = , 1 i, j, < Md (2-32b)

The orthonormalization procedure is applied in th offline stage, since systems (2.26)

must be solved for all possible parameters at each iteration of the greedy algorithm.

2.1.8 Sampling Strategy

In order to construct the reduced-basis using snapshots that contain the more infor-

mation about the parametrized PDE, we review here the greedy algorithm [40, 38,
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112, 114] to find an optimal set of samples. We shall begin by discretizing the param-

eter space E by selecting a collection of points E, to which the greedy algorithm will

be applied. The algorithm relies on the a posteriori error bounds introduced above,

and is applied simultaneously to both the primal and adjoint problem separately,

therefore we shall start with two equal set of points, E, 0 d.

To start the algorithm, any point on the discretized sets is picked for both problems

(usually the same for simplicity). For these value, the discretized PDEs (2.4),(2.16)

are solved and the solutions are normalized with respect to (., .)X. The greedy pro-

cedure is now applied, by visiting every point in both discretizations and computing

the dual norm of the residual (2.21) and a lower bound for the coercivity constant

for both problems. The points (one in the primal and one in the adjoint parameter

set) with greatest a posteriori error bound are incorportated to the reduced-basis,

i.e. the exact solution is found and orthonormalized. The reduced-basis structures

corresponding to the offline stage are updated with the newly computed values. The

algorithm iterates until both the primal and the adjoint a posteriori error bounds for

all the points are below a prescribed tolerance et.

The key point of the greedy algorithm is how the parameter set is discretized. The

obvious, but naive choice is to do uniform gridding in all dimensions. Nonetheless, the

number of points grows exponentially with the number of dimensions, thus if we seek

a reduced-basis approach for a problem with multiple parameters (typically N > 8),

the dimensional explosion of the tensor product grid will hinder the computation on

the offline stage, even if the error bounds are cheap to evaluate.

The approach we propose is to use sparse grids for the greedy algorithm. The

sparse grids are used for high-dimensional integration and interpolation. They were

introduced by Smolyak [108], although they have been further developed, analysed

and implemented in an efficient way by Gerstner, Griebel, Novak et.al. [30, 31, 41,

96, 97, 98]. The Smolyak algorithm is a linear combination of product formulas in a

way that the resulting number of points in the set is significantly smaller than that

of the tensor product grids.
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Let i = (ii, ... , iN) C NN be a multiindex. The general formula for computing a

sparse grid in N dimensions of level p reads

ON ~ (E8 X ... X (2.33)
p+1 lilN+p

where E) are one dimensional nodal sets. Details on how to construct sparse grids

may be found in [108]. These one dimensional nodal sets are usually defined as

the Clenshaw-Curtis or Gaussian quadrature points, especially for interpolation and

integration purposes. Furthermore, it is known that the sparse grid of level 1 integrates

exactly N-variate polynomials of degree at most p (represented as IP). Furthermore,

the size of ON for N > 1 is of order 2PNP/p!, hence it has roughly 2P more points

than the dimension of IIP

0.5 0.5

0- 0 0 * 0 0 0 0 0 0 - *

0.00 0 0 0 0 0 0401 0 0041 0.e0 0 0 0 0 0 0 0 0 0 00

Al 00 0 0 0 0 0 0 0 0 00 o

400 0 0 0 0 0 0 0 4,0 ,-0.5- -005 0 0 0 . ..

-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2-2: Two dimensional sparse grid using Clenshaw-Curtis points. Left: Sparse
grid of level 4, total number of points 65. Right: Tensor grid using the same one-
dimensional nodes, total number of points 289.

The goal of using sparse grids for the greedy algorithm is to perform a cheaper

yet accurate exploration of the parameter space, enabling us to deal with moderate-

dimensional problems. Furthermore, in the context of stochastic PDE, depending

on the probability distribution of the random variables, different choices of one-

dimensional nodes can be made: Clenshaw-Curtis/Gauss-Legendre for uniform, Gauss-
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Hermite for Gaussian, Gauss-Laguerre for exponential, etc.

Another possible choice could have been a set of points obtained with low-discrepancy

sequences or stratified sampling. Both approaches have been tested for the numerical

examples presented in Chapter 4, and no significant improvement with respect to

sparse grids has been observed. Furthermore, sparse grids offer not only an efficient

exploration of the space (in the absence of localized singularities), but also the pos-

sibility to compute the reduced-basis on the same set of points used by stochastic

collocation methods, enabling to perform an easy and yet meaningful comparison.

2.1.9 Uncertainty Propagation

The procedure described above represents the offline stage. The reduced-basis re-

sulting is essentially a surrogate of the real input-output map, since for every ( an

approximation 'M,Md ( ) to s(() may be computed inexpensively. The purpose is to

use this reduced-basis surrogate to propagate the uncertainty in a stochastic PDE.

The approach pursued here is applying Monte Carlo techniques to exhaustively sam-

ple the parameter space . and get the output response by performing an inexpensive

surrogate solve. The main bottleneck of Monte Carlo methods is their slow conver-

gence rate -partially alleviated by Quasi-Monte Carlo and Latin Hypercube Sampling-

thus requiring an enormous number of full model solutions to acquire good statistics

of the quantity of interest. However, if a cheap surrogate model is employed, many

more evaluations can be performed within a reasonable time. This approach was first

used by Boyaval et.al. for a heat conduction problem [10], and by Haasdonk for para-

metric uncertainty in elliptic PDEs arising from KL expansions [43]. Furthermore, a

variance reduction technique using control variates has been developed and applied

to heat conduction problems [9], which is interesting when multiple online stages are

needed for different control parameters. However, we shall consider only Monte Carlo

methods.

The procedure is fairly simple. For every new sample (,, systems (2.26) are solved
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for A, Ad and the enhanced output (2.27) is evaluated. Note that this procedure,

which is nothing but a Monte Carlo method applied on a surrogate input-output

map, is embarrasingly parallel. Once we have performed the surrogate evaluation

for each sample, statistics of the output can be readily obtained. Furthermore, the

output's probability density function (PDF) may be approximately computed using

either histograms or kernel density estimation techniques.

In general, we shall expect sparse grids of a certain level to provide accurate surro-

gate models for smooth input-output functions. Nonetheless, localized discontinuities

in the parameter space, or phenomena that are not aligned with the cartesian axis

may be missed by a coarse sparse grid. The introduction of adaptivity and anisotropy

to the sparse grid is as an attractive choice for problems where the latter may occur.

Much research has been devoted to adaptive sparse grids for integration and interpo-

lation [31, 41] and for uncertainty propagation [28, 61, 92], however adaptive sparse

grids are beyond the scope of this work.

2.2 Noncoercive linear operator: Helmholtz prob-

lem

2.2.1 Abstract Formulation

Let us consider a parametrized PDE in its weak form

a(ue( ), v; ) = f(v;(), VvE Xe (2.34)

where ue(() is the exact solution (the superscript e represents exact) of the PDE and

G E E C RN represents the parametric dependence of the PDE, that can also be seen

as the stochastic parameters defined on a certain closed space E. The problem that

we aim to solve reads: find

se - (()) (2.35)
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where se( ) is the (exact) quantity of interest; ne(() is the (exact) field variable;

Xe is an associated Hilbert space defined over a suitably regular physical domain

D E Rd, d = 1, 2,3 (independent of the parameter space E), where we can define

an associated inner product (w, V)xe and norm ||wljxe = V(w, w)xe; and finally

a(., -) and f(.), l(.) are X- continuous bilinear and linear forms, respectively. We also

require the linear functionals to be bounded. Note that for the Helmholtz problem

we may usually consider complex-valued fields. The function space required must

satisfy Xe C (Hl(D))v, depending on whether the field variable ue(() is scalar v = 1

or vector v = d.

For approximation purposes, the infinite-dimensional space Xe is replaced by a

high-order discontinuous finite element approximation space X, X c Xe, of dimen-

sion A. We shall denote (., -), and ||-Hx the inner product and the norm associated

with the finite element space X. The dual functional space X' is given by

||f|x - sup ,f Vf E X' (2.36)
vEX |V|X

Furthermore, we shall assume that the bilinear form satisfies a continuity and an

inf-sup condition for all parametric values.

inf sup a(w,,v; (2.37a)
wex~ xHW||x||v||x

sup sup a(w,.v;) (2.37b)
wEx vEX ||w||x||v||x

The constant #( ) is the minimum singular value associated with the differential

operator, known also as the inf-sup stability constant, and 'y(() is the continuity

constant. We shall assume that these constants are bounded for any E E, that is

13( ) > /o > 0 and -y(() < -yo < oo.

For computational efficienty we also assume that parametric dependence of a, f

may be expressed, for some small integers Q, Q, as (2.8) for some complex-valued

functions -q, aq : E - C continuous, differentiable and parameter-dependent, whereas
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the forms aq: X x X -+ C, fq : X -+ C are parameter-independent.

2.2.2 Reduced-Basis Approach

The reduced-basis approach pursued here is the same as below, hence the details

will not be discussed. For the reduced-basis spaces WM, Whd, Galerkin projections

are applied to obtain the reduced-basis solutions for both the primal and the adjoint

problem uM(4) C WM, bMd(
4

) E Whd using expressions (2.17). The enhanced out-

put is then evaluated using (2.18). However, for the noncoercive case the discrete

inf-sup parameter associated with the operator may not guarantee stability. There

are more sophisticated techniques, such as minimum-residual [105, 65], and in partic-

ular Petrov-Galerkin approaches, which restore stability at the expense of additional

computational complexity. For the numerical examples presented in this work only

Galerkin projections will be considered.

2.2.3 A Priori Convergence Results

Optimal convergence rates of the primal and dual solutions um(4) -+ u(4), WI (4) W

V() and the enhanced output gM,Md(4) -+ s(4) have the following expressions

u(4) - UM(4)x < 1 + inf lu() - wM()lx, (2.38a)
\ 30 / mEWm

4'(() -+M(4 x 1 - ) ( -wM()X.- (2-38b)
\00 /~ EuaEWid

Using a similar argument than that of (2.20), optimal convergence of the enhanced

output reads

Is()<- -,I()| Y1O) 2 inf lz()-wm(4)lx inf I@(4)-wmd(4)Ox.
0 WEWM WM d

(2.39)

Note that the enhanced output converges to the true output as the product of the

errors in the primal and in the dual, thus we maintain the square effect observed for
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the coercive case.

2.2.4 A Posteriori Error Estimation

The error bounds are presented assuming that a parameter-dependent lower bound

/3(e) of the inf-sup stability constant 0( ), such that 3(() #^(e) > Oo > 0, V E E

may be computed.

The dual norm of the residual for both the primal and the adjoint problem is given

by (2.21), and the enhanced output error estimator may be computed as

AMM ' (2.40)

These bounds are sharp and rigorours.

2.2.5 Computational Procedure

The computational strategy is the same as for the coercive case. The main difference

is that conjugate transpose operator needs to be used for the adjoint, since the forms

can in general be complex-valued. The reduced-basis solutions uM(), 4
Md () may

be expressed as a linear combination of the reduced-basis functions as (2.25). Again,

Galerkin projections (2.17) are used for both the primal and the adjoint problem,

thus the latter coefficients A, Ad satisfy the following M x M, Md x Md systems

4* E o-q (() Aq (DA = QD* L a9( )Fq (2.41a)
.q=1 q=1

* q o-( ) A* (dAd = -D*L (2.41b)
.q=1 _

61



recalling the affine dependency of the parameter for a(., -), f(-). The reduced-basis

enhanced output is evaluated as

S'M,Md( ) = L*41)A - ((IDdAd)* L-q( Y [ gr( )Aq] 41~) (2.42)

(Lq=1 j _q=1

Furthermore, due to the loss of symmetry of the operator the dual norm of the

residuals change, and may be computed as

QQ Q
=~~ Z q~~ ~Fi 1 q -ZZ 4qi ()xq A

q=1 q1=1 q=1 q'=1

QQ Q Q

- qSA + Uq(*)o*(1) ((D A)* A*,,X- 1 Aq A,
q=1 q'=1 q=1 q1=1

(2.43)

for the primal and

Q Q
edu(O - L*X-lL - q L*X-1AqdAd - o-T*,(() (d d AX-IL

q=1 q=1 (2.44)

+ c-q( )o-*(7 ) (4)d Ad)* A*,X 1 AqdAd,

q=1 q'=1

for the adjoint. Furthermore, the same offline-online computational strategy pre-

sented above is pursued here, taking into account the minor modification aforemen-

tioned due to the nonsymmetry of the operator.

Finally, it only remains to compute the lower bound 3(() of the inf-sup stability

constant #( ). Extensive description of methods for computing /() may be found

in [76, 114]. In general, it is not a trivial task, since it involves developing a reduced-

scheme for a generalized eigenvalue problem that allows to compute a lower bound

of the inf-sup constant. Another technique is the Successive Constraint Method,

introduced by Huynh et.al. [46]. Although both approaches allow for an offline-online

stage decomposition, there is an increase in computational cost. The computation
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of the inf-sup constant is especially important in the Helmholtz equation, since its

value approaches zero near resonances. The implementation of efficient computation

of the inf-sup constant is left as future work, since the example presented in Chapter 4

avoids the problem of resonances. Thus, the bounds obtained will be neither rigorous

nor sharp, hence they will be merely used as error indicators to drive the sampling.

2.2.6 Sampling Strategy

The greedy algorithm will be employed as before on sparse grids 89, 8d (one for the

primal and the other for the adjoint), using only the dual norm of the residuals as

error indicators for the sampling. Indeed, since we lack the estimation of a lower

bound for the inf-sup constant, the termination criterion will not be related to the

error bound. Instead, a more inefficient but simpler technique is used.

The solution for an arbitrary set, or test set, of parameters e, randomly chosen,

i.e. drawn from the underlying probability density function using a pseudo-random

generator, are precomputed and stored. During the execution of the greedy, we (1)

choose the point that contributes most to the error (for the primal and the adjoint

separately) by evaluating a posteriori error estimates for all points in E), Ed, (2) solve

the full primal and adjoint PDE for the primal and adjoint parameters, (3) update

the reduced-basis orthogonalizing the new snapshots, (4) compute the absolute error

between the true output s( ) and the approximate enhanced output gM,Md ( ) for all

the points ( in 6. The algorithm terminates whenever the ||s(s) - WM,Md( oo <

EtolI, V EGN

This criterion is obviously not optimal, since it involves the solution of the full

problem for a number of parameters, which is precisely what the reduced-basis ap-

proach seeks to avoid. However, we shall use it as a heuristic approach until the

computation of the inf-sup stability constant is implemented.
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2.2.7 Uncertainty Propagation

Once the surrogate has been constructed (offline stage), we proceed to the online

stage for the uncertainty propagation. The procedure relies on applying Monte Carlo

techniques to obtain independent samples, and for each sample solve equations (2.41)

for the coefficients A, Ad and then recover the approximate quantity of interest (2.42).

In the current status, since the a posteriori error bounds computed are neither

rigorous not sharp, the reliability of the surrogate for any new sample cannot be

evaluated. For the numerical examples presented in Chapter 4, we will rely solely on

the capacity of the sparse grid to explore the most important regions of the parameter

space. Comparison with other methods are provided to test the performance of the

reduced-basis surrogate.
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Chapter 3

The Hybridizable Discontinuous

Galerkin Method

The hybridizable Discontinuous Galerkin (HDG) method is a new emerging DG ap-

proach firstly introduced by Cockburn, Gopalakrishnan and Lazarov in 2009 [19] and

further analyzed and developed by Nguyen, Peraire and Cockburn in [79, 80, 81,

83, 84, 82, 85, 86, 87, 88, 78, 77]. This method generalizes the classic Discontinuous

Galerkin methods by introducing hybrid variables at the faces of the elements, decou-

pling the interaction between neighboring elements. Once the problem is decoupled,

a reduced global problem is solved to find the global variables, which are then used

for recovering the local variables element-wise.

In this chapter the HDG method will be presented as the method to which the

reduced-basis approach will be applied for solving the PDE. The specifications of

the method will be provided together with a detailed formulation for the numeri-

cal examples that are introduced in the following chapter. Furthermore, since the

reduced-basis method employs the adjoint equation, we will also address the issue of

how to compute it efficiently using the HDG method.
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3.1 Why HDG?

The basic and key idea of the HDG method resides in introducing new variables on

the faces called the numerical traces, which become the globally coupled variables of

the problem. The numerical fluxes for the elemental problems are defined in terms

of these traces, involving an additional stabilization parameter T. In the end, these

new variables are such that decouple the interaction among neighboring elements and

thus, the problem can be locally solved very efficiently. At the end, a global problem

is solved for the numerical traces. It must be said that this new set of variables is

smaller (especially when going to high order polynomial approximation spaces) than

the original set of DG variables, since they are only defined on the edges. So we end

up solving a number of inexpensive local problems and just one global problem for

variables which are defined only on the edges, and is therefore cheaper than a globally

coupled DG.

The Finite Element Method (FEM) has been a popular choice to obtain the solu-

tion for PDEs given its ability to handle complex geometries and interface/boundary

conditions. The Finite Differences (FD) method would not offer the desired flexibility

for complicated geometries, and also present notorious difficulties for the treatment

of boundary conditions and the extension to high-order. This latter drawback is also

a limitation for Finite Volumes (FV) methods. Nonetheless, it should be remarked

that the FV and HDG methods share the property of being formulated as conserva-

tive schemes, and are therefore adequate for systems of conservation laws. Boundary

Integral methods have been discarded due to the fact that the resulting matrices are

dense and its inability to handle nonlinear problems.

Once the FE method has been chosen there are still several spatial discretization

strategies that can be considered. They include continuous Galerkin/Petrov-Galerkin

methods, spectral element methods, mixed finite element methods, extended finite el-

ement methods and finally discontinuous Galerkin/Petrov-Galerkin methods. They

could all have been used and they all have their strengths and weaknesses. However,
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due to its ability to combine complex geometry and high order solutions the Discon-

tinuous Galerkin Finite Element methods, seem to be most suitable. They also offer

stability and low dispersion for discretizations of hyperbolic systems, allow for a sim-

ple imposition of boundary conditions and are very flexible to future parallelization

and adaptivity.

One of the main drawbacks of DG methods is the duplication of nodal degrees of

freedom at the element boundary interfaces. This limitation is overcome in the HDG

method thanks to the introduction of the numerical traces at the element interfaces,

leading to block diagonal systems of equations can be very efficiently solved in a local

sense (only need to invert local matrices which are small).

For time dependent problems, time integration can be carried out either using the

well-known class of Newmark-finite element methods or just transforming all higher

order time dependent semidiscretized PDEs into first order systems of ODEs that

can be efficiently time integrated using either a backwards difference scheme or a

Runge-Kutta. However, in this document we will consider only equations with no

time dependency.

3.2 The Helmholtz equation

Firstly, we present the HDG method for the Helmholtz equation to introduce the

notation and the machinery necessary for this class of methods. Once the method

has been properly described, we will show its adaptation to the reduced-basis method

and derive the adjoint equation. The method is presented for this equation because it

will be of importance later on, and the fact that it will be adapted to the reduced-basis

approach requires insight on the nature and features of HDG.

The HDG method has already been introduced for the linear and nonlinear con-

vection diffusion equations by Nguyen, Peraire and Cockburn in [79, 80] respectively,

and by Sai-Seoane for the Helmholtz equation in [106], and here we follow closely its
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discussion. As it is typical for the HDG methods, in order to carry out the discretiza-

tion in space we basically proceed in two main steps. First of all, we formulate and

solve the local problems where the approximate scalar variable and flux are expressed

in an element-by-element fashion in terms of an approximate trace of the scalar vari-

able along the element boundary. Then, we formulate and solve the global problem,

which is just obtaining a unique value for the trace at the interfaces by enforcing flux

continuity. Figure 3-1 shows the extra degrees of freedom considered in the HDG (U2 h)

versus the classical DG variables. Note that they are all on the boundaries and they

are used to decouple all local problems and are then obtained by solving the global

problem.

0

Uh

qh Uh

Figure 3-1: Degrees of freedom considered by the HDG method for degree p = 3.
Classical DG schemes do not consider Uh degrees of freedom

Consider now the Helmholtz equation, where D E Rd represents the physical

domain with boundary F, and x the spatial variable. Then the strong formulation of

the Helmholtz equation is the one in (3.1).

-V(pVu) - k2u = h Vx E D, (3.1a)

pVu n = ugR Vx E PR, (3.1b)

pVu n = gN VX E FN, (3.1c)

where k = w/c is the wavenumber, obtained as a quotient of the frequency of the

wave and the sound speed of the medium c, p(x) represents the heterogeneity in the
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propagation medium and h the source term generating the perturbation. The details

of the equation are given in Chapter 4. The boundaries are represented by PR and PN

where Robin and Neumann boundary conditons are applied, respectively represented

by gR, gN- They are such that IPR U TN = I and R N = 0-

3.2.1 HDG formulation

The first step is to rewrite our problem (3.1) as a first order system of equations. To

that end, we shall define an auxiliary variable q = Vu corresponding to the gradient

of the state field. The system with the new variable shapes

q - Vu = 0 Vx E D, (3.2a)

-V - (pq) - k2U = h Vx E D, (3.2b)

pq n = ugR Vx E JR, (3.2c)

pq n = gN VxEL'N (3.2d)

3.2.2 Notation

Let Th be such that Th = Un Ki and pa(Ki n KT) = 6 where dim(D) = d, that

is, the intersection of two different elements of 7h (also called discretization space)

can only contain a face. If dim(D) = d, such intersection can only be, at most, of

dimension d - 1. In fact, if Pd1(Ki n Kj) # 0 it means that Ki and Kj are neighbors

and therefore we define their common interface as F, = K, n K, = aK, n aK. and

it will be an interior or a boundary face. The set of interior faces is denoted as Eh.

Similarly, the set of elements such that pd-1 (Ki n oD) $ 0 are elements with an edge

on the boundary and hence we define such faces through F' = Ki n &D = BKi n OD.

The set of all boundary faces is denoted as E. Finally we consider the set of all

faces in the discretization as S = E' U Eh. An example of triangulation is depicted

'It can be the case where D is curved and Th only considers linear elements, therefore D # Th
2Note that pid(-) indicates the d-dimension Lebesgue measure of the set.
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in Figure 3-2. As usual in DG methods, we need to define the averages {{.}} and

h

N
Figure 3-2: Sketch of a high-order triangulation with curved elements. The interior
and boundary faces are depicted, together with the triangulation elements K in grey.

the jumps [. on the interior and boundary faces. Consider two neighboring elements

K+, K- and their common edge OK+ n K-. Let then (q+, u+) be the values of

the gradient (vector) and state (scalar) on the face considered as a face of OK+, and

(q-, u-) be the values of the gradient and displacement on the same edge considered

as a face of dK-. Then we introduce for the interior edges F E Eh:

{{q}} = (q+ + q-)/2 {{u}} = (u+ + u-)/2

J~ul = u+n+ ± u-n-

Note how the average of a vector is a vector and the average of a scalar is a scalar

but the jumps are defined for the magnitudes times the normal so for the gradient it

becomes a scalar and for the displacement it is a vector. We still need to extend this

definition to the boundary edges and we do that as follows. For F E Ef:

{{q}}= q

[q - n] = q -n

{{u}}=u

Gu = u . n
(3.4)

Finally let's introduce the notation used for the L2 inner products of functions over

elements and faces. For a given u, v E [L2(D)]d and u, v E L 2(D), then we denote
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the scalar products in the interior and over the edges as in (3.5)

(UJID juvdVD JDu- vdS,

(3.5)

(u, v)ID =j -ovdV, (u v)OD =j u -v dS.

3.2.3 Aproximation spaces

First let PP(D) be the set of polynomials of degree at most p over a domain D. The

discontinuous finite element spaces are defined in (3.6). Note that we need three

spaces: one for the scalar displacement, another for the gradient which is a vector,

and yet another scalar space need be defined on the edges of the discretization.

Wf = {w E L2 (D) : WlK E PP(K),VK E Th}, (3.6a)

V = {v E [L2(D)]d: VIK E [PP(K)]d , VK E Th}, (3.6b)

Mf= {p E L2 (gh) : tF E PP(F),VF E E4}. (3.6c)

Recall that if u E L 2 (D), then fDu 2 < +oo. In Figure 3-3 we show the same mesh

as before, considering a polynomial order equal to 3, together with the degrees of

freedom of the approximation functions living in the spaces (3.6).

0* x o. / h h-O g .0 Ofo.0

0 0 .M/**o.

Figure 3-3: Sketch of a triangulation with curved elements of order p = 3. The

degrees of freedom for the corresponding approximation spaces are shown
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3.2.4 Space discretization

Once the notation and the approximation spaces are introduced, we need to recast the

strong formulation in (3.2) into a weak formulation. The weak formulation is obtained

by multiplying the strong form of the equations for the FE discretized solution (Uh, qh)

by test functions in the corresponding spaces. Using the notation defined above we

have

(qh, v)K - (Vuh, V)K = 0 Vv E [PP(K)]d , (3.7a)

- (V (pqh),W) - (k 2 U, W)K = (h,W)K Vw E PP(K) . (3.7b)

Integrating by parts the volume terms containing the nabla operator we obtain (3.8),

that is the system satisfied at each element K of the triangulation Th by our approx-

imation (qh, uh) E VP X W

(qh, V)K + (Uh, V - V)K - (Uh, v ' n). K = 0 VV E [PP(K)]d (3.8a)

(pqh, VW)K - (Pqh 'l, W)BK - (k2 , wK K Vw E PP(K). (3.8b)

Note how, in the integration by parts, the degrees of freedom at the boundaries have

been replaced by the numerical traces or fluxes since the variables themselves are not

well defined there. The HDG requires us to define q in terms of qh, Uh, Uh.

qh = qh - T(uh - Uh)n, on aK. (3.9)

The stabilization parameter r is taken to be a positive constant of order unity. Further

analysis on how to choose r can be found in [79]. Equations defined in (3.8) refer

to the local problem, since they are defined element-wise. The local problem may be

solved if the numerical traces U are known. Therefore, we define the global problem

for the traces Uh E as

Pq =0 VM E PP(F) . (3.10)
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Finally by adding up all contributions of (3.8) over the elements on the triangulation

Th and using the expression in (3.9), we obtain the global system of equations (3.11):

Find (qh, uh, U'h) E VP x W x M such that

(qh, v)Th + (Uh, V v)Th - (Uh, v ' n)ah = 0, (3.11a)

(pq, VW)Th - (pqh ' n, w)a~h - (k2 uh, w)Th + (pT(uh - Uth), W)aTh = (h, w)Th,

(3.11 b)

(pq - n, p)a-rh - (pT(uh - U'h), W)aT - (Uh gR, iP) r = (9N, P) N (3.11lc)

holds for all (v, w, p) E V> X W< x Mh.

3.2.5 Weak formulation and matrix system

The system of equations in (3.11) is rewritten for convenience in terms of several

bilinear forms. The weak formulation reads: find (qh, Uh, ') E VP x W x MhP such

that

p(qh, v) + b(Uh, v) - C(Uh, V) = 0,

s(qh, w) + d(zh, w) - e(U'h, w) = h(w),

n(qh, A) - e(Uh, w) + n(Uih, P) = g(p),

holds for all (v, w, p) EV x Wh x Mh. The bilinear functions are given by

(3.12a)

(3.12b)

(3.12c)

p(q, v) = (q, v)Th ,

c(A, v) = (A, v - n)aTh,

e(A, w) = (PTA, w)aTh,

g(p) = (9N, p)rN,

h(w) = (h, w)Th,

b(I, v) =(q, V -v)Th ,

d(u, w) -(k 2 u,w)T + (prZW)aT,

m (, 7P)= (pTr, P)aTh - (r7gR,P) r,

s(v, r) (pv, V)Th - (pv . n, r7)aTh,

n(v, p) = (pv -n, p)aTh.
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The discretization of the system of equations given in (3.12)

equation denoted in (3.14).

P

S

N

lB

11Th

-Ft

-C

-E

M [QU0I
is expressed by the matrix

0

H (3.14)

Note that Q represents the variables associated with the qh degrees of freedom, U

those related to Uh and similarly 0 those of Uh. Also note that the sublock E* is the

adjoint of E, that is the conjugate transpose, for reasons that will become clear later.

As it was already pointed out in equations (3.8) and (3.10), the degrees of freedom

regarding qh, Uh have only a local dependence, and once the numerical traces 'Uh are

found in the global problem, they may be recovered separately for each element. This

circumstance constitutes one of the great advantages of HDG over other DG methods.

Thanks to this local dependence, the submatrix

[ D I (3.15)

is block diagonal and invertible if grouped by elements, provided T > 0. Using this

feature and manipulating (3.14), the degrees of freedom for Q, U may be eliminated,

rendering the following global problem

TO = R (3.16)

where the matrices T, R are given by

-1

1
[PB

T= M +[N - E*] PB

B D
R = G - [N - E*]P

S D

C

E

0

H

I
I

I (3.17a)

(3.17b)
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once we have solved for the global degrees of freedom, the local ones may be recovered

using expression (3.18).

QP B 0 C -
+ U (3.18)

U S D H E

3.2.6 Adjoint equation

In order to attain optimality in the reduced-basis algorithm, the adjoint equation

needs to be solved as well. To define the adjoint equation we first need to explicit the

boundary conditions of the problem

gR = ik (3.19a)

9N 0  (3-19b)

where i is the imaginary unit and k is the wavenumber. The Robin boundary condition

for this case is also known as absorbing boundary condition. Further details on

its definition may be found in Chapter 4. Note that the presence of an absorbing

boundary condition implies that the solution of the problem will no longer be real-

valued, therefore the need to use the adjoint x* operator instead of the transpose

T

The final ingredient needed is the output or quantity of interest s. For the

Helmholtz problem, we will consider

se = 1(u) = N dS (3.20)

This output represents the total amplitude of the wave on the Neumann boundary.

The adjoint equation is very simple for the Helmholtz problem, since it is self-

adjoint. For the sake of clarity, a thorough derivation for the adjoint is provided
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below. To obtain the adjoint equation, we first linearize the governing equations

(3.1) by introducing perturbations to the solution field u + 6u and the density field

p + 6p and cancelling second order terms, rendering

-V - (pVou + SpV'u) - k2 6u = 0

(pV6u + opVu) -n = ikou

(pVou + SpVu) -n = 0

Vx D,

Vx E FR

VX C FN .

(3.21a)

(3.21b)

(3.21c)

The objective function (3.20) is also linearized

6s" = J Nu dS. (3.22)

Now we shall introduce an additional variable @*, referred to as the adjoint variable,

that multiplies (3.21a)

- 0*[V - (pVou + 6pVu) + k2 6U] = 0 (3.23)

equality that is satisfied for any 0. Therefore, we have

os = Su dS - @D$"* [V - (pVu + 6pVu) + k 26u] dV.

Using the product rule for vector calculus the latter is rearranged as,

(3.24)

6se = Nu dS - V - ($)* (pVu + 6pVu)) dV+
(3.25)

+ V@* - (pVou + 6pVu) dV -

Applying the divergence theorem, we get

os" = 6

+ D

udS - @* (pVou+6pVu) - n dS +

pVt* - V6u dV - I k2 V*6u dVJD
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k2@b* 6udV.

IDSpVO* - Vu dV+
(3.26)



Repeating this two-step process with the last term we obtain,

JS = udS - J* (pVou+6pVu) - ndS +

+ p6uV@* - n dS -
JD

D

5uV - (pVo*) dV -
ID

Separating volume and surface integrals, we have

6se = J Nu dS -
ID

ouV - (pVt*) dV +
ID opV* -1Vu dV-

(3.28)
- J (@* (pV6u + 6pVu) - p6uV@*) - n dS - k2t*6udV

Splitting the boundary terms and applying the linearized boundary conditions

Js" = IN 6udS - j 6uV - (pV@*) dV + j SpV@* - Vu dV - j k2 t*6u dV-

- J (ik@)*3u - pouVt*- n) dS
JrR

+ p n(V* n) dS.
rN

(3.29)

The equation and boundary conditions for the adjoint problem yield automatically by

enforcing the terms in the latter equation to vanish. Therefore, the adjoint variable

0* is the one solving the strong equation

-V - (pVo*) - k2o* = 0,

pV* - n = ik@*,

pV*- n=-1,

Vx E D

VX E FR

VX E FN

(3.30a)

(3.30b)

(3.30c)

In order to solve it, we apply the same procedure as above. We introduce an additional

unknown for the gradient of the adjoint filed v = VV). We seek for the approximate

solution Vh, Oh, Oh E VP x Wh x MhP, where the spaces are the ones in (3.6). The
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matrix equation for the adjoint problem reads

IP -C

[T* I* * S-E 0 0 L* (3.31)

N -E* M

where T refers to the degrees of freedom of V4'h and T, T to the degrees of freedom

of Oh, ?$h, and the vector L arises from the linear form corresponding to the Neumann

boundary condition (3.30c), l(p) = ( N,P)FN, where gN = 1. To solve (3.31), a

similar procedure to the one described in (3.16)-(3.18) is used. Just note that since

in this particular problem there are complex numbers, special care needs to be taken

when dealing with the adjoint * operator.

3.2.7 Reduced-basis approach

The standard way of solving an equation using HDG once the weak form is known re-

lates back to equations (3.16)-(3.18). However, if a reduced-basis approach is pursued,

the latter procedure can no longer be applied, since we need an affine parametriza-

tion of the matrix equation. Indeed, even if such parametrization can be attained in

(3.14), this structure will most likely not be conserved in (3.16).

For the Helmholtz equation we will be interested in treating as a parameter the

medium density p. In general, instead of the rather simplistic assumption that p

is merely a parameter, we shall consider a spatial dependency p(x), which can be

expressed in terms of a finite expansion such as

N

p(x) = spi*(x) (3.32)
i=1

where (i are the unknown parameters and pj(x) are modes describing the complexity

of the field. Such an expansion may be obtained, for instance, as the truncated KL

expansion of a certain random process -. This truncation, already presented as the
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finite dimensional noise assumption, requires more modes as the field becomes more

complicated to represent.

Affine reduction

The Helmholtz problem (3.2) is written in a way such that the equations correspond-

ing to q (3.2a) are independent of the medium density p. This allows us to express

the degrees of freedom for U, U in terms of degrees of freedom for Q, using the first

equation of (3.14)

Q = P- 1 (CO - BU) (3.33)

This elimination, which can be performed elementwise, renders the following system

of equations

ID - SIP-1 SP-1C - E U H1 (3.34)
- E* - NP-B M + NP-1C JLU LG , 3.4

which can also be locally computed and assembled. Solving the system (3.34) renders

a solution ( in terms of the state field Uh and its trace Uh, which will be a potential

candidate for the primal reduced-basis. Furthemore, since the Helmholtz equation is

self-adjoint, performing a similar elimination for (3.31) we arrive to a reduced system

for the adjoint

=- -](3.35)
-E* - NP-B M + NP-IC J L

The solution (d of this system, expressed in terms of the adjoint state field $ih and

its trace ja, is in turn a potential candidate for the adjoint reduced-basis. To be

consistent with the notation introduced in the previous chapter, systems (3.34)-(3.35)
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are rewritten as

A( = F (3.36a)

A*(d = -L (3.36b)

The latter formulation is convenient because the degrees of freedom of Q have been

eliminated, thus significantly reducing the size of the matrices that need to be stored,

yet conserving the affine parametric dependency. Indeed, the abstract parametric

formulation of the bilinear and linear forms introduced in (2.8) is now expressed in

terms of the HDG formulation as

o-aq( )A' I=F , (3.37a)
.q=1

[ -q(()A (d = -L . (3.37b)

Note that for the Helmholtz problem Q = 1, Jq(() = 1, since the source term does not

have parametric dependency. Therefore, in the offline stage matrices Aq are computed

by alternatively setting o-q = 1, o-q, = 0, Vq' E {1,. . . , Q} # q, together with vectors

F, L.

Inner Product Matrix

Furthermore, we need to address the computation of the matrix corresponding to the

inner product associated with the high-order finite element space, denoted in the last

chapter as X. Since the operator is noncoercive, to define an inner product matrix,

80



(symmetric and positive definite) we resort to the following equation

q - Vu = 0, Vx c D (3.38a)

-V 2 q+u = h, Vx E D (3.38b)

q.n - =0, VX E FR (3.38c)

q. n = 0, VX C 1N (3.38d)

Applying the same methodology as for the Helmholtz equation, we arrive to a matrix

system

P 13 -C Q0
-B* ] [] -E U H (3.39)

C* -E* M U 0

where the matrices are the same as before except D, which arises from the modified

bilinear form d(u, w) = (u, w)Th + (pru, w)aTh. Eliminating the degrees of freedom

corresponding to Q, the matrix for the inner product is defined as

ID + B*PB -B*P-IC - E
X=--E* -- C*P 1 1B M + C*P- 1 C (3.40)

It is symmetric and positive definite, since it arises from a stiffness matrix plus a mass

matrix in the high-order discontinuous finite element space.

Solving HDG System

While the affine parametric dependency is well suited for the offline-online compu-

tational strategy, the duplicity of degrees of freedom typical from the DG methods

leads to systems (3.36) that may be very large, thus compromising computational

efficiency and losing the characteristic HDG property of solving only for the global

degrees of freedom. Nonetheless, this property may be recovered for computing the

snapshot solutions (, ('.
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For a chosen value of the parameter (j, the systems (3.36) are assembled for the

corresponding values of o-q( ). Now a Schur complement procedure is applied, since

the first sublock D-- 1 B = A1 of A is block-diagonal due to its local definition, thus

trivial to invert. To simplify the notation, let us rename the sublocks of A row-wise

as Aj, i = 1, 2, 3, 4. The global problem is recovered by substituting the first equation

of (3.34) into the second one, that is

U = A-, (IH - A2 U) (3.41a)

[A4 - A3A 'A2] U = G - A3A7'JH (3.41b)

for the primal and

P = -A-*A*xp (3.42a)

[A* - A*A-*A*] T = -L (3.42b)

for the adjoint, hence we only solve for the global degrees of freedom in (3.41b),(3.42b).

To summarize, we (1) eliminate the degrees of freedom of Q, T to reduce the stor-

age and the dimensionality of the finite-element space. (2) Precompute the matrices

and vectors independent of parameters A , X, IF, L. (3) Assemble the matrices for

the chosen parameter (j. (4) Perform a Schur complement decomposition to solve

smaller problems (3.41b),(3.42b) involving only the global degrees of freedom 0, P.

(5) Recover the local degrees of freedom U, 'P to define a snapshot, or solution for the

reduced-basis, in terms of both U, U and T, T using equations (3.41a),(3.42a). Note

that the aforementioned procedure allows for an effective decouple of the reduced-

basis code from the HDG code.
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3.3 The diffusion equation

The HDG method is also presented here for the diffusion equation, which will be of

interest in the next chapter. Most of the steps are straightforward after the develop-

ment presented above, with only minor changes. Again, we shall consider the diffusion

equation defined on a certain physical domain D E Rd with boundary OD = F. The

strong formulation of the diffusion equation reads

-V - (Vu) = h Vx E D, (3.43a)

U= 0 VX E D, (3.43b)

riVu n = g Vx E N1, (3.43c)

rVtu -n = 0 VX E N2  (3.43d)

3.3.1 HDG formulation

The HDG formulation for the diffusion equation resembles the one obtained for the

Helmholtz equation. As done above, we define an additional variable equal to the

gradient of the state field times the diffusivity field q = rVu, which enables to rewrite

equation (3.43) in terms of the system

-1 q - Vu = 0 Vx E D, (3.44a)

-V. q = h Vx E D, (3.44b)

u = 0 VXE D , (3.44c)

q-n = g VX E FN 1 , (3.44d)

q -n = 0 VX E FN2  (3.44e)

Using the notation introduced above, we choose the approximation spaces defined in

(3.6a)-(3.6b) for the scalar and vector test functions on the elements. However, since

we now have a Dirichlet boundary condition, the space of test functions on the faces
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will be described by MfP(O) = {p E M : ptro = 0}, where MhP is given by (3.6c).

Finally, multiplying the governing equations (3.44) for the FE discretized solution by

test functions and integrating by parts we obtain the local problem at each element

K for the local variables (qh, Uh) C VP x W

(rC qh, V)K + (uh, V V)K - (Shi V ' f)aK = 0

(qh, VW)K - ('h n, W)aK =(h, w)K

Vv C [PP(K)]d

Vw E PP(K) ,

and the global problem for the traces Uh E MC (0)

(qh - n, p)aT\(TourN2 ) + (Nih - IFN1 = 0, V/u C PP(F) . (3.46)

Summing the contributions (3.45) over all the elements in the triangulation, using

again (3.9) to define the vector fluxes and redoing some integration by parts we

obtain the global system of equations (3.47). Find (qh, Uh, tth) E VP x WhP x MhP such

that

(W 1 qh, v)Th + (Uh, V - v)T - (i, V - n)aTh 0,

- (V -qh, w)Th - (T (Uh - Zth) , w)aT = (h, w) Th

(qh -n, It)aTh\rD - (TUh, P)aTh\rD + (rUh, II)aTh\rD = (g, P)rNi

(3.47a)

(3.47b)

(3.47c)

holds for all (v, w, p) E VP x W x Mh.

3.3.2 Weak formulation and matrix system

Similarly as done above for the Helmholtz equation, the system of equations in (3.47)

is rewritten for convenience in terms of several bilinear forms. The weak formulation
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reads: find (qh, uh,zU) E VP x Wh x Mh (0) such that

p(qa, v) + b(uh, v) - C(Uh, v) = 0, (3.48a)

-b(qh, w) + d(Uh, w) - e('h, w) = h(w) (3-48b)

c(qh, A () - e(Uh, w) + m(Uh, A) = g() (3.48c)

holds for all (v, w, p) E VP x W x M (0). The bilinear functions are given by

p(q, v) = (n-1q, v)-,,

c(A, r) = (A, r - n)a-T,

e(A, w) = (r A, w)aTh,

m(q, P) = (r77, y) a,

b(q, r) =(T, V - r)T ,

d(u, w) = (u, w)aTh,

h(w) = (h, w)Th,

g(#) = (g, A)rNIF

The discretization of the system of equations given in (3.48) is expressed by the matrix

equation denoted in (3.50).

[P

-BT

CT

B

D

-iET

-C

-E

M I[QU9I=40

H

GI (3.50)

Proceeding in the same way as above, the degrees of freedom for Q, U are eliminated

to form the global problem T = R, where the matrices T, R are defined by

T = M + [CT-ET] , ETj
-BT D JL E

R =G - [CT -_ET] .B
-BT ID H
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Solving the global problem renders the numerical traces, which are used to retrieve

the local degrees of freedom using (3.52)

Q P B 0C
+ U .(3.52)

U -]BT ID H + E U)(.2

3.3.3 Adjoint equation

Again, the adjoint equation is needed to assure optimal converge of the reduced-basis

output. The output of interest se for this case is defined as the average of the field

variable over some subdomain D* C D, which can be generally expressed as

se = 1(u) = IDu -OdV (3.53)

where 0 is a function defined over D which can be, for instance, an indicator function

for the subset D* (non-smooth), or a Gaussian pulse defined around the region of

interest (smooth), or even the average over the whole domain (smooth). Smoothness

of the output is crucial in the convergence rate of the output. For this particular

problem, we will consider parametric dependance of both the diffusivity field r, and

the Neumann boundary condition g. Since the derivation procedure is very similar

to the one developed above, we simply provide the adjoint equation

-V - ( V@T) = -0 Vx E D, (3.54a)

= 0 VXE FD , (3-54b)

'VbT - n = 0, VX E FN1 U N2 . (3.54c)

3.3.4 Reduced-basis approach

Using the same procedure as before, we will present the several steps to achieve an

affine decomposition of (3.50) together with an efficient solution of the system. For

the diffusion equation, the parameters considered are the diffusivity r, and the flux g.
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Whereas the flux g is a single parameter, the diffusivity will have different values for

different spatial subdomains, hence we still need an affine expansion of the system's

matrix. However, for this case we shall assume no explicit spatial dependency of the

diffusivity field, e.g. for each region r, will be 'constant'. The problem is precisely

defined in Chapter 4.

Affine reduction

Eliminating (element-wise) the degrees of freedom of Q using the first equation of

(3.50) as before, the following reduced system of equations is obtained

ID + BTP-IB -BTP-IC - IE U H

[ T - CT-1B M+ CTP-IC UG (3.55)

which can also be locally computed and assembled. Solving the system (3.34) renders

a solution ( in terms of the state field Uh and its trace Uh, which will be a potential

candidate for the primal reduced-basis. The adjoint matrix system is even simpler,

since (3.55) is already symmetric

D + BTP-1B -BTP-IC - E IF
,(3.56)

-_ET - CTP-IB M + CTP-lC J 0

where the vector e arises from the output functional-dual source, defined as 0(w) =

(0, w)Th. The solution (d of this system, expressed in terms of the adjoint state field

V)h and its trace ?/h, is in turn a potential candidate for the dual reduced-basis. To be

consistent with the notation introduced in the previous chapter, systems (3.55)-(3.56)

are rewritten as

A( = IF ,(3.57a)

A(d = -L, (3.57b)
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and the affine parametric expansion reads

Q-1-

o-q(()A (= UQ( )F, (3.58a)
q=1

Q-1~

g uq( )A] (d = -L (3.58b)

since the Neumann boundary condition has parametric dependency. Therefore, in the

offline stage matrices Aq are computed by alternatively setting oq = 1, oq = 0,Vq'E

{1, . . . , Q - 1} # q, together with vectors FQ, L.

Inner Product Matrix

For this case the matrix X corresponding to the inner product associated with the

high-order finite element space is very simple, since the operator is itself symmetric

and coercive. The matrix is the same as (3.50) setting r = 1 everywhere, that is

ID + BT -lB -EI-C F
X= ±Tp1 - 1(3.59)

EL - CT-lEIB M + CT IP- 1C J
where matrix I arises from the bilinear form j5(q, v) = (q, v)Th.

Solving HDG System

To solve the HDG problem for a given parameter (j, the same Schur complement

procedure as before is applied. Renaming the sublocks of A as Aj, i = 1, 2, 3, where

A 2 is the off-diagonal sublock (note that A is symmetric), the global problem reads

U = Al 1 (H - A2 U) , (3.60a)

[A3 - A2A--1A21 U = G - AIA-'H, (3.60b)
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for the primal and

T = -A-,' (-89

[A3 - ATA- 1 A2] = AT A-E),

for the adjoint. Obersve that an effective decoupling of the reduced-basis and the

HDG method is accomplished.

89

-A 2 T) (3.61a)

(3.61b)
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Chapter 4

Numerical Results

In the previous chapters the reduced-basis approach for the HDG method has been

introduced. Furthermore, the application of the reduced-basis method for uncer-

tainty propagation has also been described. The objective in this chapter is to apply

the HDG reduced-basis uncertainty propagation method to realistic problems and to

compare the performance to well-known uncertainty propagation techniques, such as

stochastic collocation.

The structure of this chapter is as follows. First, we will study diffusion on a

thermal fin, which corresponds to a coercive linear symmetric operator. Conver-

gence of the reduced-basis is analysed together with convergence of the uncertainty

propagation, using the sharp and rigorous a posteriori error bounds available for this

operator. Finally, the Helmholtz equation for wave propagation on a random medium

will be studied, for a low wave frequency. Convergence studies of the reduced-basis

algorithm are performed to be continued
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4.1 Thermal Fin

4.1.1 Definition

The thermal fin is used as a test problem for the case of coercive linear symmetric

operators. We study the heat conduction in a thermal fin. This problem has been

widely used as a test problem in the context of reduced-basis, see [65, 67]. The

problem under study is depicted in Figure 4-1. Note that the boundaries correspond

to the ones defined in the strong formulation (3.43). A heat flux g is prescribed

at the root. This flux, that may be the heat generated by an external device, will

be considered as an uncertain parameter. The Dirichlet boundary remains at a fixed

temperature u = 0, and if we assume no heat loss through the other boundary FN2 , we

model the heating of the fin. The fin under study has three different stages. Since each

FD

K 5  K4

K6  K3
K 1

K 7  K2

N2

gyjjNi

Figure 4-1: Geometry of the thermal fin problem. The fin consists of six subfins, and
the flux is introduced by the root.

part of the fin may be assembled using different materials, we shall assume that the

thermal diffusivities Ki are different for each subfin Di, i = 1, . . . , 7. The diffusivity on

the central part of the fin is denoted as K1 . Note that we allow diffusivities of subfins

92



at the same stage to be different. Hence, we will not have symmetric solutions. All

diffusivities are assumed positive ri > 0. We also assume no heat generation within

the thermal fin, hence the heating will come from the flux g entering at the root FN,

in its entirety. We will also assume the flux to be positive.

The quantity of interest of the problem is defined as the average heat over the
1

entire domain D, hence 0 = in equation (3.53). This output is smooth, thus
fD 1 dV

we should expect the adjoint problem to converge at similar rate to the primal.

4.1.2 HDG solution

For all the subsequent computations, we will assume that the physical domain is dis-

cretized using a triangular mesh Th of ne = 1490 straight-edged elements of order

p = 3. The mesh is shown in Figure 4-2, it is conforming and generated by ensuring

that the subdomains Di are separated. The dimension of the high-order discontin-

0 0.2 0.4 0.6 0.8 1

Figure 4-2: Discretization

nomial degree p = 3
of the thermal fin, using a total of 1490 triangles of poly-

uous finite element space is Nr = 24148, divided into 14900 degrees of freedom for
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both Uh, 'h and 9428 for the numerical traces Uh, 'ih (excluding the Dirichlet nodes).

Hence, each HDG problem involves solving a sparse system of size 9428. Through-

0.

0.

0 0.2 0.4 0.6 0.8 1

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 4-3: Primal solutions to the thermal fin problem for different values of t
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Figure 4-4: Adjoint solutions
solutions in Figure 4-3

to the thermal fin problem correspoding to the primal

out the problem, we shall assume that the parameters are uniformly distributed as

(K1,...-, K 7 g) = E - = [0.01, 4]s. In Figures 4-3, 4-4 we show the primal and

the adjoint solution to the thermal fin problem using two different realizations of the

uncertain parameters (.
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4.1.3 Reduced-Basis

Primal-Adjoint Approach

First we shall evaluate the performance of the reduced-basis method for this problem.

To initialize the greedy algorithm, we first need a discretization E of the continuous

parameter space E. As proposed in the previous chapter a sparse grid of level 4

(3937 points) is used as nodal set E. The one-dimensional points are obtained with

Clenshaw-Curtis abscissae, since the parameters are assumed uniformly distributed.

The 8-dimensional problem is run separately for the primal and the adjoint, and the

stopping criterion is set when the output error estimator for both the primal and the

adjoint are below et = 10-3, i.e.

r (V;C)||Ix/ < 10-3 1r d (V; C IX < 10-3 (4.1)

The computation of these error estimators is trivial, since all the parameters are

strictly positive, hence a lower bound for the coercivity constant is obtained using

equation (2.31) for ( = (1, ... , 1), that is recovering the Laplacian operator. Fur-

thermore, since the primal and the adjoint need not converge at the same rate, the

algorithm is designed to run until both error estimators are below the prescribed

tolerance.

In Figure 4-5 the convergence results for both error estimators are shown. For this

particular example, note that the adjoint converges slower than the primal, and in

particular takes 4 more steps in the greedy algorithm to achieve the desired tolerance.

To assess the power of the reduced basis approach we have performed the following

numerical experiment. On the offline stage, we have solved the exact PDE for a total

of 500 parameters randomly chosen from the underlying probability density function

(in this case multivariate uniform), thus the exact value of the output has been

obtained for this set of parameters. After the reduced-basis has been computed, we

perform the online stage evaluation for the same set of 500 parameters and compare
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Figure 4-5: Output error estimator em() / ^() and e d () / S() versus size of
the reduced-basis M, Md

the absolute error using both the reduced-basis output sm( ) and the reduced-basis

enhanced output gm,m, (c). Results are depicted in Figure 4-6. Note that the primal-

adjoint approach performs as expected, since roughly the 32% of the sample points

have an output error greater than 10-6, and the rest lie below. However, convergence

of the reduced-basis output sM( ) is much better than expected. In fact, the vast

majority of samples have an output error below 10-, one order of magnitude less

than the one imposed by the greedy.

Primal Approach

In light of the results shown in Figure 4-6 we can consider, instead of performing M

steps of the greedy algorithm for the primal and Md for the adjoint, just performing

M ~ M + Md steps for the primal only.. The problem is solved as before, but now

using only the primal for the greedy algorithm. The greedy terminates whenever

the output error estimator is below the prescribed tolerance et,. The convergence

of the output error estimator versus the number of reduced basis, here denoted M
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Figure 4-6: Blue dots: Is( ) - sm( )|; red asterisks: s(() - gM,Md(") versus re-
alizations of the parameter. Straight line corresponds to desired output tolerance

= 10-6
Etol

to differentiate from the latter approach, is presented in Figure 4-7, superimposed

to the results already displayed in Figure 4-5. Similarly as before, the value of the

true output error using the same 500 realizations as before is shown in Figure 4-8.

Note that in this case the 97% of realizations have an output error below the desired

tolerance. It seems that for this particular problem it may be also interesting to

consider only the primal equation, since it gives results much better than expected.

The primal approach needs M = 61 full problem evaluations, whereas the primal-

adjoint approach needs M + Md = 35 + 39 = 74. In addition to that at iteration

n of the greedy algorithm we need to solve an n x n system for all the remaining

candidates in our discrete parameter set E. It is obvious that the primal approach

requires a larger number of system solves (of increasing size), since it needs to run

for more iterations, whereas the primal-adjoint terminates before. This involves that

although we need to solve for systems for both the primal and the adjoint, these

systems are smaller. The difference becomes more obvious as the discrete parameter

set contains more points.
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Furthermore, the size of the final reduced-basis plays an important role in the

online stage, since for every new parameter systems (2.26) must be solved. Indeed,

the primal approach involves solving a full system of size 61 x 61 for each new sample,

while the primal-adjoint approach requires solving a system 35 x 35 and a system

39 x 39, also full. However, as Figures 4-6, 4-8 point out, convergence of the reduced-

basis output is superior to convergence of the reduced-basis enhanced output for a

prescribed tolerance on the greedy. For this particular problem, both approaches will

be used for the uncertainty propagation.

Uncertainty Propagation

The final step is to assess the uncertainty in the quantity of interest, that is the

average temperature over the fin, given uncertainty in the thermal diffusivity of the

subfins and in the flux. Assuming that the random variables are uniformly distributed

in (1...1 , ,g) = E = [0.01,4]8, we shall use the surrogate constructed with

reduced-basis to evaluate the moments and the probability density function of the

output. For this particular example, we use the approaches introduced before, that

is the primal-adjoint reduced-basis or just the primal one. Both surrogates are used

to propagate uncertainty with two different Monte Carlo techniques: a set of pseudo-

random numbers and a set of quasi-random numbers.

The results are compared to those obtained using a stochastic collocation method

on the same 8-dimensional sparse grid of several levels. The sparse grid has been con-

structed as the sparse product of 1D Clenshaw-Curtis points, hence E also constitutes

a cubature set. Therefore, the k-th moment of the output may be computed using

numerical integration as Ak E [S.k] = sk(()wj, where s( j) is the value of the

output for ( = ( solving the corresponding HDG problem and wo is the integration

weight.

The results are presented for the first four raw moments #k, k = 1, 2, 3,4 of the

output in Table 4.1. Furthermore, we also include comparisons with respect to stan-
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dard Monte Carlo and Quasi-Monte Carlo sampling. Robustness of the Monte Carlo

methods is used to assess the validity of our model. The reference value for each

moment is the one obtained using standard Monte Carlo techniques (pseudorandom

numbers), since we can also compute errors in the moments according to equation

(4.2), where J is the total number of samples

Skk=
Pk = j (4.2a)

j=1

Ek = (4.2b)

where ek is an unbiased estimator of the standard deviation of fAk derived using the

Central Limit Theorem, known as the Monte Carlo standard error. Results from

a Quasi-Monte Carlo simulation are also shown, although no standard error can be

computed, since there exists no Central Limit Theorem for low-discrepancy sequences.

For all QMC computations a Sobol sequence generated by MATLAB has been used.

Method A1 12 A3 A4

MC 0.732 ± 0.004 2.47 ± 0.08 31.5 ± 0.8 680 ± 71
QMC 0.734 2.56 34.3 773
RB Primal-Adjoint MC 0.732 2.47 31.5 680
RB Primal-Adjoint QMC 0.734 2.56 34.3 773
RB Primal MC 0.732 2.47 31.5 680
RB Primal QMC 0.734 2.56 34.3 773
SC level 4 0.330 -0.013 -11.6 -856
SC level 5 0.331 0.076 -7.1 -944

Table 4.1: Results for the first four raw moments for the reduced-basis uncertainty
propagation and stochastic collocation, compared with MC and QMC results

Computations for both the full model and the reduced-basis model are set 105

model evaluations, even though the running time is significantly different. The

reduced-basis employed are the ones previously obtained, that is with size M = 61

for the primal only and M + Md = 35+39 = 74 for the primal-adjoint approach, both
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computed with the greedy algorithm on a discrete candidate set consisting of a sparse

grid of level 4 in 8 dimensions. To further assess the quality of the reduced-basis, the

same set of MC/QMC 105 samples will be used for propagating uncertainty with the

reduced-basis.

Note that the stochastic collocation method fails to converge for this example.

Stochastic collocation methods usually offer algebraic convergence, and even expo-

nential if the output function is very smooth. However, for the problem presented

above, the response surface is not smooth. To verify it, a simple test has been per-

formed considering only two uncertain parameters, i in the main domain and r12 for

the rest of subfins, with prescribed flux g = 1. In Figure 4-9 a contour plot of the

field of sensitivities of the output with respect to ti is depicted. The kink that can

be observed compromises the smoothness of the function, hence the performance of

the stochastic collocation method. The reduced-basis results are much better, since

4
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Figure 4-9: Field of sensitivities ds/O81 in the 1 - K2 space

the results obtained using the surrogate are indistinguisable to those computed with

MC/QMC simulations of the full model. The reliability is assessed by computing the

maximum and average relative error for all the MC samples. Results are presented

in Table 4.2 for both the primal/primal-adjoint and MC/QMC simulations.
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Average relative error Maximum relative error
RB Primal-Adjoint MC 2.35. 10-6 1.67. 10- 5

RB Primal-Adjoint QMC 2.35 -10- 1.73-10-
RB Primal MC 2.58. 10-7 3.54 -10-6
RB Primal QMC 2.58. 10-7 3.29 -10-6

Table 4.2: Values of average and maximum relative error I - M,M()| /|s(() for
the 105 MC/QMC samples.

The reduced-basis approach is more robust in the sense that once the dominant

modes of the solution have been captured, the uncertainty propagation is carried out

using MC techniques. Furthermore, it is also much more computationally efficient,

since the number of full model evaluations to obtain an accurate prediction of the

output moments is several orders of manitude smaller than the full model evaluations

needed for MC methods. For this particular case, it is either 35 + 39 or 61 vs 105,

which implies a dramatic saving. Finally, the probability density function (PDF) of

the output is shown in Figure 4-10.

4
S

6 8 10

Figure 4-10: Probability density function of the average temperature over the fin,
obtained using histogram techniques for the MC simulation
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4.2 Wave Propagation

4.2.1 Definition

To test the reduced-basis uncertainty propagation for noncoercive and nonsymmetric

linear problems we utilize a wave propagation problem modeled with the Helmholtz

equation, i.e. in the frequency domain. The problem setting is depicted in Figure

4-11. The boundaries correspond to the ones defined in the strong formulation (3.1).

A wave is generated from the point source (modeled as a Gaussian source to avoid

regularity problems). The wave propagates through an heterogeneous medium of

variable density p(C) and constant sound speed c. The wavenumber k = w/c of the

Figure 4-11: Geometry of the wave propagation problem.

wave that propagates through the medium

The source generates a

propagating wave is assumed constant. The unknown of this problem is the acoustic

field u, and satisfies a Neumann boundary condition at the surface I'N and a Som-

merfeld radiation (also known as absorbing) condition on the remaining boundaries,

defined as lim r1/2  - - ik u = 0. The radiation condition guarantees uniqueness
r-+o~o ( r

of the solution to the Helmholtz equation. It characterizes radiating solutions, that

is the energy radiated form the sources must scatter to infinity.

The uncertainty in the problem arises from the heterogeneity in the medium. We
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will assume that the random density p( ) has the form

L
P( ) = Po + o E- cos

i>1

2iirx

L (4.3)

this form is similar to those obtained from a KL expansion of a random process with
L 2

eigenvalues decaying like 2. The decay of the eigenvalues is depicted in Figure
(2ir)2

4-12. Note that the decay is quite slow, since it takes approximately 57 modes to

retain 99% of the energy.

100

10

102

0-3110
0C 20 40 60 80 100

Figure 4-12: Decay of eigenvalues of the random density in normalized scale

The random variables are assumed independent and identically distributed uniform

between [-1, 1]. For the computations presented here, we have used the values o =

0.3, L = 10 and po = 2. We employ expression (4.3) to eliminate the errors arising

from a KL expansion and to have an analytic formula to simplify the computation of

the integrals required in the HDG method.

The quantity of interest for the wave propagation problem is defined as the average

amplitude on the wave along the surface 'N. The output is smooth, thus a similar rate

of convergence for both the primal and the adjoint should be expected. Throughout
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this example we will assume the wavenumber is constant and equal to k = v', hence

we focus on the low-frequency case.

15

Figure 4-13: Discretization of the wave propagation

1435 triangles of polynomial degree p = 4

problem domain, using a total of

4.2.2 HDG solution

The subsequent computations are performed with the mesh shown in Figure 4-13.

Note that the mesh is refined around the location of the source. The mesh is also

triangular with a total of ne = 1435 straight elements of order p = 4. The dimension

of the high-order discontinuous finite element space is M = 32525, divided into 21525

degrees of freedom for both Uh, Oh and 11000 degrees of freedom for the numerical

traces Uh, Oh. Therefore the size of the HDG global problems to solve is 11000.

In Figure 4-14 there is a primal and an adjoint solution (only the real part) to the

Helmholtz problem for an arbitrary value of the parameter, using a total of 10 terms

in the density p( ). Solutions in Figure 4-14 are generated using the density field

shown in Figure 4-15a, for the source depicted in Figure 4-15b.
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Figure 4-14: Left: Real part of primal solution. Right: Real part of adjoint solution
to the wave propagation problem for an arbitrary value of ( using 10 terms in the
expansion of p( ).
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Figure 4-15: Left: Density field to generate solutions in
field for the wave propagation problem.
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Figure 4-14. Right: Source

4.2.3 Reduced-Basis

The reduced-basis approach for the Helmholtz problem is first assessed. The starting

point of the greedy algorithm is a sparse grid, denoted as E, using again sparse

products of Clenshaw-Curtis points. The greedy is run separately for both the primal

and the dual, but since do not include the estimation of a lower bound inf-sup stability
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constant #(a), the output error estimates are neither sharp not rigorous for this case.

Instead, we will use as a termination criterion one similar to the verification criterion

used for the thermal fin problem. We will precompute the exact solution to the

problem for a total of 500 arbitrary samples that constitute the test set 6. At each

step of the greedy, we will compute Is( ) - 9M,Md (,) for all the arbitrary samples,

and the greedy will terminate whenever

IS(() - gM,Md W toV

Note that although the choice of the points differs between the primal and the adjoint,

since we do not have a separate termination criterion, the final reduced-basis will have

the same size, i.e. M = Md. For this test case we can consider several number of

stochastic dimensions, since the expansion of the density field can be truncated for

the desired number of uncertain parameters.

Primal vs Primal-Adjoint Approach

Firstly, we perform the same comparison as that of the thermal fin problem, compar-

ing the number of greedy iterations to reach the desired tolerance using either just

the primal problem or both the primal and the adjoint. For this test case, we resort

to a low-dimensional parametric space N = 3, being the discrete set a sparse grid of

level 6 (total of 1073 points), to make sure is reach enough to guarantee convergence

of both approaches. The results are depicted in Figure 4-16. For this particular

problem is obvious that the computation of a reduced-basis for the adjoint greatly

benefits the convergence results. Indeed, the primal only approach needs almost four

times (132 vs 34) the number of greedy iterations compared to the primal-adjoint

approach. Therefore, not only the full model solves are lower for the primal-adjoint

approach and the greedy iterations are more expensive, but also the size of the sys-

tems to solve on the online stage is significantly smaller. The results presented below

are computed with the primal-adjoint approach, since for this particular problem it
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Figure 4-16: Maximum relative error for samples in e versus size of reduced-basis,
for both primal and primal-adjoint approaches

has proven much more effective.

N = 4 Dimensions

We first consider a low-dimensional case, where the density expansion is truncated

using only 4 parameters. Retaining 4 expansion modes of the density is equivalent

to considering 87% of the total energy. For this case, we shall assess the effectivity

of the sparse grid for this particular problem as a discretization of the parameter

set for the greedy approach. Low-dimensionality allows us to compare the sparse

grid with a tensor grid that contains the sparse grid. This comparison is interesting

because the tensor grid covers the parameter space, whereas the sparse grid focuses

on the cartesian directions and on the boundaries of the domain. In Figure 4-17 the

comparison between both grids and outputs is shown, using a base ID Clenshaw-

Curtis grid of level 4, consisting of 17 points. Observe that despite the tensor grid

has more candidates to choose for the greedy, convergence of the reduced-basis has
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Figure 4-17: Maximum relative error for samples in e versus size of reduced-basis, for
both primal and primal-adjoint approaches. Comparison between sparse grid level 4
(401 points) parameter set and tensor grid (83521 points). Tensor grid is run with a

tolerance of Etoi = 10- and sparse grid with a tolerance of Etoi = 10 5 .

approximately the same rate for both grids. Having observed that the convergence

does not deteriorate if we substitute uniform gridding by sparse products of grids,

the idea of training the greedy algorithm on a sparse set of points seems reasonable.

Indeed, the computational savings are enormous, since at each step of the greedy the

number of error bounds to compute differ by two orders of magnitude, thus greatly

economizing the construction of the reduced-basis.

Furthermore, a straight comparison between the reduced-basis method and the

stochastic collocation method can be performed, since the discrete set of points used

for both approaches is the same. The main difference is that for stochastic collocation

methods the solution of the PDE has to be found at each point in the discrete set e,
whereas for the reduced-basis approach we will solve only for the points chosen by

the greedy.
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N = 8 Dimensions

Convergence results for the reduced-basis using a truncation of 8 parameters (93% of

energy) are presented. For this case no comparison with the tensor grid is done, since

the exponential explosion of points constitutes a major obstacle for uniform gridding.

The greedy algorithm is trained here on a sparse grid of level 4 (3937 points), and

convergence results are shown in Figure 4-18.

-- SG output
-SG enhanced output

0
l 10 ----.-

0

20 40 60 80 100 120 140 160 10
Size of reduced-basis

Figure 4-18: Maximum relative error for samples in N versus size of reduced-basis,
for both primal and primal-adjoint approaches. Sparse grid of level 4 (3937 points)
with a tolerance of E = 10-.

The slow decay of the eigenvalues becomes obvious as we increase the dimen-

sionality. In order to reach the same level of accuracy as before, the size of the

primal-adjoint reduced-basis is 180 (hence 360 full model evaluations), whereas for

the low-dimensional case only 73 basis functions (total of 146 full model evaluations)

are needed.

Note the power of combining a sparse grid and the adjoint equation. Applying

the greedy algorithm on a sparse grid allows us to explore a high-dimensional space
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avoiding the computational complexity of a tensor grid. Furthermore, developing the

reduced-basis for the adjoint equation has proven very advantageous for this particular

problem. Besides reducing the number of full model evaluations, see Figure 4-16, it

also decreases the computational effort to evaluate the surrogate, since the systems

(2.41) that we need to solve in the online stage are significantly smaller.

N = 16 Dimensions

For the last test case we consider a density field truncated at 16 parameters (96% of

energy). The result is presented only for the sparse grid, again with level 4 (51137

points) in Figure 4-19. The greedy algorithm is run up to a tolerance of etoi = 10-4,

since each iteration of the greedy is much more expensive for this case. The analysis

to be performed here is the same as for 8 dimensions, and the advantages of solving

the adjoint problem become even more clear. Indeed, the maximum relative error

in the normal output when the greedy terminates is larger than 101. To reach the

prescribed tolerance a total of 181 basis functions (362 full model evaluations) are

needed.

4.2.4 Uncertainty Propagation

Once the reduced-basis have been computed for several number of dimensions, the

final step is to assess the uncertainty in the quantity of interest by performing online

evaluations of the surrogate reduced-basis model using MC techniques. The study

is based on the moments of the real part of the total amplitude, that is s = R(s).

Results for the imaginary part present the same features, and are therefore omitted.

For all cases, we will assume that the random variables are independent and uni-

formly distributed in [-1, 1], and three sets of results are presented. Firstly, we

compute the moments employing standard MC simulation with 10 5 samples. Sec-

ondly, we evaluate the reduced-basis on the same set of 105 MC samples, hence we

can also assess the reliability of our surrogate. Finally, the moments of the output
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Figure 4-19: Maximum relative error for samples in e versus size of reduced-basis,
for both primal and primal-adjoint approaches. Sparse grid of level 4 (51137 points)
with a tolerance of 6 toi = 10-4.

(4.2a) are also computed using the stochastic collocation method on the same sparse

grid used for the greedy algorithm.

N = 4 Dimensions

Results for both the reduced-basis uncertainty propagation (RBUP) and the stochas-

tic collocation method for N = 4 are presented in Table 4.3. All computations are

performed using a sparse grid of level 4 (401 points), either as the discrete set for the

greedy or as the cubature set for the stochastic collocation method. The results ob-

tained using the reduced-basis surrogate are very accurate for both tolerances, which

suggests that our reduced-basis effectively captures the dominant information. Ob-

viously, the computational complexity is smaller the lower the tolerance because not

only we need more full model solves, but also the greedy iterations are more expensive

as the basis grows. Indeed, for the case Et.i = 10-3 a total of 36 basis functions are

needed, whereas for E,.i = 10-4 we need 50. Furthermore, to assess how accurate is
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MC -1.252 ± 0.003 2.486 ± 0.007 -5.22 ± 0.02 11.52 ± 0.04
RB (etoi = 10-3) + MC -1.252 2.486 -5.22 11.52
RB (Etoi = 10-4) + MC -1.252 2.486 -5.22 11.52
SC -1.245 2.484 -5.22 11.51

Table 4.3: First four raw moments of real part of output for the 4-dimensional prob-

lem. Results for MC simulation are shown with one standard error. Results for the

reduced-basis uncertainty propagation are provided using the same set of MC samples

and two different tolerances for the greedy. Results for stochastic collocation are also

shown.

the surrogate that we have constructed, we evaluate the relative error between the

exact output and the reduced-basis outputs (primal only and primal-adjoint) at each

MC sample. Results are shown in Table 4.4.

Size of RB Average relative error Maximum relative error

M = Md = 36 1.17 -10- 3.53
M = Md = 50 1.04 - 10- 1.76.10-2

Table 4.4: Values of average and maximum relative error Is() - gM,M ) /() for

the 105 MC samples in 4 dimensions.

Based on these results we can conclude that the surrogate constructed is very ac-

curate. The fact that the termination criterion for the greedy is based on a maximum

relative error is very strong, and the results in Table 4.4 suggest that even with less

basis functions a very descriptive surrogate may be constructed. The introduction of

sharp and rigorous a posteriori error estimates will help us overcome this issue.

The stochastic collocation method has a very good convergence in this case, since

the response surface is smooth. The evaluation of the output moments is straightfor-

ward having chosen the interpolation nodes to be cubature nodes, and the complexity

relies solely on performing 401 full model evaluations. However, if we want to com-

pute the PDF, the interpolant needs to be constructed and evaluated at a set of

random points. Efficient ways to do so may be found in [501. The PDF for the MC

simulation is shown in Figure 4-20. The PDF is obtained using histogram and ker-

nel density estimation techniques. Histograms will usually render non-smooth PDFs,
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Figure 4-20: Probability density function of the real part of the amplitude at the
Neumann boundary, obtained using histogram techniques for the MC simulation

but the representation of the overall behavior is accurate. Kernel density estimation

smoothes the PDF even when it is not, hence we may lose locality. Both phenomena

can be appreciated in 4-20.

N = 8 Dimensions

Results for both the reduced-basis uncertainty propagation and the stochastic col-

location method are presented in Table 4.5. All computations are performed using

a sparse grid of level 4 (3937 points), either as the discrete set for the greedy or as

the cubature set for the stochastic collocation method. The setting is the same as

before. Note for this case the size of the reduced-basis is 69 with tolerance Eto = 10-3

and 97 with tolerance 6to = 10-. Results in Table 4.6 reflect the accuracy of the

reduced-basis surrogate, which is very high. The stochastic collocation method pro-

duces moments that lie again within one standard deviation of the MC result.
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MC -1.246 ± 0.003 2.484 ± 0.007 -5.22 ± 0.02 11.51 ± 0.04
RB (stoi = 10--) + MC -1.246 2.484 -5.22 11.51
RB (Et0 i = 10-4) + MC -1.246 2.484 -5.22 11.51
SC -1.248 2.490 -5.23 11.55

Table 4.5: First four raw moments of real part of output for the 8-dimensional prob-
lem. Results for MC simulation are shown with one standard error. Results for the
reduced-basis uncertainty propagation are provided using the same set of MC samples
and two different tolerances for the greedy. Results for stochastic collocation are also
shown.

Size of RB Average relative error Maximum relative error
M = Md = 69 8.36 - 10 -5
M = Md = 97 8.06. 10-

Table 4.6: Values of average and maximum
the 105 MC samples in 8 dimensions.

3.72. 10-3

relative error |s() - sM,M /s( for

N = 16 Dimensions

Results for both the reduced-basis uncertainty propagation and the stochastic collo-

cation method are presented in Table 4.7. All computations are performed using a

sparse grid of level 4 (51137 points), either as the discrete set for the greedy or as the

cubature set for the stochastic collocation method. The size for the reduced-basis

Method A2 A3 I 4
MC -1.250 ± 0.003 2.496 ± 0.007 -5.25 ± 0.02 11.59 ± 0.04
RB (Etoi = 10-3) + MC -1.250 2.496 -5.25 11.59
RB (Etoi = 10-4) + MC -1.250 2.496 -5.25 11.59
SC -1.249 2.494 -5.24 11.58

Table 4.7: First four raw moments of real part of output for the 16-dimensional
problem. Results for MC simulation are shown with one standard error. Results for
the reduced-basis uncertainty propagation are provided using the same set of MC
samples and two different tolerances for the greedy. Results for stochastic collocation
are also shown.

is 93 with tolerance Etoi = 10-3 and 181 with tolerance stoi = 10-4. The accuracy

of the reduced-basis is assessed with the relative errors of the output for the MC

samples, provided in Table 4.8.
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Size of RB Average relative error Maximum relative error
M = Md = 93 8.33 - 10' 5.36- 10-
M = Md = 181 1.04 -10-5 2.91- 10-

Table 4.8: Values of average and maximum relative error s - MM (N / s() for
the 105 MC samples in 16 dimensions.

Moments computed with stochastic collocation method converge to the moments

predicted by MC. However, the fact that results are very similar for all three cases

suggest that for this particular problem dimensionality does not play a big part. Even

though the expansion for the density decays very slowly, additional dimensions are

not really relevant to the quantity of interest. Therefore, a more fair comparison

should be made with anisotropic sparse grids, since it would weigh dimensions differ-

ently. Comparisons with anisotropic sparse grids, as well as adaptivity for the greedy

algorithm is left as future work.
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Chapter 5

Conclusions and Future Work

In this final chapter we draw conclusions from the research presented above, situating

this work in the reduced-basis and uncertainty propagation framework. Furthermore,

future lines of research are also introduced.

5.1 Conclusions

In this thesis a reduced-basis method for uncertainty propagation using the Hybridiz-

able Discontinuous Galerkin method has been devised. One of the main contributions

of this thesis is to apply reduced-basis methods to the HDG method, and it has been

demonstrated for linear elliptic equations. Reduced-basis methods have been widely

used along with Continuous Galerkin Finite Element discretizations, but with the

recent developments in powerful simulation tools for partial differential equations,

it is natural to try to adapt existing algorithms to new high fidelity methods, such

as HDG. The resulting formulation uses the HDG natural norm, and retains the

properties of only solving for the global degrees of freedom.

Furthermore, we have applied reduced-basis techniques for uncertainty propaga-

tion purposes. The main idea of reduced-basis methods is to detect the underlying

structure of a parametrized PDE (creating a reduced order model) using error es-
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timates in a way that the full model is only solved for the values of the parameter

that we really need. The offline-online computational strategy allows to decouple the

computational complexity of the full model for the online stage, hence the method is

suited for multiple queries. Therefore, if the stochasticity in the PDE can be reformu-

lated into parametric uncertainty, e.g. finite dimensional noise assumption, stochastic

PDEs can be treated as parametric PDEs, and MonteCarlo techniques may be used

for uncertainty propagation. This approach, first pursued by Boyaval et.al. [10] is

the one that has driven this work.

The main contribution of this work is to extend the reduced-basis method for

stochastic PDEs to the more general noncoercive non-compliance case, taking advan-

tage of adjoint techniques to accelerate the convergence of the reduced-basis, com-

bined with the use of high-order simulation tools (HDG). This method has proven

successful for the numerical examples presented above, enabling a reliable assessment

of the uncertainty in the quantity of interest. Furthermore, provided an accurate dis-

cretization of the parameter space is achieved, it has proven to outerperform stochastic

collocation methods when the response surface lacks smoothness. The reduced-basis

method for uncertainty propagation retains the robustness of classical MonteCarlo

methods, with a significant reduction in computational cost.

For the noncoercive case the results are also satisfying, although the stochastic col-

location method provides accurate solutions due to regularity of the response surface.

The main gain is in function evaluations as we increase dimensionality (although the

greedy iterations are more expensive). For instance, the test case with 16 dimensions

involves a number of full model solves for the reduced-basis which is only 0.37% of

the total solves needed for stochastic collocation, using the same isotropic sparse grid.

5.2 Future Research

The work presented here is just the first step towards a more generalized and rig-

orous reduced-basis uncertainty propagation algorithm using HDG simulations. In
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the immediate future, there is a need to incorporate rigorous and sharp a posteri-

ori error estimators for the wave propagation problem. The lack of estimation of

a lower bound of the inf-sup stability constant has rendered a method that is not

self-stopping. Instead, it needs a set of precomputed solutions to assess the reliability

of the reduced-basis, hence losing competitiveness. Furthermore, for examples where

we have resonances in the domain, estimation of /( ) is of vital importance, since

it becomes close to zero near resonances. For this kind of problems the a posteriori

error estimators need to be accurate, otherwise the greedy algorithm might fail to

recognize the most predominant information in the problem. Techniques such as the

Successive Constraint Method (SCM) and the discrete eigenvalue problem are the

most common approaches in the reduced-basis setting to estimate the lower bound

of the stability constant. Finally, we want to study the wave propagation problem on

a high-frequency setting, which becomes more difficult to treat with reduced-basis.

High-frequency wave phenomena are challenging because the system itself has more

information and a more complicated structure, hence a larger basis is needed to cap-

ture this information.

Furthermore, the work developed in this document assumes an affine parametric

dependency, which is quite a restrictive assumption. It would therefore be interest-

ing to incorporate nonaffine parametric dependency to the reduced-basis uncertainty

propagation, and to assess the competitiveness with respect to stochastic collocation

methods. Moreover, extension to nonlinear PDEs is much more challenging, especially

for reduced-basis, and would also be an interesting future research line.

On another level, there is the crucial issue of how to select the points for the greedy

algorithm. Although the offline-online strategy simplifies the evaluation of the error

estimators, as the number of candidates grows the greedy search can become infeasible

(although it can be parallelized). The use of sparse grids helps alleviate the explosion

of points when dealing with high dimensions, but it is not an optimal choice. The

fixed structure of sparse grids and its alignment along the axes may be a major

difficulty whenever the response surface presents coupling between dimensions or
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very localized information. For the low-moderate dimensional cases presented here,

the computational effort is bearable, but if we need a not-that-coarse sparse grid

on a very high dimensional space the curse of dimensionality makes its apperance.

Stochastic collocation methods are usually applied on anisotropic or adaptive sparse

grids to partially overcome the curse of dimensionality whenever a certain structure

can be detected in the space. Much research has been devoted to develop efficient

algorithms to adapt the sparse grids, a procedure that is usually done on-the-fly,

since it is very difficult to estimate the relevant dimensions a priori. To test the

competitiveness of the reduced-basis uncertainty propagation comparisons should be

made with stochastic collocation methods on adaptive sparse grids. For very high-

dimensional cases where many dimensions are not relevant, anisotropic sparse grids

will most likely beat the reduced-basis if no adaptation is performed for the greedy.

Nonetheless, one of the most important differences between reduced-basis for un-

certainty propagation and stochastic collocation is whether the points serve interpo-

latory purposes or not. The fact that for reduced-basis we just need a set of 'mean-

ingful' points to feed the greedy gives us much more freedom. For a high-dimensional

space where sparse grids may fail, we can resort to random or stratified sampling on

the high-dimensional space, by prescribing the allowed number of candidates for the

greedy subject to a certain computational budget. However, this does not solve the

problem of how to pick the points in high dimensions. Recent work by Narayan et.al.

based on Leja sequences and least orthogonal interpolation sheds some light onto the

choice of points in high dimensions, and it may be an interesting path to explore.

A different approach that could potentially be useful would be to perform a greedy

search on a continuous space. This setting is very interesting, since the limitation to

a prescribed set of points vanishes. However, the response surface is in general nasty,

with a lot of local minima and therefore difficult to optimize. Instead, we might resort

to less ambitious but hopefully yet effective approaches, for example

=M+1 = arg max IsM+P - sM| (5.1)
1E
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where SM+P is the output computed by a collateral reduced-basis of dimension M + P

that contains the original reduced-basis of dimension M. Note that derivatives are

trivial to compute in a reduced-basis setting, hence problem (5.1) would be inexpen-

sive to solve.
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