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Abstract

In this research we model a job shop that produces a set of discrete parts in a
make-to-stock setting. The intent of the research is to develop a planning model to
determine the optimal operating tactics that minimize the relevant manufacturing
costs subject to workload variability and capacity limits. We model the interplay of
three key components in the job shop, namely, the production frequency for each part,
the variability of production at each work station, and the level of parts inventory.
We consider two operating tactics (decision variables): the production lot size for
each part and the planned lead time for each work station.

We model the relevant manufacturing costs, entailing production overtime costs and
inventory-related costs (finished parts, work-in-process, and raw materials), as
functions of these decision variables. We formulate a non-linear optimization model
and implement it in the Excel Spreadshect. We solve the model with the premium
Excel Solver to determine the minimum-cost operating tactics. We test the model
with both hypothetical and actual factory data from our research sponsor. The target
factory processes 133 product parts on 59 work stations. The results are consistent
with our intuition and demonstrate the potential value from optimizing over these
tactics; these tests also provide some managerial insights on the application of these
operating tactics.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science & Engineering Systems
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1 Introduction

1.1 Motivation

Job Shop Svstem

Our work is motivated by real-world planning challenges faced by manufacturers who
run complex manufacturing systems such as job shops. A job shop contains multiple
types of work stations that process multiple types of jobs or families of items. A
great many manufacturing facilities can be described as job shop systems - machine
tool shops, part fabrication shops, paint shops, commercial printing shops, to name a

few.

Each product family (or job type) produced by the job shop can have a distinct
processing route and thus the pattern of the work flow in a job shop is often quite
complicated. This often leads to long product flow times due to system congestion
and due to the complexity of flow planning. Typically a job spends a majority of its

time waiting in the queues in front of work stations in job shops.

The planning and scheduling for a job shop has long been recognized as a hard
problem. The performance of a job shop depends on the operating tactics applied,
including production sequence scheduling, queucing rules, lot-sizing decisions,
buffer-time planning, to name a few. One common objective is to meet the quoted
delivery times for each job with the least manufacturing costs subject to fluctuating
workload. There is an extensive literature dedicated to improving the operational

efficiency in job shop systems and we review the most relevant ones in Chapter I1.
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Common Strategies to Demand Uncertainties

Manufacturers operating with job shop systems face new business challenges
nowadays with an ever faster product life cycle and greater demand uncertainties.
Manufacturers are not only required to provide quality products, but also better supply
chain performance with short and reliable delivery lead times. To remain
competitive in the market, manufacturers seek better operating tactics to improve their
efficiency in production and inventory management without increasing operating

Ccosts.

Common strategies to deal with demand uncertainties include building safety stock
inventory and investing in production flexibility. A higher inventory level is
associated with higher inventory management costs, higher capital losses, and risks of
product obsolesce. Investment in production flexibility might entail the acquisition
of more production equipment and tooling to raise the production capacity above the
average demand or the development of an expediting capability such as working
overtime or sub-contracting. There exists a trade-off between these two strategies,
namely one can choose to increase inventory levels to handle anticipated fluctuations
in demand while keeping a steady production level, or to invest in production
flexibility that would allow the production level to vary with demand, resulting in

lower inventory requirements.

An alternative strategy for building more final inventories (or downstream inventory)
is to build more work-in-process inventories at the upstream stages of production.
Many manufactures find this alternative useful since it mitigates the risk of holding
large amount of products at the final stage. Moreover, inventory holding cost at
upstream stages is often less expensive. And in some contexts there might be risk
pooling benefits from holding an upstream inventory if a raw part or intermediate part
is common to several final products. A challenging question associated with this

strategy, however, 1s how to design the buffer sizes at each stage of production line.



In some environments, the manufacturer may be able to vary the quoted delivery
times to customers; in this way the manufacturer might be able to accommodate
varying demand by adjusting the delivery times while keeping its production level
smooth. Possibly the manufacturer can associate a delay cost with each type of
customer and choose to satisfy the most important customers first when production
capacity 1s tight. However, this may not always be a good strategy since varying the

delivery time might hurt the business in the long-run.

Qur Business Case

Our work is motivated by the real world planning challenges faced by a large factory.
The factory produces a variety of piston pumps that are used as sub-assemblies for
high value industrial applications such as iron manufacturing machinery, deck cranes,
and concrete pump cylinders. The factory operates in a business environment
characterized by short lead times, and with a moderate number of customers who
view the products (i.e., the pumps) as important components in the assembly of their

final products.

The factory manufactures 14 product models and each product model is an assembly
of about a 10 to 20 parts. Since product models can share common parts, this
translates into 133 parts in total to be produced in the factory. The factory consists
of a job shop that manufactures each part, plus assembly lines that assemble

sub-assemblies and then the final assembly for the product models (see Figure 1).

10



I Buffer Buffer | Buffer Buffer
(Row Material) (Finished Parts)y (Sub Assembly) (Finished Goods)
PRTHED ) AT T I N 5 LT EIET )
l i il mc1| mc2| mc3 | | mcag mcsol SA1 | sA2 AL || A2 || A3 i :
1 i i 1
| & 3 O7+—pO : £
Part1 1 H 0 l ] i
I i 1 ! : 1
. |e. PO B
1 1 L} 1 1
| Part 2 : 1 - . '
) )
| OO0 I
| : ; i H ]
Part3 | 1 ! | 1
1 ! 1
e f O : 1O b
| Part4 | ! i f !
1 1 ! t i
' 1 [ [ )
| i ' . i ]
1 1
i 1 i t ]
) - ]
| i i O i s '
i H i | H
Part 132 ¢ 1 L ! ]
™™ o = £
d ! | i ]
| Part 133 ~----~ S e R g
N i,
o ~ = ===
Half year Several weeks | 1 day 1 day

Figure 1: The Target Factory: Job Shop, Sub-assembly Line and Assembly Line

Our focus is on the job shop, which consists of 59 work stations and processes 133
parts. The assembly lines which have relatively short lead times will not be

considered in this research.

The operating policy for the factory is to hold an inventory of each part in a finished
parts inventory, and then follow an assemble—to-order policy for meeting demand.
That is, when a demand order is received, the factory will pull the necessary parts
from the finished parts inventory and then build the product assemblies to meet the
order. Our understanding is that this is a feasible policy, as once an order is received
there is sufficient time to perform the assembly, provided the parts are available.

The assembly lines are quite flexible and the assembly times are relatively short.

The job shop produces each part to stock, namely to the finished parts inventory. A
typical part starts with a piece of raw material, and then gets processed through a

series of work stations in the job shop. Parts are produced in lots in the job shop
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with production flow times of a few weeks. The production release for a lot is
triggered by the finished parts inventory; that is, when the parts inventory drops below
a reorder level, an order is issued to produce another lot for the part. Processing
each lot entails a sequence of process steps, usually around a dozen. Each process
step 1s specified by a work station at which the work is done, a per-unit process time
and a setup time. The lot size for each product part is set by experience in current
practice. For some process steps the “work station” is a subcontractor; that is, the
job leaves the shop and is sent to a subcontractor who performs the work and then
returns the job to the shop. For these steps, the specification of the step is in terms of

the time allowed for the subcontractor to complete the job (e.g., 5 days).

The congestion level is currently high in the job shop. Due to high demand
variability and the strict requirement for on-time delivery, the manufacturer currently
spends a lot of money on expediting activities such as working overtime. The
manufacturer is reluctant to build up a large finished parts inventory to handle the
fluctuating demand due to physical constraints and the holding costs. The
manufacturer is thus seeking tactics to reduce overall production overtime without

compromising its service level or adding more inventories in the system.

1.2 Two Operating Tactics

We consider two operating tactics, namely the production lot sizes and planned lead
times, which are used to manage the work flow in the factory in order to reduce
aggregate workload of the system, smooth the production workload at each station,

and reduce the inventory levels.
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Production Lot Sizes

A lot consists of multiple units of the same type of part. Raw materials are first
pulled from the raw materials inventory to form a lot according to the pre-determined
lot size. A lot then enters the job shop and arrives at the queue of a work station,
waiting to be processed. The processing of a lot typically involves a single setup
followed by a processing time for each unit in the lot. The lot becomes available to

be moved to the next stage only when the entire lot is complete.

Increasing the lot size will reduce the number of setups required and consequently
reduce workload on the work stations. If setup time is small, the time that a lot
spends at a work station increases almost linearly with the lot size.  'When the lot size
is large, a lot needs longer time to be processed and more work will arrive during the
time the lot being processed; an arriving lot also sees more work waiting ahead of it

and thus will have longer waiting time.

The mechanics described above lead to a complex trade-off presented by lot-sizing
decisions. On the one hand, large lot sizes cause higher work-in-process inventories
since they tend to induce longer waiting times. Large lot sizes also imply a less fluid
work flow which results in more lumpy arrivals to each work station. An increase in
arrival variability translates into higher production variability which leads to more
queuing. On the other hand, small lot sizes can reduce production variability, but
imply more frequent setups and changeovers which will increase the workload
utilization on the work stations. The higher workload induces greater congestion

which eventually drives up both inventory and overtime costs.

According to the above'reasoning, lot sizes are usually set larger for items requiring
larger setup times and for items that heavily use the bottleneck work stations.
Nevertheless, analyzing the effect of lot-sizing in a job shop is difficult since
changing one item’s lot size potentially has an impact on all other items; similarly, the

flow time for an item can be potentially affected by the lot-sizing decisions made for
13



other items.

Planned Lead Times

In the job shop environment, the heterogeneity and complexity of the work flow
creates great difficulties for production planning and scheduling. Actually, it is
common to see that we have long queues in front of some work stations, while others

are idle.

The planned lead times have been used as key inputs for Material Requirement
Planning to project how long each job should spend in each production step or work
station. The idea is to associate a reasonable amount of time for each work station

and each product item based on the analysis of their workload and routes.

The planned lead time is always longer than the required processing time; it includes
an additional buffer time in order to allow for queuing and to provide planning
flexibility. Prescribing the planned lead time on each work station is an effective

approach to regulate work flow within the system in Material Requirement Planning.

The planned lead times are usually determined according to a management policy,
taking into account the trade-off between the level of inventory and production
variability. Long planned lead times imply higher level of work-in-process
inventory (by Little’s law) and higher level of safety stocks of finished goods.
However, long planned lead times can help to dampen the workload requirements at
each work station, and thus can effectively smooth out production and reduce

production overtime.
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1.3 Model Overview and Thesis Outline

We model a job shop that produces a set of discrete parts in a make-to-stock
environment. The intent is to develop a planning tool to determine the optimal
operating tactics that minimize the relevant manufacturing costs subject to workload

variability and capacity limits.

Our model considers the two sets of operating tactics (decision variables): the
production lot size for each product part and the planned lead time for each work
station. Our model provides tractability for a general job shop system with any type
of flows. Our emphasis is on capturing the key interaction of demand and

production variability, production capacity and the level of inventory requirement.

We model the relevant manufacturing costs, including the production overtime costs
and the inventory-rélated costs (finished parts, work-in-process, and raw materials), as
functions of the production lot size (or production frequency) for each part and the
planned lead time for each work station. We pose a non-linear optimization model in
Microsoft Excel spreadsheet and solve the model with the premium Excel build-in

Solver.

Our model can be used to devise optimal lot-sizing policies or evaluate the
performance of a factory for given lot-sizing policies. Our model can also provide a
guideline for setting the planned lead times for each work station; these planned lead
times can then be used to guide overtime decisions, the appropriate release schedule
for the job shop, and the replenishment lead times for a make-to-stock job shop. Ina
make-to-order job shop the planned lead times will inform the quotation of the

delivery times for customer jobs.

The model has been tested with data from the job shop from our research sponsor.
The analysis shows that the model captures the key uncertainties and trade-offs in the

manufacturing system, and determines the minimal-cost operating tactics. The
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chosen tactics closely match the manufacturer’s existing operations and our model

provides new managerial insights on the application of these operating tactics.

The remainder of the thesis is as follows:

In Chapter 2 we review the related literature and point out how our work
complements the previous contributions to tactical planning in job shop systems.
Chapter 3 provides an extensive review on the Tactical Planning Model that is in the
center of our model. Chapter 4 describes the assumptions and the formulation of the
model. Chapter 5 discusses the implementation of the model in the Microsoft Excel
environment and presents the numerical test results on three test cases of different

scales. We finally conclude our research in Chapter 6.
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2 Literature Review

There has been a continuous effort in understanding and estimating the performance
of complex manufacturing systems like job shops. The well-known Jackson’s
Network (Jackson 1957, 1963) is one of the first models that describes the queueing
dynamics in a job shop and provides insights into the relationship between capacity
planning and job flow times. There is now an abundant literature on queueing
networks that extends the Jackson’s model. We refer the reader to Bitran and Dasu
(1992) for an extensive review on queueing network models of the job-shop like

manufacturing systems.

There are two streams of literatures that are in particular relevant to our work. The

relationship of the literatures with our work is shown in Figure 2.

Graves 86° Karmarkar et al. 85°

Cruickshanks et al. 84’

Adshead et al. 86° Fine and Graves 89’ Zipkin 86’
Yano 87’ Graves etal. 98°,01° Bertrand 85°
Gong et al. 94 Hollywood 05’ Lambrecht and Vandaele 96’

Teoetal. 11°,12°

Matsuura et al. 93°,96 Kenyon et al. 05’

Impact from Setting Planned Tactical Planning Model Impact from Lot-sizing
Lead Times and Extensions Decisions

Figure 2: Relationship of the Literatures with Qur Work
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One stream of research works focus on setting Planned Lead Times. The planned
lead time of a job is defined as the time span one plans for a job to spend at a step or
stage in the system. The major question is how to set planned lead times and how to
quantify the economic benefits when using planned lead times as control variables.
Cruickshanks et al. (1984) first introduced the concept of a Planning Window in the
environment of a job shop. Their model showed that small changes in the planning
window can provide substantial benefits for production smoothing, in exchange for an
increase in the flow time allowed for each order. Adshead et al. (1986)
experimented with different rules in a simulation model in order to understand how to
set planned lead times for each job under different circumstances. They found when
the lead time is tight with respect to the due delivery time, an assignment rule based
on the workload and number of operations in the job usually results in better
performance. Efforts have also been paid on developing analytical models to
determine the optimal planned lead times in terms of inventory holding and job
tardiness costs.  Yano (1987) and Gong et al. (1994) showed that there exists optimal
planned lead times for serial production system in terms of inventory holding and
tardiness costs. They also described computational procedures to find the optimal
solutions. Matsuura and Tsubone (1993) developed a single-stage model to
minimize workload variability under a particular rule of setting the planned lead times.
Matsuura et al. (1996) extended the single-stage model to a multiple-stage one with
the objective of minimizing the workload variability for the bottleneck machine in the

system.

Our work is based on the Tactical Planning Model (TPM) developed by Graves
(1986). The TPM describes a network of work stations in a job shop and characterizes
the operational behavior within the system. In the TPM model, the production rates
are determined according to the workload in the queue. In particular, it applies the
linear production rule which sets the production rate as a fixed proportion of the
queue level at the beginning of the time period for each work station. The TPM then

associates a planned lead time with each work station and determines the first two
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moments of the production levels at cach work station, as well as the distribution of
queue lengths. (The linear production rule has later been generalized as clearing
functions that specify the fraction of current work-in-process to be “cleared” by a
resource in a given period of time. We refer the reader to Karmarkar (1989),
Karmarkar (1993), Asmundsson et al. (2006), and Selcuk et al. (2008) for more

literature along this line of research.)

The TPM provides a tractable way to characterize the planned lead times in complex
manufacturing systems such as job shops and to model the relationship to production
smoothing. The model can be used to model the variability in the shop, balance the
WIP inventory levels vis-a-vis the capacity levels for equipment and labor, examine
the consequences when the workload release rule is changed, and evaluate the

network/layout design of the job shop.

There are several works that extend the TPM to different contexts. Fine and Graves
(1989) applied the model to a manufacturing line of components for mainframe
computers. Graves and Hollywood (2001) and Hollywood (2005) adapted the model
to allow for a CONWIP policy for work release. Graves et al. (1998) applied the
similar linear control framework to a requirements planning context with an evolving
demand forecast process. Teo et al. (2011, 2012) extended the model to production
contexts that are planned by means of a Master Scheduling Planning framework.
Teo et al. (2011) also relaxed the discrete-time assumption in the TPM and introduced
a finer control to the system with a continuous-time model. Since the TPM and the
continuous-time version of it serve as important building blocks of our work, we will

review the major developments in Chapter 3.

The other stream of the research focuses on the impact of lot-sizing policies on the
performance of job shops. Similar to the classic Economic Lot-Size Model (Wagner
and Whitin 1958), conventional research has focused on the trade-off between the

setup costs by producing too many small lots and the additional inventory holding
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cost by tying up individual products in a larger lot. Karmarkar et al. (1985a),
however, pomnted out that in production contexts there can be another important
tradeoff, namely the impact of lot sizes on manufacturing lead times could be
substantial. They explained that the performance of the job shops can depend on the
lot-sizing policies since queuing delays are directly related to lot sizes. In particular,
they showed that the average waiting time in queue is a convex function of the lot size
and consequently lot sizes can affect work-in-process costs, safety stock requirements,
and scheduling performance through queueing behavior. In their model, they
assume that lot arrivals can be modeled as a Poisson process, so standard queueing
models such as M/M/1 and M/G/1 can be applied. Karmarkar et al. (1985b)
extended the analysis to multiple-item and multiple-machine environment where each
machine is modeled as an M/G/1 system. To obtain the optimal lot size for each
product item, they solved an optimization problem with the total inventory and

work-in-process costs as the objective function.

The model developed independently by Zipkin (1986) explored the performance of
multiple-item production system with lot sizes in a similar way except it does not
explicitly consider the impact of lot sizes on queueing delays. Zipkin’s model also
uses M/M/1 and M/G/1 queueing models as building blocks and it includes
backlogging costs in the optimization problem. Bertrand (1985) also analyzes the
impact of lot sizes on inventory, work-in-process and fixed ordering costs in a
multi-item multi-station setting. Bertrand models each work station as a queueing
system but he uses a subroutine to calculate queue length and does not consider the
setup time on the work stations in the model. Finally, we note that Lambrecht and
Vandaele (1996) analyzed the impact of lot sizes on queueing delay in a more general
setting using approximation techniques. Kenyon et al. (2005) studicd the same

problem using statistical and simulation techniques which provided similar insights.

From the literatures mentioned above, we can observe that there have been two

streams of research on the tactical planning level of the job shop systems. One of
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them focuses on setting planned lead times in accordance with production planning
activities. The other stream focuses on finding the optimal lot-sizing policies in
order to achieve the balance between queueing delays and number of setups.
Essentially, both streams aim at the same goal, namely to minimize the manufacturing
costs in the system by choosing the optimal operating tactics. This motivates us to
apply the two sets of tactics in the same shot in order to further move towards the

global optimum and have a more comprehensive understanding of the system.

Our model explicitly sets the planned lead time for each work station and the lot size
for each product part. Our focus is to investigate the interaction of demand and
production variability, production capacity and the level of inventory requirement

according to the changes in planned lead time and lot-sizing decisions.
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3 Review of the Tactical Model

3.1 Introduction of Tactical Planning Model

Job shops are manufacturing systems that contain multiple work stations and process
a wide variety of product parts. In a job shop system, each product part typically has
a distinct process route through the work stations, along which an ordered set of tasks
are performed. Due to the large variety of product parts (each with their own routing)
in the system, there is usually no dominant work flow path and there is often

significant uncertainty in process routing and workloads.

While job shops are designed to provide highly customized and flexible services, their
production control has been known as a difficult question. It is not uncommeon for a
job to spend most of its time waiting for the work stations to become available.
Furthermore, a control rule for job shops should also be relatively robust considering

the heterogeneity of the routings and complexity of the system.

Graves (1986) formalized the Tactical Planning Model (TPM) to explore the
interrelationship of production capacity, uncertainty of production requirements, and
the level of work-in-process inventory in a complex discrete-part manufacturing

operation, as typified by a job shop.

The TPM is a discrete-time, continuous flow framework. It assumes an underlying
time period (e.g. an hour or a day) and assumes that all job movements can only occur
at the start (or end) of each time period. The TPM models the job flow in the system

in terms of the workloads imposed on the work stations, rather than in terms of
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individual jobs. The TPM assumes that each work station operates with a linear

production control rule, based on the planned lead time at the work station.

The TPM views the job shop as a queueing system with planned lead times. At each
work station, arriving jobs wait in front of it in a queue. Each work station is
assigned a planned lead time which represents the time, both waiting and in-process,
that we plan for a job to spend at that work station. While the actual time spent at
the work station will vary about the planned lead time, the model assumes that each
work station will vary its production rate so that each job’s time at the work station is

close to the planned lead time.

The TPM is not concerned with the detailed scheduling of the system. Instead of
suggesting how to prioritize the jobs on each work station, the model focuses on
planning the operations at a tactical level, i.e., how to regulate the aggregate work
flow in the system so as to achieve an efficient work flow in terms of flow time and
resource utilization. Further theoretical extensions and applications of the TPM can
be found in Fine and Graves (1989), Graves (1988), and Graves and Hollywood
(2001).

A well-known model that describes the queueing behavior of a job shop is the
Jackson’s network. A key difference between the TPM and Jackson’s network is in
terms of the intent of these models. The primary intent of the Jackson’s model is
performance evaluation of the system. The intent of the TPM is to provide guidance
in setting operational tactics for a production system; in particular, it can help to
decide the planned lead times for a job shop. Jackson’s network assumes that a work
station will process its queue according to a fixed production rate whenever the queue
is not empty. The TPM on the other hand assumes that a work station can adjust its
production rate according to the queue length in front of it.  In other words, the TPM
assumes the shop has some degree of flexibility to control the speed of its production.
This assumption taken by the TPM is consistent with the observations that most job
shops can adjust their production rates to some extent by shifting the work force,
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working overtime, outsourcing, etc. Furthermore, the TPM tracks the aggregate

workload of jobs instead of tracking individual jobs as Jackson’s network does.

Our model considers a make-to-stock job shop system that involves a large amount of
overtime costs due to expediting activities. One of our major concerns is how to
achieve the right balance of production overtime and inventory holding cost. The
TPM provides an approach to model this tradeoff. In particular, the TPM that we
develop will characterize the production at each work station as a random variable,
whose first two moments depend on the tactical decision variables, namely the lot
sizes and the planned lead times. With a few necessary assumptions, this provides a
handy way for us to express the cost components as functions of these decision

variables. For these reasons, we apply the TPM as the building block to our model.

3.2 Key Assumptions of the TPM

The TPM assumes there is no explicit capacity limit and that the production rate can
vary according to the queue size. More specifically, the TPM assumes that whenever
the queue grows at a work station, it can always work at a higher production rate to
ensure the queue gets processed (on average) at the planned lead time. The
assumption is only appropriate if adjusting the production rate is possible at the
factory. However, we note that a capacity limit can be implicitly modeled by setting

planned lead time reasonably.

The TPM assumes that each work station produces a stable mix of jobs and that the
work flow has Markovian property, i.c., the work flow from one work station i to
another work station j only depends on station i and does not depend on how the

work got to station i.

The TPM assumes that work moves at discrete-time periods in the system, i.e., all
movement of jobs from one work station to another, as well as new job arrivals can
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only occur at the start of a time period. The length of the time period is
pre-determined based on the context of the manufacturing system. On the one hand,
the time period should be short enough so that a job is unlikely to move through two
consecutive work stations in one time period. On the other hand, the time period
should be long enough so that a work station is always able to complete a certain
number of jobs within one period of time. In real practice, the time period is usually
decided to be consistent with the time periods for the planning system, e.g. a shift or a
day. The validity of the discrete-time assumption depends on the context of the
manufacturing system. For example, if we consider the system where jobs usually
travel through several work stations within one time period, we would prefer to set a
smaller time period. @~ We introduce later an extension of the TPM to a

continuous-time model to overcome this limitation.

3.3 Discrete-time Model

In the TPM, Each work station operates with a linear production control rule, i.c. the
amount of work processed at each time period is a fixed portion of the queue in front

of that work station”:

Pp=aQ: (3.1)

Where P, is the amount of work processed in time period ¢, @, is the queue level at
the start of time ¢, and a(€ (0,1]) is a smoothing parameter which specifies the
proportion of work in the queue that should be completed within one unit of time
period. This linear relationship between production rate and queue size describes the
dynamics when the queue grows, the work station will speed up; when the queue is
small, the work station will slow down. Note that both variables are expressed in

terms of the amount of work load (in time units) at the work station.

" The original TPM models a network of stations but we only present the results for the single station in this
chapter since in this rescarch we only apply the results for the single station.
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The linear production control rule is directly connected with the planned lead time.

One can interpret the inverse of the smoothing parameter a as the planned lead time:
-1 3.2
T=— (32)

Where 7 is the planned lead time for the work station.  If the planned lead time 1s 7
time periods, then the work station on average is expected to process 1/ amount of

the queue within each time period.  This aligns exactly with the definition of a.

The system satisfics the inventory balance equation:

Q: = Qt—1- P11 +4; (33)

Where A, is the amount of work that arrives at the work station at the start of time

period t.
Substituting (1) into (3) we can express the production in a recursion equation:
Pt - (1 bt Cl)Pt_l + dAt (3.4)

Equation (4) is similar to an exponential smoothing equation. It limits the variance
of the production rate by only taking a portion of the new arrivals into account at

cach time period.

By repeated substitution and assuming an infinite history of arrivals, we can express
the production as an infinite sum:

P, = Zm_ a(1-a)A;_s (35)

=0

If we assume the arrival streams A, is i.i.d. with mean E[A] and Var(A), one can

determine the first two moments of production using (3.5):

E[P] = E[A] (3.6)

Var(P.) = a_l;a__r_gj_) 3.7
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Although the arrival time series are usually correlated since some parts will serve for
the same product model, as long as the number of parts is large (and no product model
predominates the work flow), the dependence on an individual model will be slight.
Thus assuming independent arrivals will provide fairly accurate approximation.

This assumption has also been observed in previous literatures (Zipkin 1986).

To investigate the case where arrival time series are not 1.1.d., one needs to consider
the amount of work generated from one work station to the other work stations and
the variability in the workload transition. The analysis is carried out in the original

paper, when modeling a network of stations.

3.4 Continuous-time model

One limitation of the discrete-time TPM 1is the contradictory objectives when
choosing the time period. The time period should be set short enough to ensure that
a single job is unlikely to move across multiple work stations in a single time period.
But on the other hand, the time period should be set long enough to maintain a fluid
work flow in the system, or in other words, to allow a work station to process certain
amount of jobs in one time period. Furthermore, the Markovian property of the
work flow is based on the assumption of a stable work flow moving among work

stations, which requires a longer time period.

A continuous-time extension of the original TPM has been developed (C.C. Teo et al.
2011) to overcome the limitation of the TPM discussed above. The continuous-time
model permits work to flow through more than one work station within a time period

and determines the first two moments of the production and queue level.

The continuous-time model essentially divides each time period ¢ into m equal
sub-periods s, where s = 1,2,...,m. The length of each sub-period is defined as
A=1/m.
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Assuming that work arrives at work station at the start of each sub-period, we can

restate the linear production rule in (3.1):
Y(4,5) = adX(4,s) s=12,..m (3.8)

Where Y(4,s) is the production level in sub-period s of length 4, X(4,s) is the
queue length at the start of sub-period s. Here, 1/a is still interpreted as the
planned lead time (in time periods) associated with the work station; however, a can

take any positive value, i.e., the planned lead time can be less than one time period.

The inventory balance equation becomes:

A
X(4,9)=0Q +— s=1
" 4 (3.9)
X(4,s)=X(4,s5— 1)—Y(A,S—1)+Et s>1

Equation (3.9) assumes that the work arrivals A, do not arrive at the start of time
period t, but rather arrive uniformly over the period ¢. Note that for s > 1 we can

substitute equation (3.8) into equation (3.9) and get rid of term Y (4, s — 1).

The production at period t can be expressed as:

P, = zm:ly(A, 5)=aA Z:;X(A, $) (3.10)

s

We sum up the expressions for X(4,s) from (3.9), using (3.8), to find

m-—

Zm X(A,3)=0;+ (1 —an) 1X(./.i,s)+At
s=1

s=1
m
=Q,+(1- aA)Z X(4,5) + A; — (1 — ad)X(4,m)
s=1
Substituting (3.10) into the above expression, we obtain for the production:
Po=Q,+ A, — (1 —-ad)X(4,m) (3.11)

The remaining work is to find X(4,m). From equation (3.9) we know
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X(4,8)=(0-ad)X(4,5-1) +% for s> 1. We can then obtain X(4,m) by

repeated substitution using equation (3.9):

Xam)=1-ad)™Q,+(1+(1-ad)+-+(1- aA)m‘l)%

1-(1-ad)™A,

— (1 — pAYm-1

Substitute the above expression of X(4,m) into (3.11), we can re-write the

production as

P =Qu+ A — (1 - at)™Q; — (1 - ad) (ﬂ)ﬁ

al m

1—a4

=(1- (1-ad)™Q.+ (1 - ( ) a-Qa- aA)m)> Ap

= BQ:+vA, (3.12)

1-aA
@

Where g =1— (1 —ad)™ andy=1—(

Y- -atym =1-p(=2)

a

Using the standard inventory balance equation
Qt = Q-1 — Pr-1 + Ay (3.13)

Assuming an infinite history for the arrivals, the queue length at the start of period ¢,

Q.. can be expressed by repeated substituting (3.13) into (3.12):
Q=01-1), -pT e, 314
s=

Production level at time ¢ can then be expressed in terms of arrival streams by

substituting (3.14) into (3.12):

P=pa-1Y A=p) My YA (315)

=

If we further assume the arrivals are 1.i.d., then the model determines the first two
moments of production from (3.15):
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E[P]= E[A] (3.16)

Var(P,) = (—z-f—ﬁ(l -+ },2) Var(4,) (3.17)

Where = 1 - (1—ad)™ and y=1—ﬁ’(1_'m)

a
If further letting m — oo, weobtain f =1—e% and y =1 - §/a.

Comparing the results of the continuous-time model with the original TPM, we
observe that the mean production level is the same as in the TPM but the
continuous-time model has a smaller variance given the same smoothing parameter.
The reason of this lies in the assumption made by the continuous-time model. The
continuous-time model assumes work arrives uniformly within each time period
which also implies the production level changes gradually and uniformly within the
time period. However, in the original TPM, the production level can only be
changed at the start of each time period and remains fixed for the rest of the time
period. Thus, the original TPM is more sensitive to the arrival variability than the
continuous-time model.  This difference grows as the planned lead time of the work
station becomes smaller. This effect is illustrated in Figure 2 for the single work

station case where the continuous-time curve is drawn for m at infinity.

0.9 | —— TPM

—a— Contmuous-tune Model

= 06

Var(P(t
{=]
w

0 : ‘ - - - T T T v -
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a

Figure 3: Comparison: Discrete and Continuous-time Tactical Planning Model’

" The continuous-time curve is drawn for m at infinity.
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Here we provide an intuitive interpretation for the parameter m. In the model, a
larger m corresponds to a more ‘continuous’ work flow arrival to the work station.
In the factory practice, the value of m depends on the capability to adjust production
rate. A larger m corresponds to a more frequent production adjustment rate.
However, it is usually not practical to have a very large m since the production level
cannot change too frequently in the factory. It makes more practical sense for the
manager to set an appropriate adjustment frequency m based on the context of the
manufacturing system and use formula (3.16) and (3.17) for the first two moments of
production level accordingly. We apply those formulas in our model and please refer

to section 4.2 for more details on setting m in practice.
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4 Model Formulation

4.1 Model Assumptions

The basic idea of our model is to represent the inventory-related costs (raw materials,

work-in-process and finished parts inventory) and production overtime costs in terms

of the decision variables, namely the production lot size for each part and the planned

lead time for each work station. The model needs to capture the essential trade-offs

and interactions while maintaining tractability. We explain the assumptions for our

model in this section.

Demand Process

Al

We assume that the daily demand for each product part follows an iid.
distribution with known first two moment parameters. This is a
simplification as the demand for two parts will be highly correlated if the parts
go into the same final assemblies. For instance, if part A and part B are only
used for product model 123, then the two parts will effectively see the same
demand process, as derived from the demand for product model 123.
However, we think the independence assumption is reasonable given the large
number of parts (133 in total) in the pilot factory. Moreover, most parts in
the job shop go into a single product model and hence their demand is highly
correlated with only a small subset of the entire part population as each

assembly consists of about a dozen parts.
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Inventory Review Policy

A2.

A3

We assume that a continuous review, reorder-quantity, reorder-point (QR)
policy is used for the control of the inventory for each finished part. We
assume for raw materials that we use a periodic review policy. We note that
these policies are similar to that used in the target factory where value of parts
in the finished parts inventory is much higher than that in the raw materials
inventory.

We assume that the raw material inventory does not stock out; hence, when a
part triggers replenishment, there is no delay in the release of the order to the
job shop. We also assume that when the finished parts inventory stocks out,
demand is backordered. For the model, we assume that we are given service
level targets for both the finished parts inventory and for the raw material
inventory. These assumptions are consistent with the factory practice where
both the raw material and finished parts inventories are managed with quite
high service levels, and shortages will trigger managerial attention so as to

avert any delays in the assembly of the final products (pumps).

Production Planning

A4,

AS.

We assume that the replenishment of each part is done in a lot (equal to the
reorder quantity), that lots are not split or combined within the job shop, and
that the transfers from one work station to another are done in whole lots.
We assume that the lot sizes for each product part are to be chosen from a
given discrete set of candidate lot sizes. And each part has assigned to it a
single lot size.

We model the lot arrival process for each part at each work station as a
Poisson process, independent of the arrival processes of the other parts. This

implies that the processes are memoryless (thus, the number of lots that arrive
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A6.

in one day is independent of how many arrived in the prior day). This
assumption is justified by the large number of product parts in the system; thus
the superposition of the arrival processes for the individual parts is
approximately Poisson and independent. We tested this assumption with a
simulation. The results show that the assumption seems OK, provided that the
arrival rate for a part is less than 3 lots per day. We found that Poisson
processes tend to overestimate the variability of lot arrivals if the arrival rates
are large (e.g. more than 4 lots per day). Moreover, it will be quite rare for a
part to generate multiple replenishment orders in a given day, resulting in 3 or
more lots per day; if this were to happen, the shop would insist on increasing
the lot size so as to reduce the frequency of lot arrivals and eliminate
unnecessary setups.

We assume the processing time for each unit at each work station is
deterministic and no uncertainty is involved. We assume all units within a
lot are processed in sequence; hence, the processing time of a lot is the sum of
the processing times of each individual job or unit in the lot plus the setup
time for the lot. We also assume the setup time 1s station dependent, but does
not depend on the setup of the prior lot, i.e., setup times are independent of

sequence.

We assume that we can adjust the production rate at each work station, at some

frequency (e.g., twice per day), based on the quantity of work in queue at the work

station.

In other words, when the amount of work in the queue grows, the manager

can expand the production by scheduling overtime, shifting workers, or outsourcing

production.
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4.2 Model Formulation

We first list the notation we use in the model. Note that index i is always
associated with product parts and index j is always reserved for work stations. The
definition of a “job” may raise some confusion. When we say job i, we mean a
production lot for part i. We note that g; and 7; are the decision variables in our

model.

u; — demand mean of product part (units/day)
o; — demand standard deviation of product part { (units/day)

P;; — processing time of product part { on work station j (days per unit)
s; — setup time for work station j (days per setup)

q; — lot size of product part i (units)

7; — planned lead time on work station j (days)

T; — total planned lead time of product part i in the system (days)

A; — lot arrival rate (lots/day)

w;; — processing time of one lot of product part i on work station j (days)

N(j) — index set of product parts that need to be processed at work station j

M (i)* — index set of work stations that are on the process route of product part i

hf — holding cost for raw material of product part i (dollars per unit per day)
h¢ — holding cost for finished goods of product part i (dollars per unit per day)
gj — overime cost at work station j (dollars per worker per hour)

¢; — nominal production capacity of work station j (days/day)

L" — review period of the raw materials inventory (days)

L% — delivery lead time of the raw materials (days)

! A work station can be counted multiple times if it appears multiple times on the

process route.
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zR — safety factor of the raw materials inventory
2% — safety factor of the finished goods inventory
N — number of product parts in the system

M — number of work stations in the sytem

Given lot sizes (q;), processing time (P;;) and setup time (s;), we can find w;;, the

processing time of each lot at each work station by
Wij = Pijqi+3j (41)

We only define w;; for pairs (i,j) such that part i requires processing at work
station j. The above formula assumes that for each lot arrival, we need to perform

one setup on the corresponding work station before processing the job.

We define the planned lead time for one lot of product part i at work station j (T3;)
as the sum of planned lead time of work station j (7;) and the processing time w;;.
We note that this definition differs from how the planned lead time is defined in the
earlier literature where the planned lead time for a lot of product part i at work
station j isjust 7;. In our context the processing times vary quite a lot for different
product parts on the same work station, therefore we specify the planned lead time for

a part to depend on both the work station and the part processing time.

We can then calculate the total planned lead time for product part i by adding up T;;

for all work stations j that part i visits:

Ti= Z Tij = Z (Tj'*'wij) (4-2)
JEM(D) JEM(D)
The lot arrival rate for part { is given by A; = p;/q;. According to the Poisson
assumption of the lot arrival, the variance of the daily lot arrival of product part i is
also A;. The number of lots of part i that arrive to work station j is a Poisson

random variable with mean A4;; cach of these lots brings a workload of w;;. Hence,
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the expected workload arrival for part i to work station j has expectation given by
Asw;; and has a variance given by ).iwizj. By summing over all parts that are

processed at work station j, we can then characterize the first two moments of the

workload arrival A; for each work station j:

E[4]] = z Lowyj = z (uip,-,- +%) (43)

iEN()) {EN())
2 2 ”isiz
Var(Aj) = Z Aiwii = Z uiPi,-qi + q—+ ztuiPiij (44)
iE€N() IEN()) '

(4.3) describes that the workload arrival rate on work station j is the aggregate
workload generated per unit time by all product parts that need to be processed at

work station . (4.4) describes the similar fact for the workload variance. From

(4.3) and (4.4) we see that E [Aj] is strictly deceasing and convex in each g; if the

setup time on work station j is non-zero and Var(4;) is a convex function in terms

of each g;. In particular, increasing lot size gq; will reduce workload arrival
variability associated with setup time but increase the variability associated with the

lot size effect.

The expected workload is what we expect to arrive to the work station j per unit of
time (days), which is equivalent to the utilization of the work station j. The
workload arrival variance in (4.4) denotes the variability of the incoming workload
and will be seen to be directly related to the calculation of overtime. Notice that for
the above calculation, we assume that the arrival process for each part is independent

of that for all other parts.

We are now ready to proceed to describe the formula used to calculate the cost
components, namely, Raw Materials Inventory Cost, Finished Goods Inventory Cost,
Work-in-process Cost and Production Overtime Cost as functions of lot sizes and
planned lead times.
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Raw Materials Inventory Cost

We use a periodic review policy for raw materials inventory. That is, we review the
raw materials inventory according to a fixed review period (L") and order up to a
baseline at cach review period. We will then wait a constant delivery lead time (L%)
for the order to arrive and the inventory to be replenished. We assume both the

review period and the delivery lead time are given as managerial inputs.

In addition, we assume the release of raw materials from inventorics to the
corresponding work stations can be done in real time. Thus, the lot release process
of product part i to the first work station can be seen equivalently as the demand
process for the raw material of part i. Since the lot release process for part i is
assumed to be Poisson with rate A;, the mean demand rate (in units) is thus A;q; and
the demand variance is 2;q;2. We model the daily raw materials inventory cost for
part i using the following standard formula, consisting of approximations for the

cycle stock and safety stock cost:
RM R (ML g / /
Costi = hl (—2" +z Alqlz Ld + LT)

.Lr
= hFR (‘ulT + 2R Juqi It + LT) (4.5)

where y; represents the daily demand mean of part i. (4.5) directly shows that the

raw material cost of product part { is strictly increasing and concave in its lot size q;.

Finished Goods Inventory Cost

We assume a QR continuous review policy for the Finished Goods Inventory. That
is we will order a fixed quantity, in our case the lot size, every time the inventory
position falls below a reorder point. The lead time of replenishment is simply the
planned lead time for the part, 7;. Instead of the periodic review policy, we believe

the continuous review policy is a more reasonable approximation to the factory
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practice since the value of good in the FGI is higher.  Following the standard formula,
we can model the daily cycle stock and safety stock of the FGI of product part i by

the approximation:
CostS = hS (%+ 260,T;) (4.6)

where o; indicates the daily demand standard deviation. Substituting (4.1) and (4.2)

into (4.6), we have

Costf¢! = p¢ %+ z%0; Z (tj + Pijqi +57) | (47)
JemM@®

(4.7) shows that the FGI cost of product part i is strictly increasing with its lot size

and the planned lead times of the work stations on its process route.

Work-in-process (WIP) Cost

By Little’s Law, the WIP for product part i is directly proportional to the total
planned lead time. We value the holding cost of WIP approximately at the average
of the raw material and finished goods costs; thus we use the following
approximation;

hE + h§

C
0s >

t{/’F = Tip; (48)

Substituting (4.1) and (4.2) into (4.8), we have

hR + RS
COStiVVIP = _"z_l Z (TI + PUQI + S}) Hi (4’9)
jeM()

We observe from (4.9) that the WIP cost of product part i is also increasing with its

lot size and the planned lead times of the work stations on its process route.
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Production Overtime Cost

If we model each work station using the continuous version of the Tactical Model,
then we can characterize the production at each work station as a random variable

with moments;

E[P] = E[4)] (410)

Var(p;) = (2 f L 2 (1-7,)" + yjz) Var(4;) (411)

where

Bi=1—-(1—a/mm

yp=1- (i—::_/_m)ﬁj;

a; =1/1;

m — production adjustment frequency

From previous discussion on E[A ,—], we know that E [P,] is a strictly decreasing and

convex function in each ¢;. This result matches our intuition since larger lot sizes

imply fewer setups on the work stations, which further reduce the workload on the
work station. We also see that Var(P,—) is convex in each g;. This is consistent

with our previous discussion that increasing g; can have a two-sided effect on the

production variability.

We note that the planed lead time 7; does not appear in the calculation of the
expected workload E[4;]. From (4.11), we can prove that Var(P;) is strictly

decreasing with 7; (see Appendix 2). This again is consistent with our intuition

since longer planned lead times allow for more production smoothing.
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We further assume that the production at each work station is normally distributed; we
can then approximate the daily production overtime cost using the normal loss

function:

Cost’T = g; | (x—C)fp(¥)dx (4.12)
Cj

where we assume fp(x) is a normal probability density function with mean E[P;]

and variance Var(P;); C; is the normal production capacity of the work station j.

We can then express the production overtime cost by solving the integration

(derivations in Appendix 1):

- (x-ElP;])?
1 -
Cost{" = g; f (x - G)———e war(P)) gy

< /2nVar(Pj)

v _ 2
—g| [P el - ghe(-p) | 13)

Ci—E[P]

/Var(P i)

We can prove that the production overtime cost expressed in (4.13) is a convex and

where p; = and @(-) isthe CDF of standard normal distribution N(0,1).

increasing function in both E[P;] and Var(P;) (see proofs in Appendix 1) by taking

the first and second derivative of (4.13).  This is not surprising since we expect that
overtime increases more rapidly when the production capacity is tighter or the

production variance is larger.

The Optimization Problem

We have expressed each cost component as a function of the lot size for each product
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part (g;) and the planned lead time for each work station (7;). We pose the

optimization problem as follows:

N M
min Z(Cost{w + CostF¢! + Cost!'?) + Z Cost!T  (414)
qiTj £ -

i=1 j=1

STV

The objective function is simply to minimize the total relevant manufacturing costs.
The two constraints set the lower and upper bounds for the decision variables subject
to management concerns and physical limitations in the factory. In particular, m is
a managerial parameter specifying the maximum production adjustment rate on the
work stations. For example, if the factory works with a morning shift and an
evening shift for every work station, the production adjustment rate can be naturally
set to two for all work stations. As one can imagine, m indicates the ability to
impose inter-period production control. A higher value of m indicates that the
factory can adjust production rate according to job arrivals more frequently per time

period.

The optimization problem, as stated here, allows for fractional lot sizes, which is
unrealistic. Nevertheless, we can view the formulation as the linear relaxation
problem of the “real” problem, and then use the optimal solution for this problem as a
starting point to find integral solutions. As will be shown in the next Chapter, our
numerical tests confirm that the rounding algorithm often works very well, partly due
to the fact that the objective function is relatively smooth around the optimal solution

point.
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4.3 Analysis of the Cost Components

First, it is easy to see from (4.5), (4.7) and (4.9) that the inventory-related costs
Cost®™, Cost™'P, and CostFC! strictly increase in each q; and each 7;. A more

careful look shows that Cost®M and CostF¢! increase concavely in each g; and

tWIP

each 7; while Cos increases linearly in each g; and each ;.

We now discuss the impact from the lot size gq; and the planned lead time 7; on the
production overtime Cost®". For cach lot size q;, we show Cost/T is convex in

both E[P;] and Var(P;) (sec Appendix 1). Since E[P;] and Var(P;) are convex

in each q; (by observing (4.10) and (4.11)), by composition of convexity, we know

C ostlpT

is also convex in each gq;. For each planned lead time 7, since € ostJQT is
increasing in Var(P;) (see Appendix 1) and Var(P;) 1s decreasing in each 7; (see

Appendix 2), Cost]”

1s also decreasing in each ;. Since the total overtime costs

are the sum of the overtime cost of each individual work station, we conclude that the
total overtime cost is convex in cach lot size g; and is strictly decreasing in each

planned lead time 7;.

Now, from the convexity of the total overtime cost function with respect to g;, we can
see that cach lot size g; has a two-sided impact. On one hand, increasing gq; leads
to lower expected workloads on the set of work stations M (i) that will further reduce
the overtime costs on them. On the other hand, increasing g; will eventually raise
the production variability and increase the overtime cost. Notice that the only
benefit from increasing lot sizes is to reduce the number of setups. Hence, we
expect that larger lot sizes are applicable only for the product parts that heavily use

the bottleneck work stations.

We finally observe that the planned lead time 7; captures the trade-off between

inventory-related costs and the production overtime cost. We can reduce overtime
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on work station j by increasing 7;; but this requires holding more safety stock and
WIP. We can reduce the inventory level by decreasing the planned lead times for

some work stations.

The relationships between the cost components and the decision varnables are
summarized in Table 1. The positive (negative) sign in the table indicates the cost

component is positively (negatively) correlated with the decision varable.

T q
CostfM Not related (+)
CostF¢! Not related +)
CostWi? &) +)
CostT ) () and (-)

Table 1: The Relationship between Cost Components and Decision Variables
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5 Implementation and Numerical Tests

In this chapter, we discuss in section 5.1 how to implement our model in the Excel
Spreadsheet and solve it with the premium Excel Build-in Solver. We then report the
numerical tests of the model with three different test cases in sections 5.2, 5.3, and 5.4.
We first demonstrate our model with a single-product single work station example.
We then use a medium case example to illustrate the trade-offs in a job shop system.
We finally report on a more extensive numerical example using real factory data.
We perform sensitivity analysis to discover how the changes in parameters and input
data affect the optimal cost and the operating tactics. We use a day as the time unit
in the rest of the discussion and the numerical tests. The primary purpose of this is

to be consistent with the actual planning and scheduling in the target factory.

5.1 Model Implementation

We implemented the mathematical model in the Microsoft Excel Spreadsheet and
solve it using the premium Excel built-in Solver. We solve all examples with the

large-scale GRG Nonlinear solver engine (developed by Frontline Systems).

Input Data Requirement

In order to apply the model, one needs to collect of the following input information --
the data regarding the product parts and the work stations, and the managerial
parameters. We list the input data requirements in Table 2.
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For the input data regarding product parts and work stations, we expect to get most of
them from the factory database. For example, the demand mean and variance for
each product part can be generated from forecasts on future demand (See Appendix 3
for more details); raw material and finished part cost for each product part are
estimated from historical data. Other data like raw material delivery lead times,
processing times, the setup time per lot on each work station, and the normal capacity
of the work station are often readily available in the factory. 'We note that by normal
capacity we mean the planned working schedule for the factory, by which the

operating costs are incurred regardless of whether we work overtime or not.

Product Parts and Work Stations Data Managerial Parameters

Part Demand Std Inventory Holding Cost

.&'&&' et IS

o Processzg me - v .a‘ximu‘rﬁ. Nﬁmber of. Lot Arrivals Per Day
S 2 T

B

Normal ‘Capacz'ty of Work Station

Table 2: Input Data for the Model Implementation

Most of the managerial parameters are readily available from the factory manager.
We would like to highlight two parameters that are particular to our model. We
discussed the Production Adjustment Frequency in section 4.2 and observed that the
inverse of it serves as a lower bound for the planned lead times. The manager
should set this parameter according to how flexible the factory is in terms of adjusting
the production rate on its work stations. Another parameter is the Maximum Number
of Lot Arrivals Per Day. We assume that the lot arrival process to each work station
can be modeled as a Poisson process, which allows us to simplify the mathematical
analysis. Our simulation results show that as long as we have less than three lot
arrivals in a day, the lot arrival distribution looks similar to Poisson process. Thus
we recommend the manager to set this parameter to be no larger than 3 to maintain

the accuracy of the solution. We expect this is done without any loss of optimality as

46



it is likely impractical to have lot arrivals of more than 3 per day for any part.

Lightly Loaded and Outsourced Work Stations

We exclude from the optimization lightly loaded and outsourced work stations. For
the outsourced work stations, the associated planned lead time is given, and is not a
decision variable. For lightly-loaded work stations, we pre-set the planned lead
times for these stations to be at their minimum bound, as there is no need for
smoothing given that there is ample capacity at these stations. We determine a work

station to be a lightly loaded work station if the following condition is satisfied:

E[4;] + v x }Var(A,.) < G

where v is a preset constant subject to management decision. If this condition does
not hold, we term the work station to be “not-lightly” loaded. One can view the
parameter v as a threshold value being analogous to setting the probability that the
armving daily workload is less than the nominal daily capacity at a lightly loaded
work station. For instance if v = 3, then a lightly loaded machine is any work
station for which its daily capacity will exceed the daily workload arrivals with
probability of at least .997 (under assumption that workload arrivals is normally
distributed). If the probability that arrivals exceed capacity is .003 or more, then we

would categorize the workstation as not-lightly loaded for v = 3.

Find Optimal Solution

We set lower and upper bounds for the decision variables 7; and g;. The lower
bound for the lot sizes accounts for both the smallest possible lot size option and the
maximum number of lot arrivals allowed per day:

LB for lot size of part i = max{lowest lot size option, ;[ Amax}
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Where A,,,, 1s the managerial parameter Maximum Number of Lot Arrival Per Day.

We set the lower bounds for the planned lead times to the inverse of the production
rate adjustment frequency, as described in section 4.2.  The upper bounds for the lot
sizes and planned lead times are both managerial inputs which depend on the physical

constraints and the policies adopted in the factory.

In executing the Solver we do not impose integer constraints on the decision variables
for computational efficiency reasons. Hence, the lot sizes directly found by the
Excel Solver are continuous numbers, 1.¢., they are not necessarily integers or lot sizes
that can be processed on the work stations. We then conduct a simple search based
on the continuous solution to find the best nearest integer (or lot size) solution around
the continuous solution. For instance, if the Solver determines a lot size to be 7.63,
we then re-compute the costs assuming a lot size of 7 and a lot size of 8; the lot size
that yields the lower cost is the best unrestricted integer lot size solution. We next do
a similar comparison, but for a given set of the restricted lot sizes; for instance, if lot
sizes are restricted to be 4, 8, 12,... then we would compare a lot size of 4 with a lot
size of 8, and in this manner find the best restricted integer lot size solution. We then
fix the lot sizes and re-optimize to find the best planned lead times for work stations

for both cases, i.€., for the unrestricted and restricted integer lot size solutions.

To sum up, we provide 3 solutions in our software: continnous solution, best nearest
integer solution (unrestricted) and best nearest lot size solution (restricted). The best
nearest lot size (restricted) solution can be directly applied to the job shop since it is

restricted to lot size values previously chosen by the manager.

For reasonable size problems we can reliably solve the optimization problem with the
premium Excel built-in Solver. For instance, we show in section 5.4 that we can
optimize the operating tactics in the target factory that processes 133 parts on 59 work

stations, among which 23 work stations are not lightly loaded.

Due to the non-convexity i the problem, the performance of the Excel Solver
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sometimes depends on the starting point, ie., the initial values for the decision
variables. These initial values represent the starting point for the search procedure
that underlies the Solver’s algorithm. That being said, we tested the algorithm over a
set of test problems, and we observed that we obtained the same solution from many
different starting points. As we understand from the analysis in section 4.3, although
convergence to a global optimum cannot be guaranteed, the objective cost function

appears to be reasonably smooth.

When trying to implement the model, we usually will be able to identify a few good
starting points, given the cost parameters and the knowledge about how each
component of the objective cost function behaves according to the decision variables.
We confirmed that the search is very reliable as long as we start the search from one
of these reasonable starting points. By performing some extensive tests, we found
that a good starting point for our problem is to set the decision variables to their lower
bounds. Our computational experience has been that with this starting point, the
algorithm always converges to a stable set of values for the lot sizes and planned lead

times.

5.2 Numerical Tests - A Simple Example

We will provide a single product part, single work station example in this section to
illustrate our model. The simple setting allows us to show the relationship between

costs and decision variables on 2-D graphs.

In this simple example, we assume the work station has a nominal working capacity
of 10 hours per day and it takes 1 hour for a part to be processed by the work station.
We assume the demand distribution is normal with mean equal to 8 units of product
parts per day and standard deviation equal to 4 units per day. The setup time for one
lot of parts is 15 minutes (0.25 hour).
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For this case, it is not hard to see that some overtime has to be incurred in order to
keep the balance of the workload inflow and outflow. For example, if the lot size is
1, the average total workload per day will be 8 + 0.25*8 = 10 hours; therefore, if there
is variability in the arriving workload, there is a good chance that the work station

needs to work overtime if it is to clear the workload in a day.

On the cost side, we assume the overtime cost is $1.5 per hour, the raw materials
inventory holding cost is $0.1 per day, and the finished part inventory holding cost is
$0.2 per day. We also assume the raw material delivery lead time is 3 days and raw
materials inventory review period is 1 day. The safety stock factor is chosen to be 2
(97.7% service level).

The first result that we show is the inventory and overtime costs as functions of the lot
size for a fixed planned lead time of one day. As can be seen from Figure 3, the
inventory cost (including raw material, finished parts, and work-in-process) increases
in the lot size while the overtime cost is convex in the lot size and attains its minimum
when lot size equals 2. Under the one day planned lead time, we conclude that
choosing a lot size of two is optimal, although it is only slightly better than a lot size

of one.

Lot Size

=4=0T Costs =fll=Inventory Costs ==dr=Total Costs

Figure 4: Inventory and Overtime Costs for Fixed Planned Lead Time (1 day)

We then fix the lot size and change the planned lead time. Figure 4 shows how the
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inventory and overtime costs change along with the planned lead time when the lot
size equals two. We observe that the inventory cost goes up gradually in the planned
lead time. We also observe that the overtime cost drops quickly as the planned lead
time increases. However, as the planned lead time gets larger, the marginal benefit
from overtime cost reduction gets smaller. As a result, when we increase the
planned lead time, the change of the total cost is dominated by the change of overtime
cost up to a point, and then moves in accordance with the inventory cost. In this
simple example, the total cost obtains its minimum when planned lead time equals 3

days and the cost function is flat around its minimum.

25
2 e
@« 15
k]
S 1-
0.5 -
0 T T L] T T T T
1 2 3 4 5 6 7 8
Planned Lead Time
== OT Costs  =fll=Inventory Costs ==de=Total Costs

Figure 5: Inventory and Overtime Costs for Fixed Lot Size (2 units per lot)

With this simple example, we are able to show how the manufacturing costs behave as
functions of the decision variables. The trade-off between the inventory cost and the
production overtime cost is clear. For this simple case, the optimal solution
(g = 2; T = 3) matches the solution we found with the greedy scheme we described.
However, the greedy scheme may not always work for multiple work station cases.
The optimal non-integer solution for this simple case is ¢ = 1.47 and7 = 2.44. In
this case the optimal solution from the linear relaxation gives a good start point for the

optimal integer solution.
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5.3 Numerical Tests - An Illustrative Case

We will illustrate our model in a more comprehensive way with a small scale job shop
example. The job shop processes 4 product models that require 8 product parts that

are processed on 5 work stations; each product part has its own processing route.

In this job shop, the need to replenish the parts inventory results in an order being
placed on the job shop. Since each order is associated with a lot size, the raw
material of the order will be pulled from the raw materials inventory to form a lot of
the ordered parts. The lot will then enter the shop and follows its processing route
until it reaches the finished parts inventory. For example, a lot of product part 8 (the
last route shown in Figure 5) will enter the shop and visit work station 4 first. It will
then proceed to work station 2 after finishing at work station 4. The lot will finally
enter work station 5 and upon completion, end up at final parts inventory. Each
process step adds value to the product part and we assume the value of a unit of the

final part inventory is that for the unit of the raw material.

In this example, product models 1 and 2 have higher demand volume, higher demand
variability, less production cost, and shorter raw material delivery lead times.
Product models 3 and 4 have higher cost parts and have relatively lower demand
mean and variance, higher production cost and longer delivery lead time. We list the

parameters for the four models in Table 3.

52



—_— p———,

-
L

AJOJUDAU| 5|BlI91EN MEY
E
\ 4
Alojuaauj spoo paysiul4

Figure 6: Overview of a Small Scale Job Shop System

Model1l Model2 Model3 Model 4

Demand std/demand mean 05 05 02 02

Finished part cost $1000  $1000  $4000  $4000

Table 3: Input Data for the Illustrative Example

For simplicity, we assume all work stations have a capacity of 8 hours a day and the
setup time for any lot of parts is 30 minutes on each work station. We also assume
the processing time is 5 minutes per unit for each part on each work station. Other
parameters we use for this example are listed in the following:

»  Overtime cost for all work stations: $1000/hour

* Holding cost for all parts: 15%/unit per year
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* Number of days in a month: 20 days

» Safety stock factor: 2.6

* Raw materials inventory review period: 20 days

*  Upper bound for number of lot arrivals per day for each part: 3 units/lot

* Production rate adjustment frequency: 4 times a day

The Base Case

We first consider a base case where we fix the lot sizes for all parts as 5 units per lot
and the planned lead times for all work stations as 0.25 day. Under this setting, we
can calculate the mean and variance of the daily workload arrival, daily production
variance, and expected overtime on each work station (Table 4), as well as the cost

breakdown (Table 5) associated with the base case.

As shown in Table 4, when we set the planned lead times to the lower bounds (0.25
day, the inverse of the production frequency), we essentially do not have any
production smoothing at the work stations. Also note that the expected workload
arrivals (or equivalently the utilization rate) on the work stations are high, especially
on work station 1. Work stations with large and variable workloads need to incur
substantial production overtime costs, given their planned lead times of 0.25 days.
In the next two alternative cases we examine how to set the tactical decisions to

reduce the expected overtime by reducing the production variance.

Base Case W81 WS2 WS3 WS4 WSS
E[A|] (day/day) 0.97 0.86 0.74 0.63 0.80
STD(A)) (day/day) 033 0.31 0.29 0.27 0.30
STD(P;) (day/day) 0.33 0.31 0.29 0.27 0.30

Expected OT (hours/day) 0.965 0.538 0.246 0.083 0375
Table 4. Work Station Statistics for the Base Case in the Illustrative Fxample
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Base Case

Raw Materials Inventory Cost 1167
Finished Parts Inventory Cost 356
Work-in-process Cost 62
Overtime Cost 2208
Total Cost $3,793

Table 5: Cost Breakdown for the Base Case in the Illustrative Example

Case 1: Increase Planned Lead Time for WS1

In Case 1, we increase the planned lead time of work station 1 from 0.25 day to 1 day
while keeping the lot sizes the same as in the base case. We expect to see less

overtime on work station 1. The results are shown in Table 6 and Table 7.

As we can see, by increasing the planned lead time of work station 1 to 1 day, we
obtain 18.7% reduction in the overtime cost and 8.8% reduction in total cost. At the
same time we observe that the safety stock and WIP increase slightly due to longer

planned lead time at work station 1.

WS1
Base Case Case 1
E[A;] (day/day) 0.97 0.97
STD(A)) (day/day) 0.33 0.33
STD(P;) (day/day) 0.33 0.20
Expected OT (hours/day) 0.965 0.553

Table 6: Work Station Statistics for the Case 1 in the Illustrative Example

Duaily Cost Breakdown Case 1
Raw Materials Inventory Cost 1167
Finished Parts Inventory Cost 413

Work-in-process Cost 85
Overtime Cost 1795
Total Cost $ 3,461

Table 7: Cost Breakdown for Case I in the Illustrative Example
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Case 2: Increase Lot Sizes for Model 1 and 2

In Case 2, we increase the lot sizes of parts 1 to 4 from 5 units to 10 units while
keeping the planned lead times the same as in the base case. The intention is to have
fewer setups on work stations that process these high volume parts, and thus reduce

the utilizations at these work stations. The results are shown in Table 8 and Table 9.

Case2 WS1 WS2 wS3 WS4 WSS

E[A;] (day/day) 0.76 0.66 0.67 0.57 0.66
STD(A)) (day/day) 0.34 0.32 0.30 0.27 0.31
STD(P;) (day/day) 0.34 0.32 0.30 0.27 0.31

Expected OT (hours/day) 0.380 0.188 0.153 0.051 0.171
Table 8: Work Station Statistics for Case 2 in the Illustrative Example

As we see, by increasing the lot sizes of part 1 to 4 from 5 units to 10 units, we reduce

the average workload by a substantial amount which leads to 57.3% reduction on
overtime cost and 31.0% reduction on total cost. We also observe that the inventory

costs increase but only by a small amount.

Duily Cost Breakdown Case 2

Raw Materials Inventory Cost 1231
Finished Parts Inventory Cost 379
Work-in-process Cost 65
Overtime Cost 943
Total Cost $ 2,618

Table 9: Cost Breakdown for Case 2 in the Illustrative Example

Case 3: Optimal Case

We finally determine the optimal lot sizes (the best nearest integer solution) and
planned lead times (continuous solution) for this illustrative example. Please refer to
section 5.1 for the rounding algorithm). The comparison results are shown in Table

10.
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Part No. Buase Case Lot Size Optimal Lot Size

Base Case Planned Lead Time Optimal Planned Lead Time

1 0.25 1.10

2 0.25 0.88
3 0.25 0.74
4 0.25 0.56
5 0.25 0.77

Table 10: Optimal Case Solution in the Illustrative Example

We observe that the optimal solution is consistent with our intuition from case 1 and
case 2 where we have larger lot sizes for part 1 to 4 and longer planned lead times on
all work stations. These results are driven by the requirement to lower the
production overtime cost. However, we also observe a slight decrease in the lot
sizes for part 5, 7 and 8 from 5 units to 4 units. Although this change may possibly
generate more setups on the corresponding work stations, it helps reduce the demand
variability on the raw materials inventory. Since product parts 5 to 8 have relatively
high values and small demand volume, the gain from reducing the raw material

inventory cost dominates the increased cost due to more production overtime.

Under the optimal tactics, we will be able to further reduce the average workload and
variability which leads to 91.8% reduction in overtime cost and 44.3% reduction in
total cost. Compared with the base case results, the optimal cost structure suggests
that we should allow more inventory in the system in order to provide more
production smoothing. Since the unit overtime cost is high, there is almost no
overtime work in the optimal solution. As a final note, we observe that with the
chosen operating tactics, the expected workload and workload variance on the work
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stations are close to each other. This indicates that our model sets the tactics to

balance the workload to different work stations for production smoothness.

Optimal Case Ws1 WwS2 WS3 WS4 WS5
E[A;] (day/day) 0.70 0.65 0.67 0.62 0.64
STD(A)) (day/day) 0.35 0.33 0.30 0.28 0.32
STD(P)) (day/day) 0.21 0.21 0.21 0.21 0.21
Expected OT (hours/day)  0.055 0.032 0.040 0.023 0.031

Table 11: Work Station Statistics for the Optimal Case in the lllustrative Example

Optimal Case
Raw Materials Inventory Cost 1221
Finished Parts Inventory Cost 552
Work-in-process Cost 157
Overtime Cost 182
Total Cost $2112

Table 12: Cost Breakdown for the Optimal Case in the Illustrative Example

5.4 Numerical Tests - Large Scale Application

In this large scale application, we use the data from the target factory from our
industry partner. The job shop consists of 133 major product parts and 59 work
stations, among which 23 work stations are characterized as not lightly loaded.
Demand is high for many parts and the ratio of the standard deviation of daily demand
to the mean is around 30%. Around one-third of the work stations are not-lightly
loaded. Setup times on a few work stations are long. The per-unit processing times
of a part on a work station varies from 20 to 90 minutes. We will not disclose other
managerial parameters used in this application due to confidentiality, but we note that
most of them are very similar to the parameters we used in the illustrative example in
section 5.3. We first introduce a base case scenario and determine its optimal
solution from our model. We then present sensitivity analysis using several test
cases by varying input parameters. We note that all results are rescaled to disguise
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the company data.

In the base case, we set the initial lot sizes and the planned lead times to their lower
bounds and we will refer to this as the initial tactics. We believe that this set of
initial values is a reasonable representative of the current operating policy applied by
our industry partner. We observe and record the performance of the system under
the initial tactics. We then solve the optimization model and determine the optimal
tactics for the base case problem. The performance improvement from the initial
tactics to the optimal tactics is shown in Table 13 and Figure 6. In particular, Table
13 shows the daily cost breakdown of both the initial and optimal tactics, the optimal
lot sizes for only the product parts that have unit arrivals larger than 150 pieces per
month, and the optimal planned lead times for only the not-lightly loaded work
stations.  Figure 6 presents the average workload (utilization) and expected overtime

on the 23 not-lightly loaded work stations.

In this base case, the raw material inventory cost accounts for a large portion of the
total manufacturing cost, mainly because of the long replenishment lead time (e.g. 5
months) of the product parts. The overtime cost for the initial tactics accounts for
half of the total costs. However, under the optimal tactics, the production overtime
cost is very low; the optimal tactics increase the planned lead times and increase the
lot sizes for key product parts. This results in an increased production smoothness in

the system, resulting in moderate increases in the inventory-related costs.
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Raw Materials Inventory Cost (8 per day) 846.8 894.1
Finished Parts Inventory Cost ($ per day) 195.8 2259
Work-in-process Cost (8 per day) 79.9 107.3
Overtime Cost (3 per day) 1159.0 92.8
Total Cost (3 per day) $ 22815 $ 1320.0
B Feiteiat Tactics Optimal Work Initial Tactics for Optimal Tactics
N b Lot Sizis Tactices for Lot Station Planned Lead for Planned Lead
Sizes No. Times limes
0.25 0.25
0.25 1.79
58 4 4 9 0.25 1.55
61 4 11 11 0.25 0.71
68 + 4 12 0.25 3.00
92 4 4 21 0.25 0.81
75 4 92 22 025 0.38
112 6 7 23 0.25 0.31
116 6 7 26 0.25 1.51
119 6 13 27 0.25 0.51
153 5 5 28 0.25 3.00
158 12 14 29 0.25 2.74
230 7 7 30 0.25 2.18
31 0.25 0.89
32 0.25 2.28
34 0.25 0.26
35 0.25 0.25
37 0.25 0.35
40 0.25 1.75
44 0.25 3.00
45 0.25 3.00
46 0.25 1.90
50 0.25 3.00

Table 13: Optimal Costs and Some Optimal Solutions of the Base Case
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Figure 7: Utilization and Expected Overtime on the 23 Not-lightly Loaded Stations

A closer look at the loads and expected overtime on the work stations shows that we
have greatly reduced the utilization and production overtime on several bottleneck
work stations which leads to huge cost reduction. In the optimal tactics, the optimal
planned lead times on the not-lightly loaded work stations range from 0.25 day to 3
days, which are the lower and upper bounds we impose on these work stations.
Among the 23 not-lightly loaded work stations, 13 of them have planned lead times of
more than one day. This indicates that the planned lead times are substantially
extended on the set of most heavily loaded work stations in exchange for production
smoothness. We also observe for most of the parts the optimal lot sizes are close to
their lower bounds. This is because very few work stations have large setup time in
the system. Exceptions are part 61, 75, and 119 which heavily use the work stations

that have large setup times.

We will explain the key findings of the sensitivity analysis with test cases in the rest
of this section. We first introduce the seven experiments we consider in the

sensitivity analysis and the corresponding parameters changes in Table 14.
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Experi

Descriptions Test Cases
ments
Production rate adjustment frequency
(times/day)
2 Overtime cost per hour ($) 100 50 150
" Threshold for deciding lightly loaded 5 5
work station
Setup time for work station 6 and 1200& 60&
4 ‘ 60 & 110
28(min) 110 220
Capacity for work station 21,27 and
5 16 10 12 14
40 (hours/day)
6 Demand Standard Deviation Base case | +50%  -50%
Demand Mean Base case | +10%  -10%

Table 14: Key Parameters and Input Data Used for Base Case and Testing Cases

Experiment 1: Production Rate Adjustment Frequency

We describe the production rate adjustment frequency (m) in section 4.2 as the ability
to impose inter-period production control. A higher value of m indicates that we
can adjust production rate according to job arrivals more frequently. In this analysis,

we allow m tobel,2,4,6o0r8.

The results show that increasing m can reduce overall manufacturing cost, but at a
diminishing rate (Figure 7). In Figure 7, we show the percentage change of the
inventory-related and production overtime costs relative to the base case where
m = 4. The cost reduction comes from lower production variance and shorter total
planned lead times at the work stations. ~Actually, we observe that the planned lead
times reduce continuously on the majority of the heavily loaded work stations when
m increases (Figure 8). We note that the optimal lot sizes remain nearly the same.
We also omit the raw materials inventory cost in the comparison since it only changes

by negligible amount.
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Figure 8: Cost Comparison under Different Production Rate Adjustment Frequency
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Figure 9: Average Planned Lead Time on the 23 Not-lightly Loaded Work Stations

Experiment 2: Unit Overtime Cost

We increase and decrease the unit overtime cost by 50% in this experiment. We
observe when we increase the unit overtime cost by 50 dollars per hour (+50%), we
perform 0.18 hours less overtime in total every day and when we decrease the unit

overtime cost by 50 dollars per hour (-50%), we perform 0.38 hours more overtime in
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total every day. This is not surprising since we expect to take advantage of a lower

unit overtime cost by performing more overtime.

At the same time, Figure 9 shows that the planned lead times increase (decrease) by
about 1/5 (1/4) of a day on average on 16 work stations when unit overtime cost
increases (decreases) The optimal lot sizes remain almost unchanged for all product
parts. Considering that we change the unit overtime cost by a large amount, we

think the optimal solution is not very sensitive to the unit overtime cost in this case.
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§~ m$50
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Work Stations

Figure 10: Planned Lead Times under Different Unit Overtime Cost

Experiment 3: Threshold for Deciding Lightly Loaded Work Stations

Recall that the threshold value is used to decide which work stations are lightly loaded
work stations (see section 5.1). By reducing this parameter from 3 to 2, we
essentially loosen our criteria and more work stations may be characterized as lightly

loaded.

The analysis shows that neither the costs nor the solutions are sensitive to this change,
but 5 work stations (M1, M11, M23, M34 and M35), originally marked as not-lightly
loaded, are characterized as lightly loaded after the change.



Experiment 4: Setup Time for Work Station 6 and 28

Recall that we benefit from large lot sizes when the setup times are substantial on the
corresponding resources. In this analysis, we double the setup time of work station 6
and then 28. The setup time on work station 6 (28) in the base case is 60 (11)

minutes which is fairly large comparing to the processing times of a lot.

We observe that the optimization chooses larger lot sizes for all parts that visit work
station 6 (28) (Figure 10 and Figure 11). In particular, the average lot sizes for parts
visiting work station 6 (28) increases by 90% (80%) when setup time is doubled on

the work station.

The optimal planned lead times on some work stations are also affected by the change
in setup time. When doubling the setup time of work station 6, the optimal planned
lead time of work station 6 increases from 1.79 days to 3.00 days. When doubling
the setup time of work station 28, the optimal planned lead time of work station 30
increases by 0.7 day. In the second case, since the planned lead time of work station
28 has already reached the upper bound (3 days), the request for longer queues is thus
shifted to work station 30 since most of the parts that visit work station 28 also visit

work station 30.
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H120min

00 = T T
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Product Parts

Figure 11 Optimal Lot Sizes of Parts that Visit WS6 under Different Setup Times
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Figure 12: Optimal Lot Sizes of Parts that Visit WS28 under Different Setup Times

Experiment 5: Production Capacity for Work Station 21. 27 and 40

In this analysis, we reduce the normal capacity of work station 21, 27 and 40 from 16
hours per day to 14 hours, 12 hours, and 10 hours. We choose these three work

stations since we observe they are the potential bottlenecks of the system.

400

350 A

m10
m12
m14

m16

Inventory-related Overtime

Figure 13: Cost Comparison under Different Capacity on Bottleneck Work Stations

As shown in Figure 13, the overtime cost dominates the increase in total cost as

capacity decreases (raw materials inventory cost not included). As shown in Figure
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14, the optimal planned lead times of the work stations increase as we decrease the
capacities, until the planned lead time reaches the upper bound. The optimal lot size

solution is in general insensitive to the changes.
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Figure 14: Planned Lead Time under Different Capacity on Bottleneck Work Stations

Experiment 6: Demand Standard Deviation

We adjust the standard deviation of daily demand by 50% around the base case in this
analysis. In Figure 15, we observe that finished goods inventory cost, which
increases linearly in the demand standard deviation (equation 4.7), dominates the
change in total cost. A larger standard deviation also induces a greater overtime cost
since more demand variability leads to more overtime. The WIP inventory cost
decreases slightly when the demand standard deviation increases, because the planned
lead times actually decrease on average (discussed below).  The change in demand
standard deviation has very little impact on the optimal lot sizes and thus changes in

raw material are neglected.

As mentioned above, the planned lead times decrease on average as demand standard
deviation increases. This is because a larger demand standard deviation implies

more inventory holding cost for finished goods; to mitigate this, the solution
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decreases the planned lead times which determine the replenishment times for the
finished goods inventory. We observe in the optimal solution where the planned lead
time for each product part increases by 0.18 days on average when the daily demand
standard deviation is cut by half; the optimal planned lead time for each product part

decreases 0.14 days on average when we increase the demand standard deviation by

50%.
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Figure 15: Cost Comparison under Different Demand Variability

Experiment 7: Demand Mean

We adjust the average demand by 10% around the base case in this analysis. The
adjustment has a relatively large impact on both the cost and the optimal solution.
We observe that as demand mean increases, all cost components increase by a

considerable amount, especially raw material cost and production overtime cost

(Figure 15).

When the demand mean increases (decreases) by 10%, we observe that the lot sizes
increase (decreases) on 25 (14) product parts. This observation confirms our
intuition that we can leverage the lot sizes to reduce the aggregate workload on work
stations. On the other hand, three work stations (work station 1, 34 and 35) become

lightly loaded as average demand decreases by 10%. The planned lead times of the
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not-lightly loaded work stations increase (decrease) by 0.4 (0.3) day on average as the
demand mean increases (decreases) by 10%. The planned lead times of the product
parts increase (decrease) by 0.6 (0.5) days on average as the demand mean increases

(decreases) by 10%.
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Figure 16: Cost Comparison under Different Demand Mean
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6 Conclusions

In this research, we build a tactical model to analyze the operating tactics in
discrete-part manufacturing systems, as typified by job shops. The model finds the
minimum inventory-related costs and production overtime cost and determines the
optimal operating tactics for the production lot size for each product part and the

planned lead time for each work station.

Our model assumes that the product part lot arrival is a Poisson process. We then
characterize the production at each work station as a function of the planned lead time
through applying the linear production control rule described in Graves (1986). Our
model sets as decision variables the production lot sizes for each part and the planned
lead times for each work station, and calculates the inventory-related costs and
production overtime cost. We implement the model in Excel spreadsheet and solve
the non-linear optimization problem using the premium Excel built-in Solver to

determine the optimal solution.

We have tested our model on both the hypothetical and the large-scale actual factory
data which consists of 133 parts and 59 work stations; the results highlight and
confirm managerial intuition. We also performed sensitivity analysis on the
managerial parameters and other factory data to evaluate the influence from different
inputs. Our computational experience shows that the problem in this scale can be
solved very efficiently on a personal computer and the Solver is reasonably reliable if
we use the lower bounds of the decision variables as the initial searching point.
Furthermore, the model has been set up in a flexible way so that with minimum

adjustment it can be applied to more general manufacturing systems.
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Our model provides a convenient tool for the manager to establish intuition and test
different operating policies. Our model essentially captures the several tradeoffs
commonly seen in a complex manufacturing system. Our model confirms that
extending the planned lead times for work stations is effective for production
smoothing, however longer planned lead times require higher inventory stocks. We
also found that the lot sizes for product parts can have a two-sided impact on the
system: on the one hand, larger lot sizes reduce the number of setups which cuts the
aggregate workload to be processed on the work stations; on the other hand, larger lot
sizes induce higher production variability which can increase both production
overtime and inventory-related costs. By solving the optimization problem, our
model determines the optimal operating tactics in order to maintain the optimal

balance between the inventory-related costs and the production overtime cost.

We finally discuss a few possible extensions of our model. First, in many
manufacturing systems, the factory is able to manage the service level or delivery due
time for each product part to the next stage in the supply chain. For example,
important customers will be assigned higher priorities. Incorporating the backlog
cost or delay penalty into the model can help capture the effect from service level
management of the supply chain system. A second extension of the model is to relax
the Poisson process assumption for the product part lot arrivals. Assuming Poisson
lot arrivals provides some convenience for the mathematical modeling, in particular in
expressing the workload arrivals on each work stations. We recommend setting the
number of lots to be less than three per time period in order to make the Poisson
assumption more realistic. However, any other rules that capture the impact from
the lot sizes on the workload arrival variance can fit into our model. While we may
lose some tractability, a more complicated rule can potentially improve the accuracy
of our approximation. Lastly, one can extend the model to include shortages or
machine breakdown in the system. For example, it is actually fairly easy to
incorporate backlog for the raw material and finished parts inventory. As a final
note, the model has been set up in a flexible way so that with minimum adjustment 1t
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can be applied to more general cases, which may depend on the actual situation of the

manufacturing system.
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Appendix

Appendix 1: Production Overtime Function and Its

Properties

From formula (4.12), we know the production overtime cost in work station j can be expressed
as the partial normal function where the production is assumed to be normally distributed with
mean E[P;] and variance Var(P;):

Cost!T = g; fc (jo(x - C)fp(x)dx (4.12)
i
Where g; is the unit production overtime cost, €; is the nominal workload capacity of work
station j, and f(-) is the normal probability density function with mean E[P;] and variance
Var(P;). Wlo.g., we omit the subscript j for each work station for simplicity in the following.

Let u = E[P],0? = Var(P) , we can rewrite the partial normal function as follows:

1 (x~u)?

CostoT = f x-0) e 262 dx
g c V2mo?
Change variable in the above expression with y = = we have

a

0 1 yz
CostoT = f oy+u—C)—e 2 d
g C—;ﬁ( y+u )m y

Let p = <% we have

a

« 1 ¥ L ® 1
CostT = ]-a —p)—e 2d=af —_ Zd——a]—e'zd
gp(y p)m ygpym ygpp\/-z—n y

2.2

1
=go—e

V2rm

y?
2

—gop(1—-®(p)) =g (\[—%e_% +(C— #)¢(—P))

Jo]
where &(-) is the CDF of standard normal distribution N(0,1). The above formula is the same

as formula (4.13) in section 4.2.

We then show two properties of the production overtime cost function.
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Proposition 1: The production overtime on the work station is an increasing and convex
function in the expected workload (z£).

Proof:

Let us explicit express the production overtime cost Cost®” as a function y and o:

™ 1 _Ge—p)?
,a) = f x—C e 20? dx
fu : ( ) T

Take derivative in terms of u, we have

2no2 02

Substitute y =x%‘”, P =£35, we have
of (u,0) J“” y ®y: 2 ®y 2
——=| O-—p)—=e 2dy=f == 2dy-pf ~==e 2dy
au p V2m . p

1
= ——7ye

V2r

=1-¢()>0

Take the second derivative in terms of u, we have

y2
2

*f o) ° (f"(“)\/_ ° dy) () — Lot Fso
= = — —_—n = e
ou? au P V2Zr V2no

Since both the first and the second derivatives of f(u, o) are positive in terms of the expected

workload p, we proved the production overtime cost function is increasing and convex in the

expected workload.

Proposition 2: The production overtime on the work station is an increasing and convex

function in the standard deviation of the workload (o).

Proof:

Similarly, we take the first and the second derivatives of f(y, ¢)in terms of o.

Fuor= [ G- O™ T
,0) = X — e fod
c V2no?
of (u, o) fw 1 1 G- ® (x — p)? 1 _Ge-w?
s = —C)——e" 2z d M - S
3 ) = (x )\/z_e a p+fc —— (-0 e dx
Substitute y = ===, p —; we have

2

af(# 9 f 6% —p)\/l—e 2dy+f yz(y—p)\/—l—:e"%dy

@ 1 1 * 1 ¥
=1 y ——e~ Zdy f 2—e Zdy f = Zd + f —e"2d
-]; Vzn P P Vz V Y P Vzn' Y
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(1 P S (1 _pz_2+f°°1 2 12
=|—p°e —e ~pl—=pe —_— -——
\/an V2m P \/21tp p V2m 4 V2n
® 1 »? 1 A
+ f —e ZTdy=——e"Z >0
p p V2 Y v2m
Take the second derivative in terms of o, we have

a(ie—"%“)
o) _\Vom

do? do

2

p> 1 g
—_—— 2
o 2n

>0

As both the first and the second derivatives of f(u, o) are positive in terms of the standard
deviation of the workload o, we proved the production overtime cost function is increasing and

convex in the standard deviation of the workload.
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Appendix 2: Property of the Production Variance

Function

We found in formula (4.11) that the production variance on work station j can be calculated as a
function of the decision variables, the production lot size q; and the planned lead time 7;. We
show in this section that the production variance is strictly decreasing in 7; by observing the first
order derivative of the variance is negative. The monotonicity of the production variance in
terms of the planned lead time makes intuitive sense since longer planned lead time is intended to
provide more production smoothness. We omit the subscript for work station for simplicity and

rewrite (4.11) as follows:

Var(P) = (% (1-y)?+ }'2) Var(4) (4.11)
where
B=1-(Q1—-a/m)y™;
y=1- @-a/m) B:
a=1/t

Note that 7 = % is the boundary condition for the decision variable .

Since T does not appear in Var(A), we can focus on the term (% (1-1y)? +y2). Our

objective is to show the derivative of this term is non-positive in 7, i.e.

(T[j"ﬁ A-y?+ yz)’ = (2—_%) A-y*+ (E-fi-ﬁ) (@ -y2+ o2
- %(1 —yR-2 (%) -y +27y (A2.1)

. o . 1
is always a non-positive number in 7 when 7 = o

We first write down the expression for the each term appeared in (A2.1) in terms of 7:

R

=1 1 !
r=1-11-—)f

m

Taking derivatives w.r.t. T, we have

I _ ___1_ 4
v==-F-t1-2p
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L) -2

2-p (2-p)?

((1-v)» =-20 -y}
o' =2yy

We observe that the first term (1 —¥)? in (A2.1) is always non-positive since B’ =

(2 /3)2

m-1
--1-(1 —--;—n) < 0 (note that 7> % is the given condition). We can then focus on the

second and the third term.

Rewrite the sum of the second and the third term, we have
B ) 28y 2Byy’ 28y | 4yy’
(2 3 A=y +2yry' =-5= ﬂ+2 ﬂ+2w 2_ﬂ+2_ﬁ
zy (2 ) A2.2

To show this term is also non-positive, we consider ¥’ and 2y — 8 respectively.

Consider y’’, we have

e loliom)e) (e bon) o2

1 1"t 1 14"
=—(1-—) -(1-—-) >0
m ™ 73 ™m
Furthermore, since
yYls = —1+(1———) +—(1——) I =-1
= T ™m/ |1
m
1\" 1 1\"
Ve = —1+(1——) +—(1——-—) =0
™m T ™

we conclude that ¥’ is an non-decreasing function on [-1,0] when 7 € [';'{' o) and thus

y' <0
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Consider (2y — )"/, we have

Gr-pr =@y -y =(-2p-2(1-2) g - p)
(el 205 w02 )
m-1 m - -

L

T

1 /m-1 1\y"2 2 1\"* 1/m-1 1
tx() (5 =m(m) =) -5

™"\ m ™ 3m ™ ™\ m ™™m

0

=
Observe also
Gr-prls = —2+2(1-2) 42 (1- D)+ 5127 | -2
r—F = ™m T ™ T2 ™ 1
m
, 1\™ 2 1\™ 1 1\™?
@r=prlo = —2+2(1- ) +2(1-) +a(t-7) l =0

So (2y — B)' is an non-decreasing function on [-2,0] when 7 € [%, ) and thus (2y —B)’' <0

when 7 € [T—i-, o). Furthermore, since

or-py =2l )1~ (-2,

Qy—Blw = 2 —(Zr(l—%)+1)(1—(1_%)m)lm =0

m
The last equality applies the identity lim,_ r(l - (1 - %) ) =1 which can be shown by

L'Hopital’s rule. This shows that (2y — ) is non-increasing on [1,0] when 7 € [ﬁ,oo) and

thus
@y-p =0

Finally, since y’' <0 and 2y —8) =0 when 7€ [%,00), we know the expression (A2.2) is

always non-positive and consequently the derivative (A2.1) of the production overtime cost
function is non-positive, which implies that the production cost is non-increasing in the planned

lead time .
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Appendix 3: Generating Demand Mean and Variance

Based on Given Demand Forecast

We explain how we generate demand mean and variance from the forecast data. The method
accounts for order cancellation and variability inthe due dates for the orders. We do not consider

the movement of product orders (advanced and delayed orders).

Mean and Variance of Number of Orders per Month
N; : number of orders need to deliver at month j

X; j» number of orders generated at month { and to be due at month j
M;: number of orders generated at month i
The number of orders to deliver at month j is the sum of orders due at month j:

t

N; = Z Xi-ij

i=1
We can characterize X;;+1,X; 42, . Xi i3+ as a multinomial distribution:
Mult(M, a4, a, ...a;)

where Yhoi@p =1 Zioy Xiger = M My~normal(,0?)

We then can derive the conditional expectation and variance of X; ;:
E[Xiisi|M; = m] = a,m
Var(Xi,i+k|Mi = m) = ak(l - ak)m
Based on the conditional expectation and variance, we can proceed to obtain the expectation and

variance of N;:

t t
E[N] = Z E[X;i5) = z aiE[M;i] = p
=1 i=1
t t
Var(N) = D VarQ-i) = Y (EVer (s 1¥5-)] + Var (E[-s;1M5-])}
i=1 i=1

¢ t
= Z{ai(l - &)E[M;_] + Var(aM;_;)} = Z{ai(l —a)u + ata?}
i=1 =1

12
=u+@ - a?
i=1
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Mean and Variance of Number of Units per Month
Y: number of units to be delivered

D;: mumber of units in order i

N: number of orders to be delivered

m: Expected preservation rate

N
D;

=1
b= {(l)) T —?r

D; arei.i.d with N(u,v?)

-5

The expectation of ¥ is:

ElY]=E|E [Z B, |N =n|| = E[Nun] = urE[N]

i=1

The variance of D; is:
Var(D;) = E[D?] - E?[D;] = nE[D?] — n2E?[D;] = nVar(D) + n(1 — n)EZ[D]

=nv? + (1l — mu?

‘We derive the variance of ¥ by conditioning on N:

N
Var (Z D; N)
i=1

= E[N)Var(D;) + (un)*Var(N)

N

55

i=1

Var(Y)=E N

+ Var (E

) = E[NVar(D;)] + Var (Num)

By substitutingVar(D;) = mv? + n(1 — m)u?, we have
Var(Y) = E[N](mv? + n(1 — m)u?) + (ur)?Var(N)

Numerical Comparison

Simulation

tion

S e o gy e

Analytical Computa




13 10.3 4.0 10.2 37
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