
Secure Multi-Party Protocols Under a
Modern Lens

by

ELETTE CHANTAE BOYLE

B.S., CALIFORNIA INSTITUTE OF TECHNOLOGY (2008)

Submitted to the Department of Mathematics

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ARCHNE$
MASSACHUSES IN5WWE

OF TECHNOLOGY

JUL 2 5 2013

LIBRARIES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ 2013 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Certified by:

Accepted by:

7 opar Ient of Mathematics

A A May 13, 2013

Sh Goldwasser

RSA Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Michel Goemans
Chairman, Graduate Applied Mathematics Committee

SECURE MULTI-PARTY PROTOCOLS UNDER A MODERN LENS

by
ELETTE CHANTAE BOYLE

Submitted to the Department of Mathematics on June 10, 2013
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mathematics

Abstract
A secure multi-party computation (MPC) protocol for computing a function f allows a group

of parties to jointly evaluate f over their private inputs, such that a computationally bounded
adversary who corrupts a subset of the parties can not learn anything beyond the inputs of the
corrupted parties and the output of the function f.

General MPC completeness theorems in the 1980s showed that every efficiently computable

function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88] using the
existence of cryptography. In the following decades, progress has been made toward making MPC
protocols efficient enough to be deployed in real-world applications. However, recent technological
developments have brought with them a slew of new challenges, from new security threats to
a question of whether protocols can scale up with the demand of distributed computations on
massive data. Before one can make effective use of MPC, these challenges must be addressed.

In this thesis, we focus on two lines of research toward this goal:

" Protocols resilient to side-channel attacks.

We consider a strengthened adversarial model where, in addition to corrupting a subset

of parties, the adversary may leak partial information on the secret states of honest parties
during the protocol. In presence of such adversary, we first focus on preserving the correctness

guarantees of MPC computations. We then proceed to address security guarantees, using
cryptography. We provide two results: an MPC protocol whose security provably "degrades
gracefully" with the amount of leakage information obtained by the adversary, and a second
protocol which provides complete security assuming a (necessary) one-time preprocessing
phase during which leakage cannot occur.

* Protocols with scalable communication requirements.

We devise MPC protocols with communication locality: namely, each party only needs to
communicate with a small (polylog) number of dynamically chosen parties. Our techniques
use digital signatures and extend particularly well to the case when the function f is a
sublinear algorithm whose execution depends on o(n) of the n parties' inputs.

THESIS SUPERVISOR: Shafi Goldwasser

TITLE: RSA Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I am so fortunate to have been surrounded by such an assortment of brilliant and fun people during
my graduate career.

Thank you foremost to Shafi Goldwasser and to Yael Tauman Kalai. Your drive, enthusiasm,
guidance, brilliance, humor, and sometimes-brutal honesty have made me the researcher I am today.
For your immeasurable support I will be forever thankful.

A special call-out to Silvio Micali, whose irresistible teaching personality drew me to cryp-
tography at the start. To my mathematics department advisor, Peter Shor. And, to my thesis
committee, Shafi, Peter, Yael, and Jonathan Kelner.

I want to thank my mentor and friend Gil Segev, the incredible cryptography group at MIT,
and my other talented coauthors: Sanjam Garg, Abhishek Jain, Amit Sahai, Stefano Tessaro, and
Daniel Wichs.

Deep thanks to my family and friends, without whom I would have given up long ago.

And, to Zvika. When the curtain closes, a bright light remains.

3

4

Contents

1 Introduction 9
1.1 Leakage-Resilient Coin Tossing . 11

1.1.1 Our Contributions . 13
1.2 Secure Computation Against Adaptive Auxiliary Information 16

1.2.1 Our Results . 18
1.2.2 Related Work . 20

1.3 MPC Secure Against Continual Memory Leakage . 20

1.3.1 Our Result: Continual Leakage-Resilient MPC 22

1.3.2 Related Work . 25
1.4 Communication Locality in Secure MPC . 26

1.4.1 Our Results . 27

1.4.2 Further Related Work . 29

2 Leakage-Resilient Coin Tossing 31
2.1 Overview of Our Solution . 31
2.2 Preliminaries . 33

2.2.1 Distributions of Random Variables . 33
2.2.2 Verifiable Secret Sharing . 33
2.2.3 Multi-Source Randomness Extractors . 34

2.2.4 Feige Committee Election Protocol . 35
2.3 Modeling Leakage in Distributed Protocols . 36
2.4 Verifiable Secret Sharing with Leakage . 38

2.4.1 Weakly Leakage-Resilient Secret Sharing . 39
2.4.2 Weakly Leakage-Resilient VSS . 40

2.4.3 Leakage-Resilient Oblivious VSS . 49

2.5 Disjoint Committee Election . 50

2.6 Unbiased Coin Tossing with Leakage . 53

3 MPC Against Adaptive Auxiliary Information 57

3.1 Technical Overview . 58

3.2 Preliminaries . 61

3.2.1 Non-committing Encryption . 61
3.2.2 Equivocal Commitments . 63

5

6

3.2.3 Leakage-Resilient Non-Interactive Zero Knowledge Proof System

CONTENTS

. 65
3.2.4 Lossy Trapdoor Functions (LTDF)

3.3 Our M odel .
3.3.1 Security Against Semi-Malicious Adversaries

3.4 Semi-Malicious Oblivious Transfer
3.4.1 Overview .
3.4.2 Augmented NCE with Lossy Encryptions . .
3.4.3 Randomness Generation Procedure
3.4.4 Our OT Protocol

3.5 Our MPC Protocol in the Semi-Malicious Model . .
3.5.1 Protocol for Semi-Malicious Adversaries . . .
3.5.2 Description of the Simulator
3.5.3 Proof of Indistinguishability

3.6 From Semi-Malicious to Malicious
3.6.1 Overview of the Compiler
3.6.2 The Compiler

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.

3.7 UC-Secure MPC Against Adaptive Auxiliary Information .
3.7.1 UC Framework with Adaptive Auxiliary Information
3.7.2 Basic UC Functionalities
3.7.3 The Compiler .
3.7.4 Realizing .F+k.

4 MPC Secure Against Continual Memory Leakage
4 1 Overview of (ir Constution.
4.2 Preliminaries .

4.2.1 Non-Interactive Zero Knowledge .
4.2.2 Equivocal Commitments .
4.2.3 The Elect Protocol .
4.2.4 Fully Homomorphic Encryption .
4.2.5 Leaky Distributed Systems .
4.2.6 Weakly Leakage-Resilient MPC .

4.3 Our Model .
4.3.1 Ideal World .
4.3.2 Real World .
4.3.3 Security Definition .

4.4 Weakly Leakage-Resilient MPC for Randomized Functions
4.4.1 Security Definition: WLR-MPC for Randomized Functionalities
4.4.2 Security Definition: Fully Simulatable Leakage-Resilient Coin Tossing
4.4.3 Preliminaries .
4.4.4 Construction: Fully Simulatable Leakage-Resilient Coin Tossing. . . .
4.4.5 Achieving WLR-MPC for Randomized Functions

4.5 Leakage-Resilient MPC Protocol Construction
4.6 Proof of Security .

66
70
72
73
74
75
79
87
87
88
90
99

106
106
107
117
118
121
124
127

131
131
134
134
136
137
140
140
143
146
147
148
150
151
152
154
155
158
168
178
181

CONTENTS

5 Communication Locality in Secure MPC
5.1 Overview of Our Solution
5.2 Preliminaries

5.2.1 Pseudorandom functions and generators.
5.2.2 Non-Interactive Zero Knowledge.
5.2.3 Fully Homomorphic Encryption.
5.2.4 M ultisignatures .
5.2.5 Multi-party protocols: Model and Security Definitions . .
5.2.6 Random Switching Networks and Random Permutations.
5.2.7 Sublinear algorithms .

5.3 Simulation-Based Security Definition
5.4 Multiparty Computation of Sublinear Algorithms

5.4.1 O ur result .
5.4.2 Technical overview .
5.4.3 The protocol IISLA .
5.4.4 Security Proof of Theorem 5.4.1

5.5 General MPC with Communication Locality

203
. 204
. 205
. 205
. 205
. 206
. 207
. 209
. 210
. 211
. 211
. 213
. 213
. 214
. 219
. 235
. 259

7

8 CONTENTS

Chapter 1

Introduction

The notion of secure multi-party computation (MPC), introduced in the seminal works of Yao
[Yao82] and Goldreich, Micali and Wigderson [GMW87], is one of the cornerstones in cryptography.
An MPC protocol for computing a function f allows a group of parties to jointly evaluate f over
their private inputs, with the property that an adversary who corrupts a subset of the parties does
not learn anything beyond the inputs of the corrupted parties and the output of the function f.

To demonstrate the power and utility of MPC protocols, consider the following online auction
scenario. A collection of parties wish to bid for certain goods; an auctioning party receives bidding
information from these potential buyers and allocates goods in accordance with a prespecified
mechanism. Questions of how to design good allocation mechanisms have received much attention
in recent years, aiming (for example) to guarantee maximum revenue or social welfare. However,
in these works it is assumed that the auctioneer is an honest agent. If in reality this is not the
case, then questions of mechanism design are moot-a malicious auctioneer can simply allocate the
goods however he likes without verification, and (just as dangerously) he will learn the entirety of
the bidders' sensitive bidding information.

Instead, an MPC protocol allows the involved parties to jointly evaluate the allocation func-
tionality, with the strong guarantees that (as long as sufficiently many parties are acting honestly)
the computation will result in the correct allocation, and no information will be revealed about the
parties' bidding information beyond this output allocation.

General MPC completeness theorems in the 1980s showed that every efficiently computable
function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88]. Over the
years since then, much progress has been made toward making MPC protocols secure and efficient
enough to be deployed in real-world applications. Indeed, MPC protocols have found a wide range
of applications, such as in protocols for auctions, electronic voting, private information retrieval,
and threshold and proactive cryptography.

However, new waves of recent technological development have brought with them a slew of
new security challenges. Important computations are now performed on small, portable devices
such as smart cards and cell phones, opening them to new realms of adversarial attacks. Massive
data analyses are executed distributively in the cloud, placing extreme demands on MPC protocol
efficiency. Before one can effectively make use of MPC within modern applications, these challenges
must be addressed.

9

CHAPTER 1. INTRODUCTION

In this thesis, we focus on two lines of research toward this goal: designing secure protocols
resilient to newly prominent and dangerous physical attacks, and constructing protocols adhering
to stringent communication requirements in order to extend feasibly to large-scale settings.

Protecting against physical attacks. In cryptography, a rigorous claim that a system is "se-
cure" consists of: (1) an assumed class of adversarial behaviors, (2) a notion of security capturing
what it means to break the system, and (3) a proof that no adversary within this class is able to
break the system.

Since the mid 1980s, a strong collection of formal adversarial models and security definitions
have emerged. Within MPC, researchers have considered fail-stop adversaries, modeling accidental
failure of a computing party; passive adversaries, who attempt to learn additional information while
properly following the protocol; and, in the strongest form, malicious adversaries, who corrupt and
arbitrarily control a subset of the parties in attempt to break security. The malicious corruption
model is very strong and expressive, capturing (for example) collusion among deviating parties.
However, underlying it and each of the aforementioned models is the implicit assumption that an
adversary maintains black-box access to the honest parties within the protocol.

In recent years, many cryptographic schemes proven secure under standard adversarial models
have been broken in practice (e.g., Diffie-Hellman based schemes [Koc96] and RSA [Koc96, HSH+09,
HS09]). Disturbingly, they were not broken by breaking the underlying assumption (say, that
factoring is hard), but rather by executing a class of physical attacks not taken into account
in the classical adversarial models. In these so-called side-channel attacks, an adversary may
learn additional information about the internal secret state of a system by measuring properties
resulting from specific physical implementations: e.g., timing information, detection of internal
faults, electromagnetic radiation, and power consumption [BS97, BDL97, Koc96, KJJ99], which is
not captured by black-box interaction.

To help bridge this gap between theory and practice, the memory leakage model [AGV09] was
defined, capturing additional information gained by the adversary through side-channel attacks.
This model allows the adversary to specify leakage functions f, and receive back the evaluation of
f on the entire internal secret state of the system. It has become an important research agenda to
design leakage-resilient cryptographic systems whose security holds within these more demanding
settings.

In this thesis, we present three results within a line of research designing MPC protocols secure
in the presence of side-channel attacks. In the first, we focus on preserving correctness guarantees of
the computation. Namely, we describe how to collectively sample an unbiased random string, which
suffices for correctly evaluating any randomized functionality on public inputs. We then proceed
to study the effects of side-channel leakage on the input privacy of MPC protocols. We provide
two results: an MPC protocol whose security provably "degrades gracefully" with the amount of
leakage information obtained by the adversary, and a second protocol which provides complete
security assuming a (necessary) one-time preprocessing phase during which leakage cannot occur.

Protocols with scalable communication requirements. Since the original constructions
in the 1980s, tremendous progress has been made in designing MPC protocols with improved
communication requirements. Focus has traditionally been placed on optimizing parameters such

10

1.1. LEAKAGE-RESILIENT COIN TOSSING

as the round complexity and total communication complexity of the protocol. However, despite
decades of extensive study, the question of locality of communication (i.e., how many parties one
needs to contact in the course of the protocol) has received little to no attention.

Optimizing communication locality is a crucial step toward providing feasible MPC solutions
for the current generation of large-scale data computations. Large data sets, such as medical data,
transaction data, the web and web access logs, or network traffic data, are now in abundance.
Much of the data is stored or made accessible in a distributed fashion. This necessitated the
development of efficient distributed protocols that compute over such data. To address the privacy
concerns associated with such protocols, cryptographic techniques such as MPC for secure function
evaluation where data items are equated with servers can be utilized to prevent unnecessary leakage
of information. However, this demands MPC protocols whose communication requirements scale
reasonably for large numbers of participating parties.

Essentially all works in MPC yield protocols where each party sends and receives messages from
all n parties (e.g., [GMW87, BGW88, CCD88, D106, DN07, DIK+08, DIK10, LATV12, AJLA+12]).
Yet in a setting where potentially hundreds of thousands, or even millions of parties are participating
in a large-scale data analysis or computation over the internet, requiring coordination between each
pair of parties is unrealistic. A small collection of prior works provide protocols with communication
locality in mind; however, these works either do not guarantee that all parties receive the correct
output [KSSV06, CGO10, CGO12], or (in a recent and independent work), require each party to
communicate to Q(fi) other parties [DKMS12].

In this thesis, we describe a recent work achieving secure MPC for general randomized func-
tionalities with communication locality that is polylogarithmic in the number of parties.

We now expand on the thesis works mentioned above.

1.1 Leakage-Resilient Coin Tossing

Randomization, and the ability to keep your local randomness and local state private, are fun-
damental ingredients at the disposal of fault-tolerant distributed algorithms. This was realized
originating with the work of Rabin [Rab83], introducing the power of a shared global common coin
to obtain a dramatic reduction in round complexity with respect to Ben-Or's asynchronous ran-
domized consensus algorithm [Ben83]1 ; and continued to be utilized in many beautiful distributed
algorithms to this day in various network models: synchronous and asynchronous, faulty major-
ity and faulty minority, private channels and full information, and networks with and without
broadcast channels.

In this work, we address the question of how leakage from the local state of non-faulty parties
affects the correctness of fault-tolerant distributed protocols. Here, in addition to the fact that
some of the parties are faulty and fully compromised, the adversary who is coordinating the action
of the faulty parties can obtain partial information in the form of leakage on the local state of
all honest parties. This may potentially enable the adversary to alter the course of the protocol's

'Ben-Or's ingenious protocol does not require the local coin outcomes to remain ever private. All that is required
of the coin is to be random. Alas, the number of rounds is exponential.

11

CHAPTER 1. INTRODUCTION

execution. We note that in this context, the coordinating adversary can adaptively choose the
leakage functions, depending on the history of communication it sees thus far.

Randomized distributed algorithms address many different tasks. In some tasks, such as Byzan-
tine agreement, leader election, and collective coin tossing, the parties have no secret inputs and
the emphasis is on getting the correct distribution over the outputs rather than on input privacy.
In other tasks such as secure distributed function evaluation, both perfect input privacy and the
correctness of output distribution are required. In this work, we focus on the output correctness
aspect of distributed protocols in the presence of leakage attacks. In particular, we provide a fault-
tolerant and leakage-resilient protocol for collective unbiased coin tossing among n parties, which
is complete for correctly evaluating any (randomized) functionality on public inputs.

The problem of collective coin tossing in a distributed setting has received a great deal of prior
attention, starting with the work of Rabin [Rab83] on distributed consensus. When there is no
honest majority of parties, results from the two-party setting by [Cle86] showed that a bias of Q(1)
must be incurred by any r-round protocol (this was recently shown optimal in a work of Moran et
al. [MNS09]). Loosely speaking, the problem is that a dishonest party can bias the output by doing
the following: At the last round, before sending his final message, he can compute the outcome, and
abort if he does not favor this outcome, thus biasing the output. When there is an honest majority
of parties, this attack can be prevented using verifiable secret sharing (VSS), a notion defined
by Chor et al. [CGMA85]. Verifiable secret sharing allows each of the n parties to toss a coin
locally and share it among the n parties. After all the local coins have been shared via a VSS, the
parties reconstruct the different values. The output coin is set to be the result of simply taking the
exclusive or of the local coins. The works of ([BGW88, CCD88]) on secure multi-party computation
show how to achieve VSS in expected 0(1) rounds, and thus how to construct an unbiased coin
tossing protocol that runs in 0(1) rounds. These results ([BGW88, CCD88]) hold unconditionally
in the synchronous network model with less than a third Byzantine faults, assuming perfectly secure
channels of communication between pairs of users and the use of a broadcast channel.

However, each of these protocols require the parties to generate and hold secret values, and
security is guaranteed only under the assumption that these secrets are completely hidden from the
adversarial view. It is easy to check that correctness breaks down if the adversary obtains some
partial information about these secrets. This is the starting point of our work.

We remark that this work focuses on the problem of guaranteeing correctness of a multi-party
computation. The more general problem of multi-party secure function evaluation (SFE), which
addresses both correctness and privacy of parties' inputs, runs into immediate definitional problems

in the presence of leakage attacks. Since leakage on the private inputs is available to the adversary,
it is impossible to meet the SFE problem specification as is, since they require the inputs of honest
parties to remain private beyond what is revealed by the SFE output value. Possible ways out
of this conundrum are to relax the attack model to allow some form of a leak-free pre-processing
phase, or to relax the security guarantees of an SFE. These two relaxations will be considered in
the following two chapters.

12

1.1. LEAKAGE-RESILIENT COIN TOSSING

1.1.1 Our Contributions

Leakage-Resilient Coin Tossing

We construct a leakage-resilient collective coin-tossing protocol in synchronous point-to-point net-
works with a broadcast channel and secure communication channels between pairs of parties. Our
result is unconditional, and does not rely on computational assumptions.

We allow up to one third colluding statically corrupted malicious parties. Namely, a computa-
tionally unbounded rushing adversary can a priori choose parties to corrupt; during the protocol,
he sees the internal state of all corrupted parties and can select the messages of these parties at any
round, as a function of his entire view up to this point, including all honest parties' messages up to
(and including) this round. In addition, the adversary can make leakage queries at every round, in
the form of specifying a party and a leakage function, and obtain the result of the leakage functions
applied to the internal state of the corresponding parties.

We allow the adversary to leak arbitrary functions of parties' secret states, as long as the total
number of bits leaked from each party is at most some (pre-specified) A fraction of its entire secret
state.2 Each leakage query is applied to the secret state of a single party. Since participants of a
distributed protocol typically run on different physical hardware (and reside in different locations),
we believe that it is reasonable to assume each leakage query modeling a physical measurement
reveals information about each party's execution separately. To maximize generality within this
setting, we allow the leakage queries on different parties' secret states to be interleaved (i.e., leak
some from party i then some from party j, and then some more from party i), and the choice
of leakage queries to be adaptively selected as a function of prior leakage. We remark that this
distributed leakage model is similar to a model proposed by Akavia et al. [AGH12] in their work
on public-key encryption in which the secret key of the decryption algorithm is distributed among
two parties.

We call a n-party distributed protocol (t, A)-leakage-resilient if it achieves its desired function-
ality in presence of an adversary who can control up to t parties and can leak up to a A fraction of
the internal secret state of each honest party (as above). We can now state our main theorem, to
be formally stated within Chapter 2.

Informal Theorem (LR Coin Toss). For any constants J, E > 0, any A ; fig , any sufficiently
large n > (3 + 6)t, and any m, there exists a (t, A)-leakage-resilient n-party distributed protocol
that outputs a value v E {0, 1}rm, and terminates in O(1) rounds, satisfying:

" Agreement: At the conclusion of the protocol, each party outputs a value vi E {0, 1}m. For
all honest parties P, P, it holds that vi = vo.

" Randomness: The distribution of the honest output value v is close to uniform in {0, 1}m;
namely, the statistical distance between the two distributions is negligible in n.

A few remarks are in order.

2 Our methods extend to also tolerate the Naor and Segev [NSO9] leakage model which allows leakage functions
which are not necessarily shrinking but leave the internal local state with enough min-entropy.

13

CHAPTER 1. INTRODUCTION

Fairness: We emphasize that our protocol achieves fairness, in the sense that even if the dishonest
parties abort prematurely, the honest parties will output a random string.

Strings versus Bits: The output of our coin tossing protocol can be a long random string, as
opposed to just a single bit. In the leak-free setting, this point is not worth emphasizing, since
the coin-tossing protocol can be run in parallel to output as many bits as desired. However, in
the leaky setting, if we run many protocols in parallel, leakage bounds may deteriorate quickly:
if we run k protocols, where each protocol tolerates leakage rate A, then in the resulting parallel
execution, the leakage rate becomes only A. Thus, to maintain leakage bounds we would need to
run the protocol sequentially, resulting in many rounds of communication. Our protocol has the
property that it can output as many bits as desired in a constant number of rounds with constant
leakage rate.

Number of Parties: Note that the guarantees of our protocol improve with the number of
participating parties. However, the tools we develop likely will also have useful implications for the
setting with few parties.

Weakening the Secure Channels Assumption: We assumed physically secure channels; how-
ever, our leakage model immediately implies we can tolerate leakage of information from these
channels. This is because parties' messages are computed as a function of public information and
their personal secret state, which we allow leakage on. To remove the secure channels assumption
altogether, we would need to send the messages between honest parties using encryption, which
would necessitate a computational assumption supporting the strength of the encryption algorithm.
Furthermore, one would have to consider whether leakage from the secret keys of the decryption
algorithm and the randomness used by the encryption algorithm can be tolerated. A recent work
of Bitansky et al. [BCH11] suggests that by sending messages encrypted with non-committing en-
cryption (introduced by Canetti et al. [CFGN96]), protocols in the secure channels model can be
transformed into leakage-resilient secure protocols that do not assume secure channels.

Relation to Using Imperfect Random Sources in Distributed Computing: The question
of achieving O(1)-round Byzantine Agreement and multi-party computation when parties do not
have access to perfect local randomness, but rather to independent imperfect random sources such
as min-entropy sources [GSV05, KLRZ08, KLR09], seems strongly related to our work here. Indeed,
one may naturally view a random secret with leakage as a secret a-priori drawn from a min-entropy
source. The crucial difference between these works and our own is that our leakage model allows the
adversary to leak adaptively during the protocol, as opposed to non-adaptively before the protocol
begins. More specifically, the approach taken in [GSV05, KLRZO8, KLR09] is to first generate
truly random strings from the weak random sources, and then to use these random strings in the
underlying protocol execution. This approach will not work in our setting, since the adversary can
simply choose to leak on the newly generated random strings. On the other hand, we note that the
works of [GSV05, KLRZO8, KLR09] consider randomness coming from an arbitrary min-entropy
distribution, whereas our model considers perfect randomness that is being leaked so as to leave
min-entropy in the distribution.

14

1.1. LEAKAGE-RESILIENT COIN TOSSING

Coin Flipping versus Byzantine Agreement: Achieving a weak form of collective coin tossing
was an important building block to construct Byzantine agreement protocols in many works, most
notably in the work of Dwork et al. [DSS90], and of Feldman and Micali [FM85]. Our collective
coin tossing protocol utilizes a broadcast channel as a primitive (which is equivalent to Byzantine
agreement), and thus obviously cannot be used to construct Byzantine agreement. It is an inter-
esting question for future research how to achieve coin tossing in the presence of leakage without
assuming broadcast channels.

Using Coin Tossing to Force Honest Behavior: An important technique in multi-party
protocols, initially proposed by Goldwasser and Micali [GM82] in their work on mental poker
protocols, is to force parties to use the result of a common coin toss as their local randomness,
to ensure parties do not rig their coins. In this case, the result of the coin toss will be known
only to one party, Alice, and yet all other parties will be able to verify (via, say, zero-knowledge
protocols) that Alice is using the result of the collective coins in her computations. This idea was
later used in the compiler of [GMW87] from the n-party secure function evaluation protocol against
an honest-but-curious adversary to one against a malicious adversary. Our coin tossing protocol
can similarly be turned into one where only one party Alice knows the result but all other parties
can verify (via, say, a leakage-resilient zero knowledge protocol [GJS11]) that Alice is using the
result of the collective coins in her computations. Note, however, that this yields security only
assuming an honest majority.

1.1.2 Leakage-Resilient Verifiable Secret Sharing

One of the tools in our construction, which is of independent interest, is a new leakage-resilient
verifiable secret sharing scheme. Verifiable secret sharing (VSS) extends Shamir's [Sha79] secret
sharing to ensure not only secrecy (i.e., corrupted parties do not gain information about the dealer's
secret), but also unique reconstruction of a secret s' even if the dealer and/or a subset of parties are
dishonest, where for an honest dealer, s' will be his original secret. Weakly leakage-resilient (WLR)
VSS is a VSS scheme with the additional guarantee that given the view of any (t, A) adversary
who corrupts up to t parties and leaks a constant A-fraction of each honest party's secret state
(including the dealer's), the secret still retains a constant fraction of its original entropy. We refer
to this property as weak leakage resilience. We now state our second main theorem.

Informal Theorem (WLR-VSS): Let n = (3 + 6)t for some constant 6 > 0. Then for any

constants e < 1 and A < 6(1-) , there exists a (t, A)-leakage resilient VSS protocol that runs in 0(1)
_ 10+66'

rounds, with the following modified secrecy guarantee: If the dealer is honest during the sharing
phase, with input distribution S, then for any (t, A) adversary A, with high probability, given the
view of A at the conclusion of the sharing phase, the distribution S retains e fraction of its original
entropy.

WLR-VSS is sufficient for our coin tossing construction; however, we also define and obtain a
stronger version of leakage-resilient VSS, in which given the view of a leaking adversary, the secret
s retains its full entropy. This stringent secrecy property rules out the possibility of standard
VSS, since leakage from the dealer directly reveals information on s once it has been sampled. We
thus put forth a new notion and a construction of oblivious secret sharing, where a dealer shares

15

CHAPTER 1. INTRODUCTION

a uniformly distributed secret whose value he does not know. We believe that this primitive can
serve as a useful building block for constructing future leakage-resilient protocols, which anyway
make use of VSS in this fashion (e.g., in [FM85] to achieve Byzantine Agreement). We refer the
reader to Section 2.4.3 for details.

Disjoint Committee Election

As a second tool in our construction, we present a 1-round public-coin protocol for electing log 2 n
disjoint "good" committees of size approximately ni1/ 2 from among n parties. This is achieved
using a modified version of the Feige committee election protocol [Fei99], in which several of the
"lightest bins" are elected (see Section 2.5).

1.2 Secure Computation Against Adaptive Auxiliary Information

Historically, when formalizing security definitions for cryptographic protocols, it was noted that
adversarial parties may enter a protocol with relevant knowledge from the past. Meaningful se-
curity definitions should thus embed the important requirement that, even armed with such side
information, an adversary still must not be able to break the security of the protocol. For example,
in a zero-knowledge proof system, it should not be the case that an adversarial verifier with partial
information about a witness, can now suddenly recover the entire witness from the protocol. This
natural property was formalized by requiring that, for any adversary with any potential auxiliary
input z on the inputs of the honest parties prior to the execution of the protocol, this adversary
still learns nothing beyond the inputs and prescribed outputs of corrupted parties (and, of course,
the auxiliary input z it learned prior).

In the last two decades, as cryptographic protocols have become increasingly prevalent (often
within everyday online activities, run in parallel), and as new classes of strong attacks have emerged,
it has become increasingly evident that adversaries may also acquire auxiliary leakage information
on the internal state of honest parties during the protocol execution. This may take place, e.g., by
performing physical attacks on an implementation of a processor (say, a smart card or a hardware
token) [Koc96, AK96, QS01, GMO01, OST06, HSH+08], or when the randomness used by an honest
party in a protocol is correlated with randomness used in other applications. Unfortunately, this
case is no longer covered under historical definitions: the moment an adversary is able to learn
any side information, say, about the randomness of an honest party in the protocol, the security
guarantees break down.

In this work, we seek to extend the standard notion of security with (static) auxiliary inputs to
the setting of general adaptive auxiliary information. We study secure general two-party and multi-
party computation in the setting where an adversary, who corrupts an arbitrary subset of parties in
the protocol, is able to learn arbitrary (efficiently computable) auxiliary information on the entire
states of all the honest parties (including their inputs and random coins), in an adaptive manner,
throughout the protocol execution. We formalize a meaningful definition of security within this
setting, and construct two-party and multi-party computation protocols satisfying our definition.

We note that our work is greatly inspired by the recent work of Bitansky, Canetti, and Halevi [BCHI 1],
who proposed the study of secure computation in the "leakage" setting, with the guarantee that all

16

1.2. SECURE COMPUTATION AGAINST ADAPTIVE AUXILIARY INFORMATION

a "leaky" adversary can learn while running the protocol is the leakage itself. We refer the reader
to Section 1.2.2 for details.

How to Define MPC Secure Against Adaptive Auxiliary Information? Security of MPC
protocols is formalized by comparing the real-world protocol execution to an ideal-world experiment
where the parties interact directly with a trusted party who receives all parties' inputs and responds
only with the correct function output. Formally, an MPC protocol is said to be secure under the
classical definition if for every real-world adversary with some auxiliary input (say) z, there exists
an ideal-world adversary (a.k.a. the simulator) with the same auxiliary input z, who simulates the
output of the real-world experiment.

Our goal is to generalize this definition to the setting where side information can be learned
during the protocol. We model adaptive auxiliary information by allowing the adversary to specify
(efficiently computable) functions fi, adaptively throughout the protocol. For each such query, the
selected function is evaluated on the entire secret states of the honest parties, and the result is given
to the adversary as auxiliary information. Intuitively, we wish to guarantee that an adversary who
participates in the protocol and receives adaptive auxiliary information throughout the protocol's
lifetime still learns nothing beyond the inputs and outputs of the corrupted parties, and the auxiliary
information.

Note that it is not immediately apparent how to formalize this notion. Whereas in the static
setting both the adversary and the simulator receive the exact same auxiliary input z, in the
adaptive setting, it doesn't make sense even syntactically to say that the same auxiliary input
functions are applied both in the real world and in the ideal world: this is because the real-world
auxiliary input function will expect to take as input the secret states of parties executing a protocol,
whereas in the ideal world no protocol is ongoing.

A natural attempt to formalize security in this setting may be to require that if the real ad-
versary learns e bits of auxiliary information, then the simulator can also learn at most E bits of
auxiliary information. While this is a natural requirement (and our definition will achieve at least
this requirement), unfortunately, it may be too weak. For example, the auxiliary information learnt
by a real-world adversary (say, via physical processes) may be large but "noisy," giving very little
information about the honest parties' inputs. Or, the honest parties' inputs may be information-
theoretically determined but computationally unpredictable3 given the real-world auxiliary infor-
mation. In these cases, the above definition may not provide a meaningful security guarantee since
the simulator may be able to simulate the honest parties "trivially" by first learning a large portion

(or all!) of their inputs as auxiliary information. Ideally, we would like to formalize the intuitive
requirement that the auxiliary information in the ideal world is "no more" than that in the real
world.

Our Security Definition. We capture the desired security notion by placing additional restric-
tions on the ideal-world simulator. In particular, for each auxiliary input function f that the
real-world adversary generates, we require that the simulator generates a "translation function" T
that takes as input only the secret inputs of the honest parties, and generates "simulated states"
for the honest parties at each point in the protocol. These simulated states should be computation-
ally indistinguishable from the real states, and should be consistent with the simulated transcript.

3 In other words, the honest parties' inputs have high unpredictability entropy.

17

CHAPTER 1. INTRODUCTION

Then, for each auxiliary input function f that is requested in the real world, the same auxiliary
information function is applied in the ideal world, but it is applied to the simulated states. In
other words, the ideal world auxiliary function will be the composed function f o T. This prevents
the ideal-world adversary from "learning too much" via the ideal-world auxiliary information: For
example, if the requested function f has short output, reveals only useless unused information, or
leaves its inputs unpredictable, then the same restrictions will also hold for the ideal-world auxiliary
information.

We say that an MPC protocol is secure against adaptive auxiliary information if for every PPT
real-world adversary who makes arbitrary adaptive (efficiently computable) auxiliary information
queries, there exists a PPT ideal-world simulator who, given the corresponding auxiliary information
(as described above), is able to simulate the output of the real-world experiment. Intuitively, this
definition guarantees that the security of the honest parties "gracefully degrades" with the amount
of auxiliary information that the real adversary is able to obtain. We refer the reader to Section 3.3
for more details. We also remark that our definition is similar to that of [BCH11, GJS11], occurring
within the setting of zero-knowledge and protocols against passive adversaries.

1.2.1 Our Results

We construct two-party and multi-party computation protocols for any efficiently computable func-
tion secure against adaptive auxiliary information in the universal composability (UC) framework
[Can05] in the common reference string (CRS) model. Namely, we prove the following theorem:

Informal Theorem (MPC with Adaptive Auxiliary Information). For any n > 2, there
exists a UC-secure n-party protocol in the CRS model for evaluating any efficiently computable
function, such that for any malicious PPT adversary who (statically) corrupts any subset of parties
and learns any amount of (efficiently computable) adaptive auxiliary information Z, this adversary
learns nothing beyond the inputs and outputs of corrupted parties, and the same auxiliary infor-
mation Z (formalized as discussed above). This holds based on the linear assumption over bilinear
groups and the n-th residuosity assumption.4

No bound on the auxiliary information. We emphasize that, as in the classical (static auxiliary
input) setting, our result does not require any a priori bound on the amount of the auxiliary
information that the adversary may be able to learn. Instead, our protocol guarantees that for
any amount of information the real-world adversary is able to (adaptively) acquire throughout the
protocol, this "same amount" of auxiliary information is given to the ideal-world simulator, thus
providing graceful degradation of security. This advantageous property is in contrast with nearly all
existing results in leakage-resilient cryptography, which require the user to specify at design time
an amount of information leakage he wishes to protect against (growing the system parameters
accordingly); if an adversary is able to garner more leakage at runtime than the preset bound, then
security of these schemes no longer hold.

New Techniques. The technical heart of our result is a new construction of an oblivious trans-
fer (OT) protocol that is secure against adversaries that may use "bad" randomness during the

4 The n-th residuosity assumption can be replaced with any lossy trapdoor function (LTDF) with some specific
properties. Roughly speaking, we require LTDFs that are bijective and "sufficiently lossy".

18

1.2. SECURE COMPUTATION AGAINST ADAPTIVE AUXILIARY INFORMATION

protocol, and in addition receive adaptive auxiliary information on the secret state of the honest
party. Note that in the plain model (where adaptive auxiliary information is not allowed), achiev-
ing security against adversaries who may use bad randomness is straightforward, by simply using a
standard coin-tossing protocol. In contrast, as we discuss in Section 3.1, constructing a coin-tossing
protocol that is secure against adaptive auxiliary information is, in fact, impossible [CLL+13].

We introduce a new approach for generating private randomness for parties non-interactively
(and reusably) via a CRS by using lossy trapdoor functions to prevent the adversary from choos-
ing randomness in a small "bad" set. The non-interactive nature of our randomness generation
procedure allows us to tolerate an unbounded amount of adaptive auxiliary information (as stated
above, this is contrast with nearly all existing works in leakage-resilient cryptography). We ad-
ditionally demonstrate a method for effectively embedding this randomness generation procedure
within a cryptographic application, using lossy keys to guarantee information theoretic security in
the underlying application as long as the adversary's randomness does not fall within a very small
"bad" set. These techniques may prove useful outside the present work.

Application to Leakage-Resilient Protocols. There has been an extensive amount of work on
leakage-resilient cryptography in recent years, primarily focused on the setting of non-interactive
primitives (e.g., [ISWO3, DPO8, AGV09, DKLO9, NS09, KV09, BKKV10, DHLW10b]). Our result
can be used to achieve leakage-resilient interactive protocols with input privacy guarantees, an area
that has received comparatively little attention (see Section 1.2.2 for details).

As alluded to above, our MPC protocol directly provides meaningful security guarantees in the
setting of leakage: where such a "leaky" adversary learns no more than the inputs and outputs
of the corrupted parties, and the leakage information. This can be seen by viewing the adaptive
auxiliary information as joint leakage on the secret states of the honest parties during the protocol
execution. We note, however, that this differs from the security model considered in [BCH11],
where leakage on the state of each party is "disjoint" in both the real- and ideal-world experiments.
Indeed, achieving security in such a model is an interesting open problem.

Further, when combined with previous work on leakage-resilient cryptography, our result yields
applications where "standard" security is guaranteed in the face of bounded leakage. Below, we
discuss two such applications:

" Leakage-Resilient MPC in the leak-free preprocessing model. A recent work of Boyle et al.
[BGJK12] (described in Chapter 4) builds upon our results to construct multi-party secure
computation protocols to achieve standard ideal-world security against real-world adversaries
that may leak continuously from the secret state of each honest player separately, assuming
a one-time leak-free preprocessing phase and a large number of parties. At a very high
level, they achieve their result by applying our multi-party secure computation protocol to
the leakage-resilient computation compiler of Goldwasser and Rothblum [GR12]. We stress
that they are able to achieve standard ideal-world security (where no leakage is allowed in
the ideal world), despite the fact that our result only achieves "leaky" ideal-world security
(where the simulator is given leakage in the ideal world). Thus, even if end-user applications
only consider standard security as a realistic model, our results can still be an important tool.

" Leakage-resilient threshold cryptosystems. In a threshold cryptosystem [DF89], multiple par-
ties hold shares of a secret key, and only a quorum of parties can jointly execute the corre-

19

CHAPTER 1. INTRODUCTION

sponding secret functionality (e.g., decryption). Our MPC protocol, when combined with an
underlying cryptographic primitive that is resilient to leakage on the secret key (e.g., [AGV09]
for public-key encryption), yields a corresponding leakage-resilient threshold cryptosystem.
Specifically, the security guarantee of our protocol implies that any information garnered by
an adversary who controls an arbitrary strict subset of a quorum, and obtains arbitrary leak-
age on the joint secret states of all honest parties during the collective decryption protocol,
reduces to simply the output value and corresponding leakage on the underlying secret key.

1.2.2 Related Work

The notion of security considered in this paper is somewhat analogous to that considered by Bi-
tansky, Canetti, and Halevi [BCH11] and Garg, Jain, and Sahai [GJS11], in the context of leakage.

Garg et. al. [GJS11] consider zero-knowledge proof systems where a malicious verifier can adap-
tively leak arbitrary information on the state (i.e., witness and randomness) of the honest prover
during the execution of the protocol. They consider a definition that intuitively guarantees that
such an adversarial verifier does not learn anymore than what it may learn by leaking directly on the
witness. They present protocols satisfying this definition both in the interactive and non-interactive
setting, based on standard assumptions.

Bitansky et. al. [BCH11] put forth a general definition of leakage tolerance in the setting of
two-party interactive protocols, extending the notion of universally composable security. As in
the model of [GJS11], the simulator is allowed access to leakage on the input of the honest party.
Bitansky et. al. present protocols achieving this notion against a semi-honest adversary, for a
collection of specific tasks (secure message transmission, oblivious transfer, and commitment); and
also construct a zero knowledge proof system with such guarantees in the CRS model. In addition,
they prove a composition theorem for leakage-tolerant protocols. We use this composition theorem
in our work.

A concurrent and independent work of Damgird, Hazay, and Patra [DHP1 1] constructs a general
two-party secure function evaluation protocol in the leakage setting for semi-honest adversaries.
Damgard et. al. formalize a security definition along the lines of entropic leakage as in [NS09, HL11],
overcoming the limitations of a bounded leakage definition, and provide constructions realizing their
definition in the semi-honest setting. We note that our results, cast in the leakage context, also
satisfy their definition (for the case of 2-party protocols). A notable difference with our work is
that Damgard et. al. deal with semi-honest adversaries, whereas malicious security is the focus of
this work, and we address the multi-party case.

1.3 Multi-Party Computation Secure Against Continual Memory
Leakage

In this work, we study MPC in the setting where an adversary, who corrupts an arbitrary subset of
parties in the protocol, can also leak information about the entire secret state of each honest party
throughout the protocol execution (except during a designated leak-free preprocessing stage). As
has become customary in the field, leakage is modeled by allowing the adversary to query leakage
functions, as follows. Each leakage function is computed by an arbitrary poly-size circuit, with

20

1.3. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

bounded output-length, which is applied to the secret state of an honest processor. The adversary
may choose the leakage functions adaptively, based on the entire history of communication, previous
leakage, and internal state of corrupted processors.

The security guarantee we aim for and will achieve, is that any adversary in the above leakage
model, does not learn anything beyond the inputs of the corrupted parties and output values of the
functions computed by the MPC protocol. This is formalized via the standard real/ideal world
paradigm. In the ideal world, parties do not interact directly, but rather send their inputs to an
"ideal functionality", who computes the function for them, and sends them the output. There is no
leakage in the ideal world. An MPC protocol is said to be secure, if for every "real world" leakage
adversary A (as above) there exists an "ideal world" simulator S, such that the output of all the
parties (including the adversary) in the real world, is computationally indistinguishable from the
output of all the parties (including the simulator) in the ideal world.

Weakly Leakage-Resilient MPC. We note that recently there have been several results that
consider the problem of constructing leakage-resilient MPC protocols [GJS11, BCH11, DHP11,
BGJ+13]. However, in contrast to the security guarantee we consider here, all these results give a
weakened security guarantee: an adversary that runs the protocol and leaks f bits about the honest
parties' secret state, does not learn more than the output of the function being computed, and an
additional e bits about the private inputs of the honest parties. We note that in some applications,
leakage of f bits on the private inputs of the honest parties could be detrimental to the security of
the entire MPC protocol. For example, say the function to be computed by the MPC protocol is
to tally up the binary votes of the parties. Then, the e bits can be exactly the complete votes of
any f honest parties, rendering the protocol useless.

Interestingly, we use the result in [BGJ+13], which constructs an MPC protocol with the weak
security guarantee, as a building block to construct a leakage-resilient MPC protocol with the
classical (strong) security guarantee.

Security Against Continual Leakage. We further remark that the weaker security notion
previously achieved cannot be extended meaningfully to continual leakage in the MPC setting.
That is, it cannot address the setting where the n users do not just perform a one-shot MPC
protocol, but rather engage in an unbounded number of MPC protocols for many functions, and
during each MPC invocation the adversary leaks f bits from each of the honest party's internal
state. This is obvious, as allowing the repeated leakage of new f bits of information on the honest
parties' inputs would eventually leak the honest parties' inputs in their entirety. For example, in the
setting where a set of parties jointly compute a threshold decryption function (as described above),
they may want to carry out many decryption computations, where leakage happens repeatedly.
Since each e bits of leakage corresponds to f bits of leakage on the decryption key, the decryption
key may eventually be completely leaked! Nonetheless, we use the result of [BGJ+ 13] as a building
block to achieve our stronger continual leakage security guarantee.

21

CHAPTER 1. INTRODUCTION

1.3.1 Our Result: Continual Leakage-Resilient MPC

In this work, we construct a leakage-resilient MPC protocol for any function f, without weakening
the security guarantee. We consider a continual setting, where parties over time compute many
functions on their inputs. Our security guarantee is that an adversary does not learn anything
beyond the inputs of the corrupted parties and the output of the functions computed, even if
he continually leaks information about the honest parties' secret states throughout the protocol
executions. Parties' secret states are periodically updated via an update procedure, during which
the adversary can continue to leak information. We allow each of the adversary's leakage functions
to be an arbitrary (shrinking) polynomial time computable function of the entire secret state of each
honest party (separately), and these leakage functions can be chosen adaptively on all information
the adversary has seen thus far.

Informal Theorem (LR-MPC): Under (standard) intractability assumptions, for every con-
stant e > 0 there exists an MPC protocol for computing an unbounded number of functions among n
parties of which at least c fraction are honest. The protocol is secure against continual leakage,
assuming a one-time leak-free pre-processing stage, and where the security parameter is polynomi-
ally related to the number of parties n.

A few remarks about our result statement are in order.

Standard "Ideal World" Security. We formalize security via the real/ideal paradigm, and as
stated above, we guarantee the standard ideal world security. More specifically, we consider a real
world execution where a ppt adversary A that controls a subset of the parties, can additionally
leak in an adaptive manner on the secret states of each honest party, throughout the protocol
execution (except the "leak-free" pre-processing stage; see below). We require that for any such
adversary there exists a probabilistic polynomial-time adversary S (referred to as the simulator)
in the ideal world who corrupts the same set of parties, and interacts with the trusted party who
computes the desired functionality, and simulates the view of the adversary A in the real world in
an indistinguishable manner. Note that unlike the previous works, the simulator in our definition
is not allowed to leak on the honest parties' inputs.

A formal description of our security model is given in Section 4.3.

"Leak-free" Pre-Processing. We assume the existence of a leak-free pre-processing stage. We
stress that this is a necessary assumption to obtain our strong guarantee, since otherwise an adver-
sary can simply leak f bits about an honest party's secret input, before the MPC even commences.
More generally, we note that such a leak-free pre-processing stage is a necessary step in the con-
struction of any leakage-resilient cryptographic primitive which receives a secret input, and where
the security guarantee is that the secret input does not leak. This is the case, for example, in the
compilers of [ISWO3, FRR+10, JV10, GR10, GR12], which transform algorithms with a secret state
into a functionally equivalent leakage-resilient variant of the same algorithm.

We remark that our pre-processing stage in fact has the nice property that it can be decomposed
into two parts, namely, (a) an interactive pre-processing phase that is independent of the parties'

22

1.3. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

inputs and the functions to be computed, and (b) a non-interactive input dispersal phase. We
stress that the first phase is run only once in the beginning of time, before the parties know what
their inputs are or what functions they wish to compute. The second (non-interactive) phase is run
whenever the parties choose a set of inputs.

While both of these parts are assumed to be "leak-free", we do allow leakage between them.
We refer the reader to Section 4.3 for a formal description of our model.

Multi-function MPC and Continual Leakage. We note that in the standard (leak-free) MPC
literature, one typically considers a one-shot MPC protocol, as opposed to considering the setting
where the parties compute an unbounded (polynomial) number of functions. The reason we focus
on the latter setting, is to emphasize that we need to run the leak-free preprocessing stage only
once, and then the parties can compute any unbounded number of functions fi, ... ,fe in a leaky
environment.

We further emphasize that we allow the adversary to leak continuously on the secret states of the
parties during the (unbounded) computations; the only (necessary) requirement is that the secret
states of the parties are periodically updated (since otherwise they will eventually be completely
leaked). However, the adversary is allowed to leak even during each update procedure. We do not
bound the total number of bits that the adversary leaks, but rather only bound the leakage rate:
i.e., the number of bits leaked between updates.

Extending to Multi-input MPC We stated our theorem for the case of computing many
functions on a single set of inputs. However, our construction is easily extended to the many-input
case. Whenever a party chooses a new input, the (leak-free) non-interactive input phase described
above can be repeated. Namely, party P on new input xi performs a local computation on xi, sends
a message to the other parties, and erases xi. One may think of this model as a "hot potato" model,
where the parties never store their inputs for very long (since they are concerned with leakage),
but rather immediately share their input (as if it were a "hot potato").

Number of Parties vs Security Parameter. Notice that in our theorem, the security pa-
rameter is polynomially related to the number of parties. Namely, the security increases with the
number of parties. Therefore, this theorem is meaningful only when the number of parties in the
MPC protocol is large. One may ask whether this restriction on the number of parties being large,
or the restriction that an e-fraction is honest, is inherent, or whether it is simply an artifact of
our techniques. Unfortunately, it turns out that this restriction cannot be removed altogether. In
particular, one can prove that there does not exist a secure leakage-resilient two-party computation
protocol in our model.5 Similarly, one can show that there does not exist a secure leakage-resilient
MPC protocol if all the parties except one are malicious. Moreover, it turns out that proving this

5 The reason is the following: Assume the adversary controls party P 1 . In this case, he knows the entire secret

state si of P 1 , and can choose his leakage function L to depend on si; i.e., L=L8,. Note that L is a function that
takes as input the secret state S2 of P2 . Thus the adversary can leak any (shrinking) function g(si, s2) by setting

L, 1 (82) A g(si, s2). Recall that from the shares (si, 82) the parties can compute any function of the original inputs

(X1, X2). Therefore, the function leaked can be an arbitrary function of the original inputs. Clearly, such leakage
cannot be simulated in the ideal world.

23

CHAPTER 1. INTRODUCTION

theorem for constant number of parties implies an "OCL compiler" (without leak-free hardware)
that has only a constant number of sub-computations (or "modules"), which is an interesting open
problem on its own.

Assumptions. In our construction, we rely on several underlying cryptographic primitives, in-
cluding a fully homomorphic encryption (FHE) scheme [Gen09, BGV11], a non-interactive zero-
knowledge (NIZK) proof-of-knowledge system [FLS90], a standard MPC protocol [GMW87], an
equivocal commitment scheme [FS89], a weakly leakage-resilient MPC protocol [BGJ+13], and an
LDS compiler [BCG+11] (which can be thought of as a stronger version of an OCL compiler as
in [JV10, GR10, GR12]). These primitives have been shown to exist under various (standard)
computational intractability assumptions. The FHE scheme and the NIZK scheme that we use are
not required to be leakage resilient, nor do we know of such schemes.

We note that the use of FHE in our construction is solely to achieve independence between the
complexity of the functions computed by the MPC and the number of parties required, as well as
to reduce the interaction between parties. 6

We refer the reader to Section 4.2 for details on these primitives, and the corresponding as-
sumptions.

Applications. We demonstrate the application of our result to the problem of delegating multi-
party computation to outside servers. Generally, the setting is of a large set of parties who need to
perform a joint computation, and they would like a service (such as Amazon) to do the computation
for them. However, they do not trust any one server, and further believe that any server can be
leaked upon.

Usually, MPC provides a solution around the trust problem by using several servers, as follows:
Each party secret shares her input, and gives one share to each server; then the servers carry out the
desired computation by running an MPC protocol; finally, one argues that if there are sufficiently
many honest parties, then security is guaranteed. However, if an adversary can obtain leakage
information from the honest servers, then this is no longer true. To argue security in the leaky
setting, the servers will need to run a leakage-resilient MPC protocol. Moreover, if the servers
compute many functions on the secret inputs, then they will need to run an MPC protocol that is
secure against continual leakage. Let us demonstrate three examples of this setting.

* Electronic election: Say an electronic election among many voters is to be held. Clearly
running an MPC protocol among all voters is prohibitive, since it requires interaction between
every two voters. Instead, the MPC protocol is run by a proxy of n servers. Since these

6 We also emphasize that, while FHE immediately solves the related problem of computing on encrypted data,
FHE does not suffice for our purposes. To illustrate, suppose the parties collectively generate a public key pk for the
FHE scheme, so that they each hold a secret share of the corresponding secret key, and then each goes to publish an
encryption of their input xi. Then for any efficiently computable function f, they can easily produce an encryption
of the desired output, Encpk(f(y)). However, the challenge is (even for a one-shot function computation) how to
enable the parties to collectively decrypt this ciphertext and reveal f(Y) itself, while simultaneously ensuring that the
adversary (who can corrupt nearly all of the parties, and leak on all the rest) is not able to learn any information on
the xi's.

24

1.3. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

servers compute on very sensitive information, attackers may try to employ various side-
channel attacks to learn this information. Thus, to ensure the secrecy of the individual votes,
the servers should run a leakage-resilient MPC protocol.

" Medical Data: One may envision a huge database which contains the medical data of every
patient in the US. To compute any global statistic on this data, one would not want to put
complete trust in any single database. Instead, it is distributed to n different databases. Each
time they need to compute statistics on this data, they engage in an MPC protocol. As in the
voting example, since these databases contain very sensitive information, an adversary may
try to obtain this information via a leakage attack. Thus, to ensure security, the databases
must run an MPC protocol that is secure against continual leakage.

" Differential Privacy: In the area of differential privacy, great care is taken to ensure that
the data of individuals is protected. However, usually it is assumed that there is an honest
curator, and that the people in the database hand their secret data to this curator. However,
it seems likely that people may not trust any single curator with highly sensitive information

(such as whether they do or do not have a disease which may scare off life insurance providers).
Thus, as in the previous examples, this trusted curator can be replaced by a multitude of
parties of which only a small fraction is assumed to be honest. Moreover, if these parties
compute on the database using a leakage-resilient MPC protocol, then security is guaranteed
even if all the honest parties are leaked upon (as long as some e-fraction of the honest parties
are not fully leaked upon).

1.3.2 Related Work

Leakage-Resilient Non-Interactive Primitives. There has been an extensive amount of re-
search on leakage-resilient cryptography in the past few years. Most prior works construct spe-
cific leakage-resilient non-interactive primitives, such as leakage-resilient encryption schemes and
leakage-resilient signature schemes [DPO8, AGV09, PieO9, DKLO9, ADWO9, NS09, KV09, DGK+10,
FKPR10, ADN+10, KP10, GR1O, JV10, BG10, BKKV10, DP10, DHLW10a, DHLW10b, LRW11,
MTVY11, BSW11, LLW11, DLWW11, BCG+11J.

Weakly Leakage-Resilient Interactive Protocols. There has also been prior work on the
problem of constructing leakage-resilient interactive protocols [GJS11, BCH11, BGK11, DHP11,
BGJ+13]. Garg et. al. [GJS11] present a leakage-resilient zero-knowledge proof system. Bitan-
sky et. al. [BCH11] present leakage-resilient protocols for various functionalities (such as secure
message transmission, oblivious transfer, and commitments) which are secure against semi-honest
adversaries, and also zero knowledge, in the UC framework. Boyle et. al. [BGK11] present a
leakage-resilient multi-party coin tossing protocol. Damgard, Hazay, and Patra [DHP11] present a
leakage-resilient two-party secure function evaluation protocol for functions in NC1 in the semi-
honest setting. Finally, very recently Boyle et. al. [BGJ+13] constructed a general leakage-resilient
MPC protocol that is secure in the UC setting against malicious adversaries (as described in Chap-
ter 3).

25

CHAPTER 1. INTRODUCTION

However, all the results in the interactive setting mentioned above offer a weakened security
guarantee, that an adversary that leaks (bits in the real world, gains at most f bits of secret
information about the secret inputs of the parties. 7 Moreover, the f bits of secret information
gained is an arbitrary (poly-size) function of the joint inputs X1,... , Xn.

Only Computation Leaks Model. Finally, we mention that various leakage models have been
considered in the literature, which restrict the leakage functions in different ways. Most notable is
the only computation leaks (OCL) model of Micali and Reyzin [MR04]. The axiom of this model is
that secret information that is merely stored in memory does not leak, but any information that is
used during a computation may leak.

Several results prove security for specific cryptographic primitives in the OCL leakage model
[DP08, Pie09, FKPR10]. More generally, it is known how to convert any circuit into one that is
secure in the OCL model [GR10, JV10, GR12]. In particular, a recent work of Goldwasser and
Rothblum [GR12] shows how to do this unconditionally, making no intractability assumptions, and
without resorting to secure leak-free hardware, unlike the previous works. Specifically, Goldwasser
and Rothblum construct an efficient compiler that takes any circuit (with some secret values hard-
wired) and converts it into a leakage-resilient one, consisting of several modules, each of which
performs a specific sub-computation. The security guarantee is that an adversary, who at any
point of time throughout the computation obtains bounded leakage from the "currently active"
module, does not learn any more information than having black-box access to the circuit. We
will use a variant of this result (namely, an LDS compiler) to construct our leakage-resilient MPC
scheme. In particular, we use [GR12] as a building block in our construction. See Section 4.1 for
details.

We stress that our result does not use the OCL assumption, and we allow the adversary to
compute leakage functions on everything held in the memory of each party (except during the
pre-processing phase and during the input phase).

1.4 Communication Locality in Secure Multi-party Computation

These days, an emerging area of potential applications for secure MPC is to address privacy concerns
in data aggregation and analysis to match the explosive current growth of the amount of available
data. Large data sets, such as medical data, transaction data, the web and web access logs, or
network traffic data, are now in abundance. Much of the data is stored or made accessible in
a distributed fashion. This necessitated the development of efficient distributed protocols that
compute over such data. In order to address the privacy concerns associated with such protocols,
cryptographic techniques such as MPC for SFE where data items are equated with servers can be
utilized to prevent unnecessary leakage of information.

However, before MPC can be effectively used to address today's challenges, we need protocols
whose efficiency and communication requirements scale practically to the modern regime of massive
data. An important metric that has great effect on feasibility but has attracted surprisingly little
attention thus far is the number of other parties that each party must communicate with during

7An exception is the work of [BGK11] that considered the specific coin-tossing functionality, where the parties do
not have any secret inputs.

26

1.4. COMMUNICATION LOCALITY IN SECURE MPC

the course of the protocol. We refer to this as the communication locality. Indeed, if we consider
a setting where potentially hundreds of thousands, or even millions of parties are participating
in a computation over the internet, requiring coordination between each pair of parties will be
unrealistic.

In this work, we work to optimize the communication locality for general secure function eval-
uation on data which is held distributively among n players connected via a complete synchronous
communication network, of whom (I - c)n may be computationally bounded Byzantine faults. We
do not assume the existence of broadcast channels.

We also focus on a particularly interesting setting in which the randomized function f to be
computed is a sublinear algorithm: namely, a random execution of f(xi,..., xn) depends on at most
q = o(n) of the inputs xi. We consider both non-adaptive and adaptive sublinear algorithms,
in which the identities of the selected inputs may depend on the randomness r of execution, or
on both r and the values of xi queried thus far. Sublinear algorithms play an important role in
efficiently testing properties and trends and computing on large data sets. Here, the sublinear
query complexity makes it possible in principle to dramatically reduce the amount of information
that needs to be communicated within the protocol. However, the challenge is to achieve this while
maintaining security-in particular, keeping the identities of the selected inputs completely hidden.

Straightforward application of known general MPC techniques results in protocols where each
party sends and receives messages from all n parties, and where the overall communication complex-
ity is O(n2), regardless of the complexity of the function to be computed. We remark that this is ob-
viously the case for the classical general SFE protocols (beginning with [GMW87, CCD87, BGW88])
in which every party first secret shares its input among all other players, and exchanges messages
between all n parties at the evaluation of every gate of the circuit of the function being computed.
Furthermore, although much progress was made in the MPC literature of the last two decades
to make MPC protocols more efficient and suitable for practice, it is still the case both in works
on scalable MPC [DI06, DN07, DIK+08, DIK10] and more recent works utilizing the existence of
fully homomorphic encryption schemes [LATV12, AJLA+12] for MPC. The latter achieve commu-
nication complexity that is independent of the circuit size, but not of the number of players when
broadcast channels are not available.

A recent notable exception to the need of each player to communicate with all other players is
the beautiful work of King, Saia, Sanwalani and Vee [KSSV06] on what they call scalable protocols
for the Byzantine agreement and leader election problem, requiring each honest party to send and
process a polylog(n) number of bits. On the downside, the protocols of [KSSV06] do not guarantee
that all honest parties will achieve agreement but only guarantee that (1 - o(1)) fraction of the
good processors reach agreement-achieving only the so-called almost everywhere agreement. In
another work of King et al [KLST11], it is shown how using O(v'ii) communication, full Byzantine
agreement can be achieved. The technique of almost everywhere leader election of [KSSV06] will
be the technical starting point of our work.

1.4.1 Our Results

We provide multi-party computation protocols for general secure function evaluation with commu-
nication locality that is polylogarithmic in the number of parties. That is, starting with n parties
connected via a complete and synchronous network, nearly one third of which are Byzantine faults,

27

CHAPTER 1. INTRODUCTION

the protocol requires each party to send messages to (and process messages from) at most polylog(n)
other parties in the network, using polylog(n) rounds. Our main theorem is as follows:

Theorem 1 (MPC with Communication Locality). Let f be any polynomial-
time randomized functionality on n inputs. Then, for every constant e > 0, there exists
an n-party protocol Hl that securely computes a random evaluation of f, tolerating
t < (1/3 - e)n statically scheduled active corruptions, with the following complexities:

(1) Communication locality: polylog(n).

(2) Round complexity: polylog(n).

(3) Message sizes: O(n - 1 - polylog(n)), where 1 = Ixil is the individual input size.

(4) The protocol uses a setup consisting of n -polylog(n) signing keys of size polylog(n),
as well as a polylog(n)-long additional common random string (CRS).8

The protocol assumes a secure multisignature scheme, a fully homomorphic encryption
(FHE) scheme, simulation-sound NIZK arguments, as well as pseudorandom generators.

Assuming only a standard signature scheme and semantically secure public-key encryp-
tion, and setup as in (4), there exists a protocol for securely computing f with polylog(n)
communication locality.

Multi-signatures [MORO1, LOS+06] are digital signatures which enable the verification that
a large number of signers have signed a given message where the number of signers is not fixed
in advance. The size of a multisignature is independent of the number of signers, but in order
to determine their identities one needs to attach identifying information to the signatures. Stan-
dard instantiations of such schemes exist under the bilinear computational Diffie-Hellman assump-
tion [Wat05, LOS+06].

The use of multi-signatures rather than standard digital signatures enables us to bound the size
of the messages sent in the protocol. Further, the use of FHE enables us to bound the number
of messages sent as in the theorem, rather than depend on the time complexity of the function f
to be computed and polynomially on the input size. However, we can obtain the most important
feature of our complexity, the need of every player to send messages to (and process messages
from) only polylog(n) parties in the network, solely under the assumption that digital signatures
and public-key encryption exist.

In addition, we show how to convert an arbitrary sublinear algorithm with query complexity
q = polylog(n) into a multi-party protocol to evaluate a randomized run of the algorithm S with
O(polylog(n)) communication locality and rounds, and where the total communication complexity
sent by each party is only O(polylog(n) . (1 + n)) for 1 = |x| an individual input size. We prove
that participating in the MPC reveals no information beyond the output of the sublinear algorithm
execution using a standard Ideal/Real simulation-based security definition. In particular, corrupted
parties do not learn any information on he randomness used during the execution orwhich inputs
x were inspected by the algorithm.

For underlying query complexity q, our second main theorem is as follows:

8Adversarial corruptions may be made as a function of this setup information.

28

1.4. COMMUNICATION LOCALITY IN SECURE MPC

Theorem 2 (MPC for Sublinear Algorithms). Let SLA be a sublinear algorithm
which retrieves q = q(n) = o(n) different inputs. Then, for all constant c > 0, there
exists an n-party protocol HSLA that securely computes an execution of the sublinear
algorithm SLA tolerating t < (1/3 - e)n statically scheduled active corruptions, with the
following complexities, where 1 is the size of the individual inputs held by the parties:

(1) Communication locality: q - polylog(n).

(2) Round complexity: O(q) + polylog(n).

(3) Message sizes: O((l + n) - polylog(n)).

(4) The protocol uses a setup consisting of n -polylog(n) signing keys of size polylog(n),
as well as a polylog(n)-long additional CRS.

The protocol assumes a secure multisignature scheme, an FHE scheme, simulation-sound
NIZK arguments, and pseudorandom generators.

Remarks. A few remarks are in order.

Flooding by faulty parties. There is no limit (nor can there be) on how many messages are sent by
faulty players to honest players. To address this issue in [KSSV06, KLST11, KS11, DKMS12], for
example, it is (implicitly) assumed that the authenticated channels between players can "recognize"
messages from unwarranted senders which should not be processed and automatically drop them,
whereas we will use a digital signature verification procedure to recognize and drop these messages
which should not be processed.

Security definition for sublinear algorithms. The security definition we achieve is the standard
definition of secure multi-party computation (MPG). Informally, the parties will receive the output
corresponding to a random execution of the sublinear algorithm but nothing else. Formally, we use
the ideal/real simulation based type definition. We note that in works of [HKKNO1, FIM+06, IW06]
on MPC for approximation algorithms for functions f, privacy is defined as to mean not to reveal
information beyond the exact value of f rather than beyond the approximate value of f computed
by the protocol. One may ask for a similar privacy definition for sublinear algorithms which are an
approximation algorithm of sorts. However this is an orthogonal concern to the one we address in
this work.

1.4.2 Further Related Work

Work on MPC in partially connected networks such as the recent work of Chandran, Garay and
Ostrovsky [CGO10, CGO12] shows MPC protocols for network graphs of degree O(polylog(n)) (thus
each player is connected to no more than polylog(n) players). They can only show how to achieve
MPC amongst all but o(n) honest players. Indeed, in the case of a (static) partially connected
network, it is unavoidable for some of the honest players to be cut out from every other honest
player. In contrast, in the present work, we assume that although the n players are connected via a
complete network and potentially any player can communicate with any other player, our protocols

29

CHAPTER 1. INTRODUCTION

require each honest party to communicate with only at most polylog(n) players whose identity is
only determined during the course of the protocol execution.

The problem of sublinear communication in MPC has also been considered in the realm of two-
party protocols, e.g. by [NN01] who provide communication-preserving protocols for secure function
evaluation (but which require superpolynomial computational effort), and in a recent collection of
works including [GKK+11] which achieve amortized sublinear time protocols, and the work of
(IW06] which show polylogarithmic communication for specific functions.

An interesting point of comparison to our result is the work of Halevi, Lindell and Pinkas [HLP1 1].
They design computationally secure MPC protocols for n parties in which one party is singled out
as a server and all other parties communicate directly with the server in sequence (in one round of
communication each). However, it is easy to see that protocols in this model can only provide a
limited privacy guarantee: for example, as pointed out by the authors, if the last i parties collude
with the server then they can always evaluate the function on as many input settings as they wish
for variable positions (n - i), (n - i + 1) , n. No such limitations exist in our model.

In a recent and independent work to the current paper, King et al [DKMS12] extends [KLST11]
to show a protocol for unconditionally secure SFE for general f that requires every party to send at
most O(M+g'ii) messages, where m is the size of a circuit representation of f. A cursory comparison
to our work shows that in [DKMS12] each party sends messages to l(xfi) other parties.

Finally, let us point out that our approach to anonymize access patterns to parties is similar in
spirit to problems arising in the context of Oblivious RAM [G096], and uses similar ideas to the
obfuscated secret shuffling protocols of Adida and Wilkstr6m [AW07].

30

Chapter 2

Leakage-Resilient Coin Tossing

In this work, we present an 0(1)-round protocol for collectively generating an unbiased common
coin, in the presence of leakage on the local state of the honest parties. We tolerate t < (j - c)n
computationally unbounded statically scheduled Byzantine faults and in addition a e(1)-fraction
leakage on each (honest) party's secret state. Our results hold in the memory leakage model
of [AGV09] adapted to the distributed setting.

An additional contribution of this work is a tool we develop in order to achieve collective coin
tossing-leakage-resilient verifiable secret sharing (VSS). Informally, this is a variant of ordinary
VSS in which secrecy guarantees are maintained even if information is leaked on individual shares
of the secret.

We begin in Section 2.1 by giving a high-level overview of our solution. In Section 2.2, we
introduce some preliminaries and notation. Section 2.3 contains a discussion on the leakage model
considered. In Section 2.4, we define and construct a leakage-resilient verifiable secret sharing
scheme, a tool used in our construction. In Section 2.5, we present a protocol for electing several
disjoint committees. Section 2.6 contains the construction and proof of our leakage-resilient coin
tossing protocol.

2.1 Overview of Our Solution

Let us first see why simple and known coin tossing protocols are not resilient to leakage. Consider
the following well-known coin tossing protocol paradigm: First, each party P chooses a random
value ri and secret shares it to all other parties using a verifiable secret sharing (VSS) protocol.
Then, all the parties reveal their shares and reconstruct ri,... , rn. Finally, the parties output eri.
This protocol is not resilient to leakage for several reasons.

First, the reduction from coin tossing to VSS fails. For example, a malicious party P can
simply leak from each party Pi the least significant bit of ri, and then choose rj such that the xor
of these least significant bits is zero. Thus, the problem is that in the leaky setting, we cannot
claim that the ri's look random to the adversary. Instead, all we can claim is that they have high
min-entropy. To address this problem, the first idea is to use a multi-source extractor instead of the
xor function. Namely, output Ext(ri,... , rn), where Ext is an extractor that takes n independent
sources and outputs a string that is statistically close to uniform. Note however, that we cannot use

31

32 CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

just any such multi-source extractor, since some of the sources (i.e., some of the ry's) may be chosen
maliciously. Thus, what we need is a multi-source extractor that outputs a (statistically close to)
uniform string, even if some of the sources are arbitrary, but independent of the "honest" sources.
Indeed, such an extractor was constructed by Kamp, Rao, Vadhan and Zuckerman [KRVZ06].

Secondly, VSS protocols by and large are not resilient to leakage. Consider a single VSS protocol
execution in the above paradigm. If the adversary leaks A-fraction from each share, the total number
of bits leaked is too large (indeed, potentially larger than the size of the secret being shared), and
we cannot even guarantee that the secret ri has any min entropy. Thus, we cannot use just any
VSS scheme, but rather we need to use a leakage-resilient one, with the guarantee that even if
A-fraction of each share is leaked, the secret still has high min-entropy. Indeed, we construct such
a weakly leakage-resilient (WLR) VSS in Section 2.4.2. We note that many distributed protocols
use VSS schemes, which immediately make them susceptible to leakage. Thus, our leakage-resilient
VSS scheme may be useful for other protocols as well.

Finally, two technical difficulties remain. In the above coin-tossing paradigm utilizing WLR-
VSS, each party shares his random value with all other n parties, and thus each honest party holds
information on all secret values ri. Since the leakage is computed on a party's entire secret state,
the adversary may learn information on the joint distribution of the ri's. This creates a dependency
issue: recall that the output of the multi-source extractor is only guaranteed to be random if the
sources ri are independent. Further, in this paradigm the secret state of each party will be quite
large, consisting of n secret shares (one for each secret value ri). This will yield poor leakage
bounds, with leakage rate less than -, if we want to ensure no share of one particular secret can
be entirely leaked.

We avoid these problems by ensuring that each of the n parties will never hold more than one
secret share of the ri's. To this end, we follow a two-step approach. The first step is a universe
reduction idea similar to the one going back to Bracha [Bra84]. Instead of having all parties generate
and secret share random strings ri, we elect a small committee S (of size approximately log 2 n),
and only the members of E choose a random string ri which will be shared via WLR-VSS (and
later used in the construction of the collective coin). We utilize Feige's protocol [Fei99] to elect
this committee, which guarantees with high probability that the fraction of faulty parties in S is
essentially the same as in the global network (see Section 2.2.4). The second idea is that members
of this committee do not WLR-VSS the ri they chose to all n parties, but rather to small secondary
committees. Namely, for every party i E E, all parties elect a secondary subcommittee Ei, and
party P will WLR-VSS her random string ri only to parties in Si. We need to ensure that all the
secondary committees Si are disjoint, to avoid the case where one party has many shares. For this
purpose, we consider a modified version of Feige's lightest bin committee election protocol [Fei99],
in which we elect multiple (disjoint) committees by taking the several lightest bins. Care must
be taken when electing several bins, since the adversary can "pool" his forces to target a single
committee, and a failure in any one committee is a failure overall. However, in Proposition 2.5.1,
we prove that for appropriately chosen parameters, (with overwhelming probability) the adversary
still cannot force too many malicious parties to be elected in any committee.

2.2. PRELIMINARIES

2.2 Preliminaries

2.2.1 Distributions of Random Variables

Definition 2.2.1. A function v(k) is negligible in k if v(k) < k-c for sufficiently large k, for all
constant c > 0. We say an event occurs with overwhelming probability in k if it takes place with
probability 1 - v(k) for some negligible function v(k).

Definition 2.2.2. The statistical distance between two distributions D1 and D 2 on a space Q is
defined to be

A(Di, D2) = I E |Pr[Di =] - Pr[D 2 = Wl].
E2

We say that two distributions D 1 , D2 are statistically close (in k) if A(D 1 , D 2) = v(k) for some
negligible function v(k).

We now define the min-entropy and average (conditional) min-entropy of a random variable.

Definition 2.2.3. A random variable X C {0, 1} is said to have min entropy k, denoted by
Hw(X) = k, if for every x E {0, 1}, Pr[X = x] I. It is said to have min-entropy rate a if
H,(X) > an.

Definition 2.2.4. Let (X, Z) be a pair of random variables. The average min-entropy of X
conditioned on Z is

Hx(XIZ) -log E maxPr[X = xZ = z] = -log [E(2 -Hoo(XIZ=z))
z<-Z x z<-

We make use of the following lemma from [DORS08]:

Lemma 2.2.5 (Lemma 2.2 in [DORS08]). Let A, B, C be random variables. Then the following
hold.

(a). For any 6 > 0, the conditional entropy Hw(AIB = b) is at least H (AIB) - log(1/5) with
probability at least 1 - 6 over the choice of b.

(b). If B has at most 2e possible values, then $x(AI(B, C)) > $x((A, B)IC) - f > $(AIC) - f.

2.2.2 Verifiable Secret Sharing

A secret sharing scheme, a notion introduced by Shamir [Sha79], is a protocol that allows a dealer
who holds a secret input s, to share his secret among n parties. The guarantee is that even if t of
the parties are malicious, they gain no information about the secret s. A verifiable secret sharing
(VSS) scheme, introduced by Chor et al. [CGMA85], is a secret sharing scheme with the additional
guarantee that after the sharing phase, a dishonest dealer is either rejected, or is committed to
a single secret s, that the honest parties can later reconstruct. Further, if the dealer is honest,
then the original secret will be reconstructed, even if dishonest parties do not provide their correct
shares.

33

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Definition 2.2.6 (Verifiable Secret Sharing). A VSS protocol tolerating t malicious parties for
parties P = {P1, ..., Pn} is a two-phase protocol (Share, Rec), where a distinguished dealer P* E P
holds an initial input s, such that the following conditions hold for any adversary controlling at
most t parties:

" Reconstruction: After the sharing phase, there exists a value s' such that all honest parties
output s' in the reconstruction phase.

" Validity: If the dealer is honest, then s' = s.

" Secrecy: If the dealer is honest, then at the end of the sharing phase the joint view of the
malicious parties is independent of the dealer's input s.

2.2.3 Multi-Source Randomness Extractors

A multi-source randomness extractor is a deterministic function which takes as input independent
sources, each with sufficient amount of min-entropy, and outputs a string that is statistically close
to uniform.

Two-Source Extractors

Constructions of two-source extractors are given, for example, by Raz [Raz05] and Bourgain
[Bou05]. We use the following simplified version of the Bourgain result in the construction of
leakage-resilient oblivious VSS in Section 2.4.3.

Theorem 2.2.7 ([Bou05]). There exists a polynomial-time computable two-source extractor
Ext 2 : {0, 1}d) 2 _ { 0, }n that takes as input two independent sources X and Y and outputs an
rn-bit string that is e-close to uniform, as long as Hoo(X), H,(Y) ;> -d, and where m = Q(d) and

Robust Multi-Source Extractors

In this work, we need a (stronger) multi-source extractor that extracts randomness even if some of
the sources are "malicious," but independent of the "honest" ones.1 Such an extractor, which we
refer to as a robust multi-source extractor, was constructed by Kamp, Rao, Vadhan and Zucker-
man [KRVZ06].

Theorem 2.2.8 ([KRVZ06]). For any constant 6 > 0 there exists a constant no = no(6) such
that for any n > no there is a polynomial-time computable robust multi-source extractor Ext :

({0, 1}d)" __+ {0, 1}m that takes as input n independent sources, each in {0, 1}d, and produces an m-
bit string that is E-close to uniform, as long as at least no of the sources have nonzero entropy, the
min-entropy rate of the combined sources is 6, and where m - 0.996nd and e = 2 -12((nd)/1og (nd)).

'Note that if the malicious sources may depend on the honest ones, then such (deterministic) extractors do not
exist.

34

2.2. PRELIMINARIES

2.2.4 Feige Committee Election Protocol

Our leakage-resilient coin flipping protocol uses Feige's lightest bin committee election protocol as
a subroutine [Fei99]. Feige's protocol gives a method for selecting a committee of approximately
k parties for a given parameter k.2 It consists of one round, in which each party Pi chooses and
broadcasts a random integer "bin" bi E [2]. The committee consists of the parties in the "lightest
bin": that is, those parties P whose value bj was selected by the smallest number of total parties.
See Figure 2.1 for an explicit description of the protocol.

We remark that the Feige election protocol is immediately leakage resilient, as parties do not
maintain any secret state. (Indeed, all locally generated values are immediately broadcast to all
parties).

Feige Committee Election Protocol (n, k)
Each party P follows the following procedure:

1. Sample a random integer bi +- [E]. Broadcast bi to all parties.

2. Let by be the value received from each other party P, and denote by blightest the value in [n]
occurring least frequently (or the smallest such value, in case of a tie). Output as the elected
committee the set of parties {P : b= blightest}-

Figure 2.1: Feige committee election protocol for n parties to elect a committee of approximate
size k.

Lemma 2.2.9 (Feige). For any constant / > 0 and any k < n, Feige's lightest bin protocol is a
1-round public-coin protocol for electing a committee E such that for any set of corrupted parties
C C [n] of size t =3n,

1. |E| < k,

2 k

2. Pr[IE \ C1 <; (1 - # - e)k] < .ie 2(1->3) V constant e > 0,

3. Pr > # + e < e 2(10) V constant c > 0.

Proof. We first note that the lightest bin necessarily contains no more than n/(n) = k parties,
implying property (1).

For each bin b and honest party i, we define the indicator variable Xib to be 1 if and only if
party i selects bin b. Since we consider only honest parties, this is a Bernoulli random variable with
p = -. For a particular bin b, we can now bound the probability that few honest parties selected

2In Feige's original work [Fei99], he considered the specific case of k = log n. For our purpose, we need to elect
larger committees (to achieve negligible error), and thus we consider general k.

35

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

this bin as compared to the expected value (1 -)k.

Pr EXi,,< (1-#-E)k =Pr X,< (1- (1-#)k

<e(1-O)k(e)2/2

= e - >
-e 2(1-f))

where the second inequality holds by a Chernoff bound. 3 Now, taking a union bound, the probability
that any bin b has fewer than (1 -#6 - e)k honest parties will be

nj e
2

k

Pr[3 Bin b : Xi,b < (1 -,3 -,e)k] < e2(1-f>,
igC

proving property (2). Finally, combining properties (1) and (2), we have that with probability
E2k

1 - e-2(1-)

|EnCI |E\C| (1-3-e)k

1E |E| k

implying property (3).

Remark 2.2.10. We further note that a stronger statement of Property (2) of Lemma 2.2.9 follows
from the proof above: namely, with high probability, each bin will have several honest parties in it
(not just the elected bin 8). That is,

Pr [bin b s C| < (1 -,# - e)k < e 2(1-0) V constant e > 0.

Corollary 2.2.11. Feige's lightest bin protocol for k = log2 n is a 1-round public-coin protocol
such that for any set of corrupted parties C of size 3n, for any constant e > 0, with overwhelming
probability in n, a committee 8 will be elected such that (1 - # - e) log2 n < 1E1 log 2 n and

|E\ C; I (1 -3 - e)log 2 n.

2.3 Modeling Leakage in Distributed Protocols

We consider synchronous point-to-point networks with a broadcast channel. Point-to-point channels
are assumed to be authenticated and to provide partial privacy guarantees (see discussion below).
We consider n-party protocols where up to t statically corrupted parties perform arbitrary malicious
faults. More precisely, we consider a computationally unbounded adversary who sees the internal
state of all corrupted parties and controls their actions. We also assume the adversary is rushing,
i.e. in any round he can wait until all honest parties send their messages before selecting the

3Exact Chernoff bound used: For Xi,..., X, independent Bernoulli random variables and t = E[EZ Xi], then for

0 < S < 1, it holds that Pr[EZ Xi < (1 -)pi] <e-6/2.

36

2.3. MODELING LEAKAGE IN DISTRIBUTED PROTOCOLS

Adversarial Interaction (t, A)

1. The adversary A selects a subset of parties M C [n] of size |MI 5 t to corrupt.

2. Protocol execution begins. For each party P, initialize statei <- 0 and leakedi = 0. For each
honest party P, denote by sizei the maximum value of |statei as dictated by the protocol.
Each round of the protocol proceeds as follows:

(a) Each honest party Pi samples randomness to use in this round. Any randomness R,
which must remain secret is appended to Pi's secret state: statei +- states U Rs. Any
remaining randomness Rpub is provided to the adversary.

(b) Honest parties send messages as dictated by the protocol.

(c) The adversary A receives all messages sent by honest parties to corrupt parties.

(d) The adversary A is allowed to make any collection of adaptive leakage queries of the
form Leak(i, f), where i E [n] and f : {0, 1}* -+ {0, 1} is any function. For each such
query, if lea kedi < A - sizei, then A receives the evaluation f(statei) of f on the secret
state of party Pi, and leakedi <- leakedi + 1. (Otherwise, A's query is ignored).

(e) The adversary A selects outgoing messages on behalf of all corrupted parties.

(f) Each honest party P receives his incoming messages (from all parties). Any incoming
messages msge that must remain secret are appended to Pi's secret state: statei +-

states U msgse. Any remaining messages msgpub are provided to the adversary.

Figure 2.2: Model of (t, A) adversarial interaction.

messages of corrupted parties. Our results hold information theoretically, with no computational
assumptions.

In this work we propose a strengthening of the standard model, where in addition the adversary
is able to leak a constant fraction of information on the secret state of each (honest) party. We model
this by allowing the adversary to adaptively make leakage queries (i, f) throughout the protocol,
where i e [n] and f : {0, 1} * {0, 1}, and giving him the evaluation of f on the secret state of
party i. Note that this also captures leakage on communication channels, as parties' messages are
computed as a function of public information and their personal secret state; thus, we do not need to
assume fully private channels, but rather channels that achieve privacy with bounded information
leakage.

For simplicity, we consider length-bounded leakage. Namely, we require that no more than
Alstateil leakage queries can be made on any single party i's secret state for some leakage rate A,
where Istatei| denotes the maximal size of the secret state of party i at any given time during the
protocol. But, our constructions work equally well in the more general model of [NSO9] where the
output length of the leakage on statei is not restricted, as long as the entropy of statei is decreased
by no more than the fraction A.

Note that in this model, each leakage query is applied to the secret state of a single party. Since
participants of a distributed protocol typically run on different physical hardware (and in fact in

3T

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

many cases in different locations across the world), it is reasonable to assume each physical attack
reveals information about one party's execution. To maximize generality within this setting, we
allow leakage queries on different parties' secret states to be interleaved (i.e., leak from party i,
then from party j, and then again from party i), and to be adaptively selected as a function of
prior leakage.

We assume honest parties have the ability to generate randomness on the fly. This assumption
is crucial for achieving leakage resilience, and is a natural requirement in a leaky setting, where any
values that are held unnecessarily long over time suffer from additional leakage attacks.

We refer to such an adversary who can corrupt t parties and leak A fraction from the secret
state of each honest party as a (t, A) adversary, and say that a distributed protocol is (t, A) leakage
resilient if its original properties are satisfied against such an adversary. See Figure 2.2 for a full
description of the (t, A) adversarial model.

In this paper, we will focus on constructing a leakage-resilient unbiased coin tossing protocol.

Definition 2.3.1 (Leakage-Resilient Distributed Coin Tossing). A protocol for parties P = {P 1, ..., P}
is a (t, A) leakage-resilient m-bit distributed coin tossing protocol if the following conditions hold
for any (t, A) adversary A with overwhelming probability in n:

" Agreement: At the conclusion of the protocol, each party outputs a value vi e {0, 1}m. For
all honest parties Pi, P, it holds that vi = v3.

" Randomness: (Even if malicious parties abort prematurely), it holds that

A ((VIviewA), Um) < v(n),

where VIviewA is the distribution of the honest output value v conditioned on the view of
A (over the randomness of honest parties), Un is the uniform distribution over {0, }m, and
v(n) is a negligible function in n.

2.4 Verifiable Secret Sharing with Leakage

One of the subroutines in our leakage-resilient coin tossing protocol is a protocol achieving verifiable
secret sharing (VSS) in the presence of leakage. Recall the standard VSS guarantee is that for any
adversary A who corrupts up to t parties, a dishonest dealer is committed to a single secret which
will be reconstructed by honest parties, and the secret input s of an honest dealer retains full
entropy given the view of A at the conclusion of the sharing phase. For our purposes, we will need
stronger guarantees, where for any adversary A who corrupts up to t parties and leaks A-fraction
of each honest party's secret state (including the dealer's), the VSS reconstruction property still
holds, and the secret input s of an honest dealer retains a constant fraction of its original entropy
given the entire view of A (including leakage). We refer to this property as weak leakage resilience.

In Section 2.4.1, we show that a modified version of the Shamir secret sharing scheme [Sha79]
satisfies a notion of weak leakage resilience. In Section 2.4.2, we use this underlying secret sharing
scheme to construct a weakly leakage-resilient VSS protocol by incorporating a method of verifying
that the dealer has distributed good shares.

38

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

We note that one can define a stronger version of leakage-resilient VSS, with the requirement
that the secret looks uniform even if all the shares are partially leaked. Although this stronger
version is not required for our coin-tossing construction, we believe that it is of independent interest.
We formally define and construct such a protocol in Section 2.4.3.

Throughout this section, we denote by s the secret value being shared, and we denote by S
the distribution of s. For our applications, S is always uniform; however, we state our results for
general distributions S.

2.4.1 Weakly Leakage-Resilient Secret Sharing

Recall in the standard Shamir secret sharing scheme, to secret share an input s the dealer samples
a random degree d polynomial ao + aix + - -- + adXd e F[z] such that ao = s, and generates the
shares by evaluating the polynomial at different values of x. The degree d of the polynomial is
typically chosen to be equal to the number of assumed corrupted parties, t.

We modify the standard Shamir secret sharing scheme in two ways. First, we take d to be
strictly greater than the number of corrupted parties. Second, we take the relative size of the
secret to be larger: instead of s being a single element s E F embedded as the single coefficient
ao, we consider secrets s E Fd-t+1 consisting of d - t + 1 elements, embedded as the first several
coefficients s = aoIall|- --|Iad-t (where II denotes concatenation). The reason we embed s only as
ao, ..., ad-_ as opposed to all ao, ..., ad is to avoid the situation where shares of corrupted parties
give information about the secret s. By increasing the degree and making our secrets larger while
maintaining the size of each secret share, we can allow a higher fraction of leakage from honest
shares without reducing the entropy of s by too much.

This leaves us with the question of how to set d, given values for n and t. The larger the d
we choose, the more leakage we will be able to tolerate while maintaining entropy in the secret
s. However, we also require the original secret to be recoverable even if t parties reveal incorrect
shares. To achieve this we rely on the decoding properties of the Shamir secret sharing scheme when
viewed as a Reed-Solomon error-correcting code [MS81]. Namely, we can uniquely (and efficiently)

decode any vector of secret shares with up to n-(d+1) errors. To guarantee decoding of up to

t errors, we must have d < n - 2t - 1. To maximize leakage resilience while maintaining unique
decoding, we will thus take d = n - 2t - 1.

We now formalize the scheme described above, which we denote by (SS, RecSS).

* SS(n, t, s). Let d = n - 2t - 1. Split the secret s into (d - t + 1) pieces: s = aoII - -|ad-t.
Choose t random values ad-t+1,..., ad +- F. The secret share for party P is the evaluation
f(i), where f(x) = ao + aix + ... + adxd.

" RecSS(mi, ... , mn2). Use Reed-Solomon decoding on the vector of shares (mi,..., m,,) to yield

(ao, ... , ad). Output s = ao I I... -ad-t.

Proposition 2.4.1. For n = (3 + J)t, the following properties of (SS, RecSS) hold.

1. Unique Decoding: Given any vector (si, ... , sn) of distance at most t from a valid codeword

corresponding to a secret s, the output of RecSS(s1,..., sn) will be s.

39

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

2. Leakage Resilience: For any distribution S of the secret s, and any adversary corrupting up to
t parties and leaking a total of e bits on the secret state of honest parties, with overwhelming
probability in the security parameter k, the secret s retains at least Ho(S) - f - log 2 k =

6t log |F| - e - log 2 k bits of min-entropy.

Proof. Property 1 holds immediately from the decoding property of Reed-Solomon codes [MS81].
Property 2 holds since Ho(S) = (d - t + 1) log |F = ((n - 2t - 1) + 1) log |F = ft log |Fl, together
with a standard entropy argument (e.g., Lemma 2.2 of [DORS08]).

2.4.2 Weakly Leakage-Resilient VSS

In our coin tossing protocol, we make use of a VSS protocol satisfying the following notion of weak
leakage resilience.

Definition 2.4.2 (WLR-VSS). A (A, e) -weakly leakage-resilient VSS protocol tolerating t malicious
parties for parties P = {P1, ... , Pn} is a VSS protocol such that for any (t, A) adversary A, with

overwhelming probability in the security parameter k, the following are satisfied:

" Reconstruction, Validity: The standard VSS reconstruction and validity properties hold.

* Secrecy: For any distribution S, if the dealer is honest during the sharing phase with secret
input distribution S, then with overwhelming probability in k over the distribution of the
view of A at the conclusion of the sharing phase of the protocol viewA +- VIEWA(S), it
holds that H,(SjviewA) ;> eHo(S).

We emphasize that the security level of the WLR-VSS depends on the security parameter k,
which may be selected independent of the number of parties.

We now construct a (A, e)-weakly leakage-resilient VSS protocol (ShareWLR, ReCWLR), taking
inspiration from the VSS construction of [BGW88]. We use as a black box the secret sharing
scheme (SS, RecSS) with polynomial degree d = n - 2t - 1 (see Section 2.4.1 above).

At a high level, the WLR-VSS protocol proceeds as follows. First, the dealer secret shares his
input s via SS, along with two additional random values r, r'. Using the additive homomorphic
property of SS, the parties check the dealer by broadcasting a (randomly selected) linear combi-
nation of their given shares, and verifying that together they form a valid codeword. To protect
an honest dealer from being disqualified due to malicious parties giving bad values, the dealer will
broadcast the true shares of complaining parties, and these values will be verified in a second check
of the same form.

Loosely, since a dishonest dealer does not know what linear combination will be chosen, it
is unlikely that he can distribute bad shares that pass these tests. Leakage information will not
help, as the only secret values in the protocol are the distributed shares, which the dealer already
knows (in fact, chooses) himself. On the other hand, no information on an honest dealer's secret
s is revealed from the linear combinations, since shares of s are masked by shares of the random
r, r'. So the only information learned about s comes from leakage, which leaves sufficient entropy
remaining by the properties of SS.

Let F be a field with log Fl = kn, where k is the security parameter. We define (ShareWLR, ReCWLR)
in Figure 2.3.

40

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

ShareWLR(1k, s):

Round 1: The dealer P* selects two values r, r' <- F5' uniformly at random, and runs three
independent executions of the secret sharing algorithm (SS, RecSS), as defined in Section
2.4.1: (si,...,so) <- SS(n,t,s), (ri,...,rn) +- SS(n,t,r), (r',..., r') +- SS(n,t,r'). To each
party i, the dealer sends the corresponding three shares si, ri, and r .

Rounds 2-4: Each party Pi samples and broadcasts a random k-tuple of bits ai E {0, 1}k. This
is repeated (in two additional rounds) for random fi, -y e {0, 1}k. Take a, 0, -y to be the
corresponding elements in F with bit descriptions (ai, ... , an), (#1, ..., ,3n), (y1, ..., 74). (Recall
log |F| = kn).

Round 5: Each party Pi broadcasts the linear combination of his shares

asi +3ri + yr E IF.

Round 6: Consider the received vector v = (V1,..., vn), where supposedly vi = asi + #ri + yr' Vi.

* If v is a valid codeword (i.e., all points lie on a degree-d polynomial), the dealer is
accepted, and the sharing phase concludes.

" If v is distance > t away from a valid codeword, the dealer is rejected, and the sharing
phase concludes.

* Otherwise, let D C [n] be the components i in disagreement with those of the nearest
codeword. For each i E D, the dealer P* broadcasts all three shares si, ri, r . If any
linear combination asi + ri + yri with i E D is inconsistent with the nearest codeword,
the dealer is rejected. Otherwise, all parties continue to the next step.

Rounds 7-10: Repeat Rounds 2-5. That is, each party samples and broadcasts new random
bit k-tuples di, #i, i (in three separate rounds), and then broadcasts the linear combination

i = dsi + Or + i of his shares, where d,/3, e F are defined by (di, ..., d6), (1 0, ..., n),
(ii, ---,7in) as above.

Local Computation: Consider the new vector 5 of values received in Round 10, where Vi E D
we use the values (s,ri, r) broadcast by the dealer in Round 6.

" If f) is distance > t away from a valid codeword, the dealer is rejected.

* Otherwise, let b be the set of parties whose values differ from the codeword closest to

- If D n b f 0 or ID U D| > t, then the dealer is rejected.

- Otherwise, the dealer is accepted.

ReCWLR ():

Round 1: Each party Pi broadcasts his share si.

Local Computation: Locally, Pi runs the modified Shamir secret sharing reconstruction algo-
rithm s' +- RecSS(s', ... , s'), where s' is the value broadcast by party Pi, and outputs this

value s'.

Figure 2.3: Weakly leakage-resilient VSS protocol, (ShareWLR, ReCWLR)-

41

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Theorem 2.4.3. Let n = (3 + 5)t for some constant 6 > 0. Then for any constants e < 1
and A J(1 6) the protocol (ShareWLi, ReCWLR) is a (A, e)-weakly leakage-resilient VSS protocol

-10+645'

tolerating t malicious parties that runs in O(1) rounds.

Proof. We show that (ShareWLR, ReCWLR) satisfies the validity, reconstruction, and secrecy proper-
ties described in Definition 2.4.2.

Validity. If the dealer is honest, then only malicious parties can complain of bad shares; the
dealer will broadcast honest shares to the complaining parties and thus will not be rejected. Fur-
ther, by the unique decoding property of the underlying secret sharing scheme (SS, RecSS) (i.e.,
Property 2.4.1.1), any secret sharing of s with up to t corrupted shares will be uniquely decoded
to yield the original secret s.

Reconstruction. Consider the case of a dishonest dealer: we show that if the dealer is not
rejected, then at the end of the sharing phase all honest parties hold consistent shares of some
value s. This will be sufficient to argue that all honest parties will output s at the conclusion of
the reconstruction phase, again by Property 2.4.1.1.

Lemma 2.4.4. If the dealer is accepted in the sharing phase of the protocol, then at the conclusion
of the sharing phase all honest parties hold shares consistent with a single degree-d polynomial.

Before we prove the lemma, we introduce some notation and prove a claim that we will invoke
later. Let H C [n] be the set of honest parties. For any vector v E Fn and subset W C [n], we
denote by vw the vector in FIWI formed by taking the components vi with i E W. We say that a set
of shares vw is "d-consistent" if the interpolation of the corresponding points yields a polynomial
of degree no greater than d. Note that any set of at most d + 1 shares is trivially d-consistent.

Claim 2.4.5. Let P1,P2,p3 E F[x] be polynomials with degp 1 > d. Then for any distributions
A, B, C over F such that Hw(A), Hw(B), Hw(C) > m, it holds that

1
Pr [deg(api + 4p2 + YP3) d] m-1

a<-A,3 <-B,
- 74-C

Proof. Consider the term of highest degree axd' in pi, and let bXd' and cod' be the terms of
corresponding degree in P2 and p3.

Pr[deg(api + 3P2 + 7YP3) 5 d] 5 Pr[aa + #b + yc = 0]

Pr[a = 0] + Pr[aa +#b+7c = Oa $ 0]

1 + Pr[a -a~ 1 (#3b+ 7c)|la 0]
2m
1 1 _ 1

l

42

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

We will use this claim to argue that if any collection of shares sw (or rw or r'w) of size

WI > d + 1 is not d-consistent (ie, they interpolate to a polynomial of degree strictly greater than
d), then with high probability over the choice of a,, -y, the linear combination of these shares
asw + 3rw + yr' will not be d-consistent.

Proof of Lemma 2.4.4. Consider the vector v = (vi, ..., v) received in Round 6 of the protocol,
where allegedly vi = asi + ,3ri + -yrj Vi. Recall if v is distance greater than t from any codeword,
then the dealer is rejected at this stage, and the lemma holds. Otherwise, there exists a unique
codeword closest to v, corresponding to some polynomial p of degree d, and we define D C H be
the set of honest parties i for which vi 7 p(i). 4 For each such party i E D, update their shares
si, ri, ri with the corresponding values broadcast by the dealer.

Consider the collection of shares VH\D. By definition of D, this collection of remaining shares is
d-consistent. Since these are honest parties, we know that vi = asi +f3ri + yri for each i E H \ D.
Claim 2.4.5 tells us that for any set W C [n] chosen before a,3,7,

Pr [(vw d-consistent) A (sw not d-consistent)] 2-(M-1)

where m = H.(a) = Ho(#) = Ho(). Note since lail = |#3il = |Yi = k and the number of honest
parties is n - t, then m > k(n - t). In our case, the set H \ D is not defined a priori, but rather is
determined as a function of the random variables a, 3, -y themselves, so we cannot apply this claim
for W = H \ D outright. But,

Pr [(VH\D d-consistent)A(SH\D not d-consistent)]

< Pr [3W C [n] s.t. (vw d-consistent) A (sw not d-consistent)]

S(2n)(2-(m-1))

=(24)2-k(n-t)+1

= 2-(kn)

where the second inequality follows from the union bound and Claim 4.1, and the last equality
follows from the fact that n = (3+ 6)t. The same probability bound holds for rH\D and r' in
the place of SH\D. Thus, by a simple union bound, the probability that any one of sH\D, rH\D, or

r'H\ is not d-consistent given that v is d-consistent is negligible, and thus we will assume it is not
the case.

In particular, this implies the shares OH\D, defined by iii = dsi + /3ri + ir Vi E H \ D, are
d-consistent. Consider the rest of this vector f) = (i 1,..., 9) received in Round 10 of the protocol.
We wish to show that either the updated shares of s held by honest parties (sH) are all d-consistent,
or the vector i will lead us to reject the dealer. We consider two cases:

Case 1: VH is d-consistent. In this case, by Claim 2.4.5, with probability at least 1- 2~(-1) _
1 - negl(k) we have that sH is d-consistent, and we are done. (Note that here Claim 2.4.5 can be
applied directly, since the set H does not depend on &, /3 1').

4 Note the minor inconsistency in notation, where before we defined D to be the set of all parties (not just honest
parties) whose component is in disagreement.

43

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Case 2: i)H is not d-consistent. We show that in this case the dealer is rejected. If) is
distance greater than t from any codeword, then the dealer is rejected immediately, and we are
done. Otherwise, there is a unique closest codeword to v-, corresponding to some polynomial P of
degree d. Let D C H be the set of honest parties i for which fi; $ P(i). If D n b $ 0, then the
dealer will be rejected, and again we are done. So assume ii = P(i) for all i E D. We know that

VH\D is d-consistent, corresponding to the evaluations of some degree d polynomial p'. But, since
we are in the case that fH is not d-consistent, it must be that p' # P. Since p' and P are polynomials
of degree d, this means p'(i) can equal p(i) for at most d values of i. Thus, IDI |H \ DI - d. But,
this means ID UDI |DI + (IH \ DI - d) = IHI - d = (2+)t - ((1+6)t - 1) = t +1, and therefore
the dealer will be rejected.

0

Secrecy. We now consider the case of an honest dealer, and show that even an adversary who
corrupts t parties and leaks cannot learn too much about the secret value s.

Lemma 2.4.6. Let S be any distribution over Ft of secret inputs. Let A be a computationally
unbounded adversary for the VSS protocol who adaptively leaks a total of e bits from shares of
honest parties during the execution of the protocol. Let viewA(S) denote the distribution of the
view of A at the conclusion of the sharing phase. Then with overwhelming probability in k over
viewA +- VIEWA(S), it holds that

Hw(SviewA) H (S) - f- log 2 k.

Proof. At the conclusion of the sharing phase, the view of the adversary consists of five pieces
of information: (1) his internal randomness randA (which, without loss of generality, is sampled
before the protocol execution, independent of all learned information), (2) the secret shares of
corrupted parties {si, ri, r }iEc, (3) the honest parties' contributions (aj, 1#, -y)jgc, (4j, fj, s9jgc
to the coefficients, (4) the corresponding linear combinations of honest parties' shares {asj + 3rj +
yr'}jgc, {&sj + #rj + r'}jgc, and (5) the answers to his leakage queries leakage. (Recall that

the adversary's contribution to the coefficients (i, i, i)iEC, (&Zi, 4ii)iEc on behalf of corrupted
parties is determined by the remaining portions of his view). For each variable in the view of A,
we denote its corresponding distribution with capital letters.

Note that by Lemma 2.2(a) of [DORS08] (see Lemma 2.2.5 of the present), it holds with
overwhelming probability in k over viewA +- VIEWA(S) that

Hw(SviewA) f.x(SIVIEWA(S)) - log 2 k.

Thus, it suffices to analyze the average conditional min entropy of S given the distribution

VIEWA(S) = (RANDA, {Si, Ri, R'}iec, (01, 3 , Yj)ge, (&j, 1j, ij)jgc,

{aSj + #Rj + 7R'}jc, {&Sj + /R3 + ~yR'}jgc, LEAKAGE).

We accomplish this via a sequence of intermediate claims.
We begin by proving that the secret shares of corrupted parties {Si, Ri, R;}iEc are independent

of the secrets S, R, R', and that the linear combinations of the honest parties' secret shares {aSj +

44

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

#Rj + 7R}'j fc, {3j +Rj+ R'jgc do not reveal additional information beyond the underlying
linear combinations of secrets, (aS + OR + yR') and (&S + #R + 'R').5

Claim 2.4.7. There exists a distribution LEAKAGE' with ILEAKAGE' = ILEAKAGE| for which

H, (S I VIEWA(S)) ;> Hc (S RA N DA, (aj,/3j, Yj)jgC, (&z, /3, ij)jgC,

UdJ, Ud, Ud, (aS + 3R + yR'), (&S + 3R + SR'), LEAKAGE'),

where 41 Ud, U' are uniformly random given S, R, R', and RAN D A.

Proof. We will show the distribution of the entire view of the adversary VIEWA(S) can be simu-
lated given only RANDA, (aj7, #,Yj)jge, (i, 55, Mjgc, Ud, Ud, Ud', (aS +,#R + R' (&S+ #R +
jR'), and LEAKAGE'.

Recall that in the secret sharing scheme (Share, Reconstruct), shares of a secret value s e F6 are
evaluations of a random polynomial over F of fixed degree d whose ot lowest coefficients correspond
to s. Given s, this distribution of secret shares can equivalently be generated by selecting at random
the first d + 1 - ot polynomial evaluations, and then solving (deterministically) for all remaining
evaluations to be consistent with s. In particular, taking the set of corrupt parties' shares to be
among the first d + 1 - ot, and defining d' := d + 1 - 6t, we have the following equivalence of
distributions:

{ISibEC, {Sj~jyc,sar, { Sjljgc,>dr) =_ (Upc, Udr-ici, Share'(3, Ulci, Uda'-Ici)),7

where Urn denotes the uniform distribution over F', and Share' is a deterministic function. The
same holds for shares of R and R'. Now, denote by Ud, Ud , Ud ' the randomness sampled for the
sharing of S, R, R', respectively. By the homomorphic properties of the polynomial secret sharing
scheme (i.e., adding two polynomials corresponds to adding evaluations point-wise, and also to
adding coefficients term-wise), it holds that the shares of the (a, ,y)-linear combination of these
secret shares of S, R, R' are given by

{aSi+#R + -YR'}j<d, {aS 3+#Rj + R }j>dr

± ((+US + U5'), Share'((aS + OR + yR'), (aUg +#US +T'

The same holds for the (6, /,)-linear combinations of shares. Namely,

{aS + f3Rj + YRi}iE[n]], [{&S + R + iR'i}E[nl]])

[(aUd +# Ud+ -yUd'), Share'((aS+#OR + -R'), (aUd + OUd + -Ud')),

(Ud+ 3Ud + -Ud'), Share'((&S + /R + SR'), (&U + Ud +U')) .

5Where aS (resp., 3R, -yR') denotes scalar multiplication of a (resp., p, -y) with the FMt-vector S (resp., R, R')
over F.

45

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Therefore, given Ud, Ud, Ud' and the linear combinations of secrets (aS + #R + yR'), (6S +
OR + ~yR'), one can exactly simulate the following portions of the adversary's view:

1. {Si, Ri, Ri}iEc = { Uf , UT'}jsici are simply the first |Cl random elements of Uj, UR, UR'

2. {aSJ-+#RJ +yR }Jgc~, = {a UJ +#3 Uf +yU3 '}|c<j,5da, since we have Sj = Uf, Rg = U!,

and R-= UR' for the first d' - Cl honest parties' shares j.

3. {aSj +#Rj + yR }jc,> = Share'((aS + #R + -yR'), (aUj + #Ud + yUd')).

4. {&Sj + #Rj + Rj}jgc,sd, and {&Sj + R + Rj}jge,>d are simulated analogous to items 2

and 3 above, using the coefficients &, 3, ' in the place of a, #, -y.

5. Leakage on any secret share Sj, R, R can be simulated given the same amount of leakage
directly on S, R, and R', since all shares can be reconstructed given these secrets, together with
the information RAN DA, (ag, #j, 7j)jgc, (&,, ~)g c, Ud, Ud, Ud', (aS + #R + -yR'), (&S+

/3R +~R').

We next argue that revealing the sums (aS + #R + -yR') and (&S + /R + 'R') does not decrease
the entropy of S by too much. This is done via the following two claims.

Claim 2.4.8. For any distribution Y, it holds that

ft.(S Y,(aS+#R+ R'),(&S+#R+ R'))

> ftx(S,(aS+#R +R'),(&S +R +R') Y) -(aS+#R+O R')| -| (&S+/3R+ R')|.

Proof. Follows directly by the chain rule for min entropy (see Lemma 2.2.5).

Claim 2.4.9. With overwhelming probability in k over the randomness of honest parties in the
protocol, it holds that

Ro (S, (aS + OR + yR'), (&S + /R + 'R') RAN DA, (ag/3, ,j)j C, , j, ~j)j C, Ud, Ud , UP', LEAKAGE')

= Noo((S, R, R') | RANDA, (aj),#, Yjg)gc, (&, ~jg),gc, UJ, Ud, Uj ', LEAKAGE').

Proof. If it is the case that # f 3-y, then the coefficient matrix

1 0 0

a#

is nonsingular, and hence the distributions (S, (aS + OR + -yR'), (&S + /R + SR)) and (S, R, R')

are in bijection. In this case, the claim follows. It thus remains to show that #~y $ /Oy will hold
with overwhelming probability in k within the protocol.

46

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

Recall that each coefficient is selected one round at a time, in which every honest party samples
and broadcasts k random bits, and the adversary arbitrarily selects k bits on behalf of each cor-
rupted party. First, note that with overwhelming probability in k, no coefficient a, /, 0y) 6, /, # E F
will be the element 0. This is because this would require every honest party to have randomly
sampled k bits of 0 for his contribution to the coefficient, which will only occur with probability

2 -k(n-ICI) E -

Now, consider the selection round for the final coefficient i. At this point, #, -y, and / are
each completely determined. Then, even if the adversary could completely choose their values
maliciously (subject to them being nonzero), there will exist a single "bad" value of E F (namely,
#3-1-# E F). But, as above, because the honest parties are sampling their bits at random, the
probability that this exact element will be selected is bounded by 2 -(n).

We now address the leakage information.

Claim 2.4.10. It holds that

Ho ((S,R,R') I RANDA, LEAKAGE')

f l,,((S, R, R') | RAN DA, (as, 3j, Yj)jgC, (j, ig)Jgc, US, UdJ, Ud') -F.

Proof. Follows by Lemma 2.2(b) of [DORS08] (see Lemma 2.2.5 in the present), since ILEAKAGE'=

We are ready for our final claim.

Claim 2.4.11. It holds that

fl, ((S, R, R') | RAN DA, (a, /, 'y)jVC, (&, /3, 'i)jgC, Ud, US, U') = H_(S) + 26t log Fl.

Proof. The values RANDA, (ad",j)jgc,(55,,)jgeUS U" U', corresponding to the adver-
sary's internal randomness (chosen without loss of generality at random, before the protocol begins),
the honest parties' random contributions to the coefficients, and the randomness used for secret

sharing, are each sampled independent of (S, R, R'). Thus,

fto((S,R,R') | RAN DA, (ag,YA0c,(dj, Li dg U U§, U -) Ho ((S, R, R')).

Further, R and R' are also sampled at random from F& by the honest dealer, independent of each

other and S. Hence, Ho ((S, R, R')) = Ho(S) + 6t log Fl + 6t log |Fl, as required. El

Combining Claims 2.4.7 - 2.4.11, we have that

Ho(SIVIEWA(S)) ((H(S) + 26t log |F) - f) - 6t log F - 6t log |F

=, H(S) - f,

where the first line holds since |(aS + /R + - yR')| = I(&S + R + IR')| = tlogjFI. Thus, as
discussed above, it holds by Lemma 2.2(a) of [DORS08] (Lemma 2.2.5 of the present) that with

overwhelming probability in k over viewA +- VIEWA(S) that

H.(SIviewA) Ho(S) - F - log 2 k,

47

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

as desired.

Remark 2.4.12. Note that the proof of Lemma 2.4.6 holds also for a stronger adversarial leakage
model, in which the adversary may leak on the joint secret state of all honest parties. That is,
the VSS protocol of Figure 2.3 satisfies the property that leaking f bits on any secret information
during the protocol cannot reveal significantly more than f bits of information on the secret s,
without requiring the leakage to take place independently on each party. However, independent
leakage will be required for later parts of the overall coin tossing protocol.

What remains is to prove that H, (S) - f - log 2 n > EH, (S), where e is the total amount of

leakage. Recall that the adversary can leak A = (1-) fraction of each honest party's secret state.10+645
Further, recall that the secret state contains only those values that must remain secret (whereas
other values generated by honest parties are assumed to be given to the adversary in their entirety;
see Figure 2.2 and discussion in Section 2.3). The secret state of each non-dealer party consists of
precisely three elements of F, corresponding to his shares si, ri, and r(. (Note that ai, #3, y, &i, A7 _ i
are not part of the secret state, since they are broadcast immediately after being generated.) The
dealer must hold additional secret information, since he must be able to produce a valid secret share
for any complaining party in Round 6. Thus, he must store 3(d + 1) = 3(1 + J)t secret elements of
F, corresponding to the coefficients of the secret sharing polynomials for s, r, and r'. Thus,

f = A Istateil = A ((n - t)(3log IFI) + 3(d + 1) log |F)
igC

= A ((2 + 6)t(3 log |Fl) + 3(1 + 6)t log |F)

= 3t logIFIA(2+ 6 + 1 + 6)

= 3t log IF|A(3+ 26)

Combining this with Lemma 2.4.6, we have that with overwhelming probability:

H(SIviewA(s)) Ho(S) - f - log2 n

= of log |Fl - 3t log IFIA(3 + 26) - log 2 n

(~log 2 n
=t log |F| (- A3(3 + 2) - tlog|Fl|

tlogIF (6-A((9+ + 66)

> t log |F| (6 - A(10 + 65))

= t log |FI (6 - 10 6(10+ 6 6))

= c6t log |Fl = EHO(S)

Thus, the protocol (ShareWLR, ReCWLR) satisfies the properties of a (A, e)-weakly leakage-resilient
VSS protocol.

48

2.4. VERIFIABLE SECRET SHARING WITH LEAKAGE

2.4.3 Leakage-Resilient Oblivious VSS

For our coin tossing protocol, we only need VSS achieving a weak notion of leakage resilience, where
for any adversary who corrupts t parties and leaks a constant fraction of the secret state of the
remaining parties, the secret still retains a constant fraction of its original entropy. However, one
can also consider a stronger version of leakage resilience, where the secret retains its full entropy.

Naturally, this notion cannot be achieved if any party knows the secret in its entirety, since
the adversary can simply leak on this value outright. In particular, this immediately rules out the
possibility of standard VSS, since the dealer himself cannot know the secret! We thus put forth
the notion of oblivious secret sharing, where the dealer secret shares a uniformly distributed secret,
whose value he does not know. We also show that this is, in fact, achievable (see below). We believe
that leakage-resilient oblivious VSS primitives can serve as a useful building block for constructing
future leakage-resilient protocols, which anyway make use of VSS in this fashion (e.g., in [FM85]
to achieve Byzantine Agreement).

Definition 2.4.13 (Leakage-Resilient Oblivious VSS). A A-leakage-resilient oblivious VSS protocol
for parties P = {P1,..., Pn} tolerating t malicious parties is a VSS protocol satisfying the following
for any (t, A) adversary A, with overwhelming probability in n:

" Reconstruction: The standard VSS reconstruction property holds.

* Validity: If the dealer is honest during the sharing phase, then the distribution S' of the
value reconstructed in the second phase (over the randomness of the dealer in the sharing
phase) is uniform.

" Secrecy: If the dealer is honest during the sharing phase, then the distribution VIEWA of
the view of A at the conclusion of this phase is independent of S'. In other words, S'IVIEWA
is uniform.

Even without leakage considerations, it is not immediately clear whether one can hope to
achieve oblivious secret sharing robust to malicious parties. Consider, as an example, the Shamir
secret sharing scheme. The dealer can sample random values for individual shares; but in order
to ultimately make the shares consistent, he must somehow sample from a polynomial-without
knowing the polynomial!

We show that this can be done. We present a A leakage-resilient (oblivious) VSS protocol for
A = Q(1), tolerating t ; n malicious parties (for any constant 6 > 0).6 Our construction uses
the tool of a weakly leakage-resilient VSS protocol as a black box (see Definition 2.4.2). At a high
level, the protocol works by having the dealer sample and share two random values x and y using
the weakly leakage-resilient protocol; the final output will be Ext 2 (x, y), where Ext 2 is a two-source
extractor. To ensure that information is never leaked on x and y together, the dealer first samples
and verifiably secret shares x, erases it, then samples and verifiably secret shares y. (Note that
we do not need to assume complete erasures, but rather can allow some fraction of information to
remain, which is simply treated as leakage). As before, to ensure independence, instead of sharing
x and y to all parties, he will share x and y among two disjoint committees, which are selected by
all parties using a version of the Feige committee election protocol.

6 However, note that the guarantees of our protocol require a large number of parties.

49

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Theorem 2.4.14. Let n = (3 + 6)t for any constant 6 > 0. Then for any constant A < ,

there exists a leakage-resilient oblivious VSS protocol tolerating t malicious parties that runs in
0(1) rounds.

Proof. Let 6' be any constant such that 6' < 6. Fix any constant 0 < e < 1. We construct the
desired protocol (ShareLR, ReCLR), making use of the following tools:

1. Elect: Feige's 1-round public-coin protocol to elect a primary committee of size approximately
n'= nE, as in Lemma 2.2.9.

2. (SharewLR, RecWLR): a (A, !)-weakly leakage-resilient VSS protocol for n' parties tolerating

t'= gy corrupted parties, terminating in 0(1) rounds, as in Theorem 2.4.3. (Recall j refers
to the fraction of entropy guaranteed to remain in the secret.)

3. Ext 2 : {0, 1}k x {0, 1 }k 4 {0, 1}m: a two-source extractor, where k = 't'log |Fl and m = Q(k),
as in Theorem 2.2.7.

A description of the protocol (ShareLR, ReCLR) is given in Figure 2.4.
By Lemma 2.2.9, with overwhelming probability in n, both committees ei, E2 will be "good,"

in that they each have size ne/2 < |Eil 5 n' and it holds that n' > (3 + o')t', where n' = |Ei|

and t' = |Ei n Cl for i E {1, 2}. We will thus assume this is the case. Since n's > (3 + o')t', the
validity, reconstruction, and secrecy properties of the (A, !)-weakly leakage-resilient VSS protocol

(see Definition 2.4.2) will hold for the ith execution of (ShareWLR, ReCWLR) with overwhelming
probability in n' (and thus in n).

We now show that (ShareLR, RecLR) satisfies the reconstruction and secrecy properties given in
Definition 2.4.13.

Reconstruction By the reconstruction property of the underlying A-weakly leakage-resilient VSS
protocol, the honest parties in S1 (respectively, in S2) will agree on the reconstructed value x' <-
RecWLR() (resp, y' <- RecWLR), it will hold that x' = x (resp, y' = y), and the honest parties will
broadcast this value to all parties in Step 1 of the reconstruction phase. Since a majority of the

parties in Ei are honest, all honest parties in [n] will agree on the values of x* = x, y* = y, and thus

will output the same value Ext 2 (x*, y*).

Secrecy Assume the dealer is honest. Note that since the dealer erases x (and all values related

to x) before generating y, any leakage function will be a function of purely x or y, when conditioned

on prior leakage. Thus, conditioned on the leakage, the distribution of x and y will be independent.

By the secrecy property of the underlying A-weakly leakage-resilient VSS protocol, given the view

of the adversary, both x and y retain at least } of their original entropy. Therefore, by Theorem

2.2.7, the final output Ext 2 (x, y) will be statistically close to uniform over {0, 1} m for m = Q(k).

2.5 Disjoint Committee Election

We now exhibit a 1-round public-coin protocol for electing m = log2 n disjoint "good" committees

i m of size approximately ni 2

50

2.5. DISJOINT COMMITTEE ELECTION

ShareLRO:

Step 1: Run Elect to elect a committee Si of approximate size n' = ne from the set of non-dealer
parties [n] \ {P*} (see Lemma 2.2.9).

Step 2: The dealer P* samples a random value x +- F5'' and veriflably secret shares it among the
parties in the committee Si, using the WLR-VSS. That is, he acts as a dealer in an execution
of ShareWLR(x). He then erases x (and all values related to x).

Step 3: Run Elect to elect a second committee E2 of approximate size n' from [n] \ ({P*} U . 1)

(see Lemma 2.2.9).

Step 4: The dealer P* samples a random value y +- F''' and veriflably secret shares it among the
parties in the committee S 2 in the same fashion. That is, he acts as a dealer in an execution
of ShareWLR(y). He then erases y (and all values related to y).

Step 5: Each party in E1 and S2 broadcasts Accept or Reject, corresponding to whether the dealer
was accepted or rejected in ShareWLR(x) during Step 2 or 4, respectively.

Local Computation: The dealer is accepted if a majority of parties in both E1 and S 2 broadcast
Accept. Otherwise, the dealer is rejected.

RecLR O:

Step 1: All parties in El (respectively, S2) execute the reconstruction phase x <- RecWLRO
(resp, y +- RecWLRO), on the shares dealt in Step 2 (resp, Step 4). Each committee member
broadcasts his reconstructed value of x (resp, y).

Local computation: Let x*, y* be the most common value received from the parties in E1 and
S 2 , respectively, in the previous step. Output s +- Ext 2 (X*, y*).

Figure 2.4: Leakage-resilient oblivious VSS protocol, (ShareLR, RecLR)-

51

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Let m = log2 n and k = n1/2. We consider the Feige lightest bin protocol with 2 bins (See

Section 2.2.4), where instead of taking just the lightest bin, we elect the m lightest bins. More
explicitly, we define the protocol ElectDisj as follows. In a single round, each party i E [n] broadcasts
a random value ri +- [11]. For j = 1,..., m, the jth committee E is defined to be the parties in the
jth lightest bin (where ties are further ordered by the existing bin numbering).

Proposition 2.5.1. The protocol ElectDisj is a 1-round public-coin protocol for electing m = log 2 n
committees Ei such that for any constants 0, e > 0, and any set of corrupted parties C C [n] of size
On, the following events simultaneously occur with overwhelming probability in n:

1. Vi 4 j, Si n Ej = 0,

2. Vi, (1 - # - E)n1/ 2 < || <(1 + o(1))n/ 2,

3. Vi, < #3 + e

Proof. Property (1) holds immediately by construction. From the proof of Lemma 2.2.9 (see Re-

mark 2.2.10), with overwhelming probability each bin b E [] - and in particular, each elected Ei -

has at least (1 - # - L)n 1 /2 honest parties. It thus remains to show that IiI 5 (1 + o(1))n1/ 2 for

each i. Indeed, if this holds, then Property (2) holds, and further, with overwhelming probability

we will have

|Ei n C| 1 EA \ C| 1 - #+ n/=EfC 1- <1-\C<#+1
|Ei| |Ei| (1+o(1))n1 /2

implying property (3).

Suppose there exists an elected committee S for which |i I = n1 /2 + f. We will argue that with

overwhelming probability, f E o(n1/ 2). Since Ei is one of the log 2 n lightest bins, it must be that each

of the remaining n1/ 2 _ log 2 n bins has size at least n1/2+ E. Now, we know that with overwhelming

probability, each of the log 2 n elected bins 9i has at least (1 -# - E)n 1 / 2 honest parties. This means

that (with overwhelming probability), the total number of parties in all remaining (non-elected)

bins can be no greater than

n - (log 2 n) 2- n1/ 2.

Thus, with overwhelming probability, we must have

/2 _ log 2)(n 1/ 2 + f) < n - (log 2 n)(i- 1/2.

- (n 1 / 2 _ log 2 n) < n _ (log 2 (-0-- 1/ 2
_ (n _ n 1 / 2 log 2

(0+ L) n1 /2 log 2 n

~ n1/2 _ og 2n

< (+ ') log2n+1.

52

2.6. UNBIASED COIN TOSSING WITH LEAKAGE

In particular, this implies that each elected committee Ei must satisfy

|Ei| < ni1/2 + f

Sn 1/ 2 + (0 + ') log 2 n + 1

E (1 + o(1))n1/2

as desired.

2.6 Unbiased Coin Tossing with Leakage

In this section, we construct our final leakage-resilient coin tossing protocol, as characterized by
Definition 2.3.1. Our construction makes black-box use of the tools developed in the previous
sections: in particular, a weakly leakage-resilient verifiable secret sharing (WLR-VSS) protocol
(from Section 2.4.2), and a disjoint committee election protocol (from Section 2.5).

Recall we are within the model of a synchronous point-to-point network with broadcast, and that
channels are assumed to be authenticated and private (with leakage). Our results are information
theoretic, without cryptographic assumptions.

Theorem 2.6.1. For any constants 6, E > 0, any A < - any sufficiently large n > (3 + 6)t,
and any m, there exists a A-leakage-resilient n-party distributed coin tossing protocol tolerating t
malicious parties that generates an m-bit string that is statistically close to uniform (w.r.t. n), and
terminates in 0(1) rounds.

Proof. Let 6' be any constant such that 6' < 6, and take IF to be a field for which log F

max{2n, m(.99e(3 log2)-)-1'(-1} (where the second requirement comes from the output
length properties of the extractor). In Figure 2.5, we construct the desired coin tossing protocol
CoinToss using the following tools:

1. Elect: Feige's 1-round public-coin protocol to elect a primary committee of size approximately
log 2 n, as in Corollary 2.2.11.

2. ElectDisj: a 1-round public-coin protocol for electing log 2 n disjoint secondary committees of
size n' :::: n1 /2 ,7 as in Proposition 2.5.1.

3. (ShareWLR, RecWLR): a (A, e) WLR-VSS protocol for n' parties, tolerating t' < n, malicious
parties, terminating in O(1) rounds, as in Theorem 2.4.3.

4. Ext: ({0, 1 }d),0g2 - {0, 1}r: a robust multi-source extractor, where r = .99(2 log 2 n)(ed), as

in Theorem 4.4.11. The inputs to Ext will be elements of F5', which we interpret as elements
of {0, 1}d for d = 6't'log|lFI. By the choice of |F above, this gives r > m.

7
Note that we will use prime notation (e.g., n', t', S') to denote parameters pertaining to the secondary committees.

53

CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

CoinToss:
Step 1: Run Elect to elect a primary committee of approximate size log 2 n (see Lemma 2.2.9).

Denote the set of indices of elected parties by S C [n].

Step 2: Run the ElectDisj protocol on the remaining parties [n] \ £ to elect |E1 disjoint secondary
committees E , ... , E' each of size approximately n1 / 2 (see Prop. 2.5.1).

Step 3: Vi E E, P samples a random value ri +- F6'' and verifiably secret shares it among
the parties in his corresponding secondary committee, Ei. That is, he acts as a dealer in an
execution of ShareWLR(ri).

Step 4: For each i E E, all parties in the secondary committee ES execute the reconstruction
phase ri +- RecWLR() on the shares dealt by P. For any party i E E who was rejected as
a dealer in the previous step, set ri = 0. Each secondary committee member broadcasts his
reconstructed value for ri.

Local Computation: Let ri be the most common value received from the parties in secondary
committee Ei in the previous step. Output r +- Ext({rf}1ig).

Figure 2.5: Leakage-resilient coin tossing protocol.

By Proposition 2.5.1, with overwhelming probability in n, the disjoint secondary committees Ej
will be "good," in that they each have size n1/2-(< I < n1/ 2+C for any constant (> 0 and it
holds that n'; > (3 + 6')t', where n' = |Ejl and t' = IE n Cl (where C is the set of corrupted parties).
We will thus assume this is the case. Since n'; > (3+ o')t', the validity, reconstruction, and secrecy
properties of the (A, E) WLR-VSS protocol (see Definition 2.4.2) will hold for the ith execution of
(ShareWLR, ReCWLR) with overwhelming probability in n' (and thus in n). We now show that the
protocol CoinToss satisfies the desired agreement and randomness properties (see Definition 2.3.1).

Agreement. By the reconstruction property of the WLR-VSS protocol, for each Pi E E, the
honest parties in Ei will agree on the reconstructed value ri +- RecWLR() and will broadcast this
value to all parties in Step 4 (where ri = 0 if Pi was rejected as a dealer in the sharing phase of the
VSS). Since a majority of the parties in Ei are honest, all honest parties in [n] will agree on r[= ri
for each i, and so will agree on the final output r.

Randomness. Consider the values ri reconstructed by each secondary committee E£. By the
reconstruction property of the WLR-VSS, each ri is fully determined by the conclusion of the
sharing phase (Step 3 of the CoinToss protocol). The secrecy property of the WLR-VSS implies that
with overwhelming probability at the end of the sharing phase, even given the view of the adversary
up to this point (viewA), each honest party's random variable Ri retains at least c - (5't'log Fl) bits
of entropy. We now argue that, after conditioning on viewA (which includes leakage), the resulting
distributions (Rlviewa),..., (RfIviewA) over FA't' remain independent, where for all j E E n C we

think of Rj as fixed.
This is proved via induction on the number of leakage queries made by the adversary. In the

54

2.6. UNBIASED COIN TOSSING WITH LEAKAGE 55

base case, before any leakage queries are made, the adversary's view is independent of Ri for all
honest parties Pi (by the secrecy properties of the WLR-VSS and underlying secret sharing scheme),
and the claim holds directly. Now, suppose that (Rt lviewA),..., (R IviewA) are independent after
the first j leakage queries. Recall that a leakage query is made on the secret state of a single party.
Further, in the protocol, any given party Pi is contained in at most one secondary committee Ej',
and thus only sends, receives, and holds information on at most one random variable RJ,. Thus, a
leakage query response on the secret state of party Pi can reveal information on a single variable
R*1 but is independent of all the other variables. (Note that this holds even when the choice of
queried leakage function depends on prior leakage information on other variables, as this does not
reveal new information on these other variables).

Therefore, we know that (R IviewA),..., (R81 IviewA) are independent random variables, and
together they have total min-entropy at least (|E \ Cl)(co't'log Fl). By Lemma 2.2.9, 1E \ Cj
(1 - _ - ()log 2 n for any constant (> 0, with overwhelming probability in n. Since the robust
multi-source extractor we use can extract even when many of the sources R! are fixed, we can simply
take the loose bound |E \CI I j log 2 n. Hence, by Theorem 4.4.11, the final output r = Ext({r }iec)
will be statistically close (w.r.t. n) to uniform over {0, 1}" with m = .99((log 2 log Fl).

56 CHAPTER 2. LEAKAGE-RESILIENT COIN TOSSING

Chapter 3

Secure Computation Against

Adaptive Auxiliary Information

In this work, we study the problem of secure two-party and multi-party computation (MPC) in
a setting where a cheating polynomial-time adversary can corrupt an arbitrary subset of parties
and, in addition, learn arbitrary auxiliary information on the entire states of all honest parties
(including their inputs and random coins), in an adaptive manner, throughout the protocol execution.
We formalize a definition of multiparty computation secure against adaptive auxiliary information
(AI-MPC), that intuitively guarantees that such an adversary learns no more than the function
output and the adaptive auxiliary information. In particular, if the auxiliary information contains
only partial, "noisy," or computationally invertible information on secret inputs, then only such
information should be revealed. Our definition is a natural generalization of the standard security
notion for MPC, where the adversary is restricted to (static) auxiliary information on the inputs
of the honest parties prior to the protocol execution.

We construct a universally composable AI-MPC protocol that realizes any (efficiently com-
putable) functionality against malicious adversaries in the common reference string (CRS) model,
based on the linear assumption over bilinear groups and the n-th residuosity assumption. Our pro-
tocol tolerates an arbitrary number of corruptions, and applies to both the two-party setting as well
as the multi-party setting. Apart from theoretical interest, our result has interesting applications to
the regime of leakage-resilient cryptography. Indeed, our result is already used as an essential tool
for constructing leakage-resilient MPC protocols in the leak-free preprocessing model [BGJK12] (as
described in Chapter 4).

At the heart of our construction is a new two-round oblivious transfer protocol secure against
malicious adversaries who may receive adaptive auxiliary information, in the CRS model. We
believe that this may be of independent interest.

We begin in Section refsec:WLR-techniques by giving an overview of our solution. In Section 3.2,
we present some definitions and tools that are used in our construction. In Section 3.3, we formally
describe our model and security definition. In Section 3.4, we present the technical core of our work:
the construction of an oblivious transfer protocol secure against adaptive auxiliary information in
the semi-malicious model. In Section 3.5, we present our complete MPC protocol in the semi-
malicious model, together with a proof of security. In Section 3.6, we provide a compiler taking any

57

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

protocol secure against adaptive auxiliary information in the semi-malicious model to one secure
against malicious adversaries in the standalone model. Finally, in Section 3.7, we describe an
analogous compiler within the (stronger) universal composability framework.

3.1 Technical Overview

Our starting point is the GMW paradigm for building MPC protocols [GMW87].

The First Approach. Recall the GMW paradigm begins by designing an MPC protocol secure
against semi-honest (i.e., passive) adversaries, and then compiles the protocol into one secure
against malicious adversaries by "enforcing" semi-honest behavior via use of zero-knowledge proofs,
a commitment scheme, and a coin-tossing protocol.

We begin by mirroring this approach in the setting of adaptive auxiliary input. We directly
achieve an MPC protocol that is secure against adaptive auxiliary information in the semi-honest
setting by instantiating the basic GMW protocol with the oblivious transfer protocol of [BCH11]
(that has analogous semi-honest security properties). More generally, building on the techniques of
[GJS11, BCH11], one can show that any adaptively secure MPC protocol can be easily converted
into one achieving security against adaptive auxiliary information within the semi-honest model.

Continuing onto the GMW compiler, we see that zero-knowledge proofs secure against adaptive
auxiliary information were already constructed in [GJS11, BCH11], and equivocal commitment
schemes [FS89] were also shown to have the required security properties [GJS11, BCH11]. We are
thus almost within reach of our final goal. Unfortunately, in the remaining step, one runs into
serious problems. It is not clear how to construct a coin-tossing protocol secure against adaptive
auxiliary information.' The problem is that in order to reduce the malicious security of the compiled
protocol to the semi-honest security of the original protocol, the coin-tossing protocol to be used in
the compiler must be fully simulatable, in that the simulator must be able to choose the output of
the coin toss, and simulate the protocol to force this output, for both honest and corrupted parties.
This is not only troublesome, but even recently shown to be impossible to achieve if the adversary
may attain joint leakage on the secret states of all honest parties [CLL+13].

We now briefly illustrate the problem with constructing such a coin-tossing protocol. Let us
consider a simple template for an n-party coin-tossing protocol to generate (private) randomness
for a party P. First, each party P (s.t. j $ i) commits to a random string rj, then Pi commits to
ri, and finally, each P decommits. The output is ey lre. Now, note that if P is honest, then the
simulator can easily obtain the desired output by first extracting the values ry, and then choosing an
"appropriate" ri (that is consistent with the desired output). On the other hand, if Pi is corrupted,
then in the plain setting (without adaptive auxiliary information) the simulator can cheat in the
decommitment step in order to achieve the desired output. In our setting, however, the adversary
can learn auxiliary information on the decommitment value before the simulator is able to extract
ri; as a result, the simulator cannot "change its mind" about the decommitment later on (and thus
cannot force the desired output).2

'We remark that the leakage-resilient coin tossing result of [BGK11] is not relevant to this setting. Their construc-
tion requires an honest majority of parties (in order to attain stronger, information theoretic guarantees), whereas
our model allows an arbitrary number of corruptions.

2 We stress that this attack succeeds even if one uses equivocal commitments [FS89].

58

3.1. TECHNICAL OVERVIEW

One may consider alternative templates for coin-tossing in an attempt to bypass the above
problem, for example, by changing the order of commitments by the parties. Unfortunately, in
each such attempt, it seems that the simulator fails to force the coins for either the honest party,
or the adversary (while, as discussed above, we need the simulator to be able to force the coins in
both of these cases).

A New Stepping Stone: "Semi-Malicious" Adversaries. We thus abandon the approach of
mimicking the GMW paradigm "out of the box." We instead consider a different intermediate step,
lying closer to security against malicious adversaries, with the goal of eliminating the necessity for
fully simulatable coin-tossing in the final compiler. This amounts to constructing protocols that
remain secure even if an adversary potentially uses "bad" randomness in the protocol execution.
To formalize this requirement, we consider the notion of a semi-malicious adversary that follows
the protocol execution (similar to a semi-honest adversary), but can choose its random coins (and
inputs) in any arbitrary manner.3

Once we construct a protocol for semi-malicious adversaries (that can learn arbitrary auxiliary
information), we can easily compile it into a secure protocol for malicious adversaries by standard
techniques. We do so using a modified version of the GMW compiler adapted to our setting,
implemented with equivocal commitments [FS89, CLOS02] and the UC-NIZKs of [GOS06a] that
were shown to be secure against adaptive auxiliary information by Garg et al. [GJS11]. (We refer
the reader to the technical sections for more details.) The task then remains to construct an MPC
protocol that is secure against adaptive auxiliary information in the presence of semi-malicious
adversaries.

A close look at the basic GMW construction reveals that constructing semi-malicious MPC
reduces to constructing a semi-malicious oblivious transfer (OT) protocol. (We note that this ob-
servation is also implicit in [IPS08].) Since our goal is to protect against adversaries who may learn
adaptive auxiliary information, we aim to construct OT protocols with similar security guarantees
against semi-malicious adversaries. We discuss this next.

Semi-Malicious OT. Our starting point is the adaptively secure semi-honest OT protocol of
Canetti et al. [CLOSO2]. The [CLOS02] construction follows the "standard template" of [EGL85]
for semi-honest OT, but replaces the underlying encryption scheme with a non-committing en-
cryption (NCE) scheme [CFGN96]. Namely, (1) The receiver R generates and sends two public
keys pko, pki for the (non-committing) encryption scheme-one for which he knows the secret key,
and one "obliviously" sampled; and (2) the sender S sends an encryption of each of his messages
mi, under the corresponding public key pki. The [CLOSO2] scheme was shown to be secure against
adaptive auxiliary information in the semi-honest model (using our terminology) by [BCH11]. How-
ever, the protocol fails in the semi-malicious model. Indeed, a semi-malicious receiver can simply
choose bad randomness to "obliviously" sample public keys for which he can decrypt (and thus learn
both messages of the sender). Further, a semi-malicious sender may be able to create "malformed"
ciphertexts that cause the honest receiver to abort depending on his secret input. Circumventing
these fatal roadblocks demands a new set of techniques. We solve these problems as follows:

* First, we construct an underlying NCE scheme with strong security properties, which will

3 The notion of semi-malicious adversaries is somewhat similar in spirit to the notion of defensible adversaries
considered by [HIK+ 11]. We refer the reader to Section 3.3 for a comparison of the two notions.

59

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

guarantee security in the OT protocol as long as the adversary's randomness does not fall
within a very small "bad" set. We achieve this by building an NCE scheme where the public
keys generated via the oblivious key generation algorithm are almost always lossy (except if
they belong to some exponentially small set, such as the set of DDH tuples). Now, unless
the adversary's randomness falls within this very small set, the encryption of non-requested
messages under his obliviously sampled public keys will information theoretically hide the
messages.

* Second, we develop a new methodology for generating private randomness that prevents a
malicious party from choosing randomness within this small bad set. The challenge is doing
so in the presence of adaptive auxiliary information, and while simultaneously providing the
simulator the necessary flexibility to "force" any randomness of his choice for honest parties.

A potential idea is to design a modified coin tossing protocol to ensure a malicious party's
output randomness still maintains sufficient entropy in the auxiliary information setting.
However, approaches of this kind seem to inherently necessitate an a priori bound on how
much auxiliary information can be handled: if honest parties cannot hold onto any secret
entropy during the protocol, this path appears hopeless.

We provide a different approach. We construct a non-interactive randomness generation
procedure that achieves the desired properties by use of lossy trapdoor functions (LTDF),
together with a CRS. Namely, each party P is assigned an LTDF seed o-i in the CRS; each
time the party must sample randomness in the protocol, he first chooses a random value r in
the LTDF domain, and then uses the LTDF evaluation F(a, r) as his protocol randomness.
Loosely speaking, in the simulation, honest parties will be assigned seeds for injective func-
tions, whereas corrupted parties will be assigned (computationally indistinguishable) seeds
for lossy functions. This allows the simulator to efficiently "explain" any possible output for
honest parties, while simultaneously restricting malicious parties to a small set of attainable
output values that does not "hit" the small set of bad values. We refer the reader to Section
3.4.3 for more details.

We prove that the resulting OT protocol is secure against adaptive auxiliary information in the
semi-malicious model. This constitutes the technical heart of our construction.

Final Touches. While the above ideas essentially handle the issue of "bad" randomness, we
still need to find a way to answer the auxiliary information queries of the adversary correctly.
Our starting point for this is the observation of [GJS11, BCH11] that adaptive security (without
erasures) provides simulators that can generate random tapes for parties, which can be used to
answer auxiliary information queries. However, this is possible if the simulator is able to decide
its random tape after viewing the (possibly bad) random tape of the adversary. Unfortunately,
depending upon the "structure" of the protocol (e.g., if the honest party is required to proceed before
a corrupted party), this may not always be possible (since we do not know how to construct a fully
simulatable coin-tossing protocol). We address this problem as follows: to somewhat "soften" this
asymmetry, instead of generating the entire random tapes of each party a priori, we generate them
in an "online" fashion. In part because the GMW semi-honest protocol provides perfect security in
the OT-hybrid model, it turns out that this essentially suffices for simulation. Combining all the
above ideas, we are finally able to construct a simulator (for the GMW protocol instantiated with

60

3.2. PRELIMINARIES

our OT protocol) that has the ability to perform "honest party state reconstruction" at every step
of the protocol using the auxiliary information and the state of the adversary.

Some important issues still must be addressed, and are discussed within the paper in detail.
For example, in the GMW protocol (on which we base our construction), it is not clear how to
send the output shares in a manner consistent with prior auxiliary information received by the
adversary, in the multi-party setting for more than two parties. Recall that in the GMW protocol,
each party broadcasts its output share to everyone. However, the simulator is given access only to
the combined value of all honest party shares (corresponding to the function output), and it may
not be computationally feasible to directly simulate the individual output shares consistent with
prior auxiliary information. To solve this issue, we use a specific re-randomization technique that
reduces the number of "unknown" output shares to a single "unknown" output share (that can be
easily determined from the protocol output and the adversary's state). We defer more details to
the technical sections of the paper.

3.2 Preliminaries

In this section, we present some basic notions and definitions that are used in our construction.

3.2.1 Non-committing Encryption

The notion of non-committing encryption was introduced by Canetti et. al. [CFGN96]. Informally,
non-committing (bit) encryption schemes are semantically secure, possibly interactive encryption
schemes, with the additional property that a simulator can generate special ciphertexts that can
be "opened" to (i.e. demonstrated to be the encryption of) both 0 and 1.

Definition 3.2.1. [CFGN96, CDMW09] A non-committing (bit) encryption scheme consists of a
tuple
(Gen, Enc, Dec, NCSim), where (Gen, Enc, Dec) is a semantically secure encryption scheme, and
NCSim is a PPT simulation algorithm that on input 1 k outputs a tuple (e, c,ro, ro 7r, rl) such
that for every b E {0, 1} the following distributions are computationally indistinguishable:

1. The joint view of an honest sender and an honest receiver in a normal encryption of b:

{(e, c, rG, rE) : (e, d) +- Gen(1k; rG), c +- Ence (b; rE)-

2. A simulated view of an encryption of b:

{(e, c, r b, r b) : (e, c, ro , r 0 , r , r) <- NCSim(1k B

Augmented NCE. In our MPC protocol, we will actually use an "augmented" NCE scheme
that has the following three additional properties:

Oblivious key generation: It should be possible to sample an encryption key without "knowing"
a corresponding secret key. More precisely, there exists an oblivious key generation algorithm,
denoted by OGen, that takes as input security parameter 1 k, and outputs a key e <- OGen(lk),

61

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

where e is indistinguishable from the encryption key chosen by the normal key generation
algorithm Gen. Furthermore, {Ence(0)} is indistinguishable from {Ence(1)} even given the
randomness input to OGen.

Invertible samplability: The key generation and the oblivious key generation algorithms Gen
and OGen should be "invertible." That is, given an output that lies in the range of Gen

(resp., OGen) that was potentially generated via a different algorithm (e.g., NCSim), we can
efficiently generate randomness that "explains" the output as being generated via Gen (resp.,
OGen).

Explicitly, there exist two inverting algorithms, as follows. The first inverting algorithm takes
any (simulated) key pair (e, db) from the output of NCSim (for either b e {0, 1}) and outputs
r such that Gen(r) = (e, db). The second inverting algorithm receives any e output by Gen or
NCSim and and outputs r such that OGen(r) = e.

To simplify notation, throughout the paper, we will make the simplifying assumptions that:
(a) the Gen algorithm simply outputs the input randomness r as the decryption key d, and
(b) the OGen algorithm simply outputs the input randomness r as the public key e. Thus,
given these assumptions, we note that both the above described inverting algorithms are
"trivial." Indeed, the specific NCE scheme that we use (described in Section 3.4.2) satisfies
both these assumptions.

Alternative simulation: Note that in the standard NCE definition, N CSim generates a simulated
ciphertext (and randomness values) together with an encryption key e. For our purposes, we
want a slightly stronger property, where we can generate a simulated ciphertext for a fixed
encryption key - namely, one that is obliviously sampled by another party.4

Explicitly, there exists an alternative simulation algorithm, denoted by NCSim', that takes
as input an (obliviously generated) public key e, and outputs a tuple (c, ro, ri), such that for
every b E {0, 1}, the distribution

{(e, c, rE) : e <- OGen(1k), c +- Ence(b; rE)}

is computationally indistinguishable from the distribution

{(e, c,rE) :e <- OGen(1l"), (c, ro,rl) +- NCSim'(e)}.

Here, we remark that the first two (additional) properties of augmented NCE were also used
by [CLOS02] in their construction of adaptively secure OT protocols.

NCE Construction. In this work, we will use a variant of the NCE construction due to Choi
et. al [CDMW09], which can be based on any public-key encryption (PKE) scheme that is simu-
latable [DN00]. Loosely speaking, a simulatable PKE scheme is a semantically secure encryption

4 Jumping ahead: this property will be required to prove security of our OT protocol against a semi-malicious
receiver. Here, unlike the semi-honest setting, the simulator (simulating an honest sender) cannot choose the NCE
encryption keys that are used, and must be able to generate simulated NCE ciphertexts for keys that are given to
him during the OT protocol. We refer the reader to Section 3.4 for details.

62

3.2. PRELIMINARIES

scheme (Gen, Enc, Dec) with oblivious sampling algorithms (OGen, OEnc) for both public keys and
ciphertexts, and additionally with respective inverting algorithms (IGen, IEnc) that take as input any
public key (resp., ciphertext), and output randomness that is consistent with obliviously sampling
the given public key (resp., ciphertext).

Definition 3.2.2. A simulatable PKE scheme consists of a tuple (Gen, Enc, Dec, OGen, OEnc, IGen, IEnc),
such that (Gen, Enc, Dec) is a semantically secure encryption scheme and, for all messages m E
{0, 1}', the following distributions are computationally indistinguishable:

1. The joint view of a sender and receiver who obliviously sampled their public key and cipher-
text:

{(pk, c, rG, rE) : pk +- OGen(1k; rG), c +- OEncpk(1k; rE)}-

2. A simulated view of the same, where the public key and ciphertext are not generated oblivi-
ously, and the randomness is given by the corresponding inverting algorithms:

{(pk, c,PG, ?E) : pk +- Gen(1k; rc), c +- Encpk(m; rE), ?G +- IGen(pk), PE <- IEnc(c)}.

Theorem 3.2.3. There exists an augmented NCE scheme based on any simulatable public-key
encryption scheme.

Sketch of proof. The construction and proof are nearly identical to that of Choi et. al. [CDMW09].
We note that the precise result of Choi et. al. assumes a slightly weaker primitive (namely, a trapdoor
simulatable PKE scheme, a notion they introduce), and constructs a standard (not augmented)
NCE scheme. We now briefly address the three additional algorithms required to achieve augmented
NCE.

The NCE construction of Choi et. al. possesses straightforward algorithms for oblivious key
generation and invertible samplability, both of which are inherited from the underlying simulatable
PKE scheme. Finally, by assuming the underlying PKE scheme is simulatable (instead of only
trapdoor simulatable), the simulation of the public key and the ciphertext in their algorithm NCSim
can easily be decoupled. In particular, it becomes possible to generate a simulated ciphertext
without requiring any trapdoor information on the generation of the public key. This yields the
desired alternative simulator algorithm, NCSim'. L

We refer the reader to Section 3.4.2 for more information on the resulting augmented NCE
scheme.

We remark that constructions of simulatable encryption schemes exist under an assortment of
computational assumptions (e.g., DDH, RSA [DNOO]). In Section 3.4.2, we provide a construction
of a specific simulatable encryption scheme based on DDH, with an additional desired property

(namely, that public keys generated using the oblivious sampling algorithm OGen are almost always
lossy), and show that this property is inherited by the resulting augmented NCE scheme.

3.2.2 Equivocal Commitments

Informally speaking, a bit-commitment scheme is equivocal if it satisfies the following additional
requirement. There exists an efficient simulator that outputs a fake commitment such that: (a) the

63

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

commitment can be decommitted to both 0 and 1, and (b) the simulated commitment and de-
commitment pair is indistinguishable from a real pair. We now formally define the equivocability
property for bit-commitment schemes in the CRS model.

The following definition is adapted from [FS89, C1098].

Definition 3.2.4. A non-interactive bit-commitment scheme (crsGen, Com, Rec) in the CRS model
is said to be an equivocal bit-commitment scheme in the CRS model if there exists a PPT simulator
algorithm

Simeq = (crsSimeq, comSimeq) such that crsSimeg takes as input the security parameter lk and

outputs a CRS and trapdoor pair, (crs, trap); and comSimeq takes as input such a pair (crs, trap) and
generates a tuple (eqcom, eqdeco, eqdec') of a commitment string eqcom and two decommitments
eqdeco and eqdec (for 0 and 1), such that the following holds.

1. For every b E {0, 1} and every (eqcom, eqdeco, eqdec') <- comSimeg(crs, trap), it holds that

Rec(crs, eqcom, eqdecb) = b.

2. For every b E {0, 1}, the random variables

{ (crs, eqcom, eqdec) : crs <- crsGen(1k), (eqcom, eqdec) <-- Com(crs, b)}

and

{ (crs, eqcom, eqdecb) : (crs, trap) <- crsSimeq (1k), (eqcom, eqdec0 , eqdec1) +- comSimg (crs, trap) }

are computationally indistinguishable.

Reusable CRS. Note that the simulator algorithms crsSimeq and comSimeg are described as

separate algorithms in the Definition 4.4.4 to highlight that it is not necessary to create a separate

CRS for every equivocal commitment, i.e., the CRS is reusable. In this case, Definition 4.4.4 can be

extended in a straightforward manner to consider indistinguishability of an honestly generated tuple

consisting of CRS and polynomially many commitment, decommitment pairs, from a simulated

tuple. Explicitly, we will use the following property.

Corollary 3.2.5. For any polynomial p(k), and any collection of bits {b 1 , ... , bp(k)}, the following

distributions are indistinguishable:

crs, {eqcomi, eqdec} :k) crs +- crsGen (1k), (eqcomi, eqdeci) +- Com(crs, bi) }
and

(crs, eqcom, eqdecpi}(k)) (crs, trap) +- crsSimeq1(k)
crs,{eqcms, qdec} :(eqcom;, eqdec9, eqdec!) <-- comrSimeiq(crs, tra p)

Proof. Follows from Definition 4.4.4 by a standard hybrid argument.

Theorem 3.2.6 ([FS89, CLOS02]). Assuming the existence of one-way functions, there exists an

equivocal bit commitment scheme in the (reusable) CRS model.

64

3.2. PRELIMINARIES

Remark 3.2.7. Throughout this paper, we assume that our equivocal commitment scheme has two
additional properties: namely, that the decommitment information eqdec contains all randomness
used to generate the corresponding commitment, and that the commitment scheme is statistically
binding. Indeed, the scheme of Feige and Shamir [FS89] satisfies these additional properties.

String Equivocal Commitments. For our purposes, we actually use string equivocal commit-
ment schemes. Note that such a scheme can be easily constructed by simply repeating the above
bit commitment scheme in parallel.

Definition 3.2.8. An extractable equivocal commitment scheme in the CRS model is an equivocal
commitment scheme (crsGen, Com, Rec, Simeq) (as in Definition 4.4.4) with additional algorithms

(crsGenE, E) such that

{crs <- crsGenE(1k (crs +- crsGen(1k}

and for all PPT adversaries A,

Pr[(crs, trap) <- crsGenE(1k); cOm +- A(crs); y +- E(crs, com,trap) : 3 dec,x 54 y

s.t. x = Rec(crs, dec, com)] <; negl(k).

Remark 3.2.9. For our purposes, we want an extractable equivocal commitment scheme for
strings. Note that such a scheme can be easily constructed by simply repeating the above bit
commitment scheme in parallel (as was done explicitly in the previous sections). In this section,
we abbreviate this notation, and denote a commitment to a string of length m as a vector eqcom =
(eqcomi, ..., eqcomm), with corresponding decommitment vector eqdec = (eqdeci, ... , eqdecm). The
simulator algorithm Sco produces a commitment vector and a pair of decommitment vectors dO =
(eqdecj, ... , eqdecm), d' = (eqdec', ... , eqdecm). A decommitment to any particular bit string a =

(a, ..., am) can be formed by selecting the appropriate decommitment values (eqdeca,. . . , eqdecam),
and will be denoted by da.

In [GOS06a], it is shown how to construct an extractable equivocal commitment scheme from
any equivocal commitment scheme, given any encryption scheme with pseudorandom ciphertexts.
In particular, the following statement holds.

Theorem 3.2.10 ([GS08, GOS06a, FS89]). There exists an extractable equivocal commitment
scheme in the CRS model, based on any trapdoor permutation.

3.2.3 Leakage-Resilient Non-Interactive Zero Knowledge Proof System

Definition 3.2.11 (Non-interactive proof system). A tuple of PPT algorithms (K, P, V) is called a
non-interactive proof system for a language L with an NP relation R if the following two conditions
hold:

* Completeness: For all x, w such that R(x, w) = 1, and for CRS values a <- K(1k),

Pr[V(o, x, 7r) = 1 : 7r +- P(u, x, w)] ;> 1 - negl(k),

where the probability is taken over o <- K(lk) and the random coins of P.

65

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

* Soundness: For all adversaries A,

Pr[(x, 7) +- A(u) : V(o-, x, r) = 1 if x V L] <; negl(k),

where the probability is taken over o- +- K(1k) and the random coins of A.

If the soundness condition holds only against ppt adversaries, then we say that (K, P, V) is a
non-interactive argument system.

Definition 3.2.12 (LR-NIZK). [GJS11, BCH11] A non-interactive argument system (K, P, V) for
an NP relation R is said to be a leakage-resilient NIZK if there exists a simulator S = (Si,S 2 ,S 3)
such that for all PPT adversaries A,

Pr[APR(-,-,-,-)(o-) = 1 : a +- K(1k)] - Pr[A SR'O(ar,,,-)(.) = 1 : (-,Tr) +_ S(ik)] = negl(k),

where PR and SR are oracles that do the following:

" PR(o-, x, w, L) samples r +- {0, 1}*, runs the honest prover algorithm r +- P(o, x, w; r) using
randomness r, computes the leakage y = L(wIIr), and returns (7r, y).

* SRQw(o)(o,T,x,w,L) samples r +- {0, 1}*, runs the simulator algorithm 7r - S2(a,r, x;r)
to generate a proof, generates a state translation function T +- S3(o,, r7x, r, L), makes the
request y +- 0,(L o T) for L o T from his own leakage oracle 0w, and returns (7r, y).

Here, L and T are expressed as polynomial-size circuits. Both the oracles PR and SR output
fail if (x,w) V R.

Theorem 3.2.13 ([GOS06a, GJS11]). There exists a leakage-resilient NIZK argument system for
any NP language, based on the Decisional Linear assumption.

Remark 3.2.14. We note that the above theorem is also relevant to our setting of adaptive
auxiliary information since leakage can simply be viewed as auxiliary information. When referring
to the above theorem, we do not differentiate between leakage and auxiliary information.

3.2.4 Lossy Trapdoor Functions (LTDF)

A collection of lossy trapdoor functions (LTDF) [PW1 1] consists of two families of functions. Func-
tions in one family are injective and can be efficiently inverted using a trapdoor. Functions in the
other family are "lossy," in that the size of their image is significantly smaller than the size of their
domain. The only computational requirement is that a description of a randomly chosen function
from the family of injective functions is computationally indistinguishable from the description of
a randomly chosen function from the family of lossy functions.

We consider a slight generalization of a LTDF family, allowing for seed-dependent domains, as
introduced by Freeman et. al. [FGK+10]. Here, the domain size of each function in the family may
depend on both the security parameter and the corresponding seed. For simplicity of notation, we
will simply refer to this as an LTDF family (although we emphasize that this is not the standard
notion of an LTDF family as in [PW11]).

66

3.2. PRELIMINARIES

Definition 3.2.15. [Lossy Trapdoor Functions (with Seed-Dependent Domains)] [PW11, FGK+10]
Let m : N -+ N and f : N -+ R be two non-negative functions, and for any k E N, let m = m(k) and
e = e(k). A collection of (m, f)-lossy trapdoor functions with seed-dependent domains is a 5-tuple
of PPT algorithms (G Loss, Gij, S, F, F-1) such that:

1. Sampling a lossy function: GLos(1k) outputs a seed a- E {0, 1}*.

2. Sampling an injective function: Gij(1k) outputs a pair (o,-, r) E {0, 1}* x {0, 1}*. (Here
o- is a seed and T is a trapdoor.)

3. Sampling an input: For every value o- produced by either GLoss or Ginj, the algorithm S(o-)
outputs an element sampled uniformly from the domain D, of the function f,. We require
that |D.1 > 2m-1.

4. Evaluation of lossy functions: For every seed o- produced by GLoss, the algorithm F(o,-)
computes a function f, : D, -+ {0, 1}*, whose image is of size at most ID,|I -2- .

5. Evaluation of injective functions: For every pair (a, T) produced by Ginj, the algorithm
F(o-, .) computes an injective function f, : D, -+ {0, 1}*.

6. Inversion of injective functions: For every pair (a, T) produced by Ginj and every x E De,
we have F-'(T, F(o-, x)) = x.

7. Security: The two ensembles {o : a +- GLoss(1k)}kEN and {o- : (o, T) +- Ginj(lk)}kEN are
computationally indistinguishable.

For our purposes, we will need a slight strengthening of a LTDF family. Primarily, we require
that the injective functions in the family in fact be bijective: i.e., they are also surjective onto their
target space. In addition, we will require certain conditions to hold with respect to the relation
between parameters. We formalize these properties below.

Definition 3.2.16. We say that a collection of (m, e)-lossy trapdoor functions (GLoss, Ginj, S, F, F-1)
is bijective and (D, a)-admissible if it satisfies the following additional properties:

" Bijective: For every pair (a, T) produced by Ginj, the algorithm F(a, T) computes a bijective
function f, : D, -+ R, (where R, is the target output space of f,).

" (D, a)-Admissible: The following hold, corresponding to target output size D, where a
fraction of the D values are "bad":

1. Efficiently invertible domain sampling: There exists a PPT algorithm S-1 such that for
each x E D, {S-1(x)} 9 {r : S(r) = z}.

2. Sufficiently large output space: For each seed o produced by either GLoss(1k) or Ginj(jk{
the size of the output space R, satisfies

|Rel > D.

67

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

3. Sufficiently small image of lossy functions: There exists a negligible function p(k) such
that for every seed a produced by GLoss,

a - (|Da| - ~(k)) < p(k).

Recall that |D, - 2-(k) is an upper bound for the image size of a lossy function with
seed a.

Note that for any pair (D', a') for which D' < D and a' < a, the property of being (D, a)-
admissible immediately implies (D', a')-admissibility. We now show that the composite residuosity-
based LTDF family construction (with seed-dependent domains) of Freeman et. al. [FGK+10] sat-
isfies our required properties.

Theorem 3.2.17. [FGK+10] Under the decisional composite residuosity assumption, there exists a
bijective, (D, a)-admissible collection of lossy trapdoor functions (GLoss, Gj, S, F, F- 1) with seed-
dependent domains, for the following two choices of (D, a):

1. D = (4k)._ a = (3k)/(4k).

2. D=2k. a - 2

We remark that the parameters for these two cases are highly tailored to our application: namely,
two different types of randomness that must be sampled when generating an encryption for our
non-committing encryption (NCE) scheme (see Sections 3.4.2 and 3.4.3 for details on the NCE
scheme and the use of LTDFs for generating randomness).

Proof of Theorem 3.2.17. We begin by recalling the composite residuosity-based LTDF family con-
struction of [FGK+10], which is based on the Damgard-Jurik encryption scheme. The Damgird-
Jurik encryption scheme makes use of the fact that, for a modulus N = PQ with gcd(N, #(N)) = 1,
the map

ZN8 X N* Ns+1

(x, r) - (1 + N)xrNs mod NS+1

is a group isomorphism, and is efficiently invertible given trapdoor information A = 1cm(P -
1, Q - 1). (In the Damgird-Jurik encryption scheme, x, r, A correspond to the message, encryption
randomness, and secret key for the encryption scheme, respectively). In the LTDF construction
of [FGK+10], each function description consists of a freshly sampled modulus N together with a
Damgard-Jurik ciphertext c that is either an encryption of 0 (in the case of a lossy branch) or an
encryption of 1 (in the case of an injective branch). The value of s = s(k') below can be chosen as
a parameter of the scheme.

Sampling a lossy function GLoss(Ik'): Sample a k'-bit modulus N = PQ such that gcd(N, #(N))
1, a random element r +- Z*, and let c = rNs mod NS+1. The function description is
o- = (N, c), and the corresponding domain is D, = ZNS X Z*N'

68

3.2. PRELIMINARIES

Sampling an injective function Gilj(1k'): Sample an admissible k'-bit modulus N = PQ such
that gcd(N, <(N)) = 1, a random element r <- Z*, and let c = (1 + N)rN' mod Ns+1.
The function description is a = (N, c), the domain is D, = ZNs x Z*, and the trapdoor is
T = (A, r), where A = Icm(P - 1, Q - 1).

Sampling an input S(N, c): Output a uniform value (x, y) <- ZNs X Z*N-

Evaluation F((N, c), (x, y)): Output cyNs mod NS+1.

Inversion F-1 ((N, c), z, (A, r)): Invoke the ciphertext decryption algorithm #'-1(z) = (x, rxy)
using the secret key A. Then, using the value of r, recover x and y.

As proved in [FGK+10], under the decisional composite residuosity assumption, for any poly-
nomial s = s(k'), the tuple (GLoss, Ginj, S, F, F-1) described above is a collection of (m, e)-lossy
trapdoor functions with seed-dependent domains for m(k') = (k'-1) (s + 1) and e(k') = (k'- 1)s -1.
We now address our additional required properties.

Bijective. Consider any seed o = (N, c), c = (1 + N)rN", corresponding to an injective branch
(i.e., a produced by Ginj). Then the corresponding function f, computed by F is:

f, : (x, y) '-4 (1 + N)2(ry)N>

Notice that f, (x, y) = #, (x, rxy) is precisely the map given by evaluating the isomorphism
0, (defined above) at the pair (x, rzy). That is, f, = #, o (1 X pr), where (1 x pr) is the map
on ZNs X Z* that takes elements (x, y) F-+ (x, rxy). We know that #, is bijective, as it is an
isomorphism. Further, (1 x pr) is a bijection, with inverse (z, w) '-* (z, w - (rz)-1). Thus, the
composition f, is also bijective, as desired.

Admissible Note that it suffices to exhibit (D, a)-admissibility for the single pair of values D =

(k) > 2k and a = 2 -k/3 > (k)/(k), and then (D, a)-admissibility for both parameter
choices (1) and (2) in the theorem statement will follow.

Efficient inversion of domain sampling algorithm. For each seed a = (N,c), the domain
sampling algorithm S simply selects a uniform element of ZNS X Z*; thus, efficient
inversion is immediate.

Sufficiently large output space. To achieve the desired parameters with respect to our security
parameter k, we will invoke the [FGK+10] construction with k' = k/4 and s(k') = 15.
In this case, we have

2m(k')-1 - 2(k'-1)(s+1)-1

= (k/4-1)(15+1)-1 - 2 4k-17

(4k\
> (4k for k > 19.

k-

69

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Sufficiently small image of lossy functions. For each lossy seed o = (N, c) produced by GLos,
the corresponding domain is D, = ZNS X Z*. So |DI = NS -#(N) < NS+1 < 2 k'(s+1),

since N is a k'-bit integer. Thus, for k' = k/4 and s(k') = 15, we have

|.D,|. - ~'k) - 1) <2k'(s+1) - (k'-1)s+1 -2 2-k/3
2k/3

2 '+s+1 . -k/3

2 k/4+15+1 . 2~k/3

< 216 - 2 -k/12

which is a negligible function in k, as desired.

A note on function descriptions. For our MPC application, a collection of randomly se-
lected LTDF seeds will be included as part of the CRS. In the LTDF construction of Freeman
et. al. [FGK+10] described above, the function indices a cannot take arbitrary uniform values, but
rather have a specific structure: in particular, the seed contains a modulus of the form N = PQ.
Thus, with this LTDF instantiation, the CRS of our scheme will in fact be a common reference
string, instead of a common random string, and there is an inherent assumption that the CRS setup
is performed without leaking. However, any new construction of an LTDF family satisfying the
properties of Definition 3.2.16 and for which the seeds are uniformly distributed can be immediately
plugged in to our construction, alleviating this point. We leave this as an open problem for future
research.

3.3 Our Model

To define multiparty computation secure against adaptive auxiliary information, we turn to the
real/ideal paradigm. Very briefly, we consider a real-world execution where an adversary, in addition
to corrupting a number of parties, can adaptively learn arbitrary auxiliary information on the joint
secret states of the honest parties, throughout the protocol execution. Following the works on
leakage-resilient cryptography, we model the above scenario by allowing the adversary to make
auxiliary information queries of the form L, where L is the circuit representation of an efficiently
computable function. On making such a query, the adversary learns L(state), where state represents
the joint secret state of the honest parties. In the ideal world experiment, the ideal world adversary,
i.e., the simulator is allowed to request auxiliary information on the inputs of all the parties from
the trusted party. We remark that our security model is similar to those considered in some recent
works [GJS11, BCH11], although we note that prior works focused only on the two-party case,
whereas we deal with both the two-party case and the multi-party case.

Below, we describe a standalone security definition. Later in the paper, we will consider the
generalization to the UC setting. We now describe the ideal and real world experiments and then
give the formal security definition.

T70

3.3. OUR MODEL

Ideal World. We first define the ideal world experiment, where n parties P1 ,... , P, interact with
a trusted party for computing a function f. As in the standard MPC ideal world experiment, the
parties send their inputs to the trusted party and receive the output of f evaluated on all inputs.
The main difference from the standard ideal world experiment is that the adversary is allowed to
make auxiliary information queries on the (joint) inputs of the honest parties. The ideal world
execution proceeds as follows.

" Inputs: Each party P obtains an input xi. The adversary is given (initial) auxiliary input
z, selects a subset of parties M c P to corrupt, and receives xi for every Pi E M.

" Sending inputs to trusted party: Each honest party Pi sends its input xi to the trusted
party. For each corrupted party Pi E M, the adversary may select any value x' and send it
to the trusted party.

" Trusted party computes output: Let xi,..., x' be the inputs that were sent to the
trusted party. The trusted party computes f(z4, ... , X').

* Adversary learns output: The trusted party first sends the evaluation f(x, ..., x') to the
adversary. The adversary replies with either continue or abort.

" Honest parties learn output: If the message is abort, the trusted party sends -L to all
honest parties. If the adversary's message was continue, then the trusted party sends the
function evaluation f(x, ... , x') to all honest parties.5

" Auxiliary information queries on inputs: The adversary may send (adaptively chosen)
auxiliary information queries in the form of efficiently computable functions Lg (described as
a circuit). On receiving such a query, the trusted party computes Lj (X/,.. ., ') and returns
the output to the adversary. (We in fact, place further restriction on the communication
between the adversary and the trusted party w.r.t. the auxiliary information queries; we
discuss this in more detail below.)

" Outputs: Honest parties each output the message they obtained from the trusted party.
Malicious parties may output an arbitrary PPT function of their initial inputs, auxiliary
input, and the messages they obtained from the trusted party.

Real World. The real-world execution begins by an adversary A selecting any arbitrary subset
M C P of the parties to corrupt. On being corrupted, each party Pi E M hands over its input
to A. The parties P1, ... , P, now engage in an execution of a real n-party protocol H (without
any trusted third party). The adversary A sends all messages on behalf of the corrupted parties,
and may follow an arbitrary PPT strategy. In contrast, the honest parties follow the instructions
of H. Furthermore, at any point during the protocol execution, the adversary may make auxiliary
information queries of the form L and learn L(statep\M), where statep\M denotes the concatenation
of the protocol states states of each honest party Pi. We allow the adversary to choose the auxiliary
information queries adaptively based on all the information that A received up to that point
(including responses to previous such queries). Honest parties have the ability to toss fresh coins
at any point in the protocol; these coins are added to the state of that party at the time they are

5 We can also define a more general case, where f may output a different value fi(x', ... , x') to each party P. In
this setting, the adversary first learns the set of outputs {fi(X .X)}iEM corresponding to corrupted parties, and
then decides whether to abort or to allow the honest parties to receive their respective outputs. We do not dwell on
this detail for simplicity of exposition; however, our construction also handles this more general case.

71

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

generated. At the conclusion of the protocol execution, each honest party P generates its output
according to H. Malicious parties may output an arbitrary PPT function of the view of A.

Security Definition. Having defined the ideal and real world experiments, we now give our
formal definition of MPC secure against adaptive auxiliary information. Our definition crucially
relies on the notion of leakage-oblivious simulation as defined in [GJS11, BCH11]. We recall it
below.

Leakage- Oblivious Simulation. Loosely speaking, an ideal world adversary, i.e., a simulator S, is
said to be leakage-oblivious if the auxiliary information obtained by the simulator is used only
for the purposes of simulating answers to the auxiliary information queries of the real adversary.
More formally, we require that the simulator S has a special subroutine S for handling auxiliary
information queries. Whenever'S receives an auxiliary information query L from the real world
adversary, S is invoked to produce a "state translation circuit" T that takes as input the inputs of
the honest parties and produces their joint states. Once T is produced, the ideal functionality is
queried on the composed circuit L o T. When the auxiliary information is returned, it is forwarded
directly to the real adversary and S returns to its state prior to the event. Such a simulator is
referred to as a leakage-oblivious simulator.

We now define security w.r.t. the real and ideal world experiments as discussed above, except
that we consider leakage-oblivious simulators in the ideal world experiment. The output of the
ideal-world experiment consists of the inputs and outputs of all parties, and the answers of all the
auxiliary information queries. It is denoted by IDEALf (1, 7, z). The overall output of the real-
world experiment consists of the inputs and outputs of all parties at the conclusion of the protocol,
and all the auxiliary information learnt by the adversary (including the protocol transcript). It is
denoted by REAL,,(1k, 7, z). Below, we give our formal security definition.

Definition 3.3.1 (Multiparty Computation Secure Against Adaptive Auxiliary Information). A
protocol 1I evaluating a functionality f is said to be secure against adaptive auxiliary information if
for every ppt real adversary A, there exists a ppt leakage-oblivious simulator S such that for every

input vector , z E {0, 1}*, and M C P, it holds that,

IDEALS M(kN c REALM(lk, z kEN

Remark 3.3.2. Our security definition guarantees that if the auxiliary information queries of

the real adversary have short output, or "noisy" long outputs, or leave the honest parties' inputs

computationally unpredictable, then the same restrictions will also hold for the ideal-world auxiliary

information. (As a special case of the above, our definition satisfies the basic requirement that if

the real adversary learns e bits of auxiliary information, then the simulator can also learn at most

f bits of auxiliary information.)

3.3.1 Security Against Semi-Malicious Adversaries

As a stepping stone toward realizing our definition of MPC secure against adaptive auxiliary infor-

mation in the presence of malicious adversaries, we define the notion of a semi-malicious adversary,
whose power lies in between the standard notions of malicious and semi-honest adversaries.

72

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

Semi-malicious adversary. Intuitively, a semi-malicious adversary is similar to a "standard"

(real-world) semi-honest adversary, in that it follows the protocol specification. However, it differs
from semi-honest adversaries in that it may choose its input and its "random" coins for any protocol
step in an online fashion, adaptively, following any arbitrary PPT strategy. Once it has chosen
these values, however, it must follow the protocol as specified, given the chosen input, and using the
chosen coins in place of the random coins. Furthermore, in our setting, a semi-malicious adversary
is allowed to learn arbitrary auxiliary information on the (joint) secret states of the honest parties.

More formally, a semi-malicious adversary A is modeled as an interactive Turing machine (ITM)
which, in addition to the standard tapes, has a special auxiliary tape. At the start of the protocol,
A selects for each corrupted party Pk an input Xk (which may depend on the original inputs of
corrupted parties), and writes Xk to its special input auxiliary tape. Then in each round of the
protocol, whenever A produces a new protocol message m on behalf of some party Pk, it must also
append to its special auxiliary tape some randomness that explains its behavior. More specifically,
all of the protocol messages sent by the adversary on behalf of Pk up to that point, including the
new message m, must exactly match the honest protocol specification for Pk when executed with
input Xk and randomness rk written in the special auxiliary tape. We allow A to make auxiliary
information queries on the joint states of the honest parties in the same manner as discussed earlier.
We further assume that the adversary is rushing and hence may choose the randomness r in each
round adaptively, after seeing the protocol messages of the honest parties in that round (and all
prior rounds), as well as all the auxiliary information that it may have obtained so far. Lastly, the
adversary may choose to abort the execution on behalf of Pk in any step of the interaction.

Definition 3.3.3 (MPC Secure Against Adaptive Auxiliary Information in the Semi-Malicious
Model). We say that a protocol H evaluating a function f is secure against adaptive auxiliary
information in the semi-malicious model if it satisfies Definition 3.3.1 when we only quantify over
all semi-malicious adversaries A.

Remark. The definition of a semi-malicious adversary is reminiscent of the notion of a defensible
adversary, introduced by Haitner et. al. [HIK+11] within a different setting. One can think of a
semi-malicious adversary as a defensible adversary with the additional requirement that he must
generate each piece of his defense at the time it would be used during the protocol, instead of
altogether at the end of the protocol execution. The notion of a semi-malicious adversary was
also used in the work of Asharov et. al. [AJL+12]. However, in line with the focus of this work,
our semi-malicious adversary is also allowed to adaptively learn auxiliary information on the secret
states of honest parties.

3.4 Semi-Malicious Oblivious Transfer

In this section, we construct an oblivious transfer (OT) protocol that is secure against adaptive
auxiliary information for semi-malicious adversaries. This protocol is the technical heart of our
result.

We begin in Section 3.4.1 by giving some intuition behind our OT protocol construction. In
Section 3.4.2, we work to obtain one of the primary tools that will be used: a non-committing
encryption scheme with certain desired properties. In Section 3.4.3 we describe our randomness

73

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

generation procedure for our OT protocol. Then, in Section 3.4.4, we present our OT protocol
construction itself.

3.4.1 Overview

We first recall the basic construction of an honest-but-curious OT protocol.

The "standard" honest-but-curious OT protocol. This protocol uses as a building block
any semantic secure encryption scheme (Gen, Enc, Dec) with the property that the public keys can
be obliviously sampled without knowing a corresponding secret key. We denote this oblivious key
generation algorithm by OGen.

1. The receiver, who holds a bit b E {0,1}, samples a key pair (pkb,skb) +- Gen(1"), and
obliviously samples a public key pklb +- OGen(1k). It sends the pair (pko, pki) to the sender.

2. The sender, who holds two strings Mo, M 1 , sends to the receiver the corresponding ciphertexts
(co, cl), where co +- Enc(M; pko) and cl <- Enc(Mi; pki).

3. The receiver decrypts cb using the corresponding secret key skb, to retrieve Mb = Dec(cb; skb).
This protocol is known to be secure against a "standard" honest-but-curious adversary. How-

ever, for our purposes, we wish to construct an OT protocol that is secure against semi-malicious
adversaries, where the adversary is able to (a) learn adaptive auxiliary information from honest
parties, and (b) use bad randomness. Below, we first give a high-level intuition summarizing our
main ideas towards constructing such an OT protocol.

Towards OT secure against adaptive auxiliary information in semi-malicious model.
In an attempt to construct an OT protocol secure against adaptive auxiliary information, the first
idea that comes to mind is to use an NCE scheme, instead of a standard encryption scheme. It
was observed in recent works [BCH11, BCG+11] that non-committing encryption is resilient to
auxiliary information on both the secret key and the randomness used to encrypt. Indeed, if we use
an "augmented" NCE scheme (a notion similar to that used in [CLOS02], then the resulting OT
protocol is secure against an honest-but-curious adversary that may receive auxiliary information
from the honest party [BCH11].

Unfortunately, one can easily see that the above protocol (even when implemented with an
NCE scheme) is still not secure against a semi-malicious adversary, who in addition to learning
auxiliary information information can also choose his randomness maliciously. The reason is that a
semi-malicious receiver can use bad randomness r* to obliviously generate pklb = ONCGen(lk; r*)
such that he can decrypt ciphertexts encrypted with this specific public key. Furthermore, a semi-
malicious sender may be able to create "malformed" ciphertexts that cause the honest receiver to
abort depending on his secret input.

We fix these problems via two key new insights. First, we choose an underlying non-committing
encryption scheme that guarantees security as long as the adversary's randomness does not fall
within a very small set. We achieve this by using an underlying non-committing encryption scheme
with strong correctness guarantees (such that a very small subset of encryption randomness yields
malformed ciphertexts), and with the additional property that public keys that are generated using
the oblivious key generation algorithm are almost always lossy (except if they belong to some
exponentially small set, such as the set consisting of DDH tuples). Now, unless the adversary's

74

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

randomness falls within these one of these two very small sets, all his encryptions will decrypt
correctly, and the encryption of non-requested messages under his obliviously sampled public keys
will information theoretically hide the messages.

Second, we devise a method for generating private randomness that prevents the adversary
from choosing randomness within these small bad sets, while still providing the simulator full
flexibility to "force" randomness of his choice for honest parties. This is achieved via use of lossy
trapdoor functions (LTDF). Namely, each party Pi is assigned an LTDF seed oi in the CRS; each
time the party must sample randomness in the protocol, he first chooses a random value r in the
LTDF domain, and then uses the LTDF evaluation F(o-;,r) as his protocol randomness. Loosely
speaking, in the simulation honest parties will be assigned seeds for injective functions, whereas
corrupted parties will be assigned (computationally indistinguishable) seeds for lossy functions,
thus restricting their attainable output randomness values to a very small set that does not "hit"
the small set of bad randomness values. We now give more details.

3.4.2 Augmented NCE with Lossy Encryptions

Recall that our goal is to obtain an augmented NCE scheme with the property that public keys
generated using the oblivious key generation algorithm are almost always lossy. The specific NCE
scheme we use is a slight variant of the one due to Choi et. al. [CDMWO9], which requires an
underlying encryption scheme that has oblivious sampling and inverting algorithms (i.e., that is
simulatable, as in Definition 3.2.2). For our construction, we will use a simulatable encryption
scheme that is also lossy. We first describe this underlying lossy encryption scheme, and then show
how it fits in to yield an NCE scheme with the desired properties.

Our Lossy Simulatable Encryption scheme E = (Gen, Enc, Dec, OGen, OEnc, IGen, IEnc).

* Key generation Gen. Let G be a group of prime order p. On input security parameter 1 k,

output a pair (pk, sk) where pk = (gi, g2, gi, g') and sk = u, for u <- Z and 91, 92 +- G.

For simplicity of notation, we will sometimes assume the decryption key sk contains all ran-
domness used during key generation. Namely, sk = {u, 91, 92}-

" Encryption algorithm Enc. On input a message m e G and a public key (g1,92, g3, 94),
output (2 , 9 -m), where #1,,32 +- Zp.

" Decryption algorithm Dec. On input a ciphertext (ci, c2) and a secret key sk = u, output
m = f2.

* Oblivious sampling algorithms OGen and OEnc. Both these algorithms take as input a
security parameter 1 k and obliviously generate a public key or a ciphertext, respectively. The
algorithm OGen(1k) generates a public key by simply choosing at random 91, 92, 93, 94 +- G,
and outputting pk = (91,..., g4). The algorithm OEnc(1k) generates a ciphertext by simply
choosing at random c1 , c2 - G, and outputting c = (ci, c2). Note that assuming hardness
of DDH in G, the resulting public key and ciphertext are computationally indistinguishable
from ones generated according to Gen and Enc.

" Inverting algorithms IGen and IEnc. The algorithm lGen takes as input a public key pk
computed by Gen and outputs randomness r such that OGen(r) = pk. Note that since the
algorithm OGen simply outputs the input randomness r = (91, 92,93,94) as the public key

75

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

pk = (gi,g2,g3,g4), the algorithm IGen is trivial. Further, algorithm IEnc takes as input a

ciphertext c and outputs randomness r such that OEnc(r) = c. Again, note that since the
algorithm OEnc simply outputs the input randomness r = (ci, c2) as the obliviously sampled
ciphertext c = (ci, c2), the algorithm I Enc is trivial.

Lemma 3.4.1. Assuming the hardness of DDH in G, the scheme 8 described above is a simulatable
encryption scheme, as per Definition 3.2.2.

Proof. We first note that S is a semantically secure encryption scheme. The security proof follows in
the same manner as the El-Gamal encryption scheme, and is therefore omitted. The simulatability
property holds trivially for E due to the specific nature of the oblivious sampling algorithms (see
discussion above). 5

Next, we claim that when a public key pk in 8 is a non-DDH tuple, then any ciphertexts
computed using pk are "lossy."

Claim 3.4.2. The encryption scheme 8 has the property that if a public key pk is not a DDH
tuple then the encryption scheme is lossy: in particular, for any message m E G, the distribution
Encpk(m) is statistically close to uniform.

The proof follows from Lemma 4 of [PVW08], and is omitted.

Remark 3.4.3. Finally, we remark that the scheme 8 has perfect completeness for keys generated
via the standard algorithm Gen. That is, for any randomness rG, any message m E G, and any
randomness rE, it holds that Dec~k(Encpk(m;rE)) = m, where (pk,sk) = Gen(lk;rG)-

The Augmented NCE scheme ENCE = (NCGen, NCEnc, NCDec, NCSim, ONCGen, NCSim'). We
now describe our augmented NCE scheme, which is essentially the NCE scheme of Choi et. al. [CDMW09],
instantiated with the lossy encryption scheme 8 described above. Below, we first recall the basic
"honest party" algorithms (NCGen, NCEnc, NCDec) of the NCE scheme of [CDMW09]. Here, K is
a parameter of the scheme. 6

* NCGen(lk): Generate 4K public keys pki,..., pk4K for the underlying encryption scheme,
where K of them are generated according to the key generation algorithm Gen, and 3K of
them are generated according to the oblivious sampling algorithm OGen. More specifically,
choose K random coordinates i 1 ,. . . , iK +- [4K]; denote the set of these coordinates by I.
For every i E I, sample (pk,ski) +- Gen(1k), and for every i E [4K] \ I, obliviously sample
pki +- OGen(lk). In addition, choose two random messages M0 , M1 <- G from the message
space of the underlying encryption scheme. Output e = (pki,.. ., pk 4K , M0 , M 1) as the public
key, and d = (I, {ski}iE) as the secret key.

" N CEnce(b): Compute 4K ciphertexts ci,.. ., c4K (one for each of the pki,... , pk4 K), of which
K are encryptions of Mb and the remaining ones are obliviously sampled. More specifically,
choose a random set of coordinates J C [4K] of size K. For every j E [J compute cj +-
Encpgk (Mb), and for every j E [4K] \ [J] compute cj +- OEnc(1K). Output c = (c1, -- -, c4K)-

6 In [CDMWO9], K is simply equal to k. For our purposes, K will be set to K = 3(k + L), where L is the leakage
bound.

76

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

SN CDecd(cl,. .-. , C4 K): Decrypt the K ciphertexts for which it knows the secret key. Namely,
decrypt {c}EI. If there exists a ciphertext that decrypts to Mb, and no another ciphertext
decrypts to M1_b then output Mb. Otherwise, output -L.

In the following subsection, we describe a simulator algorithm NCSim for the above described
NCE scheme, which is a slight modification of that in [CDMW09].

Simulator NCSim. Choose M0 , M1 +- G at random. Choose random sets of coordinates I, Jo C
[4K] each of size K, which will correspond to an encryption of 0. From the remaining coordinates,
choose additional random sets I1, Ji C [4K] \ (Jo U Jo) each of size K, with the additional constraint
that I1 n JiI = |Io n Jo1. Perform the following steps:

1. Generating keys: For i = 1, ..., 4K, let

Gen(1k ;r) if i E Iou11

OGen(1k; f?) otherwise.

2. Generating ciphertext: For i = 1, ... ,4K, let

Encpki (Mo; r) if i E Jo

ci = Encpk (Ml; r) if iE J

OEncpki (i) otherwise.

3. Simulating an opening to b: Open the values in Ib (correspondingly, Jb) honestly, and use the
inverting algorithms to claim the values generated for 11-b (corresp, Ji-b) were obliviously
generated. Namely, set

bG={Ib, UG,..UG },
b b,1 b,4K

= {J I, 4}, where

r ifiE b if i E Jb

U = IGen(pki) if i E 11-b = IEnc(ci) if i E J1-b
otherwise ia otherwise.

Set e = (Mo, M1 , (pki, ... , pk 4 K)), c = (ci, ... , c4K). Also output a, o9, 1o-r, 09. This completes
the description of NCSim.

Properties of Augmented NCE Scheme. We now prove two properties of the above aug-
mented NCE scheme: first, correctness of decryption holds for all but a tiny fraction of encryption
randomness; and second, the NCE scheme inherits certain lossy properties of the underlying en-
cryption scheme.

77

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Claim 3.4.4 (Correctness of NCE). Let G be the group in which the underlying encryption scheme
E is implemented, and let (pk, sk) be any key pair in the output of NCGen. Then for any b E {0, 1},

(K) K
Pr[NCDeck(NCEnck(b;rE)) b] + -rE p (b;r'(4K) AG

Proof. Let sk = (I, {ski}iEI), and consider any ciphertext c = (c1 , ... , c4K) in the image of N CEn cpk(b).

Recall that c is decrypted using sk by decrypting the underlying ciphertexts ci for which i E I.
There are two events in which c fails to decrypt correctly to b: (1) none of the ci with i E I satisfies
Deck 1 (ci) = Mb, or (2) there exists ci with i E I such that Decksk(ci) = Mlb. We bound the

probability of each of these two events occurring.
By the perfect correctness of the underlying scheme E, any of the K ciphertexts Ci that were

generated using the standard encryption algorithm Enc (and for which i E I) will necessarily decrypt
to Mb. Thus, the only way that event (1) can occur is if the subsets I and J (corresponding to sk
and c) are disjoint. Since J is a random subset of [4K] of size K, the probability that the chosen
J does not intersect the fixed I is () /K(K

Consider event (2). Again by the perfect correctness of the underlying encryption scheme, the
encryption of M1_b must come from one of the oblivious ciphertext generations. However, this
requires that the randomness used to obliviously generate some ci (with i E I) lies in the set

b
Ai = (a, b) : M = 1-b CGxG,

where ski is the corresponding ith decryption key. For any one value of i E I, the probability of

landing in Ai when randomly sampling an element from G x G is -. Thus, taking a union bound

over the K elements i E I, the probability of event (2) taking place is KIC'.
The claim follows by a union bound over the bad events (1) and (2).

We now show that public keys sampled via ONCGen are frequently lossy. In particular, we
show with high probability, the output of the alternative simulator is statistically close to honestly

generated values.

Lemma 3.4.5. The following holds with probability 1 - 1 over obliviously sampled public keysIGI
pk +- ONCGen(1k): for each b E {0, 1}, the distribution

{(c, r) : r +- {0, 1}*, c = NCEncpk(b; r)}

is statistically indistinguishable from

{(c,rb) : (c,ro,ri) +- NCSim'(pk)}.

Proof. Recall that ONCGen simply runs the oblivious key generation algorithm OGen (of the un-

derlying scheme E) 4K times to generate pk = (pki,..., pk4K). By Claim 3.4.2, for each i E [4K],
pki is lossy unless pki is a DDH tuple, which occurs with probability T over pki +- OGen(1k)

Taking a union bound, with probability at least 1 - 4Kg over pk +- ONCGen(lk), all 4K of the

values pki will be lossy.

78

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

If all 4K of the underlying public keys are lossy, then for each component i, and any message
m E G (in particular, for m = M0 , M1), the distribution of encryptions of m is statistically close
to uniform:

{c; +- Encpk(m)} , {cj +- G x G}.

Now, consider a particular value of b E {0, 1}. The only difference between an honestly generated
NCE ciphertext c = (ci, ... , C4K) of b and a ciphertext c' = (c'lI ... , c'K) generated by the alterna-
tive simulator algorithm NCSim' is that c' has K components c' that were actually generated as
encryptions of Mlb, and then "explained" as being obliviously sampled (i.e., as if the resulting
ciphertext c' was the randomness used in OEnc). But, when all the keys pk; are lossy, the distri-
bution {c' +- Encpk (Mb1-)} of these encryptions of Ml-b is statistically close to uniform. Thus,

since each component is generated independently, the entire ciphertext c' is statistically close to
an honestly generated ciphertext c of b, and the entire corresponding "explained" randomness rb is
statistically close to uniform, as desired. [

We now describe the additional algorithms - oblivious key generator ONCGen, inverting algo-
rithms, and alternative simulator NCSim' - that are necessary for an augmented NCE scheme (see
Section 3.2.1).

* Oblivious key generator ONCGen: Run the oblivious key generator for the underlying
encryption scheme OGen 4K times to generate pki, . . . , p k4. In addition, choose two random
messages M 0 , Mi +- G. Output e = (pk, .. ., pk 4K, Mo, M1).

" Invertible samplability: Note that NCGen simply outputs the input randomness as the
secret key, and ONCGen simply outputs the input randomness as the (obliviously sampled)
public key. (Indeed, NCGen and ONCGen inherit these properties from the corresponding
algorithms Gen, OGen of the underlying lossy encryption scheme). Thus, NCGen and ONCGen
have trivial inverting algorithms.

* Alternative simulator NCSim': This simulator algorithm is essentially the same as NCSim,
except that it does not simulate the key generation process.

We argue that these algorithms together yield an augmented NCE scheme with additional lossy
properties.

Lemma 3.4.6. The scheme 8 NCE described above is an augmented NCE scheme.

Proof. Recall that the underlying encryption scheme . is simulatable by Lemma 3.4.1. It thus
follows from Theorem 3.2.3 that ENCE is an augmented NCE scheme (note that this is precisely the
construction discussed in the proof sketch for Theorem 3.2.3).

3.4.3 Randomness Generation Procedure

In this section, we present and analyze a non-interactive procedure for generating private random-
ness that is used within the oblivious transfer protocol from Section 3.4 in order to achieve security
in the semi-malicious model, even when there is no bound on the amount of information revealed
to the adversary. Intuitively, we would like the procedure to have the following two properties:

79

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Semi-malicious P cannot force "bad" output: If party P is semi-malicious, then he cannot
force the output randomness to lie inside a "special" exponentially small subset of the total
space {0, 1 }*.

Simulator can retroactively force any output for honest P: On the other hand, if party
Pj is honest, then given a trapdoor to the CRS, the simulator can retroactively "explain" any
desired outcome within the "special" subset of {0, 1} on behalf of P.

Recall that private randomness is required in the following steps of the OT protocol:

Receiver: The receiver samples two public keys for the NCE scheme: one using the standard
GenNCE algorithm, and one sampled obliviously.

Sender: The sender generates an encryption of each of his two message bits, with respect to the
public keys sent by the receiver.

Depending on whether the receiver and/or the sender is corrupted, we must ensure the following
properties hold in order to guarantee security of the OT.

* Honest Receiver, Honest Sender. In this case, both parties sample randomness honestly,
and thus security will automatically follow from the semi-honest security of the OT protocol.

" Honest Receiver, Corrupted Sender. We must guarantee that a corrupted sender cannot
generate malformed ciphertexts, which may cause the honest receiver to abort depending on
his secret input bit. Recall that an NCE ciphertext encrypting message m E {0, 1} is generated
by choosing a set J c [4k] of size k, generating k ciphertexts of the special message Mm in
the underlying encryption scheme (one for each position in J), and obliviously sampling
3k additional ciphertexts in the underlying scheme. Such an NCE ciphertext (ci,.. . , c4)
decrypts correctly with respect to secret key sk = (I, {u}iEI) as long as the two following
properties hold:

- I n J $f 0. (So that at least one of the ci encrypting Mm is contained within the set I
of positions whose secret keys are known).

- For every obliviously generated ciphertext ci = (xi, yi), i V J, we have lr 74 Mirn.

That is, the obliviously generated ciphertexts did not "accidentally" encrypt the second
special message Mi -m corresponding to an overall encryption of (1 - m).

" Corrupted Receiver, Honest Sender. To ensure that the corrupted receiver does not
learn information about an honest sender's second message, it suffices to guarantee that all
the underlying public keys pki, ..., pk4k that the receiver obliviously samples (when obliviously
sampling an NCE public key) are lossy. By Lemma 3.4.5, this is the case as long as each of
the obliviously sampled pki = (91, 92, 93, g4) is not a DDH tuple.

" Corrupted Receiver, Corrupted Sender. Here, it does not matter if the parties generate
a malformed ciphertext (decrypting to I), since this will cause an abort in the real-world
execution, and can be identified and simulated appropriately. However, we must guarantee

80

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

that the parties cannot choose randomness that yields a wrong decryption: i.e., they cannot
choose randomness for sampling an NCE (pk, sk) key pair and for encrypting the correct
message m that decrypts under sk to the wrong message 1 - m. Indeed, in this case the
simulator will abort, but the honest parties in the real world will not.

To guarantee this does not happen, it suffices to show that the adversary cannot choose any
secret key ui in the underlying encryption scheme together with an obliviously generated
ciphertext (xi, yi) such that -4- = M1-m. (Recall that by the perfect completeness of the un-

derlying encryption scheme, all ciphertexts that were not obliviously sampled will necessarily
decrypt to the correct value Mm).

Combining all of these cases, it suffices to provide ways to generate randomness for the following:

1. Obliviously sampling an underlying public key (gi, g2, 93, g4) E G4 (performed by the receiver).
A corrupted receiver must be restricted to generate only non-DDH tuples (yielding lossy
public keys), whereas the simulator should be able to choose DDH tuples on behalf of honest
parties (allowing him to "obliviously sample" public keys for which he can decrypt).

2. Sampling a random set J C [4k] of size k (used as part of the encryption randomness by the
sender). A corrupted sender must be restricted so that with overwhelming probability over
(honestly) chosen I C [4k] with Il = k, it holds that In J 0 @, even if he knows I completely.
However, on behalf of an honest sender, the simulator should be able to retroactively "explain"
arbitrary J values (which will be required in order to generate simulated ciphertexts that open
to both 0 and 1).

3. Sampling an underlying secret key u E Z,, and obliviously sampling an underlying ciphertext

(x, y) E G2 , so that -- Mi-m, where the message M1-m is randomly chosen and fixed as
part of the CRS. (This case is relevant when both sender and receiver are controlled by the
adversary). However, the simulator should be able to retroactively explain arbitrary values
for u and (x, y) (and, in particular, will need to choose values for which Y = M1n).

All remaining randomness used in the OT protocol can be selected arbitrarily (for example, the
selection of I C [4k] in the generation of the NCE public keys). We now construct and analyze
randomness generation procedures for each of the three above applications.

Forcing Obliviously Sampled Public Keys to be Lossy

We wish to ensure that semi-malicious parties cannot generate randomness that falls within the set
of DDH tuples, while still ensuring that in the simulation, the simulator can retroactively explain
any arbitrary DDH tuple output (with known discrete logs) on behalf of honest parties. This can

be achieved as follows.
We append an additional 4-tuple of random elements j = (91, 92, 93, g4) E G4 to the CRS of

each party. Each time a party P must generate randomness for a Case 1 application, he does so

by rerandomizing his tuple -y: namely, he executes the following procedure DDH-Rerand.

Note that if the original tuple (91,92, 93, g4) is a DDH tuple, then the output will be a random
DDH tuple; however, if the original tuple is not a DDH tuple, then for no value of oa,3, y $ 0 will

81

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

DDH-Rerand(gi, 92,93, 94):

1. Sample random exponents a,3, y +- Z* (where |G| = p prime).

2. Output the tuple (gy, g0, g34, g3-) as the desired randomness.

the resulting tuple become DDH. We will take advantage of this during the simulation, by replacing
the CRS of each honest party with a randomly selected DDH tuple, and generating the CRS of
each corrupted party to be a non-DDH tuple. We now formalize this intuition.

Simulator can retroactively force any DDH output for honest Pj. Define GDDH {g, ga b ab)
g E G \ {1}, a, b 74 0} In the simulation, the CRS of honest parties will be generated as a random
DDH tuple (g, ga, b ab) E G4, and the simulator will know the corresponding discrete logs
a, b, ab. The following claim tells us that the simulator can retroactively "explain" any desired
DDH output tuple as being generated via the rerandomization procedure from this original tuple

(g, ga 19 bab), as long as the discrete logs of the target tuple with respect to g are known. Note that
this procedure will be used within the MPC construction for obliviously generating public keys for
the non-committing encryption scheme. For the case of honest parties, the simulator will sample a
standard public key (whose discrete logs are known), and will force this public key tuple to be his
alleged rerandomized output.

Claim 3.4.7. Let (g, gab ab) E GDDH be an arbitrary DDH tuple. Then for any target tuple

(g',g',gZgW) E GDDH, there exists a,#,y E Z* such that gx = (g)", gy = (ga)fl, gz (b)a,

and gW = (gab,3 Y.

Proof. Take a = x, 3 = (a-ly) mod p, and -y = (b-'x-'z) mod p. First, note that the inverses
a~1, b-1 I-1 each exist modulo p since a, b, x 74 0 mod p, and the given expressions for a, #, y can
be computed efficiently, since we are given all exponent information a, b, x, y, z, w. Further, every
DDH tuple contained in G4 can be expressed in the form (gx, gY, gz, gw), since g 74 1 is necessarily
a generator of G. We see that the first three required conditions hold by construction. Finally, for
these values of a,3, y, it also holds that (gb),k7 = (g)x. 1 x'1z mod p _ g z, as desired. El

Semi-malicious P cannot force "bad" (DDH) output. In the simulation, the CRS of each corrupted
party will be sampled as a random non-DDH tuple. To ensure that corrupted parties cannot learn
information about messages encrypted under public keys they obliviously sample, we guarantee their
rerandomization procedure cannot yield a DDH tuple output as an obliviously sampled public key,
even if the rerandomization values a, #, -y are chosen maliciously:

Claim 3.4.8. Let (g1, 92,93,94) E G' be an arbitrary non-DDH tuple. Then for every possible

choice of a,3, y E Z*, the tuple (g , gb) is also not a DDH tuple.

Proof. Let g be an arbitrary generator of G, and define a, b, c, d to be such that gi = ga, 92

b, 93 = 9C, g4 = gd. Since we began with a non-DDH tuple, it holds that ad f bc. Thus, for
any collection of invertible elements a,3,y E Z*, it follows that ad - a3-y 74 bc - a3y: that is,

S 3 = (is not0a-D H tuple.
(gC,29 , 94 - (gagb3 9 c1 9073) isn t DD tuple.

82

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

Forcing Subset J C [4k] to Intersect an Honestly Chosen I C [4k]

Recall that a corrupted sender must be prevented from generating malformed ciphertexts (which
may cause an honest receiver to abort conditionally on his secret selector bit). In particular, when
generating a ciphertext, the corrupted sender must not be able to choose the subset J C [4k] to
be disjoint from the randomly chosen subset I c [4k] given by the honest receiver's secret key,
otherwise the receiver will only be able to decrypt obliviously sampled ciphertexts, which decrypt
to garbage (and neither special message Mm or M1-m).

To achieve this guarantee, our second randomness generation procedure makes crucial use of a
lossy trapdoor function (LTDF) family (GLoss, Gij, S, F, F- 1) with special properties. This special
LTDF family, referred to as a bijective, (D, a) -admissible LTDF family (with potentially seed-
dependent domains) has the property that injective branches are each bijective, the output space
has size approximately D, and the lossy branches are very lossy (to avoid a "bad" set of fractional
size a). We refer the reader to Section 3.2.4 and Definition 3.2.16 for a formal discussion of the
required conditions.

We now define the second randomness generation procedure. Let (GLoss, Ginj, S, F, F- 1) be a

bijective, (D, a)-admissible LTDF family for D = (i) and a = (i)/(i), as in Theorem 3.2.17(1).
Suppose each party P is associated with a corresponding LTDF seed o- that is known to all parties
(i.e., contained in the CRS). At each point when P must generate randomness for sampling the
set J c [4k], he executes the procedure LTDF-Sample-J given below.

LTDF-Sam ple-J(o-):

1. Sample a random value r +- S(o-) from the domain De of the LTDF function corresponding
to seed o-.

2. Output the evaluation F(u, r) as the desired randomness.

Loosely speaking, the simulation works as follows. For each honest party, the simulator will
sample an injective seed o-, together with an inversion trapdoor. This will allow the simulator to
efficiently explain any desired randomness output value. In contrast, each corrupted party will be
given a lossy seed o, whose corresponding function image will be sufficiently small that with high
probability it will not hit the small "special" random set.

We now elaborate on these two arguments.

Simulator can retroactively force any output for honest Pj. By the definition of a bijective ad-
missible LTDF family (Definition 3.2.16, Properties 1 & 2), we know that every injective function
F(o, -) for o- +- Ginj(1k) is bijective onto the corresponding output space, and the size of this output
space is at least (4). Thus, given a trapdoor Tj for an injective branch F(oj, .), the simulator can

"force" any desired output r E [(4)], by simply inverting r' = F- 1 (o-, Tr, r), and taking r' as
the randomness sampled to generate r. Note that since F(oj, -) is a bijection, a random choice of
output r corresponds to a random choice of input r', and will thus yield the correct distribution.

83

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Semi-malicious P cannot force "bad" output. We now prove that with overwhelming probability
over the honest receiver's choice of I c [4k], a semi-malicious sender P in the OT protocol will be
unable to choose a set J C [4k] as the output of LTDF-Sample-J(oj) for which InJ = 0, since such
a J simply does not exist within the range of his (lossy) LTDF function F(oj, .).

Claim 3.4.9 (Choosing the set J). Let (GLoss, G , F, F- 1) be a bijective, (D, a)-admissible
LTDF family for D = (4k) and a = (k)/(4k), and let a +- GLos(1k) be an arbitrary lossy LTDF
seed. Associate the first (4) elements in the output space of the corresponding function F(o,-) with
the collection of sets A c [4k] of size k (and denote this collection as Ak). Then there exists a
negligible function p(k) for which

Pr [3J E Ak : (In J= 0) A (J= F(oa, x) for some x E D,)] < p(k).
h+-Ak

Proof. Consider any fixed value A E Ak that lies in the image of the lossy branch, F(o-, D,).
For this A, the probability that a randomly selected set I +- Ak does not intersect A is exactly

(k)/(k). Thus, by a union bound, the probability that there exists any A E F(o, D,) for which

A n I = 0 is bounded by IF(o-, D,)| - (3k)/("4). Finally, by the definition of a bijective admissible
LTDF family (Definition 3.2.16, Property 3), it holds that this probability is negligible in k. l

Preventing Ciphertexts that Decrypt to Wrong Messages

As the final case, we must ensure that a corrupted sender-receiver pair cannot coordinate to pro-
duce a (secret key, encryption of m) pair that decrypts to the wrong message 1 - m. By the
perfect correctness of the underlying encryption scheme, it suffices to show that none of the under-
lying obliviously sampled ciphertexts "accidentally" decrypt to the wrong special message Mi-m.
Namely, the adversary will choose a secret key u E Z and will obliviously sample a ciphertext

(x, y) E G2 , and we must guarantee that, with high probability over the randomly chosen message
M1-m fixed in the CRS, the adversary will not be able to choose his values u, (x, y) such that

3 = Mi-m.
To achieve this, the secret key u E Z, and each component of the the obliviously generated ci-

phertext (x, y) E G2 will be sampled using the same LTDF-based randomness generation procedure
as in the previous subsection, but with a different choice of parameters (D, a). Here, the target
output space size D will be set to p = |GI = 2k. We will choose the a parameter so that the total
collection of possible values of Y, over all possible combinations of u, x, y chosen from the range of
the the sender and receiver's (lossy) LTDF functions, form a negligible fraction of the entire space
of possible values (i.e., the full message space of the underlying encryption scheme). Thus, when
the "special" messages M0 , M are chosen randomly as part of the initial CRS, the probability that
they will fall into this small set of "bad" attainable messages is negligible. As proved below (in
Claim 3.4.10), this holds when a is set to 2

We now define the third randomness generation procedure. Let (GLoss, Gij, S, F, F- 1) be a
bijective, (D, a)-admissible LTDF family for D = 2k and a = 2 -k/3, as given in Theorem 3.2.17(2).
Suppose each party P is associated with a LTDF seed oj contained in the CRS and known to
all parties. Party P executes the following procedure LTDF-Sample-G each time he must generate

84

3.4. SEMI-MALICIOUS OBLIVIOUS TRANSFER

LTDF-Sample-G(o1):

1. Sample a random value r +- S(oj) from the domain D., of the LTDF function corresponding
to seed aj.

2. Output the evaluation F(oj, r) as the desired randomness.

randomness for (1) sampling a secret key u (when acting as receiver in the OT), or (2) selecting
each of the two components in an obliviously sampled ciphertext (x, y).

The simulation approach will be identical to that in the previous subsection (for choosing the
set J). For each honest party, the simulator will sample an injective seed aj, together with an
inversion trapdoor. For each corrupted party, the CRS will be a lossy seed a, whose corresponding
function image will be sufficiently small that it will not hit the small "special" random subset of
possible randomness values. For completeness, we again elaborate on these two points.

Simulator can retroactively force any output for honest P. By the definition of a bijective ad-
missible LTDF family (Definition 3.2.16, Properties 1 & 2), every injective function F(o-,.) for
o +- Ginj (1k) is bijective onto the corresponding output space, and the size of this output space
is at least IGI = 2k*. Thus, given a trapdoor -ry for an injective branch F(oy, .), the simulator can
"force" any desired output r E [2 k], by simply inverting r' = F-1(ojTj,r), and taking r' as the

randomness sampled to generate r. Note that since F(u,-) is a bijection, a random choice of
output r corresponds to a random choice of input r', yielding the correct distribution.

Semi-malicious Pj cannot force "bad" output. We now prove that with overwhelming probability
over the choice of each "special" message Mo and M1 in the CRS, a corrupted sender-receiver pair
cannot generate a secret key u E Z, and obliviously sampled ciphertext (x, y) E G x G for which

XU = Mo (or M1), simply because such a triple u, x, y does not exist within the ranges of their

(lossy) LTDF functions F(aR, -) (for u) and F(as, -) (for x, y).

Claim 3.4.10 (Preventing incorrect decryptions). Let (GLoss, G1ij, S, F, F-1) be a bijective, (D, a)-
admissible LTDF family for D = 2 k and a = 2 -k/3, and let aR, us +- GLo,(1k) be arbitrary lossy
seeds. Then there exists a negligible function p(k) for which

b
Pr 3 u E F(o-R, D), I a, b E F(os, Des) : -- M= M < p(k).

M4-G I au

Proof. For any fixed lossy seeds UR, as, the fraction of values in G that are attainable via L is

{G : u E F(RDR), a, b E F(-s, Dos) F F(UR, D,,)| -F(us, Ds)|2.

But, by the (2 k, 2-k/3)-admissibility of the LTDF family (see Definition 3.2.16, Property 3), we know
that 2-k/ 3 |F(-, D,)I < p(k) for some negligible function k, and for every lossy seed o- +- GLoss(1k).

85

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Therefore, it holds that

k-|IF (O', DOR)|I - |F(o-s, Dos)|2' < (p(k))3,

which is also negligible in k. Therefore, for a randomly chosen M +-- G, the probability that M
will fall in the set of attainable values -is negligible, as desired. 5

Combining the Pieces

We now explicitly define the procedures for generating randomness for each relevant application in
the OT protocol. These are given in Figure 3.1.

Rand-KeyGen(U(2), (gi, 92, 93, 94)): Sample I +- Ak. For each i e I, sample randomness to be used
for Gen, by executing ui +- LTDF-Sample-G(o.(2)). For each j E [4k] \I, sample randomness to
be used for obliviously sampling a public key, by executing rj +- DDH-Rerand(gi, g2, 93, 94)-
Output (I, {Ui}iEI,{rj}jE[4k]\I).

Rand-OblivKeyGen(gi, g2,g3, g4): For each i E [4k], sample randomness to be used for obliviously
sampling a public key, by executing ri +- DDH-Rerand(gi, 92,93,94).
Output {ri}iE[4k1.

Rand-Enc(o-(1), u(2)): Sample randomness for choosing J E Ak, by executing J <-

LTDF-Sample-J(o-(1)). For each j E J, sample encryption randomness randy +- {0, 1}*. For
each i V J, sample randomness for obliviously sampling a ciphertext, by running two execu-
tions xi, yi +- LTD F-Sam ple-G(o(2)).

Output (J, {randj}jEJ, {(Xi, yi)}iE[4k]\J).

Figure 3.1: The procedures for generating randomness for key generation, oblivious key genera-
tion, and encryption, to be used in the OT protocol.

Combining the earlier claims, the following lemmas hold:

Lemma 3.4.11 (Corrupt sender, honest receiver). Let o(1) and o.(2) be arbitrary lossy LTDF
seeds. Then with overwhelming probability over M0 , M1 +- G and an honest execution of rndG +-

Rand-KeyGen, it holds for every possible output rndE of Rand-Enc(o-(1), (2)) (potentially using mali-
cious randomness) that Decpk(c) = m, where (pk, sk) = NCGen(1k; rndG) and c = NCEncpk(m; rndE) -

Proof. Follows from Claims 3.4.9 and 3.4.10. El

Lemma 3.4.12 (Honest sender, corrupt receiver). Let - = (91, 92, g3, g4) be a non-DDH tuple.

Then any obliviously sampled public key pk = ONCGen(rando) for which rndo is generated via

rndo +- Rand-OblivKeyGen(g) is necessarily lossy.

Proof. Follows from Claims 3.4.7 and 3.4.4.

86

0

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

Lemma 3.4.13 (Corrupt sender and receiver). Let o(1) and o() be arbitrary lossy LTDF seeds.
Then with overwhelming probability over M0 , M1 +- G, it holds for every possible pair of outputs
(pk, sk) = Gen(1k; rndG) and c = NCEncpk(m; rndE) for which rndG +- Rand-KeyGen((2), g) and
rndE +- Rand-Enc(-(1),U(2)), that DecSk(c) E {mI}

Proof. Follows from Claim 3.4.10.

3.4.4 Our OT Protocol

In what follows, we use the augmented NCE scheme from subection 3.4.2, together with the ran-
domness generation procedures from the previous subsection to construct a 1-out-of-4 OT protocol
that is secure against adaptive auxiliary information in the semi-malicious setting. This OT pro-
tocol will play a major role in achieving MPC that is secure in the same model, constructed in
Section 3.5.

Our 1-out-of-4 OT protocol for semi-malicious parties.

CRS: Uniformly random message M 0 , M 1 +- G. For each party P: (injective) LTDF seeds o(1 (2)

and (non-DDH) tuple (g = (g, g gg).

1. The receiver Pi, on input b E [4], does the following:

1. For b E [4], sample a standard NCE key pair (eb, db) via Rand-KeyGen(o ,pg). For each
b' e [4] \ {b}, obliviously sample an NCE public key ey via Rand-OblivKeyGen(g-).

2. The receiver sends (ei, ... , e4) to the sender.

3. The sender P, on input M1 ,..., m4, where each mi e G, and upon receiving the message
(e, ... , e4) from the receiver, does the following:

1. For each b' E [4], encrypt the message my under public key ebi. This is done by executing

cW +- Rand-Enc(my, ebl, o 1) J2))
2. Send (ci,...,c4).

3. The receiver decrypts Cb using the secret key db

We do not prove security of the above OT protocol here. Instead, the security properties of
the above OT protocol will be proven directly (as necessary) in the security proof of our MPC
protocol.

3.5 Our MPC Protocol in the Semi-Malicious Model

In this section, we construct an MPC protocol II that is secure against adaptive auxiliary informa-
tion the semi-malicious model (as in Definition 3.3.3).

Let P1, . . . , P, be n parties that wish to securely compute a function f : {0, 1}" -, {0, 1}. We

assume for simplicity of notation that each party Pi takes as input a single bit xi E {0, 1}, and the
function f outputs a single bit f(x1,... , xn). We assume for concreteness that party P receives
the output. All our results (and proofs) extend readily to the case where the inputs and/or outputs
are strings, and where each party Pi may receive a different output fi(X1 , ... , Xn).

87

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Theorem 3.5.1. For every efficiently computable function f, there exists a protocol H in the CRS
model for computing f, that is secure against adaptive auxiliary information (as per Definition
3.3.3).

The rest of this section is devoted to the proof of Theorem 3.5.1.

We start by presenting the protocol H in Section 3.5.1. Then, we prove that H is secure. Namely,
we fix any PPT adversary A that corrupts a set of parties M C {Pi,...,P } and may request
adaptive auxiliary information on the secret states of honest parties. In Section 3.5.2, we construct
a simulator S that corrupts the same set of parties, and simulates the real world execution of A.
Finally, in Section 3.5.3 we prove that, indeed, the real world is indistinguishable from the simulated
(ideal) world.

3.5.1 Protocol for Semi-Malicious Adversaries

Our protocol H is essentially the honest-but-curious GMW protocol, instantiated with the semi-
malicious OT protocol from Section 3.4, with the following modifications:

1. The parties do not generate all their randomness in the onset of the protocol, but rather they
generate their randomness "online," whenever needed. This will be important to achieve
security against adaptive auxiliary information.

2. In the output stage, rather than simply sending all the shares of each output wire to the party
receiving that output, the parties will first "re-randomize" their shares.

Recall that our OT protocol is in the CRS model.

Our Protocol. Let {crsi,...,crsn} be the common random string, where crsi is used by party
Pi in the OT protocol, as described in Section 3.4.

1. Input-Sharing Stage: Party P shares its input xi with all parties, by choosing n random
bits x,... ,X +- {0,1} such that @n_1 xi = xi. Then, P sends xo to each party P, and
stores 4i.

2. Circuit Evaluation: The parties now proceed to evaluate the circuit C in a gate-by-gate
manner (as in GMW). Let a and 3 be the bit-values corresponding to the input wires of a
given gate. Then, each party P holds bits ai, #3 such that En ca = a and E7 1/3i = 3.
The gate is evaluated in the following manner (depending upon whether it is an addition gate
or a multiplication gate):

* Addition Gate: In this case, each party P simply sets its share of the bit value cor-
responding to the output wire of the gate to be -y = ai + #i. Thus, we have that

E=17 _= E= 1(ai + i) - a +#0 =-y, as required.

* Multiplication Gate: In this case, each party needs to compute its own share of y =

(En 1 ai)(Zn 1#83). The main idea behind the computation for multiplication gate is

88

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

the following equation (we refer the reader to Section 3.2.2 in [Gol98] for a justification
of this equation):

-i #3i = n. a-+ (ai+ ag)(#i+#'3).
\i=1 / i=1 / i=1 isi<jsn

Let 6 and 7 denote the first and second sum respectively on the right side in the above
equation (thus, we have that -y = 6 +,q). Note that each party P can compute a share 6
of the first sum locally by simply computing n -ai- #8i. To compute the shares of the second
sum, the parties engage in multiple executions of the 1-out-of-4 OT protocol described
in Section 3.4. More specifically, for each pair i and j (such that 1 < i < j 5 n), parties
Pi and P engage in an execution of the 1-out-of-4 OT protocol in the following manner.
Let 77,j + qj,i (cai + aj) (3i + 1j). Party Pi chooses a random bit 7qj, and prepares the
following table:

Value of (aj, #j) Receiver input b Receiver output rj,i

(0,0) 1 01 = 77,j + (az + 0)(# + 0)
(0,1) 2 o2 = qj + (a + 0)(,3i + 1)
(1,0) 3 03 = YiJ + (ei + 1)(#i + 0)
(1, 1) 4 04 = nij + (Oi + 1)(#i + 1)

Pi and P now engage in an execution of the 1-out-of-4 OT protocol, where the input of
Pi are the values 01, 02, 03, 04 and the input of P is value b - 21 - a + 20 . 3 j + 1 E [4].
Upon receiving the output Ob, party P sets nj,i = Ob.

After completion of all the OT executions, each party P first computes 7i =og; ?i,j
and then computes -yj = og eji as its share of the output wire of the gate.

3. Output Stage: Each party Pi holds a share of the output wire of the circuit C. Denote by ai
the share of party P. The parties do the following:

1. Each party P generates n - 1 random key pairs (et,i, de,) <- NCGen(1k), one for each
e E [n] \ {i}, and sends ee,i to party Pj. Note that the encryption key ee,i will be used
for messages sent from party P to Pi.

2. Each party P chooses at random ri,1,..., ri, such that ®,"_ ri,£ = c.

3. Each party Pi sends the ciphertext ci,£ +-- NCEnce,(ri,j) to each party P.

4. Each party P decrypts the ciphertexts he received from each party Pe by computing
rt,i = NCDecde(cf,i) for every e / i.

5. Each party P sends the share r -A "=i re,i to the party P, receiving the output.

The party P, xor's all the shares r' he receives, and sets the output to be y = @n i ri.

This concludes the description of our protocol II.

In order to prove that the protocol H is secure against adaptive auxiliary information, we
need to prove that for every semi-malicious real world adversary A corrupting a set of parties

89

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

M C {P1,. . ., P} there exists a ideal world simulator S corrupting the same set of parties M, such
that for any auxiliary input z E {0, 1}*, any input vector , it holds that:

{ IDEALf (1, z N c {REALM(1, , z)}E

To this end, fix any semi-malicious real world adversary A corrupting a set of parties M. In what
follows, we construct a corresponding simulator S.

3.5.2 Description of the Simulator

Notation. We let G denote the number of gates in the circuit being computed, and we denote
these gates by 1..... , G}, where the first n gates {1,... ,n} correspond to the n input gates. For
every gate g E [G], we let vg denote the (output) value of the gate when computed on the inputs
(Xi, . . ., X). (Note that the value of the jth input gate for a corrupted party j e M is the input
value selected by A given {zi}iEM, and thus vj may not be equal to the original input xz). For each
party P and for each gate g E [G], we denote by statei(g) the state of P after computing gate g.
We do not want to assume erasures, and thus we assume that statei(g + 1) contains statei(g) for
every gate g E [G - 1]. We denote the joint state of all parties after computing gate g by

state(g) = (statei(g), . . . , staten (g)).

Our simulator tries to simulate all the states statei(g). Note that he can easily simulate these
states for the semi-malicious parties, since semi-malicious parties act honestly, except that they
may choose their inputs and randomness arbitrarily. Indeed, the simulator can easily extract the
selected inputs of the semi-malicious parties, and their randomness at each step, which is enough
to simulate their states step by step.

On the other hand, the simulator cannot fully simulate the states of honest parties, since, for
example, statei(g) contains the input xi, which the simulator does not know. However, as we
describe below, he does succeed in simulating these states "partially". More specifically, as in the
GMW protocol, statei(g) consists of the input xi of party Pi, all the messages received by party Pi,
and the randomness generated and used by P during the computation. Each simulated statei(g)
will have all the above components, but with unknowns from {Vg}gE[G] (which, in turn, can be
efficiently computed from the inputs xi, ..., x). Namely, once these unknowns are instantiated, the
simulated statei(g) is computational indistinguishable from the "real" state (g). Moreover, viewing
the simulated statei(g) as a function of {vg}, this function is efficiently computable.

Jumping ahead, this enables the simulator to simulate the adversary's auxiliary information
queries as follows: Each time the adversary asks for an auxiliary information query of the form
L(state(g)), the simulator asks for the auxiliary information query L', defined as follows: L' has
the simulated state(g) hard-wired into it, and on input (xi,..., xz), the function L' computes the
value of all the unknowns {vg} that appear in state(g), and then outputs L(state(g)).

The Simulator S.

90

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

1. Generating crs. Sample random messages M0 , M1 +- G. For each honest party Pi, sam-

ple injective LTDF seeds with inversion trapdoors ((-)(1)) +- G(, (o,) +- G2, andOi , iInj'I i IT Inj 7

sample a random DDH tuple by sampling a,,y +- Z*and taking g= (gQgI,gQggf7) E G4.
(1) (2(2

For each corrupted party Pi, sample lossy LTDF seeds o +- G(1) o2 G ,and sam-Loss' 7 Loss' ansm
ple a random non-DDH tuple = (,2,93,g4) +- G4 (e.g., by rejection sampling). Output

{Mo, M1 , (o 1) 0 i)2), (o$1), 0$12), -)) as the common reference string. (Note that {(ai, #, Yi)}iE[n]\M

and {r (1)(2)}. fl]\M are kept by the simulator as trapdoors).

2. Input-Sharing Stage: Recall that we denote the ith input gate by gate i. The simulator first
initializes statei (0) = (crs, vi) for every party Pi, where vi is set as follows. For each corrupt party
Pi, the value of vi is determined by extracting the input x' from the adversary's special auxiliary
tape. For an honest party P, vi is set to be the original input xi; note that the simulator thus does
not know vi explicitly, but can efficiently compute it given xi.

The simulator simulates each party P in the input-sharing stage by running the following for
i= ... n:

* If party Pi is corrupted, the simulator uses A's selected input x'; and randomness for this step
(which are written on A's special auxiliary tapes) to simulate Pi.

* Otherwise, if Pi is honest, the simulator runs the following steps:

1. Choose randomness si,1,..., S +- {0, 1} such that E_1 s,j = 0.

2. For every j f i, send sij to P. Note that if P is an honest party, then S simply keeps
a record of si,; otherwise, if P is corrupted, then S sends sij to A.

3. For every j 7 i, set the share of each party P to be siy and set the share of party P
to be si,i D vi, where recall that vi = xi is the value of gate i.

4. For every j $ i, set stateg(i) = state3 (i - 1) U {si~j}, and set statei(i) = statei(i - 1) U
{ si,i vi, ri}, where ri A {si,}i is the simulated randomness used by Pi to secret share
his input.

Adaptive Auxiliary Information Queries. Upon receiving an adaptive auxiliary information
query L from A, the simulator S sends the following query L' to its auxiliary information oracle.
We assume for simplicity, and without loss of generality, that all the auxiliary information queries
that are sent during the input preparation stage are sent at the end of this stage, namely after
state(n) was computed. The function L' has the value state(n) (as defined above) hardwired into it.
It takes as input the actual input values (XI,, X), it computes the unknowns {vi}igM = {xi}igM

(which are the unknowns that appear in state(n)), then it computes the actual value state(n) and

outputs L(state(n)).

3. Circuit Evaluation: Recall that the circuit evaluation is done in a gate-by-gate (and level-

by-level) manner. We describe how to simulate state1 (g), for every party P and for every g E [G],

91

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

assuming we already simulated statei(g - 1) for every party P,. 7

We explain the simulation of state(g) separately for addition gates and multiplication gates.

Addition gate: Suppose that the gth gate is an addition gate, and let (al1,... , a,) denote the
simulated shares of its left child, and let (#1,...,#3) denote the simulated shares of its right child,
where (aei, #i) are the simulated shares of party P (where both a and #i are present in statei(g-1)).
For each i E [n], the simulator S computes -yj = ai + ,3i and sets

statei(g) = statei(g - 1) U {y}.

From our induction assumption, statei(g -1) (and, in particular, ai, 3i) is an efficiently computable
function of the unknowns {vg}. This implies that yj, and thus statei(g), is also efficiently computable
from the {vg}.

Adaptive Auxiliary Information Queries. Upon receiving an adaptive auxiliary information
query L from A, the simulator S sends the query L' to his auxiliary information oracle, where L'
is defined as follows. Suppose that the query L was sent at the end of the simulation of the gth
gate, and thus the adversary expects in return the value L(state(g)). This value is computed by
first using the inputs (x1,..., x,) to compute the unknowns {vg} that appear in state(g), and then
computing L(state(g)).

Multiplication gate: Suppose the gth gate is a multiplication gate. Let (ai,... , a,,) denote the
simulated shares of its left child, and let (#1,...,f3) denote the simulated shares of its right child

Recall that in the real computation of a multiplication gate, each pair of parties P and P runs
an OT protocol with inputs that correspond to their shares (ai,#/3) and (aj, /j), respectively. We
consider four different cases:

1. Py is a corrupted sender, and P is an honest receiver. In this case, S needs to simulate the
honest receiver Pi.

2. Pi is an honest sender, and P is a corrupted receiver. In this case, S needs to simulate the
honest sender Pi.

3. Both sender Pi and receiver P are honest. In this case, S needs to simulate both the honest
sender and receiver.

4. Both sender and receiver are corrupted. In this case, S can read A's randomness for each
step (from the special randomness tape) and simulate appropriately.

Remark. Note that at the beginning of the computation of gate g, the state of Pi is the same
as his state at the end of the computation of gate g - 1. We abuse notation, and initially set
statei(g) +- state2 (g - 1) for every party Pi. This is an abuse of notation, since we typically use
statei(g) to denote the state of party Pi at the end of the computation of gate g. During each OT

TRecall that we have already simulated {statei(g)}, 1 in the input preparation stage, where the first n gates
denote the input gates.

92

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

protocol, the simulator updates statei(g) to include the randomness used and the messages received
by P during the OT protocol, as described below.

In what follows, we assume for the sake of simplicity of notation, and without loss of generality,
that the decryption key of the NCE scheme simply consists of all randomness used in the key

generation procedure. Namely, (e, d) +- NCGen(1k, d). Note that this is without loss of generality
since our adaptive auxiliary information model does not assume erasures: i.e., this randomness is
already contained as part of each party's secret state anyway, which can be leaked on. (Also recall
that the NCE simulator algorithms already simulate all randomness used during key generation,
as opposed to simply simulating the decryption key).

Case 1: Simulating honest receiver Pi. Note that S must simulate the actions of Pi in the
OT without knowing the true value of Pi's input b (since b likely depends on previous values {vg}

that S does not know). At a high level, this is done as follows. When P is supposed to generate
a single encryption-decryption key pair (eb, db) and sample the remaining three encryption keys
ee obliviously, the simulator will generate all four key pairs with corresponding decryption keys.
He simulates the coin tossing protocol (run by all parties to generate Pi's randomness for this

step) in such a way that he can later "explain" the values (el,..., e4) together with the correct

db. In order to simulate answers to auxiliary information queries made on P, the simulator S
maintains a simulation of Pi's secret state as a function of b (and thus a function of the original
unknown values {vg}). For each adaptive auxiliary input query A requests, the simulator S makes
a corresponding query to his ideal world oracle that plugs in the correct values of the unknowns

{vg} to Pi's simulated secret state and then computes A's auxiliary information function.
Explicitly, the simulator S does the following:

1. For every value of b' E [4], generate a key pair using NCGen. That is, sample randomness

randy, evaluate rndy = Rand-KeyGen(o , gi; randbf), and take (eb', db) = NCGen(1k; rndy).

The simulator sends (e,... ,e4) as the simulated message sent from Pi to Py in the OT
protocol.

2. Simulate the secret state of Pi as a function of his secret input b = 21 - o + 20 - 3j + 1, as
follows. (Note that the simulator may not know b; however, it can be efficiently computed
from (ei,. . . , e4, di, . . . , d 4) and from Pi's input shares (oai, #i), which can in turn be efficiently

computed from the simulated statei(g - 1) and the values {vg}.)

For b E [4] corresponding to the secret input b E [4], the simulator simply appends randb as
the randomness selected by Pi to ultimately generate an standard NCE key pair.

For each b' E [b] \ {b}, the simulator must explain the public key ew as being generated

via the oblivious key generation algorithm ONCGen, with randomness generated from the

DDH-Rerand procedure. Consider one such b'. Parse eby = (pki,..., pk4k) as 4k public keys in

the underlying lossy encryption scheme. For each f e [4k] \ Ib, the key was already properly

obliviously generated using DDH-Rerand. For each remaining e E Ib, the simulator did not

sample pke = (go', g161, g , g1'u) using DDH-Rerand; but, he knows the discrete logarithm

information a', #', u of these target values (as this is part of the generation process), and he

also knows (as part of the CRS generation trapdoor) the discrete logarithm values oz, /3, y of

93

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

9i CRS vector of party P. Thus, the simulator can "explain" pke as being generated via
DDH-Rerand, with rerandomization exponents a- a#,8-31 , and -ylu.

3. Upon receiving the ciphertexts (c1,.. . , c4) from the semi-malicious sender Pj, the simulator
computes oi = NCDecdj(ci) for every i E [4]. If for any i, the output is -L (which is the case
if the ciphertext ci is malformed 8), then simulate Pi sending an abort message to all honest
parties, and thus all honest parties abort.

4. The simulator also updates the state of each corrupted party Pt as dictated by the random
tape of A.

Adaptive Auxiliary Information Queries. Upon receiving an adaptive auxiliary information
query L from A, the simulator S sends the corresponding query L', which first computes the
unknowns {vg} that appear in state(g), and then computes L(state(g)).

Case 2: Simulating honest sender Pi. Here, S must simulate the actions of Pi as the sender
in the OT without knowing Pi's input shares (aj,/3). Recall that in the OT protocol, the messages
Mi, ... , m4 held by P correspond to 77 E (ai + aj)(3i + 3

j) for the four possible values of the
receiver Pj's input shares (aj,,3

j), where q is a fixed random value that serves as Pi's secret share
of the desired output (i.e., (a + agj)(3i + 3)). Note that, because of the mask q, any one of the
output messages oe is uniformly distributed. At a high level, the simulator S will select the output
message ob learned by the (semi-malicious) receiver P at random, and will somehow simulate the
three remaining messages (and all other pieces of Pi's secret state) as a function of the original
unknown values {vg}. To simulate answers to auxiliary information queries requested by A, the
simulator S makes a corresponding auxiliary information query to his ideal world oracle that plugs
in the correct values of the unknowns {vg} to the expression of Pi's secret state and then computes
A's auxiliary information function.

Explicitly, the simulator S does the following:

1. Let (ei, e2, e3 , e4) denote the four public keys sent by the semi-malicious receiver Pg. Let
b E [4] denote the input of the semi-malicious receiver P in the OT protocol. Note that b
is well-defined from the input shares (oj,#j) of the party P, and moreover, note that the
simulator can easily extract these shares.

2. Choose a random bit ob (as the output to be received by P in the OT protocol), and honestly

follow the encryption procedure: i.e., sample randomness rb +-- Rand-Enc(oQ) & (2)) and
compute cb = NCEnceb(ob;rb).

Let 77 = ob+(ai+ aj)(i+3j), where b = 21 -ag +2 0 -,3j +1 corresponds to the shares (a, 3 j)
that were extracted from the semi-malicious receiver Pj. The simulator would like to send

(NCEncei (mi), .. ., NCEnce 4 (M4))

8 For the particular NCE scheme that we use, this can occur, e.g., if some of the 4k ciphertexts of the underlying
lossy encryption scheme decrypt to Mo and some decrypt to M 1 . See Section 3.4.2 for details.

94

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

to the receiver, where for each b' = 21 - J + 20 - J1+1 E [4] (where o, Ji E {0, 1}),

My = 'q + (ai + Jo)(#i + 61).

(Note that, for b' = b, we have m, = Ob). However, the simulator may not know (ml, . . , m4),
since he may not know the shares (ai, 0j) of the honest sender Pi.

Instead, the simulator does the following: For every b' E [4] such that b' $ b, run the
alternative simulator NCSim' of the augmented NCE scheme, with input ey, to compute a
tuple (cy, ro, ri,) <- NCSim'(eb'), which he can later open to either value 0 or 1.

3. Simulate the secret state of the honest party to explain the randomness (r" , ... , r14). Recall

that this randomness should supposedly have been generated via Rand-Enc(o (1) 0(2) which

makes a sequence of calls to the LTDF functions F(o4), -) and F(o 2), .). For each such
supposed LTDF evaluation, the simulator determines a preimage randomness that "explains"

the desired output by using the inversion trapdoors 1 (2) (generated during the CRS

simulation).

The complete collection of preimage randomness values is added to the simulated secret state
of party Pi. Denote this by randi,... , rand 4).

4. Simulate the sender Pi sending (ci,... , c4) to Pj.

5. The simulator also updates the state of each corrupted party P as dictated by the random
tape of A.

Adaptive Auxiliary Information Queries. Upon receiving an adaptive auxiliary information
query L from A, the simulator S sends the corresponding auxiliary information query L', which
first computes the unknowns {Vg} that appear in state(g), and then computes L(state(g)).

Case 3: Simulating honest sender Pi and honest receiver P. Note that in this case the
simulator does not know both the shares (ai, #3) of the honest sender and the shares (a, 3 j) of the
honest receiver. Loosely speaking, the simulator will proceed by combining the strategies from the
previous two cases. Explicitly, simulator S does the following:

1. Run the simulator NCSim of the (augmented) NCE scheme to compute

(ef, ct, do, rog, dj, ri,t) +- NCSimn(1k),

for each f c [4]. Later in the simulation, the keys (ei, ... , e4) will be used as the message sent
by the receiver Pj, and the ciphertexts (ci, ..., c4) will be used as the responding message sent

by the sender Pi.

2. Choose a random bit +- {0, 1} to serve as the secret share of (ai + ac)(/3 i + 3j) kept
by the sender, Pi. For every f = 21 - 60 + 20 - 61 + 1 E [4], (where 6o, 6i E {0, 1}), let
me = 7 + (ai + Jo) (/3 + 61). The tuple (ml, ... , m4) are the messages held by the sender in the

OT protocol. (Note that the simulator may not know (Mi1 , ... , M 4), but they are efficiently

computable given q and the unknown input shares (ai,#3) of the sender.)

95

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

3. Denote by b the input of receiver P in the OT protocol: that is, b = 21 - al+ 20 - 3j + 1,
where (aj,#5) denote the input shares of P.

Simulate the secret state of the receiver Py so as to explain the encryption key eb as being
generated by NCGen (with randomness from Rand-KeyGen), and the remaining keys eb' for
b' E [4] \ {b} as being generated by ONCGen (with randomness from Rand-OblivKeyGen), as
described in Case 1 above.

4. Send (el, e2, e3, e4) to the sender Pi on behalf of the receiver Pj.

5. In response, send the ciphertexts (ci,... , c4) (that were also computed earlier by running
NCSim) on behalf of the sender Pi to the receiver Pj.

The simulator now simulates the secret state of the sender P to be consistent with each
ciphertext cv as the output of NCEnc encrypting the correct message me (and with randomness

generated via Rand-Enc(o(1), (2)). This is done exactly as described in Case 2 above.

6. The simulator also updates the state of each corrupted party Pt as dictated by the random
tape of A.

Adaptive Auxiliary Information Queries. Upon receiving an adaptive auxiliary information
query L from A, the simulator S sends the corresponding query L', which first computes the
unknowns {vg} that appear in state(g), and then computes L(state(g)).

Case 4: Simulating for corrupt sender and receiver. Let (ai, #3) and (aj,3) be the input
shares of the corrupt sender Pi and receiver P. Recall that the simulator S can easily extract
these shares from the adversary. Let j be the random bit that was selected by the sender P
(which can be read from the adversary's special random tape). Collectively, these values define the
receiver's input b, the sender's messages mi, ... , m4, and the "correct" output of the OT: namely,
the message mb.

The simulator S simulates the OT execution as follows. S honestly simulates the actions of
each honest party in the coin-tossing protocol. For each corrupted party, S reads the randomness
used in each step of the protocol from the adversary's special random tape, and simulates exactly.
Let m' be the final output of the OT, as determined by this simulation. If m' is not equal to the
correct output mb, then the simulator S aborts. Otherwise, S updates the state of each party
according to his simulation. Namely, S updates the state of each corrupted party P as dictated
by the random tape of A.

3. Output Stage: Denote by a the share of each party Pi corresponding to the output wire.
Recall that in the output re-randomization stage, each party P performs the following steps:
(a) generating an NCE key pair (ej,i, dj,i) for each other party Pt and broadcasting all the encryption
keys {et,i}oi, (b) secret sharing his output share ai as ai = ai, 1 ... a,n, and (c) sending each
generated share aif to the corresponding party P, encrypted under Pe's key ei,e. At a high level,
the simulator S will use the adversary A to simulate all the corrupted parties, and will simulate
the actions of each honest party P, by choosing random secret shares aj,t of Pi's output share (and

96

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

acting honestly) for all but one share. For the remaining secret share, S instead generates simulated
keys and ciphertexts for the NCE scheme, which he can later open to any value he wishes.

In what follows, suppose that P (the party who receives the final output) is honest. The case
where P, is adversarial is very similar, and is addressed later.

We note that the simulator knows the output share aj for each corrupted party Pi, and for every
honest party P, the share a is a polynomial-time computable function of {Vg}. The simulator S
simulates the "re-randomization" of the shares as follows.

1. For each honest party Pi, s.t. i 74 n, sample (e,i, dei) +- NCGen(1k) for each f E In] \ {i},
and send ee,i to each party P. Note that key et,j will be used for messages sent from party P
to Pi.

2. For party Pn:

(a) Sample (ee,nd n, dnce rn ,4,ren) <- NCSim(1k) for each honest party P s.t. i 74
n, and send ee,n.

(b) Sample (ef,n, de,n) <- NCGen(lk) for each corrupted party P, and send etn to P.

3. For each corrupted party P, simulate A to obtain ej,e for each E E [n] \ {f}. These keys will
be used for messages sent from Pi to corrupted party Pt.

4. For each honest party Pi, choose at random ri 1 , ... , ri,n-1 {0, 1}. These will correspond
to all but one secret share of Pi's output share o.

Let
n-1

ri,n ai (rie)t

so that
n

t=1

Note that the simulator may not know ri,n since he may not know ai. However, he could
compute ri,n efficiently if he was given {Vg} (since as itself is an efficiently-computable function
of {vg}).

5. For each honest party Pi and for each f E [n - 1] \ {i}, simulate Pi's message to P honestly:
i.e., choose randomness ui,e +- {0,1}* and send the ciphertext ci,t = NCEnceei(ri,e,uje) to
party Pe.

6. For each honest party Pi (i 74 n), send ci,n (as computed in step 2) to party Pn.

Jumping ahead, the ciphertext ci,n should decrypt to ri,n, and the simulator can equivocate
on the randomness of this ciphertext if needed, since the correct encryption randomness rE'i,

is a function of ri,,, which in turn is a function of {Vg}.

97

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

7. For each party Pi, let
n

e=1

Note that the simulator knows ri for every i E [n - 1], but does not know r'. Fortunately, he
could compute r' efficiently if he was given {Vg} (which he will do to answer leakage queries).

8. For each party P (i $ n), simulate P sending the share ri to party Pn, who is the party
receiving the output.

The simulator sends the inputs (Xi)iEM of the corrupted parties to the trusted party, and the
trusted party returns

Y = f(Xi, .. , on)

to the honest party Pn.

For each honest party P (i $ n), set

state1 (output) =

statei(G), {ef,i, d,i}iEs t\fjy, {ei,3}E n (qiri,,e~f_1, {ciki,f snt} 1\ji_1 (,(ci,n rin),{eizi

For party Pn, set

staten(output) = (statenn(G), { di,n}iEM, { dri' }iEH, {rn}=1, {cn, un,}AE[n-l1], {ce,n}e#n)

where H refers to the set of honest parties P (s.t. i 4 n) and M refers to the set of corrupted
parties.

Leakage Queries. Upon receiving a auxiliary information query L from A, the simulator S sends
the auxiliary information query L', which first computes the unknowns {Vg} that appear in state(g),
and then computes L(state(g)).

Remark. In the above simulation we assumed that the party Pn, who receives the output, is

honest. If Pn is malicious, then the simulator chooses an arbitrary honest party, say P 1 , and does

the same as above, while replacing the role of P, with P1 . The main difference is that now Pi needs

to send his unknown re-randomized share to P. The simulator uses the output y of the trusted

party to compute this re-randomized share as follows:

and simulates party P1 sending r' to party Pn, who then supposedly outputs i r = y.

98

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

3.5.3 Proof of Indistinguishability

In this section, we prove that the output of the ideal-world experiment with the simulator S (from
the previous section) is, indeed, computationally indistinguishable from the output of the real-world
experiment with adversary A.

Let us start by introducing some notation. In Section 3.5.2, we slightly abused notation, and
denoted by statei(g) both the simulated state and the real state. In this section, it is important
to distinguish between the two, and hence we denote by statei(g) the real state and by state'(g)
the simulated state. Let 7 = (xi,..., x,) be the set of all parties' inputs, and z be the auxiliary
information given to A (where these values may depend efficiently on the CRS). We denote

statei(output) = (si,1, si, 2, ... , si,G, si,out) ,

where si,init = ((crsi, hi), xi, zi) is the initial state of Pi (where zi = 0 for honest Pi and zi = z for
corrupted Pi); si,g is the information added to statei(g - 1) after the computation of gate g (i.e.,
statei(g) = (statei(g - 1), si,g)); and si,ot is the information added to statei(G) in the output stage.
(Note that the dependence on 7 and z is implicit).

In contrast, we denote

statei(output) = (simi,;nit, simi,1, simi,2, ... , Si mi,G, Simi,out),

where simj,jt = ((crs', hi), xj, zj) is the simulated initial state of P (in particular, where crs' is
generated using the simulation algorithm (crs', trap) <- crsSimg (1k) for honest parties); simi,g is
the simulated version of si,g; and simi,o0 t is the simulated version of si,out. More specifically, recall
that the simulator S fully simulates the states for the semi-malicious parties, and simulates the
states of honest parties as a function of the unknown inputs {x }iyM. For corrupted parties P, the
value state' is defined to be the simulated state of P generated by S. For honest parties P, the
value state' is defined to be the simulated state of P generated by S, with the values of the true
inputs {xi}iM plugged in. (We emphasize, however, that the simulator does not have access to
these inputs {xi}igm, except when answering adaptive auxiliary information queries).

Note that in order to prove that the output of the ideal-world experiment with simulator S is
computationally indistinguishable from the output of the real-world experiment with adversary A,
it suffices to prove that, for every set of inputs 7 and every auxiliary input z,

(statei (output))'_1 c (state'(output))'1 .

In particular, these distributions contain the inputs and outputs of every party, and the entire views
of corrupted parties throughout the experiment, including adaptive auxiliary information.

For every g E 1, 2. .., G}, we denote by

Sg ((Si,g,... ,Sn,g), simg - (simi,g,. .. ,simn,g),

s0nit (si,init, - - - , Sn,init), simint = (sim i,int, ... ,sim ,init),

sout (si,out, - -- ,Sn,out),7 simout A (Si Mi,out, . . . , Si mnout).

Thus, it suffices to prove the following statement.

99

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Theorem 3.5.2. For the values defined above, it holds for every set of inputs iF and every auxiliary
input z (which may depend efficiently on the CRS),

(sinit, {s g ,sot (siminit, {ig=01, Si mout).

Remark 3.5.3. We note that, in Theorem 3.5.2, each component of the distribution vectors
can be viewed as a distribution that depends on all previous components. That is, each sg in
the vector (sinit, {sg}G 1 , sout) corresponds to the distribution of information added to state(g -
1) as a result of the real-world protocol execution of gate g in which each party P enters with
view (si,,..., si,_1-). This will become important later, when we wish to consider "mixed"
distribution vectors, e.g. (simint, simi, ... , sims, sg+1, ... , sG, sout), where the first values are generated
using the simulator, and the remaining values are generated by a real-world experiment execution.

Proof of Theorem 3.5.2. We prove the theorem by way of three lemmas, in which we replace the
output of the CRS generation, the circuit evaluation, and the output re-randomization phases by
their simulated versions, one by one.

Lemma 3.5.4 (CRS Generation). The simulator S correctly simulates the CRS generation stage.
That is, for every set of inputs - and every auxiliary input z (which may depend efficiently on the
CRS),

(sii G {},_1, sout) r1_ (sm ft {sgj}1, sout).

Proof. Recall that sinit = ((crsi, hi), xi, zi) and simi~t = ((crs', hi), xi, zi), where crs' includes simu-
lated CRS values. Recall that the CRS simulation involves replacing the random non-DDH tuples
(gi, g2, 93, g4) of honest parties with random DDH tuples, and replacing the random injective LTDF
seeds a of corrupted parties with randomly sampled lossy seeds. The lemma thus follows imme-
diately by the DDH assumption, the indistinguishability of injective and lossy LTDF seeds, and a
standard hybrid argument. L

Lemma 3.5.5 (Circuit Evaluation). The simulator S correctly simulates the circuit evaluation
stage. That is, for every set of inputs z and every auxiliary input z (which may depend efficiently
on the CRS),

(sim,",t, {sg}G=1, sout) (siminit, (SimgjG= Isout)

This step constitutes the bulk of the proof of Theorem 3.5.2.

Proof. We prove the lemma by a standard hybrid argument. For every f E {1, 2. .., G+1}, consider
the feh hybrid of distributions

D=(simint, ({simg}1Zi, {sg}), sout)

(using the notation described in Remark 3.5.3). By definition, we have that

Di = (siminit, {sg} 1, sout) and DG+1 = (siminit, (simg)G 1, sout)

100

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL 101

Thus to prove the lemma, it suffices to prove that for every , z, and for every f E {1, 2..., G},
C

To this end, fix F E [G]. Note that if gate f is an input gate (i.e., f E [n]), then the simulation of
the tth gate is perfect, and thus

Df= Th+i.

Similarly, if the teh gate is an addition gate, then the simulation is also perfect, and hence

Di = Dt+1-

The non-trivial case is where the teh gate is a multiplication gate. Recall that in this case, the
simulator simulates an OT protocol between every pair of parties. (He also computes nai3i for each
party P, but this is done exactly as is done in the real world, and hence for the sake of simplicity
is ignored here.)

We denote by OTij the state generated by the OT protocol between parties Pi and P , and we

denote the corresponding simulated state by SimOTij. Thus, to prove that De D De+1, it suffices
to prove that

C

(siminitsimi, .. ., sim'V_1, (OTi,5)1i<gsjn, st+1,. - -S-, Ssout) C-J

(siminit, Simi, .- , simt_1, (SimOTi1i<gjsn, st+1, - - - , SG, Sout)-

This is proven via an inner hybrid argument. For the simplicity of notation, we denote A =

(siminit, simi,. . . , sime_1) and we denote B = (s+1,. ... ,sa,sout). We also denote (OTi,)1i<j n
as an ordered sequence (0T1 ,...,0Tm). Similarly, we denote (SimOTi,j)ii<jgn as an ordered
sequence (SimOT1,... , SimOTmn). According to this notation, we need to prove that

(A, OT1,..., OTm, B) - (A, SimOT1,..., SimOTm, B).

This is proven via a hybrid argument. For every f E {0, 1 ... , m}, let the eth hybrid distribution be

u1 = (A, SimOT1,.. ., SimOT, OTt+1,. .. , OTm, B).

Note that
Uo = (A, OT,..., OTm, B),

and
Um = (A, SimOT1, ... ISimOTm, B).

Thus, it suffices to prove that for every f E [m],
C

Ue-i Ue..

To this end, fix any f E [m]. We need to prove that

(A, (SimOTi)f4, OTe, (OTi)et+1, B) c (A, (SimOTi)'Ij, SimOTe, (OTi) Th+1, B) . (3.1)

We distinguish between the following four cases.

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

1. Case 1. The Eth OT protocol is between a corrupted sender P and an honest receiver Pi.

2. Case 2. The eth OT protocol is between an honest sender Pi and a corrupted receiver P.

3. Case 3. The Eth OT protocol is between an honest sender Pi and an honest receiver Py.

4. Case 4. The eth OT protocol is between a corrupted sender P and a corrupted receiver Pj.

We prove that Equation (3.1) holds for each of the four cases above. 9

Case 1. Recall that the simulated distribution differs from the real version in two respects: (1)
Pi aborts in the simulation if any of the four ciphertexts (ci, ... , c4) is malformed (whereas in the
real execution he aborts only if cb is malformed), and (2) the alleged randomness of P is chosen in
a different fashion.

Let E* be the event that at least one ciphertext cby, where b' f b, sent by the corrupted sender
P is such that NCDecda,(cyb) = _. We first show that Pr[E*] = negl(k). Recall that the sender is
semi-malicious, and thus follows the prescribed protocol (though perhaps using arbitrarily selected
randomness). In particular, each ciphertext cb, for b' e [4], is generated by running the honest
encryption algorithm NCEnc on the message my with some value of encryption randomness rE,y

that is generated as the outcome of the procedure Rand-Enc(o ., 1(2)) Thus, by Lemma 3.4.11,
it holds with overwhelming probability over the selection of the CRS messages M0 , M1 <- G, and
honestly generated secret key dy, that Decdb/(cy) = m, as desired.

Now, assume that event E* does not occur. We argue that the simulated randomness of P has
the same distribution as the corresponding honestly generated randomness. Recall that in an honest
execution, P samples only the public key eb using NCGen, and obliviously samples the remaining
three. In the simulation, S sampled all four using NCGen. For each ew, b' $ b, and each f E Iw,
this translated to "explaining" the underlying public key pke = (gi, g2, gi", g') as being generated
via DDH-Rerand(i). But, since - is a DDH tuple, the two distributions of output public keys are
identical: namely, they both produce uniformly random DDH tuples. Further, since the simulator
knows the discrete logarithms of the elements in the tuple -, and also in the target tuple pke (since
these were part of its generation process), he can efficiently produce the appropriate randomness
(i.e., rerandomization exponents) that serve as the simulated randomness of Pi (as described in
Claim 3.4.7).

Case 2. In this case, the sender Pi is honest and the receiver P is corrupted. Recall the only
differences between the simulated distribution and a real execution are the way in which the ci-
phertexts (cl, ... , c4) are generated and the alleged encryption randomness values are sampled. We
begin by showing that the simulated values {(cy, r'%)}lE[4 are statistically indistinguishable from
honestly generated ones, where rm' constitutes the encryption randomness used in NCEnc. Then,
as the final step, we show that the process of arriving at these encryption randomness values (via
Rand-Enc) is properly simulated.

9 Note that, in particular, this will imply the security of the OT protocol from Section 3.4.4 against adaptive
auxiliary information (in the semi-malicious model).

102

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

First, consider (Cb,rE,b) for the b E [4] defined by the corrupted receiver P's input shares
(aj,3). Note that in OT', the correct output message mb is distributed uniformly, since it is a
random secret share of the value (ai + aj) (8i +#8j). Thus, for b, the simulated value mb = Ob (which
is chosen at random), ciphertext cb <- NCEnleb(ob), and corresponding encryption randomness all
have exactly the right distribution.

Now, consider b' E [4] \ b. Given the value Mb = ob, the remaining three values my are defined
as in OT). Thus, it remains to show that the simulated ciphertext-randomness pairs (cb, r %,) are
indistinguishable from honestly generated ones for the same messages. If the encryption keys ey1
were honestly sampled (obliviously), then we would immediately get computational indistinguisha-
bility from the standard indistinguishability of simulated ciphertexts in the NCE scheme. However,
the receiver P is semi-malicious, and thus may attempt to choose randomness for key generation
in such a way that security no longer holds (e.g., if he has side information that allows him to
decrypt). We now show this cannot occur.

Recall that our NCE scheme from Section 3.4.2 has the additional property that almost all
public keys generated by ONCGen are lossy. Further, recall that P does not have full control
over the randomness used to generate the public keys ey, but rather must use the output of
Rand-OblivKeyGen(gj). Since Pj's CRS tuple - is a non-DDH tuple, it holds by Lemma 3.4.12 that
any resulting public key ew that he may generate in this fashion is necessarily lossy, meaning that
the pair (cb, r ',) generated by the alternative simulator is statistically indistinguishable from the
honestly generated pair (c, r) as in an honest execution. Since the distributions are statistically
close, they are indistinguishable even given any side information on eb' that the adversary may
have.

It remains to show that the simulator properly simulates the process of generating these ran-

domness values rm" via an execution of Rand-Enc(g(1) o (2)). But, recall that o1) and o are
injective LTDF seeds (which necessarily describe bijective functions, since the LTDF family we
use is a bijective (D, a)-admissible one), and the simulator knows their corresponding inversion

trapdoors (1) T(2) (generated during the simulation of the CRS). Therefore, the simulator will
succeed in computing the corresponding preimages for the simulation of the randomness selected

by Pi and used in Rand-Enc(o'), o 2)) in order to generate r %,. And, further, since the values of

r b each by themselves are distributed randomly, the resulting simulated preimages will also have
the correct (random) distribution.

Case 3. In this case, both the sender Pi and the receiver P are honest. This case follows from
combining the arguments in the two previous cases. We sketch the proof below.

Recall that in the simulation, the encryption keys, ciphertexts, simulated key generation ran-
domness, and simulated encryption randomness are all generated via the NCE simulator, NCSim.
By the indistinguishability properties of the NCE simulator, it holds that this collection of values is

indistinguishable from the corresponding collection formed by executing NCGen and NCEnc on these
corresponding randomness values. Further, since standard public keys (generated via NCGen) are
indistinguishable from obliviously sampled ones (generated via ONCGen), this collection of values
is indistinguishable from a corresponding collection of values produced by honestly following the

OT procedure without the randomness generation steps (i.e., Rand-KeyGen, Rand-OblivKeyGen, and
Rand-Enc). (Recall that this honest procedure amounts to the receiver sampling three of his public

103

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

keys obliviously, and the sender generating encryptions of each of his messages). Finally, from the
arguments above and in Section 3.4.3, given that the above distributions are indistinguishable, it
holds that the collection of public keys, ciphertexts, and preimage randomness used to generate
the above key generation randomness (via Rand-KeyGen and Rand-OblivKeyGen) and encryption
randomness (via Rand-Enc) is also indistinguishable from the honestly generated distribution.

Case 4. This is the case where both the sender P and the receiver Pj in OTe are corrupted. Note
that in this case the simulation is perfect, except that the simulator S may abort in cases where
honest parties in a real execution would not abort.

Recall that S aborts if the output of the receiver in the OT is not equal to the correct output
value mb, as determined by the parties' input shares (ai,3), (aj,,#y,). This happens only if the
output of the receiver in the OT is equal to (1 -mb). In a real execution, the shares (aj, 3), (aj, 3)
are unknown to honest parties, and so they will not be able to identify if the receiver Pg receives
a valid, but incorrect output value, (1 - mb). o We now argue that this event occurs with only
negligible probability.

Recall that the parties Pi, P are semi-malicious, and thus must follow the protocol correctly,
but may choose their randomness arbitrarily. Thus, the only way they can generate an incorrect
output m' in the OT is if they are able to force randomness for the NCE key generation and
encryption such that the ciphertext cb corresponding to the correct message mb decrypts to (1-mb).
However, recall that the semi-malicious parties do not have full control over the randomness used
for these tasks, but rather must use the output of Rand-Enc(o 2 , gi) and Rand-KeyGen(o ,1) , 2)),

respectively. By Lemma 3.4.13, since o(, and o- are each lossy seeds for the LTDF, it holds
with overwhelming probability over the choice of the CRS messages M0 , M that for any choice of
randomness used by A (on behalf of P, P), that the corresponding ciphertext-key pair will decrypt
to either the correct message mb, or to I.

This concludes the proof of Lemma 3.5.5.

Lemma 3.5.6 (Output Stage). The simulator S correctly simulates the output re-randomization
stage. That is, for every set of inputs z- and auxiliary input z,

(simnit,{sig 1, sout) c (siminit, {ig 1simout).

Proof. Suppose there exist inputs -, auxiliary input z, and an adversary B that distinguishes
between the above two distributions with probability e. We first consider the case where the
party Pn, who receives the output, is honest. The case where Pn is adversarial is very similar and
is addressed later.

Denote by a the share of each party Pi corresponding to the output wire. Let H denote the
set of honest parties not including Pn. Without loss of generality, assume that the set H consists of
parties P1 , ... , Pi. Then, we consider a set of inner hybrids o,... ,IHI, where 7hi is described
as follows:

i0 Note that if the output of the receiver is I (instead of mb), then parties will abort in both the simulation and
the real execution.

104

3.5. OUR MPC PROTOCOL IN THE SEMI-MALICIOUS MODEL

Distribution 71i: This distribution is (siminit, {simg}G 1 , simiut), where iu is generated in the
same manner as sout (in the real execution), except the following differences:

1. For each honest party P3 s.t. j E [1, i], Pn samples (ej,, , d0-, d!7 , c ,, ro?,,,l, ri -

NCSim(1k), and sends eg,n to party P.

2. For each honest party P s.t. j E [1,i], choose at random rg,1,. .. ,rgn_1 +- {0, 1}. These will
correspond to all but one secret share of Pj's output share ag. Let

n-1

rj,n Aaj () rj,)

so that
n

t=1

Note that the (hybrid) simulator may not know rj,n since he may not know aj. However, he
could compute rj,n efficiently if he was given {Vg} (since og itself is an efficiently-computable
function of {vg}).

3. For each honest party P s.t. j E [1, i], send cj, 1 (as computed in step 1) to party Pa.

4. For the remaining honest parties P such that j E [i + 1, ... , HI], generate secret shares {rj,t}
and ciphertexts cYe = NCEncee (rj,j; uj,e) honestly.

'1 . i5. sim 0ut = sim 'out,..., simout7 , where for each honest party P s.t. j E [1, i], we have:

sim j,out =

({ef,i, de,}eE[n]\{i}, {ee}AE[fn]\{j, {r,=}y 1 , {cy,t, uje}eE[n_11]\{j, (cy,n, r Egn), {c }ei) ,

while for party Pn, we have:

staten(output) = (staten(G), {ej,n, dj }i=1, {ej,n, di,n} I+1, {rn,} _1, {cke, un,j}fE[n-1], {ce}n)

For each remaining party Pt, sim 0 " is defined in the same manner as in sf,out.

This completes the description of the distribution 7-. Note that by definition, we have that

simout = sout and simou= simout, and thus

= (siminit, {simg}1i,sout) and 'HIHI = (simSnit, {simg}G 1,Simout)

By a standard hybrid argument, we have that Ii E [IHI] such that B distinguishes between the
distributions '7-i-1 and Ii (and thus the distributions simout and simout) with probability at least

. However, note that the only difference between simi-7 and sim'ut is that in simiut the key pair

(ei,n, dz) and the corresponding ciphertext and randomness pair (ci,n,,r§',), were chosen using

105

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

the NCE simulator, whereas in simau this is done using the standard N CGen and N CEnc algorithms.
Thus, computational indistinguishability follows immediately from the security of NCE scheme, i.e.,
the assumption that for every bit b the distribution

{(e, c, d, rE) : (e, d) +- NCGen(1k), c +- NCEnce(b; rE)}

is computationally indistinguishable from the distribution

{(e, c, do, rE) (e, c, do, d, rE rE) +-NCSim(1

Formally, one can use B to break this indistinguishability with probability l, by embedding an
instance (e, c, d, rE) in sim out which results with the same distribution as simaj if (e, c, d, rE) was
generated using NCGen and NCEnc, and results in the same distribution as sim'ou if (e, c, d,rE)
was generated using the NCE simulator NCSim. This completes the proof for the case where P is
honest.

If P is malicious, then we can choose an honest party, say P, and use the same proof idea
as above, while replacing the role of P with P1 . The main difference is that now Pi would need
to send his unknown re-randomized share to Pn. The (hybrid) simulator uses the output y of the
trusted party to compute this re-randomized share as follows:

rAyri y r ,

where r' is the re-randomized share of party P (see protocol description) and simulates party P1
sending r' to party Pn, who then supposedly outputs i ri = y. L

Combining Lemmas 3.5.4, 3.5.5, and 3.5.6 implies Theorem 3.5.2, thus concluding the proof of
Theorem 3.5.1.

3.6 From Semi-Malicious to Malicious

In the previous sections, we constructed a protocol that is secure against adaptive auxiliary infor-
mation in the semi-malicious model. In particular, we restricted ourselves to the class of adversaries
who may choose their input and random coins arbitrarily, but who otherwise follow the specifica-
tion of the protocol honestly. Now, we would like to consider the setting in which the adversary is
allowed to behave in an arbitrarily malicious manner. Towards this end, we give a compiler that,
given a protocol H secure in the semi-malicious model, generates a protocol I' secure in the fully
malicious model. Our compiler is very similar to the original compiler of [GMW87], but adapted
to the adaptive auxiliary information setting.

3.6.1 Overview of the Compiler

Similar to [GMW87], the key idea for the compiler is to have each party commit to its input and
random coins, and after each step prove in zero knowledge that it is indeed following the protocol.

106

3.6. FROM SEMI-MALICIOUS TO MALICIOUS

More specifically, for every message sent in II, the same message is sent in H', but is accompanied by
a commitment to the "newly" flipped random coins used in the generation of this message (which
could be maliciously chosen for adversarial parties) and a ZK proof guaranteeing that the message
sent is consistent with the party's input, its "previous" and "newly" flipped random coins, 11 and
all the previous messages sent in the protocol.

However, we will need the commitment scheme and ZK proof system to have additional prop-
erties. First of all, since we allow adaptive auxiliary information, we will require the commitment
scheme and ZK proof system to be secure in this setting. Further, we will need the commitment
scheme to be equivocal and extractable. Equivocation is used to achieve security against adap-
tive auxiliary information, when the simulator must commit to an unknown value on behalf of
an honest party and may need to equivocate to properly simulate the auxiliary information. The
extractability requirement guarantees that the simulator can extract the messages committed to
by the malicious adversary in H'. The reason we need extractability is that our simulator for the
underlying protocol H (in the semi-malicious model) is assumed to have access to the adversary's
input and random coins in order to properly simulate, and our simulator in the malicious model
must be able to feed these values to him.

Fortunately, in the CRS model, such an extractable, non-interactive equivocal commitment
scheme [FS89, GOS06a, GSO8], and a NIZK proof system [GJS11, BCH11} both exist. Using
these primitives as described above (and as in [GMW87]), the compiler generates a protocol secure
against fully malicious adversaries even in the setting of adaptive auxiliary information. In fact,
using the very recently proposed extension of the UC framework for the setting of adaptive auxiliary
information [BCH1 1], we can argue that the compiler described above (implemented with UC secure
versions of the required components) achieves the stronger notion of UC security. This allows us
to argue that our protocol is secure against adaptive auxiliary information even in the setting of
arbitrary composition. For simplicity of exposition, however, we first focus on the construction and
proof in the standalone model, and relegate discussion of the UC setting to Section 3.7.3. We also
recall the extended UC framework of [BCH11] in Section 3.7.1.

3.6.2 The Compiler

We now formally describe the compiler. Our construction will make use of two building blocks:

" An extractable equivocal commitment scheme (crsGencom, Com, Rec) with simulator algo-
rithms Simeq = (crsSimg, comSimeq) and extraction algorithms (crsGenE, E).

" A leakage-resilient NIZK argument system (K, P, V), with simulator (Si, S 2 , S3), for the lan-
guage

LC = {((m, W), (crscom, cominput, Crand)) | 2(x, R, uflPut, U rand) s.t. m = Hi(x, R,T),

cominput - Com(crscomxu input crand = Com(crscom -r;u) Vj}

where Crand = {crand,..., crand}, R = {rl,...,rt}, and Urand = {ui,...,uj}.

"Observe that commitments to all the "previous" and "newly" flipped random coins must have been provided at
some point in the protocol.

107

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

That is, ((m,iii), (crsco", cominput, Crand)) E Lh if there exists an input x consistent with
cominPut, and randomness R consistent with the commitments Crand = {c and, c d} such
that m is the correct next message generated by a party P in protocol H, given 7Ii as the
the transcript of H-messages sent so far, and input x and randomness R. Here, the witness

(x, R, ui"Pnpt, Urand) contains all secret information that supports this claim: namely, the input
x, random tape R of P up to this point, and the randomness ui"Put, Urand that was used to
generate these commitments.

Given a protocol H, the compiled protocol Comp(H) is described in Figure 3.2. In the description
of Comp(H), when any party is instructed to abort, he first sends the message "abort" to all parties,
and then exits the protocol.

Remark 3.6.1. Note that both the extractable, non-interactive equivocal commitments, and the
leakage resilient NIZK argument system are in the CRS model. In our compilation, for simplicity,
we use a separate CRS for each party; however, we remark that this is not essential. In fact, in our
final construction, in the UC setting (Section 3.7.3), the same compilation is actually done with a
single CRS.

Theorem 3.6.2. Suppose the protocol H is secure against adaptive auxiliary information in the
presence of semi-malicious adversaries, and assume the existence of an extractable equivocal com-
mitment scheme and leakage-resilient NIZK argument system as described above. Then Comp(H)
performs the same functionality as H and is secure against adaptive auxiliary information in the
presence of malicious adversaries.

Proof. Note that Comp(H) performs the same functionality as H by definition. Now, suppose for
contradiction there exists a malicious adversary A, a set of inputs i, and auxiliary input z (where
x and z may depend efficiently on the CRS) such that security of Comp(H) does not hold in the
setting of adaptive auxiliary information. We construct a corresponding semi-malicious adversary
An for H, which breaks the security of the underlying protocol H with respect to the same inputs
x, z.

We now describe the semi-malicious adversary An against H, who uses A as a black box. In
order to use A, the adversary Ar must simulate messages sent by honest parties in Comp(H), and
simulate responses to A's auxiliary information queries. Similar to the simulator in Section 3.5,
An maintains a simulated version statei of the secret state of each honest party P in Comp(H).
Although Ar may not know this state entirely (for instance, it includes the secret input of P),
the complete state can be expressed as an efficiently computable function of Pi's input xi and
randomness R, in H. The simulated state will be used to answer the auxiliary infomration queries
made by A (see Leakage Queries description below).

The semi-malicious adversary An for H:

CRS Generation. Ar receives a value crsr for the protocol H. In order to use the malicious
adversary A (who expects a CRS for the compiled protocol Comp(H)), he generates the following
additional values:

108

3.6. FROM SEMI-MALICIOUS TO MALICIOUS 109

Comp(H)

Let P = {P1, ..., P,} denote the set of all parties participating in H, with inputs {x1, ... , n}.

1. CRS Generation: Sample crsa +- crsGenr(1k) for the semi-malicious protocol H. For each party
Pi c P, generate a pair of CRS values (crsio', crsNIZK), where crs!o' <- crsGencom(1k) is for the
extractable equivocal commitment scheme, and crsNIZK g__ K(1k) is for the leakage-resilient NIZK
proof system. Output (crsr, {crs!'", crsNIZK}iE[n])-

2. Input Commitment: Each party P commits to his input, comi <- Com(crso", xi; u"Put), stores

the randomness u i"put that was used, and sends comi to all parties.

3. Protocol Execution: The parties emulate the protocol H as follows.

Each time a party P must send a message in H, he performs the following steps.

(a) Let T be the series of H-messages that were sent so far in the protocol execution.

If computing the fl-message requires generating random coins, Pi samples an appropriate
random value ri,t, appends ri,t to its list of random coins generated during the protocol

Ri =-- {ri,1, ... , ri,t}

computes a commitment
cjt <- Com (crsi*" 7ri't; uit),

and appends the randomness ui,t that was used to its list

Ua"d = {ui,1, ... , U,t}.

(b) In addition to the resulting outgoing message m that Pi sends in H, Pi also sends the com-
mitment ci,t and a proof (using the LR-NIZK proof system) that m was computed correctly.
That is, Pi sends (m, Cij,i7r,t), where

7ri't <- P(crsNIZK, ((m, m7), (crs orn comi , Cid) and i R, input, Uiand))

Each time party P receives a message (m, c, 7r) that was sent by Pj, he performs the following
steps:

(a) Let 777 be the series of H-messages that were received in the protocol execution so far.

(b) Let C and be the series of commitments to randomness sent by Pj during the protocol execution
so far, including the current value c.

(c) P verifies that the proof 7r is correct. That is, he verifies that

1 = V (crs IZK, 7r, ((m,) (crson, com, Crand)))

If the condition fails, then P aborts. Otherwise, Pi appends m to 7 and proceeds to the next

step in H.

4. Output: Each party Pi outputs as instructed in H.

Figure 3.2: The compiled protocol Comp(I).

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

" For each corrupted party P, the semi-malicious adversary An honestly generates a CRS value
for the NIZK proof system crsNIZK +- K(1k), and uses the extractor algorithm to generate a
CRS for the commitment scheme (crsi*", trapf) +- crsGenE(1k).

" For each honest party Pi, the semi-malicious adversary Ar generates simulated CRS values:
(crsNIZK +_ S S1(1k) and (crsor, trapi) 4- crsSime (1k).

Ar sends CRS - (crsr, {crsy*m, crsNIZK iE[,n]) to A. For each party P, initialize states = CRS.

Input Phase.

1. For each honest party Pi in Comp(Hl), Al generates a simulated commitment

(comi, dec?, dec!) +- comSime, (crs *', trap.),

which supposedly is a commitment to Pi's (unknown) input xi, and gives comi to A.

For each honest party P, update statei +- (statei, xi, decxi, {comj}3jM). Note that An may
not know these values directly, but can compute them efficiently given the input values
{xi}ivM.

2. An uses A to choose input values xj for corrupt parties P, as follows. Once A receives

{comi}iM, he responds with a commitment com for each malicious party P. From these
commitments, the semi-malicious adversary An extracts the underlying inputs

og = E(crsr", com, tra pf),

using the trapdoors he generated during the CRS generation phase. An records these values
{Xj}jEM as his inputs to H. Note that these inputs xj may depend on the CRS (as sampled
above), but that they can be efficiently computed as a function of crsr.

For each honest party Pi, update statei <- (states, {com3 }jEM)-

Protocol Execution. The semi-malicious adversary An acts as a middle man between the honest
parties in the execution of 11 and the malicious adversary A (in a simulated execution of Com p(H)),
translating between 1-messages and Comp(H)-messages as follows.

" Each time an honest party P sends a message m in H: The semi-malicious adversary
An forwards the message m along to A, together with:

- A simulated commitment ci,t, where (ci,,, d,, dt~) <- comnSimne(crsd*', trap;), which sup-
posedly commits to the randomness used by P to generate the message m, and

- A simulated NIZK proof ri,t +- S 2 (crsNIZK, T,, ((m, 7ii), (crs om,comi, C and));UNIZK) that
the message m was computed correctly.

" Each time A sends a message (m, c, 7r) on behalf of P in Comp(11): The semi-malicious
adversary An does the following.

110

3.6. FROM SEMI-MALICIOUS TO MALICIOUS

1. Ar begins by verifying that the proof 7r is correct. That is, he appends c to the vector

Cand and verifies whether

1 = V(crs IZK, r, ((m, in), (crscm, cominput, Cjand).

If the condition fails, then An aborts.

2. If 7r verifies correctly, then An extracts the randomness r,t from A's commitment,

rjt +- E(crsj*m, c, tra pf),

and sends the message m in protocol H on behalf of party Pj. The semi-malicious adver-
sary An appends rjt into its special random tape Rj = (rj,1, ... , ryt) as the randomness

that he used to generate P's message m.

Auxiliary Information Queries In order to answer auxiliary information queries made by A
in the (simulated) execution of Comp(H), the H-adversary An maintains a simulated version of the
secret state of honest parties in Comp(H) as a function of the unknown inputs {xi}igM and random
tapes {Ri}jgM of the honest parties in H. Answers to A's auxiliary information queries can then
be computed directly via an auxiliary information query of An in the execution of H. Note that
this procedure is analogous to the method of simulating auxiliary information that was used by the
simulator S in the semi-malicious setting.

We have already described how Ar simulates the secret state of honest parties {statei}igM
during the CRS generation and input phases. It now remains to describe how {statei}igM is
updated during the course of the protocol.

For each message (M, cjt, 7rp) sent by a corrupted party P, adversary An updates statei <-

(statei, (m, cpt, wrg,t)) for each i (M.
Each time An simulates an honest party P sending a message triple (m, ci,t, 7ri,), the adversary

An must update statei to include the randomness that was supposedly used to generate these
values. In particular, An must simulate:

1. Randomness ri,t used by P to generate the H-message m,

2. Randomness used to generate the commitment ci,t to ri,t, and

3. Randomness randNIZK used to generate the NIZK proof 7ri,t that m was computed correctly.

This simulation is done as follows.
For (a) and (b), Ar simply updates the secret state of Pi as statei <- (statei, ri,t, d), where ri,t

is the randomness that was used by the honest party P to generate the message m in H. Since ri,t
is contained as part of Pi's random tape Ri up to this point, the values ri,t and d y are efficiently
computable functions of Ri.

Randomness randNIZK of type (c) can be simulated consistently as a function of the corresponding
witness wi, by the leakage resilience of the NIZK argument system, where wi = (xi, Ri, ui"put, Urand)
consists of the input and all past randomness used by P in Comp(H). From above, we have that
the simulated version of wi is efficiently computable given xi and Ri: namely,

wi = (xi, Ij, decxi, (d ,..d*

111

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Now, define Lid to be the function

Lid(wi, randNIZK) A randNIZK-

Then, treating Lid as a "leakage function" on (wi, randNIZK), define L' to be the corresponding
modified leakage function, as per Definition 3.2.12:

L' +- S3 (crsNIZK, Ti, ((i, m), (crsiom, conput Crand)) uNIZK, Ld). (3.2)

Note that ri is the trapdoor that was sampled together with crsNIZK

((m7i), (crs!*"', com i"p", Ciand)

is the relevant instance, and UNIZK is the randomness that was used by the simulator S2 to gen-
erate the simulated proof lri '. Then, by the leakage resilience of the NIZK argument system (see
Definition 3.2.12), we have that

L'(wj) - Lid (wi, randNIZK),

and thus L'(wi) = randNIZK. So, in order to simulate the randomness randNIZK of type (c), the
adversary An updates statei as

statei +- (statei, L'(wj)).

We remark that L' and L'(wj) are efficiently computable given xi, Ri.
We have now described how the adversary An updates the simulated secret state of honest

parties at every stage of the simulated protocol Comp(H). At any point when An receives an
auxiliary information query L from A, the semi-malicious adversary Ar sends the auxiliary infor-
mation query L" to his own oracle in protocol H, where L" is defined to first plug in the unknowns
{xi}igM,{Ri}jM that appear in the current state L {statei}igM, and then compute L(state).

Output The semi-malicious adversary An outputs in H whatever A outputs (in the simulated
execution of Comp(H)).

This concludes the description of the 11-adversary An.

We now prove Theorem 3.6.2 in two steps, using Ar constructed above. First, we show that the
output distribution REALA,*)(1, 7, z) generated by running A in Com p (H) is computationally

indistinguishable from REALr (k, x, z), generated by running An in H (we refer the reader
to Section 3.3 for the definition of these distributions). Then, we show that (with overwhelming
probability) the adversary An is, in fact, semi-malicious. With these two lemmas, together with
the semi-malicious security of H, the theorem will follow.

We begin by proving the first of these statements.

Lemma 3.6.3. Let A be the malicious adversary for protocol Comp(H), and An the corresponding
adversary for protocol H, described above. Then for every set of inputs 7 and auxiliary input z,

REALM () 1,7, z) REAL k,M (k

112

3.6. FROM SEMI-MALICIOUS TO MALICIOUS

Proof. We prove the lemma via a sequence of intermediate hybrid experiments, beginning with the
real-world execution of Comp(H) with the malicious adversary A, and ending with the adversary
An in an execution of H.

Hybrid 0 The malicious adversary A interacts with honest parties in an execution of Com p().

Hybrid 1 Similar to Hybrid 0, with the following changes for each honest party P:

* Party Pi's CRS value crs*NIZK for the NIZK argument system is sampled using the simu-
lator algorithm, (crsNIZK ,T) g_ (1k.

* For each message (m, ci,t, 7ri,t) sent by an honest party Pi, the accompanying NIZK
proof 7ri, that m was computed correctly is replaced by a simulated proof,

Ir z <- S2csNZK, Ti, 2((m,Tii), (crs"o, com"nu' nd, NIK

The secret state of Pi is updated as statei +- (states, L'(wi)), where

mi = (Xi, Ri, input, Urand)

is the witness for the NIZK, and L' is the modified "leakage" function given in Equa-
tion (3.2). Note that L'(wi) simulates the randomness allegedly used by Pi to produce
the NIZK r'it. (See Auxiliary Information Queries discussion above.)

Hybrid 2 Similar to Hybrid 1, with the following changes for each honest party P:

* Party Pi's CRS value crsiom for the commitment scheme is sampled using the simulator
algorithm, (crsjom, trapi) +- crsSimeq (1k).

* In the input phase, each commitment comi made by Pi to his input is replaced by a
simulated commitment com', where

(com', dec?, dec) +- comSime (crsom, trapi).12

The randomness uPput allegedly used by P to generate com'; is simulated by dec"i. In

particular, dec'i is used in the place of u "rIp"t in the witness wi = (Xi, Ri, u nput, Urand)
when simulating randomness used to generate NIZKs later in the protocol (see Hybrid 1).

* For each message (m, ci,, 7r) sent by Pi, the commitment ci,t to the randomness ri,t
used by P to generate the message m is replaced by a simulated commitment c' ,, where

(c,, dt, d!~) +- comSimeq(crs m , trap;). 13

Each value uit allegedly used by P to generate c', is simulated by dt. In particular,
drt is used in the place of uit in wi when simulating randomness used to generate NIZKs

(see Hybrid 1).
12 Recall that com', deco, deci are vectors of commitment/decommitment information, as described in Remark 4.4.9.
'3 Recall that c', do,, d, are vectors of commitment/decommitment information, as described in Remark 4.4.9.

113

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Note that dec'i, drt are efficiently computable functions of Pi's input xi and the randomness
Ri= {ri, ... , ri,t} used by Pi to compute his 11-messages.

Hybrid 3 Same as Hybrid 2, except that for each corrupted party P, the CRS value for the
commitment scheme is sampled using the extractor algorithm, (crso'", trapf) +- crsGenE(1k).

Hybrid 4 The adversary A, corresponding to A interacts with honest parties in protocol H.

For each Hybrid i, we denote by

Hybrid',M(k

the distribution of inputs 7, z and outputs of all parties running Hybrid i, where A corrupts
the set of parties M. We now show that the output of each of the above hybrid experiments is
computationally indistinguishable (and, in particular, the outputs of Hybrid 3 and 4 are equivalent),
thus implying Lemma 3.6.3.

Claim 3.6.4. Hybrid,M(ik, , z) $ Hybrid'M(1,z)

Proof. The claim follows immediately by the leakage resilience and zero knowledge of the argument
system (Definition 3.2.12) together with a standard hybrid argument, where the changes of Hybrid
1 are introduced one honest party at a time.

Claim 3.6.5. Hybrid",M(1k, 7, z) ! Hybridit,(1k, 7, z).

Proof. The claim follows directly by the equivocation property of the equivocal commitment scheme
(Corollary 4.4.5) together with a standard hybrid argument, where the changes of Hybrid 2 are
introduced one honest party at a time. 0

Claim 3.6.6. HybridM (ik, 7, z) i HybridA,(1k, 7,

Proof. The claim holds by the indistinguishability of simulated CRS values generated by the ex-
tractor crsGenE of the extractable equivocal commitment scheme (Definition 4.4.8), together with
a standard hybrid argument.

Claim 3.6.7. HybridA (1k, 7, z) =HybridAM(1k, 7, z).

Proof. In Hybrid 3, the adversary A interacts with honest parties in a modified version of protocol
Comp(H), in which the honest parties send their H-messages along with simulated commitments
and NIZKs. In Hybrid 4, A, interacts with honest parties in H and emulates A. More specifically,
A,, uses the messages of honest parties in II to simulate the view of A in Hybrid 3, and then
executes A in his head to determine his next actions.

Since the inputs 7, z are the same in both hybrids, and the output of honest parties in both
hybrids is exactly the output dictated by H, it remains to show that A,, (in Hybrid 4) properly
simulates the view of A in Hybrid 3. We now prove this is the case.

114

3.6. FROM SEMI-MALICIOUS TO MALICIOUS

CRS generation: An simulates the CRS perfectly.

Input phase: In Hybrid 3, each honest party generates and sends a simulated commitment to

their input; auxiliary information queries made by A at this step are answered using the cor-

responding decommitment information decfi. In Hybrid 4, An generates simulated commit-

ments and simulates auxiliary information in an identical fashion. Recall that An reproduces

auxiliary information on dec"i by making the corresponding query on xi to his oracle in H.
Thus, An's simulation in this phase is perfect.

Protocol Execution: Note that An's simulation of A's view up to this point is perfect. We show

this property is maintained throughout the protocol execution by induction.

Each time A receives a message (m, c,,r) from an honest party P in Hybrid 3: Since P is

honest, he will also send a message m with the same distribution to An in Hybrid 4. Given

this message m, An in Hybrid 4 simulates a corresponding commitment c' and NIZK ?r',

with an identical distribution to the simulated values (c, 7r) generated by P in Hybrid 3, and

sends the tuple (m, c', 7r') to A. Thus, this simulation is perfect. Further, An simulates A's

auxiliary infomration perfectly, using his own oracle for H.

Each time A sends a message (m, c, r) on behalf of P in Comp(H) in Hybrid 3: If the proof ,r

does not correctly verify, then the honest parties in Hybrid 3 abort, and the protocol concludes.

By induction, the simulated message (m', c', 7r') generated by An in Hybrid 4 is identically

distributed to the one sent by A in Hybrid 3. In this case, the proof 7r' will also not verify

properly, and so An simulates the honest parties aborting. Otherwise, in both hybrids the

honest parties receive H-message n and proceed to the next step.

Each time an auxiliary information query is made during the protocol execution: Ar

simulates responses to A's auxiliary information queries exactly as they are answered in

Hybrid 3.

Thus, An perfectly simulates the view of A in Hybrid 3, and the claim holds.

We now bring the hybrids together. Recall that

R EA L (1(,k ,x z) Hybrid%M(lk, Xz), and

REALi(1k, x, z) HybrideM(1k, 7, z).

Hence, Lemma 3.6.3 follows from Claims 3.6.4-3.6.7.

We now prove that An is a semi-malicious H-adversary for the same inputs 7, z. To do so,

we must prove that at each step of the protocol, the message sent by An is the correct message

as dictated by H, given the current protocol transcript, and the choice of inputs {x}jM and

randomness contained in An's special tapes.

115

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Lemma 3.6.8. Let A be s malicious adversary for Comp(H) in the adaptive auxiliary information
model. Then for the set of inputs z and auxiliary input z in Comp(H), the corresponding adversary
An (as constructed above) is a semi-malicious adversary for H with the same inputs z' and auxiliary
input z.

Proof. We must prove that An follows the protocol H honestly, given his chosen inputs and ran-
domness. We do so by a sequence of intermediate hybrid experiments.

Hybrid 4 The adversary An interacts with honest parties in an execution of H (i.e., the same as
Hybrid 4 from the previous lemma).

Hybrid 5 The same as Hybrid 4, except that the experiment immediately ends in fail at any
point that a corrupted party P sends a message (m, c,t, 7rw) such that the proof 7rj,t verifies
properly but the message m is not the correct next message in the protocol H (for some
consistent input and randomness). Namely,

1 = V(crsZK,7r, ((m, TY), (crscm, comj,Cand

but

((m,l T), (crsjo"', com, Cjand) (L1.

Hybrid 6 Same as Hybrid 5, except that the experiment also ends in fail at any point that a
corrupted party Pi sends a message (m, cj,t, rjt) such that the proof 7rj,t verifies properly, but
the message m is not the correct next message in H given the extracted input and randomness
from Pj's commitments. That is, 7r verifies correctly (as above), but

m $ Hj (zj, Rj, 7),

where T is the current transcript of 11-messages up to this point and

(x A E(crsj"m, comj, trapf),

A (r,1,...,r,) for ry, AE(crsj*, cj,tz, tra pf).

Note that Hybrid 6 restricts the adversary to semi-malicious behavior in H for the set of inputs
and randomness extracted from his commitments. We now show that, since A is computationally
bounded (and thus so is An), the outputs of Hybrids 4-6 are statistically close.

Claim 3.6.9. HybridnM (1k,, z) i Hybrid5 M(1,5,z).

Proof. The claim follows directly from the soundness of the leakage-resilient NIZK argument sys-
tem, together with a union bound. Namely, the probability that a computationally bounded ad-
versary can generate a proof for a false statement is negligible, and so Hybrid 5 will only end in fail
with negligible probability. 0

Claim 3.6.10. HybridHi,M(k, Z, z) 5 HybridrM(k ,z

116

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Proof. Clearly whenever Hybrid 5 ends in fail, Hybrid 6 also fails. It remains to show that the
probability of causing fail in Hybrid 6 but not in Hybrid 5 is negligible. Recall that this event
occurs when A sends a message (m, cjt, 7rj,t) such that rj,t correctly verifies and the corresponding
instance

((m, Tf), (crsj*', com, Cjrand))

does lie in the language £r for some witness, but this witness is not correctly extracted from A's
commitments by the extraction algorithm E. But, by the extractability property of the commitment
scheme (Definition 4.4.8), the probability of this event is negligible.

Together, Claims 3.6.9 and 3.6.10 imply that with overwhelming probability, the H-adversary
An is a semi-malicious adversary with respect to the set of inputs and randomness extracted from
his commitments, and thus Lemma 3.6.8 holds.

Theorem 3.6.2 follows.
El

3.7 Universally Composable MPC Secure Against Adaptive Aux-
iliary Information

In the previous sections, we constructed an MPC protocol that is secure against adaptive auxiliary
information in the stand-alone setting. In particular, we did this by first restricting ourselves to
semi-malicious adversaries. Then, in Section 3.6, we gave a compiler that, given a protocol H
secure in the semi-malicious model, generates a protocol H' secure in the fully malicious model.
This compiler is very similar to the original compiler of [GMW87], but adapted to the adaptive
auxiliary information setting. In this section, we give a similar compiler that yields a protocol
secure in the more demanding UC setting.

Outline. Our compiler in the UC setting directly builds upon the compiler of [CLOS02] using
techniques demonstrated in the stand-alone case (in Section 3.6). We start by describing the steps
involved in the construction of a UC secure protocol [CLOS02].

Step 1 The first step is to construct a commit-and-prove functionality that allows parties to com-
mit to their secret values (in a hiding way) and to prove (in zero-knowledge) some theorem
about these secret values to other parties.

Step 2 The commit-and-prove functionality is extended to a multi commit-and-prove functionality.
This functionality allows one party to commit and send proofs to multiple parties at the same
time.

Step 3 Finally, a protocol secure in the semi-honest setting is compiled with the above described
multi commit-and-prove functionality, to yield a protocol secure in the fully malicious setting.
The argument involves use of the UC composition theorem [CanO0].

117

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

We need to adapt the above steps to the setting of adaptive auxiliary informationm. To this end,
we proceed as follows.

Step 1 We start by giving a protocol that securely realizes the "leaky" commit-and-prove func-
tionality (i.e., secure against adaptive auxiliary information), denoted by "k . This follows
directly from [GJS11] which in turn relies on [GOS06a].

Step 2 Next, we will extend the commit-and-prove functionality to a multi commit-and-prove
functionality. The non-interactive nature of the protocol realizing Jy k allows us immediately
to extend it to realize the leaky multi comnit-and-prove functionality, denoted by TIk, 1:M

Step 3 Finally, we take a protocol secure in the semi-malicious setting and give a compiler that uses
a multi commit-and-prove functionality and generates a UC secure protocol in the setting of
adaptive auxiliary information. This step is very similar to [CLOS02]. However, the argument
uses (in a black-box manner) the UC composition theorem in the setting of adaptive auxiliary
information [BCH11].

Roadmap. In Section 3.7.1 we present the UC framework in the setting of adaptive auxiliary
information. In Section 3.7.2 we provide ideal specifications for some basic tasks. Additionally we
provide details on constructing a protocol to securely realize +Ik,1:M given a protocol that securelycp
realizes -F1k. This takes care of Step 2 given Step 1. In Section 3.7.3 we present our compiler,
which is needed for Step 3. Finally, in Section 3.7.4 we construct a protocol that realizes JFCk
functionality, which is needed for Step 1.

3.7.1 UC Framework with Adaptive Auxiliary Information

Bitansky et. al. [BCH11] initiated the study of UC framework in the setting of adaptive auxiliary
information. In this section, as in the stand-alone case, we consider adversaries in the UC setting
that can obtain joint adaptive auxiliary information on the secret states of all parties participating
in a session. We start by giving a short introduction to the UC framework and its extension to our
setting. We do not give full details and present the framework in a way that eases the understanding
of our results. For full details see [CanOO, BCH11].

Following [GMR89, Gol0l], a protocol is represented as an interactive Turing machine (ITM),
which represents the program to be run within each participant.

Basic UC. The basic UC framework considers realization of an "ideal specification" F by a
"real implementation" 7r. The requirement is that for any "real world attacker" A against the
implementation 7r there exists an "ideal world attacker" S (also referred to as the simulator) against
the specification F, such that an "environment" Z that interacts with S and F has essentially
the same view as in an interaction with A and 7r. In other words, the adversarial effect on any
(potentially large) system Z executed with 7r cannot be worse than the adversarial effect on the
same system where ir is replaced by F.

The basic UC model lets the environment Z determine the inputs to the parties running the
protocol and see the outputs generated by these parties, and also allows free communication between

118

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

the environment and the adversary. Additionally, the adversary typically has full control over the
communication between parties, and the ability to "corrupt" parties. Corruption is modeled as just
another interface available to the adversary, where it can send a message "you are corrupted" to
any party. In case of "passive" (or "semi-honest") corruption, the party responds to this message
by handing its entire input state to the adversary. To model "active" (or "malicious") corruption,
the party also changes the program that it is running from then on. Note that in this paper we
restrict ourselves to "static" corruptions, i.e., the adversary can corrupt parties only before the
protocol starts.

UC with Adaptive Auxiliary Information. A natural approach to modeling adaptive auxil-
iary information within the UC framework (both in the "ideal specification" and the "real imple-
mentation") is by allowing the adversary to send a "leak L" messages to a process14 (where L is
some function), and have that process reply with L(s) where s is its internal state.

The leakage aggregator. The modeling approach described above limits the adversary in ob-
taining auxiliary information on individual processes only. However, in real life auxiliary infor-
mation might actually be more complicated and involve multiple processes. To account for this
property of real life auxiliary information, a new "global entity" called the leakage aggregator is
introduced. The aggregator g can access the entire state of all the components in the system.
The adversary is allowed to make auxiliary information queries to sets of processes and not just
individual ones. An auxiliary information query specifies a function L and a set of processes

P ={pi,... ,pt}. This query is forwarded to the aggregator, who evaluates L(si,...,st) (where
si, . . . , st are the states of the processes pi, . . . , pt, respectively) and returns the result to.the ad-
versary.

We now discuss the above ideas a bit more formally. In the setting of auxiliary information
we allow the adversary A to perform auxiliary information instructions on the joint local states
of multiple processes executing within potentially different participants. An auxiliary information
request (by A) is assumed to specify a function L, represented by a circuit, and a set of processes.
As a consequence a new ITM called an aggregator g is invoked. The aggregator obtains the states
of the processes on which the auxiliary information is requested, applies L to these states, and
returns the result to A.

In this paper we consider adversaries that are able to obtain auxiliary information on the entire
joint state of all processes corresponding to some specified sessions. Therefore in our setting, we as-
sume that the adversary specifies "session identifiers" SID, . . . , SIDE, and leakage function is applied
to the internal states of all the honest processes that correspond to the sessions SID 1 , . . . , SIDt.

More formally, an auxiliary information operation is handled as follows: First the adversary
sends a query (LEAK, L, SID 1,... , SIDt) to g, where L is the auxiliary information function and
SID 1 ,.. . ,SIDt are the sessions in which auxiliary information is being leaked. Then g obtains the
states of all honest processes that correspond to each of these sessions, applies L to these states and

1
4 Recall that a protocol is represented as an interactive Turing machine (ITM), which represents the program to be

run within each participant. Each execution of a protocol is referred to as a session. Consider a specific participant
taking part in a specific session. The program executing in the specific participant taking part in the specific session
is referred to as a process.

119

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

returns the result to A. Finally, g reports the output length of the function L to all the processes
whose state is included in the evaluation, and reports the session identifiers and the output length
to the environment.

Remark. In [BCH11], it is assumed that processes are tagged with "party identifiers" PID, and
joint auxiliary information is allowed from all the processes that have the same PID. This models
a real world setting in which information that depends on the entire state of a physical device
(including all the processes that are currently running on it), is leaked.

UC emulation with auxiliry information. Protocol emulation is defined just as in the stan-
dard UC framework. More specifically, we require that for any adversary A there exists a simulator
S such that no environment Z can distinguish between an interaction with A and the implementa-
tion protocol, or an interaction with S and the ideal specification. However, unlike the standard UC
setting, the composition theorem in the setting of auxiliary information holds only if the simulator
is leakage-oblivious, a notion introduced in [BCH11].

Loosely speaking a simulator is said to be leakage-oblivious if the ideal world auxiliary infor-
mation obtained by the simulator is used only for the purposes of simulating auxiliary information
queries of the real adversary. More formally, we require that the simulator S has a special sub-
routine S for handling auxiliary information queries. Whenever S receives from the environment
a request to apply an auxiliary information function L for processes pi,...,pt, S is invoked to
produce a "state translation circuit" T. The circuit T is meant to transform the internal states
of processes in the specification protocols into its states in the implementation protocols. Once T
is produced, the aggregator is given the composed auxiliary information circuit L o T. When the
result is returned, it is forwarded directly to the environment and S returns to its state prior to
the leakage event. This simulator is referred to as a leakage-oblivious simulator.

Definition 3.7.1 (Strong UC-emulation [BCH11]). Let 7r be real protocol in the auxiliary infor-
mation model and # be an ideal functionality, and let EXEC4,s,z and EXEC,,A,z denote the
view of the environment Z when interacting with S and #, or with A and 7r (as formally defined in
[BCH11]). Then w strongly UC-emulates # against adaptive auxiliary information if there exists a
leakage-oblivious simulator S such that for any environment Z we have EXECg,S,z ~ EXEC,,A,Z.

Let 7r be an implementation and F be a specification. Also let p = p[w] be a protocol that
includes subroutine calls to 7r. Below we denote by p' the system where the subroutine calls to
w are actually processed by 7r, and we denote by p- the system where these subroutine calls are
processed by F.

Next, we recall the extended UC composition theorem, proved in [BCH11].

Theorem 3.7.2 (UC-composition with adaptive auxiliary information [BCH11]). Let p, 7, F be
protocols as above, all modular up to auxiliary information, such that 7r UC-emulates F with a
leakage-oblivious simulator. Then p" UC-emulates p-. Furthermore, it does so with a leakage-
oblivious simulator.

Here, a protocol is said to be "modular up to auxiliary information" if it only interacts with its
caller, its subroutines, the adversary and the aggregator. Note that the UC composition theorem

120

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

in [CanOO] relies on all the processes being "modular," namely a process can only interact with its
caller, its subroutines and the adversary.

3.7.2 Basic UC Functionalities

In this subsection we will present definitions of some of the basic UC functionalities that we use
in our final compilation. We follow the notation of [BCH11] and denote ideal functionalities that
allow for auxiliary information by F+1k.

Common Random String Model.

In the common reference string (CRS) model [CF01, CLOS02], all parties in the system obtain
from a trusted party a common reference string, which is sampled according to a pre-specified
distribution D. The common reference string is referred to as the CRS. In the UC framework,
this is modeled by an ideal functionality FcRS that samples a string p from the pre-specified
distribution D and sets p as the CRS. FCRS is described in Figure 3.3.

Functionality FCRS parameterized by distribution D

1. Upon activation with session id sid proceed as follows. Sample p = D(r), where r denotes uniform
random coins, and send (crs, sid, p) to the adversary.

2. Upon receiving (crs, sid) from some party send (crs, sid, p) to that party.

Figure 3.3: The Common Reference String Functionality.

Functionality FBC

FBC proceeds as follows, running with parties P 1 , ... , P, and an adversary.

1. Upon receiving a message (broadcast, sid, Pi, 7, x) from Pi, where P is a set of parties, send

(broadcast, sid, P, 7, x) to all parties in P and the adversary, and halt.

Figure 3.4: The ideal broadcast functionality FBC [CLOS02].

Authenticated Broadcast

In order to obtain our result, we assume that each set of parties who engage in a protocol execution
has access to an authenticated broadcast channel. We next recall the definition for this functionality

121

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

as defined in [CLOS02]. This functionality is modeled by the ideal broadcast functionality, denoted
YBC, and defined in Figure 3.4.

Goldwasser and Lindell [GL02] showed that the FBC functionality can be UC realized for any
number of corrupted parties assuming ideal authenticated channels (without any setup assumption).
Since the parties don't have a private state in this functionality, and since the entire message
(broadcast, sid, P, P, x) is public to all the parties including the adversary, any protocol that securely
realizes the FBC functionality, is secure even in the setting of adaptive auxiliary information.

UC Leaky Commit-and-Prove functionality

Functionality Fy+Ik

F+k, parameterized by a value k and a relation R, proceeds as follows:

1. Upon receiving an input (commit, sid, input, P, V, w) proceed as follows. Ignore the message if this
is not the first message received (corresponding to session id sid) or P and V do not match the
recorded values for session id sid. Else, append the value w (where w E {0, 1}*) to the list W,
record P and V and send |wl to the adversary. (Initially, the list T is empty.) Once the adversary
acknowledges, output (receipt, sid, input, P, V) to V.
On input (commit, sid, random, P, V, r), perform the same steps with r (instead of w), and append
r to the list T (which is initially empty).

2. Upon receiving an input (prove, sid, P, V, x) (ignore the message if P and V do not match the
recorded values for session id sid) from party P, check whether R(x, (iF, T)). If so, then send
(verified, sid, P, V, x) to the adversary, and once the adversary allows, send the same message to V.

3. Auxiliary Information: Given a message (leak, P), give the aggregator the ideal state (i5, r).
Continue behaving as above.

Figure 3.5: The leaky commit-and-prove functionality +k.

In this section we define the ideal leaky commit-and-prove functionality. Informally this func-
tionality allows parties to commit to a sequence of values and later prove properties about the
committed values. The functionality remains secure even in the setting where an adversary can
learn auxiliary information about the committed values (in the sense as considered in this paper).

The functionality allows for multiple concurrent two-party interactions, where each interaction
consists of two phases: a commit phase, where the receiver of the commitment obtains a "com-
mitment" to an unknown value, and a prove phase, in which the receiver, on the senders request,
obtains a "receipt" for the fact that the committed values satisfy the specified relation Z. The
security guarantees are: (a) The committed values remain secret. (b) After the commit phase,
the committer cannot change the actual value that he committed to. (c) Finally, the committer
cannot provide a "receipt" for a false theorem. Furthermore, correctness requires that a committer
and a receiver that follow the protocol can successfully commit and prove true theorems about the

122

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

committed values. The functionality .Ffk is defined formally in Figure 3.5. The ideal state of the
sender consists of the "committed" values, while the ideal state of the receiver is empty.

We provide a construction of F+ k in Section 3.7.4. Our construction is very similar to the
adaptive UC NIZK construction from [GOS06a, GJS11]. We stress that this construction is non-
interactive, a property that is crucial to extending the construction to the multi receiver/verifier
setting. We note that in the adaptive UC NIZK construction of [GOS06a, GJS11], each NIZK proof
consists of a commit-and-proof, which makes it easily adaptable to our setting. Since we do not use
the construction of [GOS06a] as a black-box (our functionality is different than an adaptive NIZK
functionality), for the sake of completeness we provide the construction in Section 3.7.4. We follow
techniques from [GJS11, BCH11] in order to argue security against adaptive auxiliary information.

Proposition 3.7.3. Under the decisional linear assumption in the setting of bilinear groups there
exists a (non-interactive) protocol that UC realizes ?F||, with a leakage-oblivious simulator in the
.TCRS-hybrid model.

Functionality gc+k.l:M

F+k.1:M running with parties P1, ... , P and an adversary, and parameterized by a value k and a relation
R, proceeds as follows:

1. Upon receiving an input (commit, sid, input, P, V, w) proceed as follows. Ignore the message if this
is not the first message received (corresponding to session id sid) or P and V do not match the
recorded values for session id sid. Else append the value w (where w E {0, 1}*) to the list wU
(which is initially empty), record P and V and send |wl to the adversary. Once the adversary
acknowledges, output (receipt, sid, input, P, V) to all parties in V. However, if a commit message has
previously been received, then first check that the recorded set of parties is V and that the sender
is P.

On input (commit, sid, random, P, V, r), perform the same steps with r (instead of w), and append
r to the list T (which is initially empty).

2. Upon receiving an input (prove, sid, P, V, x) (ignore the message if P and V do not match the
recorded values for session id sid) from party P (V is the set of intended verifiers), check whether
Z(x, (w, r)). If so then send (verified,sid, P, V, x) to the adversary, and once it allows send the same

message to every party in V.

3. Auxiliary Information: Given a message (leak, P), give the aggregator the ideal state (W, -f).
Continue behaving as above.

Figure 3.6: The leaky multi commit-and-prove functionality T+ k,1:M

UC Leaky Multi Commit-and-Prove functionality

In this section, we extend the commit-and-prove functionality to a multi commit-and-prove func-
tionality. This extension allows a single party to generate commitments/proofs to many re-

123

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

ceivers/verifiers. The formal definition is provided in Figure 3.6.

The key observation (as made in [CLOSO2] in the context of commitments) in realizing the
F.1 ''M functionality is that the protocol that UC realizes the functionality .7Tk is non-interactive.
Therefore, this extension is obtained by simply having the committer/prover broadcast the commit-
ment/proof string of the protocol to all the participating parties using the broadcast channel. We
refer the reader to [CLOS02] for the complete proof. The commitment/proof string is broadcasted
using the FBC functionality which ensures that only one message is broadcast using a given session
identifier. This ensures that all the parties receive the same commitment/proof for any session
identifier sid.

Proposition 3.7.4. Assuming that there exists a (non-interactive) protocol that UC realizes FAIk
with a leakage-oblivious simulator, then we can construct a protocol that UC realizes F+ik'"M with
a leakage-oblivious simulator in the (Fi 4 k, Fc) -hybrid model.

3.7.3 The Compiler

In this section we describe our compiler. Parts of this section have been taken verbatim from [CLOSO2].
Our compiler, given a multi-party protocol H that is secure against adaptive auxiliary information
in the semi-malicious model, generates a "functionally equivalent" protocol Comp(H) that is uni-
versally composable and secure against adaptive auxiliary information in the malicious model. Our
compiler is constructed in the F -kM-hybrid model. A description of our compiler is given in Fig-
ure 3.7. We note that each party has to commit and prove statements to all other parties during
the protocol execution. In order to do this, each party P uses a separate invocation of _+Ik:M
with the session ID sidi. The protocol should make sure that these session ID's are unique as long
as the session ID of the current copy of Comp(H) is unique. This can be done by setting sidi = sidoi
where sid is the session ID of the current copy of Comp(H). Since in our case the semi-malicious
adversary is allowed to choose its random coins on the fly, commitments to all the randomness
cannot be generated at the beginning of the protocol. This is the main deviation of our compiler
from the multi-party secure computation compiler of [CLOS02].

Remark. We stress that in this section we consider reactive functionalities that have multiple
stages which are separately activated. We stress that each activation of H corresponds to one stage
of execution of the protocol. This is done in order to deal with reactive functionalities.

124

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Comp(H1)

Let P denote the set of all parties participating in H. Party Pi proceeds as follows (the code for all the
other parties is analogous):

1. Activation due to new input: When activated with input (sid, x), party Pi proceeds as follows.

(a) Input commitment: P sends (commit, sidi, input, Pi, P, x) to F4 k.INMwhich adds x to the
list of inputs Y (this list is initially empty and contains Pi's inputs from all the pre-
vious activations of H). (At this point all other parties Pj E P receive the message

(receipt, sidi, input, Pj,P) from .FklM . P- then proceeds to the next step.)

(b) Protocol computation: Let 7 be the series of H-messages that were broadcast in all the
activations of H until now (Th is initially empty). P runs the code of H on its input list
xj, messages 7, random tape - and new random coins r. If H instructs Pi to broadcast a
message, P proceeds to Steps Ic and Id.

(c) Randomness commitment: P sends (commit, sidi, random, Pi, P, r) to +k -m which adds r
to its list of random coins 3 (this list is initially empty and contains Pi's random coins from
all the previous activations of 11). (At this point all other parties Pj E P receive the message

(receipt, sidi, random, Pi, P) from F.I:M . P- then proceeds to the next step (Step 1d).)

(d) Outgoing message transmission: For each outgoing message m that Pi sends in H, P sends
(prove, sidi, Pi, 2, (m, T)) to Tk.*:M with the relation Rr defined as follows:

Ir =((m, T), (T, 7)) I m = H1(Ti,i-, M)}

In other words, P proves that m is the correct next message generated by 11 when the input
sequence is Y, the random tape is 7, and the series of broadcast H-messages equals 3Tf.
(Recall that all elements of i and Y-7 were committed to by Pi in the past, using commit
activations of F M with identifier sidi.)

2. Activation due to incoming message: Upon receiving a message (verified, sidj, Pi, P, (m,M))
that is sent by Pj, party P verifies that the following condition holds:

o f equals the series of 1-messages that were broadcast in all the activations until now. (P
knows these messages because all parties see all messages sent.)

If the condition fails, then P ignores the messages. Otherwise, Pi appends m to Wf and proceeds
as in Steps 1b, lc and 1d above.

3. Output: Whenever H generates an output value, Comp(H) generates the same output value.

Figure 3.7: The compiled protocol Comp(H).

Proposition 3.7.5 (Multi-party protocol Compiler). Let U be a multi-party protocol and let

Comp(H) be the protocol obtained by applying the compiler of Figure 3.7 to H. Then, for every

malicious adversary A that interacts with Comp(H) in the F+k,1:M- hybrid model, there exists a

125

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

semi-malicious adversary Ar that interacts with H, such that for every environment Z,
F+k.1:M

EXECr,A',Z = EXEC clpA~z

Proof (sketch). We construct a semi-malicious adversary An from the malicious adversary A.
Adversary An runs the protocol H while internally simulating an execution of Com p(H) for A. The
key point is that A is forced to send all messages via F'JIkl:M that verifies their correctness. Thus,
essentially, A must behave in a semi-malicious way, and can be simulated by a truly semi-malicious
party An. An runs a simulated copy of A, and proceeds as follows.

Simulating the communication with Z: The input values received by An from Z are written
on A's input tape, and the output values of A are copied to An's own output tape.

Simulating an activation due to new input: When the first message of an activation of H is
sent, An internally simulates for A the appropriate stage in Comp(H). This is done as follows.
Let Pi be the activated party with a new input. If P is not corrupted, then Ali internally
passes A the message (receipt, sidi, input, Pi,P) that A expects to receive from y+Ik,1:M (where
P is the set of all parties participating in H). If P is corrupted, then An receives a message
(commit,sidi, input,Pi,P,x) from A (who controls Pi). Ar adds x to its list 57 of inputs
received from Pi and passes A the string (receipt, sidi o i, input, Pi, P). Furthermore, An sets

Pi's input tape to equal x.

Dealing with messages sent by honest parties: If an uncorrupted party P sends a message
m in H to a corrupted party (controlled by Ar), then Ar prepares simulated messages of
Comp(H) to give to A. Specifically, Arl passes A the messages (receipt, sidi o i, random, P, P)
and (verified, sidi, Pi, , (m,))

Dealing with messages sent by corrupted parties: When A sends a Comp(H)-message from
a corrupted party, Ar translates this to the appropriate message in H. That is, An obtains the
messages (commit, sidi, random, Pi, P, r) and (prove, sidi, Pi, P, (m, I)) from A, in the name
of a corrupted party P. It then adds r to its list 7. Then, Ar checks that the series of
broadcasted H-messages is indeed 7f. An also checks that m = H(Y, , h). If yes, then it
delivers the message m by writing it on the semi-malicious party Pi's outgoing communication
tape in H and adds m to the list 77. Otherwise, An does nothing.

Dealing with auxiliary information: When the simulated A makes an auxiliary information
query on all the past inputs and the random tapes of honest parties in H, then An externally
makes a auxiliary information query on the inputs and the random tapes of honest parties.
Note that honest parties have no additional internal state in Comp(H) besides what it had in
H.

We claim that Z's view of an interaction with An and H is distributed identically to its view of an
interaction with A and Comp(H). This follows in a way very similar to the proof of compilation as
in [CLOS02] and so we skip the details. We note that the primary difference between their setting
and ours is the ability of the adversary to request auxiliary information. But, since the internal
secret state of parties are the same in Comp(H) and H, such auxiliary information can be simulated
by simply forwarding the request. 0

126

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

3.7.4 Realizing FP

The functionality FCk can be directly UC-realized using the UC NIZK construction of Groth,
Ostrovsky and Sahai [GOS06a]. F has some syntactic differences from their construction, and
for the sake of completeness we recall the construction and proof here. Parts of this section have
been taken verbatim from [GOS06a].

Tools

We will use the following cryptographic tools.

Definition 3.7.6 (Encryption with pseudorandom ciphertexts). A public-key cryptosystem
(Kpseudo, E, D) has pseudorandom ciphertexts of length E(k) if for all non-uniform polynomial
time adversaries A we have

Pr [(pk, DK) <- Kpseudo(1k) AEpk)(pk) (-)

Pr [(pk, DK) +- Kpseudo(1k) - ARpk()(pk) = 1], (3.3)

where Rpk (m) runs c +- {O,1}eE(k) and every time returns a fresh c. We require that the cryp-
tosystem has errorless decryption.

Pseudorandom cryptosystems of length fE(k) can be constructed from any trapdoor permuta-
tion over domain {0, 1}eE(k)-1, as we can use the Goldreich-Levin hard-core bit [GL89] of a trapdoor
permutation to make a one-time pad. Trapdoor permutations over {0, 1}eE(k)- can, in turn, be
constructed from the RSA assumption assuming fE(k) is large enough [CFGN96], or from other
special number theoretic assumptions as described in [GOS06a].

Tag-based simulation-sound trapdoor commitment A tag-based commitment scheme has
four algorithms, (Ktagcom, commit, Tcom, Topen). The key generation algorithm Ktag-com pro-
duces a commitment key ck as well as a trapdoor key TK. There is a commitment algorithm that
takes as input the commitment key ck, a message m, and any tag tag, and outputs a commitment
c = commitek(m, tag; r). To open a commitment c with tag tag we reveal m and the randomness
r. Anybody can now verify c = commitek(m, tag; r). As usual, the commitment scheme must be
both hiding and binding.

In addition to these two algorithms, there is also a pair of trapdoor algorithms Tcom, Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer.
We create an equivocal commitment and an equivocation key as (c, EK) +- TcomTK(tag). Later we
can open it to any message m as r +- TopenEK(c, m, tag), such that c = commitk (M, tag; r). We
require that equivocal commitments and openings are indistinguishable from real openings. For all
non-uniform polynomial time adversaries A we have

Pr [(ck, TK) +- Ktag-com(1k) A(',)(ck) = 1

Pr [(ck, TK) +- Ktag-com(1k) . Ao(',-)(ck) = 1, (

127

(3.4)

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

where 7Z(m, tag) returns a randomly selected randomizer and O(m, tag) computes (c, EK) +-
TcomTK(m, tag); r +- TopenEK(c, m, tag) and returns r. Both oracles ignore tags that have al-

ready been submitted once.
The tag-based simulation-soundness property means that a commitment using tag remains

binding even if we have made equivocations for commitments using different tags. For all non-
uniform polynomial time adversaries A we have

Pr [(ck, TK) +- K(1"); (c, tag, mo, ro, mi, ri) +- A 0 0 (ck) : tag (Q and (3.5)

C = commitck(mo, tag; ro) = commitek(mi, tag; ri) and mo # ml] 0,

where O(commit, tag) computes (c, EK) +- TComTK(tag), returns c and stores (c, tag, EK), and
O(open, c, m, tag) returns r +- Topenck(EK, C, m, tag) if (c, tag, EK) has been stored, and where Q
is the list of tags for which equivocal commitments have been made by 0.

The term tag-based simulation-sound commitment comes from Garay, MacKenzie and Yang
[GMY06], while the definition presented here is from MacKenzie and Yang [MY04]. The latter
paper offers a construction based on one-way functions.

Construction

We now bring these tools together to realize the leaky commit-and-prove functionality .T+k.
Groth, Ostrovsky and Sahai [GOS06a] provide a construction of UC NIZKs with honest prover

state reconstruction. As shown in [GJS11], this construction can be proven to be secure against
adaptive auxiliary information. In their protocol, the prover commits to the witness using a "spe-
cial" commitment scheme and proves by a leakage-resilient NIZK proof system that the committed
values satisfy the required relation. The properties required by the "special" commitment scheme
are that: (a) it is equivocal, i.e., it has the property that the simulator can "open" a commitment it
makes to any desired value later; (b) at the same time, an adversarial sender cannot "cheat" in these
commitments (i.e., open it to a value different from the one originally committed); and (c) further,
the simulator can in fact extract the values that an adversary commits to in its commitments. The
first two properties are satisfied by a tag-based simulation-sound trapdoor commitment scheme, as
described in the previous section. Finally in order to achieve extractability, these commitments are
additionally accompanied by appropriate encryptions of the randomness used to commit, where
the encryption scheme has pseudorandom ciphertexts. Appropriately generated encryptions suffice
for achieving extractability, while still maintaining the hiding property of the commitments.

In order to implement the commit-and-prove functionality, we decouple the generation of the
commitments and the proof. In other words, the prover does not need to provide all the commit-
ments and the proofs together in one shot. The prover can provide commitments under the special
commitment scheme to "appropriate values" and later provide NIZK proofs about relationships
among the committed values. The correctness, soundness and zero-knowledge properties for our
protocol follow in a way identical to the [GOS06a] proof. We are only left to argue that our new
protocol is secure against adaptive auxiliary information.

Observe that the simulator can equivocate on the committed values to any value of its choice
and, as in [GJS11], this equivocation ability is used only in answering the auxiliary information

128

3.7. UC-SECURE MPC AGAINST ADAPTIVE AUXILIARY INFORMATION 129

queries. In particular, the equivocation ability is used in the auxiliary information queries in order
to open the commitments to a value that is unknown to the simulator. However, this value itself is
fixed (at the time commitment is made). Therefore, all auxiliary information queries will use the
same fixed value in generating responses for the auxiliary information queries and in effect use the
same opening for the committed value. Furthermore, since the NIZK proof system is also leakage
resilient, the auxiliary information queries on the NIZK proof system can be reduced to auxiliary
information queries on the witnesses of these proof statements, which essentially correspond to the
"openings" of commitments that the simulator provides. The complete proof follows in a way very
similar to the proof in [GJS11, GOS06a].

We now describe he construction of the protocol. Let (K, P, V) be a LR-NIZK (Definition 3.2.12).
Let (Kpseudo, E, D) be an encryption scheme with pseudorandom ciphertexts, and let (Ktag-com, commit,
Tcom, Topen) be a tag-based simulation-sound trapdoor commitment scheme. The resulting pro-
tocol can be seen in Figure 3.8. We have modified the description of the protocol to match our
definition of y+1k. We use the notation from Section 3.7.4.

Theorem 3.7.7. The protocol p described in Figure 3.8 UC-realizes the functionality F+,k in the

TCRS-hybrid model.

CHAPTER 3. MPC AGAINST ADAPTIVE AUXILIARY INFORMATION

Protocol #: Realization of Fc+k Functionality

" Common reference string generation:

1. (ck, TK) +-Ktag-com(1 k)

2. (pk, DK) < Kp,,edo(1k)

3. (o-, -r) <- S31(1 k)
4. Return E = (ck, pk, o-)

" Commit to input On input (commit, sid, input, P, V, w): Let f be the length of w.

1. Compute an extractable commitment to w using the technique of [GOS06a]. That is,

(a) For i = 1 to f select ri at random and let ci := commitek (wi, t ag; ri), where t ag sid.

(b) For i = 1 to f select Rw, at random and set ci,wi := Epk(ri; Rwi) and choose ci, 1_,- as
a random string.

(c) Let the overall commitment c := (ci, ci,o, ci,1 ,., ce, ce,o, ce,1).

2. Add w to the list T and c to the list T. (The lists c, w will initially be empty.) And send
(sid, input, P, V, c) to V. On receiving (sid, input, P, V, c) V outputs (receipt, sid, input, P, V).

" Commit to randomness. On input (commit, sid, random, P, V, r): Perform the same steps
as above. In this case, generate the overall commitment d to r, add r to the list F, add d
to the list d and send (sid, random, P, V, d) to V. On receiving (sid, random, P, V, d) V outputs
(receipt, sid, random, P, V).

" Prove. On input (prove, sid, P, V, x) such that R.(x, (W,)) do

1. Create an LR-NIZK proof 7r for the statement that there exists ! and F and randomness
such that T and d are lists of overall commitments to elements of w and T, respectively, and

7Z(X, (w, IT)).-
2. Generate II = (tag, x, 7r) and send (proof, sid, P, V, II) to V

" Verify. On input (proof, sid, P, V, 1):

1. Parse H = (tag, x,l7r)

2. Verify the LR-NIZK proof 7r with respect to x, tag and j and d.

3. Output (verified, sid, P, V, x) if the check works out.

Figure 3.8: Protocol # for realizing T+IkCP

130

Chapter 4

Multi-Party Computation Secure

Against Continual Memory Leakage

In this work, we construct a multi-party computation (MPC) protocol that is secure even if a
malicious adversary, in addition to corrupting 1-e fraction of all parties (for an arbitrarily small
constant e > 0), can leak information about the secret state of each honest party. This leakage can
be continuous for an unbounded number of executions of the MPC protocol, computing different
functions on the same or different set of inputs. We assume a (necessary) "leak-free" pre-processing
stage.

In contrast to the results discussed in Chapter 3, we achieve leakage resilience without weakening
the security guarantee of classical MPC. Namely, an adversary who is given leakage on honest
parties' states, is guaranteed to learn nothing beyond the input and output values of corrupted
parties. This differs from previous works on leakage in the multi-party protocol setting, which
weaken the security notion, and only guarantee that a protocol which leaks f bits about the parties'
secret states, yields at most f bits of leakage on the parties private inputs. For some functions, such
as voting, such leakage can be detrimental.

Our result relies on standard cryptographic assumptions, and our security parameter is poly-
nomially related to the number of parties.

We begin by providing a technical overview of our construction in Section 4.1. The prelimi-
naries appear in Section 4.2. A formal description of our adversarial model and security definition
appears in Section 4.3. In Section 4.4, we describe how to achieve weakly leakage-resilient MPC
for randomized functionalities within this model (building atop the weakly leakage-resilient MPC
protocol for deterministic functionalities from Chapter 3). Our final leakage-resilient MPC protocol
construction appears in Section 4.5, and the proof of security appears in Section 4.6.

4.1 Overview of Our Construction

In this section, we provide an overview of our leakage-resilient MPC protocol construction.

131

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Starting point: "Only Computation Leaks" (OCL) Compiler As discussed in Section 1.3.2,
it is known how to convert any circuit into one that is secure in the only computation leaks (OCL)
model, where one assumes that secret information does not leak when merely stored in mem-
ory, but that any information used during a computation may leak. Specifically, Goldwasser and
Rothblum [GR12] construct an efficient compiler that takes any circuit (with some secret values
hard-wired) and converts it into a leakage-resilient one, consisting of several modules, each of which
performs a specific sub-computation. The security guarantee is that an adversary, who at any point
of time throughout the computation obtains bounded leakage from the "currently active" module,
does not learn any more information than having black-box access to the circuit.

In light of this result, a natural first idea towards realizing our goal of constructing leakage-
resilient MPC protocols is the following. Let P1..... , P denote the set of all parties, and let Ug
be a universal circuit that has the secret input vector i of all the parties hard-wired into it, and
on input a circuit f, outputs Ug(f) = f(x). Then, very roughly, the (candidate) MPC protocol
works as follows. First, in the "leak free" pre-processing phase, apply the OCL compiler of [GR12]
on circuit UX to obtain a set of modules Sub1 , ... , Sub, such that on any input f, the "compiled"
circuit (consisting of Subi,... , Sub,,) outputs Ui(f) = f(1). Next, in the computation phase, in
order to securely compute a function f, each party Pi emulates the module Subi (such that the
computation of Subi is performed by party Pi), where the input of Sub1 is f, and the output of
Sub, is the protocol output f(Y). Finally, in the update phase, the parties update their respective
modules by running the update algorithm of the OCL compiler.

Now, assuming that we can reduce (independent) leakage on each party to (independent) leakage
on its corresponding module, one may hope that the above MPC protocol achieves the "desired"
security properties: in particular, privacy of the inputs that were "encoded" in the pre-processing
phase. Unfortunately, as we explain below, this is not the case. Nevertheless, as will be evident from
the forthcoming discussion, the above approach serves as a good starting point towards realizing
our goal.

OCL Compiler vs. LR-MPC. There are two main differences between the setting of leakage-
resilient MPC (LR-MPC) and an OCL compiler.

1. The first difference is perhaps best illustrated by the fact that an OCL compiler only guar-
antees security against an external adversary who can obtain leakage from the modules. In
contrast, in the setting of LR-MPC, we wish to guarantee security against an internal adver-
sary, who may also corrupt a subset of the parties.

More concretely, recall that the security of the OCL compiler crucially relies on the assumption
that an external adversary can only obtain bounded, independent leakage on each module.
Further, in order for the correctness of the "compiled" circuit to hold, each module must
perform its computation as specified. As a result, the above approach, at best, yields an
MPC protocol that is secure when all the parties are honest (not even semi-honest) but can
be leaked upon by an external adversary. Specifically, note that if an internal adversary can
corrupt some of the parties, then we can no longer guarantee correctness of computation, and
even worse, an adversary may be able to obtain joint leakage on multiple modules, and learn
the entire secret state of modules corresponding to corrupted parties, thus violating both of
the above stated requirements.

132

4.1. OVERVIEW OF OUR CONSTRUCTION

2. The second difference between the OCL compiler and the leakage-resilient MPC setting is
that in the OCL setting, the communication between the modules is assumed to be private
(but may be leaked), and leakage is assumed to happen "in order"; i.e., only a module which
is currently computing can be leaked upon. On the other hand, in the leakage-resilient MPC
setting, the entire communication is to be known to the adversary, and moreover, leakage on
any party can happen at any time.

Emulating Modules via Weakly LR-MPC. Our key idea to circumvent the first problem
stated above is to emulate each Subi by a designated set of parties Si = {Pi,..., Pi}, instead
of a single party Pi. More concretely, we secret share S u bi between Pi,... , Pi, who then run a

specific MPC protocol H to jointly emulate the (functionality of) module Subi. Now, note that
as long as some portion of the parties in the designated set Si is honest, the emulation of Subi
will be "correct", and if leakage on each honest party is bounded, then we can expect the leakage
on the module Subi to be bounded as well. Furthermore, if all of the designated sets Si for the
modules Subi are disjoint (i.e., no party is contained within two different sets), then the leakage
on each module will be independent, as required. However, note that since we are in the setting of
leakage, in order for the above idea to work, we need the MPC protocol H to satisfy some form of
leakage-resilience. Thus, a priori, it seems that we haven't made any progress at all.

Our next crucial observation is that protocol H in fact only needs to a satisfy a weaker form
of leakage-resilience. Specifically, we only require that leakage on the secret state of each party Pi,
executing protocol H (to emulate Subi) can be "reduced" to leakage on the module Subi. (We stress
that this suffices since the OCL compiler allows bounded leakage on each module.) More generally,
this translates to constructing an MPC protocol such that the leakage on the secret states of the

honest parties in the real world can be reduced to leakage on the inputs of the honest parties in the
ideal world. Fortunately, an MPC protocol satisfying the above (weak) form of leakage-resilience
was recently constructed by Boyle et al. [BGJ+13] (as described in Chapter 3).

However, this result cannot be plugged in directly: the protocol of [BGJ+13] is for deterministic
functionalities (and, in fact, it is impossible to achieve this definition for randomized functionalities
if the adversary can attain "joint" leakage on the collective states of all honest parties [CLL+13]).
However, in the present adversarial model, where the adversary may only leak independently on

the secret state of each honest party, security for randomized functionalities can be achieved. In

Section 4.4, we construct a form of strong leakage-resilient coin-tossing protocol and prove that

combining it with the protocol of [BGJ+13] yields weakly-leakage resilient MPC for randomized
functionalities, as required.1

Using an LDS Compiler Instead of an OCL Compiler. Our key idea to circumvent the

second problem stated above is to use an LDS compiler instead of an OCL compiler. The LDS
(leaky distributed system) model was introduced in [BCG+11], and it strengthens the OCL model

'At this point, an advanced reader may question whether a weakly leakage-resilient MPC protocol (such as the

modified protocol of Boyle et al. [BGJ+13]), in conjunction with a leakage-resilient secret sharing scheme, directly

yields a leakage-resilient MPC protocol in our model. Unfortunately, this is not the case since the simulator of Boyle

et al. requires joint leakage on the honest party inputs, even when the real world adversary makes disjoint leakage

queries on the secret states of honest parties.

133

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

in two ways (which are exactly the strengthening we need). First, in the OCL model, the leakage
happens is a certain ordering (based on the order of computation). The LDS model strengthens the
power of the adversary, by allowing him to leak from the sub-computations in any order he wishes.
Moreover, he can leak a bit from Subi, then leak a bit from Suby, and based on the leakage values,
leak again on Subi. So, the adversary controls which Subi he wishes to leak from. In addition, in
the LDS model, the adversary can view and control the entire communication between the modules.
We refer the reader to Section 4.2.5 for details on the LDS compiler.

By using an LDS compiler, as opposed to an OCL compiler, we get around the second problem
mentioned above.

Reducing Number of Parties via FHE. An important issue that was overlooked in the pre-
vious discussion is the following. The only known OCL compiler that does not rely on leak-free
hardware [GR12], and thus the only known LDS compiler without leak-free hardware, suffers from
the drawback that the number of modules in the "compiled" circuit is linear in the size of the
original circuit. As a result, when we apply the LDS compiler on U1, whose size grows with |11,
the number of resultant modules is more than the number of parties! Thus, a priori, it is not even
clear how to realize the above approach.

In order to resolve the above problem, we make crucial use of fully homomorphic encryption
(FHE) in the following manner. Specifically, instead of simply applying the LDS compiler to U5,
we now first compute a key pair (pk, sk) for an FHE scheme, and then apply the LDS compiler to
the decryption circuit Deck(.) with the secret key sk hardwired. Note that the number of resultant
modules is now independent of the number of parties. Now, in a non-interactive input phase (that
is also "leak-free"), the parties P encrypt their respective inputs xi under the public key pk, and
publish the resulting ciphertexts zi. Then, whenever the parties wish to compute a functionality
f over their inputs, they homomorphically evaluate 9f - Evalpk((zi, ... , zj), f), and collectively
evaluate the compiled decryption circuit on the value 9f in the manner described above.

Missing Pieces. Despite our best attempt to cover the main ideas in the above discussion, some
important issues still remain undiscussed. For example, it is not immediately clear how to choose
the designated sets of parties Si such that at least one of the parties in each set Si is honest, and
each set Si is independent. Very roughly, to address this problem, we employ (an adapted version
of) the committee election protocol of Feige [Fei99] to divide the parties into several committees,
one for each module. Then, by careful choice of parameters, we are able to obtain the desired
guarantees. We refer the reader to the technical sections for more details.

4.2 Preliminaries

4.2.1 Non-Interactive Zero Knowledge

Definition 4.2.1. [FLS90, BFM88, BSMP91]: 11 = (Gen, P, V, S = (Scrs, SProof)) is an efficient
adaptive NIZK proof system for a language L E NP with witness relation R if Gen, P, V, Scrs, Sproof

are all ppt algorithms, and there exists a negligible function y such that for all k the following three
requirements hold.

134

4.2. PRELIMINARIES

" Completeness: For all x,w such that R(x, w) = 1, and for all strings crs +- Gen(1k),

V(crs, x, P(x, w, crs)) = 1.

* Adaptive Soundness: For all adversaries A, if crs +- Gen(1k) is sampled uniformly at
random, then the probability that A(crs) will output a pair (x, w) such that x g L and yet
V(crs, x, 7r) = 1, is at most p(k).

" Adaptive Zero-Knowledge: For all ppt adversaries A,

Pr[ExpA(k) = 1] - Pr[Exps(k) = 1]< p(k),

where the experiment ExpA(k) is defined by:

crs +- Gen(1k)

Return AP(crs,,-) (crs)

and the experiment ExpA(k) is defined by:

(crs, trap) +- Scrs(lk)

Return As'(crs,trap,,) (crs),

where S'(crs, trap, x, w) = SProof (crs, trap, x).

We next define the notion of a NIZK proof of knowledge.

Definition 4.2.2. Let H = (Gen, P,V,S = (S SPo f)) be an efficient adaptive NIZK proof
system for an N P language L E N P with a corresponding NP relation R. We say that H is a
proof-of-knowledge if there exists a ppt algorithm E such that for every ppt adversary A,

Pr[A(crs) = (x, 7r) and E(crs, trap, x, ir) = w* s.t. V(crs, x,i7r) = 1 and (x, w*) V R] = negl(k),

where the probabilities are over (crs,trap) +- Sc's(1k), and over the random coin tosses of the
extractor algorithm E.

Remark. There is a standard way to convert any NIZK proof system H to a NIZK proof-of-
knowledge system H'. The idea is to append to the crs a public key pk corresponding to any semantic
secure encryption scheme. Thus, the common reference string corresponding to H' is of the form
crs' = (crs, pk). In order to prove that x E L using a witness w, choose randomness r +- {o, 1}poly(k),

compute c = Encpk(w, r) and compute a NIZK proof 7r, using the underlying NIZK proof system H,
that (pk, x, c) E L', where

L' {(pk, x, c) : 1(w, r) s.t. (x, w) E R and c = Encpk(w, r)}.

Let 7r'= (ir, c) be the proof.

The simulator will generate a simulated crs' by generating (crs, trap) using the underlying sim-
ulator SC'S, and by generating a public key pk along with a corresponding secret key sk. Thus,
trap' = (trap, sk). The extractor algorithm E, will extract a witness for x from a proof 7r' = (7r, c)

by using sk to decrypt the ciphertext c.

Lemma 4.2.3 ([FLS90]). Assuming the existence of enhanced trapdoor permutations, there exists

an efficient adaptive NIZK proof of knowledge for all languages in NP.

135

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

4.2.2 Equivocal Commitments

Informally speaking, a bit-commitment scheme is equivocal if it satisfies the following additional
requirement. There exists an efficient simulator that outputs a fake commitment such that: (a) the
commitment can be decommitted to both 0 and 1, and (b) the simulated commitment and de-
commitment pair is indistinguishable from a real pair. We now formally define the equivocability
property for bit-commitment schemes in the CRS model.

The following definition is adapted from [FS89, C0981.

Definition 4.2.4. A non-interactive bit-commitment scheme (Gen, Corn, Rec) in the CRS model is
said to be an equivocal bit-commitment scheme in the CRS model if there exists a PPT simulator
algorithm S = (Sc, scom) such that Scr takes as input the security parameter 1 k and outputs a
CRS and trapdoor pair, (crs, trap); and Scom takes as input such a pair (crs, trap) and generates a
tuple (eqcom, eqdeco, eqdec') of a commitment string c and two decommitments eqdeco and eqdec1

(for 0 and 1), such that the following holds.

1. For every b E {0, 1} and every (eqcom, eqdeco, eqdec1) +- Sco (crs, trap), it holds that

Rec(crs, eqcom, eqdecb) = b.

2. For every b E {0, 1}, the random variables

{(crs, eqcom, eqdec) : crs +- Gen(1k), (eqcom, eqdec) <- Com(crs, b)}

and

{(crs, eqcom, eqdecb) : (crs, trap) <- Scrs(ik) (eqcom, eqdeco, eqdec1) <- Scom(crs, trap)}

are computationally indistinguishable.

Claim 4.2.5. Let (Gen, Com, Rec, S) where S = (SCr SCr), be a non-interactive bit-commitment
scheme in the CRS model (as in Definition 4.4.4). Then the distributions

{ (crs, eqcom, eqdec) : (crs, trap) <- Scrs(lk), (eqcom, eqdec) +- Corn(crs, b)}

and

{ (crs, eqcom, eqdecb) : (crs, trap) +- Scrs(1k), (eqcorn, eqdec0, eqdec1) - Scom(crs, trap)}

are computationally indistinguishable.

Proof. The proof follows from the following simple analysis.

{ (crs, eqcom, eqdec) : (crs, trap) +- Scrs(1k), (eqcom, eqdec) +- Corn(crs, b) } ;

{ (crs, eqcom, eqdec) : crs +- Gen(1k), (eqcom, eqdec) +- Corn(crs, b)}

{ (crs, eqcom, eqdecb) : (crs, trap) +- Scrs(Ik), (eqcorn, eqdeco, eqdec1) - Scom(crs, trap) },

where the first equation follows from the fact that {crs : crs +- Gen(lk)} is computationally in-
distinguishable from {crs : (crs, trap) <- Scr(1k)}, and the second equation follows from Defini-
tion 4.4.4.

136

4.2. PRELIMINARIES

Reusable CRS. Note that the simulator algorithms S" and Scor are described as separate
algorithms in the Definition 4.4.4 to highlight that it is not necessary to create a separate CRS
for every equivocal commitment, i.e., the CRS is reusable. In this case, Definition 4.4.4 can be
extended in a straightforward manner to consider indistinguishability of an honestly generated
tuple consisting of crs and polynomially many commitment, decommitment pairs, from a simulated
tuple.

Lemma 4.2.6 ([CLOS02]). Assuming the existence of one-way functions, there exists an equivocal
bit commitment in the (reusable) CRS model.

String Equivocal Commitments. For our purposes, we actually use string equivocal commit-
ment schemes. Note that such a scheme can be easily constructed by simply repeating the above
bit commitment scheme in parallel. More specifically, a commitment to a string of length n is
a vector (eqcom 1 ,..., eqcomn), with corresponding decommitment vector (eqdec 1 ,...,eqdecn). The

simulator algorithm Scom produces a commitment vector and a pair of decommitment vectors do =
(eqdeco, ... , eqdeco), d' = (eqdeci, ... , eqdec'). A decommitment to any particular bit string a =

(a,..., an) can be formed by selecting the appropriate decommitment values (eqdec.,.... eqdec"n).

4.2.3 The Elect Protocol

As part of our protocol, we elect disjoint committees, and need the guarantee that the number of

parties elected is not too large, and that (with overwhelming probability in k) a constant fraction
of each committee is honest. Such a protocol can be obtained using the technique of Feige's lightest
bin committee election protocol [Fei99].

Feige's protocol selects a single committee of approximate size f out of n parties.2 It consists
of a single round, in which each party P chooses and broadcasts a random integer "bin" bi E [n].
The elected committee consists of the parties in the "lightest bin": that is, those parties P whose

value by was selected by the smallest number of total parties. Feige demonstrated that no set of
malicious parties M C [n] of size (1 - e)n can force a committee S to be elected for which I n MI

is significantly greater than (1 - e)f, by using a Chernoff bound to argue that each bin contains
nearly en honest parties.

Lemma 4.2.7 (Feige). For any constant (1 - e) > 0 and any f < n, Feige's lightest bin protocol is
a 1-round public-coin protocol for electing a committee S such that for any set of malicious parties

M c [n] of size t =(1 - e)n,

1. IE < f,

2. Pr[| \ MI (e - 7)f] < Le V constant 77 > 0,

3. Pr > (1 -) + q < ne- V constant r > 0.

Proof. Given as Lemma 2.2.9 in Chapter 2. E

2 In Feige's original work [Fei99], he considered the specific case of t = log n. For our purpose, we need to elect

committees whose size depends on the security parameter (to achieve negligible error), and thus we consider general t.

137

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

We will use the following simple corollary within Section 4.4.5.

Corollary 4.2.8. For any constant (1-c) > 0 and f = , Feige's lightest bin protocol is a 1-round
public-coin protocol for electing a committee E such that IE| Vi and for any set of malicious
parties M c [n] of size t = (1 - e)n,

Pr[& \ MI= 0] < ne-v/ 2

Now, suppose we wish to elect m disjoint committees, each of size approximately k, where k
is the security parameter, and where the number of parties n is at least n > mk 2 . We consider
the following protocol, Elect. In a single round, each party samples and broadcasts a random value
xi +- [n/k]. The resulting committees are precisely the m lightest bins. Namely, suppose the
lightest bin is f1, the second lightest bin is f2, etc. Then Ej = {Pi : xi = fj}, for j = 1, ..., m.

Lemma 4.2.9. Let n > mk 2 , and let M C [n] be any subset of corrupted parties of size (1 - e)n.
Then for any constant q > 0, there exists a negligible function v(k) in k such that the protocol Elect
yields a collection of m committees { _j T1 where

1. Pr [j: |Sj1 _ (e - r,)k] v(k), and

2. Pr [3j :sn > (1 - E) +,q] < v(k),

where the probabilities are taken over the randomness of all parties. Moreover,

Ii U ... U Em I< mk.

Proof. For each bin b and honest party i, we define the indicator variable Xi,b to be 1 if and only if
party i selects bin b. Since we consider only honest parties, this is a Bernoulli random variable with
p = k For a particular bin b, we can now bound the probability that few honest parties selected
this bin as compared to the expected value ek.

Pr [Xi,b < (e -)kl = Pr Xi,b < (1 -) ck

< e-(E~k- 2/

=e 2e

where the second inequality holds by a Chernoff bound. 3 Taking a union bound, the probability
that any bin b has fewer than (e - 7)k honest parties will be

Pr[3 Bin b : Xi,b < (e - j)k] < e .
ifM

3 Exact Chernoff bound used: For XI, ... , X, independent Bernoulli random variables and y = E[EZ X}, then for

0 < S < 1, it holds that Pr[Ei Xi < (1 - 6)p] <&e-f /2

138

4.2. PRELIMINARIES

Note that since n = poly(k), this probability is negligible in k for any constant ?7, implying property

(1).
It remains to show that j|I (1 + o(1))k for every elected committee Eg (which, together with

the above, will imply property (2)).

Suppose 19i I = k + f for an elected committee Ei. We will argue that with overwhelming

probability, f E o(k). Since Ei is one of the m lightest bins, it must be that each of the remaining

2 - m bins has size at least k + f. Now, we know that with overwhelming probability in k, each

of the m elected bins Ei has at least (e - !)k honest parties. This means that (with overwhelming

probability), the total number of parties in all non-elected bins can be no greater than

n -m (e-77k.

Thus, since the number of non-elected parties is at least (g - m)(k + f), we must have with

overwhelming probability that

- m) (k + f) n - m E - k.

-+ ~ - in - m Ce-2 k - (n - km).

=km - km (e -)

km - km (-

~ - (- m)

k - i) since n > mk2
k - 1

E o(k).

This implies that each elected committee Ei must satisfy

|Ei| < k +e
E (1 + o(1))k,

as desired.
We next prove that

Ii U ... UEmI < mk

To this end, we order the n/k bins by their weight, and denote the resulting ordered bins by

B1 , ... , Bn/k (where B1 is the lightest and Bn/k is the heaviest). Think of the first m bins (i.e., the

m lightest bins) as a super-bin Superi, the next m bins as a super-bin Super 2 , etc. Thus, there are

[n] super-bins. Note that B1 is the lightest of the first [] super-bins, 4 and thus is of size at

most mk, as desired. E

4
1f , is not an integer then the last super-bin may contain less than m bins, and thus may be lighter than the

first super-bin.

139

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

4.2.4 Fully Homomorphic Encryption

A fully homomorphic public-key encryption scheme (FHE) consists of algorithms (Gen, Enc, Dec, Eval).
The first three are the standard key generation, encryption and decryption algorithms of a public
key scheme. The additional algorithm Eval is a deterministic polynomial-time algorithm that takes
as input a public key pk, a ciphertext 2 +- Encpk (x) and a circuit C, and outputs a new ciphertext
c = Evalpk (i, C) such that Dec~k (c) = C (x), where sk is the secret key corresponding to the public
key pk. It is required that the size of c depends polynomially on the security parameter and the
length of the output C (x), but is otherwise independent of the size of the circuit C.

Several such FHE schemes have been constructed, starting with the seminal work of Gen-
try [Gen09]. Recently, new schemes were presented by Brakerski, Gentry and Vaikuntanathan [BV11,
BGV11] that achieve greater efficiency and are based on the LWE assumption. We note that in
these schemes, the size of the public key depends linearly on the depth of the functions being eval-
uated. As a result, the complexity of our preprocessing phase depends on the maximum depth of
functions that we would like to compute. This issue can be avoided all together if we assume that
the schemes of [BV11, BGV11] are circular secure.

For our construction, we need an FHE scheme with the following additional property, which we
refer to as certifiability. Loosely speaking, an FHE scheme is said to be certifiable, if there is an
efficient algorithm that takes as input a random string r and tests whether it is "good" to use r as
randomness in the encryption algorithm Enc. More precisely, a certifiable FHE scheme is associated
with a set R, which consists of all the "good" random strings, such that (1) a random string is in R
with overwhelming probability; and (2) The Eval algorithm and the decryption algorithm Dec are
correct on ciphertexts that use randomness from R to encrypt. A formal definition follows.

Definition 4.2.10. A FHE scheme is said to be certifiable if there exists a subset R C {0, 1}poly(k)
of possible randomness values for which the following hold.

1. Pr[r E R] = 1 - negl(k), where the probability is over uniformly sampled r +- {0, 1}Poly(k).

2. There exists an efficient algorithm AR such that AR(r) = 1 for r E R and 0 otherwise.

3. We have [Vbi, ... , bn E {0,, Vri, ..., rn E R, 1
Pr V poly-size circuits f : {0, 1}" -+ {0, 1} 1

pksk Decsk(Evalk(f, c,..., c)) = f(bi, ... , bn), = 1- negl(k).

. where ci = Encpk(bi; ri)

We note that this property holds, for example, for the schemes of [BV11, BGV11]. For the
readers who are familiar with these constructions, the set of "good" randomness R corresponds to
encrypting with sufficiently "small noise."

4.2.5 Leaky Distributed Systems

One of the tools in our construction is a compiler that converts any circuit C (with secrets) into a
collection of sub-computations (or "modules") Subi, ... , Su bm,, whose sequential evaluation evaluates

140

4.2. PRELIMINARIES

the circuit C, and which is secure in the leaky distributed systems (LDS) model, a model recently

introduced by Bitansky et. al. [BCG+11].
Before we describe this compiler, let us recall prerequisite prior works [JV10, GR10, GR12},

which construct such a compiler in the "only computation leaks" (OCL) model. In particular, these

works demonstrate a compiler that takes a circuit C and converts it into a circuit C' consisting

of m disjoint, ordered sub-computations Sub 1, ... , S u bi, where the input to sub-computation S ubi

depends only on the output of earlier sub-computations. Each of these sub-computations Subi is

modeled as a non-uniform randomized poly-size circuit, with a "secret state." It was proven that

no information about the circuit C is leaked, even if each of these sub-computations is leaky. More

specifically, the adversary can request to see a bounded-length function of each Subi (separately),
and these leakage functions may be adaptively chosen.

These works also consider the continual leakage setting, where leakage occurs over and over again

in time. In this setting, the secret state of each Subi must be continually updated or refreshed. To

this end, after each computation, all the Subi's update their secret state by running a randomized

protocol U pdate. We stress that leakage may occur during each of these update protocols, and that

such leakage may be a function of both the current secret state and the randomness used by the

Update procedure.
In this work, we use such a compiler which is secure in the LDS model [BCG+11]. The LDS

model strengthens the OCL model in two ways. First, in the LDS model, the adversary is allowed to

view and control the entire communication between modules; in contrast, the OCL model assumes

the communication between modules is kept secret from the adversary, and that the messages are

generated honestly. Second, in the LDS model, the adversary may leak adaptively on each module

in any order. For instance, the adversary may leak a bit from Subi, then a bit from Sub3 , and based

on the results, leak again on Subi. In contrast, the OCL model only allows the adversary to request

leakage information from the module that is currently computing. In particular, this restricts the

adversary to leak on modules in order (i.e., first leak from Subi, then from Sub2 , etc.).

In what follows, we describe the LDS compiler of [BCG+11] in more detail. Similar to the

OCL circuit compiler, the LDS circuit compiler initializes each module with some secret state,
and thereafter the modules can receive messages, send messages, generate fresh randomness, and

maintain a local state. To evaluate the circuit C, an input v is given to Subi and the modules

communicate to jointly compute C(v), which is eventually output by Subm.

Remark 4.2.11. For the sake of simplicity of notation, we assume (without loss of generality)

that the module Subi only sends messages to Subi+1 (where we define Subm+1 -^ Subi). Moreover,
we assume for simplicity that during each computation, where C is evaluated on some input v,
each module Subi sends a single message to Subi+1, and that Subm does not send a message to any

module, and simply outputs C(v). This assumption indeed holds for the LDS compiler of [BCG+11)
which is based on [GR12]. We note that this assumption is not needed for our result to be correct,
but it simplifies the notation.

The LDS model considers an adversary who interacts with and leaks from the modules in attempt

to learn C. As in the OCL model, the adversary is allowed to freely choose the inputs v to the

computation, and to choose one submodule at a time and evaluate a leakage function on its inner

state and randomness. There is no limit to the number of times each component can be chosen to

141

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

leak during the lifetime of the system, as long as the total rate of leakage from each component
is not too high. In addition, the leakage functions can be chosen adaptively, as a function of all
information learned up to that point. However, in contrast to the OCL model, the adversary is
allowed to leak on the modules in any order. The adversary also has the additional power to see
and control all the communication between the modules.

More explicitly, the LDS model considers continual leakage, where the lifetime of each submodule
is partitioned into time periods. At the end of each time period, the modules "refresh" their inner
state by applying a (possibly distributed) Update procedure, after which they erase their previous
state. As with the rest of the computation, the Update procedure is also exposed to leakage, and
the adversary controls the exchange of messages during the update.

Definition 4.2.12 (Leaky Distributed Systems (LDS) Model). In a A-bounded LDS attack, a PPT
adversary A interacts with modules (Subi,..., Subm) by adaptively performing any sequence of the
following actions:

* Interact(j, msg): For j E [m], send the message msg to the j'th submodule, Subj, and receive
the corresponding reply. Note that the modules are message-driven: they become activated
when they receive a message from the attacker, at which point they compute and send the
result, and then wait for additional messages.

" Lea k(j, L): For j E [m] and a poly-size leakage function L {0, 1}* {, 1}, if strictly fewer
than A queries of the form Lea k(j, -) have been made so far, A receives the evaluation of L on
the secret state of the j'th submodule, Subj. Otherwise, A receives I.

In a continual A-LDS attack, the adversary A repeats a A-bounded LDS attack polynomially
many times, where between every two consecutive attacks the secret states of the modules are
updated. The update is done by running a distributed Update protocol among all the modules. We
also allow A to leak during the Update procedure, where the leakage function takes as input both
the current secret state of Suby and the randomness it uses during the Update procedure.

We denote by time period t of submodule Subj the time period between the beginning of the
(t - 1)'st Update procedure and the end of the t'th Update procedure in that submodule (note that
these time periods are overlapping).5 We allow the adversary A to leak at most A bits from each
Subj during each (local) time period.

We refer to such an adversary A as an A-LDS adversary, and denote the output of A in such
an attack by A[A : Subi, ... , Subm : Update].

We say that the collection of modules (Subi,..., Subm,) is A-secure in the LDS model if for any
A-LDS adversary A interacting with the modules as described above, there exists a PPT simulator
who simulates the output of A.

Definition 4.2.13 (LDS-Secure Circuit Compiler). We say that (C, Update) is a A-LDS secure
circuit compiler if for any circuit C and (Subi,..., Sub,) +- C(C), the following two properties
hold:

5 Intuitively, time period t is the entire time period where the t'th updated secret states can be leaked. Note that
during the t'th Update procedure, both the (t - 1)'st and the t'th secret state may leak, which is why the time periods
are overlapping.

142

4.2. PRELIMINARIES

1. Correctness: The collection of modules (Subi,...,Subm) maintain the functionality of C
when all the messages between them are delivered intact.

2. Secrecy: For every PPT A-LDS adversary A there exists a PPT simulator S, such that for
any ensemble of poly-size circuits {C,} and any auxiliary input z e {0, 1}P*IY("):

{A(z)[A : Subi,..., Subm : Update] InENCECn %c {S (z, 19 n)}ENCECn

where S only queries C on the inputs A sends to the first module, Subi.

Theorem 4.2.14 ([BCG+11]). Assuming the existence of a non-committing encryption scheme
and a A-OCL circuit compiler which compiles a circuit C to m(ICI) modules, there exists a A-LDS
secure circuit compiler (C, Update) for which C(C) has the same number of modules, m(ICI).

A very recent work of Goldwasser and Rothblum [GR12] constructs a A-OCL circuit compiler
with the following properties.

Theorem 4.2.15 ([GR12]). For any security parameter k, there (unconditionally) exists a A-OCL
secure circuit compiler for A = Q(k), that takes any circuit C into a collection of O(|C|) modules,
each of size 0(k 3).

Remark 4.2.16 (Folklore). If one additionally assumes the existence of a fully homomorphic
encryption (FHE) scheme, then there exists a A-LDS secure circuit compiler (C, Update) such that
for every poly-size circuit C, the number of output sub-computations Subi,..., Subm generated by
C is polynomial in the security parameter of the FHE scheme and independent of the size of C.

4.2.6 Weakly Leakage-Resilient MPC

Our construction of a leakage-resilient MPC protocol in the preprocessing model (as described
in Section 4.3.2), uses as a building block an MPC protocol that is leakage-resilient with respect
to a weaker notion of secrecy (where the ideal world is weakened), as was recently constructed
in [BGJ+13]. For lack of a better name, we call it weakly leakage-resilient MPC. Below, we present
a simplified (and weaker) version of the security definition achieved by [BGJ+13], which suffices for
our construction. 6

Very briefly, the security definition in [BGJ+13] follows the ideal/real world paradigm. They
consider a real-world execution where an adversary, in addition to corrupting a number a parties,
can obtain leakage information on the joint secret states of the honest parties at any point during
the protocol execution. Leakage queries may be adaptively chosen based on all information received
up to that point (including responses to previous leakage queries), and are computed on the joint
secret states of all the honest parties.

Note that in the absence of a leakage-free preprocessing phase, one cannot hope to realize the
standard ideal world security in the presence of leakage attacks, since leakage directly on the inputs

6 Among the differences: The work of [BGJ+13] considered a more general definition to capture, e.g., "noisy" and
computationally hard-to-invert leakage, whereas here we will only require a more simplistic bounded-output leakage
model.

143

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

of honest parties cannot be simulated. To this end, [BGJ+13] consider an ideal world experiment
where in addition to learning the output of the function evaluation, the simulator is also allowed
to request leakage on the inputs of all the honest parties jointly. Below, we describe the ideal and
real world experiments and give the formal security definition from [BGJ+13].

Ideal World. We first describe the ideal world experiment, where n parties Pi,..., Pn interact
with an ideal functionality for computing a function f. An adversary may corrupt any subset
M c P of the parties. As in the standard MPC ideal world experiment, the parties send their
inputs to the ideal functionality and receive the output of f evaluated on all inputs. The main
difference from the standard ideal world experiment is that the adversary is also allowed to make
leakage queries on the inputs of the honest parties. Such queries are evaluated on the joint collection
of all parties' inputs. The ideal world execution proceeds as follows.

Inputs: Each party Pi obtains an input xi. The adversary is given auxiliary input z and selects a
subset of parties M C P to corrupt.

Sending inputs to trusted party: Each honest party Pi sends its input xi to the ideal func-
tionality. For each corrupted party Pi E M, the adversary may select any value x' and send
it to the ideal functionality.

Trusted party computes output: Let x ,..., x' be the inputs that were sent to the ideal func-
tionality. The ideal functionality computes f(x',..., x').

Adversary learns output: The ideal functionality first sends the evaluation f(x', ..., x') to the
adversary. The adversary replies with either continue or abort.

Honest parties learn output: If the message is abort, the ideal functionality sends _L to all
honest parties. If the adversary's message was continue, then the ideal functionality sends the
function evaluation f(x, ... ,x') to all honest parties.

Leakage queries on inputs: The adversary may send (adaptively chosen) leakage queries in the
form of efficiently computable functions Lj (described as a circuit). On receiving such a query,
the ideal functionality computes Lj (X,... , z') and returns the output to the adversary.

Outputs: Honest parties output their inputs and the messages they obtained from the ideal func-
tionality. Malicious parties may output an arbitrary PPT function of their initial input

(auxiliary input and random-tape) and the message it has obtained from the ideal function-
ality.

An ideal world adversary S who obtains a total of A bits of leakage is referred to as a A-leakage
ideal adversary. The overall output of the ideal-world experiment consists of all the inputs and
values received by honest parties from the ideal functionality, together with the output of the
adversary, and is denoted by W-IDEALf,(1k, z, z).

144

4.2. PRELIMINARIES

Real World. The real-world experiment begins by first choosing a common random string crs.

Then, each party P receives an input xi and the adversary A receives auxiliary input z. These

values can depend arbitrarily on the crs, but need to be efficiently computable given the crs.

However, for the sake of simplicity of notation, throughout this section we assume that these values

are independent of the crs.
The adversary A selects any arbitrary subset M c P of the parties to corrupt. Each corrupted

party Pi E M hands over its input to A. The parties P1 , . . . , P, now engage in an execution of a

real n-party protocol H. The adversary A sends all messages on behalf of the corrupted parties,
and may follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow the

instructions of H. Furthermore, at any point during the protocol execution, the adversary may make

leakage queries of the form L and learn L(statep\M), where statep\M denotes the concatenation of

the protocol states statei of each honest party P. We allow the adversary to choose the leakage

queries adaptively.
Honest parties have the ability to toss fresh coins at any point in the protocol, and at that point

these coins are added to the state of that party. At the conclusion of the protocol execution, each

honest party P generates an output according to H. Malicious parties may output an arbitrary

PPT function of the view of A.
An adversary A who obtains at most A bits of leakage is referred to as a A-leakage real adversary.

Let GenwLR denote the CRS generation algorithm. Further, let W-REAL (1k, crs, z, z) be the

random variable that denotes the values output by the parties at the end of the protocol H (using

crs +- GenWLR(Ik) as the CRS). Then, the overall output of the real-world experiment is defined as

the tuple (crs, W-REAL ,gM(1k, crs, z), z).

Security Definition. We now state the formal security definition.

Definition 4.2.17 (A-Weakly Leakage-Resilient MPC). A protocol H evaluating a functionality

f is a A-weakly leakage-resilient MPC protocol if for every PPT A-leakage real adversary A, there

exists a A-leakage ideal adversary S = (Sc,, Sec), corrupting the same parties as A, such that for

every input vector Y, every auxiliary input z E {o, 1}*, and every subset M c P, it holds that

{crs, W-IDEALf*7c(crs trap)M, k kEN {crs', W-REALM(lk, crs', X, z) kEN

where (crs, trap) +- Sc'(1k), and crs' +- Gen(1k).

Theorem 4.2.18 ([BGJ+13]). Based on the DDH assumption, for every poly-size function f, for

every leakage bound A E N, and any number of parties and corrupted parties, there exists a protocol

H in the common random string model for computing f that is A-weakly leakage resilient as per

Definition 4.2.17.

Remark 4.2.19. We note that Theorem 4.2.18 holds even if we allow the input vector Y and the

auxiliary input z to be arbitrary poly-time computable functions of the crs. We eliminated this

dependency from Definition 4.2.17 only for the sake of simplicity of notation.

Remark 4.2.20 (Standalone vs. UC Security). The main result in [BGJ+13] actually achieves a

stronger notion of universally composable (UC) security, at the cost of additionally relying on the

145

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

decisional linear assumption over bilinear groups. Indeed, their UC-secure WLR-MPC construction
relies on a leakage-resilient UC-NIZK system, whose only known construction [GJS11, GOS06b] is
based on the decisional linear assumption in the bilinear groups setting.

However, for the present work, it suffices to obtain a "standalone" secure construction of WLR-
MPC. Thus, it is possible to replace the UC-NIZK system with a standalone secure interactive
weakly leakage-resilient ZKPoK system. This, in turn, can be based on the DDH assumption. The
resulting WLR-MPC achieves standalone security based on only the DDH assumption in the CRS
model.

Security against disjoint leakage In Definition 4.2.17, the real-world adversary A is allowed
to obtain joint leakage on the secret states of the honest parties. In the present work, we consider
a weaker adversarial model, in which the leakage on each honest party in the real world is disjoint
(i.e., A is not allowed to leak on the joint secret states of the honest parties). Theorem 4.2.18
clearly still applies to this setting. However, we note that the ideal world guarantee does not
become stronger when we consider this set of restricted adversaries: that is, even to simulate such
adversaries, the simulator S needs joint leakage on the inputs of all the honest parties. 7

Security for randomized functions We note that Theorem 4.2.18 holds for deterministic
functionalities f. In this work, we need to use a weak leakage-resilient MPC protocol for randomized
functions (since the modules in the OCL leakage-resilient circuit compute randomized functions).
In Section 4.4, we show that in our setting, where leakage in the real world is disjoint, the number
of parties is polynomially related to the security parameter, and a constant fraction of the parties
are honest, then we can construct weak leakage resilient protocols for randomized functions.

4.3 Our Model

In this section, we present the MPC model and the security definition considered in this paper. We
start by giving a brief overview of our model and then proceed to give a formal description of the
same.

Overview. We consider the setting of n parties '= {P 1 , ..., P} who wish to jointly compute any
ppt function over their private inputs. Specifically, we consider the case where the parties wish to
perform arbitrarily many evaluations of functions of their choice. We refer to a protocol that allows
computation of multiple functions (over a given set of inputs) as a multi-function MPC protocol.
Unlike the standard MPC setting, we consider security of a multi-function MPC protocol against
"leaky" adversaries that may (continuously) leak on the secret state of each honest party during
the protocol execution.

To formally define security, we turn to the real/ideal paradigm. Very briefly, we consider a
real-world execution where an adversary, who corrupts any arbitrary number of parties in the
system, may additionally obtain arbitrary bounded, independent leakage on the secret state of

7In fact, if we could simulate real-world adversaries that obtain only disjoint leakage queries, with a simulator
that obtains only disjoint leakage queries, then this would almost immediately give us a result similar to ours: An
MPC protocol with preprocessing that is secure against continual leakage.

146

4.3. OUR MODEL

each honest party. However, unlike the recent works on leakage-resilient interactive protocols
[GJS11, BCH11, BGK11, DHP11, BGJ+13], we consider the standard ideal world model, where
the adversary does not learn any information on the honest party inputs.

Note that if we do not put any restriction on the real-world adversary, and in particular, if he
is allowed to obtain leakage throughout the protocol execution, then it is impossible to realize the
standard ideal world model, since the adversary may simply leak on the inputs of the honest parties,
while this information cannot be simulated in the ideal world. With this in mind, we (necessarily)
allow for a "leak-free" one-time preprocessing stage that happens at the beginning of the real-world
execution. Furthermore, to withstand continual leakage attacks, we (necessarily) allow for periodic
updates of the secret values of the parties. We allow leakage to occur during this update procedure
as usual.

We now proceed to give a formal description of our model in the remainder of this section. In
Section 5.3, we describe the ideal world experiment. Next, in Section 5.3, we describe the real
world experiment. Finally, in Section 5.3, we present our security definition.

Throughout this work, we assume that the functions to be evaluated on parties' inputs give the
same output to all parties. This is for simplicity of exposition, since otherwise, if the output itself
is a secret value (given to an honest party) then this value can be leaked. This can be handled by
complicating our security guarantees, and, indeed, one can tweak our construction to ensure that
the adversary learns only leakage information on such outputs. However, for the sake of simplicity,
we choose to avoid this issue.

4.3.1 Ideal World

In the ideal world, each party P sends her input xi to a trusted third party. Whenever the
adversary A sends a poly-size circuit f to the trusted party, it sends back f(xi,... , Xn). Since we
consider the case of dishonest majority, we can only obtain security with abort: i.e., the adversary
first receives the function output f(xi,. . . , n), and then chooses whether the honest parties also

learn the output, or to prematurely abort. The adversary can query the trusted party many times
with various functions f1 . Moreover, these functions can be adaptively chosen, based on the outputs
of previous functions. The ideal world model is formally described below.

Inputs: Each party Pi obtains an input xi. The adversary is given auxiliary input z. He selects a
subset of the parties M C P to corrupt, and is given the inputs xe of each party Pe E M.

Sending inputs to trusted party: Each honest party Pi sends its input xi to the ideal func-
tionality. For each corrupted party Pi E M, the adversary may select any value x' and send
it to the ideal functionality.

Trusted party computes output: Let x',..., x' be the inputs that were sent to the trusted
party. Then, the following is repeated for any (unbounded) polynomial number of times:

* Function selection: The adversary chooses a poly-size circuit fj, and sends it to the
ideal functionality.

147

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

* Adversary learns output: The ideal functionality sends the evaluation f3 (zi, ... , Xr)
to the adversary. The adversary replies with either continue or abort.

" Honest parties learn output: If the adversary's message was abort, then the trusted
party sends I to all honest parties. Otherwise, if the adversary's message was continue,
then it sends the function output f3 (xi,..., X') to all honest parties.

Outputs: Honest parties output all the messages they obtained from the ideal functionality. Ma-
licious parties may output an arbitrary PPT function of the adversary's view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For
any ideal-world adversary S with auxiliary input z E {o, 1} *, any input vector XF, any set of func-
tions {fg} chosen by the adversary, and security parameter k, we denote the output of the
corresponding ideal-world experiment by

IDEALs,m (1 ,z z,{f .

Note that this is a slight abuse of notation since the functions {fj} may be chosen adaptively.

4.3.2 Real World

The real world execution begins by an adversary A selecting any arbitrary subset of parties M C P
to corrupt. The parties then engage in an execution of a real n-party multi-function MPC protocol

H = (Hpre, Hinput, loniine) that consists of three stages, namely, (a) a preprocessing phase, (b) an

input phase, and (c) an online phase, as described below. We assume that honest parties have the
ability to toss fresh coins at any point. Throughout the execution of H, the adversary A sends all
messages on behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy.
In contrast, the honest parties follow the instructions of H. Furthermore, at any point (except
during the preprocessing and the input phases) during the protocol execution, the adversary may
leak on the entire secret state of each honest parties, via an MPC leakage query, defined as follows.

Definition 4.3.1. A MPC leakage query is defined by Leak(i, L), where i E [n] and L : {0, 1}* -+

{0, 1} is a poly-size circuit. When an adversary sends a leakage query Leak(i, L), he receives the
evaluation of L on the entire secret state of party Pi.

We now formally describe the different phases in the protocol.

Preprocessing phase: This phase is interactive and leak-free, and is run only once. It is inde-
pendent of the inputs of the parties, and is independent of the functions that will later be
evaluated. Thus, this phase can be run in the beginning of time, before the parties even know
what their inputs are, or what functions they would like to evaluate.

We assume that no leakage occurs during the run of this preprocessing phase, but we do
allow leakage to occur as soon as the preprocessing phase ends. At the end of this phase each
party Pi has an (initial) secret state state{.

148

4.3. OUR MODEL

Input phase: This phase is non-interactive and leak-free, and depends only on the inputs xi, ..., zn
(independent of the functions to be computed). Whenever a party P gets (or chooses) a secret
input xi, she does some local computation which may depend on her secret input xi and on
her secret state statef. She then sends a message to all parties, and erases her secret input xi.

We assume that the party Pi is not leaked upon during the execution of this phase. However,
leakage may occur between the preprocessing phase and the input phase, and leakage may
occur immediately after the input phase.

We emphasize that each party can change her input as often as she wants by simply re-running
the input phase with the new input.8

Online phase: This phase takes place in a leaky environment. During this phase, the parties carry
out an unbounded number of function evaluations on their inputs, and update their respective
secret states. At any point during this phase, A may make adaptively-chosen leakage queries,
as per Definition 4.3.1, in the manner as described below.

Whenever A wishes to compute a function f3 (represented as a poly-size circuit), all parties
execute the function evaluation protocol Hcomp, described below. Whenever A wants the
honest parties to update their secret states, all parties execute the update protocol HUpdate,
described below. We let HTOnline = (ilcomp, llUpdate). We begin at leakage time period f = 1;
after each update procedure, f is incremented.

" Computation procedure:

1. All parties execute protocol 11 Com ,p(fj), where honest parties Pi act in accordance

with input staten. Note that the secret state of parties may change during the
execution of this protocol, as dictated by Hcomp-

2. At the conclusion of the computation phase, each honest party Pi outputs his final
message of the protocol (which should correspond to the evaluation of fj). Malicious
parties may output an arbitrary PPT function of the view of A.

" teh Update procedure:

1. All parties execute protocol HUpdate, where honest parties P act in accordance with

input statep.

2. At the conclusion of the update phase, each honest party P sets state i to be Pi's
Pioutput from HUpdate. Each honest Pi erases state.

3. Increment f <- f + 1.

Leakage: Initialize each leakede to 0. Each leakage query (i, L) made by A during the eth time
period is answered as follows.

* During the computation phase: if leakedi > A, then A receives 0. Otherwise, A receives
the evaluation of L on the current secret state of party Pi, and leakede +- leakede + 1.

8 For simplicity, in the security proof in Section 4.6, we assume that the parties run the input phase only once,

however the proof extends readily to the case that the parties rerun the input phase many times with different inputs.

149

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

* In eth update phase: if either leakedt > A or leakedt+1 A, then A receives 0. Oth-
erwise, A receives the evaluation of L on the current secret state of party P, and both
leakedt +- leakedt + 1 and leakedj+1 +- leakedt+ 1 + 1.

We emphasize that the A's leakage queries may be made on any party, adaptively chosen
based on all information received up to that point (including responses to previous leakage
queries). The only restriction is that the number of bits leaked between the execution of any
two consecutive update protocols is bounded. Note that the leakage queries made during the
e'th update phase (where parties transition between their l'th and (f + 1)'st secret states) are
counted against both the Vth and (f-+ 1)'st time period, where the 'th time period is the time
period where the party stores her e'th secret state. The reason for this "double counting" is
that during the 'th update phase, the adversary can leak both on the e'th secret state and
on the f + 1'st secret state of the party.

We refer to an adversary who corrupts t parties M C P and makes up to A leakage queries
in each time period as a (t, A)-continual leakage adversary.

For any adversary A with auxiliary input z E {0, 1}*, any inputs {xi} U, any set of functions

{fj}j chosen (adaptively) by the adversary, and any security parameter k, we denote the output
of the multi-function MPC protocol H = (HPre, Ilinput, HOnline) by

REALfg,(1k,-,z, z{fj} 1).

Loosely speaking, we say that a protocol H is a leakage-resilient multi-function MPC protocol
if any adversary, who corrupts a subset of parties, receives leakage information as described above,
and runs the protocol with honest parties on any (unbounded) sequence of functions fi, ...,fy,
gains no information about the inputs of the honest parties beyond the output of the functions
fj(xi, ... , xn) for j = 1, ... , p. We formalize this in the next subsection.

4.3.3 Security Definition

In what follows, we formally define our model of security; i.e., what it means for a real-world
protocol to emulate the desired ideal world.

Definition 4.3.2 (Leakage-Resilient MPC). A multi-function evaluation protocol H = (Hfpre, Ilinput,
Honijne) is said to be A-leakage-resilient against t malicious parties if for every PPT (t, A)-continual
leakage MPC adversary A in the real world, there exists a PPT adversary S corrupting the same
parties in the ideal world such that for every input vector z, every auxiliary input z, and any
(adaptively chosen) set of functions {fj}= where p = poly(k), it holds that

IDEALs,m (1, , z,{ c REALI"M X1jt 1)f

Note that we do not allow the simulator to request leakage on honest parties' inputs in the ideal
world, as was done in [BCH11, DHP11, BGJ+13], and thus model a stronger notion of secrecy than
what was achieved in prior works. 9

9With the (necessary) addition of a one-time leak-free preprocessing phase.

150

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

4.4 Weakly Leakage-Resilient MPC for Randomized Functions

In our final leakage-resilient MPC protocol, parties will be required to jointly evaluate randomized

functions via a weakly leakage-resilient (WLR) MPC protocol. However, the WLR-MPC protocol

from [BGJ+131 is guaranteed to be fully simulatable only for deterministic computations. In this

section, we describe the challenges in achieving WLR-MPC for randomized functions, and then

provide a construction for such functions to be used as a tool within our LR-MPC protocol.

In a setting where leakage is not a concern, there is no significant distinction between MPC

protocols for deterministic and randomized functions. Indeed, given a protocol for deterministic

functions, one can achieve MPC for any randomized functionality f by having each party sub-

mit an additional random string ri as input to an MPC protocol for the deterministic function

f'((xi, ri),. . ., (X., rn)) := f(xi,..., x,; @i ri) that evaluates f using randomness equal to @i ri.

However, if the adversary is able to leak information on the secret states of honest parties before

selecting his strings rj, such direct transformations break down. For example, in the transformation

proposed above, the adversary can skew the final combined randomness @ ri by leaking on the

honest parties' strings ri, and then choosing the rjs of corrupted parties adaptively. If the adversary

is able to leak information on the joint secret state of honest parties (even a single bit), then one

will run into the same problem for any possible transformation: indeed, collectively generating

unbiased randomness within such a leakage model is simply impossible [CLL+13].

One can circumvent this impossibility by considering real-world adversaries who leak indepen-

dently on the secret states of different honest parties. For example, if the leakage on honest parties

is independent and bounded, then replacing the xor function in the example above with a robust

multi-source extractor (see Section 4.4.3) will guarantee that the adversary cannot skew the re-

sulting random string. This yields meaningful guarantees for the resulting protocol (e.g., on the

correctness of the protocol output distribution) that will likely suffice for a number of applications.

However, for us, the challenge runs even deeper. The primary issue is a subtle, yet crucial

requirement of simulation-based security that will be required in order to use the WLR-MPC

protocol within a larger protocol. Namely, in our case it is not enough to ensure that the parties

evaluate f with unbiased randomness. Rather, the simulator must be able to force a particular

random string to be used.
To be more explicit, we will require the following real/ideal-world security definition. In the real

world, parties communicate via the protocol, and leakage occurs independently on the secret states

of honest parties. In the ideal world, parties submit their inputs xi to a trusted third party. The

trusted party samples a uniform random string R, responds with the evaluation f(xi,... , x"; R)

of f on the received inputs using randomness R, and answers leakage queries on the collection

of secret values (xi,.. . ,x , R). Now, to achieve security, the simulator in the ideal world must

be able to properly simulate the interactions of honest parties to be consistent with this output

f(xi,... , x.; R); In particular, he must simulate consistently with the selected random string R.

Achieving this notion of security will be crucial for our application, where we wish to use the

WLR-MPC protocol within a larger protocol.10

'oSpecifically, we will be using the WLR-MPC protocol to execute the modules of a LDS-compiled circuit, and must

compose the corresponding simulators appropriately. Given black-box access to the circuit, the LDS simulator will

simulate the output and leakage on each LDS module for some fixed choice of randomness R. Given this information,

151

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

In order to achieve this definition, we will need a protocol that allows parties in the real world
to collectively generate randomness in a "fully simulatable" fashion, in the sense that the simulator
can "force" any desired outcome R for the coin toss.

In this section, we show how to achieve fully simulatable coin tossing within a setting where
leakage in the real world occurs independently on honest parties' secret states, the number of
parties is polynomially related to the security parameter, a constant fraction of which are honest,
and honest parties have the ability to erase information from their secret state. In turn, we show
how to use such a coin tossing protocol to achieve WLR-MPC for randomized functions within
the same setting. This is precisely the setting required to plug the WLR-MPC into our final
leakage-resilient MPC protocol.

We begin in Section 4.4.1 by formally presenting the required security definition for WLR-MPC
for randomized functions. In Section 4.4.2 we formally define the required "fully simulatable" coin
tossing protocol. We introduce some tools to be used in the construction in Section 4.4.3. In
Section 4.4.4 we present the coin tossing protocol construction and proof. Then in Section 4.4.5,
we describe how to use this coin tossing protocol to achieve WLR-MPC for randomized functions.

4.4.1 Security Definition: WLR-MPC for Randomized Functionalities

In this section, we formally define the notion of WLR-MPC that will be required for our final
LR-MPC protocol construction. Note that the definition which follows is essentially the same as
Definition 4.2.17, with the following changes:

" We now consider randomized functions f. In the ideal world, the trusted party selects the
(uniform) randomness R for evaluating f, and answers leakage queries on the honest parties'
inputs xi and the random string R.

" Leakage in the real world is assumed to take place independently on the secret state of each
honest party.

" Honest parties may now periodically erase portions of their secret state. (Note that this is
anyway required in the setting of continual leakage).

Ideal World. We first describe the ideal world experiment, where n parties P1 ,...,P,, interact
with an ideal functionality for computing a randomized functionality f. An adversary may corrupt
any subset M c P of the parties. As in the standard MPC ideal world experiment, the parties
send their inputs to the ideal functionality and receive the output of f evaluated on all inputs and
some uniform random string R. The main difference from the standard ideal world experiment is
that the adversary is also allowed to make leakage queries on the inputs of the honest parties and
random string R. Such queries are evaluated on the joint collection of all parties' inputs and R.
Formally, the ideal world execution proceeds as follows.

Inputs: Each party P obtains an input xi. The adversary is given auxiliary input z and selects a
subset of parties M c P to corrupt.

the WLR-MPC simulator must be able to simulate the WLR-MPC execution of each module consistent with this
output and leakage (and thus with the chosen random string R).

152

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Sending inputs to trusted party: Each honest party P sends its input Xi to the ideal func-
tionality. For each corrupted party Pi E M, the adversary may select any value xz' and send
it to the ideal functionality.

Trusted party computes output: Let xi,..., x' be the inputs that were sent to the ideal
functionality. The ideal functionality samples a uniform random string R and computes

f(zX, . / . '; R).

Adversary learns output: The ideal functionality first sends the evaluation f(x', ..., x'; R) to
the adversary. The adversary replies with either continue or abort.

Honest parties learn output: If the message is abort, the ideal functionality sends -L to all
honest parties. If the adversary's message was continue, then the ideal functionality sends the
function evaluation f(x, ... , x'; R) to all honest parties.

Leakage queries on inputs: The adversary may send (adaptively chosen) leakage queries in the
form of efficiently computable functions Lj (described as a circuit). On receiving such a query,
the ideal functionality computes Lj (Xi,..., X', R) and returns the output to the adversary.

Outputs: Honest parties output their inputs and the messages they obtained from the ideal func-
tionality. Malicious parties may output an arbitrary PPT function of their initial input

(auxiliary input and random-tape) and the message it has obtained from the ideal function-
ality.

An ideal world adversary S who obtains a total of A bits of leakage is referred to as a A-leakage
ideal adversary. The overall output of the ideal-world experiment consists of all the inputs and
values received by honest parties from the ideal functionality, together with the output of the
adversary, and is denoted by W-IDEALM(1k, x, z).

Real World. The real-world experiment begins by first choosing a common random string crs.
Then, each party P receives an input x and the adversary A receives auxiliary input z. These
values can depend arbitrarily on the crs, but need to be efficiently computable given the crs.
However, for the sake of simplicity of notation, throughout this section we assume that these values
are independent of the crs.

The adversary A selects any arbitrary subset M C P of the parties to corrupt. Each corrupted
party Pi E M hands over its input to A. The parties Pi, ... , P, now engage in an execution of a
real n-party protocol H. The adversary A sends all messages on behalf of the corrupted parties,
and may follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow the
instructions of H. Furthermore, at any point during the protocol execution, the adversary may
make leakage queries of the form (L, i) and learn L(statei), where statei denotes the current secret
state of party P. We allow the adversary to choose the leakage queries adaptively.

Honest parties have the ability to toss fresh coins at any point in the protocol, and at that point
these coins are added to the state of that party. In addition, honest parties have the ability to erase
portions of their secret state; such information can no longer be accessed in future computations,
and is removed from statei for future leakage queries. At the conclusion of the protocol execution,

153

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

each honest party P generates an output according to R. Malicious parties may output an arbitrary
PPT function of the view of A.

An adversary A who obtains at most A bits of leakage is referred to as a A-independent-leakage
real adversary. Let GenWLR denote the CRS generation algorithm. Further, let W-REAL (1k, crs, X, z)
be the random variable that denotes the values output by the parties at the end of the protocol
II (using crs +- GenWLR(1k) as the CRS). Then, the overall output of the real-world experiment is
defined as the tuple (crs, W-REALSM(1k, crs, z), z).

Security Definition. We now state the formal security definition of WLR-MPC for randomized
functions.

Definition 4.4.1 (A-Weakly Leakage-Resilient MPC for Randomized Functionalities). A protocol
H evaluating a randomized functionality f is a A-weakly leakage-resilient MPC protocol if for
every PPT A-independent-leakage real adversary A, there exists a A-leakage ideal adversary S =
(Scs, Sx), corrupting the same parties as A, such that for every input vector s, every auxiliary
input z E {0, 11*, and every subset M C P, it holds that

crs, W-IDEAL .e.. t,,p),,(1, , z) kEN c {crs', W-REAL,M(1k, crs' , , z) k

where (crs, tra p) +- Scrs(ik), and crs' +- Gen(1k).

4.4.2 Security Definition: Fully Simulatable Leakage-Resilient Coin Tossing

Converting from an MPC protocol for deterministic functions to one for general randomized func-

tions requires constructing a multi-party coin tossing protocol that is "fully simulatable," in the

sense that the simulator can "force" any desired outcome for the coin toss, simulating the protocol

appropriately to yield this outcome. We begin by formalizing the desired coin tossing object.

Ideal Functionality Frand. We wish to emulate an ideal functionality that samples a random bit

and sends it to a single party. Formally, define the ideal functionality Flrand that takes no

inputs, samples a random bit b, and sends b as output only to P. For adversary (simulator)

S, denote the output of all parties (including S) in the ideal world experiment by Idealy and (S).

Real World Experiment. Recall that in the real world, the adversary is allowed to leak inde-

pendently on the entire secret state of each honest party throughout the protocol execution.

The output of the experiment consists of the outputs of all parties, where each honest party

outputs a value as dictated by the protocol, and each corrupted party can output an arbitrary

PPT function of the view of the adversary. For protocol Hrand and adversary A, denote the

output of the real world experiment as Realnra, (A).

Security Definition The desired coin tossing protocol must satisfy the standard simulatability

requirement, with respect to the ideal and real world experiments defined above.

Definition 4.4.2. Protocol Hi is said to be a fully simulatable, A-strongly leakage-resilient

coin tossing protocol generating a coin toss for party i if for every real world adversary A who

154

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

leaks at most A bits, there exists a simulator S in the ideal world, such that

IdealI. . (S) i Realrnd (4).

Our protocol construction will achieve the above strongly leakage-resilient definition in the case
that the party P receiving the output bit is a malicious party. If the recipient Pi of the random
bit is an honest party, then this strong leakage-resilient definition is not achievable. This is because
the adversary's leakage query may reveal the secret output bit of P, which cannot be correctly
simulated given only the outputs of malicious parties (in this case, the empty strings).

However, in this honest-P scenario our protocol will achieve the next best thing. Namely, we
can guarantee simulatability of the protocol execution up to the point that a leakage query occurs;
then, if at this point the simulator is given the output bit b, the simulation can be consistently
continued, with the correct output distribution.

More formally, we consider the following slightly weaker definition.

Ideal Functionality -Fand,+L. This ideal functionality takes no inputs, samples a random bit

b and sends b as output to a single party P, as before. However, in addition, yrand,+L

accepts a leakage query from the adversary and replies with the output bit b. For adversary
(simulator) S, denote the output of all parties (including S) in the ideal world experiment by
Idealirand,+L (S).

Real World Experiment. The real world experiment is unchanged.

Security Definition

Definition 4.4.3. Protocol Hi is said to be a fully simulatable, A-weakly leakage-resilient
coin tossing protocol generating a coin toss for party i if for every real world adversary A
who leaks at most A bits, there exists a simulator S in the ideal world who may only query

Frand,+L, such that

Ideal.rand,+L (S) - R e alrnd(A).

Moreover, S sends its leakage query to only after A makes a leakage query.

4.4.3 Preliminaries

We now formally define the underlying tools that will be used in our construction.

Extractable Equivocal Commitments

Informally speaking, a bit-commitment scheme is equivocal if it satisfies the following additional
requirement. There exists an efficient simulator that outputs a fake commitment such that: (1)
the commitment can be decommitted to both 0 and 1, and (2) the simulated commitment and
decommitment pair is indistinguishable from a real pair. We now formally define the equivocability
property for bit-commitment schemes in the CRS model.

The following definition is adapted from [FS89, C1098].

155

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Definition 4.4.4. A non-interactive bit-commitment scheme (crsGen, Com, Rec) in the CRS model
is said to be an equivocal bit-commitment scheme in the CRS model if there exists a PPT simulator
algorithm Simeg = (crsSime, comSimeq) such that crsSimeq takes as input the security parame-
ter 1k and outputs a CRS and trapdoor pair, (crs,trap); and comSimeq takes as input such a pair

(crs, trap) and generates a tuple (eqcom,eqdec0 , eqdec1) of a commitment string eqcom and two
decommitments eqdeco and eqdec' (for 0 and 1), such that the following holds.

1. For every b E {0, 1} and every (eqcom, eqdec0, eqdec') +- comSimeq(crs, trap), it holds that

Rec(crs, eqcom, eqdecb) = b.

2. For every b E {0, 1}, the random variables

{(crs, eqcom, eqdec) : crs +- crsGen(lk), (eqcom, eqdec) +- Com(crs, b)}

and

{ (crs, eqcom, eqdecb) : (crs, trap) +- crsSimeq (1k), (eqcom, eqdec0 , eqdec') +- comSimeq (crs, trap) }

are computationally indistinguishable.

Reusable CRS. Note that the simulator algorithms crsSimeq and comSimeq are described as
separate algorithms in the Definition 4.4.4 to highlight that it is not necessary to create a separate
CRS for every equivocal commitment, i.e., the CRS is reusable. In this case, Definition 4.4.4 can be
extended in a straightforward manner to consider indistinguishability of an honestly generated tuple
consisting of CRS and polynomially many commitment, decommitment pairs, from a simulated
tuple. Explicitly, we will use the following property.

Corollary 4.4.5. For any polynomial p(k), and any collection of bits {b1 , ..., bp(k)}, the following
distributions are indistinguishable:

{crs, {eqcom, eqdec}:1 crs +- crsGen(1k), (eqcomi, eqdeci) +- Com (crs, bi)}

and

(crs, {eqcom;, eqdec}I :)) (crs, trap) +- crsSimeq(1k)
(crs fecom, eqecii=1 (eqcom;, eqdec9, eqdecj!) <- comSimeq(crs, trap)

Proof. Follows from Definition 4.4.4 by a standard hybrid argument.

Theorem 4.4.6 ([FS89, CLOS02]). Assuming the existence of one-way functions, there exists an
equivocal bit commitment scheme in the (reusable) CRS model.

Remark 4.4.7. Throughout this paper, we assume that our equivocal commitment scheme has two
additional properties: namely, that the decommitment information eqdec contains all randomness
used to generate the corresponding commitment, and that the commitment scheme is statistically
binding. Indeed, the scheme of Feige and Shamir [FS89] satisfies these additional properties.

156

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Definition 4.4.8. An extractable equivocal commitment scheme in the CRS model is an equivocal
commitment scheme (crsGen, Com, Rec, Simeq) (as in Definition 4.4.4) with additional algorithms

(crsGenE, E) such that

{crs <- crsGenE(lk (crs +- crsGen(1k)

and for all PPT adversaries A,

Pr[(crs, trap) +- crsGenE(1k); com +- A(crs); y +- E(crs, com,trap) : - dec, x 7 y

s.t. x = Rec(crs, dec, com)] negl(k).

Remark 4.4.9. For our purposes, we want an extractable equivocal commitment scheme for
strings. Note that such a scheme can be easily constructed by simply repeating the above bit
commitment scheme in parallel (as was done explicitly in the previous sections). In this section,
we abbreviate this notation, and denote a commitment to a string of length m as a vector eqcom =
(eqcomj, ..., eqcomm), with corresponding decommitment vector eqdec = (eqdecj, ..., eqdecm). The

simulator algorithm Scom produces a commitment vector and a pair of decommitment vectors do =
(eqdeco, ..., eqdeco), d' = (eqdeci, ... ,eqdecn). A decommitment to any particular bit string a =

(a, ..., am) can be formed by selecting the appropriate decommitment values (eqdect , . .. , eqdeca-),
and will be denoted by d".

Without loss of generality, we assume that the decommitment information is simply the ran-
domness used for commitment.

In [GOS06a], it is shown how to construct an extractable equivocal commitment scheme from
any equivocal commitment scheme, given any encryption scheme with pseudorandom ciphertexts.
In particular, the following statement holds.

Theorem 4.4.10 ([GS08, GOS06a, FS89]). There exists an extractable equivocal commitment
scheme in the CRS model, based on any trapdoor permutation.

Robust Multi-Source Extractor

A multi-source extractor takes as input several independent sources, each with sufficient amount
of entropy, and outputs a string that is statistically close to uniform. In this work, we need a
multi-source extractor that extracts randomness even if some of the sources are "malicious," but
independent of the "honest" ones. Such an extractor, which we refer to as a robust multi-source
extractor, was constructed by Kamp, Rao, Vadhan and Zuckerman [KRVZ06]. The notion of
entropy that is used is min-entropy. A random variable X C {0, 1}" is said to have min entropy k,
denoted by Ho.(X) = k, if for every x E {0, 1}, Pr[X = x] 1 , and is said to have min-entropy
rate a if Hoo..(X) > an.

Theorem 4.4.11 ([KRVZ06]). For any constant 6 > 0 and every n E N, there is a polynomial-
time computable robust multi-source extractor Ext : ({0, 1 }d) -+ {0, 1}m that takes as input n
independent sources, each in {0, 1}d, and produces an m-bit string that is c-close to uniform, as
long as the min-entropy rate of the combined sources is 6, and where m = 0.996nd and e =

2 -Q((nd)/10gs(nd))

157

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

4.4.4 Construction: Fully Simulatable Leakage-Resilient Coin Tossing.

We now present the desired coin tossing protocol, H1 'd* We describe the protocol for generating a
single random (secret) output bit; an analogous protocol for strings can be constructed by repeating
the one-bit protocol sequentially.

Our construction is in the CRS model (for the use of extractable equivocal coimitments).
At a high level, the protocol works as follows. The parties begin by collectively generating k2

random candidate bits, one of which will eventually be selected as the output. Each bit is generated
by having each party P sample and commit to a secret random string ri; although the ri's are
not revealed, they implicitly define a bit b = Ext(ri, ... , rgr,,nl, where Ext is a robust multi-source
extractor (see Section 4.4.3).

Next, the parties collectively select one of these candidate bits as the final output. This is done
by eliminating random candidates one at a time. In each iteration, the parties collectively generate
a random index f E [k2] in the same manner as above (i.e., by each sampling a random string and
committing, and then extracting a random index f from all the strings), and the eth candidate is
eliminated.

A formal description of H1 and is given in Figure 4.1.

Theorem 4.4.12. Suppose (Com, Rec) is an extractable equivocal commitment scheme in the CRS
model and Ext is a robust randomness extractor. Then for any malicious adversary A corrupting
(1 - e) fraction of all parties, HIand is a A-weakly leakage-resilient fully simulatable coin tossing
protocol in the CRS model, as in Definition 4.4.3, for leakage parameter A = k.

Remark 4.4.13. The protocol H1and in fact securely emulates a somewhat stronger ideal function-
ality, which not only outputs a random bit b to party i*, but also outputs a commitment to b to
all parties (using an extractable equivocal commitment scheme), and provides party i* with the
corresponding decommitment information. Namely, it emulates the functionality Fj 'Y L which,*com
has party Pi*'s CRS value crsi- hardcoded, and does the following:

Functionality Frand,+L
i* ,com

Input: None.

Compute:

1. Sample a random bit b +- {0, 1}.

2. Generate an equivocal commitment to b with respect to Pi*'s CRS: i.e., (com, decom) <-
Com(crsi-, b).

Output: To party P: b, decom. To all parties: com.

Indeed, recall that in Hpand (see Figure 4.1), all parties except Pj* open their contribution to
the selected candidate bit *, while P's contribution r* to the bit remains secret. All parties hold
a commitment com-** to rf* with respect to crsi*, and party Pj* holds both the value of r* and the
corresponding decommitment information decom *.

158

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Coin Toss II,"n d.

Party P performs the following steps:

1. (Generate k2 candidate output bits)
Repeat for = 1,...,k 2:

Sample rf +- {o, 1}*.

Publish commitment comf where (com , decom) +- Com(lk, crsi, rf).

2. (Iteratively eliminate output candidates until one remains)
Repeat for m = k2, (k2 -1),...,2:

(a) Sample a random string elimT <- {0, 1}*. Publish commitment cT where

(c', di') +- Com(1, crsi, elimT).

(b) After receiving a commitment from each party, reveal elimi to all parties by sending di'.

(c) If any party's elimi' does not agree with its published commitment ci, then abort.

(d) Otherwise, compute elim m = Ext(elim',...,elim j) E [m]. (Note that the number of
remaining candidates to choose from decreases in each iteration). The candidate output
with index elim m is eliminated.

3. Once all but one candidate f* E [k2] has been eliminated:

(a) If P is not the designated coin toss recipient Pi., then reveal the f*th share r* generated
in Step 1, by publishing decomf.

(b) If P is the designated recipient Pi*, then wait until all parties have revealed their shares.
If any r* does not agree with the corresponding commitment com*, then abort. Oth-
erwise, output

b = Ext(rf, ... ,r dl

Figure 4.1: The protocol II!nd for generating a random bit known only to party Pi.

159

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Thus, in the protocol comfi corresponds to the desired output commitment com (given to all
parties), and decom i corresponds to the desired output decommitment information decom (given
only to party P*).

Overview of Simulator S. Consider Step 1 of the protocol, consisting of k2 "generation phases"
for candidate output bits b1,..., bk*. We say that the adversary leaks during a generation phase if
he makes a leakage query after the honest parties have committed to their secret random string
but before at least one corrupted party commits to his own string.

If the adversary leaks on the honest parties during the generation phase of some value b, then
the simulator cannot necessarily force a desired output for b - Ext(r',..., r&rand). This is because
the simulator's simulated responses to leakage queries on honest parties' states (including their in-
puts r) may tie him down to specific values (for example, if the adversary leaks a collision-resistant
hash applied to a party's secret state, it will be infeasible for the simulator to find any alternative
preimage). However, these rf values must be chosen by the simulator before the corrupted parties P
choose their inputs rj to the generation procedure, and thus the extracted output Ext(rf,
cannot be fixed a priori. Hence, when this situation occurs, our simulator will take this generation
phase as a loss and simply choose random values rf for the inputs of honest parties. We will refer
to such generation phases as bad.

However, if the adversary does not leak during a particular be generation phase, then the
simulator can extract the inputs rj of the corrupt parties and choose the rf's for the honest parties
to force any desired output value b. Since the adversary cannot leak the entire r's of all honest
parties (and thus the rf's are independent entropy sources), b = Ext(r,..., r) still appears
uniform, and so the adversary cannot distinguish between the case where the ris are sampled truly
at random and the case where they are sampled by the simulator as above. We refer to these
generation phases as good.

The simulator will use the latter technique to "cheat" in some of the generation phases. Namely
for each good generation phase in Step 1, the simulator S will force the output be to be the target
output bit. Note that in the case that the party Pi receiving the output is honest, then the target
bit bT is not explicitly known by the simulator a priori. However, the simulator remains able to
force both be = 0 and be =1 until the point when a leakage query is made by the adversary, at
which point the simulator can learn the target bT by making a leakage query to his own oracle.

In Step 2, the simulator will follow a similar cheating strategy to ensure that the undesired bit
(1 - bT) is never the final output. For each good elimination round (during which the adversary
does not leak), the simulator will force the selected index f to come from a skewed distribution, so
that on one hand the distribution is indistinguishable from random in the eyes of the adversary, and
on the other hand it eliminates all undesirable candidates (1 - bT) (if such exist). More explicitly,
the simulator classifies the candidate bits be = Ext(be,..., btr into three different types, described

in Figure 4.2.
With high probability, the simulator will be able to force a skewed distribution in which all

candidates of Type BB are eliminated. Note that the adversary cannot distinguish BB candidates
from BG, since he can only leak independently on each party's random string f (and thus the
extracted output bit still appears uniform). Hence, the simulator chooses a random candidate to
eliminate, and if it is BG he replaces it with a random BB candidate, which will be undetectable

160

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Types of candidate bits:

" Type G: Those resulting from "good" generation phases. (The simulator can force these to
be the desired output bT).

" Type BG: Those resulting from "bad" generation phases, but which happen to result in the
good output be = br.

" Type BB: Those resulting from "bad" generation phases that have the bad output b=
(1 - bT).

Figure 4.2: Characterizations of candidate bits b/ = Ext(bf, ... , bf 1).

by the adversary.
We now proceed to prove Theorem 4.4.12.

Proof of Theorem 4.4.12. We first explicitly construct the simulator S and then prove that it sim-
ulates correctly.

The simulator S:

0. Denote the set of corrupted parties by C. Simulate the parties' CRS values for the extractable
equivocal commitment scheme as follows. For each honest party P, i V C, sample crsi <-
crsSeq (1k) using the simulation algorithm. For each corrupt party P, i E C, sample crsj +-

crsGen(1k) honestly.

1. The simulator S simulates the honest parties in Step 1 as follows. Let BAD = 0 and set
statei = 0 for each honest party Pi.

For each f = 1, ..., k2 , and for each honest party P, generate a simulated equivocal commit-
ment (allegedly to a random string ri),

(com, decom ', decom ') +- Sime (1k, crsio, trapi),

and publish comf. (Recall that these values are each vectors of commitment/decommitment
information).

If the adversary makes a leakage query (i, L), then do the following.

" Query the leakage oracle to learn the desired target output bit, bT.

" If the leakage query occurs after the simulator has published the (simulated) commit-
ments comf for honest parties, but before all commitments for corrupted parties have
been published for this f, then

(a) Add index f to the set BAD. This candidate will be either Type BG or BB (not G).

161

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

(b) For each honest party P, sample a random value rf and update the secret state of

Pi as statei +- states u (rt, decom. ').11

* For every 1 < f' < f for which the honest parties' strings r' have not yet been chosen
by the simulator, do the following:

(a) For each corrupted party P, extract rj' from the adversary's commitment,

r <- E(crsjom, comj', trapf).

(b) Sample random values {rf'igc for the honest parties, subject to the constraint

bT = Ext(r,, r

(Since the output value is a single bit, this can be done, e.g., by rejection sampling).

Update the secret state of each honest party P as statei +- statei U (rf, decomi'

2. In Step 2, the simulator S determines a skewed distribution of eliminations, as follows. S
begins by partitioning the indices [k2] into two bins, Bini and Bin 2 . The simulator will cheat
(when he can) by eliminating indices in Bini first and then indices in Bin 2 . Recall the three
types of candidate bit generation phases G, BG, and BB (see Figure 4.2). The indices t E [k2]
are partitioned into the two bins as follows:

(a) Type BB indices are placed in Bini.

(b) Type BG indices are placed in Bin2-

(c) Each type G index is assigned to either Bin 1 or Bin 2 at random.

We note that at this point the simulator knows for each index f E [k2] whether it is of type
BB, BG, or G. This is because we are in one of two cases: either all candidates are of type
G (if the adversary did not leak during any of the candidate bit generation phases), or the
adversary requested a leakage query during at least one of the candidate generation phases,
at which time the simulator will have learned the target bit bT from his own leakage oracle.

S now simulates the actions of honest parties during the eliminations. Initialize BADeJm = 0-
This set will identify the collection of bad elimination rounds (i.e., elimination rounds during
which the adversary leaks). The simulator S iterates the following steps for m = k2, (k2 -

1), ..., 2, until a single candidate E [k 2] remains:

For each honest party Pi, generate a simulated equivocal commitment (allegedly to a random
string elimT),

(c~ im,O, im'') 4-Simeg (1, crsom, tra p;),

and publish cT.

* If the adversary requests leakage at this point, then

"Recall that the decommitment information is assumed to contain all randomness used in generating the commit-
ment (see Remark 4.4.7).

162

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

(a) Add index m to the set BADerin. In this mth elimination step, the simulator will
not be able to cheat.

(b) For each honest party Pi, (honestly) sample a random value elimT, update the secret
m eli mT

state of P as statei <- statei U (elimT, di en), and send elimT on behalf of Pi.

* Otherwise, assuming no leakage occurs before the corrupted parties each publish their
commitments, perform the following steps:

(a) For each corrupted party Pj, extract elimT from the adversary's commitment,

elim7 <- E(crsior, c, trapf).

(b) The simulator will now sample values for elim7 for honest parties P to yield a

skewed distribution on the resulting candidate index. Namely, he will begin by
eliminating random candidates from Bini, and then once Bini is entirely eliminated
he will eliminate random candidates from Bin 2 . This is done as follows:

i. Choose a random index e E Bini. If Bini = 0, then choose f E Bin 2 at random.

ii. Sample random values {elimf}igc for the honest parties, subject to the con-
straint

e = Ext(elim',..., elim,)

(Since the extractor has short output length log(k 2), this can be done, e.g., by
rejection sampling).

m eliMmn
iii. Update the secret state of each honest party Pi as statei <- stateiU(elim7, dm'

Proof of Indistinguishability We consider a sequence of intermediate hybrids. The output

of each hybrid experiment consists of the outputs of all parties, where honest parties output in

accordance with the dictated protocol, and malicious parties may output any efficiently computable

function of the view of the adversary. For every Hybrid t adversary At with auxiliary input

z E {0, 1}*, we denote the output of the corresponding hybrid t experiment by

HYBt (At, 1* k7Z) .

We now go through the hybrids one by one, beginning with Hybrid 0. In each step we show

that for any adversary At running in Hybrid t, there exists an adversary At+1 running in Hybrid

(t + 1) such that
H e A t 1k ,) H t+ (A t+ , 71k Z)

Hybrid 0 The real-world execution of Hrand with adversary A, who leaks up to k bits on the secret

state of honest parties.

Hybrid 1 Simulate the crs O's for honest parties P using the equivocation simulator, and give

them the trapdoor trapi. Simulate the crs o' for corrupted parties P using the extraction

simulation algorithm.

163

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Claim 4.4.14. HYBo (4 0 , lk, z) C HYB1 (A1,lZ).

Proof. This holds by the indistinguishability of simulated CRS values for the equivocal com-
mitment scheme, together with a standard hybrid argument. l

Hybrid 2 Same as Hybrid 1, except that during Step 1 and Step 2 every time an honest party P
is supposed to sample a random value u (corresponding to rf or elim") and commit to it, he
now samples u as before, but generates a simulated commitment

(c, d0 , d') <- Sim q (1k, crso, tra p;).

The party publishes the commitment c and updates his secret state as state; +- statei U (u, du).

Claim 4.4.15. HYB 1 (Ai, 1 =,z) i HYB 2 (A2 , 1, z).

Proof. This holds by the indistinguishability of simulated equivocal commitments, together
with a standard hybrid argument. E

Hybrid 3 Same as Hybrid 2, except that the experiment immediately ends in fail if a corrupted
party P provides decommitment information (value', dec) that "opens" any of his previous
commitments com to any value value' not equal to the corresponding extracted value,

value = E(crsjon, com, trapf).

Claim 4.4.16. HYB 2 (A 2 , 1 k, z) HYB3 (A3, 1k, z).

Proof. This holds by the extraction property of the extractable equivocal commitment scheme,
together with a standard hybrid argument. E

Hybrid 4 Similar to Hybrid 3, except that the secret states of the honest parties in Step 1 are
updated differently, and leakage queries are answered with respect to the simulated states.

In the rounds of Step 1 where the adversary leaks, there is no change-the simulation is
performed honestly. In rounds without leakage, the simulator "cheats" and sets the secret
states of honest parties in such a way to force the target output bit bT as much as possible.
Note that in some cases, if the party P, receiving the output bit is honest, then br is not
explicitly known to the simulator at this point. However, the simulator will maintain the
simulated secret state of parties as an efficient function of bT, and at the point that a leakage
query is made by the adversary (at which time the simulator must have concrete values for
the secret states that he can provide leakage on), the simulator will query the target bit bT
from his leakage oracle.

Explicitly, for each f for which the adversary doesn't leak, the simulator does the following:

* Extract the shares rj of corrupted parties as

r = E(crsor, comi, trapf).

164

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

" Choose random {rf}iVC for honest parties, subject to Ext(ri, ... , r) = bT.

* Update the secret state of each honest party P as statei <- statei U (rf, decom'),where

(come, decomi'0 , decom '1) was the simulated equivocal commitment triple generated in
Step 1 for index f.

Claim 4.4.17. HYB3 (A 3 , 1 k, z) = HYB4 (A 4 , 1 k, z).

Proof. Clearly if all the simulated shares of multiple rounds f are revealed, then this cheating
will be detected, since the collection of output values will be unnaturally biased toward the
same value bT. However, in our case this cheating simulation will go unnoticed, since the
only information the adversary learns about the simulated shares is (1) limited leakage on
individual shares, and (2) the complete set of shares {rf}iVC for one value of f. We now argue
that this information on the simulated shares is actually statistically indistinguishable from
the corresponding honest distribution.

First, consider leakage on the shares. Let shares£ = {r }eC be the distribution of honestly
generated shares for all honest parties i 0 C in round f. Denote by sharessim(bT) the
corresponding distribution of simulated shares, as a function of the target bit bT. We first
argue that, for a given round f, the distribution of simulated leakage is statistically close to the
distribution of honestly generated leakage. Let Leak(sharest) and Lea k(shares'im(bT)) denote
the outputs of a leakage attack on the corresponding sets of shares. Recall that Leak(shares)
includes adaptively chosen, but independent leakage on each of the individual shares, and has
output length bounded by k bits. This means the shares ri remain independent sources that
together have at least N - k - log 2 k bits of entropy with overwhelming probability. Thus, by
the properties of the robust multi-source extractor (see Theorem 4.4.11), we have that, even
conditioned on leakage, the distribution of the extracted bit in the honest case is statistically
close to the 1-bit uniform distribution:

{Ext(r', ..., riandI) |Leak(shares£)} U1 ,

Equivalently, the distribution of leakage on shares yielding extracted output 0 is statistically
close to the corresponding distribution on shares yielding extracted output 1. Now, the
distribution of simulated shares corresponds exactly to one of these (for whichever value is

bT). The honest distribution of shares is simply formed by randomly sampling from one
of these two distributions-i.e., yielding a random extracted output. Thus, it holds that the
leakage on the simulated shares is statistically close to the same leakage on honestly generated
shares.

This relation also extends to multiple rounds f, by a straightforward hybrid argument.

So the only problem is if the honest parties must ever reveal these shares in their entirety. In
our setting, however, one of two events will occur:

* If the final chosen index f corresponds to a "bad" round, in which the simulator acted
honestly, then the cheating shares will never be revealed, and the revealed distribution
of shares will be exactly correct.

165

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

* In the other case, the simulator must reveal the complete shares only for one of the
cheating instances. But, the distribution of a single set of simulated shares actually has
the correct distribution, since by itself the forced output bT of the extraction is uniformly
distributed.

Hybrid 5 Same as Hybrid 4, except that in the elimination phase, instead of choosing truly
random strings elimT (as prescribed by the protocol), the strings of honest parties are chosen
as follows.

" First, choose a random ordering (1, E2) of the elements of [k2].

" For each round m of elimination in which the adversary does not leak, the simulator
chooses elimT's in such a way to force the resulting eliminated index to be the first value
em' of the ordering (V 1,..., 4k2) that has not yet been eliminated. That is, he extracts
the elim's of corrupted parties as

elimT = E(crs*', cm, trapf),

and then chooses random {elim7}igC subject to the constraint Ext(elimm, ... , elim
em, for the first of f 1, E2 , ... that has not already been eliminated.

" For the rounds of elimination in which the adversary does leak, the simulator selects
elimT at random (honestly).

Claim 4.4.18. HYB4 (A4, 1 k, z) = HYB5 (A5, 1k, z).

Proof. In Hybrid 4, the strings {elim}igc are selected at random, and the output is computed
as elim' = Ext(elimml,..., elimlg,ani) E [m]. In Hybrid 5, (whenever possible) the simulator
chooses the output value elimm e [m] first at random, and then samples {elimT}igC randomly,
subject only to the condition that they yield (the random) output elim m .

But, by the properties of the robust multi-source extractor, the honest output distribution
Ext(elim', ... , elimig,,l) is itself statistically close to uniform, given the view of the adversary.
Thus, first sampling a uniform output E [m] and then reverse sampling yields a distribution
that is statistically close.

Hybrid 6 Exactly the same as Hybrid 5, except that instead of choosing a random ordering

(V1, ... , e2) to be forced during the elimination phase (as much as possible), the ordering

(V1, ... , 4k2) to be forced is selected as follows:

* First, all indices E E [k2] are partitioned into two bins: Bini, Bin 2 . All indices of Type BB
are placed in Bini, and all indices of Type BG are placed in Bin 2 . Each index of Type
G is assigned a bin at random. (Note that the type of each index is fully determined at
this point of the execution).

166

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

* The ordering (l, ... , 2) is selected by choosing elements of Bini at random until it is

empty, and then choosing elements of Bin 2 at random until it is empty.

Claim 4.4.19. HYB5 (A 5, 1k, z) - HYB6 (A6 , 1 , z)-

Proof. Note that the only change between Hybrid 5 and 6 is the distribution of the ordering

(1, .- -, f k2) that is forced by the simulator during the elimination phase. It thus suffices to

prove that the skewed distribution is indistinguishable from the honest (random) distribution.

Lemma 4.4.20. Let D1 be the distribution over orderings of [k2] formed by:

(random permutation of Bin 1)I(random permutation of Bin 2),

where Bin1 and Bin 2 are as chosen by the simulator, and || denotes concatenation of orderings.

Then given view(A), D 1 is statistically close to uniform.

Proof. Note that choosing an ordering of [k2] uniformly is equivalent to first assigning all

indices f E [k2] randomly to a bin Bini or Bin 2 , and then choosing random ordering of each

bin. The only difference between this procedure and the one defining D 1 is that the indices

f E [k2] corresponding to "bad" candidate bits are artificially placed in Bin1 or Bin 2 based on

the value of the corresponding extracted bit be = Ext(rj, ..., r,) (i.e., whether the bit is of

Type BB or BG). But, as we have argued earlier, by the property of the robust multi-source

extractor, given the view of the adversary, the bit be is statistically close to uniform. Indeed,
this is because the view of the adversary contains only the strings rj of corrupted parties P

and leakage on the r's of honest parties (in addition to other information that is independent

of be). Therefore, conditioned on the view of the adversary, the distribution D 1 will also be

statistically close to uniform.

Hybrid 7 The ideal-world experiment. That is, the same as Hybrid 6, except the final output of

the protocol is replaced by the true output bT, instead of whatever is dictated by the parties'

views up to that point (note that this is only relevant when an honest party Pi is the recipient

of the output bit).

Claim 4.4.21. HYB6 (A6 , 1k, z) 8 HYB 7 (A7 , 1 Z.

Proof. We must prove that with overwhelming probability, the output of the simulated ex-

ecution is the target output bit bT. It suffices to show that the probability of a Type BB

candidate being selected in the simulation is negligible, since these are the only candidates

that yield an output of (1 - bT).

Recall that I BADelimI is the number of bad elimination rounds, in which the simulator could not

force the skewed distribution and instead a random index f was eliminated. In the simulation,
the indices that are eliminated will then be: (a) IBADelim I (< k) random candidates E [k2

167

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

and (b) (k2 - 1) - I BADelim I random elements from Bini (if not yet empty). Since all Type
BB candidates are necessarily contained in Bini, as long as the size of Bini is no greater
than (k2 -1) - IBADelim, we will be guaranteed that all Type BB candidates are eliminated.
This corresponds to Bin 2 containing at least |BADelim I elements. We now show that with
overwhelming probability, Bin 2 will contain at least this many Type G indices. That is, if for
all f of Type G we define X to be the indicator variable corresponding to index e falling into
Bin 2 , then we have

Pr[jBin 2j J |BADelim] Pr[|Bin 2 | 2 k]

=Pr[Z: Xe k]
t Type G

> 1 - e(2 i- by a Chernoff bound. 12

> 1 - ek2/4

4.4.5 Achieving WLR-MPC for Randomized Functions

We now describe how to utilize the coin tossing protocol from the previous section to achieve WLR-
MPC for randomized functions in the setting where leakage occurs independently on each honest
party's secret state, and where there are many parties, a constant fraction of which are honest.

This protocol will use two tools as a black box:

1. A A-WLR-MPC protocol d,t for deterministic functions g in the CRS model, as in Theo-
rem 4.2.18 (based on DDH).

2. A A-weakly leakage-resilient fully simulatable coin tossing protocol Hgd in the CRS model,
as in Theorem 4.4.12 (based on any trapdoor permutation).

Theorem 4.4.22. Fix any constants e, 6 > 0, and assume the existence of the two above tools
with leakage parameter A. Then for every probabilistic polynomial-time function f, there exists a A-
weakly leakage resilient MPC protocol H 5 as in Definition 4.4. 1 (assuming erasures and independent
real-world leakage) for evaluating f, in the common random string model, tolerating t = (1 - e)n
corrupted parties. Security of the protocol holds with probability 1 - negl(k) - ne-v/2, where k is
the security parameter.

We begin by giving a high-level overview of the protocol Hf, which is described in detail in
Figure 4.3.

As the first step in the protocol, the parties P1,... , Pn will elect two committees from amongst
themselves: one committee Crand will serve the role of generating secret randomness to be used

12Explicit Chernoff bound used: Pr[E Xt < (1 - J)p] < e-6 2
/2 for 0 < J < 1, where p is the mean of E XI. In

our case, p = {(k 2 - k) and 5 = k+.

168

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

in the evaluation of the functionality f; the second committee CWLR takes everyone's inputs and
uses the communicated randomness as an additional input in order to evaluate f deterministically,
using the original WLR-MPC protocol (for deterministic functions).13

More formally, after the two committees are elected, all parties secret share their inputs xi

among the parties in CWLR. In order to guarantee correctness and input independence, they provide
commitments to each share to the whole committee. Then, all parties erase their original input

and intermediate information from the secret sharing procedure.
Next, the committee Crand repeatedly executes the weakly leakage-resilient fully simulatable

coin tossing protocol HItnd from Section 4.4.4 in order to generate randomness for f. 14 In each

execution, one party Pi* receives a secret random bit and decommitment information, and all other

parties receive a public commitment to this bit. Party Pi then secret shares this bit (together with

the corresponding decommitment information) among the parties in CWLR, and erases his state

once more. For each bit of randomness required by f, the committee Crand will execute this process

1 nd once for every i* E Crand; the final random bit used will be the xor of the resulting bits (to
ensure the final random bit remains secret from the adversary).

Finally, the committee CWLR uses this information to reconstruct all parties inputs, recon-

struct the generated randomness, verify the correctness of all values, and then evaluate f on the

corresponding inputs and randomness via the underlying WLR-MPC protocol for deterministic

functions.

Proof of Theorem 4.4.22. We consider a sequence of intermediate hybrids. The output of each

hybrid experiment consists of the outputs of all parties, where honest parties output in accordance

with the dictated protocol, and malicious parties may output any efficiently computable function

of the view of the adversary. For every adversary Ae with auxiliary input z E {0, 1}* running

in hybrid experiment f with initial inputs 7, we denote the output of the corresponding hybrid f

experiment by

HYBe (A,, 1k, z, IX 1)

We now go through the hybrids one by one, beginning with Hybrid 0. In each step we show

that for any adversary At running in Hybrid e, there exists an adversary At+1 running in Hybrid

(f + 1) such that

HYBe (A ,1k,z,{zi}) i HYBt+1 (Ae+,1k, z,{xi).

Hybrid 0. The real world: i.e., the adversary interacts with honest parties in the real-world

experiment running Hf.

Hybrid 1. (Abort if committee election fails).

1
3 We remark that the ne7/_/2 term in the failure probability of the overall protocol corresponds to the probability

that the elected committees are completely composed of corrupted parties.
14

1t is important for security that MIt" is repeated sequentially, and that the parties in C,and have erased their

original inputs x before executing Iiv, as the weakly leakage-resilient coin tossing protocol does not enjoy "leak-

age oblivious" simulation (as defined by [BCH11]), and thus does not directly compose with concurrent protocol

executions.

169

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

WLR-MPC for Randomized Functionality f
Parties P1,..., P,.
CRS: {crsi}bE[] common random string for each party for the equivocal commitment scheme.

1. Elect committees: Run Feige committee election protocol among all n parties to elect a
committee CWLR of approximate size log2 n. Run a second execution of the Feige committee
election protocol among the remaining parties [n] \ CWLR to elect a second, disjoint committee
Crand of approximate size log 2 n. Denote nWLR ICWLRI and nrand = ICrand l.

2. Parties secret share inputs among committee CWLR:

Each party Pi E [n] performs the following steps:

(a) Secret share input xi as (x,...,xWLR) - Share(xi) using the nWLR-out-of-nWLR xor
secret sharing scheme.

(b) For each share xi, generate a commitment to the share using the extractable equivocal

commitment scheme: (comf, dec) +- Com(crsi, xi). Denote co-mi = (comi, ... , com WLR

(c) To each party Pj E CWLR, send the collection of information (xi, deci, comi).

(d) Erase all information up to this point (including the original input xi).

Note that at the conclusion of this step, the secret state of each party Pj E CWLR consists Of
one secret share and decommitment value (xi, deci) from each party Pi E [n], in addition to
a collection of commitments {om2iie[fI to all the distributed secret shares. The secret state
of each party Pi V CWLR is empty.

3. Crand committee generates randomness for evaluation of f:
Let r denote the number of bits of randomness required by an execution of f. Repeat the
following steps sequentially for each value of f = 1, . . . , r, and for each Z* = 1,..., [nrand] (in
order to collectively sample r random bits "in the well" for each party in Crand):

(a) Execute the fully simulatable A-weakly leakage resilient coin tossing protocol 11 ,nd (See
Figure 4.1) in order to sample a random bit be,i- "in the well" for party Pi E Crand. As
a result, all parties Pi E Crand receive a commitment comt,i* to be,i*, and party Pi* learns
be,i* together with the corresponding decommitment information decomt,i*.

(b) Each party Pi E Crand sends comt,i- to all parties Pj E CWLR-

(c) Party P secret shares the pair (be,i*, decomt,;*) among the parties in the commit-
tee CWLR, by executing the procedure in Step 2 with (be,i-, decome,;-) in the place
of xi. Denote the corresponding secret shares, commitments, and decommitments as

{se,ii* E[nWLR I },i*jE[nwLR)] fd ,i*}jE[nWLR]'

(d) All parties in Crand erase their secret state.

4. CWLR committee evaluates f on this randomness:

The parties of CWLR execute the A-weakly leakage resilient MPC protocol 11dt for determin-g
istic function g defined in Figure 4.4, using as input the secret shares, commitments, and
decommitment information generated above. Output the result of this execution, answer.

Figure 4.3: WLR-MPC protocol lf for evaluating a randomized functionality f.

170

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Modified deterministic functionality g

Input: Each party P E CWLR: {x , decom, iiii } , (come,i*, s,; d ,s., Er~i- })t ,r],i

Compute: If any party submits commitment information { oii}, {com,i* },i-, {E,i}* },i* in dis-
agreement with that submitted by another party, then g terminates and outputs I. Other-
wise, we will denote the agreeing values by {Em5i}i = {(com1,..., comWLR
and {e,j*}e,* = { . . . , c-LR

1. For each i E [n], reconstruct xi:

(a) Verify the commitment to each secret share 4i. Namely, if for any j E CWLR it holds

that xz f Rec(crsi, decom , com), then g terminates and outputs I.

(b) Compute xi : JECWLR 1

2. For each f E [r] and i* E [nrand], reconstruct be,*:

(a) Verify the commitment to each secret share s ,i.. Namely, if for any j E CWLR it

holds that s,* f Rec(crsi, d ,i-, c ,;-), then g terminates and outputs -1.

(b) Compute s,i- := ECWLR S,, and parse s ,j* as (bt,i-, decomt,j*).

(c) Verify this pair against the commitment come,i*. Namely, if bt,i- #
Rec(crsi, decome,j*, comj,*), then g terminates and outputs -1.

3. For each f E (r), take bt := @i'EC,.nd btj- as the f bit of evaluation randomness.

4. Evaluate f on inputs xl,. . ., x, using randomness rand := (bi,. . ., br). Namely, compute

answer = f(xi,.. ., ,; rand).

Output: To all parties: answer.

Figure 4.4: The modified deterministic function g to be computed via the underlying WLR-MPC
protocol (for deterministic functions) in order to evaluate the randomized functionality f.

171

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Same as the previous, except that the experiment ends in abort if either committee CWLR C M
or Crand C M is composed of completely malicious parties.

Lemma 4.4.23. For any auxiliary input z and set of inputs -, and for every PPT adver-
sary A 0 in Hybrid 0, it holds for the same adversary A 1 = Ao in Hybrid 1 that

A HYBo (Ao, 1k, z',ji 1), HYB1 (A1,, kz'I, {xi 1)< e m-,4/ 2,

where J[-,-] denotes the statistical distance between distributions.

Proof. By the properties of the Feige committee election protocol (see Corollary 4.2.8), the
probability of ending in abort in Hybrid 1 but not in Hybrid 0 is bounded by ne-/2

Hybrid 2. (Replace H 1et with ideal functionality).9

Same as the previous, except that the underlying WLR-MPC protocol execution Hdet for
9

deterministic functions is replaced by the corresponding (leaky) ideal functionality Fg.

Lemma 4.4.24. For any auxiliary input z and set of inputs z, and for every PPT adver-
sary A 1 in Hybrid 1, there exists a PPT adversary A2 in Hybrid 2 such that

HY B 1 (A , 1!,z,{ x; 1 eHY B2 (A 2, 1 , 7z , x R 1

Proof. Fix any PPT adversary A1 in Hybrid 1. Consider the adversary A 2 in Hybrid 2 that
does the following. A 2 simulates the actions of A1 exactly up until the execution of the
underlying WLR-MPC protocol 11 e. Let view denote the view of A 1 up to this point. A 29.
runs the WLR-MPC simulator SR with auxiliary information view in order to simulate the
execution of H1 det in the corresponding leaky ideal world. At the conclusion of the simulation

9of I * A2 returns to simulating the actions of A1 exactly until the end of the experiment.

Indistinguishability of the simulated output follows directly by the security of the underlying
WLR-MPC protocol for deterministic functions. 0

Hybrid 3. (Replace H11 nd executions with ideal functionalities).

Same as before, except that each of the executions of the weakly leakage-resilient fully simulat-
able coin tossing protocol Hi*nd is replaced by the corresponding ideal functionality F rand
(as defined in Remark 4.4.13).

Lemma 4.4.25. For any auxiliary input z and set of inputs F, and for every PPT adver-
sary A 2 in Hybrid 2, there exists a PPT adversary A 3 in Hybrid 3 such that

HYB 2 (A 2 , 1 z, {xi 1) HYB3 (A 3 , 1k, z, {xi} 1).

172

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Proof. Fix any PPT adversary A 2 in Hybrid 2. We can think of A 2 as composed of a collection
of sub-algorithms (A', A *c1 , A2, Acoin2,.. corresponding to the actions of A2 during and
between each instance of the coin tossing protocol H1 and. We define the output of each
A2 (and Ac'") to be the view of A 2 up to that point. Each sub-adversary Aj*'"i receives
as auxiliary input zcoiln the output of the previous sub-adversary A2. By the security of
the weakly leakage-resilient fully simulatable coin tossing protocol H1td, for each such A'oni,
there exists a simulator S io; who, given the same auxiliary information zco'"i and access to the

corresponding ideal functionality Fad (which outputs a random bit and decommitmentcrn ,%
information to Pi*, outputs a commitment to the bit to all participating parties, and answers a
single leakage query), simulates the view of A 2 during the ith coin tossing protocol execution.
Loosely speaking, A3 will simulate A 2 by piecing all these simulations together.

Consider the following adversary A 3 in Hybrid 3. Between executions of the coin tossing pro-
tocol (i.e., corresponding to each sub-algorithm A'), the adversary A3 simulates the actions

of A 2 exactly. Each time A 2 enters into the ith execution of the coin tossing protocol, A3
instead runs the simulator Sje;i with auxiliary input zcorli = view(A 2), which is the entire

simulated view of A 2 up to that point.

Indistinguishability of the simulated output follows directly by the security of the weakly
leakage-resilient fully simulatable coin tossing protocol, together with a standard hybrid ar-
gument.

Hybrid 4. (Simulate commitments for honest parties).

Same as the previous hybrid, with the following two changes:

" For each honest party, the CRS for the equivocal commitment scheme is simulated, and
the corresponding trapdoor is given to the adversary. That is, for each honest party Pi,
the value crsi is sampled as (crsi,trapi) +- Simeqc'(1k).

" Honest parties generate simulated commitments. Namely, each time an honest party Pi
would previously commit to a value y by sampling randomness r, computing (com, decom) =

Com (crsi, y; r), and updating his state as statei +- statei U{r}, he now does the following.
First, he generates a simulated commitment (eqcom, eqdeco, eqdec') <- Simeqcom(crsi, trapi)
and outputs eqcom. Then, he updates his secret state as statei <- statei U {eqdec"} with
the choice of randomness corresponding to the correct value y.

Lemma 4.4.26. For any auxiliary input z and set of inputs i, and for every PPT adver-
sary A 3 in Hybrid 3, then for the same adversary A 4 = A 3 in Hybrid 4, it holds that

HYB3 (A 3 , 1 , 7z, =1) HYB 4 (A 4 , 1 , z,{xil 1

Proof. Indistinguishability holds directly by the indistinguishability of simulated commit-
ments in the equivocal commitment scheme (Definition 4.4.4), together with a standard hybrid
argument.

173

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Hybrid 5. (Extract committed values on behalf of corrupt parties).

In this hybrid, two changes take place. First, the CRS of corrupted parties for the extractable
equivocal commitment scheme is now sampled using the extractable CRS generation algorithm
crsGenE(1k). Second, parties directly give their inputs xi to one large ideal functionality
Fj and then erase their secret state. The functionality Fj samples a random r-bit string
R = (bi,. .. , br), secret shares each bit R as (b+,,.-..,be,na) * Share(bt) among the parties

in Crand via the xor secret sharing scheme, generates a commitment to each share be,i-, gives the
commitment to all parties in Crand, and gives the share bfj- together with the corresponding
decommitment information to party P* E Crand. Then, Fj evaluates the randomized function
f on inputs (xi, ... , x,,) with randomness R. The functionality Fj is formally defined below.

Input: Each party P submits his input xi.

Compute: First generate values for randomness R:

1. Sample a random r-bit string R <- {0, 1}r. Denote R = (bi,... , br).

2. For each bit be of R, secret share (b,1, . . , bfjf,,an) <- Share(bt) using the nrand-Out-
of-nrand xor secret sharing scheme.

3. For each secret share be,i., generate a commitment as follows. If Pi is a corrupted
party, honestly generate a commitment as (comj,j*, decome,i*) +- Com (crsi*, bf,i.). If
Pi. is an honest party, then generate a simulated commitment as

(eqcom, eqdeco, eqdec1) +- Simeq"m(crsi-, trapi.),

and define decomt,j- = eqdeci*.

Evaluate the function f: Compute answer = f(xi,..., x,; R).

Output: To all parties: answer.
To each party Pi E Crand: (bt,j-, decom,i-)te[r], {Comf,i}eE[r],iEC,..nd-

Lemma 4.4.27. For any auxiliary input z and set of inputs -, and for every PPT adver-
sary A 4 in Hybrid 4, there exists a PPT adversary A 5 in Hybrid 5 such that

HYB4 (A 4 , 1 k, z,{xi}=1) HYB5 (As, 1 k z, {xi} 1).

Proof. Fix any PPT adversary A 4 in Hybrid 4. Consider the following adversary A 5 in Hy-
brid 5.

Adversary A5:

1. Simulate CRS generation.

(a) For each honest party Pi, simulate an equivocable CRS: (crsi, trapi) - Sim cr,(k)
(b) For each corrupted party P, sample an extractable CRS: (crsi, trapi) <- crsGenE(lk).

174

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

2. Simulate honest parties committing to inputs.

Select one honest party in the committee CWLR (note that by Hybrid 1 such a party
necessarily exists). Without loss of generality, denote this party by P1. For each honest
party Pi E [n], simulate Pi secret sharing his input as follows:

(a) Sample all but one secret share (x, . . . , x'WLR) of the input xi at random, and give
them to parties P 2 , -.. PnWLR in CWLR. Sample a (simulated) commitment to each

xq, send it to all parties in CWLR, and update the secret state of Pi as before.

(b) For the special honest party P1, sample a simulated commitment

(eqcom, eqdeco, eqdecl) +- Simeq"m(crsi, trapi)

that allegedly commits to the final secret share of xi. Send eqcom to all parties in

CWLR and update the simulated secret state of Pi as statei <- state1 U {eqdecmi},
where yj is defined to be equal to yj := xi E (""2R X o. Note that A 4 does not

explicitly know the value of yj since he does not know the secret input xi. However,
the simulated state of party Pi remains an efficiently computable function of the
secret inputs {Xi}igM.

3. Extract inputs of corrupted parties.

For each corrupted party Pi E [n], do the following:

(a) Let (xi, decom, {com}iet WLR) denote the values received by each honest party

Pj E CWLR from the (corrupted) party Pi. If any received decommitment informa-

tion is invalid (i.e., if for any j E CWLR it holds that xj # Rec(crsi, comi, decomj)),
then set og = I.

(b) Otherwise, extract the secret shares of Pi's input xi using the extractor trapdoor
generated in Step 1. That is, for each j E CWLR, extract y+- E(crsicom,trap4),
and let ' := JECWLR

4. Erase all intermediate values from the secret states of honest parties Pi.

5. Submit the collection of extracted inputs {X'}iEM to the ideal functionality F' on behalf
of corrupted parties. Receive back answer and the random bits bei* and commitment
information given to each corrupt party Pi.: (be, decomei*)E[,r], {Come,i}E [rl,iEC,,.

6. Simulate randomness generation procedures.

For each value of f = 1,... Ir and i* = 1,... ,nrand, simulate the (ei*)th random bit

generation phase as follows.

" If Pi. is a corrupt party (in which case we know (begi, decometj) from F'):

(a) Simulate the output of the (f, i*)th evocation of the ideal functionality Fr'an"ft
by sending (bef,*, decomei*) to party P, and sending comei* to all parties

in Crand.

(b) Simulate the actions of A 4 exactly until the next coin tossing ideal functionality

execution.

" If Pj* is an honest party:

175

176 CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

(a) Simulate the output of the (f, i*)th evocation of the ideal functionality Frand +

by sending comj,i* to all parties in Crand. Note that the simulating adversary A5
does not know the correct bit bjj. or corresponding decommitment information
decome,i.; but, any leakage queries on these values can be answered by forwarding
the query to the ideal functionality Fj.

(b) Simulate Pi. secret sharing (bt,j., decomt,j*) identically to the simulation of the
input secret sharing phase in Step 2 above. Namely, do the following:

i. Sample all but one secret share (sts. .. , st'.LR) of the (unknown) secret in-
formation (bt,i*, decomt,j*) at random, and give them to parties P2, -.. , PnWLR
in CWLR. Sample a (simulated) commitment to each s1i , send it to all parties
in CWLR, and update the secret state of Pi as before.

ii. For the special honest party P, sample a simulated commitment

(1) 0 1(eqcom*, eqdeci,., eqdecis.) +- Sim *'(crsi*, trapi.)

that allegedly commits to the final secret share of (bt,j., decome,j*). Send
eqcom .) to all parties in CWLR and update the simulated secret state of

Pi as statei +- state1 U {eqdeci:* }, where ye,i* is defined to be equal to

yji. := (bfi., decomej*) 1 =2R si. Note that A 4 does not explicitly know
the value of yti. since he does not know the secret values (bt,, decome,j.).
However, the simulated state of party P1 remains an efficiently computable
function of these secret values.

7. Simulate the execution of Fg.

The Hybrid 4 adversary A 4 will submit a collection of input shares (plus commitment
information) and secret shares of random bits (plus commitment information) on behalf
of the corrupt parties to the alleged Hybrid 4 ideal functionality Fg. The Hybrid 5
adversary A5 will accept these values and simulate Fg as follows.

(a) Check the correctness and consistency of all accepted values and commitment infor-
mation. Namely, if any received commitment does not agree with the corresponding
commitments held by the (simulated) honest parties, or if any supplied decommit-
ment information is not valid for the corresponding submitted committed value,
then output _L to all corrupt parties as the simulated output of Fg.

(b) Otherwise, output the value answer that was received by the Hybrid 5 ideal func-
tionality F' in Step 5.

8. Simulate the actions of A 4 exactly for the remainder of the experiment.

9. Simulating leakage queries: At any point that A4 submits a leakage query L on the
secret states of honest parties, the simulating adversary A 5 submits the leakage query
L' to his corresponding Hybrid 5 leakage oracle (leaking on x1 ,... , x,{b ,j.}ij.) that
first reconstructs the simulated states {statei}igM of honest parties as a function of the
secret information X1, ... , Xn, {be,i-}pj., and then applies L to the reconstructed states.

4.4. WEAKLY LEAKAGE-RESILIENT MPC FOR RANDOMIZED FUNCTIONS

Indistinguishability of the simulated output follows by the extraction property of the ex-
tractable equivocal commitment scheme (see Definition 4.4.8), together with the (perfect)
secrecy and reconstruction properties of the xor secret sharing scheme.

Hybrid 6. (Ideal world).

The ideal-world experiment. Namely, parties directly submit their inputs to the ideal func-
tionality Ff that samples a random r-bit string R, outputs the evaluation f(x1,..., x; R),
and answers leakage queries on the (joint) secret values (xi,... , xz, R).

Lemma 4.4.28. For any auxiliary input z and set of inputs X, and for every PPT adver-
sary A5 in Hybrid 5, then for the same adversary A 6 = A5 in Hybrid 6, it holds that

HYB5 (As, 1k, z, {xi}1) HYB6 (A6, 1 k, Z,{xi}z 1)

Proof. Note that the difference between the current hybrid and the previous is that the ideal
functionality outputs less information. Namely, in Hybrid 5, the ideal functionality F' ac-
cepted inputs xi and output the desired evaluation answer in addition to a collection of random
secret shares of the random bits used, and corresponding commitment and decommitment
information. In Hybrid 6, the ideal functionality Ff accepts inputs xi and responds only with
the desired evaluation answer. Thus, simulating the output of Hybrid 5 amounts to properly
simulating these additional output values.

Fix any PPT adversary A 5 in Hybrid 5. Consider the following adversary A 6 in the ideal
world, Hybrid 6.

Adversary A 6 :

1. Simulate CRS generation.

(a) For each honest party Pi, simulate an equivocable CRS: (crsi, trapi) +- Sim 's(1k).

(b) For each corrupted party P, sample an extractable CRS: (crsi, trapi) <- crsGenE(lk).

2. Receive inputs x' from each corrupted party P3 (supposedly submitted to the Hybrid 5
ideal functionality Fj). Forward these inputs to the Hybrid 6 ideal functionality Ff.
Receive back the desired (random) evaluation answer, and forward it to A5 as part of
the output of F.

3. Simulate additional F' outputs.

For each f = 1,... , r, simulate as follows. For simplicity of notation, assume that party
Pi is an honest party within the committee Crand (note that at least one honest party is
guaranteed to exist in Crand by Hybrid 1).

(a) Sample all but one share (bj,2, . .., bt,",,,d) of the final secret random bit be (generated
by Ff and used in evaluating f) at random. For each such bit bi,i*, generate a com-
mitment (and decommitment information) honestly as was done by Fj in Hybrid 5,

177

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

and output accordingly. (Namely, output (bj,i-, decome,i*) to party P- E Crand, and
output come,i- to all parties in Crand -

(b) For the remaining honest party P1, sample a simulated commitment

(eqcomt,1 , eqdect,1 , eqdec), 1) +- Sim com (crsi, tra pi)

that allegedly commits to the final secret share of the secret bit be. Send eqcomi,1
to all parties in Crand and update the simulated secret state of P as statei +-
statei U {eqdec' }, where ye is defined to be equal to ye := be ® (}nra"d be,i.. Note
that A6 does not know the secret random value be; however, the simulated state of
party Pi can be efficiently computed given this value.

4. Simulate the actions of A5 exactly for the remainder of the experiment.

5. Simulating leakage queries: At any point that A5 submits a leakage query L on the secret
states of honest parties, the simulating adversary A 6 submits the leakage query L' to his
corresponding Hybrid 6 leakage oracle (leaking on X1,... , Xn, R) that first reconstructs
the simulated states {statei}igM of honest parties as a function of the secret information
X1, ... , Xn, R, and then applies L to the reconstructed states.

Indistinguishability of the simulated output follows directly by the secrecy property of the
xor secret sharing scheme.

This concludes the proof of Theorem 4.4.22.

4.5 Leakage-Resilient MPC Protocol Construction

In this section, we construct a leakage-resilient multi-function MPC protocol, as defined in Sec-
tion 4.3. Our construction uses the following ingredients:

1. (C, Update): a A-LDS secure circuit compiler, as in Theorem 4.2.14.
Recall for a circuit C, the compiler C : C H-+ (Subi,..., Sub,) yields a collection of modules
whose sequential execution evaluates C, and which are secure in the LDS model (see Section
4.2.5 for details).

2. Elect: a public-coin protocol for electing m disjoint committees, each of size approximately k,
as in Lemma 4.2.9.

3. (crsGen, Com, Rec, Sime, = (Simeqc, Sime,co)): a crs-based equivocal commitment scheme,
as in Lemma 4.4.6.

4. (Gen, Enc, Dec, Eval): a fully homomorphic public-key encryption (FHE) scheme that is cer-
tifiable with respect to an efficiently testable set R C {0, 1}Po'Y(k), as described in Section
5.2.3.

178

4.5. LEAKAGE-RESILIENT MPC PROTOCOL CONSTRUCTION

5. (Gennizk, P, V, Snizk = (Snc;rz, Snp[rzk"f)): a non-interactive zero-knowledge (NIZK) proof of knowl-

edge (as in Lemma 4.2.3) for the NP language

L = {(pk, x) : 3 (x, r) s.t. r E R, = Encpk(x; r)}, (4.1)

where R C {0, 1}poly(k) is the set for which the FHE scheme is certifiable.

6. M PC(F): a standard multiparty computation protocol for evaluating a function F, with no
leakage resilience guarantees, such as [GMW87].

7. (GenWLR, MPCWLR(F)): a A-weakly leakage-resilient multiparty computation (WLR-MPC)
protocol for evaluating a randomized function F in the common random string model, as
given by Theorem 4.4.22.

Theorem 4.5.1. Fix any constants e, 6 > 0. Then, assuming the existence of the ingredients
1 - 7 listed above (where the LDS circuit compiler and WLR-MPC protocol are secure with leak-
age parameter A), there exists a A-leakage-resilient multi-function evaluation MPC protocol 1 =

(IPre, Hlinput, lUpdate) for n > k6 parties, tolerating t = (1 - e)n corrupted parties.

Remark. The reason we need the number of parties to be polynomially related to the secu-
rity parameter is two-fold. First, in the preprocessing phase, the protocol Hpre elects committees

S1,... , 9m, and security of the protocol relies on the fact that these committees are disjoint and

each committee contains at least one honest party. Thus, if n is a constant, then the resulting
security guarantee is that the advantage of any PPT distinguisher in the security game is bounded
(from below) by a constant. More generally, the advantage is > 2- (see Lemma 4.2.9). This is
also the reason we require that at least a constant fraction of the parties are honest. 15

The second reason we need the number of parties to be large is that the number of disjoint
committees i, ... , Em we need to elect is large. The reason is that the number of committees is
exactly the number of modules generated by the LDS compiler, when applied to the decryption
circuit Deck of the underlying FHE scheme. Since the only LDS compiler we know (that does not
use secure hardware) requires m = O(|Deck) the number of modules must be at least the security
parameter of the underlying FHE scheme (which we can set to be k).

We now present the protocol 1I = (llpre, linput, Honiine), where 11oniine = (Hcomp, Hupdate). At a

high level, IT is defined as follows:

Preprocessing phase HPre: In the preprocessing phase, the parties run a (standard) MPC to

collectively generate a key pair (pk,sk) for the FHE scheme, and to secret share sk in such a

way that (a) learning the shares of corrupted parties, and leakage on each remaining share,
does not damage the security of the FHE, but (b) collectively, the shares can be used to

evaluate the decryption circuit in a leaky environment. More specifically, shares are generated

by running the LDS compiler on the decryption circuit Deck(-) (with sk hardwired) to obtain

a sequence of modules Subi,..., Submi; the parties elect corresponding (disjoint) committees

i5 Again, this requirement can be relaxed if all we want is the distinguishing probability to be bounded by k- l,

as opposed to bounded by 2

179

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

E1, ..., Em, and secret share each Sub, among parties in Ej, using the simple xor secret sharing
scheme. To ensure that parties provide the correct secret shares of the Subj's in future
computations, within the MPC the parties collectively generate and publish commitments to
each correct share.

In addition, the preprocessing phase is used to generate crs setup information for subsidiary
tools used throughout the protocol. This is also done via a (standard) MPC.

(Note that the preprocessing procedure is independent of parties' secret inputs and functions
to be evaluated.)

Input phase un put: Each time a party Pi wishes to submit a new secret input xi, she computes
and publishes an encryption si of xi under the FHE scheme (specifically, under the public key
pk for the FHE that was generated during the preprocessing phase). To ensure that malicious
parties do not send malformed ciphertexts, which could ruin the correctness of homomorphic
evaluation later down the line (and potentially damage security), each party accompanies
her published ciphertext si with a NIZK proof of knowledge that the ciphertext is properly
formed.

Online phase ilonline: The online phase consists of two parts: the computation phase, in which
parties collectively evaluate a queried function f on all inputs, and the update phase, in which
parties collectively refresh their secret states.

Computation phase Hcomp: Each time the adversary requests the evaluation of a function
f on all parties' inputs, two steps take place. First, each party (individually) homomor-
phically evaluates the function f on the encrypted vector of inputs - = (S1, ..., zn). Note
that the result, yf, is an encryption of the desired value f(z). Next, the parties jointly
decrypt, using their shares of sk from the preprocessing phase. Namely, the parties
execute the sequence of modules Subi,..., Subm obtained by the LDS compiler applied
to Deck(.), where the input to the first module Subi is Qf. To emulate the execution
of each module Sub2 , the parties of committee E, run a WLR-MPC protocol among
themselves. Within the WLR-MPC, the parties of Eg combine their secret shares Subj,i
(checking first to make sure each party's share agrees with the corresponding published
commitment) and execute the computation dictated by Subj. Communication between
modules is performed by having all parties of committee 9i send the appropriate mes-
sage to all parties of the next committee, g+,. The output of the final module, Subm,
is the evaluation f(1).

Update phase HUpdate: Each time the adversary requests that parties update their secret
states, the parties execute the update procedure of the LDS compiler, where each module
computation is performed via a WLR-MPC among the parties of the corresponding
committee, as above. The only difference here is that the secret state Subj of each module
is also changing. Thus, during each execution of a module Subj, the corresponding
committee must also generate fresh secret shares for its parties, and new commitment
and decommitment information for each share. To provide the required correctness
and secrecy guarantees, this process takes place as part of the committee's WLR-MPC
execution.

180

4.6. PROOF OF SECURITY

The formal description of pre appears in Figure 4.5. The formal description of Hinput appears
in Figure 4.6. The formal description of ['comp appears in Figure 4.7, and the formal description

of [HUpdate appears in Figure 4.8.

Remark 4.5.2. Throughout the protocol description (as well as throughout the proof), we define
abort to be the action of broadcasting the message "abort" to all parties. At any point in which a

party receives an "abort" message, he runs abort and exits the protocol.

Remark 4.5.3. Recall that we assume (for simplicity) that all functions f to be evaluated output
the same value to all parties. If one wishes to consider functions f that output a secret value to

a single party Pi, then Hcomp can be modified in the following way. In the WLR-MPC execution

of the final module Subm, rather than outputting inputm+l = Submn(inputm) to all parties in E,

instead generate secret shares of inputm+ for each party in 8 m (using the simple xor secret sharing

scheme), along with corresponding commitment and decommitment information. Each party of Em

then sends his secret share of inputm+1, together with corresponding decommitment information,
to the receiving party Pi. Clearly, once Pi learns enough information to reconstruct the final secret

output inputm+1, one cannot hope to protect it from being leaked on by the adversary; however,
this modification will guarantee that the adversary learns only leakage information on this output.

4.6 Proof of Security

Proof. Let A be any real-world PPT adversary for H. Denote by M C P the set of parties corrupted

by A.
We construct an adversary S in the ideal world who simulates the real-world view of A by

simulating the honest parties in the real world experiment. We do so by a sequence of intermediate

steps, where we show how to simulate these values given less and less information, eventually given

only the function evaluations f(x1,..., za), as in the ideal-world experiment. More explicitly, we

consider the following sequence of hybrid experiments. We note that all ideal functionalities in

the hybrid experiments are implicitly with abort: i.e., the ideal functionality first outputs to only

the adversary, who decides whether outputs are also delivered to honest parties, or whether the

protocol ends in abort.

Hybrid 0. The real world: i.e., the adversary interacts with honest parties in the real-world

experiment running H.

Hybrid 1. The same as the real-world experiment, except that if any of the committees Ei, .

elected during the preprocessing phase satisfies |E41 < k' (where k' is the security parameter

for the FHE scheme), or > (1 -,E) + r (for a fixed constant r7 > 0) the experiment

immediately concludes with output fail. We assume for simplicity of notation that, if the

experiment does not fail, the first party of each committee E4 is honest.

Hybrid 2. The same as Hybrid 1, except instead of collectively generating the CRS values (for

the equivocal commitment scheme, the WLR-MPC, and the NIZK proof system) via an

MPC protocol during the preprocessing phase, we assume a setup model where these values

181

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Preprocessing Phase: No inputs. No leakage allowed.

1. The parties elect m disjoint committees Ej of size approximately k' by running Elect. Here,
m = poly(k') is the number of modules produced by the LDS compiler, when run on the
decryption circuit Decsk of the FHE scheme with security parameter k' = k0 1). We take k'
so that m -k' < n

2. All parties engage in an execution of the (standard) MPC protocol MPC(Fcrs) to compute
the (randomized) functionality Fcrs described as follows. Functionality Fcr does not take any
inputs and computes the following: (a) a CRS crsWLR <- GenWLR(1k) for the weakly leakage-
resilient MPC protocol (GenWLR, MPCWLR (F)), (b) a CRS crs' +- crsGen(1k) for each party Peq
for the equivocal commitment scheme (crsGen, Com, Rec, Simeq), and (c) a CRS crsrizk +
Gennizk(1k) for each party P for the NIZK proof of knowledge system (Gennizk, P,V,Snizk).
Denote by crs the tuple ({crs , crsizk}=1, crsWLR)-

3. All parties engage in an execution of the (standard) MPC protocol M PC(FE1 ,...£,m,crs) to
collectively compute the randomized functionality FE1 ,...,Em,crs (that does not take any inputs)
defined as follows:

The (randomized) function:

(a) Generate a key pair (sk, pk) +- Gen(1k') for the FHE scheme.
(b) Evaluate the LDS circuit transformation on the decryption circuit for sk:

(Sub1,..., Subm) +- C(Decsk).

(We abuse notation and denote by Sub both the computation of the submodule
and the secret state corresponding to the submodule.)

(c) For each j E [m], secret share Subj = Sub, 1 D ... - Subj,igjI among the parties in
the j'th committee, Eg, using the xor secret sharing scheme.

(d) For each share Subj,i generated in the previous step, compute a commitment
(cji, dg,i) - Com(crs', Subj,i), where P is the i'th party in S (i.e., the party
that receives the share Subj,i).

Output: The outputs are as follows.

All parties: pk, {cj,i}iE[m,iE[,0J]
Party i of Eg: Subj,i, dj,i

4. Each party erases all intermediate values of the MPC executions.

(Note that Steps 2 and 3 can be combined into a single multi-party computation execution, but
have been split into two separate executions for ease of explanation and proof).

Figure 4.5: Protocol HPre: Preprocessing phase.

182

4.6. PROOF OF SECURITY

Input Phase: Party P wishes to submit a new private input, xi. No leakage allowed.
Public inputs: pk, {crsizk}E=1-
Private input: xi, held by party Pi.

Party P performs the following steps:

1. Sample a value ri +- R C {0, 1}poly(k) via rejection sampling. Recall the FHE scheme is
certifiable with respect to the set R C {0, 1}Po'Y(k) (see Definition 5.2.4).

2. Encrypt Ji = Encpk(xi; ri).

3. Compute a NIZK proof of knowledge that (pk, 1i) e L using witness (xi, ri) and CRS crs'izk-
(See Equation (4.1) above for the definition of L). That is, ri +- P(crsizk, (pk, k), (xi, r)).

4. Send the pair (ri, 7ri) to all parties.

(It suffices to send it to parties in E1.)

5. Erase initial input xi, together with all intermediate values of the input phase.

Figure 4.6: Protocol 11input: Input phase.

are (honestly) generated beforehand, and all parties run with these CRS values as shared
common knowledge. We denote this ideal functionality by crs.

Ideal functionalities in Hybrid 2: crs.

Hybrid 3. The same as Hybrid 2, except that some of the CRS values are generated using the
simulation algorithms. More specifically,

" For the first party in each committee, its crs for the equivocal commitment scheme is
generated using the simulator; i.e., for each such party P, (crsq, trapi) +- Sim,''(1k)

" For each malicious party Pt, we generate its crs for the NIZK proof of knowledge using
the simulator, by computing (crsizk, trape) <- Sfclj(1k)_

" The crs for the WLR-MPC protocol is simulated by computing (crsWLR,trapWLR) +-

SWLR(1k)

The remaining crs values are generated honestly, as before. We denote this new ideal func-
tionality by crsSim.

Ideal functionalities in Hybrid 3: crsSim.

Hybrid 4. The same as Hybrid 3, except that the second MPC in the preprocessing phase (which

generates a key pair for the FHE scheme, runs the LDS transformation, etc) is replaced by
the corresponding ideal (randomized) functionality Fpre. Note that FPre takes no inputs.

Overall, this hybrid is the same as the real world, except that the preprocessing phase consists

only of the execution of Elect and one-time oracle access to crsSim and FPre-

Ideal functionalities in Hybrid 4: crsSim, Fpre.

183

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Computation Phase:
Public inputs: f, pk, 2 = (Encpk(X1),..., EnCyk(XA)), crs = ({crs2, crsfzk}=1, crswLR), 8 1, ---,

{Cj,i}jE[m],iiE[]-
Private inputs: (Subj,i, djj), held by party i of Ej.

1. All parties homomorphically evaluate f on the encrypted input vector: y Evalpk(z, f).
(It suffices that only parties in E1 compute Q.)

2. The parties execute the Decryption Cascade with input 1 =

Decryption Cascade:

1. For j = 1, ..., m:

(a) The parties in Ej engage in an execution of the A-weakly leakage-resilient MPC protocol
MPCWLR(Fj) using CRS crSWLR to compute the (randomized) functionality Fj defined
as follows:

Input: (Suby,j, dj,j, inputy), held by party i of Ey.
The function Fj:

i. If any of the inputj's are inconsistent, or Suby,j $ Rec(crs, cj,i, dj,j) for any i,
where Pa is the i'th party in committee E (i.e., if any party's share does not
agree with the corresponding published commitment), then abort.

ii. Otherwise, let Subj = (_ Subj,j.
iii. Evaluate the j'th module on input1 : that is, inputj+1 := Subj(inputj).

Output: All parties learn inputj+ 1.

At the conclusion of the WLR-MPC execution, each party in E erases all intermediate
values generated during the WLR-MPC, keeping only (Subj,i, djj).

(b) Each party in Ej sends the value of inputj+1 to all parties in Eg+1 (where Em+1 := P)-

(c) If any party in Ej+1 receives disagreeing values of inputj+1 from parties in Ej, then abort.

2. Output the desired evaluation f(x) to be the value inputm+l.

Figure 4.7: Protocol Hcomp: Compute phase.

184

4.6. PROOF OF SECURITY

Update Phase:
Public inputs: E1, ... ,Em, crs = ({crsi, crsizk}=1,crsWLR), {cj,i jE[m],iE[Ig}'

Private inputs: (Subjj, dj,i), held by party i of Ej.

All parties run the Update protocol of the LDS compiler, as follows.

1. Each time the parties in committee Ej, who are simulating submodule Subj, receive a message
msgj from the parties in committee Ei1, who are simulating submodule Subj_1, they compute
the function G that would have been computed by Sub3 upon receiving the message inputj
when running the Update protocol. (The parties in committee Si start with msgi A -_).

The computation of G is done by running an execution of the A-weakly leakage-resilient MPC
protocol using crSWLR to collectively execute the following (randomized) function:

Input: (Su b,i, dj,j, msgj), held by party i of Ej,
crs, {Cj,i}E[Jtie, held by all parties.

The (randomized) function:

(a) If any of the msgg's are inconsistent, or Suby,j 74 Rec(crs', c,, dji) for any i,
where P is the i'th party in committee Eg (i.e., if any party's share does not
agree with the corresponding published commitment), then abort. Otherwise, let

Subj =O4Subj,i.

(b) Evaluate (Sub, msgj+ 1) <- G(Sub3 , msgj). Here, Sub' denotes an updated version of
the submodule information, and msgj+1 denotes the message to be sent to submodule
j + 1 as dictated by Update.

(c) Secret share the new value Sub' = Sub, 1 D ... - Sub' into |Ej| shares using the
xor secret sharing scheme.

(d) For each share Sub ,j generated in the previous step, compute a new commitment
(c 1 ', d ,- Com(crs'q, Sub>,), where P, is the i'th party in committee Eg.

Output: The outputs are as follows.

All parties: msgj+ 1 , {c'}ie[g 3}I]

Party i of Ej: Sub',i, d'.i

At the conclusion of the WLR-MPC execution, each party in Eg erases all intermediate values
generated during the WLR-MPC, keeping only (Subj,j, djj).

2. All the parties of Ej send msgj+ 1 to all parties in Ej+ 1.

3. Each party in E broadcasts all new commitments {c',i}iE[i. If any disagreeing values are

sent by parties in Eg, then abort.

At the conclusion of the update phase, each party erases their initial input together with all inter-

mediate values of the update phase.

Figure 4.8: Protocol HUpdate: Update phase.

185

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Hybrid 5. The same as Hybrid 4, except each underlying weakly leakage-resilient MPC execution
in the decryption cascade is replaced with the ideal functionality Fj that accepts inputs from
all parties in Ej, samples uniform randomness, and replies with the evaluation of Fj on these
inputs and randomness (as described in Figure 4.7). Similarly, each WLR-MPC execution in
the update phase is replaced with the ideal functionality Gy that accepts inputs from parties,
samples randomness, and replies with the evaluation of Gj on these inputs and randomness
(as described in Figure 4.8).

The adversary no longer makes leakage queries of the form Lea k(i, L), as he did in all previous
hybrids. Instead, leakage queries are of the form Leak(L), and are made directly to the
ideal functionalities {Fj}, {Gj }. The corresponding ideal functionality evaluates the queried
function L on the collection of received inputs from parties and sampled randomness. As
before, leakage time periods span from the beginning of one Update procedure to the end of
the next, and the adversary may make no more than A leakage queries in any time period.

Ideal functionalities in Hybrid 5: crsSim, Fpre, {Fj}, {Gj}.

Hybrid 6. Same as Hybrid 5, except that the ideal functionality Fpre is replaced by a slightly
modified functionality FPre. Loosely speaking, Fpre is the same as Fpre, except that for the
first party in each committee (which is assumed to be honest), FPre generates a simulated
commitment to the party's secret share.

Explicitly, Fpre has a trapdoor trap', for the first party of each committee E, hardwired
into it. Just as Fpre, the functionality Fre takes no inputs; it samples a key pair for the
FHE scheme, evaluates the LDS transformation of the circuit Dec~k(.), and generates secret
shares Subjj for each of the resulting secret modules. Further, FPre honestly generates a
commitment (cy,i, dj,j) +- Com(lk, Subj,j) to Sub,j as usual for the secret share of all but the
first party in each committee. For the first party in each committee (which is assumed to be
honest), F're generates a simulated commitment (a5, 1, ,1, j) +- Simeqcom(crsiq, trapi), and

sets dy,1 = d .

Ideal functionalities in Hybrid 6: crsSim, Fpre, {Fj}, {G2 }.

Hybrid 7. Same as Hybrid 6, except that the ideal functionalities {Gj} are modified in the same
fashion as the step above. Namely, we replace each Gj with a new ideal functionality G2 with
the following differences. G' has a trapdoor trap2 , for the first party of each committee Eg,
hardwired into it. G' accepts the same inputs as Gj, and carries out the same computation
as Gj, with the following exception: For the first party in each committee, instead of honestly
generating a commitment to the secret share Sub2 ,1 , the functionality G generates a simulated

commitment (a5, 1 ,d, 1 ,, 1) <- Simeqcom(crsig,trapI), and sets d , b,. (Note that the
ideal functionalities {Fj} in the decryption cascade do not generate new secret shares and
thus do not need to be modified in this fashion).

Ideal functionalities in Hybrid 7: crsSim, Fpre, {F}, {G }.

Hybrid 8. Similar to Hybrid 7, except that all secret shares are eliminated, and committees
interact directly with the m modules (Subi,..., Subm). More specifically, the following changes
are made:

186

4.6. PROOF OF SECURITY

" The ideal functionality crsSim is replaced by a slightly modified functionality crsSim',
which executes exactly as crsSim, but in addition sends to the adversary all trapdoors
for simulated equivocal commitment crs values (for the first party in each committee).

" The ideal functionality Fpre is replaced by a simple ideal functionality Fpk that takes no
inputs, generates a key pair (pk, sk) for the FHE scheme, and publishes pk.

" The sequence of ideal functionalities {F}, {G }, as introduced in the previous steps,
are replaced by the corresponding interactions with the m modules (Sub1,..., Subm)
generated by the LDS compiler:

(Subi, ... , Subm) +- C(Decsk(-)).

Namely,

The decryption cascade takes place as follows. For each j = 1, ... , m, beginning with

E1 and inputi = 9, all parties in committee 93 send inputj to the corresponding mod-
ule Subj. If all input 3 's are consistent, they receive back inputj+1 +- Sub3 (input 3).
The parties of Ej then send input, 1l to all parties in the next committee E3+1, who
(if the received values are consistent) repeat the same process. At the conclusion of
the decryption cascade, the parties of the final committee Em broadcast the resulting
value inputm+1 (which is supposedly f(9)) to all parties.

- The update procedure is similar to the decryption cascade. The modules execute the

L DS update procedure, interacting with each other via the committees Ei, ... , Em.

Instead of making leakage queries to the ideal functionalities {Fj}, {G3 }, the adversary now
makes queries of the form Lea k(j, L), and receives the evaluation of L on the secret state of

the jth module, Subj. As before, leakage time periods span from the beginning of one Update
procedure to the end of the next, and the adversary may make no more than A leakage queries
in any time period.

Ideal functionalities in Hybrid 8: crsSim', Fpk, {Sub3 }.

Hybrid 9. Same as Hybrid 8, except that all modules Subj are removed. Instead, parties interact
with an ideal decryption functionality Decsk, as described below.

In the preprocessing phase, the parties execute Elect, and are given pk and crs values (where
some of the crs values are generated with trapdoors, as described in Hybrid 3). The input
phase takes place as usual. In the online phase, for each function f that is queried by the ad-

versary, the parties homomorphically compute the corresponding ciphertext y = Eva Ipk(i, f).
All parties in the first committee, Ei, send y to the ideal decryption functionality Decsk(.)
with abort. If all received i's are consistent, the ideal functionality responds by sending the

resulting decryption Decsk() to the adversary, where sk is the decryption key that was gener-

ated by Fpk. If the adversary allows, Decsk(i) is also sent to all honest parties; otherwise, the

experiment concludes in abort. The update phase no longer takes place. No leakage queries

are allowed at any point of the experiment.

Ideal functionalities in Hybrid 9: crsSim', Fpk, Decsk.

187

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Hybrid 10. Differs from Hybrid 9 in the following ways:

" The ideal functionalities crsSim', Fpre, and the execution of Elect, are removed from the
preprocessing phase.

* The input phase no longer takes place.

" The ideal decryption functionality Deck is replaced by the ideal-world functionality
Evaluate, which takes input xi from each party and evaluates functions f queried by the
adversary on the set of all parties' inputs iF, as defined in Section 5.3.

" In addition, the adversary is given as auxiliary input

z' := (pk,{si, crsizk77iViM7

where (pk,sk) +- Gen(1k), and for each honest party Pi, the triple (crsIzk, i, 7ri) is
computed using the real input xi of Pi. That is, the values in the triple are computed
by crs'tzk +- Gennizk(1k); ri +- R; s-i = Encpk(Xi; ri); ri +- P(crsiizk, (ii, pk)(xi, ri)).

Overall, Hybrid 11 is the following.

Parties begin by submitting their inputs to the ideal functionality Evaluate. More specifically,
each honest party Pi submits his input xi. The adversary is given the corresponding auxiliary
input z', computed as a function of the honest parties' inputs {xi}iM. Upon receiving z',
the adversary submits the inputs of malicious parties to Evaluate.

The preprocessing and input phases no longer take place. During the online phase, for each
function f that is queried by the adversary, Evaluate responds by sending the adversary the
evaluation of f on the set of all submitted inputs (Xi, ... , Xn). If the adversary allows, the
evaluation is also sent to all honest parties; otherwise, the experiment concludes in abort.

Note that Hybrid 11 is nearly the ideal-world experiment. Indeed, the only difference is that
the adversary is given the auxiliary input z'.

Ideal functionalities in Hybrid 11: Evaluate.

Hybrid 11. The ideal world: i.e., the adversary only receives f(Xi, ... , Xn) for each f selected to
be computed. Note that this is the same as Hybrid 11, except that the adversary no longer
receives the auxiliary input. (See Section 5.3 for the detailed experiment).

The output of each hybrid experiment consists of the outputs of all parties, where honest parties
output in accordance with the dictated protocol, and malicious parties may output any efficiently
computable function of the view of the adversary. For every adversary At with auxiliary input
z E {0, 1}* running in hybrid experiment f with initial inputs i, we denote the output of the
corresponding hybrid f experiment by

HYB (At,1 k, z,{i 1Z=

We now go through the hybrids one by one, beginning with Hybrid 0. In each step we show
that for any adversary At running in Hybrid f, there exists an adversary Aj+1 running in Hybrid

188

4.6. PROOF OF SECURITY

(f + 1) such that

HYBe (At,1k, z,{xiU1) oc HYBe+1 (AZ+,1k,z,{rir=1)

Note that once we show this for every step i 0, ..., 11, the theorem will follow, as this will imply
that for each adversary A in the real-world experiment (Hybrid 0), there is an adversary A 19 in
the ideal-world experiment (Hybrid 19), such that

HYBo, (A, 1k, Z',xit 1) - e HY13ig (Aig, 1k, Z,{jXjg 1

as desired.

Step 1: Hybrid 0 to Hybrid 1. (Elect protocol). Recall that the Hybrid 1 experiment
ends in fail if any of the committees is smaller than (E - r)k' for fixed constant q > 0, or if any
committee has fewer than E -7 constant fraction of honest parties. By Lemma 4.2.9, the probability
of event fail is negligible in the FHE security parameter k', and thus in k (as k' was taken to be
k for a constant 6 > 0). Thus, for any adversary A, it holds that HYBo (A, 1 k, z, {xig 1) and
HYB 1 (A, 1 k, z, {xi},U 1) are statistically indistinguishable.

Step 2: Hybrid 1 to Hybrid 2. (MPC security). In this step, the initial MPC protocol
in the preprocessing phase, which is used to generate crs values, is replaced by the corresponding
ideal functionality. Consider an adversary A 1 in Hybrid 1. We think of A 1 as being composed of
three sub-algorithms (Are , AJPC, A ost), corresponding to the actions of A 1 before, during, and
after this MPC. Each sub-adversary receives as auxiliary input the complete view of Ai up to that
point in an execution of Hybrid 1, and outputs the corresponding view of A 1 at the conclusion of
its execution. We construct a corresponding adversary A 2 in Hybrid 2.

Pre-MPC: Up to the beginning of the MPC, A 2 acts exactly as Aire. Note that during this time,
the two hybrids are identical. Let zMPc denote the view of A 1 up to this point.

MPC: At this point, the hybrids diverge. By the security of the underlying (leak-free) MPC
protocol, there exists a simulator SMpc corresponding to AMPC. A 2 runs SMpc with the set of
values output by the ideal functionality crs, together with auxiliary input zMpc. (Note that
the crs-generation MPC takes no inputs). Let zpo0 t denote the output of SMPc.

Post-MPC: At the conclusion of the crs MPC, A 2 acts exactly as Al"'t with auxiliary input zpost.

Claim 4.6.1. For any auxiliary input z and set of inputs i-,

H YB1 (A1, 1', z, {xij ,=1)j HYB32 (A2, 17 z,{x'1

Proof. Suppose, for contradiction, there exists a set of inputs E, auxiliary input z, and a PPT
distinguisher D for which

Pr [D (HYB 1 (A 1 , 1 k, z,{xi 1)) = 1] - Pr [D (HYB 2 (A2 , 1 , z, { 1 = 1] > E

189

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

for some noticeable E. We construct an adversary A', set of inputs ;', auxiliary input z', and
efficient distinguisher D' that together break the security of the underlying MPC. Take A' to be
the sub-adversary AMPC, and let X' = 0 (recall the crs-generation MPC does not take inputs). Let
zMPC denote the entire view of Ai during a real execution of H up to the MPC execution, executed
on the above fixed set of inputs zF. Note that zMPc can be efficiently simulated given the set of all
inputs s and auxiliary input z. Take z' = zMPc.

The distinguisher D' is given a challenge output y' that is either the output of a real execution of
the MPC with adversary A'(z'), or is simulated. Using the given set of all inputs x, and the auxiliary
input zMpc, together with y' (which corresponds to the collection of crs values, in addition to the
entire view of A 2 up to the conclusion of the MPC), D' simulates the remainder of the protocol H.
At the conclusion of the simulated experiment, D' sends the resulting set of all parties' outputs to
the distinguisher D. If the challenge output y' was the output of a real execution of the MPC, then
this distribution is identical to HYB1 (A 1 , 1 k, z, {x,}, 1). However, if the challenge output y' was
simulated, then the distribution is identical to HYB2 (A2 , 1k, z,{xi}? 1). Thus, D' distinguishes
the two cases with noticeable advantage e.

Step 3: Hybrid 2 to Hybrid 3. (Simulation of crs for Eq-Com, NIZK, WLR-MPC).
In this step, some of the crs values {crsi}, {crsizk}, crsWLR are sampled using the simulator in
the place of the honest generation algorithms. For any adversary A 2 in Hybrid 2, let A 3 be the
adversary in Hybrid 3 who acts identically to A 2.

Claim 4.6.2. For any auniliary input z and set of inputs z~,

HYB 2 (A 2 , 1 z,) ;e HYB 3 (A 3, 1 ,

Proof. To prove this claim it suffices to prove that the sequence of the crs's generated in Hybrid 2
is computationally indistinguishable from the sequence of crs's generated in Hybrid 3. This follows
from a standard hybrid argument, together with the fact that a simulated crs is computationally
indistinguishable from an honestly generated crs, for the NIZK proof system (see Definition 5.2.1),
for the equivocal commitment scheme (see Definition 4.4.4), and for the weakly leakage resilient
MPC protocol (see Definition 4.2.17).

Step 4: Hybrid 3 to Hybrid 4. (MPC security). In this step, the MPC protocol comput-
ing Fpre in the preprocessing phase in Hybrid 3 is replaced by the corresponding ideal functional-
ity Fpre. The proof of this step is almost identical to the proof of Step 2.

Let A 3 be a PPT adversary in Hybrid 3. We think of A 3 as being composed of three sub-
algorithms (A ,AMPc, Aost), corresponding to the actions of A 3 before, during, and after the
MPC of Fpre. Each sub-adversary receives as auxiliary input the complete view of A 3 up to that
point in an execution of Hybrid 3, and outputs the corresponding view of A 3 at the conclusion of
its execution. We construct a corresponding adversary A 4 in Hybrid 4.

190

4.6. PROOF OF SECURITY

Pre-MPC: Up to the beginning of the preprocessing MPC, A 4 acts exactly as Afe. Note that
during this time the two hybrid experiments are identical. Let zMPc denote the entire view
of A 4 up to this point.

MPC: At this point, the hybrid experiments diverge. At a high level, A 4 will make a call to Fpre
in order to generate the outputs of the MPC with the correct distribution, and then will feed
this information to the MPC simulator SMPC, corresponding to adversary AMPC, to generate
the view of A 3 during the MPC execution. Let zpos, denote the output of SMPc.

Post-MPC: At the conclusion of the MPC for computing Fpre, the two hybrid experiments return
to being equivalent. A 4 thus simply acts exactly as A3"'t executed with auxiliary input zpost.

Claim 4.6.3. For any auxiliary input z and set of inputs x,

HYB3 (A 3 , 1k 7, 1 =1l cHYB4 (A 4 , 1 zxi 1

The proof of this claim is essentially identical to the proof of Claim 4.6.1, and is therefore
omitted.

Step 5: Hybrid 4 to Hybrid 5. (WLR-MPC security). In this step, all the weakly leakage-
resilient MPCs (WLR-MPCs) in Hcomp and HIUpdate are replaced by (leaky) ideal functionalities.
Consider an adversary A4 in Hybrid 4. We can think of A4 after the preprocessing and input
phases as being composed of a collection of sub-algorithms (A 4MPc1, A 4 MPc2, ...) corresponding to
each instance of the WLR-MPC protocol. We define the output of each AMPCI to be the view
of A4 up to that point; each AMPci receives as auxiliary input the output zMPci of the previous
sub-adversary, AMPci-1. By the security of the A-WLR-MPC protocol, for each such A 4 MPCi there

exists a simulator SWLR who, given the same auxiliary input zMPci and access to the corresponding
WLR-MPC ideal functionality (i.e., the function output together with up to A bits of leakage on the
collective inputs), simulates the view of A4 MPCi during the ith MPC execution. Loosely speaking,
A5 will simulate A 4 by piecing all these simulations together.

Consider the following adversary A5 in Hybrid 5. In the preprocessing and input phase, A5
acts precisely as A 4 . Once the online phase begins, A5 simulates A 4 as follows. Each time A 4
requests to compute a function f, A 5 does the same. Each time A4 enters in an execution of the
weakly leakage-resilient MPC protocol MPCi, A5 instead runs the simulator SWLR with auxiliary
input zMPci = view(A 4), which is the entire simulated view of A 4 up to that point. Note that S(')
accesses the corresponding ideal functionality, which supplies the function output and answers up
to A leakage queries.

Claim 4.6.4. For any auxiliary input z and set of inputs z,

HYB4 (A4, 1 , z, {zi} 1) ~ HYB5 (A 5 , 1 z ,{=xi=1)-

Proof. First, recall that security of the WLR-MPC protocol for randomized functionalities running

among f parties holds with probability 1 - negl(k) - fe-Vt/2, as long as a constant fraction of the
e parties is honest. In our case, each WLR-MPC protocols is run among an elected committee Ei

191

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

(corresponding to a module Sub3 of the LDS-compiled circuit), which is guaranteed by Hybrid 1 to
have at least e > k' = k6 parties, and a constant fraction of honest parties. Thus, security of each
individual WLR-MPC execution is guaranteed with probability 1 - negl(k).

Now, suppose for contradiction that there is some choice of z and - for which there exists a
PPT algorithm D who distinguishes between these distributions with noticeable advantage:

Pr [D (HYB 4 (A 4 , 1k, z, {Xi i = 1] - Pr [D (HYB, (A 5 , 1k Z, X= 1 > E.

We will use D to break the weak leakage resilience of one of the underlying WLR-MPC protocols.
This is done via a standard hybrid argument.

Since A 4 is PPT, there exists some polynomial bound Q = Q(k) such that the number of WLR-
MPC protocols in any execution of A4 is bounded by Q. Consider a sequence of Q intermediate
experiments E(') between Hybrid 4 and Hybrid 5, in which the first i MPC executions in the
protocol are run as normal and the remaining (Q - i) are replaced by the ideal functionality. We
can similarly define adversaries A() in each intermediate experiment, which act as A4 up through
the ith MPC execution, and then act as A 5 for the remainder of the experiment. Since E(is
Hybrid 4 and E(0) is Hybrid 5, there must exist some i for which

Pr D E (A(j-1) = 1 -Pr D KE(A()) = > .

We now construct A', z', 7', D' that together break the security of the ith WLR-MPC protocol,
MPCj. Take A' to be the ith MPC sub-adversary, A 4MPci. Let z' denote the entire view of A4
during a real execution of H up to M PCj, executing on the above fixed set of inputs 7 and auxiliary
input z. Note that z' can be efficiently simulated given x and z. Let :' be the set of inputs of all
parties to MPC2 , as dictated by this partial execution.

The distinguisher D' is given a challenge output y' that is either the output of a real WLR-MPC
execution of M PCi with adversary A'(z') on inputs 7', or is simulated. At a high level, D' will now
simulate the remainder of the Hybrid 5 execution as dictated by A5 , and feed the corresponding
outputs to the distinguisher D. We first argue that D' is able to simulate the remainder of this
execution.

Recall that M PC is only run among parties within a single committee (say, Ej), and the internal
state of honest parties V Ej does not change during this period. Now, V' knows the following
values: (a) the view of all parties up to the start of MPCi (including their inputs to MPC), since
D' simulated this entire portion of the protocol on the given inputs x and z; (b) the view of honest
parties 0 Ej at the conclusion of M PC2 , since their internal state did not change as a course of M PCI;
(c) the view of the adversary at the conclusion of MPC2 , since this is contained in the output y'
(by the definition of AMPci); and (d) the output (but not the whole view) of honest parties E E in
MPC2 , since this is part of y'. Thus, D' knows everything except the intermediate values of honest
parties E Eg during M PCi. But, such intermediate values are not needed to simulate the remainder
of the execution of Hybrid 5, since honest parties erase all intermediate values at the conclusion of
each WLR-MPC execution, as dictated by H. Thus, D' can indeed complete this simulation.

At the conclusion of the experiment simulation, D' sends the resulting set of all parties' outputs
out to the distinguisher D. If the challenge output y' was the output of a real execution of MPC2 ,

192

4.6. PROOF OF SECURITY

then the distribution out is identical to the output E((A(')). However, if the challenge output y'
was simulated, then the distribution out is identical to E- 1)(-1)). Thus, V' distinguishes the
two cases with nonnegligible advantage, e/Q.

Step 6: Hybrid 5 to Hybrid 6. (Equivocation of EqCom). In this step, the ideal func-
tionality Fpre is modified so that the commitment to the secret share Sub, 1 for the first party in
each committee is generated using the simulation algorithm of the equivocal commitment scheme.
Let A 5 be an adversary in Hybrid 5. Define A 6 to be the adversary in Hybrid 6 who acts exactly
as A 5 .

Claim 4.6.5. For any auxiliary input z and set of inputs 7,

HYB 5 (A 5 , 1' Z, ,{ij= 1) ;c HYB 6 (A 6 , 1 k z, {iK 1

Proof. Suppose there exists a set of inputs 7, auxiliary input z, and ppt distinguisher D for which
the claim does not hold; namely, there exists a non-negligible e = E(k) such that

Pr [D (HYB5 (As, z,{zi} 1 = 1 - Pr [D (HYB 6 (A 6 , 1 , z, {xi} 1 = 1

Then there exists a ppt distinguisher D' that has the values 1 k, z, ixj}L1 hardwired into it, such
that

Pr [D' (sk,pk, {crsq}jE[m], {Sub,,, cj,1, dj,1}jE[m]) 1-

Pr ' (skpk,{crs(}je[m],{Sub,1,a,1,j,1}iG[m] =1] 1 >

The distinguisher V', given his input and hardwired values, can simulate the entire hybrid as follows.
He thinks of crseg as the CRS of the equivocal commitment for the first party in committee j,
and simulates all the other crs's. He simulates all parties running Elect to obtain committees

Ei, ... , Em. Then he simulates the ideal functionality FPre or F{>re, depending on whether the

commitments/decommitment pairs, that he is given as inputs, are simulated or not. This is done
as follows.

He generates Subi,...,Subm +- C(Deck); for each committee Eg he secret shares Sub3 among
the committee members by choosing at random Subj,2 , ... , Subj,gj such that Subj = Sub, 1 G ... G
Sub,1 -ig. Then he computes a commitment/decommitment pair (cjj, dj,) <- com(Subj,j) to all

the shares except Sub, 1 (for which he uses his input). He simulates the ideal functionality giving

pk, {Cj,i}jE[m,iE[gj1] to all parties, and giving Subji, djj to the i'th party of Ej. He simulates the
rest of the hybrid by simply simulating all parties, and simulating the ideal functionalities {F}

and {Gj}.
Note that if the commitment/decommitment pairs given to D' are generated using the un-

derlying commitment algorithm com, then D' simulates Hybrid 5 perfectly. On the other hand,
if the commitment/decommitment pairs were generated using the corresponding simulation algo-
rithms Seq then D' perfectly simulates Hybrid 6.

193

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Finally, V' runs D on the simulated hybrid, and thus distinguishes between the two possible
inputs with non-negligible probability 2 e. It remains to show that the existence of such a distin-
guisher D' contradicts the simulation property of the underlying equivocal commitment scheme.
This follows immediately from Claim 4.2.5, together with a standard hybrid argument. O

Step 7: Hybrid 6 to Hybrid 7. (Equivocation of EqCom). In this step, the ideal function-
alities {Gj} are replaced with {G }. The proof of this step is very similar to the proof of Step 6.
Let A 6 be an adversary in Hybrid 6. Define A 7 to be the adversary in Hybrid 7 who acts exactly
as A6.

Claim 4.6.6. For any auxiliary input z and set of inputs z,
HYB6 (A6 , 1 , z, HYB7 (A7 , 1 , z, {x;E 1

Proof. Suppose there exists a set of inputs F, auxiliary input z, and ppt distinguisher D for which
the claim does not hold; namely, there exists a non-negligible E = e(k) such that

Pr [D (HYB 6 (A6, 1 , z, {= 1 - Pr [D (HYB 7 (A?, 1k, z, = 1 e.

Let Q = poly(k) be an upper bound on total the number of bit commitments that each party
receives from the ideal functionalities {Gj}. Similarly to Step 6, we prove that there exists a ppt
distinguisher V' that has the values 1 k, z, {xj} i1 hardwired into it, such that

Pr [' ({crsf}jem], {Cj,b,i,dj,b,i}l[m],bE{O,1},iE[Q]) = 1] -

Pr [D' ({crsj}jE[m], {2j, ,,j, db,b,i}JE[m],bE{O,1},iE[Q] = 1] | > E

where each pair (Cj,b,i, dj,b,i) <- com(crsq, b) is a (fresh) commitment/decommitment pair to the bit b
with respect to crs4g, and where each pair (2j,b,i, dj,b,i) is a (fresh) simulated commitment/decommitment
pair to the bit b computed using (crseg, trapi).

Exactly as was done in Step 6, the distinguisher D' uses his inputs to simulate the entire hybrid.
Note that D' has the inputs of all parties, and thus can simulate the entire hybrid, including the
ideal functionalities, on his own. Indeed that is what he does, except that he uses each crseg (which
is part of his input) as the CRS of the equivocal commitment for the first party in committee j.
In addition, when simulating the functionalities {Gy} (or {Gj}), whenever the functionality needs
to generate a commitment/decommitment pair of a bit a bit b, the distinguisher V' uses one of his
input commitment/decommitment pair instead of generating it on his own. Other than that, he
simulates the rest of the hybrid on his own.

Note that if the commitment/decommitment pairs given to D' are generated using the un-
derlying commitment algorithm com, then D' simulates Hybrid 6 perfectly. On the other hand,
if the commitment/decommitment pairs were generated using the corresponding simulation algo-
rithms Seq then D' perfectly simulates Hybrid 7.

D runs D on the simulated hybrid, and thus distinguishes between the two possible inputs with
non-negligible probability 2 e. It remains to show that the existence of such a distinguisher D'
contradicts the simulation property of the underlying equivocal commitment scheme. This follows
immediately from Claim 4.2.5, together with a standard hybrid argument. L

194

4.6. PROOF OF SECURITY

Step 8: Hybrid 7 to Hybrid 8. (Binding of Com). In this step, the ideal functionalities
crsSim, Fr,, {F}, {G } are replaced by crsSim', Fpk and interaction with the submodules {Sub3 }.
Let A 7 be an adversary in Hybrid 7; we construct a corresponding adversary A 8 in Hybrid 8.
Loosely speaking, A8 simulates A 7 as follows. At each point when an ideal functionality in Hybrid
7 would generate and distribute secret shares of some module Subj, A 8 generates random shares for
all but the first party in each committee, and generates a simulated commitment for the first party
in each committee. This allows A8 to simulate leakage on every party's secret state (Subj,i, dj,j)
directly from leakage on the corresponding module Subj. Adversary A 8 simulates the remaining
outputs of the ideal functionalities {Fy} and {G'} essentially by forwarding the outputs from the
corresponding modules. More explicitly, A 8 does the following.

Preprocessing phase: First, A8 simulates the output of Fre by outputting pk received from Fpk,
and running the following secret sharing procedure:

Secret sharing procedure: For all but the first party in each committee, sample a secret share
Subj,i at random. Honestly compute a commitment (cp, jdj,) +- Com(crseq, Subgj). 16 For
the first party in each committee Ej, generate a simulated commitment (cj,1, do,1 , d!,1) <-

Simeq(crse'g, trap i), using the corresponding trapdoor received from the crsSim' functional-

ity. Send all generated commitments {cj,i} (including the simulated ones) to all parties.17

For each malicious party i of committee j, send the corresponding secret share Subjj and
decommitment information dj,i to A 7 .

Simulate Elect as A 7 .

Input phase: Act exactly as A7 to obtain li (zi, ... ,iz).

Online phase:

Computation procedure: Begin by acting as A 7 . Each time A 7 requests the evaluation of a
function f, A 8 makes the same request in Hybrid 8 and proceeds as follows. Set correct 1 =

Evalp(p , f), and run the following for j = 1, ..., m:

9 For the current value of j, when A 7 queries the ideal functionality F by submitting
an input (input3 , Sub, 2 , d) for each malicious party in Ej, A 8 does the following. If

any inputj # correctg, or if any Sub,j # Rec(crsig, cj,i,pdj), then abort. Otherwise, set
correctj+1 +- Sub 3 (correct3), and simulate the output of the ideal functionality F as
correctj+1. Send correctj+1 to A 7 , and increment j <- j + 1.

Update procedure: Similar to the computation procedure, each time A 7 requests that hon-
est parties update their secret state, begin with correct 1 = 0. Each time A 7 queries the
appropriate ideal functionality Gj by submitting input (msg 3 , Subyj, dji) for each malicious
party in the corresponding committee Ej, do the following. If any msgj # correct3 , or if any

16 For simplicity of notation, in this section we refer to a party Pt who is the ith party of committee j as party

(j, i), and denote the party's corresponding crs values as crsj,,.
1
7 Technically, to simulate the ideal functionality F{,, with abort, As first sends these values only to A 7. If A7

allows, the values are also sent to honest parties; otherwise, the honest parties receive abort.

195

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Sub,i 0 Rec(crsq, cj,i, dyj), then abort. Otherwise, set correctj+1 +- Subg(correctj), and sim-
ulate the output of Ge as correctj+1. Send correctj+1 to A7, run the secret sharing procedure
from above, and increment j +- j + 1.

Leakage queries: At any point when A 7 makes a leakage query Lea k((j, i), L), if fewer than A
such queries have been made during the current leakage time period, do the following.

" If i 7 1, then simply send the evaluation L(Subyj, dj,j) to A 7 .

" If i = 1, then A 8 queries the following modified leakage function L' to module Subg

L (Subj,1, d b , where
L (S u b) : =)

Subj,1 := Subg e(1) Subji

and forwards the response to A7.

Claim 4.6.7. For any auxiliary input z and set of inputs z,

HYB7 (A 7 , 1 J, z,{zi) , HYB8 (A8 , 1 , z,

Proof. Note that A 8 simulates the preprocessing and input phase perfectly. We now consider the
online phase. Namely, we show the A8 correctly simulates the output of the F's, the output of the
G 's, and the responses to leakage queries.

F: Recall that, on input (inputySub3 ,i, d,i) from all parties in committee Ej, the ideal func-
tionality Fj computes the following function:

(@j Sub,j) (inputj) If Suby,j = Rec(crse, 7ci, djj) Vi E [|Ij|]
Fy : and all the input agree

abort Else

In the simulation, A8 only receives inputs to Fj from malicious parties. He decides whether
the simulated output of F should be abort by checking (a) whether Subj,j = Rec(crse, cjj, dyj)
for malicious parties (instead of all parties), and (b) whether input = correct for these parties
(instead of checking that input3 is consistent among all parties). Note that in Hybrid 7, the
condition Subj,j = Rec(crs, c,i, djj) will always hold for honest parties in Ej, since they always
give their (correct) received secret shares and decommitment values. Further, the value of input
submitted by honest parties is exactly the value of correct maintained by A 8 . Thus, A 8 simulates
output abort in exactly the same cases that Fg aborts in Hybrid 7.

We now argue that, if F does not abort, then with overwhelming probability its output will
be Subj(correctj). For each malicious party (j, i), let (Sub§", dP) denote the values generated by
A 8 for party (j, i), and (Subj,i, dgj) denote the corresponding values submitted by A 7 to the ideal
functionality Fj. By the binding property of the commitment scheme, for each malicious party

(j, i),

Pr Subj,i = Sub'" I Subj,j = Rec(crsjci,i, dj,j) = 1 - negl(k).

196

4.6. PROOF OF SECURITY

That is, A 7 cannot open the commitment c1 ,i to a new value. Thus, if Fy does not abort, then with
overwhelming probability all parties in committee Ej sent their correct secret share, in which case

Subj,i = Sub1 and the output of F is precisely Subj (correctj).
G': Combining the arguments above (i.e., for the secret sharing procedure and the simulation

of the Fj), it follows that, with overwhelming probability, A8 correctly simulates the output of each
ideal functionality G'.

Leakage: It remains to show that the responses to leakage queries are simulated with the correct
distribution. First, note that A 7 makes no more than A leakage queries from the beginning of any
Update procedure to the end of the next, and thus A8 makes < A leakage queries to any one
module Sub1 during this time period, as required in Hybrid 8. Now, in Hybrid 7, the secret state
of each honest party (j,i) consists only of Subj,i and dj,i. (In particular, since the WLR-MPC
executions are already removed, parties no longer generate additional secret randomness as part
of the protocol). For all but the first party in each committee, the simulated leakage clearly has
the correct distribution, since A 8 knows Subj,;, dj,; in their entirety. For the first party in each
committee, the value of Sub1 ,1 in Hybrid 7 is distributed precisely as Sub, 1 = Sub1 ((G;>2 Subg,;),
and the value of dj,1 generated by F'>,e or G is sampled via the equivocal commitment simulator,
and selecting the correct decommitment value. Thus, the simulated leakage in Hybrid 8 has exactly
the same distribution as the real leakage in Hybrid 7.

Step 9: Hybrid 8 to Hybrid 9. (LDS security). Consider an adversary A 8 in Hybrid 8.
In this step, we simulate all interactions of A 8 with the modules Subi,..., Sub, (including leakage
queries) given access only to a decryption oracle Deck(-). This is possible by the LDS security of
the circuit compiler (C, Update).

We begin by considering an intermediate experiment, E' , which is identical to Hybrid 8, except
that the adversary communicates directly with the modules Sub1 instead of via committees. That
is, at any point during the online phase, the adversary may query any module Sub1 on any value
inputj, and receive back the (randomized) output Sub(inputj). Leakage queries on each Sub1 are
exactly as in Hybrid 8. Note that the online portion of E' corresponds directly to LDS access to
the modules, as described in Section 4.2.5.

Consider the following adversary A' in E' . In the preprocessing and input phases, A' acts
precisely as A 8 . In the online phase, A simulates the execution of A 8 , but makes only those
queries to modules that are "correct" (i.e., those consistent with the messages of honest parties in
the corresponding committee), and ignores the rest. More formally, A' does the following.

* Each time A 8 requests a function f to be evaluated, A' requests the same function in E'-
He then homomorphically evaluates y = EvalIk(I, f), and sets correct = (Subi, 9).

* Each time A 8 requests that the honest parties update their secret state, A' sets correct =

(Subi,,0).18

* Each time A 8 queries a module Subj by sending a value input1 from each malicious party in

committee Eg, A' does the following. Suppose the current value of correct is (Su bcorrect, in putcorrect).

18We assume, without loss of generality, that all computation and update procedures are disjoint.

197

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

If Sub3 # Subcorrect, or if input 7 inputcorrect, then do nothing. Otherwise, send query input
to Subj, receive inputj+1 +- Subj(inputj), and set correct = (Subj+1, inputj+1).

9 Each time A8 makes a leakage query Lea k(j, L), A' makes the same query in E'.

Claim 4.6.8. For any auxiliary input z and set of inputs x,

HYs(A8, 1k, Z, {X,} z1) 1 kA', , , xi

Proof. Recall that in Hybrid 8, each ideal functionality Suby only responds if all parties in the
corresponding committee Ey submit the same value inputj. Since each committee has at least one
honest party, the only module queries that will be answered are precisely the "correct" ones: i.e.,
those consistent with messages of honest parties in 9j. Thus, any query to Subj made by A8 that
is ignored by A' will, in fact, be ignored by Subj in Hybrid 8 as well. L

We now construct an adversary Ag in Hybrid 9 that simulates the adversary A' in E', such
that the outputs of all parties in the two experiments are computationally indistinguishable. We
can think of A' as being composed of two sub-adversaries (A'pre A'Online), corresponding to the
actions of A' in the preprocessing/input phase, and the online phase. The second sub-adversary,
A'0 "", receives as auxiliary input the entire view of A8 up to that point, and acts as an LDS
adversary to the modules. By the A-LDS security of the circuit compiler, there exists simulator
SLDS corresponding to A8

We define the adversary Ag in Hybrid 9 as follows. In the preprocessing and input phases, Ag
acts precisely as A'Pr*. Denote the view of Ag up to this point as z'. In the online phase, Ag
runs the LDS simulator SLDS corresponding to A'8"ll"*, with the auxiliary input z'. Recall that
SLDS(z') requires oracle access to the decryption circuit Decsk(-) (the circuit that was compiled). Ag
simulates access to this oracle using access to his own ideal functionality, DecSk(.). Note, however,
that Ag does not have direct access to Decsk(-), as the ideal functionality only responds to queries
that are consistently requested by all parties in E1.

Each time A'Onli"e requests a function f to be evaluated, Ag requests the same function in Hybrid
9, and performs the following steps: (a) homomophically evaluate y = Evalpk(2, f), (b) submit y
to the ideal decryption functionality Decsk (-), from each malicious party in E1, and (c) send the
received value y to SLDS- At the conclusion of the experiment, A9 outputs the corresponding output
of SLDS-

Claim 4.6.9. For any auxiliary input z and set of inputs x,

(As, 1 z,{ HYB9 (Ag, 1 z,

Proof. The preprocessing and input phases are simulated perfectly. We now consider the online
phase. Note that A' 0"8line is precisely a A-LDS adversary. (Recall, in particular, that in Hybrid
8, the adversary is limited to a maximum of A leakage queries during each time period.) By the
A-LDS security of the circuit compiler, it thus remains to show that A9 correctly simulates the
decryption oracle for SLDS, on each input 1 that A'Online queries to Subi. By construction, the only
queries that A'OnlI"" makes to Sub1 are the homomorphically evaluated values yf = Evalpk(z, f) for

198

4.6. PROOF OF SECURITY

each function f that A80nli"* requests to be evaluated. But, Ag sends exactly these decryptions
Deck(9f) to SLDS. Thus, the decryption oracle is perfectly simulated, and the claim holds.

0

Step 11: Hybrid 9 to Hybrid 11. (Soundness/PoK of NIZK, certifiability of FHE)
In this step, Elect, Fpk, and crsSim are removed from the preprocessing phase, and the decryption
oracle Deck(-) is replaced by the ideal-world functionality Evaluate, which takes as input xi from
each party P, and evaluates each of the adversary's queried functions f on all inputs (x 1 , .-., xn).
In addition, the adversary is given auxiliary input z' that depends on the honest parties' inputs

(see description of Hybrid 11).
Let Ag be an adversary in Hybrid 9. We construct a corresponding adversary A11 in Hybrid

11 that simulates Ag as follows. At a high level, A11 will (a) simulate the preprocessing phase
on his own, (b) simulate the honest party input phase by simply forwarding the information from

his auxiliary input z' to A 9 , (c) extract the inputs of malicious parties from their NIZK proofs of
knowledge, and send them to Evaluate, and (d) for each function f queried by A 9 , make the same
query f to Evaluate, and use this to simulate Deck(-).

More explicitly, A11 does the following.

Preprocessing phase: Take pk to be the corresponding value in the auxiliary input z'. Generate
all crs values for the equivocal commitment scheme and WLR-MPC protocol as described in

Hybrid 3. For the NIZK, generate crs values as follows: for each malicious party P, compute

(crs'tzk, trap) +- S"; (kk); for each honest party Pi, take crsz to be the corresponding value

from the auxiliary input z'. Send pk and all crs values to Ag. Honestly simulate the actions

of honest parties in Elect.

Honest party input phase: For each honest party Pi, forward the corresponding input pair (ri)

contained in z' to Ag.

Malicious party input phase: After Ag receives (!i,, 7r) for all honest parties i 0 M, it will respond
with pairs (it, re) for the malicious parties e c M. For each such e, A 11 does the following.

If the supplied proof does not verify (ie, if 1 f V(crsizk, (±e, pk),wr)), then abort. Otherwise,
extract the input xe of malicious party P from the NIZK proof of knowledge by computing
(xe, re) = E(crsfizk, trape, (ze, pk), re). For each e E M, send xe to the ideal-world functionality
Evaluate.

Online phase: A 11 acts exactly as A 9 , while simulating oracle access to Deck(-) as follows. Each

time A9 requests the computation of a function f, A11 makes the same request f to Evaluate

and receives f(Y). In the case that all malicious parties in E1 send the correct value y -

Evalpk (1, f) to the decryption oracle, Al 1 simulates the response by sending f(y).

Claim 4.6.10. For any auxiliary input z and set of inputs -,

H YB9 (A9, 1', z, {xij 1) = s HYBnl (All, 1? ,= 1

199

CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Proof. Note that all values in the preprocessing and input phase in Hybrid 11 are generated with
the exact same distribution as in Hybrid 9.

Recall that in Hybrid 9, the decryption oracle only responds to queries that are consistently
requested by all parties in committee Ei. Since E1 contains at least one honest party, such queries
will be limited to the homomorphically evaluated ciphertexts Evalpk(i, f) corresponding to the
adversary's queried functions f. In Hybrid 11, the responses to these queries are simulated using
f(x), where {xe}eEM are the values extracted from the input pairs (ij, wr) of the corresponding
malicious parties. Thus, it remains only to show that, for each queried function f,

Pr[Deck(Evalpk((i, ..., it), f)) = f(xi,..., Xn)] = 1 - negl(k).

By the soundness of the NIZK, it must hold for any choice of inputs x, and for every f,

Pr [(is, pk) E L I V(crsnizk, (it, pk), 7re) = 1] = 1 - negl(k).

Boringly, this is the case, since otherwise this adversary Ag can directly be used in the security
game for adaptive soundness, simply by embedding the challenge crs as crsizk and simulating the
rest of the experiment honestly using the corresponding inputs x.

Recall (it, pk) E L implies 3(xt, re) for which rt E R and ie = Encpk(xe; re). Further, for each
honest party i V M, we have that ii = Encpk(Xi; ri) for some ri E R. Thus, by the certifiability of
the FHE scheme with respect to R (see Definition 5.2.4), it follows that

Pr [Dec(EvaIpk((i, ..,), f)) = f(Xi, ... , Xn)] = 1 - negl(k),

as desired.

Step 19: Hybrid 11 to Hybrid 19. (Security of FHE, ZK of NIZK) In the final step, the
auxiliary input z' is removed. Let All be an adversary in Hybrid 11; we construct a corresponding
adversary A 19 in the ideal world, Hybrid 19. At a high level, A 19 simply simulates the auxiliary
input z', and then simulates the actions of All with this simulated z'im-

More explicitly, A 19 does the following. First, generate a key pair (pk, sk) <- Gen(lk). Then, for
each honest party P, perform the following steps. Generate crs2Izk <- Gennizk(1k); sample ri +- R
and encrypt 6 = Encpk(0; ri); and (honestly) generate a proof 7ri +- P(crs'izk, (6j, pk), (0, ri)). Let
z/im denote the tuple of values (pk, {crslzki Ui, ri}igM).

Claim 4.6.11. For any auxiliary input z and set of inputs x,

HYBul (All,1k, Z'I,{xy 1 , HYBig (Aig, 1k, Z'I,{xy t

Proof. It suffices to show that the simulated auxiliary input z4 im is computationally indistin-
guishable from z'. Recall that the auxiliary input z' is composed of a public key pk and triples

(crsizk i, ri) for each honest party P. By a standard hybrid argument, it is sufficient to prove

200

4.6. PROOF OF SECURITY

that indistinguishability holds for a single such triple together with the pk. That is, for any value
of x, we need to show the following distributions are computationally indistinguishable:

pk, CrSNIZK,
c = Encpk(x; r),

wr +- P(crsNIZK, (c, pk), (x, r))) pk, crsNIZK,
c' = Enck(0; r),

7r <- P(crsNIZK, (c', pk), (0, r))

where (pk, sk) +- Gen(1k), crsNIZK +- crsGen(lk), and r +- R C {0, 1}*poy(k).

To do so, we rely on the security of the FHE and the NIZK. Namely, let (Sc-[zk, Sprzok*) be the
corresponding simulators for the NIZK. Then we have

crsNIZK +- crsGenNIZK(1k),

crs'NIZK : (crsNIZK,trap) -nk

crsNIZK : (crsNIZK,trap) +- ik
crsNIZK <- crsGenNIZK(1k)

c+- Encpk(x;r),

c4- Encpk(x;r),
c' +- Encpk(0;r),
c' - Encpk(O;r),

7r - P(crsNIZK, (c, pk), (x, r)))
' S **(crs'NIZK trap, (c, pk))

7r' <- S p*k'(crs'IZK, trap, (c', pk)))
7r" +- P(crSNIZK, (c', pk), (0, r)) ,

where the first and third indistinguishabilities follow by the zero knowledge property of the NIZK,
and the second indistinguishability holds by the semantic security of the FHE scheme.

0

()

(pk,
(pk,
(pk,
(pk,

201

202 CHAPTER 4. MPC SECURE AGAINST CONTINUAL MEMORY LEAKAGE

Chapter 5

Communication Locality in Secure
Multi-party Computation

In this work, we devise multi-party computation protocols for general secure function evaluation
with the property that each party is only required to communicate with a small number of dy-
namically chosen parties. More explicitly, starting with n parties connected via a complete and
synchronous network, our protocol requires each party to send messages to (and process messages
from) at most polylog(n) other parties using polylog(n) rounds. It achieves secure computation
of any polynomial-time computable randomized function f under cryptographic assumptions, and
tolerates up to (1 - e) - n statically scheduled Byzantine faults.

We then focus on the particularly interesting setting in which the function to be computed is a
sublinear algorithm: An evaluation of f depends on the inputs of at most q = o(n) of the parties,
where the identity of these parties can be chosen randomly and possibly adaptively. Typically, q =
polylog(n). While the sublinear query complexity of f makes it possible in principle to dramatically
reduce the communication complexity of our general protocol, the challenge is to achieve this while
maintaining security: in particular, while keeping the identities of the selected inputs completely
hidden. We solve this challenge, and we provide a protocol for securely computing such sublinear
f that runs in polylog(n) + O(q) rounds, has each party communicating with at most q - polylog(n)
other parties, and supports message sizes polylog(n) - (f + n), where E is the parties' input size.

Our optimized protocols rely on a multi-signature scheme, fully homomorphic encryption (FHE),
and simulation-sound adaptive NIZK arguments. However, we remark that multi-signatures and
FHE are used to obtain our bounds on message size and round complexity. Assuming only standard
digital signatures and public-key encryption, one can still obtain the property that each party only
communicates with polylog(n) other parties. We emphasize that the scheduling of faults can depend
on the initial PKI setup of digital signatures and the NIZK parameters.

We begin in Section 5.1 by giving an overview of our solution. In Section 5.2, we define
some preliminary tools to be used in our construction. Section 5.3 contains our formal security

definition. In Section 5.4, we present our protocol for the case that f is a sublinear algorithm.

Then, in Section 5.5, we describe the modified protocol for achieving communication locality for
general functions f.

203

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

5.1 Overview of Our Solution

We first describe how to achieve our second result, for the case when f is a sublinear algorithm. This
setting requires additional techniques in order to attain the communication complexity gains. After
this, we describe the appropriate modifications required to maintain polylog(n) communication
locality for general functions f.

There are three main technical components to our second result. The first is to set up a com-
mittee structure constituted of a supreme committee C and n input committees C1,..Cn. These
committees will all be of size polylog(n) and with high probability have a 2/3 majority of honest
players. The committee Ci will (to begin with) hold shares of the input X whereas the role of the
supreme committee will essentially be to govern the running of the protocol. A major challenge
is to ensure that all players in the network know the identity of players in all the committees.
The starting point to address this challenge is to utilize the communication efficient almost ev-
erywhere leader election protocol of [KSSV06J. We remark that [KSSV06] achieves better total
communication complexity of polylog(n) bits and offers unconditional results, but only achieves an
almost-everywhere agreement: there may be a o(1) fraction of honest players which will not reach
agreement and in our context will not know the make up of the committees. The main idea to rem-
edy this situation is to add an iterated certification procedure using multi-signatures to the protocol
of [KSSV06], while keeping the complexity of only polylog(n) messages sent and processed by any
honest party. In the process however we move from unconditional to computational security and
our message sizes grow as they will be signed by multi-signatures which are only security parameter
size but include the identities of the signers - this is cause for the increased size of messages.

The second component is to implement a randomly chosen secret reshuffling p of players inputs
within the complexity restrictions we have alloted. At the end of the shuffling committee C() will
hold the input of committee Ci. Informally, this will address the major privacy issue in executing
a sub-linear algorithm in a distributed setting which is to ensure that the adversary does not learn
which of the n input is used by the algorithm. We implement the shuffling via distributed evaluation
of a switching network with very good mixing properties under random switching, all under central
coordination by the supreme committee. We assume that a fixed switching network over n wires is
given, with depth d = polylog(n), and is known to everyone.

The third component, once the inputs will be thus permuted, is to actually run the execution
of the sub-linear algorithm. For lack of space let us illustrate how this is done for the sub class of
non-adaptive sub-linear algorithms. This is a class of algorithms which proceed in two steps:

" First, a random subset I of size q of the indices 1, ..., n is selected.

" Second, an arbitrary polynomial time algorithm is computed on inputs xg for j E I.

To run an execution of such an algorithm, the supreme committee: first selects a random and
secret q = poly(logn) size subset I of the input; and second runs a SFE protocol on the set of
inputs in p(I) with the assistance of players in committees C for j E p(I). In the adaptive case,
one essentially assumes queries are asked in sequence, and executes in a similar way the sublinear
algorithm query after query, contacting committe p(i) for each query i, instead of parallelizing the
computation for all inputs from I. The price to pay is an additive factor q in the number of rounds

204

5.2. PRELIMINARIES

of the protocol. However, note that in the common case q = polylog(n), this does not affect the
overall asymptotic complexity.

Now, consider now the case when f is a general polynomial-time function, whose evaluation
may depend on a large number of its inputs. In this case, we can skip the aforementioned shuffling
procedure, and instead simply have each party P send his (encrypted) input up to the supreme
committee C to run the evaluation of f. That is, each Pi gives an encryption of his input to the
members of his input committee Ci, and each party in Ci sends the ciphertext up to C via the
communication tree. Then, the members of the supreme committee C (who collectively have the
ability to decrypt ciphertexts) are able to evaluate the functionality f directly via a standard MPC.

5.2 Preliminaries

We first recall the definitions of standard basic tools such as pseudorandom functions and genera-
tors, NIZK arguments of knowledge, and fully homomorphic encryption. (Note that our definition
of FHE correctness is slightly non-standard, albeit achieved by the most efficient recent schemes.)
We briefly review the definition of the less common notion of a multisignature scheme used within
our protocol, followed by a review of security of multi-party protocols. We then move to reviewing
some important results about shuffling and switching networks, as well as our notation for sublinear
algorithms.

5.2.1 Pseudorandom functions and generators.

Recall that a family of functions F = {F 8 }8,s, indexed by elements of a set S, and where F, : D -+ R
for all s, is a pseudorandom function (PRF) family [GGM86] if for a randomly chosen s, the
following and all PPT A, the distinguishing advantage Prs,_s[Af-() = 1] - Prf<-(D-R)[Ap() =1
is negligible, where (D -+ R) denotes the set of all functions from D to R. A weaker notion is
that for a pseudorandom generator (PRG), a length expanding function prg : {0, 1}k + {0, 1}" (for
n > k) such that prg(Uk) and Un are computationally indistinguishable, where Uj is a uniformly
distributed f-bit string.

5.2.2 Non-Interactive Zero Knowledge.

We are going to need some basic tools from non-interactive zero-knowledge. Let us start with the
definition of a NIZK proof system with simulation-soundness, following various definitions in the
literature [FLS90, BFM88, BSMP91, Sah99, SCO+01].

Definition 5.2.1. [FLS90, BFM88, BSMP91] A tuple II = (Gen, P,V,S = (S",SProof)) is an
efficient adaptive NIZK argument system for a language L E NP with witness relation 7Z if
Gen, P, V, scrs, SP'*f are all PPT algorithms, and there exists a negligible function I such that
for all k the following three requirements hold.

* Completeness: For all x,w such that 7Z(x,w) = 1, and for all strings crs +- Gen(lk), it
holds that V(crs, x, P(crs, x, w)) = 1.

205

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

" Unbounded Adaptive Simulation Soundness[Sah99, SCO+01]: For all ppt adversaries
A, it holds that Pr[ExpA(k)] 5 p(k), where the experiment ExpA(k) is defined by:

(crs, trap) +- S cr(lk)

(X, 7r) <- As'(crs,-,.) (crs)

Let Q be the list of proofs given by oracle S' above

Return true iff (r V Q) A (x V L) A (V(crs, x,7r) = 1),

where S'(crs, trap, x, w) := SPro*f(crs, trap, x).

" Adaptive Zero-Knowledge: For all ppt adversaries A, it holds that Pr[ExpA(k) = 1] -
Pr[ExpS (k) = 1] I- p(k), where the experiment ExpA(k) is defined by:

crs +- Gen(lk)

Return AP(crs, ,)(crs)

and the experiment ExpA(k) is defined by:

(crs, trap) +- Scrs(lk)

Return AS'(crs,trap,.,.)(crs),

where S'(crs, trap, x, w) := SP*o~f (crs, trap, x).

Theorem 5.2.2. [SCO+01] There exists an unbounded simulation-sound, adaptive NIZK proof
system for any NP language L, based on one-way functions, with proof length poly(|x|, |w), where
x is the statement and w is the witness.

5.2.3 Fully Homomorphic Encryption.

A fully homomorphic public-key encryption scheme (FHE) consists of algorithms (Gen, Enc, Dec, Eval).
The first three are the standard key generation, encryption and decryption algorithms of a public
key scheme. The additional algorithm Eval is a deterministic polynomial-time algorithm that takes
as input a public key pk, a ciphertext - +- Encpk (x) and a circuit C, and outputs a new ciphertext
c = Evalpk (2, C) such that Decsk (c) = C (x), where sk is the secret key corresponding to the public
key pk. It is required that the size of c depends polynomially on the security parameter and the
length of the output C (x), but is otherwise independent of the size of the circuit C.

Several such FHE schemes have been constructed, starting with the seminal work of Gen-
try [Gen09]. Recently, new schemes were presented by Brakerski, Gentry and Vaikuntanathan [BV11,
BGV11] that achieve greater efficiency and are based on the Learning with Errors (LWE) assump-
tion. We note that in these schemes, the size of the public key depends linearly on the depth of
the functions being evaluated. However, this issue can be avoided altogether if we assume that the
schemes of [BV11, BGV11] are circular secure.

For our construction, we need an FHE scheme with the following additional property, which we
refer to as certifiability. Loosely speaking, an FHE scheme is said to be certifiable, if there is an

206

5.2. PRELIMINARIES

efficient algorithm that takes as input a random string r and tests whether it is "good" to use r as
randomness in the encryption algorithm Enc. More precisely, a certifiable FHE scheme is associated
with a set R, which consists of all the "good" random strings, such that (1) a random string is in R
with overwhelming probability; and (2) the Eval algorithm and the decryption algorithm Dec are
correct on ciphertexts derived from those using randomness from R to encrypt.

We now formally define these notions.

Definition 5.2.3. For a given subset R C {0, 1}poly(k) of possible randomness values, we (recur-
sively) define the class of R-evolved ciphertexts with respect to a public key pk, evaluation key evk,
to include all ciphertexts c of the form:

" c = Encpk(m; r) for some m in the valid message space and randomness r E R, and

" c = Eval({ci}iEi, f) for some poly(k)-size collection of R-evolved ciphertexts {ci}ie, and some
poly-size circuit f.

Definition 5.2.4. A FHE scheme is said to be certifiable if there exists a subset R C {0, i}poly(k)

of possible randomness values for which the following hold.

1. Pr[r c R] = 1 - negl(k), where the probability is over uniformly sampled r +- {0, 1}poly(k).

2. There exists an efficient algorithm AR such that AR(r) = 1 for r E R and 0 otherwise.

3. We have
V R-evolved ciphertexts ci,..., cn,

Pr V poly-size circuits f : {0, 1}' - {0, 1} negl(k).
pk,sk Decsk(Eval1k(f,c1, ...,cn)) = f(bi, ... ,bn),

where bi = Decsk(ci) _

We say that a ciphertext c is evaluation-enabled if it is R-evolved for this special set R.

We note that this certifiability property holds, for example, for the schemes of [BV11, BGV11),
assuming both LWE and circular security. For the readers who are familiar with these constructions,
the set of "good" randomness R corresponds to encrypting with sufficiently "small noise."

5.2.4 Multisignatures

In a multisignature scheme, a single short object-the multisignature-can take the place of n

signatures by n signers, all on the same message.1 The first formal treatment of multisignatures

was given by Micali, Ohta, and Reyzin [MOR01). We consider a variant of the Micali-Ohta-Reyzin

model due to Boldyreva [Bol03], as presented in [LOS+06]. In this model, the adversary is given

a single challenge verification key vk, and a signing oracle for that key. His goal is to output a

forged multisignature o-* on a message m* under keys vki, ... , vkt, where at least one of these keys

is a challenge verification key (wlog, vki). For the forgery to be nontrivial, the adversary must not

have queried the signing oracle at m*.

'Note that multisignatures are a special case of aggregate signatures [BGLSO3], which in contrast allow combining
signatures from n different parties on n different messages.

207

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

For simplicity, we present a slightly weaker version of the security definition achieved by
[LOS+06], which suffices for our application. 2

Definition 5.2.5. A multisignature scheme is a tuple of algorithms

Gen(lk): Key generation algorithm. Outputs a secret signing key sk together with corresponding
public verification key vk.

Sign(sk, m): Standard signing algorithm, with respect to message m and single signing key sk.

V(vk, a): Standard signature scheme verification, with respect to a single verification key vk.

Combine({vki, ai} _1, m): Takes as input a collection of signatures (or multisignatures) and outputs
a combined multisignature, with respect to the union of verification keys.

MultiVerify({vki} 1, m, a): Verifies multisignature a with respect to the collection of verification
keys {vki}i 1 . Outputs 0 or 1.

that satisfies the following properties:

Correctness: The standard signature correctness requirement must hold for (Gen, Sign, V). In ad-
dition, for any message m, any collection of honestly generated signatures {ai +- Signski (M) }iEI
on m (for I C [n]), the combined multisignature formed by C +- Com bine({vki, Ui}iEI, M)
will properly verify with overwhelming probability: Pr[1 +- MultiVerify({vki}iEr,mA)] >

1 - negl(k).

Unforgeability: For any PPT adversary A, the probability that the challenger outputs 1 when
intreracting with A in the following game is negligible in the security parameter k:

Setup. The challenger samples n pulic key-secret key pairs, (vki, ski) +- Gen(lk) for each
i E [n], and gives A all verification keys {vki}iE[fl. A selects a proper subset M c [n]

(corresponding to parties to corrupt) and receives the corresponding set of secret signing
keys {ski}iEM.

Signing queries. A may make polynomially many adaptive signature queries, of the form

(M, vki). For each such query, the challenger responds with a signature o +- Signki (M)
on message m with respect to the corresponding signing key ski.

Output. A outputs a triple (d*, m*, {vki}iEs), where &* is an alleged forgery multisignature
on message m* with respect to a subset of verification keys S C [n]. The challenger
outputs 1 if at least one of the provided verification keys vki corresponds to a challenge
(honest party) key, the message m* was not queried to the signature oracle with this
verification key vki, and the provided forgery a* is a valid multisignature: i.e., 1 +-

M ultiVerify({ vki}iSs, m *, a *).

2The security game in {LOS+06] also allows the adversary the power to choose verification keys on behalf of
corrupted parties, as long as he also provides certification that the keys were properly generated.

208

5.2. PRELIMINARIES

The following theorem follows from a combination of the (standard) signature scheme of Waters
[Wat05] together with a transformation from this scheme to a multisignature scheme due to Lu
et. al. [LOS+06].

Theorem 5.2.6. [WatO5, LOS+06] There exists a secure multisignature scheme with signature
size poly(k) (independent of message length and number of potential signers), based on the Bilinear
Computational Diffie-Hellman assumption.

5.2.5 Multi-party protocols: Model and Security Definitions

We consider the setting of n parties P = {P 1, ..., Pn} within a synchronous network who wish to
jointly compute any PPT function f over their private inputs. We allow up to < (j - e)n statically
chosen Byzantine (malicious) faults, for any constant e > 0, and a rushing adversary. We assume
that every pair of parties has the ability to initiate direct communication via a point-to-point
private, authenticated channel. (However, we remark that in our protocol, each (honest) party will
only ever send or process information along subset of only polylog(n) such channels.) We assume
the existence of a public-key infrastructure, but allow the adversary's choice of corruptions to be
made as a function of this public information.

The notion of security we consider is the standard simulation-based definition of secure multi-
party computation (MPC) i.e., to formally define security, we turn to the real/ideal paradigm. A
full description of the ideal- and real-world experiments, together with our definition of security,
are contained in Section 5.3.

General multi-party computation. The following theorem is well known and will be use
throughout this paper. Let C be a circuit with n inputs, and let Fe the functionality that computes
the circuit.

Theorem 5.2.7. [BGW88] For any t < n/3, there exists a protocol that securely computes the
functionality FC functionality, with perfect security. The protocol proceeds in |Cl rounds, and each
party sends poly(n) messages of size O(poly(k, n)) each.

Verifiable Secret Sharing. A secret sharing scheme, a notion introduced by Shamir [Sha79],
is a protocol that allows a dealer who holds a secret input s, to share his secret among n parties.
The guarantee is that even if t of the parties are malicious, they gain no information about the
secret s. A verifiable secret sharing (VSS) scheme, introduced by Chor et al. [CGMA85], is a secret
sharing scheme with the additional guarantee that after the sharing phase, a dishonest dealer is
either rejected, or is committed to a single secret s, that the honest parties can later reconstruct.
Further, if the dealer is honest, then the original secret will be reconstructed, even if dishonest
parties do not provide their correct shares.

For concreteness, we consider a class of VSS constructions that takes advantage of reconstruction
and secrecy properties of low-degree polynomials [Sha79, MS81]. Security of such a VSS protocol
Share can be formalized as emulating the following ideal functionality.

209

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Definition 5.2.8. The ideal polynomial VSS functionality Ftss for parties PD, Pl, ... , Pn with
distinguished dealer PD, is defined as:

Fvss(q(x), (0, ..., 0)) - (0, (q(ai), ..., q(On))) if deg(q) <t t

(0, (_1,...,1)_) else

The party can also run a reconstruction protocol Rec such that if honest parties input the correct
shares output by the above functionality to them, then they recover the right value. The following
result is well known.

Theorem 5.2.9. [BGW88, AL11] For any t < n/3, there exists a constant-round protocol Share
that securely computes the Ftss functionality, with perfect security. Each party sends poly(n)
messages of size O(llog 1), where 1 = max{|x|,n}.

Also, we will be interested in the case where the dealer D can be any of the n players, and
he sends shares to a subset P' of the n players of size n' (e.g., n' = polylog(n)), and we may not
necessarily have D E P'. The above functionality can be extended to this case naturally, and it is
a folklore result that the protocols given by the above theorem also remain secure in this case as
long as less than a fraction 1/3 of the parties in P' are corrupted.

Broadcast. Another important functionality we need to implement is broadcast. This can also be
seen as an example of a MPC implementing the following functionality FBC for parties PD, P1, ... -, n
with distinguished dealer PD, is defined as FBC(m, (0,..., 0)) = (0, (m,..., m))), where m is the
message to be broadcast.

Theorem 5.2.10. [FM88] For any t < n/3, there exists a constant-round protocol that securely
computes the FBC functionality, with perfect security. Each party sends poly(n) messages of size
O(ImI) each.

5.2.6 Random Switching Networks and Random Permutations.

Our protocol will employ what we call an n-wire switching network, which consists of a sequence of
layers, each layer in turn consisting of one or more swapping gates operating which decide to swap
the values of two wires depending on a bit. Formally, given 7 = (xi, ... , x) (which we assume to
be integers wlog), a swap operation swa p(i, j, 7, b) returns ;' where = x' if b = 0, and otherwise,
if b = 1, x' = xy and x = xi, whereas x' = Xz for all k $ i, j. Formally, a switching layer is a set
L = {(ii,jl),..., (i,,jk)} of pairwise-disjoint pairs of distinct indices of [n]. A d-depth switching
network is a list SN = (L 1 , ... , La) of switching layers. Note that for each assignment of the bits
of the gates in SN, the network defines a permutation from [n] to [n] by inputting the vector
7= (1, 2,... , n) to the network. The question we are asking is the following: If we set each bit in
each swap gate uniformly and independently at random, how close to uniform does the resulting
permutation look like? The following theorem guarantees the existence of a sufficiently shallow
switching network giving rise to an almost-uniform random permutation.

Theorem 5.2.11. For all c > 1, there exists an efficiently computable n-wire switching network
of depth d = O(polylog(n) - logc(k)) (and size O(n - d)) such that the permutation ;r : [n] -4 [n]

210

5.3. SIMULATION-BASED SECURITY DEFINITION

implemented by the network when setting swaps randomly and independently has negligible statistical
distance (in k) from a uniformly distributed random permutation on [n].

Proof. By Theorem 1.11 in [CKLK01], there exists such network SN of depth d = O(polylog(n))
where the statistical distance is of the order 0(1/n). Consider now the switching network SN'
obtained by cascading r copies of SN. Then, when setting switching gates at random, the resulting

permutation i equals 91 o--- o . r, where -i are independent permutations obtained each by setting
the gates in SN uniformly at random. With 7r being a random permutation, a well-known property
of the statistical distance A(., .), combined with the fact permutation composition gives a group

(see e.g. [MPR07] for a proof) yields

S Jr-1 A(i,r) O O(2 r(g 2-log(n)))
2=1

which is negligible in k for r = logc(k).

Note that in particular this means that each wire is connected to at most d = O(polylog(n)
logc(k)) other wires via a switching gates, as each wire is part of at most one gate per layer.

5.2.7 Sublinear algorithms

We briefly discuss some notational conventions when dealing with sublinear algorithms. We consider
a model where n inputs X1,... , Xn are accessible to an algorithm SLA via individual queries for
indices i E [n]. In the most general case, a Q-query algorithm in the n-input model is a tuple
of (randomized) polynomial time algorithms SLA = (SLA.Seli, SLA.Se12 , ... , SLA.Selo, SLA.Exec).
During an execution with inputs (Xi,..., Xn), SLA.Seli takes no input and produces as output a
state a1 and a query index ii E [n], and for j = 2, .. ., n, SLA.Sel takes as input a stage oj-_1, an
input zij_,, and outputs a new state aj and a new query index ij. Finally, SLA.Exec takes as input
o-Q and xQ, and produces a final output y. We say that SLA is sublinear if Q = o(n). For simplicity,
we will restrict the presentation of our main result to the case of non-adaptive algorithms which
consist of only two components SLA = (SLA.Sel, SLA.Exec), where SLA.Sel outputs a random subset
I C [n] of indices of inputs to be queries, and the final output is obtain by running SLA.Exec on
those inputs xi for i E I.

Examples of sublinear algorithms, many of them non-adaptive, include algorithms for property
testing such as testing sortedness of the inputs, linearity, approximate counting, and numerous
graph properties, etc. Surveying this large area and the usefulness of these algorithms goes beyond
the scope of this paper, and we refer the reader to available surveys; several pointers can be obtained
for example from [Sls].

5.3 Simulation-Based Security Definition

The notion of security we consider is the standard simulation-based definition of secure multiparty
computation (MPC). To formally define security, we turn to the real/ideal world paradigm.

211

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

We begin by describing the ideal world experiment; we then describe the real world experiment;
and finally, we present our security definition. Throughout this work, we assume that the functions
to be evaluated give the same output to all parties.

Ideal World In the ideal world, each party P sends her input xi to a trusted third party, who
replies with the desired evaluation f(xi, . . . , x,,). We emphasize that for a randomized functionality
f, the trusted party returns a random evaluation f(xi, ..., x,), and no other information about the
randomness that was used. In particular, in the case that f is a randomized sublinear algorithm,
whose evaluation depends only on a small (random) subset of its inputs, no information on which
inputs were selected will be revealed.

The ideal world model is formally described below.

Inputs: Each party Pi obtains an input xi. The adversary is given auxiliary input z. He selects a
subset of the parties M C P to corrupt, and is given the inputs xe of each party P E M.

Sending inputs to trusted party: Each honest party Pi sends its input xi to the ideal func-
tionality. For each corrupted party Pi E M, the adversary may select any value x' and send
it to the ideal functionality.

Trusted party computes output: Let x',...,x'x be the inputs that were sent to the trusted
party. Then, the trusted party responds to all parties with the message f(x', ..., x').

Outputs: Honest parties output the message they obtained from the ideal functionality. Malicious
parties may output an arbitrary PPT function of the adversary's view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For any
ideal-world adversary S with auxiliary input z e {0, 1}*, any input vector z, and security parameter
kwe denote the output of the corresponding ideal-world experiment by

IDEA Ls,m (1" z, z, f).

Real World The real world execution begins by the dissemination of the PKI setup information.
In response, an adversary A selects any arbitrary subset of parties M C P of size |MI < (} - E)|P1
to corrupt (for some constant c > 0). The parties then engage in an execution of a real n-party
protocol H, as described below. We assume that honest parties have the ability to toss fresh coins
at any point. Throughout the execution of H, the adversary A sends all messages on behalf of the
corrupted parties, and may follow an arbitrary polynomial-time strategy. In contrast, the honest
parties follow the instructions of H. At the conclusion of the protocol execution, honest parties
output as directed by H. Malicious parties may output an arbitrary PPT function of the adversary's
view.

For any adversary A with auxiliary input z E {0, 1}*, any inputs {xj} U, and any security
parameter k, we denote the output of the MPC protocol H by

212

REAL',r X

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Loosely speaking, we say that a protocol H is a secure MPC protocol for computing f if any
adversary, who corrupts a subset of parties, and runs the protocol with honest parties on function f,
gains no information about the inputs of the honest parties beyond the function output f(xi, ... , Xz).
We formalize this in the next subsection.

Security Definition In what follows, we formally define our model of security; i.e., what it
means for a real-world protocol to emulate the desired ideal world.

Definition 5.3.1 (Secure MPG). A protocol H is said to securely compute a function f if for every
PPT adversary A in the real world, there exists a PPT adversary S corrupting the same parties in
the ideal world such that for every input vector zF, and every auxiliary input z, it holds that

IDEA LS,M k 7 Izf) ~~ R A I k, I ,f).

5.4 Multiparty Computation of Sublinear Algorithms

This section presents the first main result of this work: a generic compiler for private distributed
evaluation of a sublinear algorithm. We begin by stating and discussing the result in Section 5.4.1.
We then provide a more detailed technical overview of our solution in Section 5.4.2; present the
complete protocol in Section 5.4.3; and give the proof of security in Section 5.4.4.

5.4.1 Our result

We first present our result for the simpler case of a non-adaptive sublinear algorithm, and then
discuss the extension of our result to the adaptive case below. Our protocol compiles a non-adaptive
sublinear algorithm SLA = (SLA.Sel, SLA. Exec) into a multi-party protocol UISLA executing the
algorithm on the inputs Xi,... , xn of the n parties. This in particular means that the protocol

HSLA securely computes the functionality T SLA which, on inputs x1 ,...,x first samples a subset
I C [n] according to SLA.Sel, and then runs SLA.Exec on the xi's for i e I, and finally outputs the
result. Without loss of generality, we assume that SLA.Sel always makes exactly Q distinct queries,
and that Q is known. The following is our main theorem, proven below.

Theorem 5.4.1 (Multi-party evaluation of sublinear algorithms). Let SLA = (SLA.Sel, SLA.Exec)
be a non-adaptive sublinear algorithm which retrieves Q = Q(n) = o(n) different inputs. Then, for
all constant e > 0, there exists an n-party protocol 11SLA that securely computes the functionality

FSLA tolerating t < (1/3 - e)n active corruptions, with the following complexities, where k is a
security parameter and |x| is the size of the individual inputs held by the parties:

(1) The protocol runs in poly(log n, k) rounds.

(2) Each honest party talks with at most Q - polylog(n) other parties and sends at most Q
polylog(n) + poly(log n, k) messages.

(3) Each message has size of order (Ix I+ n) - poly(log n, k).

213

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

(4) The protocol uses a setup consisting of n - polylog(n) signing keys of size poly(k), as well as a
poly(k)-long additional CRS.

The protocol assumes a secure multisignature scheme, a FHE scheme, simulation-sound NIZK
arguments, as well as pseudorandom generators.

Often, as common in the area of security parameters, we think of n as being the security
parameter, and one can typically set k = polylog(n) to make the above result independent of the
additional parameter k.

Let us briefly compare the complexity of our protocol with the canonical execution of SLA
in the traditional non-private setting with a central server; there, one lets the server retrieve the
inputs of the subset of players I C [n] of sublinear size Q (e.g., Q = polylog(n)) output by SLA.Sel,
which subsequently locally executes SLA.Exec on these inputs. In particular, the server talks to
Q parties, and the overall communication complexity for the server is Q - |x|, where often Q is at
least polylog(n). Note that our protocol ensures that the communication for each party is not much
larger - in fact, in most cases, it seems reasonable to assume that | |= (n).

The above result extends to q-query adaptive sublinear algorithms. The only asymptotic addi-
tional cost are O(q) rounds, otherwise the theorem statement remains unchanged. We sketch at
the end of the technical overview how to obtain this result.

5.4.2 Technical overview

Ideally, we would like to implement our protocol along the following lines. First, a small committee
C consisting of polylog(n) parties is elected, with the property that at least two thirds of its
members are honest. This committee then jointly decides on a random subset of Q players I,
output by SLA.Sel, from which inputs are obtained. The parties in C U I jointly execute a multi-
party computation among themselves to produce the output of the sublinear algorithm according
to the algorithm SLA.Exec, which is then broadcasted to all parties.

But things will not be as simple. Interestingly, one main challenge is very unique to the setting
of sublinear algorithms: An execution of the protocol needs to hide the subset I of players whose
input contribute to the output! More precisely, an ideal execution of the sublinear algorithm via
the functionality FSLA only reveals the output of the sublinear algorithm. Therefore, we need to
ensure that the adversary does not learn any additional information about the composition of I
from a protocol execution other than what leaked via the final output. Our protocol will indeed
hide the set I completely. This will require modifying the above naive approach considerably.

The second challenge is complexity theoretic in nature. Enforcing low complexity of our protocol
when implementing the above steps, while realizing our mechanism to hide the subset I, will turn
out to be a delicate balance act.

In particular, at a high level our protocol will consist of the following components:

Committee election phase. The n parties jointly elect a supreme committee C, as well as indi-
vidual committee C 1 , . . . , C, on which they all agree, sending each at most polylog(n) messages
of size each n - poly(log n, log k). All committees have size polylog(n) and at least a fraction
2/3 of the players in them are honest.

Commitment phase. Each party P commits to its input so that Ci holds shares of these inputs.

214

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Shuffling phase. To hide the access pattern of the algorithm (i.e., which inputs are included in
the computation), the committees are going to randomly shuffle the inputs they hold with
respect to a random permutation p. This is going to happen by using a switching network
with good shuffling properties, and for each swap gate (i, j) in the switching network by
having committees Ci and Cg swapping at random the sharings they hold via a multi-party
computation under a random decision taken by the supreme committee C. The supreme
committee then holds a sharing of p.

Evaluation phase. The parties in the supreme committee C sample a random set I according to
SLA.Sel via MPC and learn p(I) only. They are going to then include the parties in all C for
i E p(I) in a multi-party computation to evaluate the sublinear algorithm on the inputs they
hold. (Recall that C holds p in shared form.)

Output phase. The supreme committee broadcasts the output of the computation to all parties.

In addition, we carefully implement sharings and multi-party computations using fully-homomorphic
encryption to improve complexity, making dependency of communication and round complexities
linear in the input length Jx|, rather than polynomial, and independent of the circuit sizes to
implement the desired functionalities.

The following paragraphs provide a more detailed account of the techniques used within our
protocol, before we turn to a formal description of the protocol.

Committee election phase. The backbone behind this first phase is given by the construction of
a communication tree using a technique of King et al [KSSV06]. Such tree is a sparse communication
subnetwork which will ensure both the election of the supreme committee, as well as a basic form of
communication between parties and the supreme committee where each party communicates only
with polylog(n) other parties and only polylog(n) rounds of communication are required. Informally,
the protocol setting up the tree assigns (possibly overlapping) subsets of parties of polylogarithmic
size to the nodes of a tree with polylogarithmic height and logarithmic degree. The set of players
assigned to the root will take the role the supreme committee C. Communication from the root to
the parties (or the other way round) occurs by communicating messages over paths from the root
to the leaves of the tree, with an overall communication cost of polylog(n) messages per party. To
elect the committees C1,... , Cn, we can have the supreme committee agree on the seed s of a PRF
family IF = {F,}, via a coin tossing protocol, where F, maps elements of [n] to subsets of [n] of size
polylog(n), and send s to all parties. We then let Ci = F8 (i).

However, a closer look reveals that it is only possible for the protocol building the communication
tree to enforce that a vast majority of the nodes of the tree are assigned to a set of parties for which
a 2/3 majority is honest, but some nodes are unavoidably associated with a too large fraction of
corrupted parties. Indeed, some parties may be connected to too many bad nodes and their
communication ends up being essentially under adversarial control. As a consequence, the supreme
committee is only able to correctly communicate with a 1 - o(1) fraction of the (honest) parties.
Moreover, individual parties are not capable of determining whether the value they hold is correct
or not. We refer to this situation as almost-everywhere (ae) agreement.

Our main contribution here is the use of cryptographic techniques to achieve full agreement on
C and s in this stage, while maintaining polylogarithmic communication complexity, improving on

215

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

previous work in the information-theoretic setting [KLST11, KS11, DKMS12} which requires higher
O(v~T - polylog(n)) complexity for agreement. We tackle these two issues in two separate ways.

1. From ae agreement to ae certified agreement. We are going to first move to a stage where a
large 1 - o(1) fraction of the parties learn the value sent by the supreme committee, together
with a proof that the output is the one sent by the committee, whereas the remaining parties
who do not know the output are also aware of this fact. We refer to this scenario as almost-
everywhere certified agreement. Let us start with the basic idea using traditional signatures
(we improve on this below using multisignatures). After having the supreme committee send
a value m to all parties with almost-everywhere agreement, each party Pi receiving a value
mi is going to sign mi with his own signing key, producing a signature o-i. Then, Pi sends
(mi, o-j) up the tree to the supreme committee, and each member is going to collect at least
n/2 signatures on ai on some message m. Note that this will always be possible, as a fraction
1 - o(1) > n/2 of the honest players is going to receive the message mi = m, and send a
valid signature up the tree. Moreover, the adversary will need to forge signatures for honest
parties in order to produce a valid certificate for a message which was not broadcast by the
supreme committee.

2. From ae certified agreement to full agreement. We finally describe a transformation from ae
certified agreement to full agreement. If a committee wants to broadcast m to all parties, the
committee additionally generates a seed s for a and broadcasts (m, s) in a certified way using
the above transformations. Each party receiving (m, s) with a valid certificate ir forwards

(Mi, s,7r) to all parties in F,(i). Whenever a party receives (m, s, 7r) with a valid certificate,
it stops and outputs m. Note that no party sends more than polylog(n) additional messages
in this transformation. Moreover, it is not hard to see that with very high probabilities every
honest party is going to be in at least one of the F,(i) for a party i which receives (m, s)
correctly with a certificate by the pseudorandomness of F. Note in particular that the same
seed s can be used over multiple executions of the broadcast from the committee to the
parties, and can be used directly to generate the committees C1 ,... , Cn .

While we do guarantee that every party sends at most polylog(n) messages, a problem of the
above approach is the high complexity of processing incoming messages due to dishonest parties
flooding honest parties by sending too many messages. Namely, the t = 0(n) corrupted parties
can always each send (m, s) with an invalid certificate to some honest party Pi, who needs to
verify all signatures in the certificate to confirm that these messages are not valid. We propose a
solution based on multisignatures that alleviates this problem by making certificates only consist
of an individual aggregate signature (instead of of 0(n)), as well as of a description of the subset of
parties whose signatures have been aggregated. The main idea is to have all parties initially sign
the value they receive from the supreme committee with their own signing keys. However, when
sending their values up the tree, parties assigned to inner nodes of the tree are going to aggregate
valid signatures on the message which was previously sent down the tree, and keep track of which
signatures have contributed.

Commitment phase. Our instantiations of multi-party computations are going to be based
on fully-homomorphic encryption. To this end, we want parties in Ci to store an encryption

216

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

of Enc(pk, xi) that we want to be committing. The public key pk is generated by the supreme
committee, who holds secret shares of the matching secret key sk, and sent to all parties with the
methods outlined above. A player i is committed to the value xi if the honest parties in Ci all hold
the same ciphertext encrypting xi. This presents some challenges which we address and solve as
follows:

1. First, a malicious party P must not be able to broadcast an invalid ciphertext to the members
of the committee Ci. This is prevented by appending a simulation-sound NIZK argument 7r to
the ciphertext c that there exists a message x and randomness r such that Enc(pk, x; r) = c.

2. Second, for a security proof to be possible, it is well known that not only the encryption
needs to be hiding and binding, but a simulator needs to be able to have some way to extract
the corresponding plaintext from a valid ciphertext-proof pair (c, w). A major issue here is
that the simulated setup is independent of the corrupted set in our model. This prevents the
use of NIZK arguments of knowledge. Moreover, we can expect the FHE encryption to be
secure against chosen plaintext attacks only. We will solve this by means of double encryption,
following Sahai's construction [Sah99] of a CCA-secure encryption scheme from a CPA-secure
one. Namely, we provide an additional encryption c2 of x under a different public-key (for
which no one needs to hold the secret key), together with an additional NIZK argument that
ci and c2 encrypt the same message. The ciphertext c2 will not be necessary at any later
point in time and serves only the purpose of verifying commitment validity (and permitting
extraction in the proof).

3. Third, a final problem we have to face is due to rushing adversaries and to possibility to maul
commitments in view of the use of the same public key pk for all commitments. This can
be prevented in a black-box way by letting every party P first in parallel VSS its commit-
ment to the parties in Ci, and then in a second phase let every committee Ci reconstruct
the corresponding commitment. If the VSS protocol is perfectly secure, this ensures input-
independence.

One challenge is how to ensure that ciphertext sizes and the associated NIZK proof length are
all of the order |x| - poly(k), instead of poly(|x|,k). We are going to achieve this by encrypting
messages bit-by-bit using a bit-FHE scheme, whose ciphertexts are hence of length poly(k). The
NIZK proof is obtained by sequentially concatenating individual proofs (each of length poly(k)) for
the encryptions of individual bits.

Shuffling phase. The major privacy issue in executing a sub-linear algorithm in a distributed
setting is that we do not want the adversary to learn which parties have contributed with their
inputs to the protocol, and which ones did, more than what the algorithm's output may itself
reveal. Ideally, we would like parties to randomly permute their inputs in a random (yet oblivious)
fashion, so that at the end of such a protocol each party P holds the input of player P,(i) for a
random permutation 7r, but such that the adversary has no information about the choice of 7r and
for which player w(i) he holds input for. At the same time, the committee jointly holds information
about the permutation 7 in a shared way. However, this seems impossible to achieve: A disrupting

217

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

adversary may always refuse to hold inputs for other players. However, we can now exploit the fact
that the inputs are held by committees C1, ... , C, containing a majority of honest players.

The actual shuffling is implemented via distributed evaluation of a switching network SN, under
central coordination by the supreme committee. We assume that a switching network over n wires
is given, with depth d = polylog(n), and is known to everyone, and with the property given by
Theorem 5.2.11, i.e., it implements a nearly uniform permutation on [n] under random switching.
For each swap gate (i, j) in the network, the committee members jointly produce an encryption
bi, of a random bit bi,, indicating whether the inputs xi and xj are to be swapped or not when
evaluating the corresponding swapping gate. This is achieved by broadcasting bij to all parties in
Ci and Cj. At this point, each party in Ci broadcasts his copy of xi to all parties in C3 , and each
party in Cg does the same with 2j to all parties in Ci. (Each party then, given ciphertexts from
the other committee, will choose the most frequent one as the right one.) Then, each party in Ci

(or Cy) will update his encryption si to be an encryption of Dec(sk, gj) or Dec(sk, :i), depending
on the value of bi,, using homomorphic evaluation. We note that the operation can be executed in
parallel for all gates on the same layer, hence the swapping requires d rounds.

Evaluation phase. Once the parties' inputs have been (obliviously) shuffled, we are ready to
run the sublinear algorithm. The execution is controlled by the supreme committee C. First, the
members of C will run an MPC to randomly select the subset of inputs I C [n] to be used by the
algorithm. The output of the MPC will be the set of permuted indices o(I) := {u(i) : i E I}. The
corresponding committees {Cj : j E a(I)} are invited to join in a second MPC. Each member of C
enters the MPC with input equal to his currently held encrypted secret share (of some unknown
input xi, for which j = u(i)). Each member of C enters the MPC with input equal to his share
of the secret decryption key sk. Collectively, the members of C U (Uje,(I) Cj) run an MPC which
(1) recombines the shares of sk, (2) decrypts the secret shares held by each Cj, (3) reconstructs
each of the relevant inputs xi, i E I, from the corresponding set of secret shares, (4) executes the
sublinear algorithm on the reconstructed inputs, and (5) outputs only the output value dictated
by the sublinear algorithm (e.g., for many algorithms, this will simply be YES/NO).

The main challenge is making the complexity of this stage such that only poly(logn,log k)
rounds are executed, and only messages of size lx| - poly(log k, log n) are going to be exchanged.
This will be achieved by performing most of the computations locally via FHE by the parties in
the supreme committee, and by generating the randomness used by SLA.Sel and SLA.Exec by first
agree on a poly(k)-short seed of a PRG via coin-tossing, and then subsequently using as the actual
randomness the PRG output.

Extension: Adaptive algorithms. Here, given SLA = (SLA.Sebl,..., SLA.SelqSLA.Exec), we
just need to modify the evaluation phase such that an MPC is run for each next-query SLA.Selj to
obtain p(ig), the permuted index of the next query. We need to guarantee that queries are distinct
without loss of generality, which is easy to enforce. Note that the number of rounds unavoidably
increases: Namely, we need O(q) additional rounds to obtain inputs from the committees Cgij) one
by one. Otherwise, the proof and the protocol are quite similar, and we postpone a more detailed
description to the final version of this paper.

218

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

5.4.3 The protocol ISLA

In this section, we describe in detail our main protocol USLA-

Cryptographic tools. We start with a description of the cryptographic tools, some of which are
formally defined in Section 5.2:

* We use FHE = (Gen, Enc, Dec, Eval): a fully homomorphic public-key encryption (FHE)
scheme that is certifiable with respect to an efficiently testable set R C {0, 1}Po'Y(k), as de-
scribed in Section 5.2.3, and which takes inputs of length Ix| with ciphertext length |x|-poly(k).

" We use EncCPA = (GenCPA, EncCPA, DecCPA): a standard semantic secure ("chosen plaintext
attack" CPA-secure) public-key encryption scheme which takes inputs of length lx| with
ciphertext length |xj - poly(k).

" NIZK = (Gen, P, V, S = (Sc', SProof)): a simulation-sound non-interactive zero-knowledge
argument system for the NP language

L = {(pk, r1n) : 3(m, r) s.t. r E R, mn = Encpk (m; r)},

where R C {0, 1}Poly(k) is the set of randomness for which the FHE scheme is certifiable.

We also make use of a second instantiation of the NIZK argument system, denoted
(Gen', P', V', S' = (S'crs, S'Proof)), for the NP language

Lsame = (pk, pkcPA c PA) : 3(m,r1,r2) s.t. cl = Encpk(m;ri) and c2PA = Enc cPA (m;r2)

For our application, multi-bit messages m will be encrypted bit-by-bit, and to correspond to
a vector of |ml individual NIZK proofs. This is done to ensure the total proof size remains
Iml - poly(k). To simplify notation, however, we suppress the vector notation and denote the
corresponding collection of proofs _ri, ... , 7rimi simply by 7r.

" A multisignature scheme MultiSig = (Gen, Sign, V, Combine, MultiVerify) with signature size
poly(k) and signing messages of arbitrary length. (The later requirement can be obtained by
signing the hash of the message to be signed using a CRHF.)

" A verifiable secret sharing protocol VSS which can be run on any subset of n' < n parties,
with complexity poly(n') and which achieves perfect security when less than one third of the
n' parties are corrupted. An example is the VSS protocol from BGW [BGW88].

" A multi-party computation protocol MPC to evaluate a circuit C which can be run on any
subset of n' < n parties, with complexity |C -poly(n') in |Cj rounds and which achieves perfect
security when less than one third of the n' parties are corrupted. An example is the MPC
protocol from BGW [BGW88]. In particular, we may need some isolated components or
special cases of such a protocol, all achieving perfect security:3

3 We note that perfect security is never necessary (our protocol being based on computational assumptions), but
will allow us an easier reasoning when executing many instances of these protocols concurrently rather than dealing
with more complex concurrently-secure multi-party protocols.

219

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

1. A verifiable secret sharing protocol VSS which allows any of the n players to act as a
dealer and to distribute shares to any subset of n' < n parties (with the dealer possibly
being external to the n' parties), with message and communication complexity poly(n').
Moreover, an associated reconstruction protocols allows later robust reconstruction of
the shared value. The protocol tolerates t < n'/3 of the parties (and possibly the dealer)
being corrupted.

2. A broadcast protocol BC which can be initiated by any of the n parties to broadcast
a value to a subset of n' < n parties (with the dealer possibly being external to the n'
parties), with message and communication complexity poly(n'). The protocol tolerates
t < n'/3 of the parties (and possibly the dealer) being corrupted.

3. A coin tossing protocol CoinToss which be run by any subset of n' players of n' < n
parties to agree on a random uniform value of length polynomial in k, with message
and communication complexity poly(k, n'), and which tolerates t' < n'/3 of these parties
being corrupted.

" A pseudorandom function family F = {F,: [n] -+ S(n, log 2 (n))},SE{o,I, where S(n,n')
denotes the set of subsets of size n' of [n]. Moreover, we also need a pseudorandom generator
prg : {0, 1}k _ {0, 1}max , where emax is an upper bound on the randomness needed by SLA.Sel
and SLA.Exec.

* A switching network SN with n wires and depth d = polylog(n) - log2 (k) given by Theo-

rem 5.2.11, ensuring nearly-uniform shuffling.

Building a communication tree. We first review the protocol by King et al. [KSSVO6], which
is jointly run by the n parties to create a "communication tree" which acts as the backbone of our
protocol. A communication tree consists of a tree T = (V, E) and an assignment S associating
with each tree node v E V a subset S(v) C [n] of the n parties. Note that for any two nodes v
and v', the subsets S(v) and S(v') may well not be disjoint. A protocol to create a communication
tree T = (V, E) has all parties starting with no input, and at the end of the protocol each party Pi
holds a function Si : V -+ P([n]), where P([n]) is the set of subsets of [n], such that at the end of
the execution there exists an assignment S : V -+ P([n]) with the following properties:

1. For all parties Pi and v E V, if i E S(v), then Si(v) = S(v) - if S assigns a party P to some
node v, then P actually knows the parties assigned to v.

2. The value of S(I) for all leaves I E V is known a priori to everyone and does not depend on
the execution of the protocol. In particular Si(I) = S(I) for all i E [n].

Moreover, for the assignment S, given a set A C [n] of corrupted parties (where |Al <; (} - E)n),
we say that a node v E V is good if at least a 2/3-fraction of the parties in S(v) are honest, and it
is bad otherwise. We say that a node has a good path to the root if all nodes on the path from the
node to the root are good. We say that a party P is lucky if a majority of the leaves I he is assigned
to are good, and he is unlucky otherwise. We are going to use a protocol BuildTree satisfying the
following theroem - which is a stronger version of the original theorem from [KSSV06] and was
given in [KS11].

220

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Theorem 5.4.2. [KSSV06] Suppose there are n parties, of which t < n/3 are corrupted. Then,
there is an algorithm BuildTree operating in polylog(n) rounds, and in which each good processor
sends and processes polylog(n) bits, that creates a communication tree with the following properties
with overwhelming probability:

1. The tree has height * E O(log n/ log log n). Each node v from level e > 0 has log n nodes
from layer f - 1 as its children.

2. Each leaf node of the tree is assigned a set of log5 n parties.

3. Each internal node of the tree is assigned a set of log3 n parties.

4. Each party is assigned to O(log4 n) nodes at each level.

5. All but a 3/ log n fraction of the leaf nodes have a good path up to the root node.

6. Suppose there is a good path from v E V to the root, and let v' be the parent of v. Then
all honest parties in S(v) know all parties in S(v'), and all honest parties in S(v') know all
parties in S(v).

An important observation is that the fact that 1 - o(1) fraction of the leaves are on good paths
to the root implies that a 1 - o(1) fraction of the parties is lucky, too: This can be proven as
follows. Namely, assume this is not true, i.e., there exists a set X C [n] of (- n parties, where

, for which a majority of the leaves they are contained in has no good path up to the

root. Note that the set Z of leaves that contain parties in X has size |Z| lXi/log5 (n), since
every leaf contains log 5 n parties. However, we know that at least half of these have no good path
to the root, i.e., there exists at least IZI/2 2 IX 1/(2. log 5(n)) leaves with no good paths to the root.
However, as there are 0(n/ log 10(n)) leaves in the communication three, this means that a fraction
larger than 3/log(n) leaves has no good path to the root, contradicting the property enforced by
the communication tree.

Sending a message down the tree. The following protocol allows parties assigned to the root
of the communication tree to send messages to the lucky players by exploiting the communication
tree built by BuildTree. By inspection, it is not hard to verify that its complexity is such that
within polylog(n) rounds, each party sends polylog(n) messages of size at most |ml, which is the
length of the inputs by the parties assigned to the root by S.

221

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Protocol SendDownTree:
Each party Pi holds an input mi, and each party P has a final output m , as well as {mt,}
for all v E V.

1. Each party Pi who believes to be in the root sends mi to all parties he believes to be in
the children nodes on level E* - 1

2. For each level e = f* - 1, ..., 1 down the tree, do the following in parallel for each vertex
v on level e and on each party P who believes to be assigned to v:

(a) Let m be the message received by party P (in level f) by a majority of the parties
assigned to the parent node of v in level e + 1.

(b) P sets m',j = m

(c) If f > 2, P sends m to all parties he believes to be assigned to the children nodes
of v on level e - 1.

3. For each party P, define the output m'; = majority{m'; : I E V is a leaf} (And let
m' = _ if no well-defined majority exists.)

The following lemma states that Protocol SendDownTree satisfies our requirement, and its proof
follows by easy induction using the fact that every node on a good path to the root will have a
majority of parties sending the same message to parties assigned to the children nodes, and parties
assigned to a node v on a good path know exactly the composition of the set of parties assigned to
the parent node v' on the good path (and conversely, parties assigned to v' know all parties assigned
to v).

Lemma 5.4.3. If more than log3(n)/2 honest players assigned by S to the root start protocol
SendDownTree with the same input m, then for every node v with a good path to the root, every
honest player P assigned to v has mv,i = m. In particular, all lucky players output m.

Sending messages up the communication tree and certificates. The goal is now to de-
sign a protocol SendCertUpTree ensuring that if all honest parties associated with the root have
executed SendDownTree with the same input m, then each party associated with the root ter-
minates SendCertUpTree outputting a valid certificate for m, i.e., a proof which certifies that
this is the value the honest parties in the root have agreed upon. As motivated in the high-
level overview, we will build such a proof using multi-signatures. To this end, let MultiSig =
(Gen, Sign, V, Combine, MultiVerify) be a multi-signature scheme as defined in Section 5.2. We as-
sume that the setup contains n -polylog(n) independent verification keys for the scheme, where each
party Pi and each leaf I associated with Pi corresponds to a verification key vki,i - the corresponding
signing key ski,i being held by Pi.

Definition 5.4.4 (Certificates). A valid certificate for a message m consists of a pair (fs, o-),
where 1s is the characteristic vector of a set S consisting of pairs (I, i), where I is a leaf of T
and i e [n], and o- is a signature for MultiSig, such that: (1) Pairs corresponding to at least n/2
distinct indices i are contained in S. (2) The signature o- is such that MultiVerify({vki,i}(1,i)E, m, o-)
outputs 1.

222

2235.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

A formal description of the protocol follows in the Figure SendCertUpTree.

Protocol SendCertUpTree:
Each party P holds an input m,,i for each node v E V, and holds a signing key ski,j for each leaf
node I E L he has been assigned to. For S C L x [n], is denotes the binary vector x with x(Ii) = 1
iff (1, i) E S, and x(,ij) = 0 else.

1. For all leaves I of the communication tree do the following in parallel: All parties P who
are associated with I compute ol,i +- Signk,1 (mi,j), and send (mi, oli, l{(Ii)}) to all parties P
assigned to the parent node of I.

2. For each level f = 2, ... , * - 1 of the communication tree, do the following in parallel for each

node v on level f:

(a) For each player P who believes to be assigned to v, let {(mt, &t, 1s)}tEI be the collection
of messages received by party P in level f by parties in the children nodes of v in level
f - 1. Delete from the list all triples for which mt f mvi.

(b) For each remaining pair (dt, ist) that appeared with mt = mj, party P verifies the
multisignature dt with respect to the collection of verification keys as indicated by 1st:

verifyt +- MultiVerify({vk(l,il)l(l ,f) E St, my,g , t) -

Party P deletes from the list all messages for which verifyt = 0.

(c) Party P combines all verified multisignatures into a single multisignature, as follows.
Let T be the indices of the remaining verified multisignatures, and let S= UtCr St be the
set of all leaf-party pairs whose signature appears in exactly one of these multisignatures.
Then P computes

&' <- Com bine({vkj,gi, 0''}(,)ES, mv,j)-

(d) If f < P, P broadcasts the triple (mvj, d', is) to all parties assigned to the parent node
in level f + 1. Otherwise, Py outputs (mV'j, &', Is).

By inspection, we observe that the protocol proceeds in f* = polylog(n) rounds. Since signatures
have size poly(k), each party sends polylog(n) messages of size each n - polylog(n) + poly(k) + ml,
where |ml is the maximal length of the inputs of the parties. We are going to prove the following
lemma about the combination of protocols SendDownTree and SendCertUpTree.

Lemma 5.4.5. A ssume that n parties execute Send DownTree following by Send CertUpTree. Then, if
all honest parties assigned to the root of the tree agree on their input m, at the end of SendCertUpTree
they all output the same valid certificate for the message m.

Proof. (Sketch) Clearly, honest players in the committee can only output a valid certificate for m.

It is easy to verify that sufficiently many signatures are going to be aggregated on the way up, since

every lucky party (a 1 - o(1) fraction of the n parties) is going to forward at least one signature on
m to be aggregated and which will be forwarded to the players associated with the root. L

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Setting up committees. With the tools at hand from the previous paragraphs, combined with
the available coin tossing protocol, we can now easily obtain a protocol which has all parties achieve
certified almost everywhere agreement on the supreme committee C and on committees C1,..., Cn,
where Ci = f,(i) for a random element from a PRF family F = {f 8}.

Certified Almost Everywhere Election:
Election of supreme committee C and individual committees C1, ... C,

1. Run protocol BuildTree for setting up the communication tree T = (V, E).

2. The parties run protocol SendDownTree where each party P who believes to be in the
root has input Ci = Sj(vrt), where vroot is the root of T.

3. The parties run protocol SendCertUpTree and all honest parties associated with the root
agree on the output (C, 1s, o-) where C = S(vroot).

4. The parties in the supreme committee C run a coin tossing protocol amongst themselves
to generate a random seed s for the pseudorandom function family F. They run protocol
SendDownTree with input s.

5. The parties run protocol SendCertUpTree with the outputs of the previous step, and the
parties in the supreme committee output (s, is', o')

6. Parties in C send (C, s, is, is', o-, a') to the lucky parties using protocol SendDownTree.

7. If Pi receives a valid (C, s, 1s, is,, a, o-') stores the composition of C and sets Ci = f,(i)
for all i E [n]. If signature verification fails, then output _L.

By inspection, the protocol achieves has round complexity polylog(n), and each party sends at
most poly(log(n), k) + n - polylog(n) bits. The following lemma is straightforward given previous
Lemmas 5.4.5 and 5.4.3.

Lemma 5.4.6 (Almost everywhere certified agreement). If the n parties run the protocol
Certified Almost Everywhere Election, a fraction 1 - o(1) of the honest parties terminate by
outputting C equal to the set of parties assigned to the root, and committees C1,. .. ,C such that
Ci = f,(i) for a random seed s and all i E [n].

The last step now make sure that we can go from almost everywhere certified agreement to
everywhere agreement.

224

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Protocol Certified Almost Everywhere to Certified Everywhere
Assumed: a.e. agreement on C, {Ci}ien, with certification

1. Each party Pi who possesses a valid (C, s, is, Is', o-, o') $ I sends his triple to each party
in his personal committee Ci: that is, to all parties P for which j E f8 (i).

2. Each party P who does not currently possess a valid (C, s, is, IS/, a, o') $ I listens
for incoming messages. Each received message that is not properly certified is ignored.
Party Pi adopts the first properly certified received (C, s) as his choice for C as well as
the seed to compute Ci = fM(i).

By using the pseudorandomness of F, the following lemma finally shows that C, C1, . .. , C.

Lemma 5.4.7. If an execution of Protocol Certified Almost Everywhere to Certified Ev-
erywhere follows the execution of Protocol Certified Almost Everywhere Election, then all
honest parties terminate with the same outputs C, C1,... , Cn, where all committees contain at least
a fraction 2/3 of honest players, except with negligible probability.

Proof. Note that protocol Certified Almost Everywhere Election will have the lucky honest
players terminate with a certified common output (C, s), and forward the output with a certificate
to all members of their personal committees. Note that for sufficiently large n, there are at least
n/2 lucky players. Let ii, ... , i,/ 2 be the indices of n/2 lucky players. The probability that some i
does not appear in any of Ci1,... , Ci., is upper bounded by

Pr[i 1 C,. . 1C)g] n - /2 +V < e- "oI()n(+ + V
n

where v is some negligible additive term due to the choice of the Ci's being only pseudorandom.
Consequently, Pr[Fi : i 0 CiI,..., Cin/2] is also negligible by a union bound, which implies agree-

ment. The fact that C 1,..., Cn contains a 2/3 fraction of honest players, except with negligible
probability, follows easily from their pseudorandomness, as well as a simple Chernoff bound com-
bined with the fact that (2/3 + e)n parties are honest. The fact that C has also a 2/3 fraction of
honest players follows from the fact that the root is a good node in the communication tree. 5

The following lemma follows directly from the previous lemmas.

Lemma 5.4.8. If a majority of parties in the supreme committee C initiate ComBroadcast(m) on
the same message m, then at the conclusion of the protocol execution, all parties Pi E [n] receive
m, together with certification of correctness.

After the committee infrastructure C, {Ci} has been built and agreed upon, the parties are able
to proceed to the second main phase of the protocol, which we now describe.

225

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Committee Broadcast Protocol: ComBroadcast(m)
Inputs: Each party holds a (common) PRF seed s, which defines the individual committees C:
fS(j).

1. Each party P E C in the committee initiates SendDownTree(m) to send the message m down
the communication tree.

2. Every party Pj initiates SendCertUpTree(m), where m is the message received by P at the
conclusion of the previous step.

3. Each party Pi E C in the committee initiates SendDownTree((m, , is)), where (&, is) is a
certification of m learned at the conclusion of the previous step.

4. Every party Pg holds some alleged version (m, dj, 1s,). Pj sends the triple (m, &j, isj) to
every party in the set defined by f,(j) (i.e., the committee Cj).

5. Every party Pi processes only messages received by parties P for which i e f,(j). From these
messages (mi, dy, isj), Pi takes his own output (mi, &i, Is,) to be the triple that appears most
frequently.

Setting up the encryption schemes. The first step is to generate key information for the two
different public-key encryption schemes. This key sampling is done by the supreme committee C
via an MPC execution, as described in Figure 5.1. The parties in C will all learn the public keys
pk, pkcPA for the two schemes, and will each be given a secret share of the decryption key sk for
the FHE scheme. Looking ahead, this will allow the committee members to collectively decrypt
ciphertexts, but prevents any subset of malicious parties from breaking the security of the FHE
scheme. The members of C then communicate the public keys pk, pkcPA to all parties, by using
the ComBroadcast protocol.

Committing to inputs. In this stage, each party P to commits his secret input xi to the
members of his personal committee Cs. This is done by VSSing a collection of information among
the parties in Ci:

" An encryption of the input xi under the FHE scheme,

* A NIZK proof that this encryption was performed with good randomness (guaranteeing that
correctness of homomorphic evaluation will hold),

" A second encryption of xi, under a standard CPA-secure scheme, and

" A NIZK proof that the two provided ciphertexts encrypt the same message.

In addition, during this phase the parties in Ci collectively generate an encryption of the index i
under the FHE. This will be used to keep track of which input is currently stored by the committee
(and will be updated when the committees swap inputs in the following section).

226

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Encryption Key Generation:
The parties of C run a MPC evaluating the following (randomized) functionality:

Input: 0

Compute:

1. Sample a key pair (pkcPA, skcPA) <- GenCPA(1k) for the standard CPA-secure encryption
scheme.

2. Sample a key pair (pk, sk) +- Gen(lk) for the FHE encryption scheme

3. Secret share the FHE secret key (ski,..., skic1) +- Share(sk).

Output: All parties (in C): pk, pkcPA. Party Pi E C: ski.

Figure 5.1: Initial key generation procedure run by the supreme committee C after it is elected.
The public keys (pk, pkcPA) will be communicated to all parties P via the communication tree.

The input commitment protocol is run in parallel between each party P and his committee
C. In particular, all parties Pi execute the sharing phase of the VSS simultaneously, so that no
execution enters the reconstruction phase until the sharing phase is completed for all parties. At
the conclusion of the procedure for party P, all parties in committee Ci hold an FHE encryption
of Pi's index i and input xi (or a default ciphertext if P did not follow the protocol faithfully).
From this point forward, the committee Ci will take the role of storing and supplying Pi's input
whenever necessary.

A complete description of the input commitment procedure is given in Figure 5.2.

Generating the input shuffle permutation. Next, the shuffle generation is executed by parties
in the supreme committee C to generate an encrypted, (nearly) random permutation on [n], which
will be used to implement and oblivious shuffle of the inputs held by the committees C. The
permutation is represented in the form of a sequence of swapping bits, corresponding to a fixed
switching network SN (see Section 5.2.6). Each swapping bit is generated by C via a standard coin
tossing procedure: by sampling and VSSing random bits, and then each taking the exclusive-or
of the reconstructed values. However, in our case, this procedure is performed homomorphically,
under the layer of the fully homomorphic encryption. A formal description of the shuffle generation
protocol is given in Figure 5.3.

The resulting swap-bit ciphertexts are then communicated from C to all the parties in the

network, via the protocol ComBroadcast.

Shuffling inputs. Once the the encrypted permutation is generated and communicated to all

parties, the committees Ci obliviously implement the dictated data shuffle. This is done by pairs

of committees Ci, Cj iteratively executing the pairwise committee swap protocol, described in Fig-

ure 5.4.
The swap protocol takes place for each swap bit in the switching network SN. Each layer of the

227

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Input Commitment:
Input: Each Pi: secret input xi

1. Performed by Pi:

(a) Sample good encryption randomness ri +- R via rejection sampling.

(b) Encrypt input xi under the FHE scheme, using ri: si = Encyk(Xi; ri).
(c) Generate a proof of correctness 7ri +- P(crs, (pk, si), (xi, ri)).

(d) Sample a second encryption of the input xi, under the standard CPA-secure encryption
scheme: sCPA 4_ EncCPA (xi; CPA)

(e) Generate a proof (with respect to language Lsame) that the two ciphertexts are consistent:

riPA y p(crssame (pkpkCPA &CPA) . CPA

(f) Execute VSS sharing phase as dealer, to share input (_i, 7r,, ix , CPA) among the par-
ties in Ci.

2. Performed by each party Pj E Ci:

(a) Execute the reconstruction phase of the VSS, together with the other parties in Ci, to
jointly reconstruct the value shared by P in Step (f) above.

Let (ii, ri,sFPA, wCPA) be the value reconstructed by party Pj.

(b) If the proofs ri, 7r PA properly verify; i.e., if

1 = V(crs, (pk, 2j), 7rg) and

V'(crssame, (pk, pkCPA -' CPA 7CPA

then party P sets his belief of Pi's encrypted input (denoted &j) to be the received
ciphertext i.

(c) Otherwise, if either proof does not properly verify, party Pg initializes j to a default
public cipertext value 0, encrypting 0.

(d) Pj executes an MPC together with the other parties of Ci to compute a (good) encryption
of the index i. That is, they evaluate the (randomized) functionality FEnc(i) that takes
no inputs, samples r +- R via rejection sampling, encrypts i = Encpk(i; r), and outputs
i to all parties in C.

Figure 5.2: The Input Commitment procedure, in which each party P commits his secret input
x to his personal committee, Ci.

228

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Shuffle Generation:
Let [q] -- [d] x [n/2] index the total number of swaps in the switching network.

1. Each party Pi E C samples q random bits and generates pairs of encryptions, together with
proofs of correctness, for each. That is, for each f E [q],

(a) Sample bt +- {0, 1}, rt <- R (via rejection sampling).

(b) Compute b = Encok(b ; re) and proof 'r +- P(crs, (pk, bt)(bj, re)) that b, is good.

(c) Sample a second encryption (b')cPA = EnccPA (bC; rPA), and prove that the two cipher-
texts are consistent:

(7rt)CPA p/ crssame CPA, b (bi)CPA), (bi,, (r)CPA)

2. In parallel, each party Pi E C acts as dealer in a VSS, to secret share the collection of
ciphertext-proof pairs

{(bit,7r i), ((b)CPA, A CPA~t q

to all other parties in C.

3. Each party Pi E C executes the reconstruction phase of the VSS, together with the other
parties in C, to jointly reconstruct all values shared in the previous step.

4. For each j E C let {(br wi), (()CPAI tCPA)}E[q] denote the ciphertext-proof pairs recon-
structed by a party Pi from party P. Locally, Pi performs the following steps for each bit
position f E [q]:

(a) Initialize goode =0.

(b) For each j E C, if party Pj's proofs verify (i.e., if 1 = V(crs, (pk, b),7r), and
1 = V(crsme, (pk, pkcPA,jCPA), CPA))), then add goodt <- goodt U {j}.

(c) Take Be = Eval({I,}gEgod,, E) to be the homomorphically evaluated xor of all good
ciphertexts.

Figure 5.3: Shuffle generation procedure, executed by parties in the supreme committee C to
generate an encrypted random permutation on [n], in the form of a sequence of swapping bits,
corresponding to a fixed switching network SN.

229

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

switching network defines a collection of disjoint pairs of the indices in [n], and the corresponding
pairs of committees D, E each run the swapping procedure in parallel. The swapping procedure
is simply composed of a homomorphic evaluation of the swap-or-not function dictated by the
corresponding encrypted swap bit b generated by C during the Shuffle Generation procedure (and
then communicated to all parties). Each party in committee D (respectively, E) enters the swap
protocol with the encrypted input of some party P and corresponding encrypted index i. The
party exits either with a ciphertext of the same value, or with a ciphertext corresponding to the
input of a different party P that was held by the other committee E (resp., E). At each stage of
the homomorphic evaluation in which a party receives a collection of ciphertexts from the other
committee, he takes only the ciphertext that was sent by a majority of parties in the committee
(to weed out a potential minority of malicious ciphertexts).

After the swapping procedure is performed for every swap bit in the switching network, the input
values that are held by the committees Ci will be permuted as dictated by the secret permutation.

Selecting the (permuted) query indices. Once the committees have shuffled their stored
inputs as per the selected permutation, the supreme committee C runs a protocol to select a subset
of parties I whose inputs will be used in the sublinear algorithm evaluation. The output of the
selection computation will be the permuted set p(I), indicating the committees who currently hold
the relevant parties' inputs {Xi}iEI.

This procedure takes place in three steps (see Figure 5.5). First, the parties of C collectively
generate an encryption of randomness seed, by executing an MPC. Then, each party homomor-
phically evaluates a pseudorandom generator on seed, and uses this as the randomness with which
to homomorphically evaluate the query selection algorithm SLA.Sel (represented as a circuit). Fi-
nally, the committee members collectively decrypt this evaluated ciphertext via an MPC, taking as
additional input the parties' secret shares ski of the FHE decryption key.

Evaluating the sublinear algorithm As the final step, the Evaluation protocol is run by the
supreme committee C to evaluate the sublinear algorithm on the collection of queried inputs (see
Figure 5.6).

The evaluation protocol is executed once the parties in C receive the input and index ciphertexts
from a majority of parties in each of the queried committees. The members of C first collectively
generate an encryption of a random value seed that will be used as the seed to a pseudrorandom
generator, and then utilized as the randomness for the sublinear algorithm execution. After this

ciphertext seed is generated, the parties of C homomorphically evaluate the algorithm SLA.Exec
(in the form of a circuit) on the set of encrypted inputs received from the queried committees.
They then collectively decrypt the output by running an MPC that takes as input the evaluated
ciphertext, together with their secret shares ski of the FHE decryption key.

Directly after the evaluation protocol, the committee members communicate the resulting out-
put to all parties, and the protocol concludes.

230

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Committee Swap Protocol:
For pair of committees D and E. Inputs:
Each party in D: swap bit ciphertext b, current (index, input) ciphertexts (pr,)
Each party in E: swap bit ciphertext b, current (index, input) ciphertexts (dj, ij)

1. Each party Pi E D broadcasts his pair of ciphertexts (pi, z) to all parties in D U E.

Each party P E E broadcasts his pair of ciphertexts (di, 234) to all parties in D U E.

2. Locally, each party performs the following steps.

(a) Let P = majiED{I} and 4 = majjEE{E3 } be the most frequent index ciphertexts.

(b) Let ix = majiED{x} and iq = majJEE{q} be the most frequent input ciphertexts.

(c) Homomorphically evaluate (locally) the swap functionality on the resulting index ci-
phertexts P, 4 and input ciphertexts JP, .q, as dictated by the ciphertext swap bit b, as
follows.

For each value a = 0, 1, define the swap functionality swa pa as:

swa(yzb)
f a b=0

z if a Eb= 1

Then each party Pi E D reassigns

= Eval (p , ,b),swa po , 1 = Eval ((sp, q, b), swa po

and each party P E E reassigns

= Eval ((, , b),swapi) , - = Eval ((ip, , b),swap)

Figure 5.4: Swapping procedure executed by pairs of committees D, E for each swap bit in the
switching network SN.

231

232 CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Input Selection Protocol
Recall that Q is a bound on the total number of input queries made by the sublinear algorithm.

1. The parties of C run an MPC to jointly compute an encryption of a PRG seed for generating the
randomness to be used in the sublinear algorithm execution. That is, they evaluate the following

(randomized) functionality FEV, on input pk:

Compute:

(a) Sample random seed - {0, 1 }k*.

(b) Sample "good" encryption randomness r <- R, via rejection sampling.

(c) Encrypt seed = Encpk(seed; r).

Output: To all parties (in C): encrypted seed, seed.

2. Each party in C uses FHE evaluation to obtain an encryption I of the set I of the indices output
by SLA.Sel using randomness obtained by applying a PRG prg with suitable output length to the
encrypted seed seed. In other words, we homomorphically evaluate

Z = Eval(seed, SLA.Sel(prg(-))) ,

where SLA.Sel takes as input the randomness.

3. Locally, each party Pi E C homomorphically evaluates the (encrypted) permutation p on the (en-
crypted) indices p E I. That is, for each of the Q encrypted indices P held by Pi, update P as
follows. For each swapping pair (i*, jj) in the switching network SN (beginning with level f = 1, and
proceeding to f = 2, ..., d), homomorphically evaluate the corresponding swap

= Eval ((p, i),swapie,

where swap'i,j (p, b) is the swap function that performs the involution (i, j) on p iff b = 1:

swap', ,(p, b) ={p if b = 0 V p 0 {ij}
'i E j 9p if b = 1 Ap E i,j}

Denote the final updated indices held by party Pi as ki = {p'}

4. The parties in C run an MPC to collectively decrypt the resulting permuted set of indices (taking the
values held by a majority). Formally, they evaluate the following functionality:

Inputs: Each party Pi: secret share ski for the FHE, set of encrypted permuted indices kI = {p'}

Compute:

(a) Let K' = majiecki be the most frequent set of ciphertexts input by parties Pi E C.

(b) Reconstruct the FHE decryption key from the input secret shares: sk +- Rec({ski}iec)-
(c) For each of the Q indices P' E k', decrypt q := Decsk(P) .

Output: To all parties (in C): The set of Q decrypted indices K := {q} (allegedly K = p(I))

Figure 5.5: Executed by primary committee C to select the indices that will be accessed in the

sublinear algorithm. The selected indices are output in permuted form, as dictated by the secret
encrypted permutation p.

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Evaluation Protocol
Inputs:

1. The parties of C run an MPC to jointly compute an encryption of a PRG seed for generating

the randomness to be used in the sublinear algorithm execution. That is, they evaluate the

(randomized) functionality FM, as described in the input selection protocol (see Figure 5.5).

Output: To all parties in C: encrypted seed seed .

2. Each party Pi E C locally evaluates the sublinear algorithm, SLA.Exec, homomorphically on

the set of his received ciphertexts ({Jf 2 }jCe,, {,P}jECQ)eEp(I) and using randomness derived

from the encrypted seed seed , as follows.

For each queried input f E p(I), party P first takes a majority vote for the most frequently

occurring index and input ciphertexts sent by parties in Ce:

Pe = majjEctt e}, it = majJEcfJj, I-

Then, party Pi homomorphically evaluates SLA.Exec on the resulting ciphertexts:

S+- Eval (({p}eEp(I), {XeltEp(I), seed , execute)

where execute({ie},{xe}, rand) is the function that evaluates SLA.Exec with randomness

rand = prg(seed'), taking each xe as the requested input of index if.

3. The parties of C run an MPC to collectively decrypt the resulting ciphertext computed by

each party Pi E C (taking the value held by the majority of parties of C as the final output).
Explicitly, they evaluate the functionality FEval:

Inputs: Each party Pi E C: secret share ski for FHE, evaluated ciphertext 2i from the

previous step.

Compute:

(a) Reconstruct the FHE decryption key from the input secret shares: sk <-

Rec({ski}iEc).

(b) Take Z = majiEcf i} to be the most frequently occurring input ciphertext.

(c) Decrypt the ciphertext Z: let answer = Deck(Z).

Output: To all parties (in C): answer.

Figure 5.6: The evaluation protocol, in which the parties in the supreme committee C evaluate

the sublinear algorithm on the set of queried inputs.

233

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Overall Protocol

1. Execute Certified Almost Everywhere committee election for primary committee C and individual
committees {Ci}iE[n].
Outcome: (1 - o(1)) fraction of honest parties agree on good committees C,{Ci}iE[n] and hold a
certificate of correctness.

2. Execute Certified a.e. to Certified everywhere transformation protocol to agree on C, {Ci}LE[n].
Outcome: all honest parties agree on good committees C, {Ci}iE[n] and hold a certificate of correctness.

3. Parties in the primary committee C execute the Encryption Key Generation procedure, as described in
Figure 5.1, and broadcast the output public keys pk, pkcPA to all parties via ComBroadcast(pk, pkCPA).
Outcome: All parties learn pk, pkcPA.

4. Each party Pi commits to his input to the parties in his personal committee C, as in Figure 5.2.
Outcome: Every member of Ci holds an encryption of xi (and i).

5. Parties in primary committee C execute the Shuffle Generation procedure (see Figure 5.3), and broad-
cast the resulting encrypted permutation B = {(B, ..., B"')}eE[a to all parties via ComBroadcast(A).

Outcome: All parties learn the encrypted random permutation p, expressed as a sequence of encrypted
swap bits in the switching network SN (see Section 5.2.6).

6. The committees Ci obliviously shuffle their stored input values, as follows.

For each layer L1 , ... , Ld in the sorting network SN,

" Let Le = ((ii, ji), ... , (in/ 2 , jn/2)) be the swapping pairs in the current layer i.

" In parallel, the corresponding pairs of parties (Cil, C 1),..., (Ci , C, 2) perform the pairwise

swap protocol detailed in Figure 5.4. Each pair (C,, Cj.) uses the (encrypted) swap bit bjl from
Step 3 (wrt level £) to dictate whether or not to swap.

Outcome: each party in committee Ci holds encryptions of index p(i) and input Xp(i).

7. Parties in primary committee C select which inputs will be used in the sublinear algorithm computa-
tion, as described in Figure 5.5 (revealing only the permuted indices).

Outcome: the members of C each agree on a (permuted) set of input indices p(I) c [n].

8. Every party P in primary committee C sends a message "Please send encrypted input " to every
party P in C for which i E p(I) (note that some parties P may receive multiple such messages, if
contained within more than one such committee Ce).

9. Each party Pj E C who receives consistent messages "Please send encrypted input " from a majority
of the parties in C, broadcasts his corresponding pair of ciphertexts (f^/, i) to all parties in C.
(Recall that these values allegedly correspond to an encryption of the party index p = p-4(i) and
corresponding input x, held by the committee Ce = Cp(p) after the p-permutation shuffle).

10. The parties of C evaluate the second portion of the sublinear algorithm, SLA.Exec, as described in
Figure 5.6. Denote the resulting output as answer.

11. Each party Pi E C broadcasts the resulting output answer to all parties via ComBroadcast(answer).

234

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

5.4.4 Security Proof of Theorem 5.4.1

Proof. Let A be any real-world PPT adversary for H. Denote by M c P the set of parties cor-
rupted by A. We first construct an adversary S - called the simulator - in the ideal world who
simulates the real-world view of A by simulating the honest parties in the ideal-world experiment.
Later, we then proceed by proving that the output of S within the ideal world is indistinguishable
from the output of the real-world experiment.

Description of the simulator S:

Simulate PKI information:

1. Sample signature key pairs (vki,j,ski,1) +- Gen(lk) for each party Pi E [n] and each leaf I
of the communication tree P is assigned to.

2. Generate simulated CRS values for the two instantiations of the simulation-sound NIZK
proof system:

(crs, trap) +- Scrs(k), (crssme,trapsame) +- Srs(ik)

3. Send the collection of verification keys {vki,j} and crs, crssame to A.

4. The adversary A responds with a set M C [n] of parties to corrupt. For each party P
with j E M, send A the corresponding secret signing keys ski,5 for each leaf I contain-
ing Pj.

Simulate committee setup:

1. Honestly simulate actions of honest parties during certified almost everywhere committee
election protocol (independent of honest parties' inputs). In particular, send correspond-
ing messages to A. Moreover, A's messages sent from corrupted parties are sent to the
simulated honest parties.

2. Honestly simulate actions of honest parties during (certified a.e. to certified everywhere)
transformation protocol (independent of honest parties' inputs)

3. If committees C, {Ci}ie[n are not good (at least 2/3 honest), or not every honest party
agrees on their composition, then abort the simulation.

Simulate encryption key generation procedure:

1. Sample (pk, sk) <- Gen(1k) for the FHE scheme.

2. Sample (pkcPA, skcPA) +- GencPA(lk) for the standard CPA-secure encryption scheme.

3. For each corrupted party P E Cn M in the committee C, sample a (bogus) secret share
skj +- {0, 1}Poly(k) at random.

4. Run the MPC simulator, fed with output values (pk, pkcPA, {skj}jECnM), to simulate
the MPC interactions among the parties of C in generating these values.

235

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

5. Honestly simulate the actions of parties in the execution of ComBroadcast(pk, pkcPA),
including initiating an independent execution on behalf of each honest party P E C.

Simulate input commitment process:

1. For each honest party Pi:

(a) Construct simulated message to VSS
i. Sample a (bogus) encryption i +- Encpk(O) for the FHE.

ii. Sample a (bogus) encryption iCPA <- Enc cPA(0) for the standard CPA-secure
encryption scheme.

iii. Generate a simulated NIZK proof for the FHE ciphertext:

7ri +- SP'**(crs, (pk,2i3), trap),

using the simulation trapdoor trap generated during the PKI simulation.

iv. Generate a simulated NIZK proof that the ciphertexts are consistent: riPA

S'Pr**f(crssame, (pk, pkCPA, i,i PA), trapsme), using the trapdoor trapsame

(b) Simulate the VSS sharing phase

i. Sample random secret shares inpute for each corrupt party Pj E Ci.

ii. Sample the remaining |Ci \ MI shares {input7 }jEci\M randomly, subject to the

constraint that Rec({inputj}3 eci) = (Ci,Ari, a rACPA); ie, the shares recon-
struct to the simulated tuple of values generated above.

iii. Run the VSS protocol simulator SVSS on the collection of output secret shares
{input}jEC1 to simulate the interaction between Pi and the members of Ci
during the VSS sharing procedure.

(c) Simulate the VSS reconstruction phase honestly, with respect to message (ii, ri
-'CPA CPA

(d) Simulate the index-encryption MPC execution:
i. Sample encryption randomness r <- R and encrypt i = Encpk(i; r).

ii. Run the MPC simulator on input i to simulate the interactions among the
members of committee Ci in the MPC to generate this ciphertext.

(e) For each honest party Pj E Ci, set Pj's beliefs for Pi's values to V +- -si and i <-

2. For each malicious party Pi:

Note that in this step, in addition to simulating the actions of honest parties, the simu-
lator will extract the inputs x' of each corrupted party P and submit them to the ideal
functionality.

(a) During the VSS sharing phase:

i. Simulate the actions of honest parties honestly.

ii. For each honest party Pj E Ci, let inputi be the secret share received by P.
iii. Reconstruct Pi's message from the collection of honest party shares:

(25, r,2jWPA cPA) +- Rec({inputi}jEC;\M)-

236

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

iv. If either of the received proofs 7ri, 7rPA does not properly verify, or if the recon-
struction process yields -L, then set X' = 0.

v. Otherwise, extract Pi's input by decrypting the standard CPA ciphertext i PA.
That is, take x' = DecCPcAA (:cPA), where skcPA was sampled during the simula-
tion of the key generation procedure.

(b) Call to ideal functionality:

Submit the collection of all retrieved input values {Xj'}jEm as inputs to the ideal

functionality Fideal, on behalf of corrupted parties. Denote by answer the response

from Iideal-

Recall that this value corresponds to a random output of the sublinear algorithm,

evaluated on the collection of honest party inputs together with corrupt party inputs

{V }jEM.

Simulate shuffle generation procedure:

1. Generate message values. For each honest party Pi and each swapping pair f e [q] in

the switching network SN,

(a) Sample a (bogus) ciphertext be +- Encpk(O).

(b) Sample a (bogus) ciphertext bjPA - EnccPA -

(c) Generate a simulated proof for the FHE ciphertext: ri +- SProf(crs, (pk, be), trap).

(d) Generate a simulated proof that the ciphertexts are consistent:
rPA S'P (crssa'", (pk, be, pkcPA cPA), trapsame).

2. Simulate the VSS sharing phase

(a) For each honest party Pi, sample random secret shares bitsq for each malicious party

Pj, and sample the remaining shares bitsi honestly, subject to the constraint that

Rec({bits }Jec) = (be, 7re, bPA, scPA)I
(b) Run the VSS simulator SVSS, on this set of shares, to simulate the interaction during

the VSS sharing phase.

3. Honestly simulate the actions of honest parties for the remainder of the shuffle generation

procedure: namely, in the sharing phase for malicious parties, in the reconstruction phase

all parties, and the local homomorphic evaluations on the resulting ciphertexts.

4. Honestly simulate the action of honest parties in the executions of ComBroadcast(;:
{B}eE[q]) on the ciphertexts Be resulting from honest homomorphic evaluation. This

includes initiating an execution of CornBroadcast(p) on behalf of each honest party Pi E

C.

Simulate shuffling process

Honestly simulate the actions of honest parties, given the collection of initial ciphertexts

{XiE[n], {}iE[n], and {Be}E[q] generated as a result of the simulation of the input commit-
ment phase and shuffle generation phase.

237

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Simulate input query selection protocol

1. Sample a (bogus) encryption seed +- Encpk(O).

2. Run the MPC simulator on input seed to simulate the interactions between members of
C during the MPC to generate this output value.

3. Honestly simulate the dictated homomorphic evaluations on ciphertexts on behalf of the
honest parties.

4. Sample a random subset J C [n] of size Q (allegedly equal to p(I)).

5. Run the MPC simulator on input J to simulate the interaction between members of C
in the corresponding MPC execution.

Simulate sublinear algorithm execution

1. On behalf of each honest party Pi in the committee C, send the message "Please send
encrypted input f" to every party P in Ce for which f E K (for the set J chosen by the
simulator in the previous step).

2. For each honest party Pj E Ce who receives messages "Please send encrypted input "
from a majority of parties in C (in particular, for which the honest parties in C send
this message), honestly simulate P broadcasting his pair of ciphertexts (j, sk) to all
parties in C (where these ciphertexts are the values resulting from the shuffling process
above).

3. Sample a (bogus) ciphertext seed - Encpk(O).

4. Run the MPC simulator on input seed to simulate the interaction between parties in C
during the corresponding MPC execution.

5. Honestly simulate the dictated homomorphic evaluations on ciphertexts on behalf of the
honest parties.

6. Run the MPC simulator SimMpc to simulate the final MPC execution, feeding the simu-
lator with the final output value answer that was received by the ideal functionality Fideal.

7. Honestly simulate the actions of honest parties in the final execution of Com Broad cast(answer).

To prove the indistinguishability of the output of the simulator and the output of the real-world
experiment, we consider a sequence of hybrid experiments in which the real-world interaction is
replaced one piece at a time by the simulated version. The output of each hybrid experiment
consists of the outputs of all parties, where honest parties output in accordance with the dictated
protocol, and malicious parties may output any efficiently computable function of the view of the
adversary. For every adversary At with auxiliary input z E {0, 1}* running in hybrid experiment f
with initial inputs i, we denote the output of the corresponding hybrid i experiment by

238

HYBt (At, 1 2=,{xg1

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

For each pair of hybrids f and f + 1, we show that for any adversary At running in Hybrid e,
there exists an adversary At+1 running in Hybrid (f + 1) such that

HYBe (A, 1kz, {xi I) I HYBj+ 1 (Ae+, 1k, z, {xi).

Note that once we show this for every step i = 0, ..., 19, the theorem will follow, as this will imply
that for each adversary A in the real-world experiment (Hybrid 0), there is an adversary A19 in
the ideal-world experiment (Hybrid 19), such that

HYBo (Ao, z Z, {xij 1) HYB19 (Aig1, =z,

as desired.

We now formally describe the sequence of hybrid experiments.

Hybrid 0. The real world: i.e., the adversary interacts with honest parties in the real-world
experiment running H.

Hybrid 1. (Abort if committee elections fail).

Same as the previous hybrid, except that the experiment ends in abort if at the conclusion of
the Certified Almost Everywhere Committee Election and Certified A.E. to Certified Every-
where transformation protocols, any of the following conditions fails to hold:

* All honest parties agree on the committees C, {Ci}E[n . That is, for every pair of honest

parties Pi, Pj, it holds that C() = CW and C(i) - C VeE [n}.

" Every honest party possesses valid certification of each committee C, {Ci}iE [f]

" All elected committees are "good": there exists a constant 6 > 0 for which IC n MI

(} - 6)|C, and jCi n MI < (I - 6)|CiI Vi E [n].

In addition, the experiment ends in abort at any point that a majority of the supreme com-
mittee members (C) initiate an execution of ComBroadcast on the same message m but there
exists an honest party who does not receive the correct message m.

Lemma 5.4.9. For any auxiliary input z and set of inputs i, and for every PPT adversary A0

in Hybrid 0, there exists a PPT adversary A 1 in Hybrid 1 such that

HYBo (AOl1,z,{xig 1) i HYB 1 (A 1 ,1,z,{xi} 1)

Proof. It follows by Lemmas 5.4.3-5.4.7 that the probability of aborting is negligible in k.

Hybrid 2. (Replace MPC executions with ideal functionalities).

This hybrid is similar to Hybrid 1, but with each execution of the underlying MPC protocol
replaced by its corresponding ideal functionality. Explicitly, the experiment now contains the
following ideal functionalities:

239

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

" F(pk,sk): In the place of the FHE key generation MPC (defined in Figure 5.1).

" F: In the place of each index encryption MPC run by the committees Ci during the
input commitment stage (defined in Figure 5.2).

" FE'|: In the place of the (encrypted) PRG seed generation MPC run by C during the
input selection procedure (defined in Figure 5.5).

Fqeries: In the place of the decryption MPC (for the encrypted set of permuted query
indices) run by C during the input selection procedure (defined in Figure 5.5).

" Fsd': In the place of the (encrypted) PRG seed generation MPC run by C during theEric
evaluation stage (defined in Figure 5.5, used in Figure 5.6).

* FD": In the place of the decryption MPC (for the encrypted final answer) run by
members of C in the evaluation stage (defined in Figure 5.6).

Note that the ciphertexts {pi }, seed, seed generated by the ideal functionalities F; and
Fefe, Fd' are necessarily evaluation-enabled (as per Definition 5.2.3), since these func-
tionalities sample encryption randomness from the "good" set R.

Define seed = Dec~k(seed) and seed' = Decsk(seed').
Similarly, for each i E [n], define pi = Decsk(pA). (Note that by the specification of F and the
certifiabiliy of the FHE scheme with respect to R, it holds that pi = i).

Ideal functionalities: F(pk,,k), F, *dF , F ueries ,Fed' FansI' Enc' Dec ' Eric ' Dec'

Lemma 5.4.10. For any auxiliary input z and set of inputs -, and for every PPT adver-
sary A1 in Hybrid 1, there exists a PPT adversary A 2 in Hybrid 2 such that

HYB1 (A 1 ,1kz,{xi} 1) HYB2 (A 2 ,1kz,{xi} i)

Proof. We define the adversary A 2 as a sequence of sub-algorithms A 2 = (A', AmPC1, A

2P ...) corresponding to separating the actions of A 2 between and during each of the MPC
executions. We define the output of each sub-adversary A' (or AMPc2) to be the view of A2 up
to that point: each sub-adversary receives as auxiliary input the output z' (or zMPci) of the
previous sub-adversary. By the (perfect) security of the underlying MPC protocol, for each
MPC execution there exists a simulator SMPci who, given the same auxiliary input zMPCi and
access to the corresponding ideal functionality (i.e., F(k,sk), F;, F-en,) simulates the view

of AMPci during that MPC execution. Each intermediate sub-adversary A' simulates the
actions of A 1 exactly in between the MPC executions, given current view z'. The complete
Hybrid 2 adversary A 2 will simulate A 1 by piecing all these simulations together.

Indistinguishability of the simulated output follows directly by the perfect security of the
underlying MPC protocol, together with a standard hybrid argument. We emphasize that
this argument holds in the present concurrent setting due to the perfect security of the MPC
protocol. 5

240

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Hybrid 3. (Replace VSS with ideal functionality).

Similar to Hybrid 2, except that the VSS sharing protocol is replaced by the associated ideal
functionality Fvss (as described in Definition 5.2.8). This affects the protocol in two places.

" The input commitment phase for each party P now takes place as follows:

1. Party Pi generates ri +- R, si = Encpk(x; ri), ri <- P(crs(pk, 1j), (zi, ri)), rPA <- R,sfPA = EncCPA (x; rPA), and 7rCPA as before.

2. Instead of Pi running as dealer in the VSS to share the values (sj,7rj,! PA.7CPA)

party P now samples a random polynomial f(x) for which f(0) = (j, i,. sPA.CPA)
and executes the ideal functionality Fvss on input f(x).

3. The parties P E Ci run the VSS reconstruction procedure, as before, on the shares
received from the ideal functionality. The remainder of the input commitment phase
continues as in the previous hybrid.

" Similarly, in the shuffle generation phase, for each swap index f E [q] of the switching
network, the following takes place:

1. Each party Pi E C generates bj, (r)CPA, CPA, (w,)CPA as before

2. Instead of Pi running as dealer in the VSS to share the values (b., 7r, (.')CPA CPA
Pi now samples a random polynomial g(x) for which g(O) = (6', 7q, (bt)CPA, (7)CPA)

and executes the ideal functionality Fvss on input g(x).

3. The parties Pg E C run the VSS reconstruction procedure, as before, on the shares
received from the ideal functionality. The remainder of the shuffle generation phase
continues as in the previous hybrid.

Ideal functionalities: F(pk,,k), F vss , Dec Enc Dec.

Lemma 5.4.11. For any auxiliary input z and set of inputs -, and for every PPT adver-
sary A 2 in Hybrid 2, there exists a PPT adversary A3 in Hybrid 3 such that

HYB 2 (A 2, 1 , z, { i1)= HYB3 (A 3 , 1k, z,{X

Proof. As in the proof of the previous lemma, we consider an adversary A 3 composed of
multiple sub-adversaries, corresponding to the actions of A 2 between and during each VSS
execution. By the simulation-based security of the underlying VSS protocol, there exists a
simulator SVSS who, given the current view of A 2 and access to the ideal functionality Fvss,
simulates the view of A 3 during the corresponding VSS execution. The complete Hybrid 3
adversary A 3 will simulate the output of A2 by piecing all these simulations together (and
simulating A 2 's actions exactly in between VSS executions).

Indistinguishability of output distributions follows directly by the perfect simulation security
of the underlying VSS protocol, together with a standard hybrid argument. We again empha-
size that concurrent security is satisfied, as the security of the VSS protocol is perfect. 5

241

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Hybrid 4. (Simulated NIZK CRS, simulated proofs for honest parties).
Same as the previous hybrid, with three changes:

" The CRS values for the two instantiations of the NIZK argument system are replaced by
an ideal functionality Fcrs that samples simulated CRS values, as (crs, trap) +- S"s(1k)
and (crsCPA, trapCPA) +_ g/crs(lk), and outputs crs, crsCPA to all parties.

" Honest parties no longer honestly generate proofs ?r of statements as instructed by the
protocol. Instead, they submit the relevant instance x (i.e., (pk, 9) or (pk, pkCPA, p pCPA))

to prove validity of some ciphertext Q, or consistency of two ciphertexts) to an ideal
functionality FNIZK, who responds with a simulated proof r' +- Sprof(crs,trap, x) (or

7r' +- SProof(crssame, trapCPA, x), in the second case); the honest party then uses the

resulting simulated proof r' in the place of ir. Explicitly,

- In the Shuffle Generation phase, when generating encryptions be, bCPA of random
bits, the honest parties no longer produce accompanying proofs in the honest fashion;
rather, they call the ideal functionality FNIZK on input (pk, be) and (pk, pkCPA, bCPA)
and use the resulting proofs 7re, CPA

- Similarly, in the Input Commitment stage, honest parties Pi generate the ciphertexts
xj, x*PA, then call the ideal functionality FNIZK on input (pk, zi), (pk, pkcPA, Ci{PA),
and use the resulting simulated proofs.

Fse pueries Fseed' -nIdeal functionalities: Fcr, F(pk,sk), F;, FN IZK, Fvss 7*r, Dec E 1n*rc F7 "D.

Lemma 5.4.12. For any auxiliary input z and set of inputs 1, and for every PPT adver-
sary A 3 in Hybrid 3, there exists a PPT adversary A 4 in Hybrid 4 such that

HYB 3 (A 3 , 1k, z,J{xi 1) i HYB4 (A 4 , 1 , z, {xi} 1)

Proof. For any PPT adversary A 3 in Hybrid 3, we consider the identical adversary A 4 in
Hybrid 4. Computational indistinguishability of the corresponding experiment outputs follows
directly from the adaptive zero knowledge property of the simulation-sound NIZK argument
system (see Definition 5.2.1).

Hybrid 5. (Abort if A proves false statement).

Same as the previous hybrid, except that the experiment ends in fail in the Input Commitment
stage if any corrupted party Pi produces a tuple (1j, 7rj,PA, PA) for which the proofs

Cri, 7r, PA verify correctly: i.e.,

1 = V(crs, (pk, 1), ri) and 1 = V'(crssame, (pk, pkcPA IPA CPA)

but either (pk,2i) (L or (pk, pkCPA C PA) gsame

Similarly, the experiment ends in fail in the Shuffle Generation stage if in Step 3 the adver-
sary broadcasts a tuple (be, 7re, ^CPA CPA) for which the proofs Cre, irPA verify correctly but

(pk, be) V L or (pk, pkCPA, b, PA) L same

IFvs ,ueries Fseed', Fan.Ideal functionalities: FFpk,) Fi, FNIZK, F Enc',Dec nc F D

242

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Lemma 5.4.13. For any auxiliary input z and set of inputs z, and for every PPT adver-
sary A4 in Hybrid 4, there exists a PPT adversary A 5 in Hybrid 5 such that

HYB4 (A 4 , 1 , z,{xi} 1) HYB5 (As, 1 2, z, {xi} 1).

Proof. For any PPT adversary A 4 in Hybrid 4, we consider the identical adversary A5 in
Hybrid 5. By the unbounded adaptive simulation soundness of the NIZK argument system

(see Definition 5.2.1), it follows that the probability of ending in abort in Hybrid 5 cannot
exceed the probability of ending in abort in Hybrid 4 by more than a negligible amount; the
lemma follows. E

Hybrid 6. (Random secret shares of sk for corrupted parties).

Identical to the previous hybrid, except that the ideal functionality F(pk,sk) is replaced by a
slightly modified functionality F'ksk) that samples (pk, sk) +- Gen(lk) as before, but samples

secret shares of sk by first selecting the shares {skj}jEcnM for malicious parties uniformly at
random, and then sampling a random collection of remaining shares {ski}iEcVM for honest
parties subject to Rec({ski}iEc) = sk. F(pk,sk) outputs (pk, ski) to each party Pi E C.

Note that the adversary now has no information about sk (beyond collective access to two ideal
decryption functionalities, which only decrypt values submitted by a committee majority).

Ideal functionalities: F' F;, FNIZK, Fvss, F"'Fqueries F ' Fan.
(pk,sk)' i2' Eric 2 Dec 7' Eric 7 Dec*

Lemma 5.4.14. For any auxiliary input z and set of inputs z, and for every PPT adver-
sary A 5 in Hybrid 5, there exists a PPT adversary A 6 in Hybrid 6 such that

HYB5 (As, 1', z,{xi} 1)= HYB6 (A 6 ,1k, z, {i1).

Proof. The experiments are identical. This follows by the perfect secrecy property of the

[| IC|]-out-of-ICI secret sharing scheme (Share, Rec), together with the fact that the commit-
tee C is guaranteed to be composed of at least 2 fraction honest parties (by Hybrid 1). 0

Hybrid 7. (Abort if any input/index CT is invalid).

Abort if at the conclusion of the Input Commitment stage there exists i E [n] for which either
of the following properties fails to hold:

" All honest parties Pj E Ci agree on the same ciphertexts s i and i for party Pi's input
and index.

" Each such ciphertext x^i, i is evaluation-enabled, as per Definition 5.2.3.

" It holds that Decsk(i) = i.

Define x' := Decsk(_i), where 1i is the ciphertext agreed upon by honest parties.

Ideal functionalities: F Fpksk), Fi, FNIZK, Fvss, F*, F' Deries, F scd' Fan.

243

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Lemma 5.4.15. For any auxiliary input z and set of inputs zF, and for every PPT adver-
sary A 6 in Hybrid 6, there exists a PPT adversary A7 in Hybrid 7 such that

HYB6 (A 6, 1k z, {xi}lu=1) C HYB7 (A 7 , 1k, z, {.Xi 1

Proof. We consider the same adversary A 7 = A6 and argue that the probability of the
experiment ending in abort due to the added constraints is negligible in k.

Recall that the ith input commitment stage currently takes place in the following steps: (1)
Party P generates (Ji, 7ri), where for honest Pi the proof ri is simulated and provided by
the ideal functionality FNIZK, and for malicious Pi the experiment aborts if iri verifies but
the statement is false, (2) Party P samples a random secret sharing polynomial f(.) with
f(0) = (Ji, ri) and submits it to the ideal VSS functionality Fvss, (3) The parties of Ci run
the reconstruction procedure on the shares {f(j)}jEc, where f(j) is the value received by
party Pj from Fvss, (5) Each party P sets his local version of the encrypted input i to be
the reconstructed value Ji if iri is valid, and to the default ciphertext 6 otherwise, and (6) All
parties in Ci receive a good encryption i of the index i from the ideal functionality F;.

By the definition of F and the certifiability of the FHE scheme with respect to the set of
randomness R, we immediately have that 2 is evaluation-enabled and Decsk(i) = i. Since F;
delivers the same ciphertext to all parties, all honest parties agree on i.

By the reconstruction property of the polynomial sharing from the VSS scheme, all honest
parties will reconstruct and agree on the original pair (.i, ri). For honest Pi, who follow
the prescribed protocol, the ciphertext ii will be evaluation-enabled. For malicious Pi, one
of two cases will occur. If the corresponding proof 7ri verifies, then it must hold that the
ciphertext si is evaluation-enabled (otherwise the experiment aborts, by Hybrid 5); if ri does
not verify, then the honest parties Pj E Ci will all set si to be the default ciphertext 0, which
is evaluation-enabled by construction.

Hybrid 8. (Abort if permutation CTs are bad).

Abort if at the conclusion of the Shuffle Generation stage (and after executing Com Broadcast),
any of the following fails to hold:

" All honest parties P E [n] agree on the same permutation ciphertext values {B}E[q]

" Each such ciphertext $e is evaluation-enabled, as per Definition 5.2.3.

Define Be := Decsk(B) for each f E [q].
Denote by p the [n]-permutation defined by implementing the switching network SN with
bits {B}eE[q].

F s ,F se ,eries Fseed', F"ansIdeal functionalities: F, F F:, FNIZK, F Enc' De En FD

244

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Lemma 5.4.16. For any auxiliary input z and set of inputs x, and for every PPT adver-
sary A7 in Hybrid 7, there exists a PPT adversary A8 in Hybrid 8 such that

HYB7 (A 7 , 1k, z{xig} 1) i HYB 8 (.1 .

Proof. We consider the same adversary A8 = A7 and argue that the probability of the
experiment ending in abort due to the added constraints is negligible in k.

Recall that in the shuffle generation procedure, each party Pj E C encrypts a sequence of bits
and VSSes corresponding ciphertex-proof pairs (fy, 7ri) to the parties in C; these values are
then reconstructed from the secret shares, each party locally verifies the reconstructed proofs,
and for each e E [q] the ciphertexts {,}JEC with valid proofs are added (xor) homomorphically
to yield a final ciphertext E.
By an identical argument to that of the previous step (Lemma 5.4.15), it follows that for
each j E C, all honest parties Pi E C agree on the values {(f7r)}e[q] reconstructed from
party P1 's VSS, and further, each ciphertext f/ for which the proof 7r verifies correctly is
guaranteed to be evaluation-enabled. We refer to these below as "valid" ciphertexts.

Note that since each honest party Pi E C agrees on the received ciphertexts and proofs, they
also agree on the subset of ciphertexts which are valid. Thus, since homomorphic evaluation
is deterministic, they will also all agree on the value of BE := Eval({I6'}valid, @) for each

f E [q]. Further, since each valid ciphertext f/ is evaluation-enabled, the resulting evaluated
ciphertexts Be will also be evaluation-enabled.

Finally, recall that a strict majority of parties in the committee C are honest (by Hybrid 1),
and thus will initiate ComBroadcast({B}E[q) for this same set of ciphertexts. Thus, by
Lemma 5.4.8, it holds that at the conclusion of the Com Broadcast execution, all parties in [n]
will agree on the collection of ciphertexts {BE}E [q]

El

Hybrid 9. (Abort if post-swapped CTs invalid).

Abort if at the conclusion of the Oblivious Shuffling stage there exists i E [n] for which any
of the three following properties fails to hold:

* All honest parties Pj E Ci agree on the same final input and index ciphertexts Pfinal Xfinal-

* Both ciphertexts P inal tinal are evaluation-enabled, as per Definition 5.2.3.

Define pAina= DecskQ3 lnaI) and xal = Decs kGinal).

* It holds that

Pfinai = P_ (i07 xinal = X-()

where x' is defined for each j by party P's committed ciphertext zy as in Hybrid 7, and

p is the permutation defined from the homomorphically added ciphertexts {beE [q] , as

defined in Hybrid 8.

245

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Ideal functionalities: Fcr, F' F;, FNDIZK,Fvss , F 'u*s Ecd, FDCl~ pkk' nc ec En Dec

Lemma 5.4.17. For any auxiliary input z and set of inputs x, and for every PPT adver-
sary A 8 in Hybrid 8, there exists a PPT adversary Ag in Hybrid 9 such that

HYB8 (A 8 , 1 z, ,{xi} 1) c HYB9 (Ag, 1 , z, {Zi= 1)

Proof. We prove the probability that the experiment ends in abort due to the added con-
straints is negligible in k, and thus the lemma holds for the same adversary Ag = A8 .

This claim is proved inductively, over the iterated executions of the Committee Swap protocol.
As a result of Hybrids 7 and 8, it holds that all original input and index ciphertexts {ji, '}iE[n] ,
and all permutation ciphertexts { b}eE[q] are all evaluation-enabled, and are agreed upon by
the relevant honest parties (i.e., honest parties in Ci for the ith input/index ciphertexts, and
all honest parties for the permutation ciphertexts).

In each swap evaluation f, the parties select the most frequently occurring index and input
ciphertext pairs, which will be the ciphertexts held (and agreed upon) by honest parties, who
form a majority of each committee. Thus, the homomorphically evaluated swapped ciphertext
values will also be agreed upon by all honest parties in the relevant pair of committees, they
will be evaluation-enabled, and they will correctly decrypt to the original values in swapped
order iff Be = 1.

At the conclusion of all swaps e = 1,..., q, it thus holds that the honest parties in each Ci
agree on the same final ciphertexts pfinaI, finai, which are evaluation-enabled. Further, by the
correctness of homomorphic evaluation, the original values (i, x') for each i are now stored
within the ciphertexts Pina fnal for which p(i) = j: or, equivalently, Decsk(Pfina,) =
and Decsk(zinal) = , .

Hybrid 10. (Replace Input Selection stage with ideal functionality Fse).

Recall that in the previous hybrid, the Input Selection stage took place by each party in C
doing the following: (1) submitting pk to an ideal functionality Fed, and receiving back

an encrypted PRG seed; (2) locally performing homomorphic evaluations on this ciphertext

(to select and permute a set of query indices, using randomness prg(seed), all under the

encryption layer); and then (3) submitting the resulting evaluated ciphertexts to a second

ideal functionality F", who decrypts ciphertexts submitted by a majority of parties in C.

In this hybrid, these 3 steps are replaced by the following single ideal functionality Fseed:

Input: pk

Compute:

1. Sample seed +- {0, 1}k and r +- R. Encrypt seed = Enck (seed; r).

2. Sample query indices I = SLA.Sel(prg(seed)), using randomness prg(seed).

246

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

3. For each of the Q selected indices p E I, apply the permutation p, as defined in
Hybrid 8.

Output: To all parties (in C): seed, and the set of Q indices p(I).

Note that this essentially amounts to replacing the homomorphic evaluation on ciphertexts
by an ideal functionality that computes the same functions on the unencrypted plaintexts.

Ideal functionalities: F F(Pksk),EF, FNIZK, Fvss, F , Fd', 'Fa"s.

Lemma 5.4.18. For any auxiliary input z and set of inputs z-, and for every PPT adver-
sary Ag in Hybrid 9, there exists a PPT adversary A 10 in Hybrid 10 such that

HYB9 (AZ,, z, {xi} 1) HYBio (Aio, 1,z,{xi}1).

Proof. Consider any PPT adversary Ag in Hybrid 9. Consider the adversary A 10 in Hybrid 10
who performs the following steps:

The adversary A 10 :

1. Until the start of the input selection stage, simulate the actions of Ag exactly.

2. Submit pk received from F(pksk) to the Hybrid 10 functionality Fg. Denote the

response as seed, p(I).

3. Send seed to A 9 , as the simulated response from the Hybrid 9 functionality Fie.

4. Simulate the actions of A9 up to the point where Ag submits his values to the
Hybrid 9 functionality F"'c. Send p(I) to Ag as the simulated response.

5. Continue to exactly simulate the actions of Ag for the remainder of the protocol.

In order to show that Aio correctly simulates the output distribution of Ag in Hybrid 9, it
suffices to show that the output p(I) from Feed has the same distribution as the output of

W()
F" in the Hybrid 9 experiment. Namely, we must show that with overwhelming probability,
the ciphertext submitted to the decryption functionality F" in Hybrid 9 by a majority of
parties in C (in particular, by the honest parties in C) necessarily decrypts to the value p(I)
that is computed by F W). This will follow by the correctness of homomorphic evaluation of
the FHE scheme.

More formally, note that the ideal functionality Fed in Hybrid 9 produces and distributes

an evaluation-enabled ciphertext seed. This implies that the homomorphically evaluated
ciphertext I of input indices to be queried (as defined in Figure 5.5) is also evaluation-
enabled, and with overwhelming probability it satisfies Decsk(I) = I := SLA.Sel(prg(seed)) as

expected, where seed := Decsk(seed).

Recall from Hybrid 8 that all honest parties in C agree on the permutation bit ciphertexts
{ B}E,[q], and each of the ciphertexts is evaluation-enabled. Thus, all honest parties in C

will compute the same homomorphic evaluation k for the permuted set of query indices (as
defined in Figure 5.5), which in turn will be evaluation-enabled. And, by the correctness
of homomorphic evaluation on evaluation-enabled ciphertexts, K will (with overwhelming

247

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

probability) satisfy Deck(k) = p(I), since p is exactly the permutation given by evaluating
the swaps {Be := Deck(B)}E[q].

This means that in Hybrid 9, when all honest parties in C submit the ciphertext k to the
decryption functionality Fe, it will respond exactly with p(I), as computed by FJ in
Hybrid 10. The lemma follows.

Hybrid 11. (Replace Evaluation stage with ideal functionality F,).

Similar to the previous hybrid, except that the homomorphic evaluation on ciphertexts during
the evaluation stage is absorbed into the adjacent ideal functionalities. The evaluation stage
now takes place as follows.

After the conclusion of the Input Selection stage, the parties in C send "Please send encrypted
input e" to the parties Pj E C in the relevant queried committees, and the queried parties

Pj broadcast their post-shuffle pair of (index, input) ciphertexts (V,4) to C, as before.
However, the members of C no longer proceed by executing the ideal functionality Fjed to

receive seed, performing homomorphic evaluations on the ciphertexts, and submitting the
resulting values to the ideal functionality Fa"s. Instead, the members of C now directly
forward the received ciphertext pairs (from parties Pj E Ce) to a new ideal functionality
Fse, defined as follows:

Input: Each party Pi E C: ski, ({fy}jEC,, {}jEC,)fEK-

Compute:

1. For each f, take ip = majjEC,{fi} and 1p, = majjEQ,{:,}.
2. Reconstruct the FHE decryption key from the input secret shares: sk +- Rec({ski}ic).
3. For each f, decrypt pe = Deck(p3) and xp, = Decsk(!p,).

4. Sample a PRG seed seed' <- {0, } and encryption randomness r +-R. Encrypt

seed = Encpk(seed', r).

5. Evaluate the sublinear algorithm:

answer = SLA.Exec ((p, ep,) EK; prg(seed'))

taking each xp, as the requested input of index pi, and using randomness prg(seed').

Output: To all parties (in C): seed , answer

Ideal functionalities: F, F' F;, FNIZK, Fvss, F se* a Fs.

Lemma 5.4.19. For any auxiliary input z and set of inputs z, and for every PPT adver-
sary A 10 in Hybrid 10, there exists a PPT adversary A1 1 in Hybrid 11 such that

HY Bio (Aio, 1', z, {xij = 1) H YB11 (A11, 1Z=,{xg1

248

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Proof. Similar to the previous step, for any PPT Hybrid 10 adversary Aio, we define the
adversary A11 in Hybrid 11 who simulates the actions of Aio up to the start of the evaluation

phase, submits pk to his functionality Fsed and receives back seed, answer, and then simulateseva I

the responses of the two separate functionalities F*,*', Fe by responding with sd for the
first and answer for the second. The argument for indistinguishability is identical to that of
the previous lemma, and holds by the correctness of homomorphic evaluation for evaluation-
enabled ciphertexts.

O

Hybrid 12. (Replace Committee Shuffle, Input Selection, and Evaluation stages with

single ideal functionality Eval-leak(seed, seed, p(I))).
In this hybrid, after parties commit to their input/index ciphertexts, and the supreme commit-
tee generates and agrees upon the permutation ciphertexts, all parties submit the ciphertexts
they hold to one large ideal functionality. This functionality evaluates the sublinear algorithm
on the inputs defined by the ciphertexts (and randomness generated via a PRG) and outputs
the final evaluation answer together with additional "leaked" information: FHE encryptions

seed, seed of the PRG seeds that were used to generate the randomness used in the execution,
and the permuted index set p(I) where I is the set of inputs used in the evaluation, and p is
the permutation defined by the ciphertexts input to the functionality.

In essence, this hybrid replaces all the homomorphic evaluations of the committee shuffle
phase, and the F * , F * functionalities, with a single functionality that correctly performs

all these steps, and outputs the same collection of values (answer, seed, seed , and p(I)).

More formally, Hybrid 12 proceeds as follows.

1. All parties receive a CRS from the ideal functionality Fcr and execute the committee
election protocol (aborting if the committees are not "good" as defined in Hybrid 1).
The ideal functionality F' outputs public keys pk, pkCPA for the FHE and standard
CPA-secure encryption schemes to all parties, and secret shares ski of the corresponding
FHE secret key to the members of the supreme committee (where the shares ski given
to corrupt parties are completely random).

2. In the input commitment phase, each party P generates an encryption-and-proof tuple
(, ri,CPA cPA) as in the previous hybrids and VSSes this value to his committee Ci,
via the ideal functionality Fvss. (Recall that for honest parties, the proofs are simulated
and generated by the ideal functionality FNIZK). The value is then reconstructed by the
members of Ci (and those ciphertexts with invalid proofs are replaced by the default
ciphertext 6). In addition, each party in Ci receives an encryption i of the index i from
the ideal functionality F.

3. Next, each party P in the supreme committee C samples random bits {bt}eE[q] (one
for each swap gate in the switching network), generates an encryption-and-proof tuple

(bi, 7rj, (61)CPA, (7)CPA) as in the previous hybrids, and VSSes this tuple to the committee
C via Fvss. The value is then reconstructed by the members of C.

249

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

4. At this point, all parties submit their reconstructed ciphertexts i (for P E Ci) and/or

{$ }E[q] (for Pj E C) to an ideal functionality Eval-leak(seed, seed, p(I)) described be-
low, and receive the described outputs.

Functionality Eval-leak(seed, seed, p(I)):

Input: Each party Pj E Ci: {s } (for each i E [n]).
Each party Pj E C: {$ }E[q.

Compute:

1. Take the majority votes: for each i E [n], take si := majjEci.{i ,
for each e e [q], take Bt := maj)Ec{$M}.

2. Decrypt these ciphertexts: xi := Decsk(ii) and Bt := Deck(be). (Note that the
secret key sk is hard-coded into the ideal functionality).

3. Sample seed, seed' +- {0, 1}k and r, r' +- R (recall R is the set of "good" randomness

for the FHE scheme).

4. Compute I = SLA.Sel(prg(seed)).
5. Compute answer = SLA.Exec({xi};EI; prg(seed')).

6. Compute the permuted indices p(I), where p is the permutation defined by the swap
bits {Bt}E[q] in the switching network SN.

7. Encrypt seed = Encpk(seed; r) and seed = Encpk(seed'; r').

Output: To all parties in C: answer, seed, seed , p(I).

Ideal functionalities: F, F'Sk), F, FN IZK, Fvss, EvaI-lea k(seed, seed , p(I)).

Lemma 5.4.20. For any auxiliary input z and set of inputs -, and for every PPT adver-
sary A11 in Hybrid 11, there exists a PPT adversary A 12 in Hybrid 12 such that

HYB 11 (A11, 1 ', z, {xi} 1) c HYB12 (A 12 , 1 z, {xdj= 1)

Proof. Note that all replaced steps (namely, the homomorphic evaluations on public cipher-
texts during the committee shuffle phase, and the communication of public values while inter-
facing between Hybrid 11 ideal functionalities in the input selection and evaluation phases)
are completely based on non-secret values, and can be simulated honestly.

Similar to the previous hybrids, indistinguishability of the two hybrid experiments holds since
a majority of parties in each committee are honest (so that at each state, a majority of parties
will agree on the same honestly evaluated ciphertexts), that each of the starting ciphertexts is
evaluation-enabled (as proved in the previous hybrids), and that correctness of homomorphic
evaluation holds for evaluation-enabled ciphertexts. Further, since a majority of parties in
the supreme committee are honest, then by the correctness property of the secret sharing
scheme, the value reconstructed from parties' secret shares ski of the FHE secret key (as used
by the ideal functionalities to decrypt in Hybrid 11) is equal to the correct secret key sk (as
used to decrypt in the present functionality).

250

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

Hybrid 13. (Honest parties replace redundant CPA ciphertexts with EncpkCPA(0)).

Same as the previous hybrid, except that during the input commitment phase, honest par-
ties no longer generate a second encryption of their input under the standard CPA-secure
encryption scheme. Similarly, in the shuffle generation phase, honest parties no longer gen-
erate a second encryption of their bits be. Instead, in each place they simply provide a fresh
encryption EncpkcPA(O) of the value 0.

Ideal functionalities: F, F' F, FNIZK, Fvss, Eval-leak(s , seed , p(I)).(pk,sk)' I IIa~ea

Lemma 5.4.21. For any auxiliary input z and set of inputs 7, and for every PPT adver-
sary A12 in Hybrid 12, there exists a PPT adversary A 13 in Hybrid 13 such that

HYB 12 (A12, 1' Z, Xi} 1 HYB 13 (A13, 1k z, {xiE 1)

Proof. For any PPT adversary A 12 in Hybrid 12, consider the adversary A13 in Hybrid 13
who generates simulated CPA ciphertexts -fPA +- EnccPA (0) and (bj)cPA <- Enc CA(0) on

behalf of each honest party P (and f E [q]), and otherwise simulates the actions of A12
exactly.

The indistinguishability of the simulated output holds directly by the semantic (CPA) secu-
rity of the underlying encryption scheme (Gen', Enc', Dec'), together with a standard hybrid
argument. Indeed, since the remainder of the hybrid experiment execution is independent of
the secret key skCPA, any successful distinguisher between experiment outputs can be used
to distinguish between encryptions of 0 and encryptions of the corresponding correct value
(which is known by the reduction).

Hybrid 14. (Parties submit only plaintext inputs xi and be to ideal functionality).

Two changes take place from the previous hybrid.

First, the ideal functionality FPksk) is replaced by a modified version FFHE, which no longer

samples a public key pkcPA for the standard CPA-secure encryption scheme, and which no
longer outputs shares of the secret key of the FHE scheme. Instead, the functionality samples
a key pair (pk, sk) for the FHE scheme and outputs only pk to all parties.

Second, the input and shuffle generation phases no longer take place, and instead the ideal

functionality Eval-leak(seed, seed, p(I)) from the previous hybrid is replaced by a modified ver-

sion Eva-leakpk seed, seed p(), {i}iE[n], {b}iEc,te[q]), which directly accepts plaintext values

xi, {b,}. Specifially:

251

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

" Input phase: In the previous hybrid, each party Pi generated a ciphertext-and-proof tuple
(zi j,,7rj PA CPA) and used the VSS functionality Fvss to share the tuple among the
parties in his input committee Ci. The parties of Ci then exchanged shares, reconstructed
the ciphertext-and-proof tuple, and each submitted the ciphertext si to the Hybrid 13
ideal functionality. Now, instead, each party Pi simply submits his input x directly to
the new ideal functionality in Hybrid 14.

" Shuffle generation phase: In the previous hybrid, each party Pi E C in the supreme
committee sampled random bits {bi}fe[q) for each swap gate in the switching network

SN, then for each generated a ciphertext-and-proof tuple (bk, -7r, (bf)CPA, (w)CPA), and

used the VSS functionality Fvss to share the tuple among the parties in C. The parties
of C then exchanged shares, reconstructed all the ciphertext-and-proof tuples, and each
submitted the collection of ciphertexts {b}iEC,fE[q] to the Hybrid 13 ideal functionality.

Now, instead, each party Pi E C simply samples bits {bf} e[q] and submits them directly
to the new ideal functionality in Hybrid 14.

Note that the ideal functionalities Fcrs F, FNIZK, and Fvss from Hybrid 13 are no longer
present in Hybrid 14.

The new ideal functionality Eval-leakp (seed,seed, p(I),{.i};E {b}}iecte[q)) is hardcoded
with the FHE public key pk. Upon input {xi},E[n], it outputs FHE encryptions of each of
the received values, {:i}E[n]. Upon input {b}iEce[q, it evaluates the sublinear algorithm

on inputs {Xi};E[r (using randomness from a PRG), outputs answer, seed, seed , and p(I) as
before, and in addition outputs FHE encryptions of each of the received swap bit values,
{bJ}iEC,iE[q]. Explicitly, the new ideal functionality is defined as follows:

Functionality Eval-leakT(seed, seed , p(I), {si}iEtn], {bjic,e[q]):

Input 1: Each party Pi: plaintext input value xi.

Compute 1: For each i E [n], let -i +- Encpk(xi) (with respect to hardcoded FHE key pk).

Output 1: {Xi}En].

Input 2: Each party Pj E C: plaintext bits {b}eE[q] for the q swap gates.

Compute 2:

1. Evaluate sublinear algorithm on above inputs {xi}iE[n] (using PRG randomness):

(a) Sample seed, seed' +- {0, 1}k.

(b) Compute I = SLA.Sel(prg(seed)).

(c) Compute answer = SLA.Exec({xj}iEI; prg(seed')).

2. Compute the additional "leaked" information:
All encryptions are with respect to the hardcoded FHE key pk.

(a) Encrypt seed +- Encpk(seed) and seed +- Encpk(seed').

252

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

(b) For each i E C, f E [q] , encrypt the received bit bj (submitted by party Pi E C)
as b. +- EnCpk(bj).

(c) For each swap gate f E [q] in the switching network SN, take Bj = &E$ C bi.
Denote by p the permutation on [n] induced by swap bits {Bi}E[q].

(d) Compute the permuted indices p(I).

Output 2: answer, seed, seed , p(I), {b}}iec,te[q]

Ideal functionalities: EvaI-lea k (seed, se, p(I), {i};iEn], {fie }iec,e[q)-

Lemma 5.4.22. For any auxiliary input z and set of inputs .z, and for every PPT adver-
sary A 13 in Hybrid 13, there exists a PPT adversary A 14 in Hybrid 14 such that

HYB13 (A 13 , 1 k, z, {xi} 1) = HYB14 (A14, 1 z, {xi} 1) .

Proof. At a high level, the reduction must: (1) simulate the VSS sharing of honest parties'
secrets (xi, b), (2) extract corrupted parties' secrets xj, bt from the information they provide
during the VSS sharing phase in order to submit the appropriate values to the Hybrid 14
ideal functionality on behalf of corrupted parties, and (3) given the ciphertexts output by the
ideal functionality, simulate the remainder of the VSS reconstruction phases.

We now describe how this is done. Let A 13 be an any PPT adversary in Hybrid 13. Consider
the following adversary in Hybrid 14.

Adversary A 14 :

1. Simulate A 13 exactly until the point where he expects to receive an output from the
Hybrid 13 ideal functionality F' .

2. Simulate FP :

Receive pk for the FHE scheme from the Hybrid 14 ideal functionality F FHE. For each
corrupted party Pj in the supreme committee C, sample a random secret share sky. In
addition, sample a key pair (pkcPA, skCPA) +- GenCPA(1k) for the standard CPA secure
encryption scheme. Send (pk, pkcPA, {skj}jEcnM) to A 13 as the collective output he
expects from the Hybrid 13 ideal functionality F'P . (Recall that M C [n] denotes

the set of malicious parties).

3. Simulate the actions of A 13 exactly up until the Fvss functionality evaluation in the
input commitment phase.

4. Simulate Fvss in input commitment:

Recall that the functionality Fvss among a collection of parties C' receives a polynomial
g from a single party (the dealer). If deg g < JC', then Fvss outputs the evaluation
g(i) to each party Pi E C'; otherwise, it outputs _L to each party in C'.

In Hybrid 13, each party Pi acts as dealer for the Fvss functionality to share his
ciphertext-and-proof input tuple (i, 7ri, CPA 7CPA) among his input committee Ci. A 14

simulates this process within Hybrid 14 as follows.

253

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

" When the dealer is an honest party Pi: For each corrupt party Pg in Ci, sample a
random evaluation value sj, and send the collection {si}iECinM to A 13 -

" When the dealer is a corrupted party P: Receive a polynomial g from A 13 (which
he believes to be submitting to the Hybrid 13 functionality Fvss). If deg g > ICiI,
then output 0 to all parties and set Z = 0.
Otherwise, do the following. For each corrupted party P in Ci, send the polynomial
evaluation g(j) to P. Extract the shared tuple, by evaluating the polynomial g at
the point 0: i.e., parse (i, r ,CPA) = g(0). Verify the accompanying proofs
7ri,r iCPA. If either proof does not verify, then set x' = 0. Otherwise, extract the
underlying plaintext input value xi by decrypting the standard CPA ciphertext iCPA

That is, take ' = DecCPA (PA), using the secret key skCPA generated in Step 2.

Note that at the conclusion of all simulated Fvss executions within the input commit-
ment phase, the Hybrid 14 adversary has extracted an input value x- for every corrupted
party P.

5. Submit the set of inputs {x} 3 eM on behalf of the corrupted parties to the Hybrid 14

ideal functionality Eval-leakpk(seed, seed, p(I),{ii}[n, {b}iEc,e[q]). Receive back ci-
phertexts of all parties inputs, {;}iE[] (in particular, providing encryptions of the
honest parties' inputs).

6. Simulate VSS reconstruction in input commitment:

" For each corrupt dealer Pi: Simulate the actions of honest parties honestly given
the shares provided by the simulated Fvs functionality.

" For each honest dealer Pi: First, A 14 simulates a ciphertext-and-proof tuple on
behalf of Pi. This is done by including the FHE ciphertext ii from the ideal func-
tionality in the previous step, sampling an encryption of 0 in the standard CPA-
secure encryption scheme 6 - Encfc! (0), and generating two simulated proofs

ri +- SPr*f(crs, trap, (pk,i2)) and 7r2 +- SProf(crsme, trapCPA, (pk, pkCPA, i,

The simulated tuple is (Zi ira, 0, 7r2).
Now, A 14 must retroactively simulate secret shares that were allegedly given to
honest parties during the VSS sharing step. This amounts to sampling a random
polynomial g of appropriate degree (IC I - 1) consistent with g(0) = (ii, 7r,6, 7r2)
and where each evaluation g(j) for corrupt parties Pj E Ci is consistent with the
random secret share given to Py during the simulation of Fvss in Step 4. At this
point, A 14 simulates the actions of honest parties honestly given the shares dictated
by the polynomial g.

7. Simulate A 13 exactly up until the Fvss functionality evaluations in the shuffle generation
phase. At this point, repeat Steps 4-6 with the role of xi replaced by each secret swap bit
contribution bt (for e E [q]). Note that this includes providing the second set of inputs

to the ideal functionality Eval-leak (seed, seed , p(I), {i}iE[n] , {f}iECe,[q]): namely, the

collection of plaintext swap bit contributions {bj}iEcnM,fE[q on behalf of the corrupted

parties in the supreme committee C. In response, A 14 receives answer, seed, seed , and

254

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

p(I) (in addition to the ciphertexts {bj}iECgMElq] of the corresponding bits submitted by
the honest parties, which are used by A 14 to simulate the VSS reconstruction procedure
in the shuffle generation phase as above).

8. The Hybrid 13 adversary will submit a collection of ciphertext values to what he be-
lieves to be his corresponding ideal functionality within the Hybrid 13 experiment.
In response, A 14 ignores the submitted ciphertexts, and responds with the outputs

(answer, seed, seed , p(I)).
9. From this point on, simulate the actions of A13 exactly.

We now argue that the output of A 14 in Hybrid 14 is indistinguishable from the output of
A 1 3 in Hybrid 13.

The output of the functionality F'pksk) is simulated perfectly. By the perfect secrecy property
of the polynomial secret sharing scheme, the output of the Fsvfss functionality is simulated
perfectly. Similarly, since the Hybrid 14 ideal functionality directly provides correct FHE
encryptions of the honest parties' inputs (and so the complete ciphertext-and-proof tuples
are simulated perfectly on behalf of honest parties), the VSS reconstruction procedure is
simulated perfectly.

It remains to show that A 13 correctly extracts the inputs {x' }em and {b }jECnMtE[q) Of
corrupted parties (since the remainder of the execution is identical). Consider the case of
one xj; the argument is identical for all other values. By the soundness of the (argued
in Hybrid 5), if the proof qrCPA within the reconstructed tuple (., j7ry PA, CPA) verifies
correctly for a particular j E M, then it must hold that the two corresponding ciphertexts
zy and 1CPA encrypt the same message. By decryption correctness of the CPA encryption
scheme, with overwhelming probability this message will be the value x that is decrypted by
A 14 in his simulation, as required.

Hybrid 15. (Ideal functionality samples random swap bits {B}eE[q]).

Same as the previous hybrid, except that the ideal functionality

Eval-leakk(seed, seed, p(I), {;i};Ef , {b}iceq)

is replaced by a modified version

Eval-leakB'PT (seed, seed p(I), { <};n, {be}iEc,e[q])

which samples random swap bits Bi for each swap gate f E [q) in the switching network SN
in order to define the permutation p. It still accepts contribution bits {b'}jECnMtE[q] from
corrupt parties as before, and now samples random bits {bj}iECoM,E [q] on behalf of honest
parties, subject to DieC b} = Be for every f E [q]. The functionality computes and outputs

all values as before, including encryptions of these newly sampled bits, {}iECoME[q].

Ideal functionalities: Eval-lea k '(see, sed, p(I), {}iE[], { }iEc,iE[q])-

255

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Lemma 5.4.23. For any auxiliary input z and set of inputs , and for every PPT adver-
sary A 14 in Hybrid 14, there exists a PPT adversary A15 in Hybrid 15 such that

HYB 14 (A 14, 1 , z, {xig1)= HYB15 (Ai 5 , 1 , z, {xii 1)

Proof. Since honest parties sample their swap bits b. at random, and corrupt parties must

submit their corresponding bits & at a point when their view is independent of the honest
parties' bits, the two output distributions are in fact identical.

Hybrid 16. (Replace output FHE ciphertexts (seedseed , {2I} [nl, {b}iec,eE[q]) with Enc(O)).

Similar to the previous hybrid, except the ideal functionality FFHE is removed, and the ideal

functionality Eval-leak (seed, seed, p(I),{i}iE[n, {b}iECte[q]) is replaced by a modified ver-
sion, Eval-leak(p(I)), which only accepts plaintext inputs xi, and no longer leaks encrypted
information. This new functionality is defined as follows.

Functionality Eval-leak(p(I)):

Input: Each party P: plaintext input value xi.

Compute:

1. Sample seed, seed' +- {0, 1 }k.

2. Compute I = SLA.Sel(prg(seed)).

3. Compute answer = SLA.Exec({xi}eiE; prg(seed')).

4. Sample random bit Be +- {0, 1} for each swap gate f E [q] in the switching network
SN. Denote by p the induced permutation on [n].

Output: answer, p(I)

Ideal functionalities: Eval-leak(p(I)).

Lemma 5.4.24. For any auxiliary input z and set of inputs z, and for every PPT adver-
sary A15 in Hybrid 15, there exists a PPT adversary A 16 in Hybrid 16 such that

HYB 15 (Ai 5 , 1 k, z, {xi} 1) - HYB 16 (A 16 , 1 , z, I

Proof. In this step, the FHE ciphertexts (seed, seed , {li}iE[n] , {b}iEC,te[q]) that were previ-

ously output by the ideal functionality will be simulated by encryptions of 0. More explicitly,
let A 15 be any PPT adversary in Hybrid 15; we consider the following adversary A16 in Hy-
brid 16. A 16 simulates the actions of A 15 up until the call to his Hybrid 15 ideal functionality.
At this point, A 16 calls his Hybrid 16 ideal functionality on the same inputs and receives as

output a permuted index set p(I). For each ciphertext that Ai5 expects to receive in addition,
A 16 samples a fresh encryption of 0, as a +- Encpk(0), and submits the collection of all such

256

5.4. MULTIPARTY COMPUTATION OF SUBLINEAR ALGORITHMS

ciphertexts together with p(I) to A 15 as the ideal functionality output. A16 then simulates
the actions of A15 exactly for the remainder of the protocol.

The indistinguishability of the simulated output follows directly by the semantic security of
the FHE scheme, together with a straightforward hybrid argument. Note that the remainder
of the protocol execution can be simulated exactly without knowledge of the secret key sk.
Thus, any successful distinguisher can be used to distinguish an encryption of 0 from an
encryption of the corresponding (known) other value. E

Hybrid 17. (Replace p with a random permutation).

Same as the previous hybrid, except that the ideal functionality Eval-leak(p(I)) is slightly
modified. The previous functionality Eval-leak(p(I)) sampled the permutation p by choos-
ing random swap bits {Be} for the switching network and then taking p to be the induced
permutation on [n]. In this hybrid, the new functionality Eval-leak(p'(I)) samples a random
permutation p' on [n]. Namely, Eval-leak(p'(I)) is as follows:

Functionality Eval-leak(p'(I)):

Input: plaintext input values {xi}iE[n]

Compute:

1. Sample a random permutation p' +- S[n].

2. Sample seed, seed' <- {0, 1}k.

3. Compute I = SLA.Sel(prg(seed)).

4. Compute answer = SLA.Exec({x}iEI; prg(seed')).

5. Compute the permuted indices p'(1).

Output: answer, p'(I)

Ideal functionalities: Eval-lea k(p'(I)).

Lemma 5.4.25. For any auxiliary input z and set of inputs 7, and for every PPT adver-
sary A 16 in Hybrid 16, there exists a PPT adversary A 17 in Hybrid 17 such that

HYB 16 (A 16 , 1 , z,{xi} 1) HYB17 (A, 1 , z,Xi

Proof. By Theorem 5.2.11, the distribution of permutations p formed by randomly choosing
swap bits {Be} for the switching network SN is statistically close to uniform over the space
of permutations on [n]. Thus, taking the same adversary A1 7 = A16, the lemma follows. El

Hybrid 18. (Remove p'(I) leakage from ideal functionality).

Same as the previous hybrid, except the p'(I) leakage is removed from the output of the ideal
functionality. That is, Eval-leak(p'(I)) is replaced by the following functionality Fp 1 :

Functionality F prg:'Eval-

257

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Input: plaintext input values {Xi}iE[n

Compute:

1. Sample seed, seed' +- {0, I}.

2. Compute I = SLA.Sel(prg(seed)).

3. Compute answer = SLA.Exec({zx}iEI; prg(seed')).

Output: answer

Ideal functionalities: F 1 .

Lemma 5.4.26. For any auxiliary input z and set of inputs , and for every PPT adver-
sary A17 in Hybrid 17, there exists a PPT adversary A 18 in Hybrid 18 such that

HYB17 (AiM, 1 z, {i}=1) HYBis (Ais, 1k, z, {x)=
1)

Proof. Since the permutation p' was random and independent of the rest of the view of
the adversary in Hybrid 17 (namely, the value answer), the permuted index set p(I) can be
perfectly simulated by sampling a random subset J C [n] of size Q.
So, for any PPT adversary A 17 , define A 18 to be the adversary who simulates the actions of
A 17 given both answer and the simulated set J. The experiment outputs will be identical.

Hybrid 19. (Pseudorandomness replaced by true randomness).

Same as the previous hybrid, except the ideal functionality is modified to use true random-
ness to evaluate SLA.Sel and SLA.Exec, instead of sampling short random seeds and expanding
them using the pseudorandom generator. That is, F 1 is replaced by the following function-
ality F I:

Functionality Fjva:

Input: plaintext input values {zi}in

Compute:

1. Compute I +- SLA.Sel().

2. Compute answer +- SLA.Exec({xi}iEi).

Output: answer

Note that this is the ideal world experiment.

Lemma 5.4.27. For any auxiliary input z and set of inputs i, and for every PPT adver-
sary A 18 in Hybrid 18, there exists a PPT adversary A 19 in Hybrid 19 such that

HYBi8 Ai8, 1', z,{zig 1) i HYBig (Aig1,zig1.

258

5.5. GENERAL MPC WITH COMMUNICATION LOCALITY

Proof. Taking A 19 = A18 , the lemma holds directly by the security of the pseudorandom
generator prg, and a 2-step hybrid argument. Indeed, if there exists some auxiliary input z

and set of inputs x- for which there is a successful distinguisher between experiment outputs,
then this distinguisher can directly be used to distinguish a pseudorandom string from a
random one, by embedding the challenge as the randomness used to implement the ideal
functionality. 5

5.5 General MPC with Communication Locality

In this section, we present the remaining main result of the paper: a protocol for general secure
function evaluation with polylogarithmic communication locality.

Theorem 5.5.1 (Multiparty evaluation of general functionalities). Let f be any polynomial-
time randomized functionality on n inputs. Then, for every constant e > 0, there exists an n-party

protocol H 5 that securely computes f tolerating t < (1/3 - e)n active corruptions, with the following
complexities, where k is a security parameter and |x| is the size of the individual inputs held by the

honest players:

(1) The protocol runs in poly(log n, k) rounds.

(2) Each honest party talks with at most polylog(n) other parties.

(3) Each message has size of order |x| . n - poly(log n, k).

(4) The protocol uses a setup consisting of n - polylog(n) signing keys of size poly(k), as well as a
poly(k)-long additional CRS.

The protocol assumes a secure multisignature scheme, a FHE scheme, simulation-sound NIZK

arguments, as well as pseudorandom generators.

The protocol H is actually simpler than the one used for sublinear algorithms, as the main
challenge of hiding the subset of queried parties disappears, and we allow larger communication
complexity. Indeed, oblivious shuffling of inputs is no longer required. Instead, the protocol takes

place as follows (formally described in Figure 5.7).
First, one proceeds as in the previous protocol up to the point where the committees Ci hold

the encrypted inputs of the parties. At this point, the parties have set up the communication

tree structure, elected a supreme committee C and input committees {Ci } ,, and generated and

agreed upon a public key pk for the fully homomorphic encryption (FHE) scheme. Each party P

has also verifiably secret shared his (encrypted) input to committee Ci.

259

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Next, each Ci will send the encrypted input value si up to the supreme committee via the
communication tree. That is, each party in Ci signs the value of zi under his secret key, and sends
the ciphertext-signature pair (ii, o-) to the parties in his parent node; these messages are aggregated
and forwarded upward at each intermediate node. This ensures that the overall number of parties
each honest party talks to remains polylog(n). Note that while some individual parties do not have
a good path up to the supreme committee in the communication tree (and thus cannot send his
input up to C directly), with overwhelming probability most parties within each input committee
Ci will have a good path. Thus, all honest parties in the supreme committee C will successfully
obtain an encrypted input i for each i E [n] (sent by each corresponding committee Ci).

Finally, given the set of all encrypted inputs, the supreme committee is able to evaluate the
desired functionality f. In order to maintain minimal round and communication complexity, this is
done in three stages (otherwise, this can simply be achieved by an MPC among C to decrypt and
evaluate f). First, the parties of C run an MPC to collectively generated an encrypted random seed
for the pseudorandom generator prg. Second, each party in C locally evaluates f homomorphically
on the encrypted inputs, using (encrypted) randomness formed by homomorphically evaluating
prg on the encrypted seed. Third, the parties collectively decrypt the resulting output value via
a second MPC. This final output is then communicated to all parties using the ComBroadcast
protocol.

Proof Sketch. We now sketch the proof of Theorem 5.5.1. Note that the communication locality
of Hf remains polylog(n), since each party P only communicates with his direct neighbors in the
communication tree, the parties in his input committee Ci, and the parties of Cj U {P} for each j
for which P E Cg (which, by the psuedorandomness of the PRF, totals no greater than polylog(n)
parties with overwhelming probability). The round complexity remains poly(log n, k), consisting
of: poly(logn, k) rounds for executing Steps 1-4 of the previous (poly(log n, k)-round) protocol,
polylog(n) rounds for sending the encrypted inputs up the communication tree to C in parallel,
poly(k) rounds for C to collectively decrypt the homomorphically evaluated output ciphertext via
MPC, and polylog(n) rounds to execute the Com Broadcast protocol to communicate the final answer
to all parties.

The communication complexity of Hf is dominated by Step 2, in which the inputs of all parties
are transmitted up the communication tree (all other steps require communication that is only
O((IxI + n) - poly(log n, k))). In this step, a party may be required to communicate as much as n
ciphertexts (and signatures) in each of the polylog(n) rounds. This constitutes a communication
complexity of O(n - |x| - poly(k) - polylog(n)), as desired.

The proof of security of Hf essentially follows from the proof of Theorem 5.4.1. It remains only
to prove the following claim.

Claim 5.5.2. With overwhelming probability, at the conclusion of Step 2 of protocol Hf, all honest
parties in the supreme committee C agree on the same collection of n ciphertexts {i}i.E[n] Fur-
ther, these ciphertexts are the values that were reconstructed in the VSS procedures from the input
commitment stage.

Proof. It suffices to show for each Ci that at least |CiJ/2 honest parties have a good path up to the
root node in the communication tree. Indeed, by the properties of the VSS, all honest parties in

260

5.5. GENERAL MPC WITH COMMUNICATION LOCALITY

General Secure Evaluation Protocol

1. Execute Steps 1-4 of the previous protocol.

Outcome: all parties agree on committees C, {Ci}iE[n] and public keys pk, pkcPA for the FHE
and CPA encryption schemes; every member of Ci holds a ciphertext i of Pi's input xi.

2. The parties in each committee Ci send their held value si up to the supreme committee via
the communication tree. That is,

(a) For every i E [n], every j for which P E Ci, and every leaf I of the communication tree
for which P E I, the following is done in parallel:
Party P signs the value of Si as oIj +- Signk (ii), and sends the tuple (i, zi, oi) to all
parties assigned to the parent node of 1.

(b) For each level f of the communication tree (starting at level f = 2 and proceeding upward
to the final root committee E = f*), do the following in parallel for each node v on level f:
Each party Pj who believes to be assigned to v broadcasts the collection of all messages
received from the children of v up to all parties assigned to the parent node in level f + 1.

3. For each party Pj in the supreme committee C, P takes the ciphertexts {i}i[n] to be the
received values ci that were signed by the majority of parties in committee Ci.

4. If f is a randomized functionality, the parties of C run an MPC to jointly compute an
encryption of a PRG seed for generating the randomness to be used in the execution of f.
Explicitly, they evaluate the (randomized) functionality Faf, as described in Figure 5.2.

Output: To all parties in C: encrypted PRG seed, seed.

5. Each party Pi E C locally evaluates the functionality f homomorphically on the set of his
received ciphertexts {zi}E [n and using randomness derived from the encrypted seed seed:

rand <- Eval(seed, prg),

answer Eval (({zi E[n], rad), f) ,

where f({xi}, rand) denotes the evaluation of f on inputs {xi} and randomness rand.

6. The parties of C run an MPC to collectively decrypt the resulting ciphertext answer computed
by each party Pi E C (taking the value held by the majority of parties of C as the final
output). Explicitly, they evaluate the functionality FEval, as defined in Figure 5.6, yielding
result answer.

7. Each party Pj E C broadcasts the resulting output to all parties via ComBroadcast(answer).

Figure 5.7: The protocol Hf for securely evaluating a general function f while maintaining
polylog(n) communication locality.

261

CHAPTER 5. COMMUNICATION LOCALITY IN SECURE MPC

Ci will agree on the same value si that they will send up the tree, and for each such party Pj E C
that has a good path up the communication tree, this value si will be received by all honest parties

in C together with a signature on i from P
But, this will hold directly by the pseudorandomness of the pseudorandom function F that

defines the committees Ci. Namely, the completed execution of the communication tree setup
defines a subset S c [n] of an o(1)-fraction of parties such that every party outside of S possesses
a good path up to the root node (by Theorem 5.4.2). If F were a truly random function, then for
any constant 77 > 0 (say, 77 = 1/10), the probability that any F(i) defines a set Ci in which more
than an q fraction of its log 2 n parties are in S is negligible in n, by a straightforward Chernoff
bound. Taking a union bound, this holds simultaneously for all i E [n]. Thus, the same must
hold for a pseudorandom F with overwhelming probability over a random seed s; otherwise, one
could construct an efficient distinguisher who first simulates the communication tree setup on his

own (mimicking the actions of the adversarial parties according to A), identifies the "disconnected"
set S c [n] of parties without good paths to the root node, and outputs "pseudorandom" iff the
evaluation of the challenge function F(i) on any of the inputs i E [n] yields a committee with more
than y fraction in S. The claim follows.

El

262

Bibliography

[ADN+10] Jo51 Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.
Public-key encryption in the bounded-retrieval model. In EUROCRYPT, pages 113-
134, 2010.

[ADW09] Jo8l Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptog-
raphy in the bounded-retrieval model. In CRYPTO, pages 36-54, 2009.

[AGH12] Adi Akavia, Shafi Goldwasser, and Carmit Hazay. Distributed public key schemes
secure against continual leakage. In PODC, pages 155-164, 2012.

[AGV091 Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In TCC, pages 474-495, 2009.

[AJL+ 12] Gilad Asharov, Abhishek Jain, Adriana L6pez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold fhe. In EUROCRYPT, pages 483-501, 2012.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana L6pez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold fhe. In EUROCRYPT, pages 483-501, 2012.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In
WOEC'96: Proceedings of the 2nd conference on Proceedings of the Second USENIX
Workshop on Electronic Commerce, pages 1-11, 1996.

[AL11] Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly-secure
multiparty computation. IACR Cryptology ePrint Archive, 2011:136, 2011.

[AW07] Ben Adida and Douglas Wikstr5m. How to shuffle in public. In TCC, pages 555-574,
2007.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In ASIA CRYPT, pages
722-739, 2011.

[BCH11] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage tolerant interactive protocols.
Cryptology ePrint Archive, Report 2011/204, 2011.

263

BIBLIOGRAPHY

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults. In Advances in Cryptology - EUROCRYPT '97,
pages 37-51, 1997.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In PODC, pages 27-30, 1983.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In STOC, pages 103-112, 1988.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key en-
cryption under subgroup indistinguishability - (or: Quadratic residuosity strikes back).
In CRYPTO, pages 1-20, 2010.

[BGJ+ 13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai.
Secure computation against adaptive auxiliary information. In CRYPTO, 2013.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty
computation secure against continual memory leakage. In STOC, pages 1235-1254,
2012.

[BGK11] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin tossing.
In DISC, 2011.

[BGLSO3] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In EUROCRYPT, pages 416-432, 2003.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. ECCC, Report 2011/111, 2011.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1-10, 1988.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In FOCS, pages 501-510, 2010.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In Public Key Cryptogra-
phy, pages 31-46, 2003.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 1(1):1-32, 2005.

[Bra84] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In PODC,
pages 154-162, 1984.

264

BIBLIOGRAPHY

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
Advances in Cryptology - CRYPTO '97, pages 513-525, 1997.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084-1118, 1991.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
EUROCRYPT, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In FOCS, 2011.

[CanOO] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology: the journal of the International Association for Cryptologic Research,
13(1):143-202, 2000.

[Can0l] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Bob Werner, editor, Proc. 42nd FOCS, pages 136-147, 2001. Preliminary
full version available as Cryptology ePrint Archive Report 2000/067.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of
[Can0l].

[CCD87] David Chaum, Claude Crepeau, and Ivan Damgaird. Multiparty unconditionally secure
protocols (abstract). In CRYP TO, page 462, 1987.

[CCD88] David Chaum, Claude Crepeau, and Ivan Damgird. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11-19, 1988.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved
non-committing encryption with applications to adaptively secure protocols. In ASI-
A CRYPT, pages 287-302, 2009.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
pages 19-40, 2001.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In STOC, pages 639-648, 1996.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In Proceedings of the 26th
Annual Symposium on Foundations of Computer Science, pages 383-395, 1985.

[CGO10] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky. Improved fault tolerance
and secure computation on sparse networks. In ICALP (2), pages 249-260, 2010.

[CGO12] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky. Edge fault tolerance on
sparse networks. In ICALP (2), pages 452-463, 2012.

265

BIBLIOGRAPHY

[C1098] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-
malleable commitment. In STOC, pages 141-150, 1998.

[CKLK01] Artur Czumaj, Przemka Kanarek, Krzysztof Lorys, and Miroslaw Kutylowski. Switch-
ing networks for generating random permutations, 2001.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty

(extended abstract). In STOC, pages 364-369, 1986.

[CLL+13] Kai-Min Chung, Huijia Lin, Feng-Hao Liu, Rafael Pass, and Hong-Sheng Zhou.
Physically-aware composability. Manuscript, 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In STOC, pages 494-503,
2002.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO, pages 307-
315, 1989.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In TCC, pages
361-381, 2010.

[DHLW1Oa] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana L6pez-Alt, and Daniel Wichs. Cryp-
tography against continuous memory attacks. In FOCS, pages 511-520, 2010.

[DHLW10b] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana L6pez-Alt, and Daniel Wichs. Effi-
cient public-key cryptography in the presence of key leakage. In ASIA CRYPT, pages
613-631, 2010.

[DHP11] Ivan Damgard, Carmit Hazay, and Arpita Patra. Leakage resilient two-party compu-
tation. Cryptology ePrint Archive, Report 2011/256, 2011.

[DI06] Ivan Damgard and Yuval Ishai. Scalable secure multiparty computation. In CRYP TO,
pages 501-520, 2006.

[DIK+08] Ivan Damgird, Yuval Ishai, Mikkel Kroigaard, Jesper Buus Nielsen, and Adam
Smith. Scalable multiparty computation with nearly optimal work and resilience.
In CR YP TO, pages 241-261, 2008.

[DIK10] Ivan Damgard, Yuval Ishai, and Mikkel Kroigaard. Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In EUROCRYPT, pages
445-465, 2010.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In STOC, pages 621-630, 2009.

266

BIBLIOGRAPHY

[DKMS121 Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Breaking the
o(nm) bit barrier: Secure multiparty computation with a static adversary. CoRR,
abs/1203.0289, 2012.

[DLWW11] Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel Wichs. Storing secrets on
continually leaky devices. In FOCS, 2011.

[DNOO] Ivan Damgird and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In CRYPTO, pages 432-450, 2000.

[DN07] Ivan Damgird and Jesper Buus Nielsen. Scalable and unconditionally secure multi-
party computation. In CRYPTO, pages 572-590, 2007.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97-139, 2008.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS,
pages 293-302, 2008.

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions
and side-channel attacks on feistel networks. In CRYPTO, pages 21-40, 2010.

[DSS90] Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping persuasively in
constant time. SIAM J. Comput., 19(3):472-499, 1990.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. A CM, 28(6):637-647, 1985.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, 1999.

[FGK+ 10] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More
constructions of lossy and correlation-secure trapdoor functions. In Proceedings of the
13th International Conference on Practice and Theory in Public Key Cryptography,
pages 279-295, 2010.

[FIM+06] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. A CM Trans-
actions on Algorithms, 2(3):435-472, 2006.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In TCC, pages 343-360, 2010.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In FOCS, pages 308-317,
1990.

267

BIBLIOGRAPHY

[FM85] Paul Feldman and Silvio Micali. Byzantine agreement in constant expected time (and
trusting no one). In FOCS, pages 267-276, 1985.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In
STOC, pages 148-161, 1988.

[FRR+ 10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
EUROCRYPT, pages 135-156, 2010.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In
CRYP TO, pages 526-544, 1989.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169-178, 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792-807, 1986.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
CRYPTO, pages 297-315, 2011.

[GKK+ 11] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure computation with sublinear amortized work. IA CR
Cryptology ePrint Archive, 2011:482, 2011.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25-32, 1989.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation without agreement. In
DISC, pages 17-32, 2002.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365-377, 1982.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
Concrete results. In CHES, pages 251-261, 2001.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186-208, 1989. Prelim-
inary version in STOC' 85.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218-229,
1987.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169-209, 2006.

268

BIBLIOGRAPHY

[G096] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. A CM, 43(3):431-473, 1996.

[Gol98] Oded Goldreich. Secure multi-party computation.
http://www.wisdom.weizmann.ac.il/ oded/pp.html, 1998.

[Gol0l] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new tech-
niques for nizk. In CRYPTO, pages 97-111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In EUROCRYPT, pages 339-358, 2006.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In CR YP TO, pages 59-79, 2010.

[GR12] Shafi Goldwasser and Guy Rothblum. How to compute in the presence of leakage. In
FOCS, 2012.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, pages 415-432, 2008.

[GSV05] Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Distributed computing
with imperfect randomness. In DISC, pages 288-302, 2005.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
Black-box constructions of protocols for secure computation. SIAM J. Comput.,
40(2):225-266, 2011.

[HKKN01] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private ap-
proximation of np-hard functions. In STOC, pages 550-559, 2001.

[HL11] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In TCC,
pages 107-124, 2011.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, pages 132-150, 2011.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from random
key bits. In Advances in Cryptology - CRYPTO '09, pages 1-17, 2009.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In USENIX Security
Symposium, pages 45-60, 2008.

269

BIBLIOGRAPHY

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.
Lest we remember: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91-
98, 2009.

[IPSO8] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572-591, 2008.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In CRYP TO, pages 463-481, 2003.

[IW06] Piotr Indyk and David P. Woodruff. Polylogarithmic private approximations and
efficient matching. In TCC, pages 245-264, 2006.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leak-
age. In CRYPTO, pages 41-58, 2010.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO '99, pages 388-397, 1999.

[KLR09] Yael Tauman Kalai, Xin Li, and Anup Rao. 2-source extractors under computational
assumptions and cryptography with defective randomness. In FOCS, pages 617-626,
2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor
protocols. In FOCS, pages 654-663, 2008.

[KLST11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load balanced
scalable byzantine agreement through quorum building, with full information. In
ICDCN, pages 203-214, 2011.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, pages 104-113, 1996.

[KP10] Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In ASI-
A CRYPT, pages 595-612, 2010.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors
for small-space sources. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 691-700, 2006.

[KS11] Valerie King and Jared Saia. Breaking the o(n 2) bit barrier: Scalable byzantine
agreement with an adaptive adversary. J. ACM, 58(4):18, 2011.

[KSSV06] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In
SODA, pages 990-999, 2006.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage
resilience. In ASIA CRYPT, pages 703-720, 2009.

270

BIBLIOGRAPHY

[LATV12] Adriana L6pez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC, pages
1219-1234, 2012.

[LLW11] Allison Lewko, Mark Lewko, and Brent Waters. How to leak on key updates. In
STOC, 2011.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. In EURO-
CRYPT, pages 465-485, 2006.

[LRW11] Allison Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage resilience
through dual system encryption. In TCC, 2011.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC, pages
1-18, 2009.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
extended abstract. In ACM Conference on Computer and Communications Security,
pages 245-254, 2001.

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability ampli-
fication. In CRYPTO, pages 130-149, 2007.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In TCC, pages 278-296, 2004.

[MS81] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes. Com-
mun. ACM, 24:583-584, September 1981.

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient to
continual leakage on memory and computation. In EUROCRYPT, 2011.

[MYO4] Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In
EUROCRYPT, pages 382-400, 2004.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In In Proc. of 33rd STOC, pages 590-599, 2001.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
CRYPTO, pages 18-35, 2009.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
The case of aes. In CT-RSA, pages 1-20, 2006.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages
462-482, 2009.

271

BIBLIOGRAPHY

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, pages 554-571, 2008.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
SIAM J. Comput., 40(6):1803-1844, 2011.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards. In E-smart, pages 200-210, 2001.

[Rab83] Michael 0. Rabin. Randomized byzantine generals. In FOCS, pages 403-409, 1983.

[Raz05] Ran Raz. Extractors with weak random seeds. In STOC, pages 11-20, 2005.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proc. 40th FOCS, pages 543-553, 1999.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CR YP TO, pages 566-598,
2001.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11), November
1979.

[Sls] Collection of surveys on sublinear algorithms.
http://people.csail.mit. edu/ronitt/sublinear.html.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT, pages 114-127, 2005.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS,
pages 80-91, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proc. 27th FOCS,
pages 162-167, 1986.

272

