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Abstract

In this thesis, we extend Manolescus and Kronheimer-Manolescus construction of

Floer homotopy type to general 3-manifolds. This Floer homotopy type is a candidate

for an object whose suitable homology groups recover Floer homology. The main idea

is to apply finite dimensional approximation technique and Conley index theory to

Seiberg-Witten theory of 3-manifolds. Another part of the construction involves a

concept of twisted parametrized spectra introduced by Douglas. We also provide

explicit computation for the manifolds S 1 x S 2 and T3 .
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Chapter 1

Introduction

1.1 Background

Since its invention by Floer [9] in 1988, Floer homology has been an important tool in

the study of low-dimensional topology. The Seiberg-Witten version of Floer theory,

also known as monopole Floer homology, is developed by Kronheimer and Mrowka in

their book [18]. The theory associates abelian groups to 3-manifolds and homomor-

phisms to cobordisms between them.

There are now a number of Floer homology theories of 3-manifolds and 4-dimensional

cobordisms ([14], [27]). Many important results come from these and equivalences

between them. There is a natural question of building a space, or a more general

object, whose homology is Floer homology. This Floer homotopy type would poten-

tially give stronger invariants in low-dimensional topology and provide new insights

and applications of Floer theories.

The quest for finding Floer homotopy type was started by Cohen, Jones, and Segal

in [4]. Floer homotopy type for Seiberg-Witten theory was successfully constructed by

Manolescu [22] for 3-manifolds with b1 = 0 in 2003. Later, Kronheimer and Manolescu

[17] extended the result to the case b1 = 1 with nontorsion spine structure. Recently,

Lipshitz and Sarkar [21] constructed a Khovanov homotopy type, a spectrum whose

singular homology is Khovanov homology. This homotopy type can distinguish knots

with the same Khovanov homology [32].
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The idea of finite dimensional approximation is to approximate a map or a flow

on an infinite-dimensional vector space by using sufficiently large finite-dimensional

subspaces. The use of finite dimensional approximation in nonlinear analysis dates

back to 5varc's work in 1964 [33]. Furuta [11] applied the technique to prove the

10/8-theorem. Later, Bauer and Furuta [2],[3] constructed a stable cohomotopy in-

variant from Seiberg-Witten theory on closed 4-manifolds. Similar ideas can be used

to construct stable homotopy invariants from flows on a Hilbert space. Finite dimen-

sional approximation for flows was studied by Geba, Izydorek, and Pruszko [12] for a

flow on a Hilbert space and by Manolescu [22] in the Seiberg-Witten case.

1.2 Overview

In Chapter 2, we provide a background in Conley index theory which will be used

in this thesis. We also make a refinement and clarification of some results.

In Chapter 3, we study finite dimensional approximation on Hilbert spaces mo-

tivated by [12]. We hope that this gives a unifying approach for finite dimensional

approximation in more general context.

In Chapter 4, we extend the construction of Seiberg-Witten-Floer stable homotopy

type in [17], [22], [23], and [24]. We still apply finite dimensional approximation to the

Seiberg-Witten flow on the Coulomb slice. The resulting object is a (pro)-spectrum

SWF (Y, s), called the Manolescu-Floer spectrum. This can be viewed as a universal

cover of the Floer homotopy type because there is still an action from harmonic gauge

groups left.

In Chapter 5, we provide explicit calculation of the Manolescu-Floer spectrum for

the manifolds S' x S2 and T 3.

In Chapter 6, we use the concept introduced in [8] to construct the twisted

Manolescu-Floer spectrum SWF(Y, s). We also discuss the process of taking ho-

mology of SWF(Y, s) and try to compute relevant homology groups.

In the Appendix, we provide background and various computation in homology.
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Chapter 2

Conley Theory

2.1 Basic Definitions

Let Q be a locally compact, Hausdorff topological space. A flow on Q is a continuous

map - : Q x R -+ Q such that -y(x, 0) = x and y(x, s + t) = ly(-y(x, s), t) for all x E Q

and s, t any real numbers. We will denote the image -y(x, t) by -yt(x), or simply x - t

when understood. Our context of interest will be a flow on a vector space generated

by a gradient-like vector field.

The main objects in the study of Conley theory are isolating neighborhoods and

isolated invariant sets. Let us introduce the following definitions.

Definition 1. Let M be a subset of Q.

(i) Denote by A+(M) {x E MIx - R+ c M}, the invariant subset in positive

time direction.

(ii) Denote by A (M) = {x E Mjx - R- C M}, the invariant subset in positive time

direction.

(iii) The maximal invariant subset of M is given by Inv(M) = {x E Mix - R c M}.

Note that Inv(M) = A+(M) n A-(M).

(iv) For subsets Z C Y c Q, Z is positively invariant relative to Y if the condition

x E Z and x - [0, t} c Y implies x - [0, t} c Z.
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(v) A compact subset X of Q is called an isolating neighborhood if Inv(X) is con-

tained in Int(X) the interior of X.

(vi) A compact subset S of Q is called an isolated invariant set if there is an isolating

neighborhood X so that Inv(X) = S.

Given an isolated invariant set or an isolating neighborhood, one will be able to

extract some topological data, which can be viewed as a generalization of a Morse

index (in the case the flow is generated by a gradient vector field). Now, we introduce

an important concept of an index pair.

Definition 2. Let S be an isolated invariant set. A pair of compact subsets (N, L)

is called an index pair for S if the following conditions hold

(i) S C N\L (this implies S = Inv(N\L)),

(ii) L is positively invariant relative to N,

(iii) L is an exit set for N, i.e. if x E N but x - [0, oo) Z N, then there exists t > 0

such that x - [0, t] C N and x - t E L.

For an isolating neighborhood X with Inv(X) = S, we will also called (N, L) an

index pair for X if it is an index pair for S. This definition does not depend on X

but sometimes it is convenient to emphasize the isolating neighborhood instead of

the isolated invariant set. This leads to another definition and we hope to make some

clarification here.

Definition 3. Let X be an isolating neighborhood with Inv(X) = S. A pair of

compact subsets (N, L) is called an index pair for S relative to X if the following

conditions hold

(i) S c N\L,

(ii) N, L are positively invariant relative to X,

(iii) If x E N but x - [0, oo) Z X, then there exists t > 0 such that x - [0, t] c N and

x - t E L.
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The last condition can be viewed as L is an exit set for N relative to X. The above

definition is used by Conley in his original work [5], whereas the one in Definition 2

is used in [19] and [31].

Example 1. Consider a flow on R2 given by (x, y) - t = (2-tx, 2 ty). The origin (0, 0)

is an isolated invariant set, as a hyperbolic fixed point. Indeed, any neighborhood

of the origin is an isolating neighborhood. Let us pick the square D = [-2, 2]2 for

a fixed isolating neighborhood and consider its horizontal sides L = [-2,2] x {t2}.

One can see that (D, L) is an index pair for the origin.

Let also consider a smaller square Di = [-1, 1]2 its horizontal sides L1 = [-1, 1] x

{±1}. The pair (D1 , L1 ) is an index pair for the origin, however it is not an index

pair relative to D.

y

Figure 2-1: Examples of index pairs

We note that a condition for of a pair (N, L) in Definition 3 does not require

the inclusion L C N. Nevertheless, we can consider the pair (N U L, L) or the pair

(N, N n L), if one would demand the inclusion.

It's clear that an index pair relative to X is always an index pair for its isolated in-

variant set, but the converse does not hold in general as in the previous example. Still,

one can modify an index pair to an index pair relative to an isolating neighborhood.

We introduce another definition.

Definition 4. Let Y be a subset of X. We define the minimal positively invariant

set of Y relative to X as the set P(Y, X) = {y - t I y E Yand y - [0, t] c X}.
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To obtain an index pair relative to X, the idea is to enlarge L by its maximal

positively invariant set. We will deduce the statement by the following lemmas.

Lemma 1.

(i) If (N, L) is an index pair relative to X, then L n A+(X) = 0.

(ii) Let Y be a compact subset of X disjoint from A+(X), then the set P(Y, X) is

compact. Moreover, we have P(Y, X) n A+ (X) = 0.

Proof.

(i) Suppose that x E L n A+(X). Since x - R+ C X, we have x - R+ C L because

L is positively invariant. Since L is compact, the limit point limt_,c x -t is also

in L. This will contradict with S C N\L since the limit point lies in S.

(ii) (cf. [22]) We will show that P(YX) is closed. Suppose that xz = yn - t"

converges to x for yn E Y and yn - [0, t,,] c X. Since Y is compact, we pass to

a subsequence that yn -+ y. We claim that the sequence {tn} is bounded, so

that t,, -- t. By continuity, we see that y - [0, t] c X and y, - t, -+ y - t. Hence

x E P(Y, X) as desired.

If {tn} is not bounded, we can also choose a subsequence such that ya - [0, n] c

Y. By continuity, we have y - [0, oo) c X which contradicts to the fact that

Y n A+(X) =0.

Corollary 1. Let X be an isolating neighborhood with Inv(X) = S and (N, L) be an

index pair for S with L, N C X. Then, the pair (N U P(L, X), P(L, X)) is an index

pair for S relative to X

Proof. We have just shown that P(L, X) is compact. The only remaining nontrivial

part is to show that N U P(L, X) is positively invariant relative to X. Suppose that

x E N (it is obvious when x E P(L, X)) and that x - [0, t] c X, then we want to

show that x - [0, t] C N U P(L, X). We can assume that x -R+ Z N or we are done.

14



Since L is an exit set, there is t' such that x - [0, t'] C N and x - t' E L. The case

t' > t is trivial. If t' < t, we have that x- [t', tJ C P(L, X) by its definition. Hence

x - [0,t] C N U P(L, X). f

Two basic results in Conley theory are that, given a fixed isolated invariant set (or

a fixed isolating neighborhood), an index pair always exists and that all the pointed

spaces of the form (N/L, [L}), where (N, L) is an index pair, are homotopy equivalent.

This leads to a definition

Definition 5. For an isolated invariant set (or an isolating neighborhood) S, we

define its (homotopy) Conley index as a homotopy type of a pointed space (N/L, [L])

where (N, L) is an index pair of S.

To determine the Conley index of an isolated invariant set, one convenient way is

to find a special isolating neighborhood such that every point on its boundary leaves

the neighborhood immediately in one or another time direction. More precisely,

Definition 6. (cf. [6] , [30]) For a compact subset N, we define

n+ :={x E aNIo > 0such that x- (-60,0)nN=0},

n~ :={x E N 13 6 > 0 such thatx- (0, oo) nN = 0}.

Then, N is called an isolating block if oN = n+ U n-. The set n- will also be called

an exit set.

One immediately see that an isolating block N is an isolating neighborhood and

the pair (N, n-) is its index pair. To understand the homotopy type of (N/n-, [n-]),

we introduce some useful lemmas.

Lemma 2. [5] Let Y be a compact set and Z be a locally contractible compact subset

of Y. Suppose that Z is contractible to a point yo of Y and that Z is a strong

deformation retract of its neighborhood in Y. Then (Y/Z, [Z]) is homotopy equivalent

to (Y yo) V (Si A (Z, zo)) for any point zo of Z.

15



Note. The condition that Z is a strong deformation retract of its neighborhood in Y,

namely (Y, Z) is an NDR-pair, is equivalent to that Z --+ Y is a cofibration.

The main idea is that Y/Z is homotopy equivalent to the mapping cone with the

cone point as its based point. Then we use the contraction of Z to yo to collapse the

mapping region to a point, so that the cone part becomes the (unreduced) suspension

of Z joining to Y at yo.

Consequently, if the pair (N, n-) satisfies above conditions, one only needs to

understand homotopy types of N and n- individually. Furthermore, we have

Lemma 3. [6] n- is a strong deformation retract of N - A+ (N).

Let us introduce another useful concept of a product flow.

Definition 7. Let y, 7y2 be a flow on Q1, 2 respectively. A product flow 7y1 x y2 is

defined on 1 x 2 by (X1 , X 2) -t - (71(X1, t), 72(X2, t)).

It is not hard to check that, for i = 1,2, if Xi is an isolating neighborhood of Si

with respect to a flow -y on Qi, then X 1 x X 2 is an isolating neighborhood of S1 x S2

with respect to the product flow. Moreover, if (Ni, Li) is an index pair for Si, then

(N 1 x N 2, Ni x L 2 U Li x N 2) is an index pair of Si x S 2 . In other words, the Conley

index of the product Si x S2 is given by a smash product (N 1 /L 1, [L1 ]) A (N 1/L 1, [L1 ])

Example 2. An important class of examples is a linear flow on a finite-dimensional

vector space. Let L be a linear map on V and consider a flow -YL given by a formula

7L(V, t) = e-tLv. For simplicity, we assume that L is self-adjoint and has no kernel.

It is called a linear flow because yL(V , t) is an integral curve of the following ODE

a
7L(v, t) = L-yL(v,t). (2.1.1)

We can see that {O} is an isolated invariant set of this flow. Let us decompose

V = V+ @ V- to the positive and the negative eigenspace of L. As in Example

1, one can check that (B(V+) x B(V~), B(V+) x S(V-)) is an index pair for {0},

where B(W) and S(W) denote a unit disk and a unit sphere in W respectively.
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Consequently, the Conley index has a homotopy type of B(V-)/S(V-) which can

be identified with the sphere SV~, the compactification of V- with a based point at

infinity.

Note that one can replace (V+, V-) by any pair of maximal positive and maximal

negative subspace of V with respect to L. The flow 7YL can be regarded as a product

flow on V+ x V-. One can decompose further to any direct sum of L-invariant

subspaces.

Alternatively, we can show that B(V) is an isolating block of the origin. On the

unit sphere, a point is leaving B(V) if (Lv, v) < 0 and is entering B(V) if (Lv, v) > 0.

When (Lv, v) = 0, we consider the second derivative of the norm a trajectory 7YL (t)

d ||-yL(t)|| 2 = 4( L-yL(t), LytL(t)) = 4 1|L _YL(t)||2
dt

This is always positive (except at the origin) because L has no kernel. It follows that

a point on S(V) with (Lv, v) = 0 is also leaving B(V) as a bounce-off point.

Note. In (2.1.1), we have a minus sign as we will be considering a downward gradient

flow throughout this paper. A relevant functional on V is f(v) = 1 (Lv, v). The

dimension of V- agrees with the index of the origin as a critical point.

2.2 Conley Index as a Connected Simple System

We have mentioned that the homotopy type of (N/L, [L]) is an invariant for an

isolated invariant set. It is sometimes useful to consider a collection of all index

pairs and natural homotopy equivalences between them. One motivation is to reduce

ambiguity of the choice of index pairs and maps when dealing with 'morphisms'

between Conley indices.

For this purpose, we introduce a notion of a connected simple system. Roughly

speaking, a connected simple system is a subcategory of a homotopy category of

pointed topological spaces. The 'connected' part means that there is a map between

17



every pair of objects and the 'simple' part means that all the maps between a pair of

objects are in the same homotopy class of a homotopy equivalence.

Definition 8. A connected simple system I = (14,m) consists of a collection -,,

of pointed spaces and a collection Tm of homotopy classes of pointed maps between

them. In particular, for each X and Y in T1, a homotopy class Im(X, Y) E [X, Y] is

specified with the following conditions

(i) Im(X, X) = [idx] for all X E T,

(ii) If Im(X, Y) = [f] and Im(Y, Z) = [g], then Im(X, Z) = [g of] for each X, Y, Z E

To.

Next, we describe a morphism between connected simple systems.

Definition 9. Let I,3 be connected simple systems. A morphism (D I -> 3 is a

collection of homotopy classes of maps between their objects. For each X E T, and

X' E Jo, a homotopy class P(X, X') E [X, X'] is specified with a property that

(i) If Im(Y, X) = [f], 4(X, X') = [#], and Jm(X', Y') = [g] , then D(Y, Y') =

[g o # o f] for any X, Y E 1o and X', Y' E J,.

One can see that choosing a homotopy class of maps between a certain X E 14

and a certain X' E J, is sufficient to construct a morphism D : I -+ J.

With the above definitions, we can form a category CSS of connected simple

systems.

Back to Conley theory, we describe natural maps between index pairs of an isolated

invariant set. Given two index pairs (N 1 , L 1 ) and (N 2 , L 2 ), one can find T > 0

(sometimes called the common squeeze time) so that for all t > T we have

(i) x- [-t, t] c N 1\L 1 implies x E N 2 \L 2

(ii) x- [-t, t] c N2 \L 2 implies x E N1\Li

Then we have a continuous map f : N 1/L1 x [T, oc) -+ N2 /L 2 induced by the flow

defined by

18



f (1X ) = { [x -3t] if x - [0, 2t] C N 1\L1 and x - [t, 3t] c N 2 \L 2 ,

[L2] otherwise.

We will refer to the maps in this form as the flow map. It is not hard to see that

a composition of flow maps is also a flow map.

Definition 10. For an isolated invariant set (or an isolating neighborhood) S, we

define its Conley index I(S) as a connected simple system whose objects consist of

pointed spaces (N/L, [L]) arising from is index pairs (N, L) of S. The morphisms con-

sist of homotopy classes of flow maps defined above. The above discussion guarantees

that I(S) is a connected simple system.

We note that the definition for I(S) above is introduced by Salamon [31] and

is different from Conley's original definition [5] since their choices of maps between

index pairs are different. Nonetheless, they are shown to be equivalent by Kurland in

[19]. As in [16], Conley theory can also be formulated as a functor from a category

of isolated invariant sets to CSS.

Given a pointed space X, one can consider a connected simple system [X] con-

sisting of X as the only object with a class of the identity map. This gives a functor

from Top, to CSS.

Given two connected simple systems I and 3, one can form a smash product

I A 3 whose objects and classes of maps are given by

(I A J)O = {X A X' I X E I and X' E J}, (2.2.1)

(I A J)m (X A X', Y A Y') = Im(X, Y) A Jm(X', Y'). (2.2.2)

This characterizes a Conley index for a product flow as

I(Si x S2 , 71 x Y2) = I(Si, y) A I(S 2 , Y2). (2.2.3)

19



Using above convention, we can also talk about a suspension of a connected simple

system by saying E I = [5'] A I.

2.3 Attractor-Repeller Pairs

Under certain circumstance, Conley indices of isolated invariant sets can be re-

lated. We present two important constructions.

The first case is when an isolated invariant set has a decomposition as following

Definition 11. Let S be an isolated invariant set and define the w-limit sets w(U)

n>O cl(U - [t, oo)) and w*(U) := f>0 cl(U -(-oo, -t]).

(i) A compact subset A of S is called an attractor (relative to S) if there is a

neighborhood U of A in S such that the limit set w(U) = A.

(ii) A compact subset B of S is called a repeller (relative to S) if there is a neigh-

borhood U of B in S such that the limit set w*(U) = B.

(iii) For an attractor A C S, define A* :={ E S l w(x) f A = 0}. This is a repeller

and is called the complementary repeller of A. Moreover (A, A*) is called an

attractor-repeller pair.

Note that an attractor and a repeller are also isolated invariant sets. A basic

result for an attractor-repeller pair (A, A*) of S is that on can find compacts subset

N3 C N 2 C N, so that (N 2 , N3 ) is an index pair for A, (N1, N3 ) is an index pair

for A, (N, N 2) is an index pair for A*. The inclusions give a sequence of maps

N2/N3 -+ N1/N 3 -+ N 1 /N 2 and one can also choose (N1, N 2) to be an NDR-pair

and define a map N1/N 2 -+ E(N 2 /N 3 ). This induces well-defined morphisms between

Conley indices, i.e. they are independent of choices in the above constructions. In

summary,

Proposition 1. [31] The above construction induces a coexact sequence of connected

simple systems

I( A) --+ I(S) --+ I( A*) -- E I( A) - -
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2.4 Equivariant Conley Index

The notion of equivariant Conley index was introduced by Floer in [10]. Let G be

a compact Lie group and consider a G-equivariant flow on a G-space Q. Most of the

construction earlier can be done in the equivariant setting by replacing all the spaces

and maps by equivariant ones.

For example, given a G-invariant isolating neighborhood or a G-invariant isolated

invariant set, we define a G-index pair by a pair of G-spaces which is an index pair

nonequivariantly (Definition 2 or 3). Indeed, given a nonequivariant index pair (N, L),

we can consider a pair obtained by its orbit (G - N, G - L). It is straightforward to

check that this will be a G-index pair. A homotopy Conley index is the based G-

space (N/L, [L]) and a collection of such spaces and flow maps forms an equivariant

connected simple system.

One need to slightly modify Lemma 2 when entering equivariant setting because

a G-space may not contain a G-based point (for example, when the G-action is free).

Consequently, the reduced suspension for an unbased G-space may not defined, unlike

the nonequivariant case where one can pick some point of the space for a based point.

We restate the result

Lemma 4. Let (Y, Z) be a G-NDR pair and suppose that Z is contractible (equiv-

airantly) to a point yo of Y. Then a G-space (Y/Z, [Z]) is equivariantly homotopy

equivalent to a G-space (Y, yo) V (SZ, [Z x {0}]), where SZ := Z x [0, 1]/{(zi, 0)

(z 2, 0) and (zi, 1) - (z 2 , 1)} is the unreduced suspension.

Note that SZ has at least two fixed points, so it is never free as a based G-space

even if Z is free. For a basic example, we take an orthogonal G-representation V

and consider the unit disk D(V) and the unit sphere S(V) as unbased G-spaces. The

pair (D(V), S(V)) is a G-NDR pair and D(V)/S(V) is homeomorphic to SV, the
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one-point compactification of V with {oo} as a based point. Moreover, after adding

a based point to D(V) and S(V), we have a cofiber sequence

S(V )+ -- D(V) -+ Sv_

2.5 Duality

Given a flow -y, we can consider its reverse flow -- y, i.e. --y(t) = -y(-t). Notice

that an isolating neighborhood and its isolated invariant set does not depend on the

direction of the flow, but its Conley index can change. Under some circumstances,

we will show that these indices are dual of each other in homotopy theoretic sense.

Consider a flow y on a finite-dimensional smooth manifold M. Let X be an

isolating neighborhood. Following Robbin and Salamon [29], we can find a special

index pair (N, L) such that N is a submanifold (with corners) and its boundary

decomposes to exit sets of 7 and -- y. More precisely,

Proposition 2. For an isolating neighborhood X, there is an index pair (N, L+) such

that N is a submanifold with boundary ON = L+ U L_ and (N, L_) is an index pair

of X with respect to --.

Proof. Let S be the maximal invariant subset of X. First, recall that we can construct

a smooth Lyapunov function f : X -- R such that f (x) = 0 on S and f (t -x)) < f(x)

whenever [0, t] - x c X - S and t > 0 (cf. [29]).

For small 6 > 0, we choose sufficiently small c > 0 so that f(-6 - x) - f(x) > 2E

for all x E &X (We might need to extend f to a neighborhood of X that contains

[-6,6] - X). Then, we set

N = {x E XI - c < f(x) < f(-6-x) < c}

= X n f-1 [-c, oo) n (f o (-6.))~1(-oo, e].

From our choice of c, we see that N C Int(X). By choosing a regular value, we can

ensure that N is a submanifold with boundary 9N = L+ U L_, where
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L+ =Nn f~1 (-c)

L =Nn (6 -f- 1(c)).

It is clear that S C Int(N - L+) and that L+ is positively invariant. Suppose

that x E N but t - x V N for some t > 0. Since N c Int(X), we can assume that

[0, t] -x C X so that f(t -x) < f(x). Similarly, we have f((-6+t) -x) < f(-6 -x) < E.

This implies that f (t -x) < -e, so the path [0, t] -x passes through the set L+. Hence

(N, L+) is an index pair for X with respect to 7. One can check that (N, L-) is an

index pair for the reverse flow by similar argument.

Example 3. One simple example is the case when M = R 2 with a flow given by

t - (x, y) = (2'x, 2-'y). The origin (0, 0) is an isolated invariant set, as a hyperbolic

fixed point. We can take the square X = [0,1]2 for its isolating neighborhood. We

can use f (x, y) = y2 -X2 as a Lyapunov function in the proof above (see Figure 2-2).

Figure 2-2: This demonstrates a special isolating neighborhood for the origin.

From now on, we will focus on a setting where we have an equivariant flow on a

G-representation V. Note that, in the proof above, we can average f over the action

of G so that N, L+, and L_ are G-invariant manifolds.

Before proceeding, we recall some definitions from [25].

Definition 12. Let X and Y be based G-spaces and V be a representation of G. We
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say that X and Y are V- dual if there are G-maps

E:YAX - Sv and r: SV - XAY

such that the following diagrams are stably homotopy commutative.

r/ A id
Sv A X d X A Y A X

id A c

X A Sv

and

YASv id A YAXAY

AAid

o- A id t
Sv , Y

where T is the transposition map and o is the sign map u(v) = -v.

We now state the duality result.

Proposition 3. Let -y be a G-flow on a finite dimensional G-representation V and

denote - by its reverse flow. For a G-invariant isolating neighborhood X, the Conley

indices I(X, -y) and I(X, -- y) are V-dual.

Proof. We choose an index pair (N, L+) as in the previous proposition. It is clear that

(N, L+) is a G-ENR pair. By results in [20] and [25], the unreduced mapping cones

C(N, L+) and C(V - L+, V - N) are V-dual. Then, we notice that C(N, L+) has a

homotopy type of N/L+ while C(V - L+, V - N) has a homotopy type of N/L_.

24



2.6 Maps to Conley indices

We will also need to construct maps from spaces to Conley indices. We begin with a

lemma shown in [22].

Lemma 5. Let X be an isolating neighborhood with Inv(X) = S. If a pair (A, B) of

compact subsets of X satisfies the following

(i) If x E A+(X) nA, then [,oo) -x n aX =0,

(ii) B nA+(X ) = 0,

then there exists an index pair (N, L) of S such that A c N and B C L.

In application, suppose we have a map f : M -+ X and a subspace K of M. If it

turns out that the pair (f(M), f(K)) satisfies the hypothesis of the previous lemma,

then we can find an index pair (N, L) and obtain a map induced from the inclusion

f :M/K --+ N/L .

It remains to show that this map is independent (up to homotopy) of the choice

of index pairs. That is it is a well-defined map from M/K to a connected simple

system.

Given two index pairs (N 1 , L 1 ) and (N 2 , L 2 ) with A c N 1, N 2 and B c L 1 , L 2 , we

wish to show that the maps F o il and 22, in the diagram below, are homotopic

A/B <-, N1/L1

\ 
~Fl

N2/ L2,

where Zi, 22 are inclusions and F1 is a flow map.

The result from [19] implies that this is the case when we have the inclusion

(N 1 , L 1) c (N 2 , L 2). More precisely, there is a homotopy between the composition
F*t

N 1 /LI --- N 2 /L 2 -4 N1/L1 and the identity. Also, the inclusion N1/L1 -- N 2 /L 2 is
Fl

homotopic to a flow map N1/Li -4 N2/L2-
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For a general case, we will construct a sequence of inclusions that relates (N 1 , L1 )

and (N 2 , L 2 ) through index pairs which contain (A, B).

Since the subsets Ni and Li are contained in X, we can consider a pair (Ni U

P(Li, X), P(Li, X)) which is an index pair relative to X by from Lemma 1. Next, we

will consider its intersection

Lemma 6. If (N 1 , L 1 ), (N 2 , L 2 ) are index pairs relative to X, then (N 1 nN 2 , L 1 nL 2 )

is also an index pair relative to X.

Proof. The only nontrivial part here is to show the exit set property. Suppose that

x E N1 n N 2 and x - R+ ( X. Then there exist t 1 , t 2 such that x - [0, ti] c Ni and

x ti E Li, where i = 1, 2. Let us assume that ti ;> t 2 . Since N 2 , L 2 are positively

invariant relative to X, we see that x - [0, ti] C N 2 and x - ti E L2 as well, thus we

have the desired result. O

Remark. The intersection of two index pairs (with Definition 3) need not be an index

pair in general.

Now we have a collection of inclusions of index pairs containing (A, B). This is

shown in the diagram below (we abbreviate P(L) for P(L, X) in the diagram).

(N 1 U P(L 1), P(L 1)) (N 2 U P(L 2 ), P(L 2))

N (Ni U P NLi), P(Li))
i=1,2

(N1, L1) (N2, L2)

26



Chapter 3

Finite Dimensional Approxiamtion

on Hilbert Spaces

3.1 Conley Theory on Hilbert Spaces

Conley index theory was developed for a flow on locally compact space, so one cannot

apply it directly in infinite-dimensional setting. Geba, Izydorek, and Pruszko [12] use

finite-dimensional approximation and define a stable version of Conley index for a

special class of flows.

Let H be a Hilbert space. A vector field on H is a continuous map from H to

itself. We will be interested in a special class of vector fields.

Definition 13. We say that a vector field F : H -+ H is permissible if F admits a

decomposition F = L + K such that

(i) L is a self-adjoint Fredholm operator on H.

(ii) K is locally Lipschitz and compact (possibly nonlinear).

(iii) there exist positive constants c, d so that ||K(x)| < clXI|+ for all x E H

We will also say that a pair (L, K), or simply F = L + K, is a permissible

decomposition for F if it satisfies conditions above. In addition, L and K will be

referred as a linear part and a compact part of F respectively.
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The last condition implies that F is subquadratic i.e. there exist positive constants

c, d such that 2 (F(x), x)I c x12 + d for all x E H.

Remark. The class of vector fields studied in [12] is slightly more general than our

definition above. For example,

(i) For F = L + K, a linear part L need not be self-adjoint. We still require that

any eigenspace of L is finite dimensional and its spectrum spec(L) is isolated

from the imaginary axis in the complex plane.

(ii) The last condition in Definition 13 can be omitted. However, one can always

use a cut-off function to make F subquadratic when studying a fixed bounded

subset of H.

Given two different permissible decomposition F = Li + K 1 = L 2 + K 2 , we see

that the difference Li - L 2 is compact. In fact, this gives a one-to-one correspondence

between a set of permissible decompositions of F and a space of linear self-adjoint

compact operators.

We will also extend this notion to a family of vector fields.

Definition 14. Let A be a metric space, regarded as a parameter space. We say that

a family of vector fields F : H x A -- H is a permissible family of vector fields if

there is a decomposition F(x, A) = L(x, A) + K(x, A) satisfy the following properties,

where we sometimes write FA for the restriction F(-, A) on a point in A E A,

(i) For each A, the decomposition F = LA + KA is a permissible decomposition.

(ii) LA is a continuous family in the norm topology of bounded linear operators.

(iii) K: H x A -* H is compact.

(iv) There exist positive constants C, D so that ||K(x, A) < C |x|| + for all

(x,A) E H x A.

Such a decomposition is also called a permissible decomposition for the family.
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We will now consider a family of flows on H generated by a family of vector fields

F. More precisely, we look at a family of flows 77: H x R x A -+ H which is a solution

of the following ODE

&
-7(x, t, A) = F((x, t, A), A) (3.1.1)

,q(x, 0, A) =x (3.1.2)

Note. The subquadratic condition guarantees that 7 is defined for all time t (cf. [34]).

Otherwise, we would only have a local flow.

One special case of a family of vector fields is a family obtained from a sequence of

vector fields with an appropriate limit. We can identify and topologize N, = NU{oo}

as a subspace { n E N} U {0} of the interval [0, 1].

It is straightforward to check the following condition for compactness of a map

parametrized by N,.

Lemma 7. A map K : H x Nx, -> H is compact if K(-,n) : H -+ H is compact for

each n and K(-, n) converges to K(-, oo) pointwise uniformly on any fixed bounded

subset of H.

We now prove an important result for flows generated by permissible vector fields.

Proposition 4. Let X be a closed and bounded subset of H and q be a family of flows

generated by a family of permissible vector fields F = L + K : H x A -> H. Then,

the projection to second factor pr2 : Inv(X x A, q) C H x A -+ A is proper.

Proof. Let {(Xz, An)} be a sequence in Inv(X x A) with An -+ A. Let H = H+ D H_ D

Ho be the spectral decomposition corresponding to positive, negative, kernel part of

LA respectively. Let 7±, wo be the orthogonal projection from H onto H±, Ho.

We will show that the sequence {X} has a Cauchy subsequence by decomposing

X, with respect to H± and Ho. Since the set Inv(X x A) is a closed subset of a

complete space, the Cauchy subsequence will be also convergent.
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Since LA is a self-adjoint Fredholm operator, there is 6 > 0 such that the interval

(-6,6) contains no spectrum of LA except possibly 0. Then we have that

IetL\xII > e|| xf| for all x E H+.

Now let E > 0 be arbitrary. Since X is bounded, we assume that X C B(R) a ball

of radius R. We choose T > 0 so that eT > -. Using an integral equation, we can

write a formula for q as following

q(x, t, A) = etL-x + etL j e-rLAK(77(x, T, A), A)dr. (3.1.3)

Denote U(x, t, A) = etLN ft e-TLA K(q(x, r, A), A)dr.

Claim. The sequence U(xn, T, An) has a Cauchy subsequence (cf. /28] Proposition

A.18).

Proof. Since F is subquadratic, we have

at~ i(x, t, A)112 = 2 (F('q(x, t, A), A),'q(x, t, A)) c I|n(x, t, A)|| 2 ± d

and consequently

2 2 d
I|(x, t, A)| |2 et IIXI2 + (ect - 1)

c

for positive time t. Then the set {((Xz, -r, An), An) n E N and 0 <T < T} is a

bounded subset of H x A, and so its image under K is precompact. Consequently

the set {Te-rLAnK(q(Xn, T, An), A) : n E N and 0 < r < T} is also precompact.

Finally, we use the fact that, in a Hilbert space, a convex hull of a precompact set

is precompact. We see that the sequence U(Xn, T, An) has a Cauchy subsequence as

claimed.

By the claim, we can pass to a subsequence such that {U(Xz, T, An)} is Cauchy.
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Since {(x,, An)} is an element of an invariant set, 7(Xz, T, An) lies in X C B(R) as

well. Thus,

||e TL(xm -xn)| e ~T(L\L\m)XmIm ± IleT(LA-LAn)XnI+ ± lq(Xm, AmT)I

+||g(XzT, An)I| + I U(xm, T, Am) - U(Xz, T, An)||

< 3R for m, n sufficiently large.

On the other hand,

3R
liecl'LA (Xm - Xn)IH > Ile TLA7+(Xm - X.) II>3 I 11+ (Xm) - 7r+ (Xn)I I

Combining with the previous inequality, the sequence {7r+(Xn)} has a Cauchy

subsequence.

Similarly, the sequence {r_ (xn)} also has a Cauchy subsequence. On the other

hand, the sequence {r 0 (Xz)} is a bounded sequence in a finite-dimensional Euclidean

space, so it has a Cauchy subsequence as well.

Therefore the sequence {(xn, An)} has a Cauchy subsequence and we finish the

proof.

Definition 15. For a flow 4 on a Hilbert space, a closed and bounded subset X of

H is called an isolating neighborhood if Inv(X, #) c Int(X).

From the previous proposition, we can deduce continuity of an isolating neighbor-

hood for a family of flows. Denote the flow q(-, -, A) : H x R -+ H by 7\.

Corollary 2. The set { A E A : X is an isolating neighborhood for the flow q,} is

open.

Proof. We will show that the compliment of this set is closed. Let {An} be a sequence

in A such that there exists {zX} with xn E Inv(X, \n) nf X and An -+ A. From

properness of the projection pr 2, there is a subsequence of {X} with x, -+ x for some

x E H. Since q is continuous and X is closed, we see that x E Inv(X, 7x) n aX. o
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For a moment, we will consider a fixed isolating neighborhood X for a flow 4 on H

generated by a permissible vector field F with F = L+K a permissible decomposition.

From Corollary 2, we know that X is also an isolating neighborhood for flows in

a neighborhood of # when it is a part of a family of flows. To strengthen this result,

we will introduce some (pseudo)metrics for which X is an isolating neighborhood for

flows generated by 'nearby' vector fields.

For compact maps K1 and K 2, since X is bounded, we can define a pseudometric

which depends on the set X

px(K 1 , K 2) = sup |I(K 1 - K2)xII. (3.1.4)
xEX

This gives a pseudometric for two permissible decomposition F1 = Li + K1 and

F2 = L2 +K 2

fix(Li + K 1 , L 2 + K 2 ) = |ILi - L211 + px(Ki, K 2 ) (3.1.5)

As a consequence of Proposition 4, we can show that

Proposition 5. There is E > 0 such that X is an isolating neighborhood for any flow

7 generated by F7 = L, + K, with fx (L, + K,?, L + K) < c.

Proof. Suppose the statement is false. There is a sequence of permissible decompo-

sition Fn = L, + K, such that px(Ln + Kn, L + K) < En with En -* 0. There also

exists a sequence {X} such that Xn E Inv(X, rq) and x, lies in the boundary i9X

where 77n is generated by Fn.

We will show that the sequence {Xn} is Cauchy and arrive at a contradiction.

Consider

Un(x, t) = etL j e-L'Kn(7m,,(x, r))dr, (3.1.6)

Uo,,(x, t) = etL e-TLK(rn(X, T))dr. (3.1.7)
Bt0)

By compactness of K, we have that a sequence { UO,n (X , t)}1, for a fixed t, is
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Cauchy. Since Px(L, + K, L + K) goes to 0, we see that IUn(x,t) - Uo,n(xn,t)||

also goes to 0, so that a sequence {Un(x,, t)} is also Cauchy.

Using an integral equation for flows (3.1.3) and invariance of xn, one can see that

the quantity ||eL(Xm - Xn) is uniformly bounded. Then, similar to the proof of

Proposition 4, we can deduce that {xn} is Cauchy and complete the proof.

3.2 Compression of Vector Fields

In this section, let # be a flow on H generated by a permissible vector field F and let

X be an isolating neighborhood with respect to the flow 4.

For a finite-dimensional subspace V C H, we want to be able to study a flow on

V approximating the flow # on H. Let 7rV be the orthogonal projection from H onto

V. We also adopt a notation |iV - W|| = |7v - -rw| using operator norm.

Let F = L + K be a permissible decomposition. We will be interested in a vector

field of the form

Fv = rv Lrv + (1 - 7v)L(1 - 7v) + rv K, (3.2.1)

and a flow #v generated by Fv. This vector field Fy can be considered as a

compression of F on V

Consider a linear part 7vLyrv + (1 - wv)L(1 - 7ry) of Fy. Viewing L as a block

matrix on H = V D V', the linear part of Fv is then the diagonal blocks. Whereas,

the difference

L - (vLxv - (1 - swv)L(1 - 7v)) =1vL(1 - Wv) + (1 - Wv)Lrv (3.2.2)

gives the antidiagonal blocks.

Note that the difference vL(1 -rv)+ (1 -rv)L-rv is finite rank, so the linear part

of Fy is also Fredholm. It is then straightforward to check that Fy is a permissible

vector field.
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Our goal is to approximate F by Fy so that X is an isolating neighborhood for

#v as well. We can use a pseudometric defined in (3.1.5) and try to find FV that

satisfies hypothesis of Proposition 5.

For linear parts, we consider an operator norm of the difference as in (3.2.2)

||7rvL(1 - 7rv) + (1 - irv)LyrvI| = |7rvL(1 - lrv) - (1 - 7rv)Lwv| (3.2.3)

= ||wrvL - Lwrv|, (3.2.4)

where the last line holds since we can replace one of the blocks (1 - 7rv)Lrv with

-(1 - 7rv)L7rv without changing the norm.

For compact parts, we need to consider a norm of 11(1 - rv.)KxI| for x E X. We

recall a following fact:

Lemma 8. Suppose that {V} is a sequence of subspaces of H such that WrV -+ 1

pointwise and K : H -- H is a compact map. Then irvK converges to K pointwise

uniformly on any bounded set.

Proof. We will prove this by contradiction. Let B be a bounded subset of H and

suppose there exists a sequence {x} in B such that (1 - wry. )K(x) > 6 and nj

goes to infinity.

Since {xj} is bounded, K(xz) converges to some y in H. Then

(1 -wrvj)K(xj) < (1 - irvj)(K(xj)-y) + (1 - rv,)y

< ||K(zg) - y|| + 11(1 -gynj)Yj

< 6 for sufficiently large j.

And we reach a contradiction.

This leads to a definition for subspaces that are good for finite-dimensional ap-

proximation.
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Definition 16. Let {V} be a sequence of finite-dimensional subspaces of H. We

call that the sequence {V} is an asymptotically-invariant exhausting sequence with

respect to L if it satisfy

(i) wvL + Lxvn -> 0 in operator norm,

(ii) 7rv. converges to identity pointwise (i.e. in strong operator topology).

The term 'asymptotically-invariant' is referred to the second condition as a sub-

space V will be approaching an invariant subspace. The first condition is inspired

by the following fact:

One can see that a sequence {V} is asymptotically-invariant exhausting with

respect to L implies that it is asymptotically-invariant exhausting with respect to L',

when L' - L is compact. Hence, if we fix a permissible vector field, the definition

of an asymptotically-invariant exhausting sequence is independent of the choice of

permissible decomposition of F.

We can conclude

Proposition 6. Let {V} be an asymptotically-invariant exhausting sequence of sub-

spaces and let Fn be a family of vector fields parametrized by N, defined by

Fn= FV =rvnLivn + (1 - 7v.)L(1 - 7rvn) + wv K,

and F, = F. Then F is a permissible family of vector fields.

Consequently, we can show that X is an isolating neighborhood for the flow #v,

for sufficiently large n. In fact, we have a slightly stronger result.

Proposition 7. Let {Vn} be an asymptotically-invariant exhausting sequence. Then

there are c, N > 0 such that X is an isolating neighborhood for the flow #w for any

subspace W such that ||W - V|| < c and n > N .

Proof. Suppose the contrary, then we can find a sequence {Em} of positive real con-

verging to 0, a sequence {nm} going to infinity, and a sequence of subspaces {Wm}

with ||Wm - Vn,1| < cm such that X is not an isolating neighborhood for #w,-

35



It is not hard to see that {Wm} is also an asymptotically-invariant exhausting se-

quence. Then Fwm is a permissible family of vector fields and we reach a contradiction

from continuity of the Conley index.

We now observe that V is an invariant subspace of the vector field FV from the

construction. Moreover, the vector field is equal to rVF on V. Consequently, the

flow #V restricted on V does not depend on a decomposition of F.

If X is an isolating neighborhood for the flow #V, then so is X n V. We can then

consider X n V c V as an isolating neighborhood with respect to the flow #V on V.

Since we are now in the finite-dimensional case and X n V is compact, we obtain the

Conley index

i(X n V, #v)

We will now establish relation between Conley indices of different spaces. Given

an asymptotically-invariant exhausting sequence

Let V, W be finite-dimensional subspaces of H with an orthogonal decomposition

W = V D U. We consider a vector field FVW given by

FVw =y rvLrv + uLwru + (1 -1tw)L(1 - -w) +irvK.

Since rw = ry + 7rU, we have an identity irwLirw - 7rvLrv - 'ruLru = wrULyrv +

7rvLwu and we obtain

IL - yrv Lrv - ,rULirU - (1 - 7w)L(1 - 7w)||

| (1 - rw) Lirw + rwL(1 - 1rw)|| + ||,ruLv + 7rvLrul|

= (1 - ,rw)Lww - 7rwL(1 -- ,rw)I + V1||,ruLv ||

| |Lirw - rwL|| + N2||(1 -rv)Lwrvl

= |Liwrw wLI + |ILwv - ?rvLl
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We have an identity, for x E U,

,ruLx = Lx + (,ruL - L-ru)x = Lx + (7rwL - Lwrw)x - (7rvL - Lirv)x (3.2.5)

Denote Uo by the kernel of the self-adjoint operator lruLru on U. We have a

decomposition U = Uo @ U1 and also denote e UL by the flow generated by the linear

vector field 7rUL.

Proposition 8. Let F be a family of vector fields over the interval I = [0,1] given

by FS = (1 - s)Fvw + sFw and <b be the family of flows generated by F. Suppose

that X x I is an isolating neighborhood for (b. Then

I(X n w, #w) e i(X n V, #v) A I(B(R, U1), eyUL)

Proof. We see that the vector field F. is W-invariant for each s, so we can consider the

family of flow <b on W x I and (X n W) x I becomes a compact isolating neighborhood.

Denote #v,w by the flow generated by Fv,w. By continuity of the Conley index, we

have

I(X n W,#w) - i(X n w,#vw).

Next, we consider the flow #v,w on W. The vector field Fv,w restricted to W

becomes 1rvLirv + ,rULru + irvK, which is linear on U-component as W = V D U.

We observe that a vector in W with nonzero U1-component will give an exponential

flow on the Ur-component, and its trajectory cannot stay in the bounded set X for all

time. Consequently, if w E Inv(XnW, #vw), then x E VeUo, and Inv(XnW, #v,w) =

Inv(X n (V ED Uo), #vw)-

Denote B(R, U1) by the ball of radius R in U1 centered at the origin. We also see

that the set P = (X n (V ED Uo)) x B(R, U1) is an isolating neighborhood for #v,w

and Inv(P, #v,w) = Inv(X n (V E Uo), v,w). Thus

T( X n w,#ovw ) = il P, #vw)
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as they are isolating neighborhoods for the same isolated invariant set.

Consider a family of flows 0, on W generated by a family of vector fields

F8 (v + u) = rvL7rv(v) + wuL(u) + -xvK(v + su),

where v E V D Uo and u E U1 . Similarly, we can conclude that the invariant set

of Inv(P, i/,) lies in V @ U0 for each s. On V D U0 , the vector field F, becomes rvF.

In particular, P is an isolating neighborhood for the flow @, with the same invariant

set for each s. By continuity of the Conley index, we have that

I(P, qv,w) = T(P, 01) 2(P, 0o)

The flow V50 on W can be decomposed as a product flow. One is the flow a

generated by yrvLyrv + rvK on V E U0 and another is the flow e 7UL on U1 . Hence,

I(P, @o) - I(X n (V D Uo), 77) A I(B(R, U1 ), e"UL)

Finally, one can regard the flow q as a family of flow on V parametrized by U0 .

Since X is bounded, we see that X n (V x Uo) = X n (V x B(Ro, Uo)) for some Ro.

We now have a product family of flows on V over the compact set B(Ro, Uo) with

Xfn (V x B(Ro, Uo) as an isolating neighborhood. Using local continuity of the Conley

index, we have

IT(X n (V (DUO), 7) 1 I(X n V,$Ov)

Given an asymptotically-invariant exhausting sequence {V}, we will now con-

struct a family of permissible vector fields parametrized by Noo x [0, 1]. This will

give isomorphisms between Coney indices of I(X n V,,# qv) up to suspensions for n

sufficiently large. Consider a family of vector fields Fn,, defined by

Fns = (1 - s)F,v.+ + sFy.±,
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and Fo,,, = F. We see that the linear part of F,, converges to L.

In general, the segment joining two Fredholm maps might not lie in the space of

Fredholm maps. However, without loss of generality, we can consider n sufficiently

large so that Ln,0 and L,, 1 lie in the convex neighborhood of L. With this, we can

conclude that F,, is a permissible family.

Hence, by continuity, there exists N so that X is an isolating neighborhood for

the flow 0,, for all s E [0, 1] and n > N.

Let us now consider a relation between Conley indices from Proposition 8. Suppose

that W = V D U and let U~ be a negative definite subspace with respect to rUL7rU.

Then we have

I(X n W, #w) c §E(X nl V, #v) A SU~. (3.2.6)

We wish to associate a well-defined stable homotopy object to X. One candidate

to consider is a coordinate-free spectrum E, which assigns a space E(V) to each finite-

dimensional subspace V of a fixed infinite-dimensional inner product space (namely,

a universe) with a structure map

EUE(V) - E(W),

when W = V D U.

But the relation in (3.2.6) has the term SU rather than SU. To resolve this, we

could assign a space (or a connected simple system) E,+I(X nl V, #y ,) to V so that

EU (Zv+I(X n V, #v)) C EW+ (u~(X n V, #v)) - Ew+2T(X n W, #w).

Hence, we have a spectrum E(X) associated to X given by

E(X)(V) = EvI(X n V, #v) (3.2.7)

Note that the positive and negative space depends on a choice of a quadratic form
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on H, which usually arises from a self-adjoint operator. This choice only changes its

associated spectrum by a suspension. Hence, we can view it as a choice of grading

for a spectrum associated to X.

Alternatively, we can also consider the desuspension E -y-I(X f V, v). Similarly,

we have E-y-(X n V, #v) 8 E~1-i(X fn W, ow). This could be consider as a stable

homotopy type of X.
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Chapter 4

Manolescu-Floer Spectra for

3-manifolds

4.1 Preliminaries

Throughout the thesis, we will use [18] as a foundation for setting up Seiberg-Witten

theory for 3-manifolds and 4-manifolds.

Let Y be a closed, oriented, Riemannian 3-manifold and equip Y with a fixed

spinc structure s. Let S be the associated spinor bundle and A(Y) the space of spin'

connections on S. We have Clifford multiplication p: TY -+ End(S) which extends

to differential forms. We also fix a reference spin' connection BO.

Denote the configuration space C(Y s) = A(Y) E F(S) and consider the Chern-

Simons-Dirac functional : C (Y, s) -> R on this configuration space. For a pair of a

spinc connection B and a section T of the spinor bundle, the functional is given by

J(B, I)=- I(B' - B') A (FBt + Fg) + (D, (4.1.1)8 j 2

where B' is the induced connection on A 2S, FBt is the curvature 2-form, and DB

is the Dirac operator associated to B.

Recall that A(Y) is an affine space with the model space Q1 (Y; iR) by an identi-
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fication B 0 + b 9 Is for b E G (Y; iR), so we have the tangent space

T(B,,I C(Y s) = C (Y; iT*Y D S)

with L2 -norm ||bJ12 + 11,112. Then, we can compute the gradient of L

grad L = * FBt + p~' (I1*)o , D ,

where the subscript 0 denotes the trace-free part of the Hermitian endomorphism

TV*. A critical point for this gradient vector field is also known as a solution of the

3-dimensional Seiberg-Witten equation

1
1* FBt + pl (F*)o = 0,2 (4.1.2)

DBT = 0.

One distinguished feature of the Seiberg-Witten theory is that one can interpret

a trajectory of the downward gradient flow of the Chern-Simons-Dirac functional as

a solution of the 4-dimensional Seiberg-Witten equation on the cylinder I x Y.

In general, let X be an oriented, Riemannian 4-manifold, possibly with a boundary

and equip X with a spinc structure sx. The spinor bundle Sx has a decomposition

Sx = S+ D S- and the Clifford multiplication induces an isometry between self-dual

2-forms and skew-Hermitian endomorphisms of S+,

p: A+ -* su(S+).

We have the Dirac operator D+ F(S+) - F(S~) for each A in the set of spin'

connection Ax. We can now define the 4-dimensional Seiberg-Witten map on the

space of 4-dimensional configuration C(X) = Ax @ r(S+), as following

3: C(X)- iQ2(X) E f(S-)

(A, D) (2 F t - p- (*),DA~g
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The equation 3(A, P) = 0 is known as the 4-dimensional Seiberg-Witten equation

1
-Fj - p1 (4 I*)o = 0,2 (4.1.3)

D§@ = 0.

An important special case is when a 4-manifold is a cylinder Z = R x Y, where

Y is a 3-manifold and Z is equipped with the induced spinc structure from Y. A

time-dependent pair (B, T) E C(Ys) gives rise to a configuration (A, D) E C(Z) and

it satisfies

1 (d
1pz(F) - (*)o = -p -B t + *FBt + 2p-1 (TI*))2 Adt (4.1.4)

DA = -tF + DBq-

This is another important feature of Seiberg-Witten theory; A trajectory of the

downward gradient flow of the Chern-Simons-Dirac functional on a 3-manifold Y

corresponds to a solution of the Seiberg-Witten equation on the cylinder R x Y.

To guarantee some generic conditions, we need to consider a perturbation of the

Chern-Simons-Dirac functional. First, we can perturb L by a closed, real-valued

2-form w by setting

L4(B, I) = C(B, xF) + (Bt - Bo) A iw

We will also need to perturb L, by a class of functions called tame perturbations

(cf. [18]). We will recall properties of tame perturbations later. Suppose that such

a function f : C(Y, s) -> R has formal gradient q. Then a perturbed Chern-Simons-

Dirac functional L is given by

4=C+f
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with gradient

grad L = grad L - 2(*iw, 0) + q.

We now have the perturbed gradient flow equation

d
-B t = - * FBt - 2p- 1 (4FIf*)O + 4 * iw - 2q 0(B, I),dt (4.1.5)

d I = -Def - gl(B, T),dt

and the corresponding perturbed 4-dimensional Seiberg-Witten map on a cylinder

aw,q given by

A ( p-1 ( - 2iw+ + q0 (A, 41), D+ D + g(A, 1)).&,q (, D) 2 FA~t A

Here we will introduce another useful notion. For a configuration (A, (D) on a

4-manifold X with boundary &X = Y, we define the (perturbed) topological energy

Et P by

W(A, ) =- J(Ft - 4iw) A (FAt - 4iw) - j (#y, DBIY) + 2g(A, D).

The topological energy depends only on topology of X and the restriction (B, T)

of (A, D) on the boundary as we have

£tJP(A, D) = C - 2M(B, T),

where C is a topological constant. In the cylindrical case Z = I x Y and (A, P)

arises from a trajectory (B(t), T(t)) with I = [t, t 2 ], the topological energy is simply

twice the drop of the Chern-Simons-Dirac functional between two end points, i.e.
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(4.1.6)

We now discuss the gauge group G(Y) = Map(Y, S') acting on the configuration

space C(Y, s). For u : Y - S 1 , the action is given by

u(B, T) = (B - u-1du 9 1s, uq).

We now look at the change of the perturbed functional under the action of g(Y).

Note that the function g is gauge invariant by the construction.

L(u(B, xF)) - &(B, IF) = ([u] U (4w[w] + 27r2c1(s))) [Y], (4.1.7)

where [u] E H 1 (Y; Z) is the corresponding cohomology class of u-ldu/(27ri) and

[w] E H 2 (Y; R) is the cohomology class of w.

We see that the functional Z is not necessarily invariant under the full gauge

group depending on the form w, although it is always invariant under the identity

component 9*(Y) of g(Y). This leads to the following definition.

Definition 17. The period class of L is the cohomology class c.g = 47[w] + 27 2c1 (5)

in H 2 (Y; R). We say that the perturbation 4 is balanced if the class c-" is zero,

or equivalently 4 is fully gauge invariant. We also say that the perturbation L is

positively monotone if c4 = tc1 (s) for some positive real number t.

The main idea in constructing monopole Floer homology is to compute Morse

homology of the quotient configuration space B(Y s) = C(Y s)/9(Y) with respect

to the downward gradient flow of the Chern-Simons-Dirac functional. The gradient

vector field of the functional gives rise to the 3-dimensional (perturbed) Seiberg-

Witten map:
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FY: C(Y, s) -+C'(Y ; iT*Y (E S)

(B, IF) ( (- * Fot -+ />-' (T*)o -+ qO(B, IF) - 2 * now, DB T)
2

The Seiberg-Witten map is equivariant under the action of g(Y), where the in-

duced action on a tangent vector is given by u - (b, ") = (b, u@).

4.1.1 Compactness and Boundedness Result

A fundamental result in Seiberg-Witten theory is the compactness of the solutions,

modulo gauge transformations, of the Seiberg-Witten equation. Note that the gauge

group g(X) = Map(X, Sl) on a 4-manifold and its action is defined in the same way

as the 3-dimensional case.

Pick a reference connection A 0 , we say that a configuration (A, D) satisfies the

Coulomb-Neumann condition if

d* (A' - A') = 0, in X,

(A' - AO', n') = 0, in o9X,

where n' is the normal vector of the boundary. We also choose a basis {-yj} of the

group H 1 (X; Z)/torsion. Then we say that (A, D) satisfies the cycle condition if for

all j

i PD(yj) A (At - At) E [0, 27r).

For any configuration (A, D), it turns out that one can always find a gauge trans-

formation u such that u - (A, D) satisfy both the Coulomb-Neumann condition and

the cycle condition. Moreover, this gauge transformation is unique up to multiplying

by constant functions.

We quote the main compactness result:
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Proposition 9. ([18], Theorem 10.7.1) Let Z = [t1 , t 2] x Y and q be a tame per-

turbation. Let (Ani ) E C(Z) be a sequence of solutions Lq( An, IDn) = 0 with a

uniform bound on the topological energy

E'P(n (D,) < C.

Then there is a gauge transformation un such that a subsequence of un - (An, (Dn)

converges in LGk1 (Z'), for any interior cylinder Z' = [t', t'] x Y.

We now consider Seiberg-Witten trajectories on Y, that is a solution of Seiberg-

Witten equations on R x Y. From now on, we will also assume that our perturbation

q is admissible. The main property we need is that

(i) A set of critical points grad - = 0 is finite modulo gauge transformation.

(ii) The moduli spaces of trajectories are regular.

With this hypothesis, we can deduce the following uniform boundedness result:

Proposition 10. There is a uniform energy bound for Seiberg- Witten trajectories

with finite energy.

Proof. (Sketch) For a fixed interval I and a real number s, let A, be a 4-dimensional

configuration obtained from the trajectory on a translated interval I + s. Since the

energy of the trajectory is finite, we see that

EP(A,) -> 0 as s -+ ±oo.

This implies that A, converges to a configuration with zero energy, which has to

be a trivial trajectory at one of the critical points. Thus the energy of -y is bounded

by a difference of f between two critical points. Using the fact that critical points

are finite modulo gauge and the identity 4.1.7, we consider two cases.

If the perturbation is positively monotone, we pick representative a1,... , an of

critical points. Suppose that -y is a trajectory from u - a, to a3 (up to gauge) so that

the dimension gr(u - aj, aj) of the corresponding moduli space is nonnegative.
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We also recall a formula

gr(u -aj, aj) = gr(ai, a,) - 27r2 ([u] U c1 (S)) [Y] (4.1.8)

Thus we have that

Z(u - a.) - Z(ag) = t ([u] U c1(s)) [Y] + (ca) - Z(aj) (4.1.9)

t
< - gr(a., aj) + L(ai-) - Z(aj), (4.1.10)

as t is positive. The right hand side now depends only on a1 ,... , a".

The balanced case is obvious, because L becomes gauge invariant.

The pointwise uniform bound follows immediately from Proposition 9.

Corollary 3. There exists a constant Ck for each positive integer k such that, for any

Seiberg- Witten trajectory -y with finite energy, we have a uniform bound Iu - (t) |2 <

Ck for all t, where -y(t) is a restriction of -y on {t} x Y and ut E 9(Y) is a gauge

transformation in.

4.2 The Coulomb Slice

Recall that the space B(Y, s) can be identified with a Hilbert bundle over the Picard

torus H1 (Y; R)/H 1 (Y; Z), which is not a vector space. In order to apply finite di-

mensional approximation technique, we will consider a slightly smaller gauge group so

that the quotient space is an affine space and also good for setting up elliptic theory.

Consider the following subspace of C (Y, s) defined by

ICBo = {(Bo + b ® 1, T) E C(Y, s)Id*b = 0} .

This subspace is called a Coulomb slice. It is obtained as a quotient of C(Y, s) by a
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gauge subgroup g' = {ef | E C (Y; iR) and fy = }. We have a diffeomorphism

9 xL X Co -> C(Y, s6)

(e,(Bo + b @ 1, IF)) (Bo + (b - d<) @9 1, eJO)

The quotient group g(Y)/g' can be identified with gh, the group of harmonic

maps from Y to S'. With a fixed basepoint yo of Y, we can decompose

gh HI(Y; Z) x SI,

where each integral cohomology class can be represented uniquely by a pointed

harmonic map u : Y -+ S1 and the S1 part represents constant maps. Consequently,

the residual gauge group H1 (Y; Z) x S' acts on the Coulomb slice KB and we have

identification

B(Ys) KB /(H 1(Y; Z) x S1)

Next we describe how to find a representative in a Coulomb slice for each configu-

ration (Bo + b 0 1, 9). This is the same as finding an element in KB that lies in the

same g'-orbit. This process will be called a (nonlinear) Coulomb projection.

Since an element of g' is of the form e , we only have to solve for an imaginary-

valued function ( satisfying d*d = d*b and fy ( = 0. Such a function is unique and

we will also denote it by ((b) , considered as a map

Q : 0(Y; iR) -+ C' (Y;- iR). (4.2.1)

One can also regard the map ( as a composition of d* and the Green operator of

d*d, so that it becomes an operator of order -1.

We will shift our viewpoint from affine spaces their underlying vector spaces. Let

K = ker d* E IF(S) C Q 1(Y; iR) D F(S), which we still call a Coulomb slice. Then we
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have an explicit formula for a Coulomb projection

H : Q 1 (Y; iR)(D F (S) ->K

(b, IF) - (b - d((b), e T)I)

(4.2.2)

(4.2.3)

For a fixed BO, we also denote

HBO (Bo + b T1 ) = Ul(b, qf).

Next, we will study a vector field on C induced from a vector field on C(Y, s).

There is an inclusion tBO K -* C(Y, s) given by

tLB (b, V)) = (Bo + b 9 1, V),

so that UsB o tB. = H. For a time dependent (b, @), we look at the derivative

& &
Ufl(b, IF) = (b - d(b), e() IF)at

at at at e () .

This gives a formula for a push forward of a tangent vector (#, @) at (Bo + b 1, T)

by (note that ((b) = 0 because b is coclosed),

(2D,H)(3, #,) = (0 - d(), e (b) (O)qI + e(b)@O). (4.2.4)

(4.2.5)= (0 - d (#), (#),P + V#).

This map can be thought as a linearized Coulomb projection of a tangent space

at (Bo + b 0 1, T). We notice that the above formula does not depends only on T.
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Remark. When B1 = B0 + bo 9 1, we see that

U Ba

e (bo) Oa

- e (bo)aflH(b,4@).
at

Given a vector filed X: C(Y) -+ TC(Y), we can consider a composition f*loX =

(DH) o X o t BO so we have the following diagram

C (Y' -) . TC (Y,)

tBo DP

1C Bo 1

The formula for rI* X is given by

U* 0 X(b, ') = (X1(tBo (b, V)) - d(X1(tB(b, V)))), ((X1(toB (b, @)))4 + X 2 (tBo(b, V)))),

where X = (X 1, X 2 ).

To justify the construction, we consider a particular lift to C(Y, ) for a time

dependent (b, @) E K: given by

(B(t), q1(t)) = efo (X1(LBo(b, ))ds - (Bo + b(t) 9 1,ik(t)).

Then we have a derivative

ab ( - d(X1(LO(b,a)))d (((X1(p (b , )
at < k(Xi (tB 0(b, ?p)), efo (X(ab~)ds(xt(b, 4'))>i$ ± -))

In particular, when j(b, 0) =-Ul*X + Y, we have

I(B, ) + X(B, T) = (Y1(b, 7P), efoI(X(b(s),V(s)))dsy 2 (b, ,)).
at

51

-b d(ab),

a(B, 7I)



The special case when Y-= 0 implies that a trajectory on C generated by a vector

field -rI* X is a Coulomb projection of a trajectory generated by -X on C(YS)

We will apply this principle to a Seiberg-Witten trajectory.

We would also like to recover U*8 0 F as a gradient vector field of 4- restricted to KC.

To obtain this, we need another metric on KC which is not the standard one. There is

a decomposition of the tangent space of C(Y, s) at (B, T)

T(B,P)C(, S) = (B,P) E )(B,f),

where (B,41) is the image under linearization of the gauge group action. To define a

new metric on C, we use the L2 -norm of the projection onto K(BO+b,g) of a tangent

vector as its norm under this new metric at (b, @). Since L is invariant under the

identity component of the gauge group, it is not hard to check that the gradient of Z

on KC with the above metric is U*-F.

There is an action of 9(Y) on AZ induced by a gauge action on TC(Y), namely

u - (b,0@) = (b, u@). (4.2.6)

When a vector field X is g(Y)-equivariant, we can observe relationship between

U1* X and U*I.BoX, where u is a gauge transformation and u - BO = BO - u-'du the

gauge action on connections,

((D) o X o tu.B0 ) (b, u@)) = (DUI)u (X(u - tBO (b, @)))

= (DH)uos, (u - X(tBO (b, $)))

= U- (DU), (X(tBO (b, p))).

In other words, we have

U* oX(b - u-d, u) = u r*H X(b, @). (4.2.7)
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Recall that the 3-dimensional Seiberg-Witten map is given by

.F(B, ) = (- * Fet + p~1 (4Fqf*)o - 2 * io, DBI) + q(B, IF),
2

and is g(Y)-equivariant. Since d*(*db) = 0, we see that

((F1=(o (b,())) =(F1 (tBo (b, )) - *db) (4.2.8)

= (( * FBo + p- 1 (##*) -2 * iw + qi(Bo + b 9 1, #)) (4.2.9)

We will want to decompose II*oF to linear and nonlinear parts. One natural

choice for a linear part is

L(b,) = (*db, DB 0 O), (4.2.10)

and we write

II* 0F = L + Q. (4.2.11)

From the above observation, the nonlinear part Q consists of constants, pertur-

bations, and terms involving pointwise multiplication. Before proceeding, we will

check that Q has nice compactness properties, allowing us to apply finite-dimensional

approximation.

Definition 18. We say that Q is quadratic-like if , for trajectories xz(t) and x(t)

defined on compact interval, we have

(i) If x$j (t) is uniformly bounded in L' norm and x$j (t) converges to xi) (t)

uniformly in L'_ topology for 0 < j < s, then (A)sQ(xn(t)) is uniformly

bounded in L2_, norm and also converges to (j)"Q(x(t)) uniformly in L _,_1

topology.

(ii) Q extends to a continuous map L2(Z), where Z is a cylinder I x Y

Now we also recall some properties of a tame perturbation.

53



(i) For k > 1, q defines a smooth vector field on Ck(Y). The first derivative Vq

extends to a smooth map

Dq : Ck(Y) -+ Hom(T, T), (4.2.12)

and its derivative is a multilinear map in Mult"(xT, T) with a norm satisfying

D q C(1+| ± ) II"IL2)(1 + |bIL2 )k(1 + |11L2 ). (4.2.13)

(ii) For k> 2, the induced 4-dimensional perturbation q extends to a smooth map

q : Ck(Z) - T, (4.2.14)

Lemma 9. If Q is of the form Q(b, V)) = q(Bo + b 0 1, 4), then Q is quadratic-like.

Proof. For s = 0 , we observe that Q(-y(b)) - Q(-y(a)) = fj Dy(t)Q(y(t))dt. Taking

a segment between two points, we see that Q is a bounded map on L'+ 1 and is also

uniformly continuous on a bounded set.

Recall a formula for a derivative of Q

)Q(z(t)) =c,(DmtQ (x(ai)(t) .,(a)(t)) . (4.2.15)
m=1 ag;>1

Consider a term D7q (xGa1)(t), ... , x(am)(t)) in the summand and suppose that

ai = max{ay}. From the property of a tame perturbation, the derivative Dxtq is a

multilinear map Mult m (xmL 2_', L2_,,) whose norm is control by L 2_, of x(t).

Since 1 < m < s < k-1 and ay > 1 for each j, we see that k-ai > k-s+m-1 >

k - s > 1. From convergence and boundedness of j (t) in L2_, topology, we can

conclude that (j)"q(Xn(t)) converges to (-)"q(x(t)) uniformly in L2_, topology (and

indeed in Lk_,_ 1 topology).
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It is clear that the quadratic-like property is closed under addition. We will show

that it is also closed under multiplication.

Lemma 10. If Q1, Q2 satisfy property is quadratic-like, then so does Q1 Q2.

Proof. Recall a product rule for derivatives

( )" (Q1(x(t))Q 2(x(t))) = c( )a1Q1((t))(5,)a2 Q2 (X(t)). (4.2.16)
al-Ia2=3

Consider the term (A)C1Q1(x(t))(A )a2Q 2 (x(t)), from hypothesis, we have that

( 2 )"iQi(xn(t)) converges to (-L)"iQj(x(t)) uniformly in L__ 1 topology.

Without loss of generality, suppose that a 5 a 2 . We consider the following

sequence of maps:

L2_ x L-2 - L -2 - L _, (4.2.17)

Lk_.1_ x Lk-,2-1 ~+Lk-a2-1 c-> Lk_,_1.- (4.2.18)

We observe that k - ai - 1 > k - s/2 - 1 > (k - 1)/2 > 3/2 and this inequality is

strict when k > 4. Hence, we can apply Sobolev multiplication theorem so that the

multiplication above is continuous. The last map is obtained from Sobolev embedding

theorem since a2 S

For the 4-dimensional map, we can see that Q1OQ2 is continuous from Sobolev

multiplication.

Finally, we note that a differential operator of order 1 is quadratic-like. A com-

position of with a differential operator of order 0 also preserves the quadratic-like

property.
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4.3 Finite Dimensional Approximation

The main idea to construct the Seiberg-Witten-Floer homotopy type is to approxi-

mate the downward gradient flow on the Coulomb slice by compressing the flow to

its finite dimensional subspaces.

The flow on K is generated by the vector field -. F' = -L - Q defined previously.

The linear part L is a self-adjoint operator and gives L2 decomposition of K by its

eigenspaces. To allow more classes of subspaces, we introduce a linear operator K,

which is compact and self-adjoint.

The class of projections we consider is a a class of finite rank smoothing operator.

In addition, we require the following properties for a sequence of projections {7r,}

(i) We normalize so that 7r, has norm less than or equal to 1 in B(L).

(ii) -r, converges to 1 pointwise in L2

(iii) [L, 7r,,] is an operator on L2 and the norm converges to 0

These properties depend on the class of D modulo smoothing operators.

Let V, be the image of 7r,. We consider a flow on V, generated by -F, where

F. = gr-F'. (4.3.1)

We also call F, a compression of -F' on V. Note that a flow generated by -F'

is only partially defined, but its compression is well-defined on a finite dimensional

subspace of smooth sections.

The following proposition and its proof is a slight adaptation of the result in [22].

Proposition 11. Let R be a closed and bounded subset of K. Suppose that R is an

isolating neighborhood for -F' on K. For sufficiently large n, R n Vn is an isolating

neighborhood for a flow generated by -Fn.

Proof. Suppose the contrary: there is a sequence such that 7z n Vn is not an isolating
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neighborhood. By definition, we have a trajectory x, : R --+ 7z n V, such that

Xz(t) = irF(Xz(t))

and xn(O) E OR after reparametrization.

Consider the L'-norm of the derivative

z,(i) = IIrnF(xn(t))IlL (4.3.2)

Since R is bounded in L +1-norm, I|rF(xn(t))IIL2 is uniformly bounded because

F is quadratic-like. By Arzela-Ascoli theorem, a subsequence of x, converges to a

trajectory x in Li-norm uniformly on compact intervals.

We observe that

F(x(t)) - 7rnF(xn(t)) = D(x(t) - Xz(t)) + [D,irn]X(t)

+7rn(Q(X(t)) - Q(xn(t))) + (1 - 7rn)Q(X(t))

This shows that -y aX(t) = 7r F(Xn(t)) converges to F(x(t)) L 2_1 -norm uniformly

on compact intervals. Thus, the derivatives axn(t) converges to -x(t) and we have

a(t) = F(x(t))
at

Thus x(t) is a Coulomb projection of a Seiberg-Witten trajectory with finite en-

ergy. By Corollary 3, we have that x(t) is smooth and satisfies a priori bound.

Next, we will show that (L)sx, converges to (-)"x in L2_, uniformly on compact

intervals. Note that we already have the case s = 0, 1 from above, so we will proceed

with induction. Consider

(9 S+1( - X) ( (F(z(t)) - F(zn(t)))
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We can break apart the right hand side similar to above paragraph

at ata
S(F((t)) - rF((t))) = a )( (t)) n (t)

a a
+7rn(( )"Q(z(t)) - ( )"Q(zn(t)))

+ (17-r)()"Q(z(t))

With this, we can conclude that X. converges to x in L (Z), where Z = I x Y.

Finally, we apply elliptic estimate using an operator -j - D on the cylinder.at

|| - Xn||L+ (Z') < ( - D)(x - zn) + lix - Xn|IL2(Z)
Lk(Z)

We can break apart the first term on the right hand side as following

a
(- - D)(x - xa) = [D,w~x ±ria rn(Q(x) - Q(xn)) + (1 - irn)Q(x) (4.3.3)

This also goes to 0 by the hypothesis and property * of Q. Then, by bootstrapping,

we have that Xn(0) converges to x(0) in L which is a contradiction because x(0)

cannot lie on the boundary of R.

We point out two important quantities involving 1rn in the above proof. The first

one is the norm of the commutator

[D,?rn] : L2 -- L (4.3.4)

and the second quantity is

sup ||(1 - rn)Q(X)[|L2 (4.3.5)
xERa

for s = 0, ... , k + 1. These are the quantities we assume that they converge to zero

in the hypothesis of the proposition. Analogous to Proposition 5 in the Hilbert space

setup, we can generalize Proposition 11 as following
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Proposition 12. Let R be a closed and bounded subset of K. Suppose that R is an

isolating neighborhood for -F' on K. There is c > 0 such that if F1 = D1 + Q1

satisfying

|ID - D1|L < e and supI|(Q -Q1)(x)11|2 <C

for s = 0,... , k + 1, then R is also an isolating neighborhood for -F 1

Once we have finite dimensional approximation i(R n V, rvF), we can associate

a spectrum to R in the same manner as (3.2.7)

Definition 19. Let R be a closed and bounded subset of K. A spectrum E(RZ, F)

associated to R with respect to a flow generated by F is given by

E(R, F)(V) = i(7 nV, irvF) A SV+,

where V+ is a positive space with respect to a reference quadratic form.

4.4 Constructing Isolating Neighborhoods in the

Coulomb Slice

Our next task is to find a suitable choice of isolating neighborhoods in the Coulomb

slice for finite dimensional approximation. By Hodge decomposition, we have

K = Qh (D QL l'(S),

where Qh a Rbl is the harmonic 1-forms and Q 2 Im(d*) is its orthogonal comple-

ment. Then, we can view the Coulomb slice as a (trivial) bundle over Rbi

The set of critical points and trajectories between them are bounded modulo the

full gauge group. However there is a residual action of harmonic maps on the Coulomb

slice, so that critical points and trajectories between them lie in a union of balls

Str(R) = Z.i - B(R).
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which is no longer bounded.

To apply finite dimensional approximation, we will cut the set Str(R) to obtain

a bounded region by level sets of certain functions. Moreover, we will construct an

appropriate filtration of bounded subsets of Str(R). Each bounded region gives rise to

a spectrum from finite dimensional approximation and the inclusion of subsets in the

filtration will induce morphisms between these spectra. This construction generalizes

the one in [17] from b1 = 1 to a general 3-manifold.

To obtain a bounded subset, we will try to control the translational action of Zb1

by functions which are quasiperiodic under translation by H 1 (Y; Z) (7_ 7Zh. For

each hi, there is a unique pointed harmonic map ug : Y -+ S1 such that ihj = uj-ldu.

For a vector a = (a1, a2,... , ab1 ) E Rbi , we say that f has period a if for each j

f (ug - ) = f(x) + aj.

With this notation, the Chern-Simons-Dirac functional - has period as where

asG= ([uj] U c-1) [Y]

= ([uj] U (47r[w] + 27r2c1(s))) [Y].

Another important property for cut-off functions is transversality.

Definition 20. We say that a smooth function f : K -+ R is positively (resp. nega-

tively) transverse to a vector field X if (grad f, X) > 0 (resp. < 0) on some level set

f-1(a).

Remark. A transverse function for a vector field can be viewed as a dual notion of a

pseudo-gradient vector field for a function.

This implies that for a function f positively transverse to X, the value of f
is decreasing along a nonconstant trajectory of a flow generated by -X. We now

consider a class of good functions for constructing the Seiberg-Witten flow.

Definition 21. A smooth function f : K --+ R is called a positive (resp. negative)

good function if it satisfies
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(i) f is positively (resp. negatively) transverse to grad 4.

(ii) grad f = grad ±+ 6 for small 6

(iii) f has period a for some a E Rb.

(iv) f is bounded on B(R).

Denote -F+ (resp. F) by the set of positive (resp. negative) good functions.

We first show that the set of good functions is nonempty.

Proposition 13. There exists a positive good function with period lying in a neigh-

borhood of a,- in Rbl. Similarly, there exists a negative good function with period in

a neighborhood of -ag.

Proof. Let pj :A -I R be the projection to the j-th component of H(Y; R) e

bi Rh. Since the set of critical points of grad - is discrete, we can find a closed

interval [aj, bj] c [0, 1] such that p' 1[aj, bj] contains no critical point.

By properness property of the Seiberg-Witten equation, |Igrad-(x)|| > e > 0 for

all x E p_7 [a, bj]. We can construct a smooth function g : [a, b] -- R satisfying

g(a) = 0, g(b) = 6 # 0, and |g'(x) < e on (a, b). Then we extend the domain of g to

R by setting g(x + 1) = g(x) + 6.

Now consider a function f1 = g o p3 + L. We clearly see that f, is bounded on

B(R) and

f(u x) = { (x) + a, if i f j

fg (x) + cg + 6 if i = j.

To show that fg is positively transverse to L , we have

(grad fj, grad L) = (grad(g o pj), grad L) + IIgrad Z1| 2

> -e IgradLI ± +|grad L1|2 > 0,
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when grad(g o pj) is nonzero. In the case that grad(g o pj) is zero, we simply have

(grad fj, grad4) = ||grad41| 2 > 0 and the equality holds only at the critical point

of 4 . Thus, fj is a positive good function with period ac ± 6 e+ , where {ej} is the

standard basis of Rbi.

Finally, we observe that t1 fi + t 2f 2 is a positive good function with period t1 a1 +

t 2 a 2 if fi, f2 are positive good functions with period ai, a 2 respectively and ti, t 2 are

positive numbers. Similarly, -f is a negative good function with period -a if f is a

positive good function with period a.

Remark. In fact, there exists a positive good function with period lying in a small

positive cone containing a & in Rbl.

Consider a positive good function f with period a. We have

b,

f ( cgug)-x =f(x)+c-a,
(j=1

where c = (ci, c2 ,..., cb,) is regarded as a coefficient of translation. We see that

the set of translations from B(R) to Str(R) nf-1 [m, nj is bounded by two hyperplanes

whose normal vector is a.

Let {ag} be a basis of Rbi such that each ac, is sufficiently close to a,4. Then,

there exist positive good functions fj with period a3 by Proposition 13. From the

above observation, we have

Figure 4-1: An example of a region bounded by hyperplane.

Lemma 11. The set Str(R) n (nb_1 f -[a, b3 ]) is bounded.

We set
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lm,n = Str(R) n f;1im,n).
(j=1

For convenience, we consider an exhausting sequence {V} of finite dimensional

subspaces of IC obtained from eigenspaces of L. Let 41 be the compressed flow on V

generated by the vector field -L - 7rQ. From Proposition 11, for sufficiently large 1,

the set v n Rm,n will be an isolating neighborhood for the flow #1 . Denote Smn by

the corresponding isolated invariant set and I(Snn) by its Conley index.

Note that Rm,n C Rm,n+1 and Rm,n C Rm-1,n+1 by definition. From our choice

of the functions fy, we observe that

(7rgrad fy,7rgrad4) =|br grad |I2 + (iro,7rgradZ),

on V. This tells us that the value of f3 is also decreasing along nonconstant

trajectories of the compressed flows. In particular, we have that Si,, C Si,n+1 is an

attractor subset. Thus we obtain a map I(Sm,') -- (Sm,+1) induced by inclusion

of index pairs, given by an attractor-repeller pair coexact sequence.

Figure 4-2: An example of a region bounded by hyperplane.

On the other hand, Smn C St_1,n is a repeller subset, and we have a map in

opposite direction. Together, we have a diagram
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t I
>I(S--1,n+1) * (S n+1)

T
IT(8m)

I
When we change from the subspace V to V+1, the Conley indices are related by

I(Si'n) ~ I(Smn) A SW. We then have a cube diagram

(S+1 n , 1- n1+( + )

IT(Sm-1,n+1) ' T(Sm,n+1)

T(Sm_1,n) . I(Sm,n)

where the vertical maps are suspensions. This gives a diagram of spectra

I I
-- E(Rm-1,n+1) E(RZm,n+1) > -..

-
E(lmmi,n)

I
I

E(Rm,n)
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Definition 22. The Manolescu-Floer (pro-)spectrum SWF (Y, S) is given by a limit

of the diagram of spectra E(Rm,n) as -m, n -+ oo.

The notation SWF+7 means we use positive functions for both upper bound and

lower bound for the level sets. Note that SWF (Y, s) is not a spectrum because there

is an arrow that points opposite to the inclusion.

4.4.1 The Balanced Case

In the case of balanced perturbation, we have an alternative construction of the stable

Conley index because the period a4 is zero. As a consequence of Proposition 13, there

exist both positive and negative good functions with period near the origin.

Pick an oriented basis {a 3 } of Rbl such that the norm of a is sufficiently small.

Choose positive good functions fj and negative good functions gj both with period

a3 . Now we consider the region

bi

lzm,n = Str(R) n (f (-oon n]g.,gI [m, oo))
(j=1

Similar to the balanced case, the region lzm,n is bounded and we can apply finite

dimensional approximation. Let {V} be an exhausting sequence of IC with the com-

pressed flow <p1. Again, R,, will be an isolating neighborhood for sufficiently large

1, and we denote 5mn by the corresponding isolated invariant set with I(S,,n) its

Conley index.

The only difference in this case is that the set 5, is an attractor subset of both

Si-,n and S'n. We then have a diagram
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-- (S--1,n+1 -(Sn+1)

I(S I
- - - I(Si 1,n) -I(Sm,,)---

We can define SWF+ (Y, s) similarly. But, notice that SWF_ (Y, S) is now a spectrum

because all the direction of all arrows agree with the inclusion.

4.4.2 Duality

We denote -Y by a manifold Y with reversed orientation.

When Y is equipped with a spine structure s, we can obtain a spine structure for

-Y with the same spinor bundle with Clifford multiplication p-y = -py. Given a

pair of perturbation (W, q) for Y, we also choose the pair (P, -q) for -Y

All the construction proceeds essentially in the same way. The main difference is

that the signs of the Chern-Simons-Dirac functional its gradient change, i.e.

4-y-= -y and grad4_y = - graddy.

We now consider good funcions for -Y. Note that the Coulomb slice KZ of Y and

-Y are the same but the period as_, is equal to -aY. Suppose that f is a positive

good function for Y with period a, then we see that f is also a negative good function

for -Y with the same peiod.

Let {fj} be a positive good function basis for Y, then a collection {-fj} is a
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positive good basis for -Y. With the notation as before, we see that

R(-Y)'n,-m = R( ),nn

i.e. these two regions are the same. However, the compressed flows on K for -Y

are the reverse of those for Y. We observe that an isolating neighborhood and its

isolated invariant set does not depend on the direction of the flow, but its Conley

index can change. Denote -# by the reverse of the flow 4, that is -#(t) = #(-t).

Then,

I(S(-Y)'n,,m, #-r) = I(S(Y),,, -#r).

From ???, this is a V, dual of I(S(Y)',,, y). Then, we get a dual diagram

- - -VID I (S'DV -1,n1 - D I(S ,+

I I
w r we d D I(S y -,n+1) V-d .n+1

where we denote DV by V-dual.
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Chapter 5

Calculation

In this section, we present calculation of the Floer homotopy type in some special

cases. The 3-manifolds in which we particularly interest are the product S 1 x S2 and

the three-torus T 3

5.1 Outline

We will first outline parts of strategies which apply to these cases. Since the 3-

manifolds of interest have nonnegative scalar curvature, the corresponding solutions

of the unperturbed Seiberg-Witten equations are reducible, and are gauge equivalent

to flat connections. Recall that we have a decomposition of the Coulomb slice

IC = Qh ED QL D (S).

With a based flat connection B0 fixed, the zero locus of the induced vector field on

the Coulomb slice is then the entire Gh-subspace.

To obtain a bounded isolating neighborhood and admissibility, we need to perturb

the Chern-Simon-Dirac functional. We start by picking a Morse function f on the

Picard torus (when bi > 0)

T = H'(Y; iR)/(27riH(Y; Z)).
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There is a projection map from the configuration space onto the harmonic part 7rh

C(Y,s) -+ 
2 h given by

(Bo + b l 1, V) f- bh,

where bh is the harmonic part of b. Then, we have a composition f 0 7 h : C(Y, s) -+ R

which will also be denoted by f. Consider a perturbed functional of the form

-=L+f. (5.1.1)

Since the gradient of f only affect the Qh-component, reducible solutions of the per-

turbed equations correspond to critical points of f on T. On a Coulomb slice, the

induced flow on the Oh-subspace and the critical points are Zbi-translation of those

on the torus.

In the case of our interest, all critical points and trajectories between them will

lie in the harmonic Qh-subspace. The appropriate isolating neighborhoods on the

Coulomb slice to apply finite-dimensional approximation then arise as a tubular neigh-

borhood of an isolating neighborhood on Qh R"' with respect to the downward

gradient flow of f (See Figure 5-1).

Qh

Figure 5-1: A tubular neighborhood as an isolating neighborhood.

In order to have an explicit description for Conley indices of these isolating neigh-

borhoods, we use linear isomorphism on the vector space to reduce the flow to a

linear one. For a general setting, let -y be a flow on a vector space V generated by a

vector field F. Let A be a linear automorphism of V. We can consider a new flow

yA on V given by yA(x, t) = A%'(Ax, t). It is straightforward to check that the two

flows are equivalent (depicted by the diagram below) and that -yA is generated by
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FA = A- 1 FA.

x (-, 0 (X)t)

A-1

V

Next, we will use the fact that one can choose a radius of the tubular neighbor-

hood for an isolating neighborhood to be arbitrarily small. After applying scaling

automorphism in the normal direction, we normalize a radius of a tubular neighbor-

hood to 1. On the other hand, the new vector field will be approaching a linear vector

field as the radius gets smaller.

More explicitly, suppose that we have a model case of a vector space H D V with

a vector field of the form (Vf(h), L(h)v + Qv), where L(h) is a self-adjoint linear

operator depending on h and Q is quadratic on v-variable. With the formula above,

the scaling process of vector fields will look like

Isolating neighborhood:

Vector field (on V) :

v(E)
Scaling

V(1)

L(h)v + rQv Scaling _ L(h)v + c 7rQv

Finite dimensional approximation

L(h)v + Qv L(h)v

This shows that the linearized vector field has the form (Vf(h), L(h)v). A trajec-
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tory (h(t), v(t)) comes from a solution of a differential equation

d h(t) = Vf (h(t)) (5.1.2a)

d
- dv(t) = L(h(t))v(t). (5.1.2b)

We see that the h(t)-part is just a gradient flow line flow line and the v(t)-part is a

linear ODE with variable coefficient. This can be seen as a family version of a linear

flow (Example 2).

Let also assume that we choose an isolating neighborhood Xwith respect to the

gradient flow in the base space H. Its tubular neighborhood in H E V is simply

X x B(1), where B(1) is a unit disk in V whose boundary is a unit sphere S(1).

Under certain condition, this tubular neighborhood will also be an isolating block

(Definition 6). Consequently, to compute its Conley index, we only need to determine

an exit set which is on the boundary (OX x B(1)) U (X x S(1)).

The above equations allow us to analyze an exit set on X x S(1) by considering

derivative of the norm of v(t)

| |v(t)|| 2 ={ VMt) + (t, V(t

= -2(L(h(t))v(t),v(t)).

It follows that a point (ho, vo) on X x S(1) is entering (resp. leaving) the tubular

neighborhood when the quantity (L(ho)vo,vo) is positive (resp. negative). For the

case that (L(ho)vo, vo) is zero, we also need to check the second derivative to ensure

that the point leaves the neighborhood immediately. One obtains

VW)||2 = -2 ( (L(h(t))) ± v(t) + L(h(t))(t), v(t)) + (L(h(t))v(t), ())

= 2( 2(L(h(t) ))2 - (L(h(t)))vt)vt)

=2((2(L(h(t) ))2 + VL(h(t)) - Vf (h(t))) v(t), v (t)),
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where we have A(L(h(t))) = -VL(h(t)) - Vf(h(t)) by the chain rule. We deduce

that when the quantity ((2(L(ho)) 2 + VL(ho) -Vf(ho)) vo, vo) is positive, the norm

||v(t) has a local minimum at (ho, vo). If this condition holds for each point with

(L(h)vo, vo) = 0, then every point on X x S(1) will leave the neighborhood immedi-

ately in one or another time direction.

(a) /c)

H

Figure 5-2: A tubular neighborhood as an isolating block.

Note that when ho is a critical point of Vf, the flow on {ho} x V is invariant and

is a linear flow. The second derivative becomes 4((L(ho))2vo, vo). For the tubular

neighborhood to be an isolating block, we also require that the linear operator L(ho)

at each critical point has no kernel.

In summary, we have deduced

Lemma 12. In the above situation, suppose that X is an isolating block for the

gradient flow on H. The tubular neighborhood X x B(1) is an isolating block for the

flow generated by (Vf(h), L(h)v) if the following conditions hold

" The operator L(ho) has no kernel when ho is a critical point for Vf,

" The quantity ((2(L(ho)) 2 + VL(ho) -Vf (ho)) vo, vo) is positive for each point on

X x B(1) such that (L(h)vo,vo) = 0.

Under this hypothesis, its exit set can be described as a union of the set {(h, v) e

XxB(1) h lies in the exit set of X} and the set {(h,v) E XxS(1) I (L(h)v,v) < 0}.

We remark that an exit set on X x S(1) can be viewed as an intersection of a unit

sphere S(1) and a nonpositive cone {v I (L(h)v, v) < 0} varying along the fiber. We

will also refer to this by a unit nonpositive cone. An interesting example arises when
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an index of L(h) changes so that the homotopy type of this cone is not constant (See

Figure 5-3).

Figure 5-3: An exit set for a tubular neighborhood.

Denote by Cone (V, L) a unit nonpositive cone in V with respect to L. We can

simplify and decompose Cone< (V, L) as in the following lemma

Lemma 13. Suppose that V can be decomposed as a direct sum V1 6 V2 of L-invariant

subspaces. Then

Cone<(V, L) e Cone<(VI, L) * Cone<(V2 , L),

where * denotes the join operation.

Proof. Recall that there is a retraction from Cone<(V, L) to a unit sphere S(V-) of a

maximal nonpositive subspace V- of V. This retraction is given by V \ V+ _, S(V-)

where v is sent to rv-v/1|rv-v| a normalized orthogonal projection onto V- and V+

is its complementary maximal positive subspace.

Choose a maximal nonpositive subspace V- of V then we see that V- e V2 - is a

maximal nonpositive subspace of V and

Cone< (V, L) 2 S(V7 T V ) S(V ) * S(V ) 2 Cone (V, L) * Cone< (V2 , L).

5.2 SI x S 2

We will present a construction of SWF for the 3-manifold S1 x S 2. We will be

mainly interested in the case when c1 (s) is torsion. When c1 (s) is nontorsion, there
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is no critical point and SWF is trivial.

Equip S' x S2 with a round metric, which has positive scalar curvature. Pick a flat

connection BO which is trivial in Sl-variable and consider the perturbed functional

-- = L + f as described earlier.

The vector field on the Coulomb slice with respect to the decomposition Q h (

Q1 D P(S) is given by

(bh,bi, #) - (Vf + hT(i), *dbl + 7rr(), ((r (#))V + DBo+bVp), (5.2.1)

where r(#) denotes the quadratic term p-1 (##rO*)o and N(#) denotes the term r(/) -

d(r(#)). Then the scaled vector field of the direction normal to bh is

(Vf + E2hV(O), *dbi + E ri(!,), ( 20()(,(#))O + E b-i@ + DBO+bh). (5.2.2)

As E -- 0, we see that the limiting vector field is given by

(Vf, *dbi, DBO+bh40), (5.2.3)

which is linear except the term DBo+bhV)#. This can be viewed as a linear flow with

varying operators. We will focus on a flow generated by (Vf, DBo+bhV) on Qh (D F(S)

since the flow on Q1 is a linear flow independent of other components

In this case, one can explicitly describe finite dimensional model of Dirac operators

using Fourier series and spherical harmonics. We first describe spinors of a spin bundle

on S2 which can be identified with L ED L-', where L is the canonical line bundle of

S2 = CP'. Following notations of [35], with the stereographic projection to C to give

a chart on S2 _ (0, 0, 1), an L2 -orthonormal basis of the space of sections of L is given

by

.(1)_ 21 + 1 (1 + m)!(l - m)! ___+_z'

w i e y ( + and - } r s (1 + zngiv

which is indexed by 1 E N - .1 and m E {-1, -1+ 1,..,1 with r, s nonnegative
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integers. Similarly, sections of L- has a basis indexed by the same set of (1, m) given

by

_r _m21 l+ )( ) + Zr 3 '-)

4r (=± I +)!(l - )! r s + (1+zz)'

The spin connection on L ED L- 1 is induced by the Levi-Civita connection. With

respect to isotropic bases, the Clifford multiplication is given by

+ dz [3 0 i _ d2 0 -1
a + zzi 0 , + zf 1 0

The spinor bundle of S' x S 2 is a pull-back of the spin bundle on S 2. Let 0 be a

coordinate on S1 factor. The Clifford multiplication extends by assigning

i 0
dO - o-1 =.

0 -i

Then, the Dirac operator on S1 x S2 is given by (note that the sign is different from

one in [35])

DBo = 0-1a + -2V(l+z)> + -3V(l±+z2)-

Since a smooth function on S1 has a Fourier series expansion, we can combine

with the spherical harmonics above and introduce a basis for spinors

1 in 17 iO 1r

The direct sum of these subspaces gives an L 2-decomposition for F(S). It is not hard

to check that, for an operator DBo+iado and a E R,

1 1y
DBo+ia deyjm,n = -( + 2 )l m , ± +(n a) n

DBo+iadOYl ,n = (n + a)Y , + ( 2 )Y;2m,n-
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Thus, on the subspae VM,,n := span {Y , Y the Dirac operator Da acts as

a matrix

-(l+1) n+ a
2 (5.2.4)

n+a i+

We see that Da has no kernel for any a. Moreover, Da has no eigenvalue in the

interval (-1/2, 1/2).

We now look at isolating neighborhoods for the vector field (Vf, DBO+b'b) on

Qh E r(S). The function f comes from a Morse function on S1, which we will choose

to be f(0) = -co cos 0 for a sufficiently small co > 0. On 2h a R, a set of critical

points is {m7r Im E Z} and trajectories of the downward gradient flow travel from

mir to (m i 1)ir for each odd integer k. An isolating neighborhood we will consider

is the interval Ik = [-2k7r - 60, 2kr + 6O], which is an isolating block with no exit set

for each integer m. Moreover, an isolated invariant set of Ik is an attractor relative

to an an isolated invariant set of Ik+1 with respect to inclusion Ik C Ik+1-

Note. To be consistent with the period of T, we identify a E R with 1ia dO rather

than ia dO. We denote Da := DBo+-iado so that the matrix of Da+2, on Y,'mn and

the matrix of Da on Ymn+1 is the same.

-47r -37r -27r -7r 0 7r 27r 37r 4 7r

Figure 5-4: Isolating neighborhoods.

Claim. Any tubular neighborhood gives an isolating block.

Proof. We will use criteria described in earlier observation, in particular, we will

check that 2D2 + VDa - Vf(a) is positive definite (which is stronger than the desired

condition). Since Da has no eigenvalue in the interval (-1/2,1/2), we have |IDav| 2 ;

1|JvI| 2 for all a. On the other hand, the matrix of VDa - Vf(a) on V,m,n is given

0 - sin a
by . -ia whose eigenvalues are controlled by co. Thus, for Eo small

2Di - fna 0
enough, 2D.2 ± VDa -Vf (a) is positive definite.

77



We begin to describe Conley indices of these tubular neighborhoods. For a subset

X C R 3 and a subspace V of F(S), we define

v(X, V) {(a, v) E X x V I l|vi| 1} (5.2.5)

n(X, V) {(a, v) E X x VI l|vii = l and (L(h)v, v) < 0} (5.2.6)

We consider v(Ik, V) when V is a (finite) direct sum of those Y, and Y

The advantage of these subspaces is that they are invariant subspaces for all Da

simultaneously. The Conley index of v(Ik, V) with respect to (Vf (a), Dav) restricted

on R x V will serve as a finite dimensional approximation of v(Ik, r(S)).

Since Ik has no exit point on its boundary, we have that n-(Ik, V) is an exit set

for v(Ik, V). From now on, we will also work in the S 1 -equivariant context, where S'

acts as a scalar multiplication by a unit complex number on F(S). Both v(Ik, V) and

l(Ik, V) are clearly Sl-invariant by definition.

We see that n-(Ik, V) is a submanifold of ov(Ik, V), so (v(Ik, V), l(Ik, V)) is an

S 1 -NDR pair. Moreover, we easily see that n- (Im, V) is contractible to a point in

v(Ik, V) and v(Ik, V) deformation retracts to a point. By applying Lemma 4, we have

that

v (Ik, V) /n- (Ik, V) S Sn~(Ik, V).

Recall that S denotes the unreduced suspension.

For a E Ik, we first consider a fiber of n- (Ik, V) over a which is the unit nonpositive

cone {v E V I |Iv II = 1 and (Dav, v) 5 0}. When Da has no kernel, this is homotopy

equivalent to the unit sphere of a maximal negative definite subspace V- of V (with

respect to Da) just as in the case of a linear flow on a vector space.

Since Da has no kernel for all a, the dimension of a maximal negative definite

subspace V- with respect to Da is constant. Then we can choose a continuous family

of V,- over R, which is equivalent to choose a continuous function from R to an

appropriate Grassmannian. This provides a retraction of the unit nonpositive cone

to the unit sphere of V- fiberwise. Hence we deduce that n- (Ik, V) is homotopy

equivalent to a sphere bundle over Ik. Then we can deform n-(Ik, V) to a product
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Ik x S(V;;) for some ao E Ik.

Suppose that V has p summands of Ylm,n's and Y ,n's each of which has one

positive and one negative eigenvalue with respect to Da. Then Sn- (Ik, V) is homotopy

equivalent to the one-point compactification of V; ~ CP. Hence, the (homotopy)

Conley index is given by

I(v(Ik,V )) = [SCP

Notice that, when V = V1 E V2 of the same form

The inclusion Ik c Ik+1 as an attractor induces a map between Conley indices.

We can see that (v(Ik, V) U n-(Ik+1, V), n (Ik+1, V)) is an index pair for v(Ik, V). As

in Proposition 1, the map is induced by an inclusion of index pairs

v(Ik, V)/n(Ik, V)) -+ v(Ik+1, V)/n (Ik+1, V)).

By naturality of the mapping cone construction, this is equivalent to a map

Sn-(I, V) -+ Sn (Ik+1, V),

induced by an inclusion n-(Ik, V) C n-(Ik+1, V). Hence, the map

[SC"| = I(v(Ik, V)) --+ I(v(Ik+1, V)) = [SCP|

is given by the identity map.

Roughly speaking, the Conley index I(v(Ik, V)) is given by Svo. By choosing

DaO as the reference quadratic form, the V-space assigned to the spectrum E(v(Ik))

is precisely SV. By applying desuspension, we could say that the stable homotopy

type of v(Ik) is the 0-sphere.

Since the map induced by the inclusion Ik C Ik+1 is the identity map, we can

conclude

Theorem 1. The stable homotopy type of SWF(S x S 2 , S) is S.
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5.3 T 3

5.3 The only interesting case is also the case when c1 (s) is torsion. We equip the torus

with a flat metric. Since T 3 does not have positive scalar curvature, some ideas from

the case S1 x S 2 will need to be modified.

Let BO be the trivial connection. Since the Dirac operator DB0 has kernel, another

kind of perturbation is required. As in [18], we consider the perturbed Chern-Simon-

Dirac functional of the form

Z-= L - (6/2)|II|112 + Ef,

where J and E are sufficiently small positive number (the choice of E depends on 6)

and f is induced from a Morse function on T3 . Consequently, a linearized vector field

has the form

(EVf, *dbL, (DBO+bh - 6g-

The spinor bundle is given by trivial bundle T 3 x C2 and its section is a pair of

complex-valued functions on T 3 . For finite dimensional model, we can use Fourier

series to write a function on T 3 as

Cni,n 2 ,n3 ei(n101+n202+n3O3), (5.3.1)
ni,n2,ns3 EZ

where ca is a complex number.

The Clifford multiplication identifies the 1-form dO6 with the Pauli matrix o-, that

is

S0 0 -1 0i
d61, d02 ,d63 -

0 -i 1 0 i 0

We can now describe Dirac operators explicitly in each Fourier mode. Denote Vni,n2,,n

by a 2-dimensional subspace spanned by (ei(n101+n202+n303), 0) and (0, ei(n101+n202+n3O3))

then we have

l'(S) = Q V,n2,ns
ni ,n 2,n 3 EZ
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and it is easy to check that DB, acts on as a matrix

-ni -n3 - n2i

-n3+n2i ni

We can identify Qh with R3 so that (bi, b2 , b3 ) E R 3 corresponds to a connection

b = 7i(bid'i + b2 d0 2 + b3 d0 3) so that the operator DBO+bh - 61 (denoted by D6) acts

on Vni,n2,na (denoted by V) as a matrix

- (ni + )-6 -(n3 + b)-(n2 + i
. 2(5.3.2)

-(n3 + - ) + (n2 + bi ni + b -

The gauge translational action can be observed as the matrix of D9+2,i on V is the

same as the matrix of Dg on Vr+s-

We now look at isolating neighborhoods for the vector field (cVf, (DBO+bh - )

on Qh E F(S). We can pick a Morse function to be f (01, 02, 03) = - cos 01 - cos 02 -

cos 03. The flow on Qh J R 3 is basically the product of the one in the S1 x S2

case. Similarly, a family of isolating neighborhoods we will consider consists of the

cube Ik = [-(2k + 1)7r, (2k + -)7r] 3 , which is also an isolating block with no exit set.

Moreover, an isolated invariant set of Ik is an attractor relative to an an isolated

invariant set of Ik+1 with respect to inclusion Ik C Ik+1-

The eigenvalues of the matrix (5.3.2) is -6± (ni + b)2 + (n2 + A)2 + (n 3 + 1)2.

Since ni, n2, n3 are integers, D 2d has kernel on a small sphere S2, centered at

27r(bi, b2 , b3 ) for each triple of integers (bi, b2 , b3 ). The point 27r(bi, b2 , b3 ) is an index

o critical point and the kernel of D 2  on S2, centered at this point is a (complex)

1-dimensional subspace of V-bi,-62,-63-

Claim. Any tubular neighborhood gives an isolating block.

Proof. We will also be using criteria described in earlier observation. We will still

show that 2D3 + VD; - Vf(b) is positive definite. However, the argument will be

slightly more complicated since Dg can have kernel. By gauge translation, we can

consider only D6 in the cube [-7r, 7r] 3 . On the subspace complementary to Vo,o,o, the
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Figure 5-5: The flow on D

norm of an eigenvalue of Dg is bounded away from 0, so that the same argument in

the case S' x S2 applies.

We will consider a set of pairs (b, v), where b lies on S2 centered at the origin

and v is a unit vector in V0,0,0 which is also in the kernel of D6. One can check that

the kernel of -b 1 -J -b3 -b2i is given by 1 - b± 1 when b1  6 5
-b 3 + b2i b1 - 6 Jr y2(bi) -b 3 + b2 i

0 _
and otherwise. We also have that the matrix of VDg -Vf(b) on Vo,o,o is given by

E - sin b1  - sin b3 - sin b2i
27r -sin b3 + sin b2i sin bi

Roughly speaking, an element in the kernel of Dg corresponds to the larger eigenvalue

of Dg so that it will correspond to the positive eigenvalue of VDg -Vf (b). From above,

we can calculate

-VD- - Vf ()v, v) = -(b1 sin b b2sin b2+ b3sin b3) > -
f j 2'

where we use an approximation x sin x > x2 /2 for small x. Consequently, we can

choose a neighborhood of the pairs (b, v) such that the quantity (VD6. Vf(b)v, v)

is bounded below by a positive constant (depended on 6). Hence (VDg- Vf(b)v, v)

is positive in this neighborhood regardless of e.
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On the other hand, the norm of an eigenvalue of Dg is bounded away from 0

outside this neighborhood. Similar to the case S' x S2, we can choose sufficiently

small E so that the term (2D v, v) dominates the term (VDg -Vf(6)v, v). Therefore,

we can ensure that 2D3 + VD6 -Vf(b) is positive definite. E

Note. It is crucial that 6 and c are both positive. It is also important to perturb

DB+bh by 6I so that D6 has no kernel at a critical point of f.

We first try to understand an exit set n-(X, Vo,o,o) (as defined in (5.2.6))of a

tubular neighborhoods of some subset X in the subspace Vo,o,o - C2 of parallel

sections. Recall that a matrix of D2, on Vo,o,o is given by

-b1 - 6 -b 3 - b2 i (5.3.3)
-b 3 + b2i b1 - J

and its eigenvalues are -6 ± bl + b2 + b .

For a point b with ||b | < 27rJ, the quadratic form associated to D6 is negative

definite, so its unit nonpositive cone is the whole unit sphere S3 c C2. When ||bjl =

2-ro, D6 has kernel but its unit nonpositive cone is still the sphere S 3.

On the other hand, for a point b with ||bj| > 27ro, the quadratic form associated

to Dg has signature (1, 1) and its unit nonpositive cone deformation retracts to a

circle in S3 . This circle is the unit circle of a maximal negative definite subspace with

respect to D6. We can choose this circle to be a rotation by unit complex numbers

of a unit eigenvector corresponding to the negative eigenvalue.

With this we can deduce

Lemma 14.

(i) If X is a ball of radius R, then n- (X, Vo,o,o) is homotopy equivalent to the unit

3-sphere S3 C C2

(ii) If X is a sphere of radius R greater than 27eo, then n-(X, Vo,o,o) is homotopy

equivalent to the 3-sphere S1 C S2 x C2 as the Hopf bundle.
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Proof.

(i) This is trivial when R < 27r6 since n-(X, V0,o,o) = X x S3. If R > 276, we

construct a deformation retraction to {0} x S3 by a map H(b, v, s) = (s b, v).

The only nontrivial part is to check is that a unit nonpositive cone at b contains

in a unit nonpositive cone at s b when s E [0, 1]. By (5.3.3), we see that

Dg + 61 = sDg + s6l. Thus,

(Dv, v) = s(Dgv, v) + (1 - s)(-6 2) < max{(Dgv, v) , -62

(ii) For the matrix (5.3.3), one can find that an eigenvector corresponding to the

eigenvalue -6-R is given by [b - R when (b, b2 , b3 ) 4 (-R, 0, 0) and 0

-b 3 + b2 i 1

otherwise. We see that this eigenvector is independent of 6 and the norm of b.

This gives a continuous family of maximal negative definite subspaces over X,

so that n-(X, V, 0 ,0 ) is a circle bundle over S2. More explicitly, after normalizing

b2+b2+b2 = 1, a fiber over S 2 is an orbit of the vector 1 [ 1 (when
-b3 + b2z

0
b1 = - and otherwise) under multiplication by unit complex numbers.

This is precisely the description of the Hopf bundle.

With the above lemma as a building block, we can now describe an exit set

n- (X, V) and the Conley index of v(X, V) in more general case. Another important

ingredient is the gauge translational action, i.e. the matrix of Dg+2, on V is the

same as the matrix of Dg on Va+j.

For example, let us consider a square [-, 27r + _]2 x {0} and a subspace V =

i,j=,1 V-i,-j,o. We observe that the situation in Lemma 14 occurs with the center

shifted to (27ri, 27rj, 0) on the subspace Vi,_j,o for each critical point. Near one of

these points, the matrix of Dg on V has signature (3,5) since it is negative definite

on V-i,_j,o and has a signature (1, 1) on other summands. Outside this neighborhood,
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the matrix of Dg on V has signature (4,4). Consequently, the exit set will take the

form of a bundle with fiber S' except 4 singular points whose fiber is S9 (See Figure

5-6).

37

(- + +++ +)

Figure 5-6: The signature of quadratic forms onQh

Denote by Ak by the set {(ni, n2, n3) Ini, n2, n3 E {-k, -k+1,..., k}} correspond-

ing to all (2k + 1)3 critical points of f lying inside Ik. With the above argument, we

can deduce that

Pick a point bo in Ik away from the points in A := 27r(Ak n A). First, deform Ik

to a wedge sum of 3-balls by choosing q copies of 2-spheres, each of which contains

exactly one point in A and disjoint from each other except at the basepoint b0 . This

gives a homotopy equivalence between n-(Ik, V) and a bundle, denoted by E, with

singularities over the wedge sum of 3-balls.

Note that the fiber of E at the basepoint bo is the cone Cone (V, Dg.) which is

homotopy equivalent to the (2p -'1)-sphere by choosing a negative eigenvector v- 0 of

Dg restricting on the subspace V for each n E A. Using a bump function near bo,

we can deform a fiber of E in that neighborhood to S2P~1 as well.

Consider a 3-ball B! in the wedge summand, corresponding to the ball containing

27rdi E A. For a point b in B, the operator Dg restricting on Vl has no kernel for

n j Mi. Since B! is contractible, we can deform the cone in the part of Goff V to

a constant family so that

Cone(® V, Dg) Cone<(V, DE) * S(® Cvl),
i!EA fm
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from an identity in Lemma 13. By an argument in Lemma 14, we can construct a

homotopy equivalence between the family of Cone<(VA, Dg) over B% and the sphere

S(Vf). Together, we see that EIl3 is homotopy equivalent to the sphere S(Cvo, e

®Co), where vt'o is a vector linearly independent to v-, in Va. We can move

the wedge point bo along with its fiber to {27rr'n} x V so that the homotopy leaves

this subspace fixed.

After applying this procedure to each 3-ball, we can conclude that n- (Ik, V) is

homotopy equivalent to a "S 2P-'-sum" of q copies of S 2 1. More explicitly, we have

the sphere S(Cvo, ( DI CVi) for each i E Ak n A and these spheres intersect

each other exactly at S(@EA Cv- 0 ). Then, we see that the unreduced suspension of

a S 2P- 1 -sum of S 2P+1 is a SCP-sum of SCP+'*

Proposition 14. Let A C Z' be a subset of the cubic lattice. Suppose that A has

p elements and |A n AkI = q. Then, n-(Ik, @EA Vi) can be described as an S2P-1_

bundle over Ik with q singular points whose fiber is S 2P+l. Moreover, if A' is a subset

of the lattice disjoint from A and Ak, we have

n~ (Ik, (D Vi) C n- (Ik, @V) * S(@ V-).
i!EAUA' AEA i!EA'

Consequently,

Sn (I, ( VI) c Sn~(Ik, Q Vl) A (A Sv).
i!EAUA' iIEA iEA'

Proof. We will only check the second part. From Lemma 13, we have

Cone<( Q V, Dg) e Cone<(D V, D6) * Cone<(( Vii, Dg).
f!EAUA' fiEA AEA'

Since A' is disjoint from Ak, we can choose a continuous family of maximal negative

definite subspaces V -. depending on b E Ik for each n E A'. Since Ik is contractible,

we can deform a family of S(V- ) to a constant family, so that Cone< (DiIEA, VfI, Dg) a
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S(@g!A, V7 ) for some E0 E Ik. Hence,

n -(1k, @ V) - n-(Ik,@ V)* S( V-).
i!EAUA' AEA AEA'

Figure 5-7: An So-sum as an unreduced suspension.

Since v(Ik, V) is contractible, we also have

I(v(Ik, V)) = [Sn (Ik, V)].

Similar to the S' x S2 case, a map between Conley indices v(Ik, V) - v(Ik+1, V) is

induced by the inclusion n~(Ik, V) c n-Ik+1, V).

Let us try to compute homology of Sn- (Ik, V), where V = AnEA V and denote

A := 2r(Ak n A) for simplicity. First, we decompose Ik to a disjoint union of balls

HJg6E B(47r6, b) centered at critical points and a complement Ik \ H~gE; B(37r6, b) so

that its intersection is a union of 2-sphere centered at critical points. This gives a

decomposition n-(Ik, V) = U1 U U2 where

U1 = n-(I, V) n J B(47ro, b) x V and U2 = n (Ik, V) n (Ik \ Q B(47r6, b)) x V.

With p and q as in Proposition 14, we see that, up to homotopy equivalence, U1 is

a disjoint union of q copies of S2p+ 1 and U2 is an S 2P- 1-bundle over a wedge sum

\/ S 2 . The intersection Ui n U2 is a disjoint union of q copies of an S 2P- 1-bundle over

S 2 . Note that the Sl-action on n-(Ik, V) and the above decomposition is free, so its

S1 -homology is equivalent to nonequivariant homology of its quotient.

We apply the Mayer-Vietoris sequence. The quotient of U1 is a disjoint union
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JJ CPP. The quotient of U2 is a CPP- 1-bundle over \/ S 2 whose homology is iso-

morphic to the product H,(CPP-1 ) 9 H,(\/ S 2 ) given by Serre spectral sequence.

Similarly, the quotient of U1 fnU 2 is a disjoint union of a CPP- 1-bundle over S 2 , whose

homology is also given by H,(CPP- 1) & H,(S 2).

H 1(_) 0 2 ... 2p-2 2p

u1 n U2 Zq Z2q 2 2q Zq

U1 Zq Zq Zq Zq

U2 Z Zq+1 Zq+1 Zq

The inclusion map on

The Hopf map induces

Consequently, we have

homology is induced by S2 _ V S 2 and CPP-1 -- > CPP.

isomorphism in the top dimension Hs) (U1 fn U2 ) -> H (U1 ).

the homology of n- (Ik, V) is given by

IZ, M = 0, 2 ,. .. , 2p - 2
H 0 (n- (Ik ,V )) =

Zq , m =2p

To compute homology of Sn- (I, V), we recall a cofiber sequence

n~(Ik, V)+ -+ v(Ik, V)+ --+ Sn (Ik, V).

Since v(Ik, V) is contractible, we have

'Sr(Z)-1)
HZ (Sn-(Ik, V))=

Z,7

m = 2 p+ 1

m = 2p + 2,2p + 4...

We can reproduce and generalize the computation using cyclic homology theory.

This is further elaborated in Section A.1.

From Proposition 14, the Conley index I(v(Ik, V)) is given by Sn-(Ik, (REA Vii)A

(AEA, SI). By choosing D, as the reference quadratic form, we can describe the

part Sn-(Ik, EA V) as the smash product of the S0 -sum of Syl over n' E A with

AEA Svi. This gives a reformulation of I(v(Ik, V)) as a suspension of the SO-sum

of Sv: by Sv-
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Similar to the S' x S2 case, we could say that the stable homotopy type of v(Ik)

is precisely the So-sum of Sv;t for n' corresponding to each critical point in Ik.

Since the map induced by the inclusion Ik c Ik+1 is given by inclusion, we can

conclude

Theorem 2. The stable homotopy type of SWF(T3 ,s) is the S0 -sum of Z3 copies of

SC. Each copy corresponds to the positive eigenspace nV for i e Z3.
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Chapter 6

Twisted Manolescu-Floer Spectra

6.1 Twisted Parametrized Spectra

The concept of twisted parametrized spectra was introduced by Douglas in [8]. Roughly

speaking, a twisted parametrized spectrum is a bundle whose fiber is a spectrum

twisted by automorphisms of the category of spectra.

When there is no twisting by automorphisms of the category of spectra, we recover

a parametrized spectrum (cf. [26]). One can describe a parametrized spectrum over

a space X as a sequence of parametrized spaces E, over X related by fiberwise

suspensions.

Consider a twisted parametrized spectrum over a circle whose monodromy around

the circle is given by the suspension E. One may describe this locally as a parametrized

spectrum over some open set of the circle, but cannot globally describe this as a se-

quence of ex-spaces over the circle globally because of the shift from monodromy.

The above example illustrates that one could formulate twisted parametrized spec-

tra as sections of a "line bundle" of the category Sp of spectra.

Definition 23. Let X be a space. A haunt over X is a locally free rank-one module

over the structure stack Ox of parametrized spectra over X. Given a haunt over X,

a twisted parametrized spectrum is a global section of this haunt. With this setup, a

twisted parametrized spectrum always comes with its underlying haunt.
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One can think of the category Sp as a ring with units given by invertible spectra

Pic(S), also known as the Picard category of the sphere spectrum. We also know

that Pic(S) is weakly equivalent to aut(Sp), the simplicial set of self equivalences

of the category of spectra. Viewing Pic(SO) as a structure group, a haunt over X is

classified by a homotopy class of maps [X, BPic(SO)].

We now return to Seiberg-Witten theory. Because the spectrum SWF(Y, S) is

obtained by performing finite dimensional approximation on the Coulomb slice, the

harmonic gauge group gh has an induced action on SWF(Ys). Using this action,

we will form a twisted parametrized spectrum over the Picard torus T.

Consider a bounded region R in the Coulomb slice. We will compare finite di-

mensional approximation of u - 7?, for u E gh, with that of 1Z. Recall the equation

(4.2.7) which relates induced gradient vector fields under gauge action

1* 0 X(b - u-'du, uw) = u I* 0 X(b, O).

Let V be a finite-dimensional subspace of the Coulomb slice. The above relation

implies equivalence between Conley indices

i(u - (iz n V), f*l X) = u - i(7R n V, U 0X). (6.1.1)

This gives an action of u on Conley indices. If we assume that V contains a subspace

of harmonic 1-forms, we see that u - V = u V where the right hand side means the

partial action of u by multiplication in the spinor part. In particular, u - (1Z n V) =

(u -R) n (u V).

We now consider the spectrum the spectrum E(1R) by its V-space

E(7Z)(V) = i(R n V, Ui* X) A SvLo.

The action of u also extends to the suspension part, given by u - SvLo g(uv)Lo.

This is motivated by the fact that the ambient subspace of u - (1 n V) = (u -R) has

become u V instead of V. Note that the subspace (uV)t0 is not the same as u(V)t0 in
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general. From an identity ((u-1 Lou)#5, 4) = (LouV', u@p), we can identify the positive

space (uV)+ with V:L. where we define u - LO := u-Lou.

In summary, the action of u is given by the map

i(R n V, YI* X) A Sv L -I((u -7?) nl (u v),1i*0X) ASvLo, (6.1.2)

which we view as a combination of two actions: one on Conley indices and one on

the (suspension) spheres. For the first part, we see that the Conley index is shifted

by the action of u as in (6.1.1). This induces an automorphism on SWF(Y, 6).

For the second part, we have a map between spheres

5 L0 --- S u.L0

which comes from a projection Hj -+ H+ between semi-infinite positive spaces.

It is this part that creates a twist for a twisted parametrized spectrum. Since the

difference of LO and u - LO is compact, we know that this projection is Fredholm.

We can then thought of the above map between spheres as an image under the J-

homomorphism of this Fredholm map. Additionally, the space of Fredholm map has

a homotopy type of Z x BU so we have

Z x BU + Z x BG ~ Pic(S).

By the Bott periodicity theorem, the classifying space of Z x BU is the infinite

unitary group U. This says that a classifying map for this haunt over the Picard

torus comes from the composite

T -+ U -+ BPic(S).

We will specifically describe the construction using an open cover in this case when

a torus is a base space. Consider an n-torus covered by 2" open sets obtained from

a product of the cover of a circle with two intervals S1 = Uo U U1 . We will denote
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a product of open sets by concatenating the subscript in a vector form, e.g. the cell

Un, x U,2 x U,, will be denoted by U(ni,n2 ,n3 ). We will also use a bold letter to denote

a vector with 0 := (0,0, 0) for the origin and use ei for the vector with 1 at the ith

slot and 0 elsewhere.

t-92

Ue2 Ues+e 2

UO Ue,

Figure 6-1: An open cover with transition functions for a torus.

For convenience, we retracts each intersection to an appropriate face of Umn viewed

as an m-cube.

Definition 24. A twisted Manolescu-Floer spectrum SWF(Y, s) is defined as a prod-

uct parametrized spectrum Um x SWF(Ys) on each open set Um. The transition

function is given as a product of transition functions on Tbl = (Sl)bl where a transi-

tion function gi on the ith copy of S' is given by the action 6.1.2 applied to ui.

6.2 Homology of Twisted Parametrized Spectra

We now turn to discussion of homology theories for twisted parametrized spectra.

Let E be a parametrized spectrum over X and r be a spectrum. Recall that an

r-homology for E can be defined as

r,(E) = wr,(E/X A r) = 7r,((E Ax r)/X),

where Ax is the fiberwise smash product and the process of quotient by the basepoint

section /X gives back an unparametrized object.
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We first point out that the situation for twisted parametrized spectra is different

from that of parametrized spectra. This is because a twisted parametrized spectrum

does not arise from ex-spaces, and so one cannot collapse the base section to obtain

globally defined homotopy type. One approach to define its homology is to first take

a generalized homology functor to create a new haunt associated to the homology

and then one can take the homotopy groups if the associated haunt is trivial.

Let R be a commutative ring spectrum. Regarding a category of spectra as a

category of SO-modules, we can use R-multiplication to pass this to a category of

R-modules. Given a haunt, its associated R-haunt is its tensor stack with a stack of

parametrized R-modules. This induces a map Pic(S0 ) -> Pic(R) as well as a map

BPic(S) -> BPic(R) between classifying spaces. See [8] for more details.

Let k be a twisted parametrized spectrum over X with XH as the underlying haunt.

We obtain a twisted parametrized R-module k Ax R as a global section of the R-

haunt HR. If the haunt HR is trivial, then k Ax R becomes a parametrized R-module

whose homotopy groups now defined.

Definition 25. Suppose that the associated R-haunt of a haunt H over X is trivial

with a trivialization r. The R-homology group of a twisted parametrized spectrum

F of the haunt H is given by

R(E) = 7r.(T(E Ax R)/X).

This group might depends on the trivialization r.

One can check that the associated R-haunt is trivial by looking at a composite of

the classifying map X -+ BPic(S) -> BPic(R), which could be null-homotopic even

when the map X -> BPic(S) is not.

When c1 (s) is torsion, we know that the classifying map T -> U factors through

the inclusion SU(2) -> U from Lemma 35.1.2 of [18]. Consequently, the classifying

map for the R-haunt comes from the composite

T -> SU(2) <- U -- > BPic(SO) -+ BPic(fR).
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It turns out that, in many cases, a map S 3 ~ SU(2) -- BPic(R) is always null-

homotopic. This amounts to checking that the homotopy group 7r3(BPic(R)) is

trivial. On the other hand, note that 7r3(BPic(S0 )) = Z/2.

Since Pic(R) ~ Pic0 (R) x BGL1 (R), where Pic0 (R) is the equivalence classes of

invertible R-modules and GL1 (R) is the self-equivalences of R, we have

7r3(BPic(R)) = 7r2 (Pic(R))

= 7r2 (BGL1 (R)) (because Pico(R) is discrete)

= r1(GL1 (R)) = 7ri(R).

In the last line, the higher homotopy groups of GL 1 (R) agree with those of R because

GL1 (R) is the unit components of R. Thus, if 7ri(R) = R1 (SO) is trivial, then so is

the associated R-haunt.

As we have a parametrized spectrum, its homotopy groups can be computed using

the generalized Serre spectral sequence.

Proposition 15. (cf. [26]) Let E be a parametrized spectrum over a CW complex

X. Under some technical hypothesis, there is a strongly convergent spectral sequence

E,, ~ 1 gr(Ex) 7rp+q(E).
p-cells

Furthermore, one can identify Ep, with C'eii (X, 7rq(Ex)) so that

E,, =Hp(X,,wq(Ex)),

where irq(Ex) denotes a coefficient system.

The spectral sequence arises from a filtration of the pull-back parametrized spec-

trum EP over the p-skeleton of X. The E1-page comes from a derived couple associ-

ated to a long exact sequence of the pair (EP, EP- 1).

The case for nontorsion c1 (s) is more complicated in many aspects. First, the

classifying map T -+ U does not factor through SU(2) anymore. However, the ob-
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struction corresponds to a class H1 (T) coming from spectral flow around a loop. One

could hope to develop a theory for Z/l-graded homology groups instead. Second,

SWF(Y, s) is not a spectrum but a pro-spectrum, unless we require a perturbation

to be balanced.

We can describe a trivialization explicitly for a haunt over a torus given by the

open cover from previous section. This means we have a map from an open set Um to

the structure group compatible with transition functions. We only need to concern

about the twist coming from the action Svo _, SL.

One can describe a process of constructing a global trivialization inductively on

open sets similar to a cell by cell approach. Denote Up by a set of Um such that m

contains exactly p 1's. Since we have a local trivialization, we can start by a map

sending everything from Uo to the identity. Next, for each U, e U1, we have that

Ue, intersects with U0 at exactly two of the (n - 1)-faces. The transition functions

force that a trivialization on Ue, would send one of this faces to the identity and

another face to gi. Thus, we have a trivialization if we can extend this boundary

condition to the whole Uej. This is the same as finding a path from gi to the identity.

In other words, the first obstruction is whether gi is homotopic to identity for each

i = ,... n.

For Uei+e, E U2 , its intersection with Uo is given by four (n - 2)-faces and the

transition functions give a boundary condition on these faces. If we have a trivializa-

tion on Ui from the previous step, the trivialization on Ue, and Uej, or viewed as a

homotopy, will force more boundary condition on four (n - 1)-faces of Uei+e,. Thus

we will have a global trivialization if we can continue to construct a map on Uei+e,

with this boundary condition. This is equivalent to extending a loop to a disk.

Inductively, we can extend a trivialization on Up to Up+1 if we can extend a map

on &DP+l to DP+1 for each open set in Up+1 which can be viewed as a (p + 1)-cell.

Indeed, if one has a trivialization, the map on ODP+l can be viewed as the attaching

map of the cell.

We consider the problem of extending a trivialization from &DP+1 to DP+l. Recall

that the twisting comes from a projection H+ - H+ which can be regarded as an
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id lid 911
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Figure 6-2: A trivialization for a torus.

element of the restricted general linear group. We can find an extension if the index

bundle of the family over &DPM' is trivial. This index bundle induces the Thom

bundle and we can find an extension on a spectrum level if this Thom bundle is

equivalent to a trivial bundle over &DP1 . When passing to R-module, the condition

for an extension becomes that this Thom bundle has an R-trivialization.

In summary, to be able to take R-homology, one only needs to find an R-orientation

for the Thom bundle associated to each cell of the torus.

Proposition 16. When c1 (s) is torsion, the twisted Manolescu-Floer spectrum SWF(Y s)

is orientable for the Sl-equivariant Borel homology Hr', the c-homology ft', and the

Tate homology f .

6.3 The Manifolds S1 x S 2 and T3 Revisited

As a continuation of Chapter 5, we will investigate the twisted spectra SWF(S x S2 )

and SWF(T3) and their homology groups in this section.

The homology theories of interest are the Sl-equivariant Borel homology Hr',

coBorel homology (or c-homology) 'S', and Tate homology Hf'. See the Appendix

for more background.

Consider the manifold (S' x S2 ,s) with the torsion spinc structure. Since the

action on Conley indices is trivial and the family of Dirac operator has no kernel, we

can conclude that

Proposition 17. The twisted spectrum SWF(S' x S2, s) is equivalent to the trivial
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parametrized spectrum S' x SWF(S' x S2, 5).

Corollary 4. The homology groups of SWF(S' x S2, s) is given by

Hf'(SWF(S' x S2 = H,(Sl) 0 Hi (SO)

and analogous statements hold for the $?' and Nl?' theories.

For the torus T 3 with the torsion spin' structure, the action on Conley indices is

given by a shift in Z3 axis. We can choose a Dirac operator away from a critical of

index 0 so that SWF(S x S2, S) is trivial on the 2-skeleton of T 3 . This shows that

the E1 -page of the Serre spectral sequence agrees with the one from twisted cellular

homology for local coefficient.

The detailed computation is given in Section A.2. We have that the E 2-page of

Hf'(SWF(T3 , s)) is given by

1
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Z 0 0 0
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The E 2 -page of Hf (SWF(T 3,s)) is given by
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We see that the differential d2 vanishes trivially for these two theories. This is not

the case for the E 2 -page of H '(SWF(T3,5))

E2

Z Z3 Z3 z

0 0 0 0

Z Z3 Z3 2

Z 0

1 0 1 2 3

Conjecture 1. The differential d2 E2,1 - 2 is an isomorphism. Consequently,

we have an E3-term

Apart from the d2 of H ' (SWF(T3, s)), the only higher differential left is d3 on

the E 3-page of each of the theories.

Conjecture 2. The nontrivial differential d3 is an isomorphism for each of the the-

ories.
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Chapter 7

4-Manifolds with Boundaries

7.1 Preliminaries

Let X be a compact, connected, oriented, Riemannian 4-manifold with nonempty

boundary aX = Y. We choose a metric so that a neighborhood of the boundary

is isometric to the cylinder I x Y for some interval I = (-C, 0]. Let sx be a spinc

structure on X and s be the induced spine structure on Y. Denote Sx = S+ S S- by

the spinor bundle of X and S by the spinor bundle of Y.

We pick a perturbation q on the boundary 3-manifold Y. This induces a pertur-

bation on the cylinder, but not for a general 4-manifold. We will need a perturbation

on X supported in the collar neighborhood so that the restriction on {0} x Y is q.

In addition, we assume that p is of the form

0 = Oq + 0opo (7.1.1)

in the collar neighborhood, where # is a cut-off function with value 1 near the bound-

ary, /0 is a bump function supported in (-C, 0), and po is a perturbation on Y.

As in the 3-dimensional case, it is important to impose some gauge fixing condi-

tions to obtain a slice of the quotient configuration space. For a 1-form a E iP(X),

we say that a satisfies the Coulomb condition if a is coclosed i.e. d*a = 0.

However, the Coulomb condition is not sufficient to deduce Fredholm property for
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the boundary-value problems. One also need to impose a condition on the restriction

of a on the boundary y. One of the standard boundary conditions is the Neumann

boundary condition given by

(a, n ) = 0 at oX, (7.1.2)

where n' is the normal vector to the boundary.

In this paper, we will consider another boundary condition, which is can be viewed

as the Coulomb condition on the boundary. We say that a 1-form a satisfies the

boundary Coulomb condition if

d*(alax) = 0 at OX, (7.1.3)

where we write d* here to emphasize that we restrict a on aX then take the

3-dimensional d*.

One might view the condition d*(alax) = 0 as complementary to the Neumann

condition. To see this, we use hodge theory to decompose the 1-form a in the collar

neighborhood of OX as

a = at +3t + 7ydt, (7.1.4)

where at is an exact 1-form on Y, /t is a coclosed 1-form on Y , -y is a 0-form on Y,

and each of them is time dependent.

The Neumann condition simply means 70 = 0 , whereas the boundary Coulomb

condition means ao = 0.

We now define the Coulomb slice for a 4-manifold X. Using above terminology,

we denote a space of configuration whose 1-form part satisfies the Coulomb condition

and the boundary Coulomb condition by

Coulcc(X) = {(a,#) E iQ2(X) (D '(S+) I d*a = 0 and d*(alax) = 0}, (7.1.5)
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and we also denote a space of configuration whose 1-form part satisfies the Coulomb-

Neumann condition by

CoulcN(X) = (a,) E i 1(X) D F(S+) I d*a = 0 and (a, n) = 0}. (7.1.6)

The advantage of using Coulcc(X) is that the restriction of its element is already

in the 3-dimensional Coulomb slice Coul(Y). On the other hand, for an element in

CoulcN(X), its restriction is not necessarily in Coul(Y) and one need to compose the

restriction with the (nonlinear) Coulomb projection when applying finite dimensional

approximation.

7.2 Atiyah-Patodi- Singer boundary-value problem

We will prove basic properties of the boundary-value problem coming from lineariza-

tion of the Seiberg-Witten maps between Coulomb slices.

For a reference connection A 0 , we have a linear map

D : CoulCC(X) - i (X) D F(S-) D iG0 (X) (7.2.1)

(a, #)-(d+ a, D + g, d* a). (7.2.2)

We study a map of the form

D E (V~ o r) : Coulcc(X) -+ i* Z (X) ( F(S-) D iQ(X) E Coul(Y), (7.2.3)

where r denotes the restriction map and U- is an appropriate projection on Coul(Y)

for Atiyah-Patodi-Singer boundary condition. We will show that this map, extended

to Sobolev completion, is Fredholm with a priori estimate.

Recall that, first, the restriction map extends to a continuous map between Sobolev

spaces

r: L(X) -+ L 2_1(Y)
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We also recall that, on the 3-dimensional Coulomb slice Coul(Y) = iKer(d*) ED

F(S), there is an operator

Lo : iKer(d*) ED F(S) - iKer(d*) ED F(S) (7.2.4)

(b, V))- (*db, DBO@),7 (7.2.5)

Denote H- by its nonpositive eigenspace and H~ by the projection onto H6~. The

projection H- is chosen to be a projection commensurate to H 0.

We also use the following facts. When 1 is commensurate to no, we have Index

Ind(D E H) = Ind(D E Ho) + Ind(nnO)

When an operator D of the form

D = D E D 2 : V -+ W 1 EDW 2 , (7.2.6)

it is not hard to check that

Ker(D) = Ker(D1IKer(D 2 )) = Ker(D 2 |Ker(Di)), and (7.2.7)

Coker(D) = Coker(D 2) ED Coker(D1IKer(D 2 )) (7.2.8)

= Coker(Di) E Coker(D 2 |Ker(Di)) (7.2.9)

Proposition 18. The map D ED (U-- o r) in (7.2.3) is Fredholm and we have an

estimate

||x| < C (I|Dx| + 1 (H o r)xI + x||IL2) (7.2.10)

Proof. The main idea is to apply the Atiyah-Patodi-Singer boundary-value problem

(cf. [1]) and comparing two different semi-infinite subspaces as in [18]. One subspace

arises from a spectral boundary condition while another comes from a semi-infinite

subspace of the Coulomb slice of Y.

We consider an elliptic operator D coming from a linear part of the Seiberg-Witten
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map combined with the Coulomb gauge fixing

D : 4 1(X) ED 1(S+) -+ iQ(X) ED r(S~) ED iQ(X) (7.2.11)

(a, #)-(d+a, D+ g, d*a). (7.2.12)

One can write b = Do + K, where K extends to an operator of order 0 and Do

has the form

d
Do = dt±+L, (7.2.13)

in the collar neighborhood (up to isomorphisms). The operator L is a first-order,

self-adjoint elliptic operator given by

L :4 1(Y) ED r(S) ED iQ0 (Y) -+ iQ'(Y) ED r(S) ED iQ2(Y) (7.2.14)

(b, O, c) -4 (*db - dc, DBOO, -d*b), (7.2.15)

which is a linear part of the 3-dimensional Seiberg-Witten map with the Coulomb

gauge fixing. Using the Hodge decomposition, we can write L restricted to iQ1 (Y) ED

4 00(Y) = ilm(d) ED iKer(d*) ED iQ0 (Y) as a block

0 0 -d

0 *d 0 .(7.2.16)

-d* 0 0

From the above decomposition, one can also view the domain of L as Coul(Y) E

ilm(d) E iQ0 (Y), so that L = L E Li where Li has a block form

0 -d] (7.2.17)
-d* 0
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Now we apply the Atiyah-Patodi-Singer boundary-value problem. The operator

D E (H- o r): iQ(X) ED r(s+) -- iQ2(X) E r(s-) eD iQn(X) ED (7.2.18)

is Fredholm, where H- C Coul(Y)EDilm(d)EDiG2(Y) is the nonpositive eigenspace

of L and F~ is its spectral projection.

On the space ilm(d) E iG0 (Y), let H- is the nonpositive eigenspace of L 1 and Ull

be its spectral projection and denote 12 be a projection onto ilm(d) ED {const}. We

see that fl = Ho ED H and it is commensurate to a projection 11- ED H1-.

Observe that dd* is positive, self-adjoint on ilm(d). Then, for each b E ilm(d),

the pair (b, d*(dd*)-1/ 2 b) lies in H-. Moreover, (0, c) lies in Hi when c is a constant

function. Hence, H, is complementary to {0} ED {const}'.

Consequently, the kernel of 11- E 12 is complementary to the image of H- ED U-.

By Proposition 17.2.6 of [18], the operator b ED ((1- ED 12) o r) is Fredholm.

Finally, we compare b ED ((I- ED 12) o r) with b E ((11- ED H 2) o r) where 12 is a

projection onto iIm(d) ED {0}. By setting, D 2 = d* ED (f 2 o r), we see that Ker(D 2) =

Coulcc(X) and the cokernel of D 2 is the cokernel of d* which has dimension bo(X).

Thus, the map D E (11- o r) is Fredholm with index

Ind(D E (11- o r)) = Ind(b ED (l- o r)) + Ind(I-O) + bo(X) + bo(Y) (7.2.19)

The estimate is also a consequence of the Atiyah-Patodi-Singer theorem combined

with commensurate projections.

7.3 Finite Dimensional Approximation

We will apply finite dimensional approximation to the Seiberg-Witten map together

with a boundary condition as in [22]. Consider the map

,p ED (1- o r) : CoulCC(X) -> iQ2(X) ED r(S-) ED Coul(Y), (7.3.1)
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where a, is the Seiberg-Witten map with a decomposition a, = D + Q. For conve-

nience, denote Vx by iQ'(X) D F(S-).

We outline the construction which is based on [22]. First we pick a sufficiently

large radius R. The image of the ball B(R) C Coulcc(X) under the restriction map

is bounded. We can pick a bounded isolating neighborhood R containing this image.

For each positive integer n, we consider a projection Un on Coul(Y) commensurate

to 1--.

Since D D (U;n o r) is Fredholm, we can pick a finite-dimensional subspace V o W"

of Vx D Coul(Y) that contains the cokernel this map. We can also choose Wn so that

R n W, is an isolating neighborhood of the compressed flow on Wn. Let Un be the

preimage of V, ED Wn, under D e (U7I o r).

Consider a map a, D (rUn o r) on the ball

B(R, Un) -+ B(R', V) x R.

We will try to show that this gives rise to a quotient map

B(R, Un)/S(R, Un) -+ B(En, Vn)/B(cn, Vn)c A N/L,

where (N, L) is an index pair of R n Wn by applying Lemma 5. The map in the first

factor sends everything outside the ball of radius En to the basepoint. An important

part is to check the hypothesis of Lemma 5 for existence of such (N, L). Consequently,

this gives a map

Sun - S A ((R n Wn) (7.3.2)

We show that this construction works when Vn, Wn are sufficiently large and En is

sufficiently small.

Lemma 15. Let {xn} be a bounded sequence in L 2 such that (b + ienQ)xn -+ 0 in

Lk. Suppose that there are half-trajectories yn : [0, oo) --> W, uniformly bounded in
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k+1/2 and satisfy

a
-- yn(t) = irnFyn(t), (7.3.3)aIt

together with yn(O) = (,rn o r)Xn. Then, after passing to a subsequence, the sequence

{X} converges to x in Lk+ 1 and there exists a Seiberg- Witten half-trajectory y with

y(0) = r(x).

Proof. First we consider the weak limit z, , x in LZ+1. Then we have x -+ x in L2

by Rellich lemma. Since a linear map preserves weak limits and Q is continuous in

L, we have (b + Q)x - (b + Q)x weakly in L2.

On the other hand, we see that

(D + o)Xz (b + *n)x + (1 - fr)zXn . (7.3.4)

The first term goes to 0 by hypothesis while the second term also goes to 0 because

(1 - frn) converges to 0 uniformly on compact subset. Thus, (D + Q)x must equal to

0. Moreover

|ID(Xn - X)II (b + Q)Xx + z - OzX -> 0. (7.3.5)

Next, we move on to the restriction of x to 3-dimensional configuration. Similar

to the proof of Proposition 11, there is a half-trajectory y : [0, oo) -> K such that

yn(t) -> y(t) in Lk+1/ 2 uniformly on compact subsets of the open half-line (0, oo) but

only in L2 on compact subsets of the closed half-line [0, oo). We also have

-ty(t) = Fy(t). (7.3.6)

Consider the exponential that j (etDwj - tD -(D + $)

eD7 ~y(1) - 7r-(0) = jetDr (DT(t) + 79 y(t)) dt (7.3.7)
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When -y = y - ya, we see that

8(D + )(yn - y) = (Dirn - 7r.D)yn + 7rn(Qy - Qyn) + (1 - 7rn)Qy. (7.3.8)

Since Lirn - rnL -- 0 as a bounded operator on L+2 and Yn uniformly bounded,

so that (D7rn - 7rnD)yn(t) - 0 in L e/ 2 uniformly on [0, oo).

For the other terms, we use the fact that etDK- and Q is a bounded map on

k+1/2, so that

et D- (7r(Qy(t) - Qyn(t)) - (1 - 7rn)Qy(t))1L 2  R1 ,
k+ 1/2

on [0, 1] for some constant R'.

We fix 6 > 0. By continuity of Q, we have that Qyn(t) -- Qy(t) in L 2

uniformly on [6,1]. We also have that y is smooth on [6,1] so that ||y(t) 1L2 is

bounded on this interval. By compactness of Q, we get that (1 - irn)Qy(t) -+ 0 in

L +1 /2 uniformly on [6,1] as well.

Hence, for 6 sufficiently small and n sufficiently large,

j ie t D 7 (7n(QY(t) - QYn(t)) + (1 - Lrn)Qy )IIL 2  dt -+ 0 (7.3.9)/10 k+1/2

We conclude that in L e/ 2 topology

II-(y(0) - Yn(0)) IIe'w(y(1) - y(1)) - -(y(0) _ yn(0)) 1 + jleDX-(y(1) -

5 tD - D - ( () -Y~ )
< e t r(D + )(Yn(t) - Y(t)) dt ± Ilie iy()X

and the last line goes to 0.

Since r is linear and by, we have that r(xn) converges weakly to r(x) in L 2

In particular, 7r-yn(0) = gr-7rnr(xz) converges weakly to ir-r(x) in L +1 /2 . Thus we

must have ir-r(x) = ir-y(O). The elliptic estimate implies that X converges to x in

L+1 and we also have r(x) = y(O).
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We will need boundedness result for Seiberg-Witten half-trajectories result anal-

ogous to Corollary 3 for the case of 3-manifolds.

Proposition 19. ([181, Proposition 24.6.4) For C > 0, the space of (broken) X-

trajectories with energy < C is compact.

We now state the main result.

Proposition 20. For V, W, sufficiently large and e,, sufficiently small, the map

ap (Ifl- o r) satisfies the hypothesis of Lemma 5.

Proof. (Sketch) We will prove by contradiction. Suppose there is a sequence of V, W.,

and En not giving a pre-index pair. This gives a sequence {X} of approximate solu-

tions of the 4-dimensional Seiberg-Witten equation and a sequence {yn} of approx-

imate Seiberg-Witten half-trajectories such that r(Xz) = yn(0). By Lemma 15, the

sequence {Xn} converges to a solution x and {y,} converges to a half-trajectory y with

r(x) = y(0). Together, we have an X-trajectory with finite energy. The contradiction

arises from compactness and boundedness property from Proposition 19. O

It is not hard to see that such maps commute with maps between Conley indices

of attractor-repeller pair. As a result, we have a map

S -> SWF(Y).
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Appendix A

Homology Computation

A.1 Equivariant Homology and Cyclic Homology

In this section, we will provide a background for equivariant homology theory. Al-

though, we will mainly focus on the S1 -equivariant Borel homology and Tate homol-

ogy, we will use a general framework set up by Greenlees and May in their book [13].

We will also introduce cyclic homology theories which is equivalent to S1 -equivariant

homology theories but can be computed more explicitly.

Classically, the Borel homology of a G-space X is defined to be the homology of

its homotopy quotient, i.e.

H (X) = H,(X XG EG).

In general, given a G-spectrum kG, we define the following spectra

f(kG) = kG A EG+, c(kG) = F(EG+, kG), t(kG) = F(EG+, kG) A EG,

where F(EG+, kG) is the function spectrum and kG is the unreduced suspension of

EG with one of the conepoints as the basepoint. These spectra give homology and

111



cohomology theories for a G-spectrum (or a G-space) X by

f(kG)a(X) = [S", X A f(kG)G and f(kG)a = [X, S" A f(kG)]G-

The spectrum f(kG) is called the free G-spectrum associated to kG and it follows

that f(kG) represents a version of Borel homology. The spectrum t(kG) is called the

Tate G-spectrum associated to kG as it represents Tate homology and cohomology

theories. The spectrum c(kG) is called the geometric completion of kG-

One of of the properties of these three spectra associated to kG is that they form

a cofibration sequence

f (kG) - c(kG) -+ t(kG)

and consequently give rise to a long exact sequence of homology groups

... -+ f(kG)n(X) -- c(kG)n(X) -+ t(kG)n(X) -- f(kG)n-1 (X) -- ....

From now on, we will be mainly concerned with the case G = S' and kG = HZ the

Eilenberg-MacLane spectrum regarded as an S1 -spectrum with trivial action. The

associated homology and cohomology theories in this case can be computed using

cyclic homology and cohomology theory introduced by Jones in [15].

Definition 26. Let P := Z[u, u- 1] where deg(u) = 2 and C be a chain complex with

a degree one operator J such that dJ + Jd = 0 and J 2 = 0. Define a differential on

P 0 C by the formula

d(up 0 x) = p 9 J(x) +up @ d(x),

where p E Zu, u-1]. This also gives a differential on a quotient complex P+ 0 C and

a subcomplex P- 0 C where P- is the negative degree part of P and P+ P/P-

Z[u].

Let X be a pointed CW-complex with a cellular action by S 1 . The circle action

induces a degree one operator J on the reduced cellular chain complex C, (X) given
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by J(x) = f,(c 9 x) where c is the single 1-cell of S1 and f is the action S' x X -> X.

One can check that dJ + Jd = 0 and J2 = 0, so we have a complex P ® C,(X) as

in the above definition. It turns out that the homology of this complexes agree with

appropriate S'-equivariant homology theories.

Proposition 21. ([13], Theorem 14.2) There are isomorphisms

H 1 (X) Hn (P+ 0 C,(X)) f (HZ)n+1(X),

HS (X) Hn_1(P- 9 C,(X)) c(HZ)n+1(X),

fns (X):=Hn(P(9C, (X)) f:-t (HZ) n+2 (X).-

The homology H:', I, Hf will be called Borel homology, c-homology, and Tate

homology respectively. The c-homology is sometimes referred as coBorel homology.

We first remark that we slightly change the notation and the grading from [131 to

align with Floer homology groups. Our fn' is their H5 and our 'SH is their HS'

so the long exact sequence has a form

.. ' $(X) ->+ H(X ->H X - (X) -+.....

Second, we can define these homology groups with coefficient in an arbitrary

abelian group. The above isomorphisms still hold, but we need to replace HZ with a

spectrum corresponding to an appropriate Mackey functor.

For example, the homology groups for So are given by

... -4 -3 -2 -1 0 1 2 3 4

ft (SO) ... Z 0 Z 0 Z 0 Z 0 Z ...

H: (SO) ... 0 0 0 0 Z 0 Z 0 Z

I: (So) ... 0 z 0 z 0 0 0 0 0 ...

Now, we consider the one-point compactification Sc of the complex plane with

a circle action given by complex multiplication. We can give S' a CW-structure

with a cellular action by S1 . First, give Sc a cell decomposition with 2 cells in each
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dimension just as the 2-sphere. Denote x+, y ± z+ by its 0-cells, 1-cells, and 2-cells

respectively. The standard differential of the cellular chain complex is given by

dy+ X+ - ~, dz+ =y+ + y-,

dy- = x~ - x+, dz = -y+ _ y-

The circle action by complex multiplication acts nontrivially on the 1-cells. Viewing

x as {oo} or the north pole and x+ as {0} or the south pole, we see that y+

travels from {oo} to {0} along the negative imaginary axis and y- travels from {0}

to {oo} along the positive imaginary axis. The cells z+ and z- are right and left

hemispheres given an outward normal orientation. As in Figure A-1, the S1 -action is

the counterclockwise rotation around the z-axis. We see that the image of y+ under

rotation gives a sphere with outward normal, while the image of y- gives a sphere

with inward normal. Thus, the action of J is given by

J(y+) = z+ + z-, J(y-) = -z+ - z-.

I

Figure A-1: A CW-structure on Sc with a cellular action by S'.

Let X be the S 0 -sum of N copies of the spheres Sc as described in Section 5.3.

The above CW-structure of Sc gives a cell decomposition of X by given by two 0-

cells {x+,z-}, 2N 1-cells {yf, yf}, and 2N 2-cells {zf,zf} for j = 1,...,N with

differential

dy = x+ x-, dzt =y+y3,

dy=- - X+, dz_ -y+ - yi

and the J-action J(yf) = + z;). The first few terms of the chain complex

P+ 9 C,(X) is given by

Z 4- Co(X) +- C1(X) e uZ <-- C2(X) D uCo(X) <-- uC1(X) eDU 2 Z .-
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where Z is the augmented group for a reduced cellular chain complex. The u-term

does not affect the differential except when pairing with a chain from C 1 (X), e.g.

d(uy2) = z+ + zi + u(x+ -x-).

With this, one can find the homology groups H, (P+ 0 C,, (X))

1 2 3 4 5 6 7 ...

H,(P+OC,(X)) ZN-1 Z o Z o Z o

The group H 1 (P+ 0 C,(X)) consists of classes [E cjyj] such that E cj = 0 and,

for each positive even integer k, the group Hk(P+ 0 C,(X)) is generated by a class

[uk/ 2 (X+ -X-]

For the complex P- 0 C (X), the first few terms of the chain complex is given by

111 1 1 1 1 1
...+ -C2 (X) jDe CO(X) <- -1C1 (X) @e-Z <- -2C2 (X) (e-CO(X ) +- - C1 (X) +- - C2(X ).

Similarly, we can find that its homology groups are given by

0 -1 -2 -3 -4 -5 -6 ...

H,(P- @ C,(X)) ZN 0 Z 0 Z 0 2

The group Ho(P~ 0 C,(X)) consists of classes [E cu- 1 (zj + zf)] and, for each

negative even integer k, the group Hk(P- 0 C, (X)) is generated by a class [uk/2(x+

x~)]. Finally, we have the chain complex of P 0 C,(X) is given by

. .. +- U"C1(X) e1 Un+1Z +- U"C2(X) eD Un+1Co(X) < .

with its homology groups

-3 -2 -1 0 1 2 3 ...

H,(P9C,(X)) ... 0 Z 0 Z 0 Z 0 ...

We observe that Hft (X) = Hf' (S'). This is because the Tate homology only detects

the singular part under the circle action and the action on X is free except at two

fixed points.
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A.2 Twisted Cellular Homology

In this section, we introduce a twisted cellular homology theory to compute homology

with local coefficient. Some treatments can be found in [7].

We will specialize to the homology of the three-torus with a local system of equiv-

ariant homology of another space. In our case, we can start at a chain level by setting

up a twisted chain complex. Let X be a space and suppose that X has a CW struc-

ture with a cellular Z3 -action. On the cellular chain level, this means that there is a

Z3 -action on each chain group C (X) and the action intertwines with the differential.

With this we will define a chain complex which is a product of C(T 3 ) and C (X)

but twisted by the Z3-action. This chain complex can be viewed as coming from a

twisted CW-structure of the homotopy quotient X xZ3 EZ 3 of X.

Since the total space EZ 3 is R 3 , we can consider a standard lattice CW-structure

on R3 with a free cellular Z3 -action. We first consider a cell structure of the real line

whose 0-cells and 1-cells are given by eo and e' for each n E Z. The differential is

given by

d(el) = eo - eo.

This gives a product cell structure on R3 and we will denote a product of cells by

concatenating a superscript and putting a subscript in a vector form, e.g. the cell

e0 x e l x en will be denoted by e010 We will also use a bold letter to denotefll n2 nl3 e(n 1, n2,f3)*W ilas s odlte odnt

a vector and, in particular, use bold letters ij, k for the standard basis

i := (1, 0, 0), j := (0, 1, 0), k := (0, 0, 1)

and 0 := (0, 0, 0) for the origin. With this notation, the boundary of the cube is given

by a formula

011l=epl i 101 101 110 110
0 e - eo - e 0 + ±e +e -e .

A differential for a twisted complex is induced by the differential on C,(R3 )&C,(X)
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quotient by the diagonal action. For example, we have

d(e' 0 ®x) = (e" - eg0' - eja + )@ - eeo1 Odx

010 - 010 100 100 __110..)

=e 0 o ix-e 0 o &x-e 0j+e 0 @ -Ox e 0 odx. (A.2.1)

This allows us to compute a homology with local coefficient system.

Suppose further that X has a circle action which induces a degree one operator

J on C, (X) as in the previous section. If the circle action and the operator J is

compatible with the Z3-action, we can consider the product of complexes C, (R3) and

P 0 C,(X) twisted by a Z 3-action (as well as P+ and P-).

Let X be a S0-sum of Z3 copies of Sc with a CW-structure described in the

previous section. We can index the 1-cells and 2-cells {y+, y-, z+, z; } by an element

of Z3, so that the action of m E Z3 is translation of a subscript n - m + n and the

action is trivial on 0-cells.

We will use a spectral sequence of a filtered complex to compute the homology of

this twisted cellular homology. Similar to the case of a double complex, one of the

canonical filtration is given by

FpCp+q = C,(R 3) 0z3 C, (P ( C, (X)).
r+s=p+q

r:5p

By shifting a subscript of each term from Cr(R3 ) to 0 as in (A.2.1), we see that the

El-page is obtained by taking homology in vertical direction. We can identify the

El-term as

E, = C(T 3 ) 0 Hq(P 0 C,(X)).

Remark. This spectral sequence only agrees with the Serre spectral sequence of

SWF(T3 , s) only on the El-page and the groups on E 2-page. The higher differentials

are not necessarily the same. This is because the differential here only accounts for

the Z3-action on X but not the action on the category of spectra. However, one

could still hope to modify the differential to make the chain complex equivalent to
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the Morse-Floer complex for Floer homology.

We will start with the local coefficient system in H,(P- C,(X)). From the result

in Section A.1, the E1 -page is given by

0 1 2 3

Co(T3) ( (gz3 Z )

0

Co(T 3 ) 0 Z

0

Co(T 3 ) 0Z

C1 (T3 ) 0 (gz3 Z )

0

C1 (T 3 ) 0Z

0

C1 (T 3 ) 0 Z

C 2 (T3) z( Z )

0

0

C2 (T3 ) 0 Z

C3 (T3) 0(Z 3 Z)

0

C3 (T 3 ) 0&Z

0

C3 (T3 ) 0&Z

We will proceed by computing the differential d'. For a negative even integer q,

a generator of Hq(P+ 0 C,(X)) is represented by a cycle uq/2 (X+ - X-). Since this is

invariant under the Z3-action, the horizontal differential d' : E1 ,24 -- E_1,2q is just

the differential of C,(T 3 ) which is zero. Thus, for such q, we have

E,q= H(T 3).

On the other hand, recall that the group Ho(P- 0 C,(X)) has a basis given

by {[u-1 (z+ z-)]}.lEZ3, each of which is not invariant under the Z3-action. As a

result, the differential d'. for E),0 is not as trivial as in other groups. To simplify the

computation, we will slightly change the viewpoint by shifting the subscript of the

term (Z+ + z-) to 0 instead. In other word, we rewrite an element of E,0 as

eO (S c.[u-1(z+ + z-)]) = ([ c-e) 0 [u1(z+ + z-)].
nEZ

3  nEZ3

We can then identify E), 0 with the (lattice) cellular chain group C,(R3 ) and the

differential d" can be identified with the standard differential on C,(R 3 ). Therefore,
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we have

0, p-/z0.

Because there is a shift in the grading, the homology of T3 with local coefficient
-si

in the c-homology of X, denoted by H,(T3, _H (X)), is the group Eq_ of above

spectral sequence.

Next, we look at the spectral sequence of local system in H, (P+ C, (X)) whose

El-page is given by

4 Co(T3) oZ C1 (T
3) ®Z C2 (T 3 ) D Z C3(T3)

3 0 0 0 0

2 Co(T 3 ) @Z C1(T
3 ) ®Z C 2 (T 3 ) & Z C3(T 3)

1 Co(T 3 ) 0 (Z 3- Z) C1 (T3) 0 (gZ3-1 Z) C2 (T3 ) & (gZ 3 -i Z) C3(T3) ® (®Z'

0 1 2 3

Analogously, the differential d' for E),q is zero when q # 1. We recall that the

group H1 (P+ 0 C. (X)) consists of classes [EnEz3 cy+] with Enez3 c" = 0 with

finitely many nonzero terms. We also shift y+ to y+ similar to the P- case, but we

will identify Ej,1 with a subgroup of C,(R3) instead.

We define a balanced chain group Cal (R3) as a kernel of the generalized augmented

map c: C,(R 3) - C,(T 3 ) which adds up all the coefficient of the term in the same

Z3-orbit. It is straightforward to see that a boundary of a balanced chain is also

balanced, and C "(R 3 ) becomes a subcomplex of C,(R 3). In fact, a boundary of any

chain is balanced because it holds for each of a generator. We now identify a complex

(E, 1, d') with the balanced chain complex (Cya(R 3 ), d).

Observe that a p-cycle of C. (R 3 ) is always balanced for p > 0. Because we

know that H_(R 3 ) = 0, any p-cycle is a boundary and is therefore balanced from the

previous paragraph. Consequently, if a chain is a boundary of an unbalanced chain,
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it cannot be a boundary of a balanced chain.

We claim that Ho(Cal(R3 )) has a basis {[eP00 - e0 0], [e0 0 - e0 0], [e" 0 - e001],

where we can view each element as deo", deg 0 , and deo1 respectively. A group of

balanced 0-cycles is generated by {e 00" - eg0 }.go and we can choose a path from n

to 0 as a 1-chain. By adding an appropriate linear combination of e100 , e 10 , and e00,

we can make this 1-chain balanced. This shows that e000 - eg0 is homologous to a

linear combination of deO, de 0 , and de"1 . On the other hand, a linear combination

of el"j0 , eg10 , and e0 1 is not balanced unless it is zero, so {[de'0], [de 1 0 ], [deg01]} is

linearly independent.

Similarly, one can check that H,(C!'(R3)) is generated by a boundary of genera-

tors of Cp+1(T 3 ). In summary, we have

Z, p=0,1

E,, 1 = Z, p=2

0, otherwise.

Lastly, the spectral sequence of local system in H,(P & C,(X)) is simpler than

the others because a generator of the homology group H, (P 0 C, (X)) is of the form

[uk(X+ _ X-)] which is invariant under Z3 -action. The E 2-page is given by

E,,= H(T 3) 0 Hq(P & C.(X)).

A.3 RO(G)-graded Equivariant Homology

Besides an integer grading, an equivariant homology theory also comes with RO(G)-

grading. This can be seen from the definition k,(X) = [S', X A k]G where we can let

a be any virtual representation of G.

Let X be a G-space, k0 be a G-spectrum, and f(kG) := kG A EG+. In our case,

G = S1 and kG is the Eilenberg-Maclane spectrum so that f(kG) represents the Borel

homology. The action of S' on X is either trivial or free (induced by multiplication by
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unit complex numbers). We will try to compute f(kG)c+n(X) = [Sc+", X A f(kG)]G

by relating it to integer-graded groups and nonequivariant homology groups.

The sphere SC+n can be viewed as the unreduced suspension of a unit sphere

S(CER") - S(C)*S(R'). Then the orbit space Sc+n/G is the unreduced suspension

of {pt} * S(R") e D(R") while the fixed point space is the unreduced suspension of

S(R"). We deduce that, for spaces,

[Sc+",I X]G = [(D n+1, S"), (X, XG)]. (A.3.1)

We claim that this extends to stable category, i.e.

[Sc+", X A f (kG)]G = [(Dn+1 , Sn), (X A f (kG), (X A f(kG))G)] (A.3.2)

= grl+1(X A f (kG), (X A f (kG))G). (A.3.3)

Next, we use the long exact sequence of relative homotopy groups

-+ grl+1(B) -+ 7rt+1 (A) -+ -xrf+1 (A, B) -+ -xn"(B) -> 7r't(A) -

Since the action on S" is free, we have 7rnt((X A f(kG))G) = f(k)nG(X) and 7rit(X A

f(kG)) = irn(X A kG) = kn(X) because EG is contractible. Therefore, we have a long

exact sequence

-+ f(k)G n+(X) -+ kn+1 (X) - f (kG)G+n(X) - f (kG)G (X) - kn(X) -+.

After plugging in Borel homology, we have

S Hia (Xa ) Hn+ (X) f(kG C-+n(X) -l Ho a 1d (XT ) -+ Hn(X )

Similar argument applies to the c-homology and Tate homology.
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