MODELING REAL-TIME HUMAN-AUTOMATION
COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES

by

ANDREW S. CLARE

S.B. Aerospace Engineering with Information Technology, Massachusetts Institute of Technology, 2008
S.M. Aeronautics and Astronautics, Massachusetts Institute of Technology, 2010

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013
© 2013 Andrew S. Clare. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created.

Author:

Andrew Clare, Dept. of Aeronautics and Astronautics
May 23, 2013

Certified by:
Mary L. Cummings, Thesis Supervisor
Associate Professor of Aeronautics and Astronautics
Director, Humans and Automation Laboratory

Certified by:
Emilio Frazzoli
Associate Professor of Aeronautics and Astronautics

Certified by:

Nelson P. Repenning
Professor of Management Science and Organizations Studies

Accepted by:

Eytan H. Modiano
Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee






MODELING REAL-TIME HUMAN-AUTOMATION
COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES

by
Andrew S. Clare

Submitted to the Department of Aeronautics and Astronautics on May 23", 2013 in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in Aeronautics and Astronautics.

Abstract

Recent advances in autonomy have enabled a future vision of single operator control of multiple
heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain
environments will require the computational ability of optimization algorithms combined with the
judgment and adaptability of human supervisors. Automated Schedulers (AS), while faster and more
accurate than humans at complex computation, are notoriously “brittle” in that they can only take into
account those quantifiable variables, parameters, objectives, and constraints identified in the design stages
that were deemed to be critical. Previous research has shown that when human operators collaborate with
AS in real-time operations, inappropriate levels of operator trust, high operator workload, and a lack of
goal alignment between the operator and AS can cause lower system performance and costly or deadly
errors. Currently, designers trying to address these issues test different system components, training
methods, and interaction modalities through costly human-in-the-loop testing.

Thus, the objective of this thesis was to develop and validate a computational model of real-time
human-automation collaborative scheduling of multiple UVs. First, attributes that are important to
consider when modeling real-time human-automation collaborative scheduling were identified, providing
a theoretical basis for the model proposed in this thesis. Second, a Collaborative Human-Automation
Scheduling (CHAS) model was developed using system dynamics modeling techniques, enabling the
model to capture non-linear human behavior and performance patterns, latencies and feedback
interactions in the system, and qualitative variables such as human trust in automation. The CHAS model
can aid a designer of future UV systems by simulating the impact of changes in system design and
operator training on human and system performance. This can reduce the need for time-consuming
human-in-the-loop testing that is typically required to evaluate such changes. It can also allow the
designer to explore a wider trade space of system changes than is possible through prototyping or
experimentation.

Through a multi-stage validation process, the CHAS model was tested on three experimental data
sets to build confidence in the accuracy and robustness of the model under different conditions. Next, the
CHAS model was used to develop recommendations for system design and training changes to improve
system performance. These changes were implemented and through an additional set of human subject
experiments, the quantitative predictions of the CHAS model were validated. Specifically, test subjects
who play computer and video games frequently were found to have a higher propensity to over-trust
automation. By priming these gamers to lower their initial trust to a more appropriate level, system
performance was improved by 10% as compared to gamers who were primed to have higher trust in the
AS. The CHAS model provided accurate quantitative predictions of the impact of priming operator trust
on system performance. Finally, the boundary conditions, limitations, and generalizability of the CHAS
model for use with other real-time human-automation collaborative scheduling systems were evaluated.

Thesis Supervisor: Mary L. Cummings
Title: Associate Professor of Aeronautics and Astronautics
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1 Introduction

Real-time scheduling in uncertain environments is crucial to a number of domains, including Air
Traffic Control (ATC) (Wickens et al., 1998), rail operations (Kwon, Martland, & Sussman,
1998), manufacturing plants (Jackson, Wilson, & MacCarthy, 2004), space satellite control
(Howe et al., 2000), and Unmanned Vehicle (UV) operations (Clare, 2010). The representative
setting for this thesis will be UV operations, as the use of UVs has increased dramatically over
the past decade (Girard & Hedrick, 2004; Naval Studies Board, 2005; U.S. Air Force, 2009). The
United States Department of Defense (DoD) allocated $1.82 billion for UV research and
development in its 2010 budget, with general UV funding increasing 18% from 2009
(Washington Technology, 2009). Beyond military operations, UVs were used in natural disaster
relief efforts and in the response to the Fukushima nuclear disaster (Madrigal, 2011; Thomas,
2012). Recently, the U.S. Congress passed legislation (H.R. 658, 2012) mandating the
integration of commercial Unmanned Aerial Vehicles (UAVS) into the U.S. National Airspace
System (NAS) by 2015. UAV integration into the NAS is projected to have an $82 billion
economic impact over 10 years (Jenkins, 2013), with uses for UAVs including agriculture,
wildlife monitoring, firefighting, search and rescue, border patrol, atmospheric research, and

cargo delivery.

While these UVs contain advanced technology, they typically require multiple human operators,
often more than a comparable manned vehicle would require (Haddal & Gertler, 2010). The need
for many operators per UV causes increased training and operating costs (Haddal & Gertler,
2010) and challenges in meeting the ever-increasing demand for more UV operations (U.S. Air
Force, 2009). For nearly a decade, the U.S. DoD has envisioned inverting the operator-to-vehicle
ratio in future scenarios where a single operator controls multiple heterogeneous (air, sea, land)
UVs simultaneously (Naval Studies Board, 2005; Office of the Secretary of Defense, 2005).
More recently, the DoD made it clear that increasing UV autonomy and developing advanced
techniques for manned-unmanned teaming are priorities for future research in the “Unmanned
Systems Integrated Roadmap FY2011-2036” (DoD, 2011). The roadmap discussed the need for
more advanced autonomy, the desire for this autonomy to be flexible and adaptable to dynamic
and uncertain environments, the need for collaborative autonomy between multiple UVs, and the

need for new verification and validation approaches to certify increasingly complex autonomy.
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Recent advances in the autonomous capabilities of UVs have enabled these vehicles to execute
basic operational and navigational tasks on their own and collaborate with other UVs to complete
higher level tasks, such as surveying a designated area (Alighanbari & How, 2006; Bertuccelli et
al., 2009). Researchers have demonstrated autonomous collaboration and swarming behavior
with anywhere from three to hundreds of vehicles (see Mohan & Ponnambalam, 2009 for a
review). In October 2012, NASA and DARPA demonstrated advanced collaboration between
multiple UVs for autonomous aerial refueling between two unmanned, high-altitude Global
Hawk aircraft, as shown in Figure 1 (NASA, 2012).

Figure 1. Demonstration of autonomous multi-UV collaboration for aerial refueling (NASA, 2012).

To effectively control multiple semi-autonomous UVs, some method is necessary for scheduling
tasks. For the purposes of this thesis, scheduling is defined as creating a temporal plan that
assigns tasks among a team of UVs and determines when the tasks will be completed. While this
thesis will not focus on path planning per se, it should be noted that path planning is coupled
with the scheduling problem, due to the need to estimate how long it will take for a UV to travel
to a certain location to accomplish a task. A wide variety of optimization algorithms have been
developed to address the problem of scheduling tasks for multiple UVs (see Clare, Cummings, &

Bertuccelli, 2012 for a review). While varying in their method of formulating the scheduling
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problem and solving the optimization, all of the approaches cited in the above paper utilize an

Automated Scheduler (AS) with little to no human input during the development of the schedule.

However, in the presence of unknown variables, possibly inaccurate information, and changing
environments, automated scheduling algorithms do not always perform well (Scott, Lesh, &
Klau, 2002; Silverman, 1992). Though fast and able to handle complex computation far better
than humans, optimization algorithms are notoriously “brittle” in that they can only take into
account those quantifiable variables, parameters, objectives, and constraints identified in the
design stages that were deemed to be critical (Smith, McCoy, & Layton, 1997). In a command
and control situation such as supervising multiple UVs, where unanticipated events such as
weather changes, vehicle failures, unexpected target movements, and new mission objectives
often occur, AS have difficulty accounting for and responding to unforeseen changes in the
environment (Guerlain, 1995; Polson & Smith, 1999). Additionally, the designers of
optimization algorithms often make a variety of assumptions when formulating the optimization
problem, determining what information to take into account, or, in the case of receding horizon
algorithms, deciding how far into the future to plan (Bellingham, Richards, & How, 2002;
Layton, Smith, & McCoy, 1994). While the DoD is enthusiastic about autonomy, the 2011

roadmap also cautioned that:

“Because artificial systems lack the human ability to step outside a problem and
independently reevaluate a novel situation based on commander’s intent, algorithms
that are extremely proficient at finding optimal solutions for specific problems may
fail, and fail badly, when faced with situations other than the ones for which they
were programmed.” (DoD, 2011, p. 48)

One approach to deal with the “brittleness” of these algorithms is to have a human operator and

an algorithm work together. A 2012 Defense Science Board report, “The Role of Autonomy in

DoD Systems,” explicitly called for human-automation collaboration, stating:

“It should be made clear that all autonomous systems are supervised by human
operators at some level, and autonomous systems’ software embodies the designed
limits on the actions and decisions delegated to the computer. Instead of viewing
autonomy as an intrinsic property of an unmanned vehicle in isolation, the design and
operation of autonomous systems needs to be considered in terms of human-system
collaboration.” (U.S. Department of Defense, 2012, pp. 1-2)
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A mixed-initiative scheduling system, where a human guides a computer algorithm in a
collaborative process to solve the scheduling problem, could best handle a realistic scenario with
unknown variables, possibly inaccurate information, and dynamic environments. A number of
studies have shown that humans collaborating with algorithms can achieve higher performance
than either the human or the algorithm alone under certain conditions (Anderson et al., 2000;
Cummings et al., 2012; Cummings & Thornburg, 2011; Johnson et al., 2002; Malasky et al.,
2005; Ponda et al., 2011; Ryan, 2011). Designing a more effective human-automation
collaborative scheduling system would provide the ability to supervise multiple UVs while

addressing the inherent brittleness and opacity of algorithms.

1.1 Motivation

Despite the potential benefits of a collaborative scheduling system, operators can become
confused when working with automation, unaware of how the “black box™ algorithm came to its
solution or the assumptions made by the algorithm in modeling the problem. Often times there
are differences between the real world, the automation/engineer’s model, and the human

operator’s models of the world (Figure 2).

[ Real World ]

SN
Automation Aq

(Engineer’s) |+ Operator’s
Model Model

Figure 2. Differences between real world, the algorithm/engineer’s model, and operator’s model of the world.

Three major problems have been identified when human operators collaborate with AS in real-
time operations due to the “brittleness” of the AS. First, operator trust in the AS can fluctuate
due both to the operator’s initial trust level in the AS and the behavior of the AS throughout the
mission. This phenomenon has been observed in data analysis from previous human-in-the-loop
experiments and has been linked to changes in performance (Clare, Macbeth, & Cummings,
2012; Gao et al., 2013). Trust can be defined as the “attitude that an agent will help achieve an
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individual’s goals in a situation characterized by uncertainty and vulnerability” (Lee & See,
2004, p. 51). Operators with low trust may spend an excessive amount of time replanning or
adjusting the schedule (Clare, Macbeth, et al., 2012). Also, “overtrust” in automation has been
cited in a number of costly and deadly accidents in a variety of domains (Cummings, 2004a;

Parasuraman & Riley, 1997).

The second problem is that operator cognitive workload can reach a level where system
performance begins to decline, as shown in previous research (Clare & Cummings, 2011;
Cummings, Clare, & Hart, 2010). When the operator’s workload becomes too high, he or she
may not have enough spare attentional resources to evaluate the schedules generated by the AS
and determine whether the schedules need to be adjusted. On the other hand, increased
automation can lower the operator’s task load to the point where boredom and fatigue can
negatively impact performance (Cummings et al., 2013; Mkrtchyan, 2011; Scerbo, 2001;
Walters, French, & Barnes, 2000).

The third problem is that there may be a lack of goal alignment between the operator and AS.
Thus, the schedules generated by the AS may not be achieving the goals that are most important
at that moment during the mission. There are two primary methods by which this could occur.
First, the objective functions of the human and AS may not be aligned, in that the AS is
optimizing for one objective, while the operator has a dynamic or different and possibly
subjective metric for evaluating schedules. Previous research has shown that alignment of
operator and AS goals can lead to higher Situation Awareness (SA), higher levels of operator
confidence, and higher spare mental capacity (Clare et al., 2012). Second, the operator may be
most concerned with satisficing (Simon et al., 1986), or achieving a feasible solution as quickly

as possible, as opposed to finding the optimal schedule through lengthy optimization.

Understanding how to design collaborative scheduling systems to achieve the appropriate level
of human trust, a moderate level of workload, and alignment of operator and AS goals is crucial
to maintaining high system performance and preventing mistakes. Also, testing the impact of
different system components (algorithms, interfaces, etc.) and interaction modalities on human
and system performance typically requires costly and time-consuming human-in-the-loop testing.

Thus, the objective of this thesis was to develop and validate a computational model of real-time
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human-automation collaborative scheduling of multiple UVs that could be used to predict the

impact of changes in system design and operator training on human and system performance.

1.2 Research Questions

To address this objective, the following research questions were posed:

e What are the major attributes and interactions that a model of real-time human-
automation collaborative scheduling must capture?

e Can the model be used to predict the impact of changes in system design and operator
training on human and system performance?

e What level of accuracy can be expected of this model? How does it compare to other

relevant models? What are the boundary conditions of the model?

1.3 Thesis Organization

In order to address these research questions, this thesis has been organized into the following

chapters:

32

Chapter 1, Introduction, describes the motivation, objectives, and research questions of this
thesis.

Chapter 2, Background, defines the concept of real-time human-automation collaborative
scheduling of multiple UVs. Previously developed relevant models of humans in scheduling
and control situations are presented and three crucial gaps among these previous models are
identified. Finally, six attributes that are important to consider when modeling real-time
human-automation collaborative scheduling are elicited from the relevant body of literature.
Chapter 3, Model Development, describes the modeling process that created the
Collaborative Human-Automation Scheduling (CHAS) model, a System Dynamics (SD)
model of human-automation collaborative scheduling of multiple UVs. The chapter describes
the model in detail and concludes by describing the outputs and benefits of the model
Chapter 4, Model Validation, presents the results of the multi-stage validation process that
was conducted for the CHAS model. Model structure tests are described, including boundary
adequacy testing, dimensional consistency testing, extreme conditions testing, integration

error testing, and structure and parameter verification. Behavior reproduction testing to



evaluate the accuracy of the CHAS model is described for three data sets. A sensitivity
analysis is presented to evaluate the robustness of CHAS model results.

Chapter 5, Predictive Validation Experiment, describes a human subject experiment that was
conducted to evaluate the ability of the CHAS model to predict the impact of changes in
system design and operator training on human and system performance. The experimental
results are presented, including an analysis of the impact of demographics on performance.
Data is presented to evaluate the assumptions built into the CHAS model. Finally, the
experiment results are compared to the quantitative predictions made by the CHAS model.
Chapter 6, Model Synthesis, demonstrates potential uses for the CHAS model by system
designers. The CHAS model’s accuracy and features are compared with a previously
developed Discrete Event Simulation (DES) model of human supervisory control of multiple
UVs. Finally, the generalizability of the model is discussed along with model limitations.
Chapter 7, Conclusions, summarizes the important results in the CHAS model’s development
and validation. Also, this chapter evaluates how well the research objectives were met,

suggests potential future work, and presents the key contributions of this thesis.
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2 Background: Modeling Human-Automation
Collaborative Scheduling

This chapter begins by defining the concept of real-time human-automation collaborative
scheduling of multiple Unmanned Vehicles (UVs). The unique aspects of this method of
controlling UVs are identified along with the potential benefits to both human and system
performance. Previously developed relevant models of humans in scheduling and control
situations are then presented. Three crucial gaps among these previous models are identified with
regards to real-time human-automation collaborative scheduling of multiple UVs. Finally,
attributes that are important to consider when modeling real-time human-automation
collaborative scheduling are elicited from the body of literature relevant to human supervisory

control. These attributes provide a theoretical basis for the model proposed in this thesis.

2.1 Real-time Human-Automation Collaborative Scheduling

A potential future method for a single human operator to control multiple heterogeneous UVs
(air, land, sea) involves the operator guiding an Automated Scheduler (AS) in a collaborative
process to create, modify, and approve schedules for the team of UVs, which are then carried out
by the semi-autonomous UVs. Although this concept is known by many names, including
“Human-Automation Collaboration” (Miller & Parasuraman, 2003), “Human-Computer
Collaboration” (Silverman, 1992), “Human Guided Algorithms” (Klau et al., 2003; Thorner,
2007), and “Mixed-initiative Planning” (Riley, 1989), all such systems involve a human working
collaboratively with an optimization algorithm to solve a complex problem or make a decision. It
is likely that operators will need to concentrate attention on the primary task of monitoring UV
progress and system performance while also being prepared for various alerts, such automation

notifications about potential changes to the vehicle schedules.

For the purposes of this thesis, the representative setting will be a reconnaissance mission to
search for an unknown number of mobile targets, each of which may be friendly, hostile, or
unknown. The mission scenario is multi-objective, and includes finding as many targets as
possible, tracking already-found targets, and neutralizing all hostile targets. Scheduling is
defined here as creating a temporal plan that assigns tasks/targets among the team of UVs and

determines when the tasks will be completed. While this thesis will not focus on path planning
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per se, it should be noted that path planning is coupled with the scheduling problem, due to the
need to estimate how long it will take for a UV to travel to a certain location to accomplish a
task.

This thesis will also focus on “real-time” scheduling. As opposed to the formal definition of real-
time in the computer science field, which is a system that must guarantee a result within a hard
time constraint (Stankovic, 1988), our definition of real-time involves mission planning and
replanning on-the-fly due to a dynamic and uncertain environment. For example, tasks may
appear or disappear, move, or obstacles may appear or change throughout the mission. This
implies a soft constraint on the speed of the collaborative scheduling process; the human operator
and the AS must be capable of creating and approving new plans rapidly enough to be able to
replan while a mission is already underway, in contrast to “off-line” pre-planning of a mission.
While this soft time constraint would be different for each possible application scenario, this
thesis focuses on a highly dynamic environment where the AS must be capable of generating

new plans within seconds.

This type of scheduling problem, assigning multiple heterogeneous UVs to many possible tasks
with capability, location, and timing constraints in uncertain, dynamic environments, is likely a
situation with unbounded indeterminacy (Russell & Norvig, 2003), depending on the problem
formulation, where the set of possible preconditions or effects either is unknown or is too large
to be enumerated completely. This optimization problem is NP-hard, meaning that it is likely that
the AS cannot find an optimal solution in polynomial time (Russell & Norvig, 2003). Also, the
objective function for this optimization may be non-convex, meaning that certain algorithms may
become stuck in local minima. In many of these cases, where either the environment is stochastic
or the search space is large, it is unlikely that an optimal plan can be found or will remain
optimal throughout the mission. In addition, the definition of “optimal” in uncertain, dynamic,
command and control environments may be difficult to quantify and represent in a single, static

objective function.

Within the body of literature for task assignment algorithms, a wide variety of methods of
solving the optimization have been developed, (see Clare, Cummings, & Bertuccelli, 2012 for a

review). These methods include enumeration, the simplex method, dynamic programming,
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branch and bound, and greedy algorithms. Meta-heuristic methods, often inspired by biological
processes, include Genetic Algorithms, Simulated Annealing, Tabu Search, Particle Swarm
Optimization, and Ant-Colony Algorithms, among others. Market-based auction algorithms are
often applied to solve a variety of scheduling problems. Also, Dynamic Vehicle Routing (DVR)
methods using VVoronoi partitions are a potential solution method that could guarantee a certain
level of performance without the need to replan constantly in a dynamic environment. DVR
methods produce policies or decision rules, as opposed to specific task assignments, typically by
optimizing the expected value of performance.

A recently developed method utilizes decentralized algorithms, which can solve the problem
quickly with slightly sub-optimal solutions (Alighanbari & How, 2006; Choi, Kim, & Kim,
2011). Prior to the implementation of decentralized algorithms, a central node was used to collect
information from all of the UVs, attempt to create a globally optimal schedule, and then send the
plan back to all of the UVs. The drawbacks to these centralized scheduling algorithms are the
high communication bandwidth necessary to collect global information, the increased
computational resources necessary to plan for the entire team of UVs, and the vulnerability of the
system to single node failures. In contrast, decentralized algorithms allow each UV to compute
its locally best plan to accomplish the mission goals with shared information. Decentralized
algorithms can potentially respond to changes in the environment more quickly, scale to larger
numbers of UVs while taking advantage of each UV’s added computational power, and are
potentially more robust to communications failures (Alighanbari & How, 2006; Whitten, 2010).
However, it can be difficult to reach a conflict-free schedule without needing a large amount of
communication between the vehicles. In addition, the behavior of the UVs is emergent and
sometimes difficult to predict in advance. Finally, decentralized algorithms cannot always
guarantee optimal schedules.

This thesis will focus on human collaboration with a decentralized AS for real-time scheduling.
In order to enable this collaboration, a goal-based architecture must be implemented (Clare &
Cummings, 2011; Cummings, et al., 2012). The human operator guides the high-level goals of
the team of UVs (as opposed to guiding each individual vehicle) and the AS assumes the bulk of
computation for optimization of task assignments. The AS is responsible for decisions requiring

rapid calculations or optimization, and the human operator supervises the AS for high-level goals
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such as where to search and overall resource allocation (i.e., which tasks get included in the
overall plan), as well as for tasks that require strict human approval, such as approving weapons
release. The system could include the human operator, the graphical interface which displays
information to the operator and allows the operator to interact with the system, the scheduling
algorithm, and the semi-autonomous UVs which act in the environment, all with information
flowing between components (Figure 3). It should be noted that the AS could exist as a stand-

alone component, as pictured, or as sub-system of each UV, as in a decentralized system.
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Figure 3. Human-automation collaborative scheduling system diagram.

This type of system has potential performance benefits for a realistic scenario with unknown
variables, possibly inaccurate information, and dynamic environments by combining the
computational ability of optimization algorithms with the judgment and adaptability of human
supervisors (Cummings, et al., 2012). A goal-based architecture has been shown to achieve
superior workload mitigation under high task loads with comparable system performance as
compared to a vehicle-based, centralized control system (Clare & Cummings, 2011). Preventing
high workload situations in a command and control environment is crucial for maintaining
system performance, preventing costly or deadly errors, and enabling human operators to

supervise larger fleets of coordinated UVs in the future.

In this architecture, the role of the human operator shifts from vehicle pilot to mission manager.
This means that the human operator is monitoring the system and makes decisions to intervene

throughout the mission to coach the automation. There are many possible role allocations for

38



operator and AS in the collaborative decision-making process (Bruni et al., 2007; Cummings &
Bruni, 2009). However, due to the complexity of the scheduling problem, time-pressure, and the
potential for cognitive overload (Cummings, Clare, et al., 2010; Wickens & Hollands, 2000),
human operators in a goal-based architecture are not allowed to have vehicle-level control, i.e.
directly control or task a single UV. The operator cannot take completely manual control and
must work with the AS to develop plans for the UVs. The AS, however, cannot make changes to
the strategic-level plan without the approval of the human operator and needs the human operator
for other tasks (such as visual identification of targets). Thus, this system is truly collaborative,
in that contributions from the human and automation are necessary to conduct the mission. The
operator cannot take complete manual control or set the system to a purely automatic mode. This
is a subtle, yet important distinction between previous research into human supervisory control
of multiple UVs, where often the level of automation could be changed (Goodrich et al., 2001;
Miller et al., 2005), or where the human could have direct control over an individual UV
(Cummings, Nehme, & Crandall, 2007; Nehme, 2009).

The next section will review previously developed relevant models of humans in scheduling and
control situations, in order to evaluate their applicability to real-time human-automation

collaborative scheduling of multiple UVs, based on the above definition.

2.1 Previous Relevant Models

Computational models of human behavior in scheduling situations have existed since the early
1980s. In contrast to purely descriptive or conceptual models (Jackson, et al., 2004; Rad, 2008),
computational/quantitative models typically leverage computer simulations to both promote
deeper understanding of how human operators behave and provide testable predictions about
human behavior under different circumstances (Gao & Lee, 2006; Parasuraman, 2000). One of
the earliest computational models of human behavior in a scheduling situation was developed by
Tulga and Sheridan (1980) to model human attention allocation methods during a multitasking
supervisory control situation. Sanderson (1991) also developed a computational model of how
humans perform scheduling functions in the manufacturing domain. In both of these early works,
the impact of attention allocation strategies on operator workload and performance was shown.
Also, Tulga and Sheridan (1980) developed a theory of the impact of the arrival rate of tasks on
human cognitive workload. However, neither paper modeled the potential for human
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collaboration with an algorithm for conducting these scheduling tasks, but instead focused on

how humans conducted the scheduling process on their own.

With increases in computational power came an interest in pairing human operators with
optimization algorithms to perform tasks that previously were done solely by a human or were
impossible without automation. Thus, a set of computational models of human-automation
collaboration were developed for general decision support systems (Riley, 1989), but mostly for
industrial purposes such as manufacturing plants (Khasawneh et al., 2003) or process control
(Gao & Lee, 2006; Lee & Moray, 1994). While these models of industrial processes captured the
need for effective human-automation collaboration and the impact of operator trust on reliance
on the automation, the manufacturing/industrial domain is distinct from control of multiple
heterogeneous UVs. In a command and control mission involving multiple UVs, the environment
is more dynamic and unpredictable, often with greater time pressure for decisions and higher
uncertainty about the state of the environment. Also, operators controlling multiple UVs will
likely have numerous additional tasks to conduct, requiring rapid task-switching, such as dealing
with automation alerts, identifying visual imagery, monitoring the health and status of the UVs,

and communicating with other operators and supervisors.

With the explosion in UV usage in the late 1990s and 2000s, the concept of a human operator
controlling multiple UVs with the aid of an AS was explored. Given the differences between
industrial processes and controlling UVs, a number of computational models have been
developed specifically for human-automation collaboration involving multiple UV control. It
should be noted that formal cognitive modeling techniques, such as Goals, Operations, Methods,
and Selection (GOMS) rules (Card, Moran, & Newell, 1983) and Adaptive Control of Thought-
Rational (ACT-R) (Anderson, 2007) have been applied to modeling human control of UVs (i.e.
(Ball et al., 2002; de Visser, Jacobs, et al., 2012; Dimperio, Gunzelmann, & Harris, 2008; Drury,
Scholtz, & Kieras, 2007)). However, these models focus on lower-level perception, cognition,
and action processes, using a framework of discrete actions for visual encoding, memory access,
memory retrieval, and motor actions. While formal cognitive models can produce accurate
predictions of the time that an expert user would take to interact with an automated system, they
often do not take into account variation in human operators, including the behavior of non-expert

users, the impact of fatigue, previous operator experiences with automation, or the possibility of
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operator mistakes or errors. All of these characteristics influence human decision-making and
trust in real-time human-automation collaborative scheduling of multiple UVs. Finally, the focus
of this thesis is on higher-level decision-making processes for human-automation collaboration.
Human judgment and adaptability under uncertain conditions requires knowledge-based
reasoning, rather than the skill- or rule-based decisions that formal cognitive models typically
describe (Rasmussen, 1976, 1983).

Among the previously developed computational models which focus on higher-level decision-
making processes (Cummings & Mitchell, 2008; Mkrtchyan, 2011; Nehme, 2009; Olsen &
Wood, 2004; Rodas, Veronda, & Szatkowski, 2011; Savla et al., 2008), there are several crucial
gaps with regards to real-time human-automation collaborative scheduling of multiple UVs,

which will be discussed next.

2.1.1 Lack of Feedback Interaction among Important Aspects

The first limitation of the previous models is that they fail to effectively capture the feedback
interactions among important aspects of real-time human-automation collaborative scheduling of
multiple UVs. Feedback interactions play a crucial role in the collaboration between the human
and automation in real-time scheduling of UVs. For example, as operator workload reaches too
high of a level, a lack of attentional resources can lead to poor Situation Awareness (SA),
defined as the “perception of the elements in the environment within a volume of time and space,
comprehension of their meaning, and the projection of their status in the near future” (Endsley,
1995, p. 36). Inadequate SA can prevent the operator from properly updating his or her
expectations about system performance or can lead to poor decision-making about when to
intervene in the system, both of which can lead to poor overall performance and lower trust in
the AS. Poor system performance and undertrust in the AS can cause the operator to intervene
too rapidly, driving workload to an even higher level, thus reinforcing the feedback loop. Thus
capturing all of these components in sufficient detail, along with the feedback relationships
among them, is crucial to an effective model of human-automation collaborative scheduling of

multiple UVs.
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2.1.2 Lack of Explicit Contributions of Human and Automation

The second limitation of the previous models is that they do not capture sufficient details of the
contribution of the operator and the AS to system performance. One of the reasons for this gap is
that most of the previous models related to controlling multiple UVs (Cummings & Mitchell,
2008; Mkrtchyan, 2011; Nehme, 2009; Olsen & Wood, 2004; Rodas, et al., 2011; Savla, et al.,
2008) assume that the human operator is directly individually tasking each vehicle, as opposed to
goal-based control, where the human operator cannot command individual vehicles, but must
guide the AS to create a viable schedule for all vehicles (Clare & Cummings, 2011). An effective
model of human-automation collaborative scheduling must capture both the automation
contribution to performance as well as the relationship between human guidance and system
performance. The benefits of effective collaboration between the operator and an algorithm have

been shown in previous research (Cummings, et al., 2012; Layton, et al., 1994; Silverman, 1992).

As explained earlier, goal-based architectures will likely use decentralized or non-deterministic
algorithms. Decentralized control architectures enable each vehicle to compute its locally best
plan to accomplish the mission goals with shared information (Choi, Brunet, & How, 2009).
Non-deterministic algorithms have been utilized successfully for complex real-time scheduling
problems, including genetic algorithms (Eun & Bang, 2007) and particle swarm optimization
(Sujit, George, & Beard, 2008). While there are potential advantages to using decentralized
algorithms or non-deterministic algorithms, an open question is how human operators will react
to the unpredictability of working with these types of algorithms, where behavior is emergent
and solutions are likely suboptimal, but generated quickly. For example, Walker et al. (2012)
defined the concept of “neglect benevolence” to capture the idea that humans may need to allow
time for decentralized swarm algorithms to stabilize before acting, and thus neglecting the swarm
for a period of time may be beneficial to system performance. Capturing the impact of these and
other AS characteristics (i.e. time to generate a plan, impact of operator interventions) would

enable the model to predict system performance when working with different algorithms.

2.1.3 Lack of Integration of Qualitative Variables

Third, none of the models which are specifically for multi-UV control capture the influence of

qualitative variables such as trust or alignment of human and AS goals on system performance.
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Operator trust in the AS can change throughout a mission due to the operator’s perception of
how well the AS is performing towards the operator’s goals. Both overtrust and undertrust can
have a significantly negative impact on system performance for human-automation collaborative
scheduling. In real-time multiple-UV scheduling, the mission may be so complex that the
operator cannot bypass the AS without the operator’s workload reaching levels that would cause
a decrease in performance (Cummings & Nehme, 2010). This requirement to continue working
with the AS means that it is critical for an effective model to capture the dynamics of trust and

the impact of human and AS goal alignment.

2.1.4 Summary

Three gaps with regards to real-time human-automation collaborative scheduling of multiple
UVs have been identified among the previously developed models reviewed above. First, none
of the previous models capture the feedback interactions among important aspects of a real-time
human-automation collaborative scheduling system. Capturing these feedback interactions is
necessary for an effective model of a goal-based architecture for controlling multiple UVs.
Second, the relevant models do not capture sufficient details of the AS in order to model the
automation contribution to performance as well as the relationship between human guidance and
system performance. Third, none of the models which are specifically for multi-UV control
capture the influence of qualitative variables such as trust or alignment of human and AS goals

on system performance.

This thesis proposes to address these three gaps through the development of a computational
model of real-time human-automation collaborative scheduling of multiple UVs. This new model
will aid designers in dealing with the previously discussed issues of AS brittleness, inappropriate
levels of operator trust, high operator workload, and poor goal alignment between the human and
AS. To inform the model development process, the next section identifies attributes that are

important to consider when modeling real-time human-automation collaborative scheduling.

2.2 Model Attributes

There is a large body of literature exploring the various features of human supervisory control,
especially for UV control (i.e. (Chen, Barnes, & Harper-Sciarini, 2011; Crandall & Cummings,
2007; Cummings, Bruni, & Mitchell, 2010; Dixon & Wickens, 2003; Endsley, 1995; Lee & See,
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2004; Miller, 2004; Nehme, 2009; Sanders et al., 2011; Sheridan, 1992)). Based on the previous
literature and the above definition, it is proposed that a model of real-time human-automation

collaborative scheduling of multiple UVs should capture the following attributes:

e Attention allocation and situation awareness

e Cognitive workload

e Trust in automation

e Human learning

e Automation characteristics

e Human value-added to performance through interventions

e Team coordination and structure (not addressed in this thesis)

In the following sections, it is argued that these attributes collectively capture the major human,
automation, and combined human/automation performance issues associated with human-
automation collaborative scheduling of multiple UVs and that all of these attributes are necessary
in an effective model of such a system. The discussion of these attributes focuses primarily on
their importance to the domain of this thesis, multiple UV scheduling, although the extension of
this model to scheduling domains outside of multiple UVs is explored in Chapter 6. This thesis
focuses on the concept of a single operator controlling multiple UVs, thus team coordination and
task allocation among multiple operators is not considered and is left for future work. In the
following sub-sections, for each of the remaining six attributes, previous research will be
presented supporting the importance of capturing the attribute when modeling human-automation
collaborative scheduling of multiple UVs. While the sub-sections will discuss each attribute
independently, the interactions between the various attributes are important and will be discussed
further in Chapter 3.

2.2.1 Attention Allocation and Situation Awareness

Human-automation collaborative scheduling of multiple UVs inherently involves multi-tasking,
as operators must pay attention to the activities of multiple vehicles. In addition, operators
engaged in these dynamic, high workload environments must both concentrate attention on the
primary task (e.g., monitoring vehicle progress and identifying targets) and also be prepared for

various alerts, including incoming chat messages or automation notifications about potential
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changes to the vehicle schedules. This need to concentrate on a task, yet maintain a level of
attention for alerts requires both interrupt and task-driven processing. The allocation of attention
between these two can incur cognitive costs that negatively impact overall system performance
(Miyata & Norman, 1986). Poor attention allocation has been shown to be a significant
contributor to poor operator performance in single operator control of multiple unmanned
vehicles (Crandall & Cummings, 2007; Goodrich, Quigley, & Cosenzo, 2005). Thus, capturing
how the operator allocates his or her attentional resources (Wickens & Hollands, 2000) and the
switching costs (Miyata & Norman, 1986) involved in multi-tasking are both important to the

model proposed in this thesis.

The result of poor attention allocation and information processing efficiency can be low
Situation Awareness (SA), which can decrease the effectiveness of an operator’s decisions.
Maintaining adequate SA of both the overall mission as well as individual UVs has been
described as “one of the most critical factors for achieving effective supervisory control of
multiple UVs” (Chen, et al., 2011, p. 439). There are three levels of SA: 1) perception of the
elements in the environment within a volume of time and space, 2) comprehension of their
meaning, and 3) the projection of their status in the near future (Endsley, 1995). There is a clear
relationship between attention allocation and SA, as it has been shown in previous studies that
switching between tasks incurs a cost in terms of SA, leading to delays in responses and errors
(Cummings & Mitchell, 2008; Squire, Trafton, & Parasuraman, 2006).

While all three levels of SA are generally important, Level | SA, perception of changes in the
environment and of changes in system performance, is especially crucial to human-automation
collaborative scheduling of multiple UVs. As described previously, the human operator must
decide when to intervene to create tasks, change the schedule, or modify the way the AS works.
This decision to intervene is driven by the operator’s timely perception of changes to the
environment or mission performance, thus it will be important to the proposed model to capture

time delays in the perception of these changes.

2.2.2 Human Cognitive Workload

Human cognitive workload is defined as the mental resource demand experienced by the

operator as a function of task load, or the level of tasking that an operator is asked to perform
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(Wickens & Hollands, 2000). As theorized by the Yerkes Dodson Law (1908), up to a certain
point, increased workload can be beneficial to performance. Once the operator reaches what will

be referred to as “cognitive overload,” performance begins to suffer.

It has been shown in numerous previous empirical studies that cognitive workload has a
significant impact on both human and system performance in human supervisory control of
multiple UVs (Clare & Cummings, 2011; Cummings, Clare, et al., 2010; Cummings & Guerlain,
2007; Cummings & Nehme, 2010; Dixon & Wickens, 2003; Nehme, 2009; Rouse, 1983; Ruff,
Narayanan, & Draper, 2002; Schmidt, 1978). Thus it will be crucial in the proposed model to
represent both the potential benefits of increased workload and the detrimental effects of
cognitive overload. Beyond the traditional measures of workload through subjective ratings
(Hart, 1988; Rubio et al., 2004), objective measures of workload such as utilization, the ratio of
the total operator “busy time” to the total mission time, have been successfully incorporated in
previous models of operator workload (Nehme, 2009; Schmidt, 1978) and should be

incorporated in the model presented in this thesis.

It should be noted that this thesis will only focus on medium to high task load environments,
while low task load conditions and the impact of fatigue and boredom have and continue to be
explored by others (Cummings, et al., 2013; Mkrtchyan, 2011; Scerbo, 2001; Walters, et al.,

2000). This is another area of possible future work.

2.2.3 Human Trust in Automation

Human trust in the AS is a crucial driver of performance in a human-automation collaborative
scheduling system. Although there are some similarities to the concept of trust between two
humans, there are also some significant differences between human-human trust and human-
automation trust (Muir, 1987). Human trust in an AS can be defined as the “attitude that an agent
will help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability” (Lee & See, 2004, p. 51). This thesis distinguishes trust in a scheduling algorithm
for controlling UVs from recent research on human trust in embodied agents (de Visser, Krueger,
et al., 2012) or robots (Hancock et al., 2011), as the operator is not co-located with the vehicle
and there is no physical embodiment of the algorithm. Operator trust in the AS can fluctuate due

both to the operator’s initial trust level in the AS and the behavior of the AS throughout the
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mission. This phenomenon has been observed in data analysis from a previous human-in-the-
loop experiment and has been linked to changes in performance (Clare, Macbeth, et al., 2012;
Gao, et al., 2013).

Both overtrust and undertrust in automation can be detrimental to system performance. Low
human trust in the AS can be caused by automation “brittleness,” in that the AS can only take
into account those quantifiable variables, parameters, objectives, and constraints identified in the
design stages that were deemed to be critical (Scott, et al., 2002; Silverman, 1992; Smith, et al.,
1997). In a command and control situation such as supervising multiple UVs, where
unanticipated events such as weather changes, vehicle failures, unexpected target movements,
and new mission objectives often occur, AS have difficulty accounting for and responding to
unforeseen changes in the environment (Guerlain, 1995; Polson & Smith, 1999). Additionally,
the designers of optimization algorithms often make a variety of assumptions when formulating
the optimization problem, determining what information to take into account, or, in the case of
receding horizon algorithms, deciding how far into the future to plan (Bellingham, et al., 2002;
Layton, et al.,, 1994). Operators with low trust may spend an excessive amount of time
replanning or adjusting the schedule (Clare, Macbeth, et al., 2012; Cummings, Clare, et al.,
2010).

Also, “overtrust” in automation has been cited in a number of costly and deadly accidents in a
variety of domains (Cummings, 2004a; Parasuraman & Riley, 1997). Overtrust in the AS can
lead to the phenomenon of automation bias (Mosier et al., 1998), where operators disregard or do
not search for contradictory information in light of an AS-generated solution which is accepted
as correct (Cummings, 2004a). A number of empirical studies have shown that when working
with imperfect automation, automation bias occurs (Chen & Terrence, 2009; Lee & Moray,
1994; Muir & Moray, 1996; See, 2002).

Thus, achieving the “appropriate” level of trust, calibrated to the reliability of the AS under
different situations, is essential to achieving high performance in a human-automation
collaborative scheduling system (Lee & See, 2004). To effectively model the trust calibration
process, it is essential to start by capturing the operator’s initial trust level, which can vary

widely based on the operator’s prior knowledge, past experiences, and training (Lee & Moray,
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1994; Moray, Inagaki, & Itoh, 2000). Trust is dynamic, however, and can fluctuate throughout a
mission based on the operator’s perception of how well the AS is performing (Lee & Moray,
1992; Muir & Moray, 1996). A number of studies have found that human trust has inertia, where
automation errors do not necessarily cause instantaneous loss in trust, but recovery in trust from
severe failures can also be slow (Hoffman et al.,, 2013; Lee & Moray, 1992, 1994;
Lewandowsky, Mundy, & Tan, 2000; Parasuraman, 1993; See, 2002). Capturing the impact of
this inertia on the dynamics of the trust calibration process is also important to the model
proposed in this thesis.

Finally, it should be noted that previous studies and models of trust focused on systems where
the operator had a choice between automated control or turning off the automation and taking
complete manual control based on the difference between the operator’s trust in the automation
and self-confidence (Gao & Lee, 2006; Lee & Moray, 1992). Based on the definition of human-
automation collaborative scheduling of multiple UVs presented earlier in this Chapter, however,
taking complete manual control is not feasible. Thus, while the model’s treatment of trust will be
derived from previous models of trust, it will require a slightly different approach that focuses on
when and how the operator decides to intervene to guide the system, not when the operator
decides to take complete manual control because his or her self-confidence in system operation is

higher than his or her trust in the automation.

2.2.4 Human Learning

As human operators gain experience with a human-automation collaborative scheduling system,
they will both learn how to use the system more quickly and efficiently and learn how to better
collaborate with the AS. Sheridan (2006, p. 1028) stated that in a human supervisory control
system, one of the operator’s major roles is “learning from experience so as to do better in the
future.” Even with adequate initial training, operators controlling multiple UVs in a dynamic and
uncertain environment will likely encounter novel situations throughout a mission that provide

the operator with new knowledge and experience.

For the proposed model in this thesis, there are two forms of learning that should be captured.
The first, called “long-term learning” in this thesis, is the adjustment of the operator’s

expectations of system performance. Tversky and Kahneman (1974) explained that humans who
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need to estimate a value often utilize an “anchoring and adjustment” heuristic, where they begin
with an initial guess and then attempt to adjust the guess based on new information gathered. In
human-automation collaborative scheduling of multiple UVs, the operator will likely begin with
a certain expectation of how well the system should perform a given task. Based on the
operator’s perception of system performance throughout the mission, the operator will adjust his
or her expectation of performance, albeit with some amount of “inertia” or a time delay in the
adjustment (Lee & See, 2004). Representing this change in the operator’s expectations
throughout the mission is important to the proposed model because previous research has shown
that people (and businesses) often decide to make changes when there is a large enough
difference between expected performance and actual (or perceived) performance (Rudolph,
Morrison, & Carroll, 2009; Sastry, 1995; Tushman & Romanelli, 1985).

The second form of learning, called “short-term learning” in this thesis, is the learning curve of
how to use the graphical user interface more efficiently and how to read and analyze the
information presented in the various displays more quickly. Many of the empirical data sets that
can be used for verification and validation of the model proposed in this thesis utilize novice
operators who receive some limited training but, in fact, are still learning how to use the system
during experimental trials. Evidence of learning in experiments involving humans controlling
multiple UVs has been found in previous studies (Cooper & Goodrich, 2008; Mekdeci &
Cummings, 2009). The concept of a learning curve was first coined to describe the rate of
increase in the productivity of airplane manufacturing workers (Wright, 1936). Since then, the

concept has been well explored in the psychology, manufacturing, and business domains.

Finally, it should be noted that others are researching machine learning (Geramifard et al., 2012;
Michini, Cutler, & How, 2013) and adaptive automation techniques (de Visser, Jacobs, et al.,
2012; Miller, et al., 2005) to enable the automation for controlling UVs to learn over time as
well. This thesis focuses on human learning and the incorporation of automation learning into a

model of real-time human-automation collaborative scheduling is left for future work.

2.2.5 Automation Characteristics

In a model of human-automation collaborative scheduling of multiple UVs, certain

characteristics of the AS must be captured in order to effectively model the system. For example,
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it has been shown in previous research that the rate at which the AS prompts the operator to
approve new schedules impacts operator workload and system performance (Clare, Maere, &
Cummings, 2012; Cummings, Clare, et al., 2010). A prior empirical study showed that providing
the operator with an AS that allows modifications to the objective function of the algorithm can
improve SA, lower workload, and improve the operator’s perception of the AS (Clare,
Cummings, How, et al., 2012). Lee and See (2004) identified a number of the bases of trust in
automation, among them predictability, the degree to which future behavior can be anticipated,
dependability, the degree to which behavior is consistent; and reliability, a measure of how well
the automation performs relative to current and historical performance. Other factors that can
influence both human and system performance include the speed with which the AS can produce
new schedules and the alignment of objectives between the AS and the operator (Howe, et al.,
2000; Linegang et al., 2006; Silverman, 1992).

As described earlier in this Chapter, a wide variety of AS have been developed for assigning
tasks to multiple UVs in real-time, with differences in their solution method, guarantees about
optimality, whether or not the AS took into account uncertainty, whether the AS was centralized
or distributed among the UVs, and whether the AS could plan for heterogeneous UVs (Clare,
Cummings, & Bertuccelli, 2012). Thus, for the model proposed in this thesis to be effective and
capable of evaluating the impact of different AS on human and system performance, the impact

of such AS characteristics on performance must be captured.

2.2.6 Human Value-Added Through Interventions

A number of studies have shown that humans collaborating with algorithms can achieve higher
performance than either the human or the algorithm alone under certain conditions (Anderson, et
al., 2000; Cummings, et al., 2012; Cummings & Thornburg, 2011; Johnson, et al., 2002;
Malasky, et al., 2005; Ponda, et al., 2011; Ryan, 2011). Scott, Lesh, and Klau (2002) showed that
in experiments with humans utilizing mixed-initiative systems for vehicle routing, operator
intervention can lead to better results, but there is variation in the way that operators interact with
the system and in their success in working with the automation. Cummings, et al. (2012) showed
that in a human-automation collaborative scheduling system for multiple UVs, motivated human
operators clearly added value to the performance of the system as compared to the performance

of the system without a human actively guiding the system.
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Thus, the proposed model should both capture baseline system performance without significant
human intervention and identify the areas where humans could add the most value. Once those
areas are identified, it is important to then quantify the impact of the different interventions that
the human operator can undertake. Rather than a standalone variable, the model can represent
human value-added through a feedback process that combines the impact of operator
interventions with the impact of operator cognitive workload. The rate of operator interventions
and the effectiveness of these interventions can form competing feedback loops (Rudolph &
Repenning, 2002), as previous empirical research has shown that rapid rates of replanning can
cause an increase in workload and a decrease in system performance (Clare & Cummings, 2011;

Cummings, Clare, et al., 2010).

2.3 Chapter Summary

In summary, the concept of real-time human-automation collaborative scheduling of multiple
UVs has been defined. The representative setting for this thesis is a reconnaissance mission to
search for an unknown number of mobile targets. The mission scenario is multi-objective, and
includes finding as many targets as possible, tracking already-found targets, and neutralizing all
hostile targets. Scheduling is defined here as creating a temporal plan that assigns tasks/targets
among the team of heterogeneous UVs, determines when the tasks will be completed, and takes
into account capability, location, and timing constraints. In order to conduct this mission in
uncertain, dynamic environments, a human operator will collaborate with a decentralized AS

through a goal-based architecture to guide the team of UVs.

Based on this definition, a review of previously developed relevant models of humans in
scheduling and control situations was conducted to evaluate their applicability to the
representative setting. The review identified crucial gaps with regards to real-time human-
automation collaborative scheduling of multiple UVs. Previous computational models did not
capture the feedback interactions among important aspects of human-automation collaboration,
the impact of AS characteristics on the contributions of the operator and automation to system
performance, and the impact of qualitative variables such as trust in automated scheduling

algorithms.
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Finally, six attributes that are important to consider when modeling real-time human-automation
collaborative scheduling are proposed, providing a theoretical basis for the model proposed in
this thesis. Attention allocation and situation awareness, cognitive workload, trust in automation,
human learning, automation characteristics, and human value-added through interventions

should all be captured by the proposed model.

Chapter 3 describes the modeling process that created the Collaborative Human-Automation
Scheduling (CHAS) model, a System Dynamics (SD) model of human-automation collaborative
scheduling of multiple UVs. The model is described in detail, including how it captures the
important attributes identified in this chapter and addresses the gaps in previous models. Then,
Chapters 4 and 5 describe preliminary validation of the model using historical data sets and a

new human subject experiment.
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3 Model Development

This chapter describes the modeling process that created the Collaborative Human-Automation
Scheduling (CHAS) model, a System Dynamics (SD) model of human-automation collaborative
scheduling of multiple Unmanned Vehicles (UVs). The chapter begins by describing the field of
System Dynamics and why it is appropriate for modeling a human-automation collaborative
scheduling system. Next, the model building process is described, starting with an analysis of a
previous experimental data set where a human operator was paired with an Automated Scheduler
(AS) to conduct collaborative scheduling of multiple UVs in a simulation testbed. This analysis
identified reference modes of operator behavior and performance, leading to the creation of a
“dynamic hypothesis.” This hypothesis attempts to explain the dynamics of the system as
endogenous consequences of the feedback structure of this system. Next, a SD model was
formulated from this hypothesis. Parameters, behavioral relationships, and initial conditions of
the system were estimated from experimental data. The chapter concludes by describing the

outputs and benefits of the model.

3.1 System Dynamics Modeling

System Dynamics (SD) is a well-established field that draws inspiration from basic feedback
control principles to create simulation models (Sterman, 2000). SD constructs (stocks, flows,
causal loops, time delays, feedback interactions) enable investigators to describe and potentially
predict complex system performance, which would otherwise be impossible through analytical
methods (Forrester, 1961). SD models have been used in a number of large and small scale
systems with social elements including management, economics, logistics, education, and
disease spread (Sterman, 2000). More relevant to real-time human-automation collaborative
scheduling, SD models have been developed to represent human supervisors monitoring
automated systems (White, 2003), a number of command and control applications (Coyle,
Exelby, & Holt, 1999), human decision-making in high-stress situation with interruptions
(Rudolph & Repenning, 2002), and human problem-solving under time-pressure in action-
oriented environments, such as doctors coping with an operating room emergency (Rudolph, et

al., 2009). This proposed application of SD is novel because no previous efforts have used this
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method to model human interaction with automated systems at the decision-making level or to

represent UV systems.

While other simulation modeling techniques, such as Discrete Event Simulation (DES), have
been successfully applied to modeling human supervisory control of multiple UVs (Nehme,
2009; Rodas, et al., 2011), there are a number of reasons that SD models are particularly
appealing for UV systems. The first is the ability of SD models to capture non-linear processes
(Sweetser, 1999). Since human performance does not generally adhere to linear models
(Cummings, et al., 2013; Gao & Lee, 2006), using non-linear behavioral and performance
representations will be critical for the external validity of the model. Second, SD models can
include both qualitative and quantitative data (Ozgiin & Barlas, 2009; Sterman, 2000). As
previously discussed in Chapter 2, capturing the dynamics of trust and the impact of human and
AS goal alignment on system performance is crucial for an effective model. Third, SD models
are effective at capturing the impact of latencies and feedback interactions on the system, which
is essential for modeling a human operator and the impact of delays in perception of system
performance on operator behavior and trust. While there is an ongoing argument in the modeling
community about the scenarios for which SD is more appropriate than DES (i.e. (Ozgin &
Barlas, 2009; Sweetser, 1999)) a key contribution of this thesis is the evaluation of the adaptation

of SD techniques to model human supervisory control of UVs in comparison to DES techniques.

The model presented in this thesis was developed through an inductive modeling process.
GroBler and Milling defined the inductive SD modeling process by stating that “the solution to a
specific problem is sought as well as a specific situation serves as the basis for the model. Later
in the process, insights gained in the project might be generalized...” (GréRler & Milling, 2007,
p. 2). The SD modeling process can be broken down into five major phases (Sterman, 2000).
First, in the problem articulation stage, the overall problem that the model is attempting to
represent is identified, along with key variables to be captured within the boundary of the model.
Much of this work was described in Chapter 2. In the second stage, a “dynamic hypothesis” is
developed. A dynamic hypothesis is defined as a theory that explains the behavior of the system
as an endogenous consequence of the feedback structure of the holistic system (Sterman, 2000).

It is a working hypothesis that guides the modeling effort and is continuously tested and refined

54



throughout the model building and testing process. Sections 3.2 and 3.3 describe the data

analysis that led to the dynamic hypothesis for the model described in this thesis.

In the third stage, the dynamic hypothesis is mapped into causal loops and stocks and flows in
order to formulate the simulation model and estimate exogenous parameters, as described in
Section 3.4. The SD community defines endogenous variables simply as those variables which
are calculated within the model, while exogenous variables are assumed parameters which lie
outside of the model boundary (Sterman, 2000). The fourth stage, testing the model, including
comparison of model outputs to experimental data sets, robustness under extreme conditions,
sensitivity analyses and other tests are described in Chapters 4 and 5. The fifth stage, policy
design and evaluation, including evaluating the ability of this model to predict performance
under new circumstances, is described in Chapter 5. Finally, Chapter 6 will describe how this
model, developed for a specific system, can be generalized for use with other real-time human-
automation collaborative scheduling systems. While these phases will be described in a linear
fashion in this thesis, the model underwent significant iteration, including a model reduction

process (Appendix A). The final parsimonious model is described here.

3.2 Previous Experimental Data Set Analysis

In order to inform the construction of the CHAS model, a time-series data analysis was
conducted using a previous experimental data set. First, the testbed used to collect this data is

described. Then the analysis of the data is presented.

3.2.1 Testbed Description

The testbed which the CHAS model was designed to represent is a collaborative, multiple UV
system called Onboard Planning System for UVs Supporting Expeditionary Reconnaissance and
Surveillance (OPS-USERS), which leverages decentralized algorithms for vehicle routing and
task allocation (Cummings, et al., 2012). This system functions as a computer simulation but also
supports actual flight and ground capabilities (How et al., 2009); all the decision support displays
described here have operated actual small air and ground UVs in real-time (Kopeikin et al.,
2012).
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Operators were placed in a simulated command center where they controlled multiple,
heterogeneous UVs for the purpose of searching an area of interest for new targets, tracking
these targets, and approving weapons launch for hostile targets. The UVs in the scenario
included one fixed-wing UAV, one rotary-wing UAV, one Unmanned Surface Vehicle (USV)
restricted to water environments, and a fixed-wing Weaponized Unmanned Aerial Vehicle
(WUAYV). The UAVs and USV were responsible for searching for targets, using a decentralized,
local search algorithm to guide their search pattern (Whitten, 2010). Once a target was found, the
operator was alerted to perform a target identification task (i.e., hostile, unknown, or friendly),
along with assigning an associated priority level (i.e., high, medium, low). Then, hostile targets
were tracked by one or more of the vehicles until the human operator approved WUAV missile
launches. UVs automatically returned to a central base when they needed to refuel. A primary
assumption was that operators had minimal time to interact with the displays due to other

mission-related tasks.

Participants interacted with the OPS-USERS simulation via two displays. The primary interface
is a map display (Figure 4). The map shows both geo-spatial and temporal mission information
(i.e., a timeline of mission significant events), and supports an instant messaging ‘“chat”
communication tool, which provides high level direction and intelligence. As in real-life
scenarios, changing external conditions often require the human and the system to adapt, which
are represented through “Rules of Engagement” (ROEs) received through the chat tool. Icons
represent vehicles, targets of all types, and search tasks, and the symbology is consistent with
MIL-STD 2525 (U.S. Department of Defense, 1999). Operators had two exclusive tasks that
could not be performed by automation: target identification and approval of all WUAV weapon
launches. Operators could also create search tasks, which dictated on the map those areas which
the operator wanted the UVs to specifically search.

The AS used in OPS-USERS is the Consensus Based Bundle Algorithm (CBBA), a
decentralized, polynomial-time, market based protocol (Choi, et al., 2009). More details on the
AS can be found in (Whitten, 2010), with details of the OPS-USERS automation architecture in
(Clare, Cummings, How, et al., 2012; Cummings, et al., 2012). The performance plot (Figure 4)
gives operators insight into the AS performance, as the graph shows predicted plan score (red)

versus current plan score (blue) of the system. The AS calculates plan score based on an
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objective function that the operator can modify, as described below. When the AS generates a
new plan that is at least five percent “better” than the current plan, the Replan button turns green
and flashes, and a “Replan” auditory alert is played. The operator can choose to replan at any
time, regardless of whether the Replan button is flashing. When the Replan button is clicked, the
operator is taken to the Schedule Comparison Tool (SCT), for conducting scheduling tasks in

collaboration with the automation.

Search Task
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Loiter Task
ot Hostile
x00gI€
Performance Chat
Plot —> § Message
\ Box
Replan UxV Task Timeline
Button

Figure 4. Map Display.

The SCT display (Figure 5) appears when the Replan button is pressed, showing three
geometrical forms colored gray, blue, and green at the top of the display, which are configural
displays that enable quick comparison of schedules. The left form (gray) is the current UV
schedule. The right form (green) is the latest automation-proposed schedule. The middle working
schedule (blue) is the schedule that results from user plan modification. The rectangular grid on
the upper half of each shape represents the estimated area of the map that the UVs will search
according to the proposed plan. The hierarchical priority ladders show the percentage of tasks

assigned in high, medium, and low priority levels, respectively.
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When the operator first enters the SCT, the working schedule is identical to the proposed
schedule. The operator can conduct a “what-if” assignment by dragging the desired unassigned
tasks into the large center triangle. This query forces the automation to generate a new plan if
possible, which becomes the working schedule. The configural display of the working schedule
alters to reflect these changes. However, due to resource shortages, it is possible that not all tasks
can be assigned to the UVs, which is representative of real world constraints. The working
schedule configural display updates with every individual query so that the operator can leverage
direct-perception interaction (Gibson, 1979) to quickly compare the three schedules. This “what-
if” assignment, which essentially is a preview display (Wickens & Hollands, 2000), represents a
collaborative effort between the human and automation (Layton, et al., 1994). Operators adjust
team coordination metrics at the task level as opposed to the individual vehicle level, which has
been shown to improve single operator control of a small number of multiple, independent robots
(Goodrich et al., 2007). Operators could also modify the objective function that the AS uses to
evaluate schedules for the UVs through the “Plan Priorities” panel on the right side of the SCT.
Details of the OPS-USERS interface design and usability testing can be found in (Clare,
Cummings, How, et al., 2012; 2008).
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Figure 5. Schedule Comparison Tool (SCT)

Operators can either choose to accept the working schedule or cancel to keep the current
schedule. Upon accepting a new schedule, the AS only communicates to the vehicles via a
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prioritized task list, and the vehicles sort out the actual assignments amongst themselves. This
human-automation interaction scheme is one of high level goal-based control, as opposed to

more low-level vehicle-based control.

To summarize, there were four possible categories of “interventions” that the human operator
could perform to adjust how the teams of UVs conducted the mission. First, the operator could
create search tasks, which enabled the human operator to guide the automation and prevent
myopic behaviors by encouraging the UVs to search in remote, unsearched areas that were likely
to contain new targets. Second, the operator could “replan” by asking the AS to generate a new
schedule for the team of UVs. This new schedule must be approved by the operator before the
team of UVs will enact the new schedule. Third, the operator could modify the objective
function of the AS throughout the mission to ensure that the goals of the AS align with changing
mission goals. Fourth, the operator could conduct a “what-if assignment” to attempt to manually
force a single task into the schedule if possible and view the ramifications of this forced

assignment.

3.2.2 Data Analysis

The data set for this analysis is from an experiment where 30 participants performed two 20-
minute long simulated UV missions (Clare, Cummings, How, et al., 2012). Each scenario had 10
targets initially hidden to the operator. Rules of Engagement (ROEs) were provided to the
operators every 5 minutes via a chat box, which adjusted the goals that the operator focused on
during each phase of the mission. It was assumed that all UVs and sensors operated normally

throughout the mission.

The primary mission performance metrics collected in these experiments were percentage of area
covered during the search process and percentage of targets found, which were logged once per
minute. All other metrics were collected in two minute intervals, resulting in 10 data points for
each mission that enable comparison and aggregation across trials. These other metrics included:
length of time spent replanning, utilization (a proxy measure for cognitive workload), the
probability of performing a what-if assignment, the probability of modifying the objective

function of the AS, the number of replans per two minute interval, and the number of search
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tasks created per two minute interval. Aggregate

shown in Figure 6.
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Figure 6. Aggregate time series experimental data. Standard Error bars are shown.

A common analysis in the SD modeling process is to look for reference modes, which are graphs
and data showing changes in the system over time. A few key reference modes that are apparent
from these plots include that utilization, the percent of the overall mission time an operator was
engaged in a task, generally declined throughout the mission, from 60% busy time to only 30%
busy time by the end of the mission. Also, at the start of the mission, operators only performed a
what-if assignment with 17% of the schedules proposed by the AS. After 5 minutes into the
mission, operators approached a 33% likelihood of conducting a what-if assignment, which
remained roughly flat for the rest of the mission. Next, it appears that operators generally had
about a 50% likelihood of making a modification to the objective function of the AS, except
during the period of the mission from 300-600 seconds, when that likelihood dropped to roughly
25%. Finally, two of the key performance metrics, area coverage and targets found, both roughly
resemble saturation curves, where the initial rates of covering area and finding new targets are
high at the start of the mission, but later taper off as there is less new area to cover and fewer

new targets left to be found.
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As one of the key goals of this modeling effort is to capture the drivers of system performance, a
cluster analysis was conducted to identify the missions which had significantly high or low
performance so that they could be analyzed. Two separate clustering analyses were conducted,
with the first analysis using total area coverage by the end of the mission as the clustering metric,
and the second analysis using total number of targets found by the end of the mission. A
hierarchical clustering was conducted using Ward’s Method to determine the number of clusters.
Afterwards, the k-means algorithm was used to assign missions to clusters. Following clustering,
operator behavior (search task creation rates, workload, length of time replanning, frequency of
replanning, etc.) was compared between the high and low performance clusters for each
performance metric. Between the best and worst missions ranked in terms of targets found, there

were no significant differences found in operator action measures (Appendix B).

There were significant differences in operator behavior, however, for the best and worst missions
ranked in terms of area coverage, so data analysis focused on this performance metric. The area
coverage metric of performance also provides a number of beneficial features to this analysis and
modeling effort. It is a continuous measure of performance as opposed to discrete measures such
as targets found or hostiles destroyed. It is visible to the human operator due to the use of a “Fog
of War” overlay on the Map View (Figure 4). Also, it has been shown in prior work that the
human operator can make a significant and meaningful contribution to the collaborative

relationship with the AS in terms of area coverage performance (Cummings, et al., 2012).

The clustering analysis results based on the total area coverage in each mission are shown in
Figure 7a. The red circled clusters were identified as the Low Performance and High
Performance clusters. Of the total 60 missions, there were 11 missions in the High Performance
cluster and 26 missions in the Low Performance cluster. The average area coverage performance
over time through the mission is shown for the two clusters in Figure 7b. A repeated measures
ANOVA showed a significant difference between the two groups in terms of area coverage,
F(1,35) = 145.801, p < 0.001.
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Figure 7. (a) Results of cluster analysis using total area coverage as the clustering metric. (b) Average area
coverage performance over time for the high and low performance clusters. Standard Error bars are shown.

Next a comparison of operator actions between the two clusters was conducted using a repeated
measures ANOVA. The full details of this analysis are presented in Appendix B. The operator
actions where there was a significant difference (a=0.05) between the two clusters are shown in

Figure 8a-c. These operator actions were:

e The number of replans per 120-second time period, also known as the replan rate. High
performers replanned more frequently than low performers (F(1,35) = 10.485, p = 0.003), as
shown in Figure 8a. It should be noted that in the dynamic objective function experiment,
there was no set interval at which operators were prompted to replan, but they were informed
when the AS had a new proposed schedule that was at least 5% better than the current
schedule.

e The length of time that operators spent replanning, where high performers spent less time
evaluating new plans generated by the AS (F(1,27) = 5.910, p = 0.022) (Figure 8b).

e The rate of creating search tasks, where high performers created more search tasks
throughout the mission (F(1,35) = 18.697, p < 0.001) (Figure 8c).

Finally, the workload level of the operators, as measured by utilization, was compared between
the two performance cluster groups. While there was no significant effect for performance
cluster (F(1,35) = 2.472, p < 0.125), there was a significant effect for time (F(9,315) = 16.215, p

< 0.001), as utilization decreased throughout the mission (Figure 8d). This analysis showed that
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high performers used the system as designed by replanning more frequently, spending less time
evaluating new schedules generated by the AS, and creating more search tasks to encourage the
UVs to explore new areas on the map. They were able to conduct more interventions to guide the

automation without significantly increasing their workload, as measured by utilization.
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Figure 8. Differences in operator behavior between low and high performers. Standard Error bars are
shown.

Once again, the hierarchical clustering analysis identified the number of meaningful groups in
the data set, as shown in Figure 7a. While further data analysis could be conducted to determine
what separates above average versus top performers, it is still instructive for model development
that high performers intervened more frequently than low performers while making faster
decisions. Why is it that high performers intervened more often to coach the automation? While
data on operator trust is not explicitly available from this experiment, operators were asked to

rate their satisfaction with the plans created by the AS after each mission on a Likert scale from
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1-5 (low to high). This subjective rating can be used as a proxy variable for overall trust in the
AS, as satisfaction of the operator’s goals is a key component of the definition of trust (Lee &
See, 2004). The High Performance cluster had a lower average rating of satisfaction than the
Low Performance cluster, as shown in Figure 9a. This difference was significant according to a
Mann-Whitney non-parametric test, Z = -2.677, p = 0.007. In order to further examine this trend,
data on operator satisfaction with the AS from all 60 missions was analyzed. As the operator’s
satisfaction with the AS increased, overall area coverage performance decreased (Figure 9b). The
figure only shows ratings between 1 and 4 because no operator rated their satisfaction level as 5
out of 5. The differences in performance across all 60 missions based on the operators’ rating of
their satisfaction with the AS are marginally significant according to a Kruskal-Wallis test, 3*(3,
N=59) = 7.262, p = 0.064. Taking these ratings of satisfaction with the plans generated by the
Automated Scheduler as a proxy measure of trust, it appears that higher performers had lower

trust.

2oa o
T 19
[{e)
1

o
9

1

Y
9

-
o
|
2
o

-

?

'S
1

Mean +- 1 SE Satisfaction With AS Plans
[+ [
[4)] o
1 1
% Area Coverage
2

T T T T
Low Performance Cluster High Performance Cluster 1 2 3 4

Performance Cluster Satisfaction With AS Plans

(@) (b)

Figure 9. (a) Average subjective ratings of satisfaction with the plans created by the AS for each performance
cluster. (b) Area coverage performance vs. operator ratings of satisfaction with AS plans (1=low, 4=high) for
all missions.

Finally, a set of correlations were run among the variables, looking for relationships that should
be captured in the model. While correlation does not necessarily imply causation, an
understanding of how human operators use the OPS-USERS system can inform decisions to
model correlated relationships as causation relationships. One of the most interesting
relationships found was between the operator’s satisfaction with the AS (a proxy measure of

trust) and the number of search tasks that the operator creates per time interval (p=-0.394,
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p=0.002). This indicates that operators who have lower trust in the AS may choose to intervene

more frequently in order to guide the automation.

3.3 Dynamic Hypothesis

Based on this analysis, a dynamic hypothesis was developed that high performers adjusted to an
appropriate level of trust in the AS earlier in the mission as compared to low performers.
Previous research on the AS used in the OPS-USERS testbed has shown that the automated
search process is suboptimal and can be improved either with a centralized global search
algorithm (Whitten, 2010) or with a collaborative human assisting the AS (Cummings, et al.,
2012), both of which extend the “effective planning horizon” of the search algorithm. Data
analysis shows that higher performers understood the nature of these imperfections in the
automation, reporting lower satisfaction/trust in the Automated Scheduler (p=0.007). They
modified their behavior appropriately and used the system as designed by replanning more
frequently (p=0.003), spending less time evaluating new schedules generated by the AS
(p=0.022), and creating more search tasks (p<0.001) to encourage the UVs to explore new areas

on the map.

Drawing an analogy to the anchoring and adjustment heuristic (Tversky & Kahneman, 1974), if
operators can anchor to the correct expectation of AS performance earlier in the mission or
adjust to the appropriate level of trust faster (through better feedback about the AS/system),
performance should improve. The implementation of this dynamic hypothesis into a SD model is
described in the next section.

3.4 CHAS Implementation

The CHAS model has been developed using SD modeling techniques, drawing from the results
of the above data analysis, and supported where possible with examples from previously
developed models and the human supervisory control literature. The model captures the six
attributes that were identified in Chapter 2 as important to consider when modeling real-time
human-automation collaborative scheduling: attention allocation and situation awareness,
cognitive workload, trust in automation, human learning, automation characteristics, and human

value-added through interventions.

65



CHAS is a computational model that can simulate the operations of a human-automation
collaborative scheduling system throughout a hypothetical mission. It simulates the human
operator, a team of UVs, and the automation at an abstract level, yet provides concrete metrics
such as system performance, the frequency of certain operator decisions, and operator workload
throughout the mission, not simply at the end or on average throughout the mission. This is
especially helpful in dynamic missions where significant changes to the environment and the
operator’s behavior can occur. The model implements a set of equations which are calculated at

discrete time steps using the Vensim® simulation software package.

A key fact to remember is that the model is meant to represent goal-based control of a team of
UVs with the assistance of a decentralized planning algorithm (Clare & Cummings, 2011). The
human operator only guides the high-level goals of the team of UVs (as opposed to guiding each
individual vehicle), and collaborates with a decentralized planning algorithm, where each vehicle
computes its locally best plan to accomplish the mission goals with shared information. This
means that the human operator is monitoring the system and makes decisions to intervene
throughout the mission in order to adjust the allocation of resources at a high level. In the next
section, the model is described in further detail.

3.4.1 Model Overview

A simplified CHAS model is shown in Figure 10 which depicts the three major feedback loops:
the Trust in Automation loop, the Expectations Adjustment loop, and the Cognitive Overload
loop. These three loops consist of separate causal pathways through the model. A high-level
discussion of the loops is presented below, while a more detailed discussion of the

implementation of each loop is presented in Section 3.5.

The Trust in Automation loop, shown in the red dashed line box in Figure 10, draws from the
“perception, cognition, action” loop in the human information processing model developed by
Wickens and Hollands (2000). The loop represents how the operator’s perception of the
performance of the system impacts his or her trust in the automation and thus influences the
operator’s decisions to intervene in the operations of the semi-autonomous UVs. The operator
has a time-delayed perception of how the system is performing. The operator’s trust during the

mission begins at an initial level and then adjusts based on the difference between the operator’s
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expectations of how well the system should be performing and the operator’s perception of
system performance. It is likely that the operator’s trust has some inertia (Lee & Moray, 1994)
and thus adjusts with a time delay. As the operator loses (or gains) trust in the AS, the operator
will choose to intervene more (or less) frequently, for example by creating new tasks for the UVs
or requesting a new schedule for the UVs. This decision to intervene has an impact on the
operations of the team of semi-autonomous UVs, which influences the performance of the

system, completing the feedback loop.
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Figure 10. Simplified diagram of CHAS model.

Second, the Expectations Adjustment loop, shown in the green dashed line box, represents how
the operator’s expectations of performance can change throughout the mission. The operator’s
initial expectations of performance are likely set by training, previous experience, or by
instructions from a supervisor. However, as the operator perceives how the system is actually
performing, there is likely a time-delayed adjustment of the operator’s expectations to conform

to his or her perceived reality of how well the system is doing.

Third, the Cognitive Overload loop, shown in the blue dashed line box, represents the impact that

excessive cognitive workload can have on system performance. The System Dynamics modeling
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community typically separates the positive and negative effects of a variable into distinct loops
(Sterman, 2000). The Trust in Automation loop, as previously described, captures the positive
effects of increasing workload, assuming that an increasing rate of interventions leads to higher
performance. It should be noted that this assumption does not hold for all systems, as previous
studies have shown that frequent human intervention can potentially have a negative impact on
automation (Beck, Dzindolet, & Pierce, 2005; Parasuraman & Riley, 1997), as some
decentralized algorithms may need time to stabilize (Walker, et al., 2012). The automation in the
OPS-USERS testbed has been found to be provably good, but suboptimal (Choi, et al., 2009;
Whitten, 2010) and previous experiments have shown that a moderate rate of intervention results
in higher performance than a low frequency of intervention (Clare, Maere, et al., 2012;
Cummings, Clare, et al., 2010). Thus, it is assumed that operator interventions can improve

performance.

The model captures the fact that the frequency with which the operator decides to intervene in
the system also has an impact on human cognitive workload (Cummings, Clare, et al., 2010).
The Cognitive Overload loop only captures the negative effects of high workload, and thus is
dormant when the operator has low or moderate workload, having little effect on the model.
Human workload is also driven by task load, i.e. the level of tasking that an operator is asked to
perform by the system (Clare & Cummings, 2011). This model is specifically designed to
simulate moderate to high task load missions and future research will investigate low task load,
vigilance missions. The feedback loop is completed by modeling the potential for cognitive
overload, where high levels of human workload can decrease the effectiveness of the operator’s
interventions in the system, thus decreasing system performance (Cummings & Guerlain, 2007;
Nehme, 2009; Rouse, 1983; Schmidt, 1978).

It should be noted that the CHAS model underwent significant iteration. For example, “short-
term” learning to use the graphical user interface more efficiently and analyze the information
presented in the various displays more quickly was originally included in the model developed in
this thesis, but was subsequently removed during the model reduction process (Appendix A). It
was found that the impact of short-term learning on system performance and operator behavior

was small. However, this model component could always be re-instated in the model if the
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system being modeled had a significant short-term learning curve. The high-level differences

between the original and final parsimonious CHAS model can be seen in Figure 11.
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Figure 11. High-level diagram showing the original model reduced to the parsimonious model.

The full diagram of the reduced CHAS model is presented in Figure 12, showing the three main
feedback loops. All of the equations and parameters that have been used in the final version of
CHAS are listed in Appendix C. Many of the exogenous parameters can take distributions of
values in Monte Carlo simulations to capture the impact of human variability, which is described
in further detail in Chapter 4, along with testing of the model and fitting to experimental data.
For ease of explanation, the three feedback loops are presented in five interconnecting modules,

described in the following sections.
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Figure 12. Collaborative Human-Automation Scheduling (CHAS) Model
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3.4.2 System Performance Module

The first component of the CHAS model is the system performance module, shown in Figure 13.
In order to properly model real-time human-automation collaborative scheduling, an effective,
yet simple model of system performance is necessary. The system performance module aims to

model one of the primary performance metrics from the OPS-USERS system, area coverage.
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Figure 13. System performance module. “Total Number of Cells” is shown in gray to indicate that it is the
same parameter, but used twice in the module.

The module is inspired by the diffusion SD model, which has been used to model the spread of
new ideas, the adoption of new products, or the spread of contagious diseases (Sterman, 2000).
In the OPS-USERS simulation, the total area to be searched by the team of UVs is discretized
into 4,150 cells of equal area. Once a UV passes through that cell, the OPS-USERS testbed
counts that cell as “searched” for the area coverage performance measure. The CHAS model
represents the number of Unsearched Cells and the number of Searched Cells as “stocks.” The
Unsearched Cells stock is initialized to the Total Number of Cells. The “flow” between the two

stocks is equal to the Area Coverage Rate.

While the area coverage performance metric is purely a count of cells which have been visited
once, the actual search process in OPS-USERS is more complex than simply visiting every cell
once. The system maintains a probability map which propagates the likelihood that a target is in
each cell based on the last time that each cell was visited and a target motion model. The team of
UVs re-visit previously searched cells based on this probability map (more details in Cummings,
et al., 2012; Whitten, 2010). The CHAS model captures the impact of re-visiting previous cells
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by decreasing the rate of covering new area over time through the Probability of a Cell Being
Unsearched variable. The Probability of a Cell Being Unsearched is calculated by dividing the
number of Unsearched Cells by the Total Number of Cells. Thus, the model assumes that as

there are fewer unsearched cells, the area coverage rate will taper off.

The system performance module simplifies the complex human-automation collaboration for
guiding a team of semi-autonomous UVs into two components: a) the Automation Generated
Search Speed that the team of UVs would have without any human input and b) the Human
Value Added to the system. As discussed in Chapter 2, in a goal-based architecture (Clare &
Cummings, 2011) the vehicles are semi-autonomous and with the guidance of the AS, can
conduct much of the mission on their own. The human operator only guides the high-level goals
of the vehicles, as opposed to guiding each individual vehicle. Thus, the CHAS model captures
the contribution of the automation through an exogenous parameter, Automation Generated
Search Speed, which is dependent on the number of UVs, speed of the UVs, capabilities and
sensors of the UVs, and the algorithm that the AS employs.

The human contribution to the collaboration is represented in the model as an endogenously-
calculated Human Value Added variable. This enables the model to separately capture the
contribution of the automation and the human to area coverage performance. While the operator
cannot increase the search speed of the UVs, the operator can indirectly adjust the search patterns
of the UVs, which can increase (or decrease) the rate of searching new cells. Previous research
on the AS used in the OPS-USERS testbed has shown that the automated search process is
suboptimal and can be improved either with a centralized global search algorithm (Whitten,
2010) or with a collaborative human assisting the AS (Cummings, et al., 2012), both of which

extend the “effective planning horizon” of the search algorithm.

While the calculation of Human Value Added itself is non-linear (Sections 3.4.5 and 3.5), it was
decided to model the contribution of Human Value Added to the Area Coverage Rate as an
additive factor in order to capture two important facts about real-time human-automation
collaborative scheduling: a) the system could potentially conduct some of the mission without
any meaningful contribution from the human operator and b) while human operators can increase

the performance of these collaborative systems, it is also possible for them to hurt the
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performance of a system either intentionally or unintentionally. Thus, the Human Value Added
variable is calculated with units of cells/second, the same units as Automation Generated Search
Speed and Area Coverage Rate, to capture how much the operator is increasing or decreasing the
rate of searching new cells.

The Area Coverage Rate is calculated using Equation 1, where the sum of Automation Generated
Search Speed and Human Value Added is multiplied by the Probability of a Cell Being
Unsearched. This represents the fact that once there are few unsearched cells remaining, the rate
of area coverage must approach zero. Area Coverage Percentage, the primary system
performance metric for this model, is calculated by dividing the number of Searched Cells by the

Total Number of Cells parameter.

Area Coverage Rate
= Probability of a Cell Being Unsearched *
(Automation Generated Search Speed + Human Value Added) (1)

There are three major simplifying assumptions that the system performance module makes. First,
the model assumes that the total number of cells possible to search can be quantified and
measured. This amount is known in the OPS-USERS simulation and is shown as the total area on
the Map Display (Figure 4). Second, the model assumes that Automation Generated Search
Speed can be captured in a single exogenous parameter. Third, the model assumes that the
human contribution to the collaboration can be separately calculated and summed with
Automation Generated Search Speed to produce a measure of area coverage rate.

To test these simplifying assumptions about the complex human-automation collaboration, it was
important to measure how the team of UVs under purely automation control would perform
without any contribution from the human operator with regards to the guidance of the UVs.
Thus, for this test, an “obedient” human operator was used, as has been used in previous
experiments to make a similar comparison (Cummings, et al., 2012). An obedient operator
always agrees with the AS proposed schedule and never conducts any interventions (such as
manually modifying the schedule, or creating new search tasks), in effect always trusting that the
AS was correct in its guidance of the UVs. The human operator still had an important role to
play with regards to identifying targets, integrating information from the command center

received through the chat box, and approving the destruction of hostile targets.
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Using the same testbed, mission length, and experimental conditions described in Section 3.2, an
obedient human mission was conducted and the results are shown in Figure 14. The actual data
collected from the testbed are shown in the red squares. First, the data shows a saturation-type
curve, indicating that the rate of covering new area slows down over time, supporting the
structure of the system performance module. Second, the percent area covered in the “obedient
human” condition was 56.2%. In comparison, the average human operator in the experiment
described in Section 3.2 achieved area coverage of 61.7%, a 10% increase in performance due to
human value added (blue diamonds in Figure 14). The high performer group in the experiment
achieved average area coverage of 76.6%, a 36% increase in performance over the “obedient
human” condition (green triangles in Figure 14). These results support the assumption that the

human operator is adding value over the automation generated s.

The system performance module was used to simulate this test, with the Human Value Added set
to zero, essentially turning off all other modules in the CHAS model. The model simulation is
shown in the blue line in Figure 14. The model was able to achieve a good fit to this data, with
an R? value of 0.9932 and a RMSE of 0.0143. This test also enabled the estimation of the
Automation Generated Search Speed parameter, set to 2.9 cells/second.
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Figure 14. Obedient human area coverage performance: model vs. experimental data. Aggregate and high
performer data from previous experiment shown for comparison. Standard error bars shown.
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The ability of the module to adequately capture the key drivers of system performance and

accurately calculate performance over time is explored in greater detail in Chapter 4.

3.4.3 Perception of Performance Module

One of the major attributes identified in Chapter 2 that should be captured in a model of human-
automation collaborative scheduling is attention allocation and Situation Awareness (SA). The
Perception of Performance module captures both attention allocation and the three levels of SA
(Endsley, 1995).

There are two major components to the module, as shown in Figure 15. First, there is the
Perceived Present Performance (PPP), which takes as an input Area Coverage Rate. PPP is a
measure of performance, delayed by the parameter Time to Perceive Present Performance
(TPPP), which is an assumption about how long it takes the operator to detect changes in the area
coverage rate. This delay is implemented as a third-order exponential smooth, which has been
used in previous SD models to represent human perception, decision-making, and response
delays (Naill, 1973; Senge, 1980; Sterman, 2000). This method captures two facets of human
perception: a) operators do not immediately perceive changes in system performance, this belief
changes only after some time has passed and b) operators may filter out high-frequency, short-
term changes in system performance and this process can be represented mathematically through

averaging/smoothing.

TPPP is also an implicit measure of attention allocation efficiency, which was described in
Chapter 2 as an important attribute to capture in a model of human-automation collaborative
scheduling. Operators engaged in these dynamic, high workload environments must both
concentrate attention on the primary task of monitoring UV progress and system performance
while also being prepared for various alerts, such automation notifications about potential
changes to the vehicle schedules. The allocation of attention between these two can incur
cognitive switching costs that negatively impact overall system performance (Miyata & Norman,
1986). Poor attention allocation has been shown to be a significant contributor to poor operator
performance in single operator control of multiple unmanned vehicles (Crandall & Cummings,

2007; Goodrich, et al., 2005). Thus an operator with higher attention allocation efficiency who is
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better able to handle the rapid task switching required would have a lower TPPP and detect

changes in system performance faster than an operator who struggles with multitasking.
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Figure 15. Perception of performance module.

Second, the CHAS model assumes that the operator begins the mission with some expectation of
how well the system should be performing, Expected Performance (EP). The Initial EP may be
based on many factors, such as prior experience or training with the system, or various
demographic characteristics. The operator’s expectations of how well the system should be
performing, however, are not static. The CHAS model represents the EP as a “floating anchor”
which adjusts via first-order exponential smoothing to the perceived performance of the system
over time. This formulation was inspired by the TREND function (Sterman, 1987a; Sterman,
2000), which is based on a model of how humans forecast future conditions, such as inflation or
energy consumption, based on previous data. The Time Horizon for Expected Performance
(THEP) is an estimate of the adjustment lag required for operators to change their expectations,
similar to the estimate of the time horizon for the forecasting process (Sterman, 1987a; Sterman,
2000).

Finally, the percent difference between PPP and EP is called the Perceived Performance Gap
(PPG), calculated via Equation 2. When the operator perceives that system is not performing up
to his or her expectations, there is a positive PPG, and vice versa.

EP—-PPP
EP

PPG = )
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One of the advantages of this formulation of the Perception of Performance module is that it
explicitly represents the three levels of SA (Endsley, 1995) and how they can change over time

throughout a mission:

e Perception (Level I): PPP represents the operator’s delayed perception of performance.

e Comprehension (Level II): PPG represents the operator’s understanding of the situation,
specifically the gap between expected and actual performance.

e Projection (Level III): EP, as a floating anchor of the operator’s expectation of performance,
represents the operator’s projection of future performance.

This module makes two simplifying assumptions. The model assumes perfect operator
perception of the area coverage rate, with only a time delay. However, humans are not perfect
sensors of information, especially when there is no explicit indication of the system performance.
Second, as mentioned above, the model assumes that the operator begins the mission with a
certain expectation level of performance, but adjusts these expectations throughout the mission.
Both of these assumptions are evaluated in Chapters 4 and 5.

3.4.4 Trust Module

Chapter 2 described the importance of trust in a human-automation collaborative scheduling
system. The Trust Module draws from a previous computational model of human trust in
automation. Gao and Lee (2006) modeled human trust in a supervisory control setting as
dependent on the operator’s perception of the capability of the automation. They define
automation capability as “the reliability of the automation in terms of fault occurrence and
general ability to accomplish the task under normal conditions” (Gao & Lee, 2006, p. 946). In
their model, the operator’s trust began at an initial level, given by a parameter, and adjusted with
some inertia, meaning that some operators adjusted their trust faster than others. Gao and Lee
represented the inertia of trust through a trust time constant that governed how quickly trust
could change. A larger trust time constant meant that the operator put greater weight on new
information that was perceived in terms of the capability of the automation and thus had lower
inertia of trust. Finally, the operator’s decisions about the next action to take were influenced by

the operator’s trust in the automation. Portions of the Gao and Lee (2006) model were adapted
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for use in the CHAS model to capture the impact of trust on human-automation collaboration for

control of multiple UVs.

The trust module, as shown in Figure 16, begins by calculating the Perceived Automation
Capability based on the Perceived Performance Gap (PPG). Perceived Automation Capability,
which is expressed as a percentage between 0-100%, then drives changes in Human Trust. The
model assumes that human operators adjust their trust in the automation based not upon their
absolute perception of the performance of the system, but on the relative difference between
what they perceive and how well they expect the system to be doing. For example, an operator
with very low expectations of performance could have higher trust in the automation based on
their perception of how well the system is doing. This is supported in the human supervisory
control literature, for example, Lee and See (2004, p. 53) explained that trust in automation
“concerns an expectancy or an attitude regarding the likelihood of favorable responses,” but that
trust changes based on the operator’s perception of the current capability of the automation as
compared to their expectation of capability. Also, Lee and Gao (2006) used the occurrence of
automation faults, i.e. performance that was lower than expected, to model the capability of the

automation as a measure of reliability.
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Figure 16. Trust module.

The model assumes that increases in PPG should cause a decrease in Perceived Automation
Capability and vice versa. It was decided to model the relationship between PPG and Perceived
Automation Capability with an inverse logit function, as shown in Figure 17. This non-linear
relationship is supported by previous research, as Lee and See (2004, p. 72) wrote that “trust iS a

nonlinear function of automation performance and the dynamic interaction between the operator
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and the automation...some evidence suggests that below a certain level of reliability, trust
declines quite rapidly.” Thus, in the CHAS model, below a certain level of reliability (above a
certain level of PPG), trust (driven in the CHAS model by Perceived Automation Capability)
declines rapidly. A logit function also maintains the Perceived Automation Capability between

0-100% even at extremely high or low values of PPG.

This relationship is captured by the logit function shown in Figure 17, which shows a fairly rapid
decline in Perceived Automation Capability as the operator moves from a 0% PPG to a 30%
PPG. The shape of this curve is dependent on the characteristics of the system being modeled
and can be varied in the CHAS model by two parameters as seen in Equation 3: Base PPG and
PPG Max Slope. The Base PPG determines the point at which Perceived Automation Capability
crosses 50%. PPG Max Slope determines the maximum slope of the curve at the midpoint.
Equation 3 shows the calculation for Perceived Automation Capability. By capturing this
relationship through these two parameters, it enables sensitivity analysis of how the model

outputs change with different curves, which is explored further in Section 4.3.

Perceived Automation Capability = (1 — 1/(1 + e~**FPPG Max Slopex(PPG-Base PPG)y (3,
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Figure 17. Notional relationship between Perceived Performance Gap (percent difference between expected
and perceived performance) and Perceived Automation Capability.

Next, the model takes as an input parameter the Initial Human Trust in the AS, which can vary

widely based on the operator’s prior knowledge, past experiences, and training (Lee & Moray,
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1994; Moray, et al., 2000). Both the Initial Human Trust and the Human Trust variable are
expressed as a percentage between 0-100%, matching the definition of Perceived Automation

Capability.

Trust is often dynamic and can fluctuate throughout a mission based on the operator’s perception
of how well the automation is performing (Lee & Moray, 1992; Muir & Moray, 1996). A
number of studies have found that human trust has inertia, where automation errors do not
necessarily cause instantaneous loss in trust, but recovery in trust from severe failures can also be
slow (Lee & Moray, 1994; Lewandowsky, et al., 2000; Parasuraman, 1993). To reflect the
dynamic nature of trust, the model adjusts the operator’s trust via first-order smoothing to the
Perceived Automation Capability with a time delay. Just as Lee and Gao (2006) used in their
model, the time delay is determined by an exogenous parameter, the Trust Time Change
Constant, which is representative of the operator’s trust inertia. Both the Initial Human Trust and
Trust Time Change Constant are estimated through model fitting to experimental data, as

described in Chapter 4.

Once again, there are a number of simplifying assumptions in this module. First, the model
assumes that human trust in the AS is negatively dependent on the PPG. Second, the model
assumes that the non-linear relationship between PPG and trust can be captured through a logit
function. Third, the model assumes that trust begins at a given level, potentially different for
each operator, and adjusts with some inertia. All of these assumptions will be evaluated in
Chapters 4 and 5.

3.4.5 Interventions Module

The interventions module is shown in Figure 18. Two types of interventions were specified in the
CHAS model. First, the operator could create new search tasks, which enabled the human
operator to guide the automation and prevent myopic behaviors by encouraging the UVs to
search in unsearched areas the human felt were likely to contain new targets. Second, the
operator could “replan” by asking the AS to generate a new schedule for the team of UVs. This
new schedule must be approved by the operator before the team of UVs will enact the new
schedule. These two interventions were chosen because the data analysis discussed previously in

Section 3.2 revealed that there were significant differences between low and high performers in
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these two types of interventions. Other interventions to modify the automation-generated
schedules directly, such as “what-if assignments” to attempt to manually force a single task into
the schedule and modifying the objective function of the AS (Section 3.2) were removed from

the CHAS model in the model reduction process described in Appendix A.
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Figure 18. Interventions Module.

First, the module assumes that the rate of intervening by creating new search tasks is negatively
dependent on Human Trust level (higher trust, less likely to intervene). As was explained in
Section 3.2, data from a previous experiment showed that the operator’s subjective rating of
satisfaction with the AS (a proxy variable for trust) was negatively correlated with the rate of
creating new search tasks, p=-0.394, p=0.002. It was decided to model the relationship between
Human Trust and Search Task Rate with an inverse logit function, as shown in Figure 19. A non-
linear logit relationship between trust and interventions is supported by previous empirical
results (Lee & Moray, 1994; See, 2002). In particular, Lee and Gao (2006) modeled the
relationship between trust and the likelihood that an operator would use automatic versus manual

control using a logit function.

Empirical evidence supporting the shape of this curve is also presented in Figure 19. The data
shown in the plot is from the previous experiment described in Section 3.2. While explicit data
on operator trust is not available from this experiment, operators were asked to rate their
satisfaction with the plans created by the AS after each mission on a Likert scale from 1-5 (low
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to high). This subjective rating can be used as a proxy variable for trust in the AS. For the
purposes of this plot, the ratings of satisfaction with the plans created by the AS were converted
to the trust scale (0-100%) simply by dividing by 5. The yellow diamond shows the average for
all missions in terms of the proxy trust measure and search task rate. Data from the high and low
performance clusters identified in Section 3.2 are shown in green triangles. The blue squares
show the average search task rate for groups of operators based on their rating of satisfaction
with the AS. There are four groups (ratings 1-4), as no operator rated their satisfaction level as 5
out of 5. It is apparent from the data that the relationship is non-linear, as the decline in search

task rate with increasing trust begins sharply, but flattens out at higher trust levels.
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Figure 19. Relationship between Human Trust and Search Task Rate. Empirical data shown with £1
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The shape of this curve can be varied in the CHAS model of the OPS-USERS environment by
four parameters as seen in Equation 4: Max Search Task Rate, Min Search Task Rate, Midpoint
Trust, and Trust Max Slope. The Max and Min Search Task Rate set the minimum and maximum
values for the curve. The Midpoint Trust determines the midpoint of the logit curve, i.e. the trust
level at which the curve crosses halfway between the Max and Min Search Task Rate. Trust Max
Slope determines the maximum slope of the curve at the midpoint. Equation 4 shows the
calculation for Search Task Rate. By capturing this relationship through these three parameters,
it enables sensitivity analysis of how the model outputs change with different curves, which is

explored further in Section 4.3.
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Search Task Rate
= (Max Search Task Rate — Min Search Task Rate)

(1 _ 1 ) + Min Search Task Rate 4)

1+e—4*Trust Max Slopex(Human Trust—Midpoint Trust)

Next, the interventions module captures the Replan Rate through a direct relationship with the
Search Task Rate, as shown in Equation 5. The Number of Replans per Search Task parameter
scales the rate of creating search tasks to the rate of replanning. The relationship between search
task creation and replanning is a result of the design of the testbed. There is a direct system need,
once a search task has been created, to replan in order to assign that new task to the team of UVs.
The OPS-USERS system actually displays a notification every time a search task is created,
encouraging the operator to replan to assign the new task. Data from the previous experiment
described in Section 3.2 supports this relationship, as the search task rate was significantly
correlated with the replan rate, p=0.567, p<0.001. While the search task rate and replan rate are
highly correlated, the CHAS model only represents the impact of search task creation on the
human value added to system performance, as described below. It is still important to calculate

the replan rate to enable an accurate estimation of workload, as described in Section 3.4.6.

Replan Rate = Search Task Rate x Number of Replans per Search Task (5)

Finally, the interventions module calculates the Effect of Search Tasks on Human Value Added.
Data from the previous experiment described in Section 3.2 showed that the rate of creating new
search tasks (an intervention meant to guide the search process of the team of UVs) was
significantly correlated with area coverage performance, p=0.446, p<0.001. This supports the
assumption that there is a positive relationship between the rate of creating search tasks and the

human value added to system performance.

In order to estimate the relationship between Search Task Rate and Human Value Added, the
simple test model shown in Figure 20 was used. This model is identical to the system
performance module presented previously except that instead of separating the Automation
Generated Search Speed and Human Value Added, it uses a single Search Speed parameter to
drive the model. Also, there are no feedback loops linking the area coverage rate to operator

trust, interventions, or workload.
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Figure 20. Test model for estimating relationship between Search Task Rate and Human Value Added.

The Search Speed input parameter was varied in order to fit the test model to the area coverage
data from three groups in the experimental data set described in Section 3.2: low performers,
high performers, and aggregate data for all missions. The results are shown in Table 1. Given
that the Automation Generated Search speed was estimated in Section 3.4.2 to be 2.9
cells/second, the Human Value Added could be estimated by subtracting 2.9 from the fitted
Search Speed value of each group, as shown in the fourth column of Table 1. The results show
that low performers were actually hurting the performance of the system (either intentionally or
unintentionally) as compared to how the system would have performed under automation-only
control. The average performer added some value to system performance, while high performers
added the most value, contributing 68% of the value that the automation was contributing. As the
data analysis in Section 3.2 showed, it is likely that operators increased the rate of covering new

area by creating more search tasks to encourage the UVs to explore new areas on the map.

Table 1. Estimated relationship between Average Search Task Rate and Human Value Added.

Data Set Average Search Tasks Fitted Search Speed Human Value Added
Created Per Two Minutes
Low Performers 2.38 24 -0.5
All Missions 2.90 3.6 0.7
High Performers 4.42 4.9 2

By plotting Average Search Task Rate and Human Value Added, as shown in Figure 21, a non-
linear logit relationship was estimated. The CHAS model assumes that operators who create
fewer than 2.5 search tasks per two minute interval are actually lowering the performance of the
system as compared to the Automation Generated Search Speed. The model also assumes that
the contribution of the human operator to the system is limited in both the positive and negative

direction, with the minimum Human Value Added set to -1 cells/second and the maximum
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Human Value Added set to 2 cells/second. As a model construct, these limits ensure that the
model behaves appropriately at extreme conditions. Without these limits, for example, the Effect
of Search Tasks on Human Value Added could scale linearly down to the point at which the
Human Value Added cancels out the Automation Generated Performance, causing the Area
Coverage Rate to become negative, which is physically impossible. The non-linear logit
relationship enables this appropriate model behavior at extreme conditions and further extreme

conditions testing is described in Chapter 4.
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Figure 21. Relationship between Search Task Rate and Effect of Search Tasks on Human Value Added.
Empirical data shown with +1 Standard Error bars.

The shape of this curve can be varied in the CHAS model by four parameters as seen in Equation
6: Max Human Value Added, Min Human Value Added, Base Search Task Rate, and Search
Task Rate Max Slope. The Max and Min Human Value Added set the minimum and maximum
values for the curve. The Base Search Task Rate determines the search task rate at which the
curve crosses halfway between the Max and Min Human Value Added. Search Task Rate Max
Slope determines the maximum slope of the curve at the midpoint. Equation 6 shows the
calculation for Effect of Search Tasks on Human Value Added. This effect is combined with the
impact of cognitive overload to calculate Human Value Added (Section 3.5). By capturing this
relationship through these four parameters, it enables sensitivity analysis of how the model
outputs change with different curves, which is explored further in Section 4.3.

Effect of Search Tasks on Human Value Added
_ Max Human Value Added—Min Human Value Added
- 1+e—4*Search Task Rate Max Slopex(Search Task Rate—Base Search Task Rate)

+Min Human Value Added (6)

85



To summarize, this module contains a number of assumptions. First, the model assumes that the
rate of creating new search tasks is negatively dependent on human trust. Second, the model
assumes that the non-linear relationship between trust and search task rate can be captured
through a logit function. Third, the model assumes that the rate of replanning is directly
dependent on the rate of creating search tasks. Fourth, the model assumes that the Human Value
Added to system performance is positively dependent on the rate of creating search tasks.
Finally, the model assumes that the non-linear relationship between search task rate and Human
Value Added can be captured through a logit function. While empirical data was presented
throughout this section to support these assumptions, further evaluation of these assumptions will

be presented in Chapters 4 and 5.

3.4.6 Workload Module

As described in Chapter 2, it has been shown in several previous studies that human cognitive
workload has a significant impact on both human and system performance (Clare & Cummings,
2011; Cummings, Clare, et al., 2010; Cummings & Nehme, 2010). As theorized in the Yerkes-
Dodson curve (1908), up to a certain point, increased workload can be beneficial to performance.
Once the operator reaches what is referred to as cognitive overload, performance begins to suffer
(Figure 22). Miller (1978) surveyed a large number of studies on the ability of individuals to
process information and found a robust inverted U-shaped relationship between the rate of
information inputs (a proxy for workload) and the ability of individuals to produce correct

responses (performance).

Performance Q
<3

Poor

Low Moderate High
Workload

Figure 22. Notional diagram of the Yerkes-Dodson curve.
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The System Dynamics modeling community avoids implementing U-shaped non-linear functions
for two reasons: a) to ensure that all causal links in the model have unambiguous polarity and b)
a U-shaped relationship indicates the presence of multiple causal pathways between the input
and output (Rudolph & Repenning, 2002; Sterman, 2000). Thus, the increasing and decreasing
effects of the Yerkes-Dodson curve are separated in the CHAS model. While this may add
complexity to the model, it also clarifies which side of the Yerkes-Dodson curve the model is
operating on at all times. The Trust in Automation loop, as previously described, captures the
positive effects of increasing workload, where an increased rate of creating search tasks leads to
higher performance (as shown in Section 4.2.1). The workload module specifically captures the

negative effects of cognitive overload in real-time human-automation collaborative scheduling.

The workload module is shown in Figure 23. Human Workload is measured through a utilization
metric, calculating the ratio of the total operator “busy time” to the total mission time. This
captures the percentage of time that the operator is engaged in a goal-directed task, not
monitoring the system. Operator “busyness” can serve as a useful proxy measure of mental
workload (Wickens & Hollands, 2000).

Search Task

Creation Time
Length
Length of Time
/ to Replan
+J+

+ Human o Initial NST
Workload Nonschedullng
Taskload (NST) @
NST Rate
Sampllng
@ Interval
Cognitive
Overload

Effect of Cognitive
Overload on Human

Value Added Table for Cognitive

Overload

Figure 23. Workload module.

A key assumption in the CHAS model is that operators must deal with non-scheduling activities

during the mission in addition to the two scheduling tasks of creating search tasks and replanning
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(evaluating new schedules created by the AS). For the purposes of this thesis, these two types of
activities are called scheduling activities and Nonscheduling Task Load (NST). Scheduling
activities have two defining characteristics: a) the operator decides when to conduct these
activities and b) the activity is directly related to scheduling the UVs. In contrast, NST is defined
as the level of tasking that an operator is asked to perform, excluding scheduling activities. There
were three activities that fell in this category in the OPS-USERS testbed: visually identifying or
re-designating targets, approving weapons launch, and reading and answering chat messages. For
all three of these activities, the operator was prompted to do the activity, either through a pop-up

window or an auditory alert (see Appendix D for more details).

The CHAS model endogenously calculates the rate of creating search tasks and the rate of
replanning, as the operator decides when to conduct these activities. The model assumes that the
required utilization generated by NST can be captured exogenously based on data gathered from
the OPS-USERS testbed. The required utilization due to NST was calculated from aggregate
experimental data (Section 3.2.2), using two-minute intervals, as shown in red in Figure 24. Self-
imposed utilization from scheduling activities (creating search tasks and replanning) is shown in
blue stripes.
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Figure 24. Utilization due to self-imposed scheduling activities and required utilization due to Nonscheduling
Task load (NST). Standard error bars are shown.

A number of observations can be made from this data. First, the required utilization due to NST
appears to decline over time. A repeated measures ANOVA of the required utilization due to

NST indicates a significant effect for time, F(9,531) = 55.140, p < 0.001. Descriptive statistics
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for this ANOVA analysis are presented in Appendix D. Second, it appears that this decline is
roughly linear. The green line shown in Figure 24 captures most of the variance in required
utilization due to NST, with an R? value of 0.72.

Why is NST declining over time? The main reason for this linear decline in NST is that most of
the visual target identification activities and chat messages occur earlier in the mission and are
less frequent towards the end of the mission. This linear decline appears to hold except for a
small uptick in NST in the interval following 600 seconds into the mission. This increase in NST
is clearly linked to a ROE change allowing the destruction of hostile targets, which occurs at 600
seconds. A similar analysis of required utilization due to NST for different OPS-USERS

experiments also showed a roughly linear decline in NST (Appendix D).

Overall, the assumption of an exogenously defined, linearly declining NST seems to be
appropriate for modeling the OPS-USERS testbed under the experimental conditions described
in Section 3.2 (see Section 4.2.2 for an analysis of NST for a different OPS-USERS experiment
with higher task load). For the experimental conditions in Section 3.2, the CHAS model
representation of NST follows the green “model” line shown in Figure 24, with the required
utilization due to NST starting at 30% followed by a linear decline. The CHAS model calculates
the Nonscheduling Task load (NST) from two exogenous parameters: Initial NST and NST Rate,
as shown in Figure 23. NST begins at a level set by Initial NST and either linearly increases,

linearly decreases, or remains the same depending on the NST Rate of change parameter.

To conclude the calculation of human workload, it should be noted that the experimental data set
used to build this model measured the rate of interventions (search task creation, replans) by
counting the number of interventions that occurred over each two minute interval throughout the
mission. Two minute intervals provided 10 data points per mission and were used to balance the
need to show fine-grain changes in operator behavior with the need to allow a long enough
aggregation period to allow the operator to create search tasks and replan. The CHAS model
measures the Search Task Rate in tasks created per two minute interval, not tasks/second. Thus, a
Sampling Interval parameter is used in the workload module to enable an apples-to-apples

comparison between the simulation and experimental data. The Sampling Interval parameter, set
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to 120 seconds, is used to convert the search task rate and replan rate back to tasks/second in the

calculation of Human Workload (as measured via utilization), shown in Equation 7.

Human Workload (Utilization)
__ Search Task RatexSearch Task Creation Time Length+Replan RatexLength of Time to Replan

Sampling Interval

+NST (7)

In order to estimate the Effect of Cognitive Overload on Human Value Added, the model draws
upon previous literature in both human supervisory control and SD modeling. It has been
established in previous literature that a utilization level over 70% can lead to performance
decrements (Cummings & Guerlain, 2007; Nehme, 2009; Rouse, 1983; Schmidt, 1978). Rudolph
and Repenning (2002) developed an SD model of the Yerkes-Dodson curve to capture the impact
of stress on human decision-making. Their aim was to model the impact of interruptions on the
poor decision-making that led to events such as the Tenerife airliner collision or U.S.S.
Vincennes disaster. They separated the typical inverted-U Yerkes-Dodson curve into its upward
and downward-sloping components. The positive effect of increased stress captured the upward
sloping component, including low task load levels, as performance improved with increasing
stress levels. The negative effect of increased stress only had an impact on their model outputs
once the stress level was high enough to enter the downward-sloping part of the Yerkes-Dodson
curve. The negative effect was modeled as a flat line equal to 1 up to the point of overload (thus
having no impact on performance as the positive and negative effects were multiplied together),

followed by a sharp decline to zero beyond the point of overload (Rudolph & Repenning, 2002).

Inspired by this previous literature, the CHAS model captures the Effect of Cognitive Overload
on Human Value Added using a table function, shown below in Figure 25. Up to a workload
level of 70%, there is little change in the effect of workload. Above a workload level of 70%,
however, the effect would cause a steep drop in Human Value Added up to a maximum

workload level of 100%.

This module makes a number of assumptions. First, it assumes that utilization is a good proxy
measure for cognitive workload. While utilization has been used in many previous models of
operator workload (Nehme, 2009; Schmidt, 1978), it makes two simplifying assumptions: a) all

time spent performing tasks is equivalent in terms of the mental resource demand and b) all time
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spent not performing any active tasks, i.e. monitoring the system, is not drawing on mental
resources. Both of these assumptions are dubious, as certainly some tasks require more mental
effort than other tasks, and the operator is using some cognitive resources while monitoring the
system. Given these limitations, however, utilization has been found to be a useful proxy
measure of human cognitive workload in previous studies (Cummings & Guerlain, 2007;
Donmez, Nehme, & Cummings, 2010; Schmidt, 1978), especially in monitoring changes in

workload over time, and will be used in the CHAS model as a proxy for cognitive workload.
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Figure 25. Table function for the Effect of Cognitive Overload on Human Value Added.

Second, the model assumes that the impact of complete cognitive saturation, i.e. 100%
utilization, is captured by driving the Human Value Added to the performance of the system to
zero. Previous research has shown that under conditions of cognitive overload, perceptual
narrowing can occur (Kahneman, 1973). At 100% utilization, the operator will likely begin to
miss prompts to conduct important tasks. Other researchers have shown that under conditions of
extreme high stress, the typical first response is to freeze (Bracha, 2004). Thus, the model
assumes that the Human Value Added to the system will go to zero under complete cognitive
saturation. Future research will explore whether in fact the curve should go negative, in that
operators begin to make mistakes and detract from system performance under conditions of

cognitive overload.

Third, the model assumes that 70% utilization is the point at which performance begins to suffer
and that performance drops off according to the curve shown in Figure 25. While the human
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supervisory control literature supports the assumption that performance declines beyond 70%
utilization, additional empirical evidence supporting the shape of the curve is presented in
Chapter 4. Also, sensitivity analysis of how the model outputs change with different workload
curves is explored further in Section 6.1.2.

3.5 Feedback Interactions

The CHAS model closes the major feedback loops by relating the rate of interventions and
operator workload back to system performance. Human Value Added is calculated by
multiplying the Effect of Interventions on Human Value Added by the Effect of Cognitive
Overload on Human Value Added. Under normal workload situations (under 70% utilization) the
rate of interventions is the key driver of the Human Value Added variable, since the Effect of
Cognitive Overload on Human Value Added remains near 1. However, if the operator’s
cognitive workload reaches too high of a level, there will be a sharp decrease in Human Value
Added. This represents the fact that the rate of operator intervention and the effectiveness of
these interventions can be in tension, as previous research has shown that high rates of human
intervention in a highly automated multi-UV system can lead to worse performance under certain

conditions (Clare & Cummings, 2011; Cummings, Clare, et al., 2010).

The interaction of the three main feedback loops shown in Figure 12 is the key driver of
performance in a real-time human-automation collaborative scheduling system. First, the Trust in
Automation loop is a balancing feedback loop, also known as a negative feedback loop, in that
the loop is self-correcting and opposes disturbances. For example, if the Area Coverage Rate
were to decrease, the operator’s Perceived Present Performance (PPP) would decrease after a
time delay, as shown by an arrow connecting the two variables with a plus sign. This would
cause an increase in the Perceived Performance Gap (PPG) and a decrease in Perceived
Automation Capability. A decrease in Human Trust and an increase in the Search Task Rate
would follow. Finally, the Human Value Added would increase and the Area Coverage Rate
would return to a higher level. This loop is balancing in that it always seeks to maintain the

operator’s expected level of performance.

Second, the Expectations Adjustment loop is a reinforcing loop, also known as a positive

feedback loop, in that the loop reinforces any disturbance. If the Area Coverage Rate were to be
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increase, the operator’s PPP would increase, as would the Expected Performance, albeit after a
long time delay. This would cause an increase in PPG and a decrease in Perceived Automation
Capability. A decrease in Human Trust and an increase in the Search Task Rate would follow.
Finally, the Human Value Added would increase and the Area Coverage Rate would continue to
increase, reinforcing the original change. This loop tends to reinforce trends towards either
increasing or decreasing performance, as the operator’s expectations adjust to his or her

perception of how well the system is doing.

Third, the Cognitive Overload loop is also a reinforcing loop. If Human Workload were to be
increase above 70% utilization, the Effect of Cognitive Overload on Human Value Added would
decrease sharply. This would decrease the Human Value Added and therefore decrease the Area
Coverage Rate. A decreased PPP, increased PPG, decreased Perceived Automation Capability,
decreased Human Trust, and increased Intervention Rate would follow, resulting in an additional
increase in Human Workload, reinforcing the trend. This loop works in tension with the Trust in
Automation loop, as additional interventions may improve performance, but also cause workload
to increase, potentially lowering performance. The loop also captures the fact that there is
potentially a tipping point (Rudolph & Repenning, 2002) beyond which the dynamics of the
system change dramatically. Once beyond this tipping point, working ‘“harder” to attempt to
correct for poor performance can simply lead to further decreases in performance and the need to

work “even harder” in a vicious cycle.

3.6 Model Outputs

The CHAS model can aid a designer of future UV systems in predicting the impact of changes in
system design and operator training. This can reduce the need for costly and time-consuming
human-in-the-loop testing that is typically required to evaluate such changes. It can also allow
the designer to explore a wider trade space of system changes than is possible through

prototyping or experimentation.

The CHAS model provides a number of output variables that a designer might be interested in
capturing. A designer could investigate system performance by analyzing the rate of area
coverage or the total area coverage by the end of the mission. Changes in human trust in the AS

can be captured, which can be beneficial for the designer to understand, as both undertrust
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(Clare, Macbeth, et al., 2012) and overtrust (Parasuraman & Riley, 1997) in automation have
been shown to hurt the performance of a system. The rate at which a human operator decides to
intervene can be analyzed. This can be important for a system designer to know, for example, to
analyze the impact of communications delays between the operator and the vehicles in a
decentralized network of UVs (Southern, 2010). The effect of alternative system designs on the
workload of the operator can also be captured. In addition, since operator workload is a key
driver of human performance, the ability to design a future UV system with an understanding of

the impact on operator workload is crucial.

3.7 Model Benefits

Chapter 2 identified a set of research gaps that the CHAS model was designed to address. The
following sections describe the benefits of the model in relation to these research gaps. The

limitations of the model will be explored in Chapter 6.

3.7.1 Feedback Interaction Among Important Aspects

As was explained in Chapter 2, it is crucial for an effective model of real-time human-
automation collaborative scheduling of multiple UVs to capture the feedback relationships
among perception, workload, trust, decision-making, and performance. The CHAS model
accomplishes this through the three feedback loops that have been implemented in the simulation
model: the Trust in Automation loop, the Expectations Adjustment loop, and the Cognitive
Overload loop. Rather than treating the aforementioned variables as separate factors, the CHAS
model captures the interaction among these components. For example, the tension between the
rate of operator interventions and the effectiveness of these interventions due to cognitive
overload is explicitly modeled. Components are not static in the CHAS model, but can change
over time throughout the simulation of a mission due to feedback. For example, operator

expectations of performance, trust, and workload all start at an initial level, but vary over time.

3.7.2 Capturing Impact of Automation Characteristics

The CHAS model captures three crucial details of the automation used in a real-time human-
automation scheduling system and the impact of these characteristics on the contributions of the

operator and automation to system performance. First, the model explicitly represents the
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contribution of the automation to the performance of the system. This provides the system
designer with the ability to quantitatively evaluate the impact of improved automation, such as a
better search algorithm, on the performance of the system and potentially on the operator’s trust
level and workload. Second, the model captures the average length of time that an intervention
takes. Interventions by the human operator can include replanning to request a new schedule
from the AS. If the designer reduces the time that the AS takes to generate a new schedule, the
impact on operator workload and performance can be evaluated. Third, the model captures the
effect of operator interventions on the human-automation collaboration and thus on system
performance. This effect is implemented in the model using an empirically derived, non-linear
relationship between the search task rate and human value added that is specific to the
automation being used. While it would be difficult to tune this model to a revolutionary system
that does not already exist, the CHAS model could potentially allow a system designer to
investigate the impact of evolutionary changes to a currently existing system, such as using a

different AS, on human and system performance.

3.7.3 Integration of Qualitative Variables

As was defined in Chapter 2, it is critical for an effective model to capture the influence of
qualitative variables such as trust or alignment of human and AS goals on system performance.
The CHAS model explicitly models human trust and its impact on the rate at which humans
intervene into the operations of the team of UVs. The dynamics of trust are captured by enabling
trust to adjust over time throughout the mission with some inertia. The alignment of human and
AS goals influences both their expectations of how well the system should perform and their

perception of the capability of the AS, both of which are captured in the model.

3.8 Chapter Summary

In summary, a System Dynamics model of real-time human-automation collaborative scheduling
of multiple UVs has been developed. The System Dynamics modeling process was described and
applied to the problem of collaborating with an automated scheduler in a dynamic, uncertain
environment. A previous experimental data set was analyzed and led to the creation of a dynamic
hypothesis that attempts to explain the differences between high and low performing operators.

Using this dynamic hypothesis, the data analysis, and prior literature in human supervisory
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control, three major feedback loops were developed. These feedback loops were implemented
into a System Dynamics simulation model. This model was specific to the OPS-USERS testbed,

and the generalizability of the model will be explored in Chapter 6.

As with any model, a number of assumptions were made in the development of the model. In
Chapter 4, these assumptions will be tested as the model is used to simulate the behavior of
operators in prior human-automation collaboration experiments. In Chapter 5, the usefulness of

the model for predicting the impact of system changes on system performance will be evaluated.
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4 Model Validation

This chapter describes the validation process that was conducted for the Collaborative Human-
Automation Scheduling (CHAS) model introduced in the previous chapter. While no model will
ever be truly validated, as it is a limited, simplified representation of the real world (Sterman,
2000), model testing is essential for building confidence in the soundness and usefulness of the
model (Forrester & Senge, 1980). The testing process also attempts to demonstrate whether the
model is consistent with the real world that it attempts to capture (Richardson & Pugh, 1981).
While a number of methods to validate simulation models have been proposed (Barlas, 1994;
Forrester & Senge, 1980; Homer, 1983; Richardson & Pugh, 1981; Sargent, 2005; Sterman,
1987b; Sterman, 2000), the field of System Dynamics (SD) has established a common set of tests
for the validation of a simulation model (Forrester & Senge, 1980; Sterman, 2000). This chapter

details how each of these confidence-building tests was applied to the CHAS model.

There are three categories of tests that were conducted: model structure tests, model behavior
tests, and policy implications tests (Forrester & Senge, 1980). While these tests were used
iteratively to refine the CHAS model, the tests presented in this chapter apply to the latest
version of the CHAS model. Model structure tests that were conducted and will be discussed in
this chapter include: a) boundary adequacy testing, b) dimensional consistency testing, c)
extreme conditions testing, d) integration error testing, and e) structure and parameter
verification. Model behavior tests include behavior reproduction and sensitivity analysis to

parameter changes.

Behavior reproduction testing will be described for three data sets. First, the model was tested on
the experimental data which informed construction of the model (Section 3.2). Second, in a
“family member” test, data from an experiment that uses the same testbed but under different
experimental conditions was used. Third, to test the external validity of the CHAS model, the
model was exercised on data from an experiment that uses a different testbed, a multi-robot
Urban Search and Rescue simulation (USARSIm). Sensitivity analysis included an investigation
of the impact of parameter estimate errors on model outputs and Monte Carlo simulations to

capture the impact of human variability on model outputs. The final test category, policy
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implications, was conducted through a predictive validation experiment and will be described in
Chapter 5.

4.1 Model Structure Tests

A number of model structure tests have been conducted on the CHAS model. These tests strive
to assess the structure and parameters of the model directly, without necessarily evaluating the
relationships between structure and behavior (Forrester & Senge, 1980). The tests described here
are: a) boundary adequacy testing, b) dimensional consistency testing, b) extreme conditions

testing, d) integration error testing, and e) structure and parameter verification.

4.1.1 Boundary Adequacy Testing

Boundary adequacy tests ask whether the model is appropriate for the purpose for which it was
built and whether the model includes all relevant structure (Forrester & Senge, 1980). The
primary method of determining the boundary of the model is through inspection of a model
boundary chart, shown in Table 2. While all models choose to omit certain concepts and
variables in the pursuit of the most parsimonious model, an evaluation of boundary adequacy
considers whether there are potentially important feedbacks omitted from the model. Methods of
evaluating boundary adequacy commonly include interviews with subject matter experts, review

of relevant literature, and assumptions built from experience with the system being modeled.

First, in order to evaluate whether the model is appropriate for the purpose for which it was built,
the purpose must be defined. The purpose of the CHAS model was to enable system designers to
address the three major challenges that have been identified when human operators collaborate
with AS in real-time operations: inappropriate levels of operator trust, high operator workload,
and a lack of goal alignment between the operator and AS (Chapter 1). Currently, designers
trying to address these issues test different system components, training methods, and interaction
modalities through costly human-in-the-loop testing. Through the use of a computational
simulation model such as the CHAS model, a designer of future UV systems can simulate the
impact of changes in system design and operator training on human and system performance.

This can reduce the need for time-consuming human-in-the-loop testing that is typically required
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to evaluate such changes. It can also allow the designer to explore a wider trade space of system

changes than is possible through prototyping or experimentation.

Next, to evaluate whether the model includes all relevant structure, a model boundary chart was

constructed to define which characteristics were captured endogenously, exogenously, or were
excluded from the CHAS model boundary (Table 2). The CHAS model was then compared to

the six attributes described in Chapter 2 that were important to consider when modeling real-time

human-automation collaborative scheduling:

Attention Allocation and Situation Awareness: The operator’s attention allocation efficiency
was modeled through the Time to Perceived Present Performance (TPPP) time constant, an
exogenous parameter. As described in Chapter 3, an operator with higher attention allocation
efficiency who was better able to handle the rapid task switching required would have a
lower TPPP and detect changes in system performance faster than an operator who struggles
with multitasking. The three levels of Situation Awareness were modeled endogenously, by
capturing perception of performance (Level 1), the perceived performance gap (Level I1), and
expected performance (Level I11).

Cognitive workload: The operator’s workload was modeled endogenously, based upon the
rate of interventions, the time lengths for these interventions, and the nonscheduling activities
that the operator also had to complete. While it is likely that cognitive workload is correlated
with attention allocation and situation awareness, it is important to model both attributes in
order to capture the feedback interactions among them and the resulting impact on human
and system performance.

Trust in automation: The operator’s level of trust in the AS was modeled as starting at an
initial level defined exogenously, then adjusting endogenously over time to the perceived
automation capability with an inertia defined by an exogenous trust change time constant.
Human Learning: The model’s calculation of time-delayed adjustments in perceived
performance, expected performance, and trust level were all endogenous representations of
long-term human learning. Previous versions of the CHAS model also captured how
operators learned to use the interface more quickly and efficiently to collaboratively replan

with the AS, but this short-term learning component was removed during the model
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reduction process (Appendix A). The final model presented in Chapter 3 represents the
length of time to replan as a static exogenous parameter.

e Automation characteristics: The characteristics of the automation were static during the
mission and were thus represented through exogenous parameters and relationships,
including automation generated search speed and the relationship between search task
interventions and system performance.

e Human value-added through interventions: Human value added to system performance was
calculated endogenously based on the rate of interventions to coach the sub-optimal
automation, while also taking into account the fact that high operator cognitive workload
could cause a decrease in the effectiveness of operator interventions, as has been shown in

previous research (Clare & Cummings, 2011; Cummings, Clare, et al., 2010).

Table 2. Model boundary chart for the CHAS model.

Endogenous Exogenous Excluded
e System performance e  System characteristics: o Details of UVs
o Unsearched o Total number of cells o  System or component
cells o Initial Nonscheduling Task Load (NST) failures
o Searched cells o NST rate of change o Vebhicle losses
o Probabilityofa e  Automation characteristics: o Sensor ranges or types
cell being o Automation generated search speed e Communications delays or
unsearched o Effect of search task rate on human bandwidth limitations
e  Perception of value added to system performance e Allocation of tasks to
performance (Level e  Human-automation interaction time lengths: individual UVs
| SA) o Length of time to replan e  Safety policies (ex: separation
e Perceived o Search task creation time length distances)
performance gap ¢ Initial human conditions: e Human vigilance issues under
(Level 11 SA) o Expectations of performance low workload
e Expected o Trust level e  Multiple human operators
performance (Level e  Human time constants/delays: (teamwork & coordination)
111 SA) o Perceiving performance e  Details of the operator control
e  Perceived o Adjusting expectations interface
automation o Adjusting trust e Environmental effects
capability e Non-linear human relationships: (weather, wind, etc.)
e  Human trust o Cognitive overload e Details of targets
e  Human workload o Effect of perceived performance gap on o Locations
e Search task rate perceived automation capability o Movement or evasive
e Replan rate o Effect of human trust on search task rate maneuvers
e Human value added e Destruction of hostile targets

The majority of these important characteristics were captured endogenously, as they could

change throughout a mission. The characteristics of the automation and certain system
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characteristics were static during the mission and were thus represented as exogenous
parameters. While by definition, initial human conditions (i.e. initial trust level) should be
modeled as exogenous parameters, the CHAS model assumed that a number of human
characteristics and time constants (i.e. the time constant for adjusting trust) were static and could
be modeled as exogenous parameters. Future work should analyze whether these assumptions

were valid or whether these characteristics should be modeled endogenously.

The “Excluded” column in Table 2 shows a number of concepts that were excluded to keep the
model small enough to capture the major aspects of the system. The CHAS model could
potentially be expanded to include many of these other features, such as the impact of vehicle
failures, communications delays, safety policies, coordination between multiple operators, or

human vigilance issues. These are addressed in the future work section in Chapter 7.

The CHAS model was designed to represent a single operator working on a moderate to high
workload mission. The focus of this modeling effort was to capture the perceptions, decisions,
and actions of the human operator when working in collaboration with an AS. Thus, the model
boundary appears to be adequate to capture the important characteristics of real-time human-
automation collaborative scheduling of multiple UVs and to address the challenges that were

identified in previous studies.

4.1.2 Dimensional Consistency Testing

Dimensional consistency testing evaluates the units used for each variable and ensures that the
units match on each side of every equation. An additional component of dimensional consistency
testing is evaluating whether the model includes arbitrary scaling factors that have no real world
meaning (Sterman, 2000). All of the equations in the CHAS model passed the dimensional
consistency test, both through inspection of all model equations (Appendix C) and through the

Vensim® units check function.

4.1.3 Extreme Conditions Testing

Extreme conditions tests are important to evaluate the robustness of a model under extreme
inputs. Model outputs should be valid for the entire range of all input variables, not simply at the

median input values. If the model still provides valid outputs under extreme conditions, it builds
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confidence that the model can be used to extrapolate beyond the data which was used for
behavior testing. Extreme conditions tests were carried out in two ways. First, by examining each
model equation (Appendix C), one can ask “whether the output of the equation is feasible and
reasonable even when each input to the equation takes on its maximum and minimum values”

(Sterman, 2000, p. 869).

Second, extreme conditions were imposed on the model through simulations. For example, the
Automation Generated Search Speed of the team of UVs was set to an extremely high value
(1200% of the normal value) and the model behaves as it should, quickly reaching but not
exceeding 100% area coverage (Figure 26). Also, the Automation Generated Search Speed
parameter was set to 0, which is representative of the situation where the UVs only tracked
previously found targets on their own instead of covering new area. The operator could create
more tasks to encourage the UVs to search new area, although system performance would not be
as high as if the automation was assisting the operator in the search process (as shown via model
simulation in Figure 26). Additional extreme conditions tests are presented in Appendix E, where

it was shown that the model behaved appropriately under a variety of extreme conditions.
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Figure 26. Extreme conditions testing by varying Automation Generated Search Speed.

The CHAS model employs one “artificial” mathematical cap in the calculation of Human
Workload to ensure that the model outputs are valid for extreme conditions. As explained in
Section 3.4.5, inputs to the workload calculation include the Nonscheduling Task Load (NST) of
the operator, such as visual identification of targets and chatting with a command center. Other

102



inputs to the workload calculation include the rate of search task creation, the replan rate, the
average search task creation time, and the average length of time to replan. Without a
mathematical cap, it is possible that this calculation could be driven above the maximum
workload level of 100% utilization (percent busy time). In the CHAS model, the workload
variable is prevented from exceeding 100% through the use of a MIN function. By definition, a
quantity such as utilization cannot exceed 100%, thus this artificial means of limiting the

workload parameter is necessary for maintaining the validity of model outputs.

4.1.4 Integration Error Testing

As SD models are formulated in continuous time and solved by numerical integration, the
selection of integration method and time step are important choices for a SD model. The wrong
time step or integration method can introduce unusual dynamics into the results of the model
(Sterman, 2000). The time step chosen for the CHAS model was 0.125 seconds, to simulate
missions which are typically between 10 to 30 minutes in duration. Humans typically cannot
respond to stimuli in less than 0.2 seconds (Wickens & Hollands, 2000), thus the 0.125 second
time step should be sufficient for modeling human perception and decision-making. The
integration method chosen was Euler. To evaluate whether the model results were sensitive to
changes in the time step, the model was run with a time step of 0.0625 seconds, then with a time
step of 0.25 seconds. In both cases the results of the model did not change (Appendix E). Also,
the model was run with a different integration method and there were no changes in the results.

4.1.5 Structure and Parameter Verification

Structure verification tests compare the structure of the model directly with the structure of the
real world that the model attempts to represent (Forrester & Senge, 1980). The main question
posed is whether the model and the assumptions that it makes contradict knowledge about the
real system. Similarly, parameter verification tests aim to compare the parameters of the model
against observations of real life to determine if parameters correspond both conceptually and
numerically (Forrester & Senge, 1980). All parameters should have a clear, real-life meaning that
preferably can be estimated from actual data, although it is often impossible to directly estimate

all parameters in a model from real-world data (Sterman, 2000).
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There are two primary methods of structure and parameter verification. First, direct inspection of
the model equations can reveal the assumptions made in all causal relationships. Second,
experiments can reveal how human operators behave under various circumstances. Data from
previous experiments have been used to build the CHAS model and an additional experiment to
test some of the model’s assumptions will be described in Chapter 5. Throughout the rest of

Chapter 4, the model’s structure will be evaluated against a variety of data sets.

In terms of structure verification, it was important to verify the interaction between the Trust in
Automation and Cognitive Overload feedback loops. As explained in Chapter 3, the model was
designed to represent the tension between the positive impact of operator interventions and the
effectiveness of those interventions once operator cognitive workload reaches too high of a level.
To verify that the structure of the model captures this tension, two simulation runs of the CHAS
model are shown in Figure 27. In the “moderate task load” run, the operator’s workload remains
at a moderate level near 50%, as shown in Figure 27a. In the “high task load” run, the operator’s
workload is consistently above 75%. The only difference between the two simulations is that
Nonscheduling Task load (NST) is set higher for the high task load run. In the real world, this
could represent a more frequent need to communicate with a command center or with other
operators in the field. It could also represent a system where the operator needs to spend more

time analyzing visual images or video to identify or track targets.

The simulations reveal a few interesting results due to this change in task load. First, the area
coverage performance of the moderate task load simulation is higher than that of the high task
load simulation (Figure 27b). Although performance did not fall dramatically, this result still
aligns with previous human supervisory control literature, showing that system performance can
suffer when human operators are experiencing cognitive overload (Cummings & Guerlain, 2007;
Nehme, 2009; Rouse, 1983; Schmidt, 1978). Second, the model captured the fact that operators
will likely detect that the system was performing poorly and attempt to “work harder” to
counteract the poor system performance. This is reflected in the increasing search task rate for

the high task load simulation (Figure 27c).
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Figure 27. Model simulations of the impact of high task load: a) Workload, b) Area Coverage Performance, c)
Search Task Rate, d) Human Value Added.

Third, the model captured the fact that this harder work, creating more search tasks, may be less
effective under conditions of cognitive overload. At approximately 150 seconds into the
simulation, the negative effects of the Cognitive Overload loop began to override the positive
effects of the Trust in Automation loop on Human Value Added to system performance for the
high task load simulation (Figure 27d). Normally, a higher search task rate would produce
increased Human Value Added, as described in Section 3.4.5. However, at workload levels
above 70% utilization, the Cognitive Overload loop becomes active, beginning to reduce the
improvement in Human Value Added due to an increasing search task rate. The operator enters a
“vicious cycle” where he or she attempts to work harder to fix poor performance, but
performance only gets worse because of high workload conditions. Rudolph and Repenning
(2002) created a computational model of this tipping point effect with regards to human stress.
The tipping point appears to occur at ~80% utilization for the particular simulation shown in

Figure 27. Further exploration of this tipping point phenomenon is explored in Section 6.1.2.
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Thus, the model structure captures three important aspects of real-time human-automation
collaborative scheduling. First, under normal workload conditions, increased operator
intervention to guide the sub-optimal automation can benefit system performance. Second,
operators are monitoring the system and when they receive feedback that the system is
performing poorly they will intervene more frequently in an attempt to improve system
performance. Third, under conditions of cognitive overload, system performance will suffer as
additional operator interventions will not add value. The impact of high task load on workload
and performance will be explored further in Sections 4.2.2 and 4.2.3.

Moving to parameter verification, it was first important to decide how each parameter would be
estimated. Table 3 shows a list of all exogenous parameters in the CHAS model. The parameters
were divided into four categories based on how they were estimated and whether or not they
were allowed to vary between model simulations for a given experiment. First, in the upper left
quadrant of Table 3, parameters such as Total Number of Cells were known from the testbed and
constant for all operators. The Search Task Creation Time Length was assumed to be constant
across operators, as overall variation was small and negligible for the calculation of utilization
(Mean: 2.81 s, St. Dev: 1.68 s). Finally, the four non-linear relationships were kept constant
between model runs because they were estimated from aggregate data (Section 3.4).
Additionally, in the lower left quadrant of Table 3, Automation Generated Search Speed was
estimated once via model fitting (Section 3.4.2) and kept constant between model simulations of
different operators.

In terms of parameters that were allowed to vary between model runs, the upper right quadrant of
Table 3 shows parameters that could be estimated directly from experimental data. The average
length of time to replan was estimated directly from experimental data for each operator or group
of operators, who were being simulated. Also, the initial NST level and NST rate of change were
estimated directly from experimental data via the method shown in Section 3.4.6. Finally, in the
lower right quadrant of Table 3, a group of parameters that depend on the human operator that
was using the system were estimated via model fitting. For example, each operator potentially
had a different initial trust level or a different average ratio of replans to search tasks created.

Parameter estimates for model behavior tests are described further in the next section.
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Table 3. Exogenous parameters and relationships in the CHAS model.

Constant between model runs Varying between model
runs
Estimated e  Total Number of Cells e Length of Time to Replan
Directly from | ® Search Task Creation Time Length e Number of Replans per Search
Experimental | * Effect of PPG on Perceived Automation Capability TB:S.'( _
Data e Effect of Search Tasks on Human Value Added e Initial Nonscheduling Task load
e  Effect of Trust on Search Task Rate (NST)
e  Effect of Cognitive Overload on Human Value e NST Rate of change
Added
Estimated via | ¢ Automation Generated Search Speed e Initial human conditions:
Model Fitting o Expectations of
Performance
o Trust level
e Human time constants for:
o Perceiving performance
o Adjusting expectations
o Adjusting trust

4.2 Model Behavior Tests

Model behavior tests include behavior reproduction testing, which will be described for three
data sets. First, the model was tested on the initial OPS-USERS data which informed
construction of the model. Second, in a “family member” test, data from an experiment that uses
the same testbed but under different experimental conditions was used. Third, to test the external
validity of the CHAS model, the model was exercised on data from an experiment that uses a

different testbed, a multi-robot Urban Search and Rescue simulation (USARSiIm).

4.2.1 Historical Data Validation

The CHAS model was used to replicate the OPS-USERS experimental data set which was
described in Section 3.2. Three sets of data from the experiment were used to evaluate the
model’s fit to the data: aggregate data for all missions, high performers, and low performers. The
high and low performing missions were identified through a cluster analysis described in Section
3.2.

The CHAS model was used to simulate the average behavior of the operators in each of the three
groups (low performers, high performers, and aggregate data for all missions). After generally
fitting the model to the average behavior of all operators to select an initial starting point for the

optimization process, the optimization feature in the Vensim® simulation software was used to fit
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the model to the behavior and performance of the three groups. The software used a modified
Powell (1964) search to find a local minimum by searching within defined boundaries for each

exogenous parameter which was allowed to vary (lower right quadrant in Table 3).

The optimizer evaluated the fit of the model to experimental data for the following variables:
area coverage performance, human workload as measured by utilization, search task rate, and
replan rate. These four output variables were the only endogenous variables in the CHAS model
for which experimental data was available for comparison. Data on the average length of time to
replan was used to set the exogenous parameter for this interaction time length. For variables
such as trust, expectations of performance, and perceptions of performance, actual data was not
available to compare the accuracy of the model simulations. The accuracy of these three
variables is evaluated in Chapter 5, where operator ratings of trust, expectations of performance,
and perceptions of performance are gathered throughout the mission in a new experiment.

After describing the model fit to the four output variables, a comparison of the model parameter

values among the three groups is presented.

4.2.1.1 Model Fit

First, the simulation output for area coverage percentage is compared to average experimental
data for each group in Figure 28, with the summary statistics for fit (Sterman, 1984) shown in
Table 4. The Theil (1966) inequality statistics provide a decomposition of the error by splitting
the Mean Square Error (MSE) into three components: bias (U), unequal variation (U®), and
unequal covariation (U%). The ultimate goal of a model fit is to have small errors between the
model and data, with most of the error due to unsystematic, or random, variation. Sterman (2000,
pp. 875-877) explains:

“Bias arises when the model output and data have different means. Unequal variation
indicates that the variances of the two series differ. Unequal covariation means the
model and data are imperfectly correlated, that is, they differ point to point. Since UM
+ U + U® = 1, the inequality statistics provide an easily interpreted breakdown of the
sources of error...Ideally, the error (indicated by [Mean Absolute Percent Error]
MAPE, [Root Mean Square Error] RMSE, etc.) should be small and unsystematic
(concentrated in U%).”
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The simulations had a good fit to the experimental data with coefficient of determination (R?)
values over 0.97 for all three groups, as shown in Figure 28. The model was able to predict the
total area coverage performance by the end of the mission within 2.7% for all three groups. The
model was most accurate in predicting the low performer group performance curve (Figure 28b),
with a percent error at the end of the mission of only 0.8%. In all cases, the largest component of
MSE was UM, as the model underestimated the amount of area coverage for much of the earlier
portion of the mission while overestimating the rate of coverage at the end of the mission, for
example, overshooting the curve for the all missions group (Figure 28a). This may indicate that
that the simplistic system performance module requires refinement for modeling the earlier

portions of a mission, although in general the fit is quite good.

Second, the simulation output for human workload is compared to average experimental data for
each group in Figure 29 with the summary statistics for fit shown in Table 5. The workload curve
for the high performer group (Figure 29c) had the best fit (R? of 0.69), replicating some of the
non-linear fluctuations in workload that can be seen in the experimental data. The workload
curve for the low performer group (Figure 29b) replicated the roughly linear decline in workload
seen in the data (R? of 0.67). However, for the all missions group, the R? value was only 0.50,
which is mostly due to the transient workload spike shown in the experimental data at the start of
the mission (Figure 29a). This could likely be corrected through the model’s representation of
NST (Section 3.4.6), which currently under-represents the NST at the start of the mission.
Further evaluation of the model’s representation of NST is conducted in Section 4.2.2.1 and

methods for improving the model of NST are discussed in the future work section of Chapter 7.

In all three groups for the workload fit, the major component of the MSE was unequal
covariation, indicating that the error in the model fit to the data was unsystematic. Additional
small fluctuations in workload are difficult to capture due to human variability, for example in
the amount of time that it takes each operator to create a search task or replan. Capturing this
human variability will be discussed further in Section 4.3.2. Additionally, while utilization can
serve as a good proxy measure for workload, there are also drawbacks to this measure, as
described in Section 3.4.6. While the purpose of this research is not to evaluate utilization as a
proxy measure of workload, it should be noted that small fluctuations in utilization may not

correspond with actual fluctuations in cognitive workload.
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Finally, the two forms of operator interventions, creating new search tasks and replanning, are
evaluated together. The simulation output for search task rate is compared to average
experimental data for each group in Figure 30, with the summary statistics for fit shown in Table
6. The simulation output for replan rate is compared to average experimental data for each group
in Figure 31, with the summary statistics for fit shown in Table 7. First, the model was
successfully able to replicate the higher rate of intervention of high performers as compared to
low performers. Additionally, the model was able to capture the general trend of increasing
intervention as the mission went on. Finally, the model was also able to capture some of the
oscillations in intervention frequency that occurred, which were evident in the data for all

missions (Figure 30a) as well as the high performer group (Figure 30c).

It should be noted that the fit for search task rate (max R? of 0.40) was better than the fit for
replan rate (max R? of 0.04). This is likely due to the model assumption that the replan rate is
directly, linearly related to search task rate. While there is a direct system need, once a search
task has been created, to replan in order to assign that new task to the UVs, this is a very
simplistic model of operator decisions to replan. The addition of a more sophisticated model of
replanning is discussed in the future work section of Chapter 7.

While there is room to improve the fit of the model to the intervention rate data, the most
important aspects of the data have been captured, namely the differences in the rates of
intervention of the high and low performer groups and the major oscillations in intervention

frequency that occurred.

4.2.1.1 Model Parameters

Overall, the model was able to replicate the behavior and performance of the three groups of
operators. As described in Section 4.1.5 and Table 3, there were nine possible parameters that
were allowed to vary between model runs: Initial Human Trust, Initial Expected Performance
(EP), Trust Change Time Constant, Time to Perceive Present Performance (TPPP), Time
Horizon for Expected Performance (THEP), Number of Replans per Search Task, Length of
Time to Replan, Initial NST, and NST Rate. Six of these variables were modulated by the
optimizer, while the other three were estimated directly from the experimental data. The
parameter values for each of the three groups are presented in Appendix F.
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Figure 28. Area Coverage Performance: Simulation vs. Data £1 SE: a) All Missions, b) Low Performers, c)
High Performers.

Table 4. Area Coverage Performance: Simulation to Experimental Data Fit.

Summary Statistics All Missions Low Performers | High Performers
Percent Error at End of Mission 1.600% -0.787% -2.671%
Coefficient of Determination (R?) 0.977 0.988 0.981

Root Mean Square Error (RMSE) 0.054 0.039 0.054

Root Mean Square Percent Error (RMSPE) 0.248 0.192 0.148
Mean Absolute Percent Error (MAPE) 0.177 0.152 0.117
Mean Square Error (MSE) 0.003 0.002 0.003

Bias component of MSE (U™) 0.626 0.802 0.688
Variation component of MSE (U®) 0.105 0.010 0.013
Covariation component of MSE (U°) 0.270 0.187 0.299
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Figure 29. Human Workload: Simulation vs. Data 1 SE: a) ¢) All Missions, b) Low Performers, c) High

Table 5. Human Workload: Simulation to Experimental Data Fit.

Performers.

Summary Statistics All Missions Low Performers | High Performers
Coefficient of Determination (R?) 0.500 0.676 0.698
Root Mean Square Error (RMSE) 0.055 0.048 0.053
Root Mean Square Percent Error (RMSPE) 0.108 0.099 0.141
Mean Absolute Percent Error (MAPE) 0.077 0.083 0.127
Mean Square Error (MSE) 0.003 0.002 0.003
Bias component of MSE (U™) 0.036 0.099 0.097
Variation component of MSE (U®) 0.089 0.168 0.398
Covariation component of MSE (U°) 0.878 0.734 0.505
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Figure 30. Search Task Rate: Simulation vs. Data +1 SE: a) All Missions, b) Low Performers, ¢) High
Performers.

Table 6. Search Task Rate: Simulation to Experimental Data Fit.

Summary Statistics All Missions Low Performers | High Performers
Coefficient of Determination (R?) 0.400 0.011 0.351
Root Mean Square Error (RMSE) 0.331 0.375 0.658
Root Mean Square Percent Error (RMSPE) 0.122 0.154 0.147
Mean Absolute Percent Error (MAPE) 0.099 0.126 0.111
Mean Square Error (MSE) 0.109 0.140 0.433
Bias component of MSE (U™) 0.041 0.013 0.062
Variation component of MSE (U®) 0.003 0.301 0.101
Covariation component of MSE (U°) 0.957 0.685 0.837
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Figure 31. Replan Rate: Simulation vs. Data +1 SE: a) All Missions, b) Low Performers, ¢) High Performers.

Table 7. Replan Rate: Simulation to Experimental Data Fit.

Summary Statistics All Missions Low Performers | High Performers
Coefficient of Determination (R?) 0.041 0.001 0.042
Root Mean Square Error (RMSE) 0.452 0.385 0.612
Root Mean Square Percent Error (RMSPE) 0.153 0.173 0.167
Mean Absolute Percent Error (MAPE) 0.125 0.117 0.129
Mean Square Error (MSE) 0.205 0.148 0.374
Bias component of MSE (U™) 0.000 0.009 0.014
Variation component of MSE (U®) 0.127 0.158 0.012
Covariation component of MSE (U°) 0.873 0.834 0.974
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Once again, for parameters relating to trust, expectations of performance, and perceptions of
performance, actual data was not available from the historical data sets to compare the accuracy
of the model simulations. The model makes a number of assumptions about how perceptions,
expectations, and trust impact more measureable quantities such as intervention rates. The
accuracy of these three variables is further evaluated in Chapter 5, where operator ratings of
trust, expectations of performance, and perceptions of performance were gathered throughout the

mission in a new experiment.
Differences and similarities between the parameter values for each group are compared below:

e Initial Human Trust: The model fit process found that operators in the high performer group
had the lowest Initial Human Trust, while the low performer group had the highest Initial
Human Trust. This corresponds with data analysis from Section 3.2 showing that high
performers rated their satisfaction in the AS significantly lower than low performers and had
a significantly higher rate of interventions.

e |Initial EP: The model fit process found that operators in the low performer group had the
lowest Initial EP as compared to the high performers and the all missions group. This is
reflected in the data analysis from Section 3.2 showing that low performers had significantly
higher ratings of satisfaction in the AS and a significantly lower rate of interventions. The
model fit assumed that, given the suboptimal automation in the testbed, low performers may
have been content with the performance of the system because they had lower expectations
of performance to begin with.

e Time Horizon for Expected Performance (THEP): The model fit process found that operators
in both the low and high performer groups had a higher THEP compared to the all missions
group. This indicates that operators in both groups may have anchored to a certain
performance expectation early on and did not adjust that expectation quickly in response to
how well the system was actually performing.

e Time to Perceived Present Performance (TPPP): The model fit process found that operators
in the low performer group had the highest TPPP. The model assumes that low performers
had poorer attention allocation efficiency, had difficulty handling the rapid task switching
required, and were slower to detect changes in system performance as compared to high

performers.
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e Trust Change Time Constant: The model fit process also found that operators in the high
performer group had the shortest Trust Change Time Constant. This indicates that the model
fit assumed that these operators had a smaller amount of trust inertia, enabling them to adjust
their level of trust in the AS faster to new information. This is reflected in the sharper
oscillations in intervention rate shown in Figure 30c.

e Number of Replans per Search Task: High performers had the lowest number of replans per
search task, while low performers had the highest ratio of replans to search tasks created.
This is reflected in the data analysis from Section 3.2, showing that high performers were
intervening more frequently without increasing their workload level, as measured by
utilization.

e Length of Time to Replan: This parameter was set directly from experimental data, where it
was found that high performers had a much lower average length of time to replan.

e Initial NST and NST Rate: These parameters were set directly from the experimental data. It
was found that operators in all three groups spent the same amount of time attending to

nonscheduling tasks.

Overall, these results support the dynamic hypothesis presented in Section 3.3 that high
performers were able to anchor to a higher expectation level of performance and adjust to the
appropriate level of trust faster. It is likely that they adjusted their level of trust faster through
their feedback perceptions of how the system was performing. By adjusting their trust faster,
they improved their performance. The oscillation of search task rate and replan rate, seen both in
the data and in the model simulations, appears to indicate goal-seeking behavior by the test
subjects. The operators learned about the system as they conducted the mission, seeking out the
appropriate level of trust and the rate of intervention that produced performance that matched
their expectations. The time constants provide an additional level of insight into why high
performers did better, as they were able to perceive how the system was performing and learn at

a faster rate.

While this section presented the model’s ability to capture the average behavior of a group of
operators, the model’s accuracy at replicating the behavior of all individual missions in this data

set was also evaluated (Appendix G). It was found that the mean R? value for fitting the model to
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all 60 individual missions was 0.968 for the primary performance metric of area coverage and

0.335 for utilization, similar to the fit to the aggregate data presented in this section.

4.2.2 Family Member Validation

The family member validation test evaluates whether a model can generate the behavior
observed in other instances of the same system (Sterman, 2000). Thus, the CHAS model was
applied to simulate the behavior and performance of operators in a different experiment using the

same OPS-USERS testbed discussed in the previous section.

The second data set is from a high task load experiment (Clare & Cummings, 2011), where 31
different operators performed two 10-minute long simulated missions (as opposed to 20-minute
long missions in the previous experiment). All operators had a static, a priori determined
objective function for the AS to use in evaluating schedules and were prompted to view
automation-generated schedules at prescribed intervals of either 30 or 45 seconds. Changing the
rate of prompts to view new schedules modulates the task load of the operator, such that 30s
replan intervals should induce higher workload than the 45s intervals. All operators experienced
both replan intervals in a counterbalanced and randomized order. These intervals have been
validated in a previous study (Cummings, Clare, et al., 2010). In this experiment (for both replan
prompting intervals), there were double the number of targets to find (20 vs. 10) as compared to
the previous data set. In addition, the UVs traveled 5 times faster in the high task load
experiment and operators received 71% more chat messages that either provided intelligence
information updates or Situation Awareness (SA) questions requiring operator response.

A customized version of the CHAS model was developed to model the OPS-USERS testbed with
replan prompting at a prescribed interval. The tailored model is shown in Figure 32. There was
only one change made to the model as compared to the version of the model presented in
Chapter 3. In the Interventions module, as opposed to assuming that the replan rate is directly,
linearly related to search task rate, the new model assumes that replan rate is an exogenous
parameter. As described in Section 3.2.1, the operator could be prompted to replan when the
Replan button turned green and flashed and a “Replan” auditory alert was played. In the
experiment described previously and used for model fitting in Section 4.2.1, the operator was
prompted to replan when the AS generated a new plan that was better than the current plan.
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Figure 32. Tailored version of the CHAS model for OPS-USERS with replan prompting at a set interval.
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In the high task load experiment presented in this section, operators were prompted to replan at
specified time intervals. Thus, modeling the replan rate as an exogenous parameter modulated by

the experimental condition is a valid assumption.

Two groups of data from this experiment were used to evaluate the model’s fit to the data: the 30
second interval missions and the 45 second interval missions. Both sets of data were used in
order to evaluate whether the model could replicate the operator behavior and system

performance of each set of missions, given the different replan prompting intervals.

It should be noted that two changes to parameter values (not model structure) were made for this
family member validation test. First, the parameters that determine the linear model of
Nonscheduling Task Load (NST) were adjusted for this version of the model. The required
utilization due to NST was calculated from experimental data from both sets of missions (30
second and 45 second interval), using two-minute intervals, as shown in red in Figure 33. Self-
imposed utilization from scheduling activities (creating search tasks and replanning) is shown in
blue stripes. The CHAS model representation of NST is shown by the green “model” line. For
the 30 second interval missions (Figure 33a), the model represents NST as constant throughout
the mission. For the 45 second interval missions (Figure 33b), there is a slight decline in NST
over time. The impact of these simplified representations of NST on the model fit to the data is

discussed below along with the general evaluation of model fit.

90% 90%
80% 80% |
0% W//— _70% 3’//// /////T%
S % & 60% %
e
T 40% “ ® 40% 7 |
E st ‘S P
20% 20%
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Figure 33. Utilization due to scheduling activities and Nonscheduling Task load (NST). a) 30 second replan
prompt interval missions. b) 45 second replan prompt interval missions. Standard error bars are shown.
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Second, the experiment described in this section had UVs that traveled at increased speeds, thus
the Automated Generated Search Speed needed to be estimated. This was done using the same
process described in Section 3.4.2 and was found to be 30 cells/second (10 times that of the

previous experiment).

The same optimization/fitting process described in Section 4.2.1 was utilized. All estimated
parameters for the two sets of missions are presented in Appendix H. After describing the model
fit to the four output variables, an evaluation of how well the model replicated the behavior,
performance, and workload of these missions is presented.

4.2.2.1 Model Fit

First, the simulation output for area coverage percentage is compared to average experimental
data for each set of missions in Figure 34, with the summary statistics for fit (Sterman, 1984)
shown in Table 8. The simulations had a good fit to the experimental data with coefficient of
determination (R?) values over 0.93 for both sets of missions. The model was able to predict the
total area coverage performance by the end of the mission within 3.3% for both sets of missions.
Similar to the model behavior with the previous experimental data set, the model underestimated
the amount of area coverage for the earlier portion of the mission while overestimating the rate
of coverage at the end of the mission. However, for this data set, the largest component of MSE
was UC for both sets of missions, indicating that the error in the model fit to the data was

unsystematic.

Second, the simulation output for human workload is compared to average experimental data for
each set of missions in Figure 35, with the summary statistics for fit shown in Table 8. The
model was able to capture major differences in workload, such as the higher workload level of
the 30 second interval missions as compared to the 45 second interval missions. However, the
model fit was not excellent in terms of workload, with R? values of 0.37 and 0.36. These R?
values are comparable to the previous historical data set fit for the all missions group, but worse
than the fits for the low and high performer groups (Section 4.2.1.1). The data for the 30 second
interval missions (red dots in Figure 35a) shows a slight increase in workload for the first half of
the mission, followed by a decline, which is the opposite of the model prediction. The 45 second
interval missions data (red dots in Figure 35b) shows an initial decline in workload, followed by
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an increase, and then another decline in workload. As will be discussed below, the model’s
calculation of workload was driven by a simple linear model of NST, while the NST in the actual

experiment was more non-linear.

The simulation output for search task rate is compared to average experimental data for each set
of missions in Figure 36, with the summary statistics for fit shown in Table 9. The model did an
excellent job of replicating the search task rate data, with R? values of 0.78 and 0.96. Both the
data and the model show a high rate of search task creation initially, declining until
approximately halfway through the mission, followed by a sharp increase in the 30 second

interval data (Figure 36a) but no increase in the 45 second interval data (Figure 36b).

Finally, the simulation output for replan rate is compared to average experimental data for each
set of missions in Figure 37, with the summary statistics for fit shown in Table 9. This version of
the CHAS model represents replan rate as an exogenous, static parameter. As expected, replan
prompting at an interval of 30 seconds caused a higher replan rate than an interval of 45 seconds
(Figure 37). A linear, flat model of replan rate does a decent job of capturing the actual replan
rate, with a RMSE of between 0.25 and 0.44 replans per two minute interval, although it does not
capture the small oscillations in replan rate shown in the experimental data due to human

variability in consenting to replan when prompted (Cummings, Clare, et al., 2010).

4.2.2.1 Evaluation of Behavior, Performance, and Workload Replication

It should be noted that the model replicated the fact that there were no significant differences in
performance between the 30 second replan interval and 45 second replan interval missions, while
matching the search task rate and replan rate of each set of missions. Also, operators in the 30
second interval missions (Figure 35a) spent almost the entire mission at an average utilization
level over 70%. In contrast, operators in the 45 second interval missions (Figure 35b) were only
briefly over 70% average utilization at the beginning of the mission, while the rest of the mission
was at or below 70% utilization. The fact that the operators in the 30 second interval missions
were intervening more frequently, yet did not see any additional benefit to system performance
provides additional support for the hypothesis that human interventions can become less

effective once the operator’s workload reaches too high of a level.
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Table 8. High Task load Experiment: Simulation to Experimental Data Fit.

Summary Statistics 30 Second 45 Second 30 Second 45 Second
Area Coverage | Area Coverage | Workload | Workload
Percent Error at End of Mission 2.83% 3.28% N/A N/A
Coefficient of Determination (R?) 0.938 0.955 0.372 0.362
Root Mean Square Error (RMSE) 0.085 0.072 0.078 0.045
Root Mean Square Percent Error (RMSPE) 0.135 0.119 0.128 0.070
Mean Absolute Percent Error (MAPE) 0.079 0.074 0.092 0.052
Mean Square Error (MSE) 0.007 0.005 0.006 0.002
Bias component of MSE (U™) 0.133 0.103 0.143 0.273
Variation component of MSE (U®) 0.130 0.154 0.332 0.059
Covariation component of MSE (U°) 0.737 0.743 0.526 0.668
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Figure 37. Replan Rate: Simulation vs. Data =1 SE: a) 30 Second Interval, b) 45 Second Interval.

Table 9. High Task load Experiment: Simulation to Experimental Data Fit.

Summary Statistics 30 Second 45 Second 30 Second 45 Second
Search Task | Search Task | Replan Rate | Replan Rate
Rate Rate
Coefficient of Determination (R?) 0.781 0.956 0.000 0.0000
Root Mean Square Error (RMSE) 0.353 0.191 0.245 0.443
Root Mean Square Percent Error (RMSPE) 0.057 0.034 0.048 0.109
Mean Absolute Percent Error (MAPE) 0.050 0.027 0.042 0.083
Mean Square Error (MSE) 0.125 0.036 0.060 0.197
Bias component of MSE (U™) 0.000 0.048 0.000 0.039
Variation component of MSE (U®) 0.024 0.021 1.000 0.961
Covariation component of MSE (U®) 0.976 0.931 0.000 0.000
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The model’s predictions of system performance were accurate because of the interaction of two
feedback loops. First, the Trust in Automation loop provided a positive effect on Human Value
Added for the higher rate of creating search tasks in the 30 second interval missions. However,
the model also calculates an “Effect of Cognitive Overload on Human Value Added” based on
the workload level of the operator (Section 3.4.6). This effect is a non-dimensional variable
which scales the Human Value Added to system performance, thus a lower Effect of Cognitive
Overload on Human Value Added will reduce the Human Value Added. In the model
simulations of the 30 second interval missions, the Cognitive Overload loop produced a lower
Effect of Cognitive Overload on Human Value Added, as shown by the red dashed line which is
mostly below the blue line in Figure 38. This occurred because operators in the 30 second
interval missions spent almost the entire mission above 70% utilization. Both lines in Figure 38
initially increase because the search task rate for both sets of missions decreased, causing a
decrease in workload for the first half of the mission. However, the increasing search task rate of
the 30 second interval missions in the second half of the mission caused the simulation to

calculate increasing workload, thus the decrease in the red dashed line.

1.05

0.95 / -
0.9 - >
0.85
//
0.8
0.75

0.7

0.65 T T T 1
0 150 300 450 600

Time (Seconds)

Value Added

Effect of Cognitive Overload on Human

— =30 Second Interval —— 45 Second Interval

Figure 38. Model simulation of the impact of cognitive overload on performance.

This experimental data set provides supporting evidence for the structure of the CHAS model,
demonstrating that high workload can potentially reduce the effectiveness of operator

interventions in real-time human-automation collaborative scheduling of multiple UVs. The
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CHAS model was able to replicate the intervention behavior and system performance of these

two sets of missions by effectively modeling the impact of high workload.

While the model was able to capture major differences in workload, such as the higher workload
level of the 30 second interval missions as compared to the 45 second interval missions, the
model’s replication of workload fluctuations throughout the mission was subpar. The model did
not capture the non-linear changes in workload shown previously in Figure 35. One major reason
for the poor fit to the workload experimental data is that the CHAS model uses simple, linear
models of NST, as shown previously in Figure 33. Both of the simplified linear representations
of NST did not accurately capture the fluctuations in NST. To more accurately capture the
impact of NST on workload, however, would require a non-linear implementation of NST, which
could replicate the rise and fall of NST over time. Alternatively, the model could be driven with
external data that contains accurate NST information for each mission. Both of these potential

concepts are discussed in the Future Work section of Chapter 7.

It should be noted that the NST for this high task load experiment was different from the NST in
the previously described OPS-USERS experiment. For the high task load experiment, there were
71% more chat messages and double the number of targets to identify, leading to required
utilization due to NST of roughly 45% (Figure 33). In the previously described OPS-USERS
experiment, required utilization due to NST was substantially lower, generally ranging from 10-
30% (Figure 24).

Comparing the fit of the CHAS model between the original OPS-USERS experiment (Section
4.2.1) and the high task load experiment presented in this section, in both cases the area coverage
performance fits were excellent, with R? values above 0.93. Generally, the model replicated the
intervention differences between the various groups in each experimental data set. The fit was
best for the search task rate in the high task load experiment, with R? values above 0.78. Finally,
in terms of workload, the CHAS model replicated the workload curves of the original OPS-
USERS experiment with R? values between 0.5 and 0.69. However, for the high task load
experiment, the workload goodness of fit values were lower (0.36-0.39). This is due to the

model’s simplified representation of NST. While the workload calculation could be refined,
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overall, it appears that the CHAS model was successfully able to replicate the intervention

behavior and performance of two OPS-USERS data sets.

4.2.3 External Validation

While the CHAS model has been tested on the original data set that was used to inform
construction of the model and an additional data set from a different experiment that used the
same testbed, it was important to evaluate the CHAS model on a data set from a different
testbed. This would provide a test of the external validity of the CHAS model, how well it could
generalize to other real-time human-automation collaborative scheduling systems. Thus, the
CHAS model was applied to simulate the behavior and performance of operators in a multi-robot

Urban Search and Rescue experiment.

Researchers have been exploring the use of autonomous robots for Urban Search and Rescue
(USAR) for over a decade. Robots can go to places that are impossible or too dangerous for
human rescuers. In urban search and rescue, robots usually need to navigate through a complex
environment to map the environment and look for victims. Currently in practice, two operators
are usually required to manually control a rescue robot. With autonomous path planning and
scheduling algorithms, it is possible to reduce the workload of operators and increase the number

of robots they can control.

In order to apply the CHAS model to a USAR mission, data was collected from a previous
USAR experiment (Gao, Cummings, & Bertuccelli, 2012) conducted using a 3-D simulation
testbed based on USARSIm (Lewis, Wang, & Hughes, 2007). The task of the operators was to
monitor the cameras of robots and mark the positions of victims on the map when they appeared
in the cameras (Figure 39). The goal was to mark as many victims as possible correctly. By
default, robots searched autonomously for victims based on plans and paths developed by an AS.
Operators could choose to take manual control and teleoperate an individual robot during this
process when they felt it was necessary. Operators worked in teams of two to monitor a total of
24 robots. Each team went through three trials of 25 minutes. In these three trials, the building
maps were the same, but the locations of the 34 victims were different. At the end of each trial,
subjective workload ratings were obtained from each operator using the NASA-TLX scale (Hart,

1988), which measures six sub-dimensions of workload.
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Analysis of data from this experiment is presented next, which informed the customization of the
CHAS model to model this testbed. Later, the model fit to the data is described, along with an
evaluation of how well the model replicated the behavior and performance of different groups of

operators.
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Figure 39. USARSiIm interface for controlling multiple search and rescue robots.

Teleoperation

Panel

4.2.3.1 Data Analysis

Analysis of the data from this experiment first showed that operators spent a longer time on
teleoperation in later trials than in earlier ones, as shown in Figure 40. ANOVA analysis shows
that this impact of trial sequence on the time spent on teleoperation is significant (F(2,141)=7.37,
p<0.001). In interviews after the experiment, many participants said that the AS did not do a very
good job and could not be trusted. They stated that robots often went back to places already
explored, sometimes multiple times, while leaving some other places unexplored. They
complained that the search was not thorough if they relied on only the AS. Even though
intervening via teleoperation requires more effort than just relying on the AS, operators chose to
teleoperate when the robots were not going where they wanted them to go.

Thus, both quantitative and qualitative data indicate that operators lost trust in the automation
throughout the three trials and chose to intervene more frequently. This indicates a link between

the operator’s perception of the automation’s capability, operator trust, and the amount of
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teleoperation conducted by the operator. The data also show that trust can change both during

and in-between missions. Both of these findings support assumptions in the CHAS model.
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Figure 40: USAR Experiment: Total Teleoperation Time versus Trial Sequence.

In a second analysis, for each 25-minute experiment trial, the number of teleoperation “actions”
per minute was counted. To smooth out short-term fluctuations in the time series data, the
moving average over each five-minute period was calculated, resulting in 21 data points per trial.
Hierarchical clustering was used to classify each of the 144 experiment trials into groups. The
goal was to identify groups of operators who had distinct behavior in terms of the frequency of
teleoperation.

This analysis identified six distinct clusters of trials. The first three clusters contained only seven
trials in total, and were removed from further analysis. The last three clusters had different levels
of teleoperation as shown in Figure 41a. The trials in Cluster 4 (named Low TeleOp), shown in
red squares in Figure 41a, had the lowest frequency of teleoperation. These trials also had
significantly worse performance ((F(2,134)=16.67, p<0.001), in terms of total victims found,
than the other two clusters, as shown in Figure 41b. Thus there is a positive relationship between
decreased teleoperation frequency in this experiment and decreased performance. Combined
with the previously discussed link between trust and the frequency of teleoperation, it indicates
an indirect, but crucial relationship between operator trust in automation and system

performance.

It should be noted, however, that while the trials in Cluster 6 (named High TeleOp) had

significantly more teleoperations than those in Cluster 5 (named Med TeleOp) (Figure 41a),
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there were no statistically significant differences in system performance between these two
groups (Figure 41b). There appear to be diminishing returns in terms of performance with more

teleoperation.
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Figure 41: (a) Average teleoperation frequency versus mission time; (b) Number of victims found by
teleoperation cluster.

Finally, in order to investigate whether the frequency of teleoperation is related to operator
workload, an analysis of the differences in NASA-TLX workload ratings among the three
clusters was conducted. ANOVA analysis showed that there were significant differences on the
temporal demand dimension of workload between clusters (F(2,134)=68.37, p<0.001), but not on
overall workload ratings or any other dimensions. Operators in the High TeleOp group reported
higher temporal demand, which indicates that they felt increased time pressure and that the pace
of the simulation was rapid. This indicates that operator workload is related to the number of

operator interventions, supporting another key CHAS model assumption.

4.2.3.2 Model Customization

In order to inform the customization of the CHAS model for simulating human control of
multiple robots for an USAR mission, the OPS-USERS and USARSIm testbeds were compared.
The two testbeds are similar in a number of ways. They both enable operators to collaborate with
an automated scheduling and path planning algorithm for controlling multiple robotic vehicles
under goal-based control. As described in Chapter 2, in goal-based control, the human operator
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guides the high-level goals of the team of UVs (as opposed to guiding each individual vehicle)
and the AS assumes the bulk of computation for path planning and task assignment optimization.
The USARSIm testbed typically simulates homogeneous ground-based UVs, while the OPS-
USERS testbed can control heterogeneous UVs (air, land, sea). However, in the OPS-USERS
testbed, the human operator does not need to worry about the distinction between different types
of UVs, as the automation checks the feasibility of all task assignments based on the capabilities

of the UVs. Also, both testbeds utilize a Map Display with a top-down view of the world.

There are four major differences between the two testbeds. First, the goals of the missions are
slightly different. In the OPS-USERS testbed, the goal is to find and track moving ground targets
over a large, but fairly open area. In the USARSIm testbed, the goal is to find and mark
stationary human victims inside a building with an unknown layout. Despite this difference,
however, both are search missions for a fixed number of victims/targets over a fixed area.
Second, in OPS-USERS, the main interventions that the operator can use to coach the
automation are the creation of search tasks and replanning. The operator cannot manually control
any particular UV in OPS-USERS. In contrast, the USARSIm testbed allows operators to
manually teleoperate a single robot at a time. This is the only intervention that the operator can

use, both to mark victims and to guide the search process.

The third difference between the two testbeds is that the OPS-USERS testbed requires operators
to multi-task, by monitoring the UVs, responding to chat messages, classifying visual images,
and interacting with the AS to generate new schedules. In contrast, the USARSIm testbed only
requires operators to focus on the primary objective of monitoring the robots and marking
victims. However, the workload level of operators in USARSIm is just as high, if not higher than
in OPS-USERS because there are 24 robots as compared to UVs in OPS-USERS. The final
major difference between OPS-USERS and USARSIm is that OPS-USERS is purely a single-
operator simulation, while the USARSIm experiment described here was a two-player, team
activity, where operators collaborated to control the group of robots. Although the USARSIm
data set comes from a team-based experiment, this modeling effort focused on the concept of a
single operator controlling multiple robots, thus team coordination and task allocation among

multiple operators was not considered.
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Given these similarities and differences between OPS-USERS and USARSim and the analysis of
data from the USARSIm experiment, a customized version of the CHAS model was developed to
model human-automation collaborative scheduling for a USAR mission. The tailored model is
shown in Figure 42. There were three major changes to the model from the version which has
previously been presented. The first change was simply a terminology and units change. The
system performance module was customized to the USAR mission with a focus on finding
victims. In the USARSim experiment, once a victim is visited, it is marked as “found”, which is
the primary performance metric. As more and more victims are found, the likelihood that a new
victim is found declines, which lowers the Victim Discovery Rate. Although the data set comes
from a team-based experiment, this model focuses on the concept of a single operator controlling
multiple robots, thus team coordination and task allocation among multiple operators is not
considered. Thus, the Total Number of Victims parameter was set to 17, half of the actual total in

the experiment, assuming an equal division of labor between the two operators.

The second change to the model was that the main operator intervention was changed to the
Number of Teleoperations. This was modeled in the same manner as the Search Task Rate in the
previous CHAS model, where the Number of Teleoperations is negatively non-linearly
dependent on Human Trust level (higher trust means less likely to intervene) using a logit
function. The model assumes, just as before, that a higher number of teleoperations improves the
value that the human operator adds to the rate of finding victims. While the change itself was
only a terminology change and there was no change to the underlying model structure, the

parameters that define the non-linear relationships had to be estimated from experimental data.

The third change to the model did impact the model structure. Replan Rate was removed from
the model, as there was no separate replanning process in the USARSIm testbed. Additionally,
the workload module was simplified by scaling the Number of Teleoperations directly to
workload using an Effect of Teleoperations on Workload parameter. Utilization data for each
operator was not available in the data set for model fitting. However, using data on the total
teleoperation time (such as that shown in Figure 40), the fraction of the mission spent in manual
control of the robots could be used as a proxy for utilization to enable estimation of the Effect of
Teleoperations on Workload parameter. While this is an oversimplification of the workload

calculation, the impact of this assumption on model results will be discussed below.
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Figure 42. Tailored version of the CHAS model for a multi-robot USAR mission.
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The three teleoperation cluster groups described in the previous section were used to evaluate the
model’s fit to the data. The data available for fitting were the Number of Teleoperations and the
number of Found Victims over time. The same optimization/fitting process described in Section
4.2.1 was utilized. All estimated parameters for the three groups are presented in Appendix I.
After describing the model fit to the two output variables, an evaluation of how well the model

replicated the behavior and performance of these missions is presented.

4.2.3.3 Model Fit

First, the simulation output for Number of Teleoperations is compared to average experimental
data for each group in Figure 43, with the summary statistics for fit shown in Table 10. The
model had a good fit to the Number of Teleoperations data. For the Medium TeleOp and High
TeleOp groups, the R? values were 0.96 and 0.80, as the model was able to replicate the initial
increase in Number of Teleoperations, followed by a slower adjustment over time. The
experimental data for the High TeleOp group (Figure 43) appears to show overshoot of a desired

Number of Teleoperations, followed by a slow decline in teleoperations with small oscillations.

The model captured the overshoot and decline to a desired intervention level shown by the High
TeleOp group (Figure 43), but did not capture the small oscillations. Overall, this data suggests
that operators were likely learning about the system as they conducted the mission, seeking out
the appropriate level of trust and the rate of intervention that would produce performance that
matched their expectations. High performers appear to have learned quickly and adjusted their
trust level more dramatically, as shown by their rapid increase in Number of Teleoperations.

While it may appear that Low TeleOp group had a subpar fit, with a R value of only 0.23, recall
that R? is a measure of the proportion of the variation in the experimental data explained by the
model. As there was little variation over time in the frequency of teleoperation for this group in
the experimental data, the model cannot and should not recreate these small variations in order to

avoid overfitting.
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Figure 43. Number of Teleoperations: Simulation vs. Data 1 SE

Table 10. Number of Teleoperations: Simulation to Experimental Data Fit.

Summary Statistics Low TeleOp Medium TeleOp High TeleOp
Coefficient of Determination (R?) 0.227 0.963 0.801
Root Mean Square Error (RMSE) 6.688 8.709 16.83
Root Mean Square Percent Error (RMSPE) 0.067 0.028 0.026
Mean Absolute Percent Error (MAPE) 0.055 0.022 0.020
Mean Square Error (MSE) 44.73 75.84 283.4
Bias component of MSE (U™) 0.061 0.015 0.002
Variation component of MSE (U®) 0.001 0.002 0.077
Covariation component of MSE (U°) 0.938 0.983 0.921

Second, the simulation output for Found Victims is compared to average experimental data for
each group in Figure 44, with the summary statistics for fit shown in Table 11. The simulations
had a good fit to the experimental data with coefficient of determination (R?) values over 0.98
for all groups. The model was able to calculate the average final number of victims found in each
group within 1.2%. The only slight issue with the fit is that the performance curve for the Low
TeleOp group (Figure 44a) underestimates the number of victims found for much of the earlier

portion of the mission.
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Table 11. Found Victims: Simulation to Experimental Data Fit.

Summary Statistics Low TeleOp Medium TeleOp High TeleOp
Percent Error at End of Mission -0.077% 1.182% -0.713%
Coefficient of Determination (R?) 0.989 0.993 0.998
Root Mean Square Error (RMSE) 0.719 0.463 0.270
Root Mean Square Percent Error (RMSPE) 0.123 0.107 0.092
Mean Absolute Percent Error (MAPE) 0.102 0.068 0.048
Mean Square Error (MSE) 0.517 0.214 0.073
Bias component of MSE (U™) 0.760 0.086 0.372
Variation component of MSE (U®) 0.000 0.458 0.287
Covariation component of MSE (U°) 0.240 0.457 0.342

135



4.2.3.4 Evaluation of Behavior and Performance Replication

The model replicated the fact that there were no significant differences in performance between
the Medium and High TeleOp groups, while also capturing the differences in Number of
Teleoperations of each group. Similar to Section 4.2.2., the fact that the operators in the High
TeleOp group were intervening more frequently, yet did not see any additional benefit to system
performance provides additional support for the hypothesis that the rate of operator intervention

and the effectiveness of these interventions under high workload conditions can be in tension.

The model’s predictions of Found Victims were accurate because of the interaction of two
feedback loops, similar to the results seen in Section 4.2.2. First, the Trust in Automation loop
provided a positive effect on Human Value Added for the higher rate of manual teleoperations of
the High TeleOp group. However, the Cognitive Overload loop reduced the Human Value
Added for the High TeleOp group, as the model calculated that the High TeleOp group spent
almost the entire mission beyond the point of cognitive overload. This model assumption is
supported by data from the experiment, where operators were asked to give a subjective
assessment of their workload via the NASA-TLX scale. These NASA-TLX ratings showed that
operators in the High TeleOp group reported higher temporal demand (Gao, et al., 2013), which
indicates that they felt increased time pressure and that the pace of the simulation was rapid.
While this measure of workload is different from the utilization metric available from the OPS-
USERS testbed, NASA-TLX ratings are a commonly used and validated measure of workload
(Hart, 1988).

Overall, it appears that the USARSIm data supports the model assumptions and structure. The
CHAS model was successfully able to replicate the behavior and performance of three groups of
operators. While the accuracy of the CHAS model has been evaluated on three experimental data

sets, the robustness of the model results will be evaluated in the next sections.

4.3 Sensitivity Analysis

A sensitivity analysis is an important test of the robustness of a computational model. This test
asks whether the model outputs change in important ways when the assumptions are varied over

the plausible range of uncertainty (Sterman, 2000). It is desirable for the outputs of a
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computational model to be robust to errors in parameter estimates because it is likely that
parameter estimates are imperfect. It is also helpful to identify the parameters for which the
model outputs are most sensitive. This information can be useful to a system designer in two
ways: a) more effort can be put into estimating the most sensitive parameters to ensure sufficient
accuracy and b) it can identify the most sensitive human and system design parameters. The most
sensitive human parameters represent characteristics that have a substantial impact on system
performance and thus operator selection and/or training efforts should focus on these
characteristics. The most sensitive system design parameters can also indicate fruitful areas for
system design improvements. With limited resources for testing and development, it is desirable
to determine which potential changes to a system are most likely to have strong and positive
impact on system performance. Finally, regardless of how accurately model parameters are
estimated, a model of human behavior and decision-making must be able to capture the inherent
variability of humans. The next two sections aim to a) identify the parameters for which the
model outputs are most sensitive and b) utilize Monte Carlo simulations to characterize the

uncertainty in output variables due to human variability.

4.3.1 Numerical Sensitivity Analysis

The first analysis varied the values of each exogenous parameter in the original CHAS model
(Figure 12) to investigate the impact on two outputs: the final area coverage performance at the
end of the mission and the mean utilization throughout the mission. The baseline conditions were
the parameter settings for the “All Missions” group, described in section 4.2.1 and detailed in
Appendix F. The goal of this analysis was to identify the relative sensitivity of the model outputs
to changes in each parameter, thus the amount of variation of each parameter needed to be
consistent across parameters and large enough to perturb the model outputs. After testing
different variation levels, it was determined that a 10% variation level was sufficient to perturb
the model outputs. Each parameter was increased by 10% and decreased by 10% in univariate
testing, where parameters were varied one at a time. The Total Number of Cells and the
Sampling Interval were excluded from the analysis, as there was no uncertainty in these
parameters. Also, the table function for Cognitive Overload (Section 3.4.6) was not varied in this
analysis because varying a table function is a more complex process than increasing or

decreasing a parameter by 10%. However, the effect of changing this table function is explored
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in Section 6.1.2, where it was shown that the model was robust to changes in the point of

cognitive overload as long as the model was simulating moderate workload missions.

The percent error of the output was estimated by comparing the original baseline outputs of the
model to the outputs after introducing the parameter changes. The results are displayed in two
charts, for the impact on area coverage performance (Figure 45) and the impact on mean
utilization (Figure 46). A number of observations can be made from these results. First, the
overall results show that the model was fairly robust to parameter changes, as +10% changes in
parameter values resulted in at most a 7% change in area coverage performance. Second, the
results show that the most crucial relationship to estimate accurately is the non-linear
relationship between Search Task Rate and Human Value Added. Base Search Task Rate is the
most sensitive parameter for area coverage performance and is part of the definition of the non-
linear logit relationship between Search Task Rate and Human Value Added. As described in
Section 3.4.5, data was available to characterize this relationship accurately for the OPS-USERS
testbed. Third, Automation Generated Search Speed is the second most sensitive parameter for
area coverage performance. This parameter can be estimated accurately by collecting data on the

performance of the automation without human guidance, as was done in Section 3.4.2.

For the rest of the parameters beyond the two which were most sensitive, the area coverage
output changed by less than ~4% for a 10% parameter value change, indicating that model was
robust to errors in parameter estimates. It should be noted that the most sensitive human
parameters (defined in Section 4.1.5 as initial conditions and time constants that vary between
operators), were Initial Human Trust and Time Horizon for Expected Performance. These
parameters had a relatively small impact on area coverage (~3%) for a 10% change in their
parameter values. However, as will be shown in Chapter 5, influencing the operator’s trust in the
AS and expectations of performance through various forms of priming can have a substantial

impact on system performance.
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Finally, a number of parameters at the bottom of Figure 45 had almost no impact on area
coverage performance. All five of these parameters were inputs to the calculation of human
workload. The reason that these parameters had almost no impact on area coverage performance
in this analysis is that the simulations had moderate workload levels and thus the Cognitive
Overload loop had little impact on area coverage. The operator’s workload never exceeded 70%
for these simulations and the average utilization was 41%. The experiment which the model is
replicating was purposely designed to be a moderate workload experiment, thus cognitive
overload is not a major concern for this data set. Experiments with higher workload where the

Cognitive Overload loop was active in the simulations were described in Section 4.2.2 and 4.2.3.

However, it is still important to calculate workload accurately both to enable a system designer
to analyze the impact of system changes on workload and for the model to appropriately trigger
the Cognitive Overload loop. Figure 46 allows further investigation of the sensitivity of
parameters to the workload calculation. The most sensitive parameter to mean utilization is
Initial Nonscheduling Task load (NST), which is expected, as adding additional tasks such as
identifying targets or chatting with the command center directly impacts operator workload. It
should be noted that NST varies across different OPS-USERS experiments, depending on the
experimental conditions, as shown in Appendix D. The OPS-USERS experimental data sets
provide a good estimation of NST using the method described in Section 3.4.6. However, as
previously discussed, the simple linear representation of NST in the CHAS model may not be
sophisticated enough to support accurate prediction of fluctuations in workload.

Next, Number of Replans per Search Task and Length of Time to Replan were the second and
third most sensitive parameters. Both of these parameters impact the rate of replan interventions
and the length of these interventions, which had a weak to moderate impact on workload. All
other parameters had a relatively low impact on the mean utilization (less than a 4% change in
utilization for a 10% parameter change) indicating that the utilization calculation is fairly robust

to errors in parameter estimates.

Overall, the model is fairly robust to changes in parameter estimates. Among the 21 parameters
tested, only two (Base Search Task Rate and Automation Generated Search Speed) had a

moderate impact on area coverage performance (at least a 4% change in area coverage for a 10%
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change in parameter value). Also, only 3 parameters had a moderate impact on mean utilization,
Initial NST, Length of Time to Replan, and Number of Replans per Search Task. These
moderately sensitive parameters will be explored in further detail in the next section through
Monte Carlo analysis.

This sensitivity analysis did not specifically identify any variables that should be removed from
the model. While changes to some of the parameters did not have a large impact on area
coverage performance or workload, most of these parameters are essential for defining the
various non-linear relationships that were described in Chapter 3. Also, as will be discussed
further in Chapter 5, modeling human time delays is crucial to the validity of the CHAS model
and the ability to capture oscillatory behavior patterns, even if the impact of some of these time
delays on system performance by the end of the mission is not substantial. Finally, it should be
noted that a model reduction process was conducted with earlier versions of the CHAS model
(Appendix A), however, the sensitivity analysis presented here used the parsimonious model

presented in Chapter 3 (Figure 12).

In general, accurately estimating the automation contribution to system performance and
defining relationships such as the impact of search task rate on human value added are crucial to
model accuracy. Through data gathered through automation tests and human subject trials, these
parameters and relationships can be estimated by the same method shown in Section 3.4.5. Given
sufficient data to estimate these parameters and relationships, accurate model replications and
predictions can be made.

4.3.2 Capturing Human Variability

Regardless of how accurately model parameters are estimated, a model of human behavior and
decision-making must be able to capture the inherent variability of humans. Monte Carlo
simulations can be utilized to generate dynamic confidence intervals for the simulation outputs.
The general Monte Carlo simulation process for testing SD models (Sterman, 2000) is as
follows. First, the exogenous parameters with significant uncertainty and for which the output
variables are sensitive are identified. Second, probability distributions that characterize the likely
values for these parameters are specified using human operator data. Then the simulation

software randomly draws a value for each parameter from the chosen distribution and simulates
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the model. This process is repeated for a large sample of simulations, which are used to define

the confidence bounds for the output variables.

Based on the sensitivity analysis presented above, there were five candidate parameters which
could be used in the Monte Carlo analysis: Base Search Task Rate, Automation Generated
Search Speed, Initial NST, Length of Time to Replan, and Number of Replans per Search Task.
All five of these parameters were identified as having a moderate impact on either area coverage
or mean utilization (defined as greater than a 4% change in the output variable for a 10% change
in the exogenous parameter value). It was decided to exclude Automation Generated Search
Speed from the Monte Carlo analysis for two reasons: a) it is an estimated parameter based on
model fitting (Section 3.4.2) which cannot be drawn directly from experimental data and b) this
Monte Carlo analysis focused on capturing human variability as opposed to variability in the

performance of the automation.

Thus, the four parameters used in the Monte Carlo analysis were: Base Search Task Rate, Initial
NST, Length of Time to Replan, and Number of Replans per Search Task. All four of these
variables had significant variability due to individual differences in the human operators who use
the system. Using the distributions of the four variables generated from previous experimental
data (Appendix K), 1000 simulations of the CHAS model were run. Once again, the baseline
conditions for the model were the parameter settings for the “All Missions” group, described in
section 4.2.1 and detailed in Appendix F. This enabled comparison of the Monte Carlo
simulation results with the experimental data that originally informed the construction of the
model (Section 3.2).

The dynamic confidence intervals generated by the Monte Carlo simulations for area coverage
percentage, human workload, search task rate, and replan rate are compared to average
experimental data (1 Standard Error (SE)) in Figure 47. Generally, the experimental data falls
within the 50% confidence intervals for the Monte Carlo simulations for all four output
variables. Given human variability, this is a decent measure of the accuracy of the CHAS model,
along with the previously discussed evaluation of the fit of the model to historical data in Section
4.2.1.
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Through Monte Carlo simulation, the CHAS model is able to provide a system designer with a
prediction of not only the average value of system performance or workload, but also the
plausible range of performance or workload that could occur. Designing systems involving
human operators requires understanding not just average performance, but also the range of
performance. For example, while average workload may remain below cognitive overload
conditions, it is crucial to evaluate what percentage of operators may still experience cognitive
overload due to human variability in using the system. System designers may want to enforce
boundary conditions, such as designing the system such that 95% of operators will not go above
a certain workload level. The CHAS model can aid them in this process, through simulations
such as those shown in Figure 47. This type of system design to workload constraints using the

CHAS model is explored further in Section 6.1.3.
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Figure 47. Dynamic confidence intervals generated via Monte Carlo simulations compared to average
experimental data + 1 SE: a) Area coverage Performance, b) Workload, c) Search Task Rate, d) Replan Rate.

There are a few limitations to this Monte Carlo approach. First, the approach assumes

independence between the distributions of each parameter. For example, it is likely that an
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operator with low trust in the AS will also have lower initial expectations for performance,
however the simulation approach used here does not take this into account. Second, the Vensim®
simulation software draws a random value from each distribution once at the start of the
simulation and uses that parameter value for the entire simulation. While this is a valid
assumption for initial conditions such as the Initial NST, for parameters such as the Length of
Time to Replan, the model is assuming that the value drawn is an average time length that
remains constant throughout the mission. This could be remedied through the use of different
software or the implementation of the CHAS model in a more customizable programming
language. Higher numbers of Monte Carlo simulations could also remedy this issue, although
there were no substantial differences in the dynamic confidence intervals generated with
different numbers of simulations (500 and 2000). Discrete Event Simulation (DES) models can
more accurately re-draw a value from the distribution of Length of Time to Replan every time
that a replan occurs. Additional comparisons between the CHAS model and a previously

developed DES model of human supervisory control are presented in Chapter 6.

4.4 Summary

The CHAS model has been subjected to a battery of tests through the validation process
presented in this Chapter. This process has built confidence in the CHAS model’s accuracy and

robustness, which are discussed in more detail below.

4.4.1 Model Accuracy

First, the CHAS model was able to replicate the results of the real-time human-automation
collaborative scheduling experiment that provided data to inform construction of the model. The
model was able to capture the differences in system performance and rates of intervention
between high and low performers. The model was also able to accurately simulate changes in
output variables over time, including the decline in workload throughout the mission.
Additionally, the model replicated oscillations in intervention rate which were seen in the data
set, as operators sought out the appropriate level of trust and the rate of intervention that would

produce performance that matched their expectations.
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Second, a slightly modified version of the CHAS model was able to replicate the results of a
second experiment in which operators were subjected to a much higher task load. As compared
to the original model presented in Chapter 3, the only change to the customized model was that
the replan rate was modeled as an exogenous parameter, as operators were prompted to replan at
specified time intervals. The model replicated the impact of these different replan prompting
intervals accurately by showing an increase in workload, a change in search task intervention
rates, and no significant difference in performance between the two groups. The model’s
predictions of system performance were accurate because the model simulated the impact of
cognitive overload on operators who had a workload level over 70% utilization. This built
confidence in the model’s method of capturing the impact of cognitive overload on human
decision-making and system performance. For both this data set and the original data set, the
model was able to capture the major differences in workload among different groups; however,
the model’s replication of workload fluctuations throughout the mission was subpar, causing low
goodness of fit values. This is due to the CHAS model’s simple, linear representation of
Nonscheduling Task Toad (NST), which cannot accurately capture fluctuations in NST seen in
experimental data. Methods for enhancing the model’s representation of NST are discussed in

the future work section of Chapter 7.

Third, as an external validation, a tailored version of the CHAS model was also used to replicate
a data set from a multi-robot Urban Search and Rescue (USAR) experiment. The only major
change to model structure was a simplification of the workload calculation. The model
accurately captured the impact of an increased rate of manual teleoperation on system
performance. The learning behavior of operators in the data set was accurately replicated. Once
again, the model captured the diminishing returns of extremely high rates of teleoperation due to
cognitive overload. This external validation test demonstrated the ability to generalize the model

for use with other real-time human-automation collaborative scheduling systems.

4.4.2 Model Robustness

In addition to testing the model’s ability to accurately replicate experimental data, the validation
tests presented in this chapter also evaluated the model’s robustness under a variety of

conditions.
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First, the adequacy of the model boundary was evaluated by comparing the endogenous and
exogenous variables in the model to determine whether the model is appropriate for the purpose
for which it was built and whether the model includes all relevant structure. Also, tests were
conducted to show that the model structure captures important aspects of real-time human-
automation collaborative scheduling, such as the tension between the positive impact of operator
interventions and the effectiveness of those interventions once operator cognitive workload

reaches too high of a level.

Second, an extreme conditions test was conducted by increasing the Automation Generated
Search Speed by 1200%. The model behaved as expected by quickly reaching, but not exceeding
100% area coverage performance. Additional extreme condition testing showed that through the
use of logit curves to characterize key causal relationships, the model is robust to extreme
conditions such as large differences between expected and perceived performance. In addition,
an integration error tested demonstrated that the model was robust to changes in the time step

and integration method used for simulation.

Third, a numerical sensitivity analysis was conducted to evaluate whether model outputs change
in important ways when there are errors in parameter estimates. The analysis demonstrated that
the model is not overly sensitive to errors in parameter values, but did indicate that accurately
estimating certain relationships, such as the impact of search tasks on system performance, is
crucial to model accuracy. Through data gathered through human subject trials, sufficient data
can be gathered to estimate these relationships, enabling accurate model replications and

predictions.

Finally, through Monte Carlo simulations, the CHAS model was able to characterize the impact
of human variability on system performance. The CHAS model is able to provide a system
designer with a prediction of not only the average value of system performance or workload, but
also the plausible range of performance or workload that could occur. This is beneficial to a
system designer who wants to evaluate the impact of system changes on the boundary conditions

of system design.

Having built confidence in the CHAS model’s replication accuracy and robustness, Chapter 5

will describe an additional human subject experiment that was run a) to gather additional data to
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evaluate model assumptions and b) to test the ability of the CHAS model to predict the impact of

system changes on system performance.
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5 Predictive Validation Experiment

This chapter describes a human subject experiment that was conducted to evaluate the ability of
the Collaborative Human-Automation Scheduling (CHAS) model to predict the impact of
changes in system design and operator training on human and system performance. First, the
CHAS model is used to develop experimental hypotheses, including quantitative predictions of
performance. The test subjects, apparatus, experimental design, and procedure are presented. The
experimental results are presented, including an analysis of the impact of demographics on
performance. Data is presented to evaluate the assumptions built into the CHAS model. Finally,
the experiment results are compared to the predictions made by the CHAS model.

5.1 Experimental Objectives

The primary objective of this experiment was to validate predictions from the CHAS model. The
secondary purpose was to test the impact of design changes in the Onboard Planning System for
UVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-USERS) testbed. The
tertiary purpose was to investigate how human trust in an Automated Scheduler (AS) changes
throughout a simulated mission controlling a team of UVs. This experiment was designed to test
the dynamic hypothesis developed through data analysis and development of the CHAS model.
As described in Section 3.3, the dynamic hypothesis of the CHAS model is that if operators can
either a) anchor to the appropriate trust in the AS and expectations of performance earlier in the
mission and/or b) adjust their trust and expectations faster through better feedback about the AS,

then system performance should improve.

5.2 Experimental Hypotheses

Following the multi-stage validation process described in Chapter 4, the CHAS model was used
to develop hypotheses of how system design and training changes could potentially improve
system performance. Commonly referred to as “policy implications” testing in the SD modeling
community (Sterman, 2000), the model was exercised in a number of simulation runs to identify
changes to a baseline system that could improve the performance of the system. While these
policies could include both changing exogenous parameters and changing the feedback structure

of a system, this analysis focused only on modulating exogenous parameters.
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Thus, the goal was to make guantitative predictions of the impact of changing certain parameters
on the primary performance metric of area coverage by the end of the mission. The baseline
conditions for the model were the parameter settings, described in section 4.2.1 and detailed in
Appendix F, which replicated the average behavior of all test subjects in a previous experiment
using the OPS-USERS testbed.

The three exogenous parameters selected for testing were: Initial Human Trust, Initial
Expectations of Performance (EP), and Time to Perceive Present Performance (TPPP). The first
two parameters were chosen because the sensitivity analysis described in section 4.3.1 identified
Human Trust and Expectations of Performance (EP) as the most sensitive human attributes.
These parameters represent characteristics that have a substantial impact on system performance
and thus operator selection and/or training efforts should focus on these characteristics. The third
parameter, TPPP, was chosen because previous research has shown that information time delays
can have serious consequences for human decision-making in dynamic systems (Brehmer, 1990;
Sterman, 1989b). While the manipulation of other variables, such as the Automation Generated
Search Speed, may have had a more substantial effect on performance (Section 4.3.1), this
research focused on modeling the human operator and understanding how humans collaborate
with an AS to improve system performance. Thus, all three independent variables focused on
training methods and system design changes to influence operator behavior, both to assess the
impact on system performance and to evaluate the assumptions and accuracy of the CHAS
model.

The following sections describe the changes to training procedures and system design that were
implemented in the testbed to attempt to modulate these variables. Also, CHAS model
predictions for the impact of changing these three parameters on human and system performance
are presented.

5.2.1 Initial Trust Level

According to the CHAS model, the Initial Human Trust of the operator should have an impact on
the performance of the system. While the sensitivity analysis in Section 4.3.1 showed that Initial
Human Trust had a weak to moderate impact on area coverage performance, a strong enough

change in Initial Human Trust should result in a detectable change in system performance. Thus,
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it was decided to prime test subjects prior to their interaction with the AS in order to influence
their initial trust level. Priming has been studied extensively in the psychology and neuroscience
domains (Cave, 1997; Henson, 2003; Kosslyn & Rosenberg, 2011; Schacter, 1987; Schacter &
Buckner, 1998) and it is known that humans are susceptible to anchoring biases in decision-
making and judgments under uncertainty (Dzindolet et al., 2002; Tversky & Kahneman, 1974).
However, there has been little research on the impact of priming on operators controlling

multiple UVs.

A few studies have investigated the impact of framing on human decision-making and reliance
on an automated decision aid (Dzindolet, et al., 2002; Lacson, Wiegmann, & Madhavan, 2005).
In these experiments, test subjects were provided with information about previous automation
performance with either positive framing (“the aid usually made about half as many errors as
most participants”) or negative framing (“the aid usually made about 10 errors in 200 trials”).
These studies found that the manner in which information about the reliability of the automation
was presented to operators could subtly influence reliance on the automation, but all experiments
focused on signal detection, rather than the more complex decision-making required for
controlling multiple UVs. In another study, Rice et. al (2008) primed test subjects with images of
automation with either positive and negative affect. They found that operators primed with
positive images had faster reaction times and higher accuracy in a visual identification task with
the assistance of an automated identification aid. However, this was the only task that the
operators were conducting, as opposed to the testbed described in this thesis where operators
were multi-tasking. Also, the automation was for target identification and had 100% reliability,
as opposed to the automated scheduling algorithm used in this testbed which has been found to
be provably good, but suboptimal (Choi, et al., 2009; Whitten, 2010).

Thus, the first independent variable for this human subject experiment was called “A Priori
Priming,” with three levels: “Positive Priming,” “Negative Priming,” and “No Priming.” After
completing a self-paced, slide-based tutorial about the testbed, operators read a passage
containing six actual quotes written by test subjects from a previous experiment using this
testbed. For the Positive Priming level, the quotes were all from operators who had positive
impressions of the AS, describing it as fast, intuitive, easy to use, and smart. For the Negative

Priming level, the quotes were all from operators who were dissatisfied with the AS, describing
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how they did not agree with the plans made by the AS, how they wished they could manually
assign tasks, and how the AS made poor decisions. Both passages are shown in Appendix K. The
No Priming level served as a control group, where operators did not receive a passage to read
after training. This was a between-subjects factor, in that a particular subject only experienced

one Priming Level, to avoid training biases and confusion.

In order to provide quantitative predictions of the impact of positive and negative priming, data
from the twelve operators who wrote the quotes used in the priming passages was analyzed. All
test subjects in the previous experiment were asked to rate their satisfaction with the plans
created by the AS after each mission on a Likert scale from 1-5 (low to high), as explained in
Section 3.2. This subjective rating was used as a proxy variable for trust in the AS. On average
across all operators, the average rating of satisfaction was 2.82 out of 5. Among the six operators
with positive quotes, the average rating was 3.16, a 12% increase. Among the six operators with

negative quotes, the average rating was 2.16, a 23% decrease.

For the purposes of making quantitative predictions, it was assumed that positive priming would
cause a 12% increase from the baseline Initial Human Trust, while negative priming would cause
a 23% decrease from the baseline. No Priming was the control group, and thus the baseline
Initial Human Trust was maintained. The results of these model predictions are shown in Table
12.

Table 12. Model predictions for impact of a priori priming on area coverage performance.

A Priori Priming Level | % Change in Initial Human Trust | Area Coverage Performance
Negative Priming -23% 68.6%
No Priming 0% 62.7%
Positive Priming +12% 60.3%

These predictions were based on the assumption that priming would change the average initial
trust of each group by the desired amounts. It should be noted that the model predicted that a
decrease in trust would improve performance while an increase in trust would lower system
performance. Once again, the model made these predictions because the automated scheduling
algorithm used in this testbed has been found to be provably good, but suboptimal (Choi, et al.,

2009; Whitten, 2010). Thus, lowering trust should lead operators to intervene more frequently in
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order to guide the suboptimal automation. Based on these predictions, the following results were

expected:

e Hypothesis 1: Negative a priori priming of human trust in the AS is expected to result in
a 9% increase in system performance by the end of the mission, as compared to the no
priming control condition.

e Hypothesis 2: Positive a priori priming of human trust in the AS is expected to result in a
4% decrease in system performance by the end of the mission, as compared to the no
priming control condition.

e Hypothesis 3: Negative a priori priming of human trust in the AS is expected to result in
a 12% increase in system performance by the end of the mission, as compared to the
positive priming condition.

5.2.2 Expectations of Performance

In addition to Initial Trust, the operator’s expectations of performance should have an impact on
system performance, according to the CHAS model. Once again, while the sensitivity analysis in
Section 4.3.1 showed that Initial Expected Performance (EP) had a weak to moderate impact on
area coverage performance, a strong enough change in operator expectations of performance
should result in a detectable change in system performance. In order to influence operators’
expectations of performance, a new performance plot was implemented in the testbed, shown in
Figure 48. The old performance plot (Section 3.2.1) showed scores for the current and proposed
schedule based on the priority levels of assigned tasks in each schedule. The new performance
plot showed a reference area coverage ‘“expectation” line in red along with the actual area
coverage performance thus far in the mission in blue. During training, test subjects were told that
the red line was the average of area coverage accomplished by previous users of the system. This
reference line was meant to serve as a different form of priming, by setting operators’
expectations of how well the system should perform based on the how well other operators had

performed before them.
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The second independent variable in the experiment was called “Real-Time Priming,” with two
levels: “Low Priming” and “High Priming.” The Low Priming level showed the average area
coverage curve of the low performers group from the previous experiment (Section 3.2) as the
red reference line, with the final area covered at the end of mission equal to 53.2% (Figure 48a).
The High Priming level showed the average area coverage curve of the high performers group,
with the final area covered equal to 76.6% (Figure 48b). This was also a between-subjects
variable, in that a particular subject only experienced one Real-Time Priming Level, to avoid
confusion. It was possible for a test subject to perceive that they were doing “better than

expected” (Figure 48a) or “worse than expected” (Figure 48b) through the performance plot.

/
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Figure 48. New performance plot: (a) Low reference line. (b) High reference line.
In order to provide quantitative predictions of the impact of real-time priming, the Initial EP
parameter values of the low and high performer groups from the previous experiment were
compared. When the model was fit to data from the low performer group, the Initial EP
parameter value was 4.00 cells/second (Section 4.2.1 and Appendix F). In contrast, when the
model was fit to data from the high performer group, the Initial EP parameter value was 6.25
cells/second, a 56% increase. Thus, for the purposes of making quantitative predictions, it was
assumed that High Real-Time Priming would cause a 56% increase from the baseline Initial EP.
All other parameter values were maintained at the baseline level. The results of these model
predictions are shown in Table 13.

Table 13. Model predictions for impact of real-time priming on area coverage performance.

Real-Time Priming Level % Change in Initial EP Area Coverage Performance
Low Priming 0% 62.7%
High Priming +56% 67.5%
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These predictions were based on the assumption that High Real-Time Priming would change the
system performance expectations by the desired amount, which would cause operators in the
High Real-Time Priming group to have a larger Perceived Performance Gap (PPG). It was also
assumed that Low Real-Time Priming would not substantially change performance expectations
as compared to the average operator. Based on these predictions, the following results were

expected:

e Hypothesis 4: High real-time priming of operator expectations of performance is
expected to result in an 8% increase in system performance by the end of the mission as
compared to the low real-time priming condition.

5.2.3 Time to Perceive Present Performance

A third parameter investigated was the Time to Perceive Present Performance (TPPP). TPPP is
an assumption about how long it takes the operator to detect changes in the area coverage rate.
Given that the testbed now provided a plot showing real-time updates of area coverage
performance throughout the mission, TPPP could potentially be increased by delaying the
reporting of performance in the plot, as shown in Figure 49. While there was no way for the
experimental testbed to gather precise data on human visual perception of information, operator
actions and system performance could be measured to evaluate the impact of this system design

change.

—
7

Figure 49. Performance plot showing time delay of performance feedback.

PERFORMANCE

The impact of time lags on the manual teleoperation of robots has been studied extensively
(Chen, Haas, & Barnes, 2007; Ricard, 1994; Sheridan, 1993; Thompson, Ottensmeyer, &
Sheridan, 1999; Wickens & Hollands, 2000), but information time delays are less frequently
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studied in human supervisory control because the operator does not have direct control over the
vehicle and thus there is no delay in the control loop that can lead to instability (Sheridan, 1992).
Walker et al. (2012) investigated the impact of latencies and predictive displays on supervisory
control of a swarm of robots, where all information, including the locations of the robots, was
delayed. Southern (2010) examined the impact of communication delays among a human
supervised multi-UV system on performance, based on the testbed described in this thesis.
However, the experiment described here attempted to evaluate the impact of an information
reporting time delay of system performance on human decision-making, while there were no

communications delays among the team of UVs.

Thus, the third independent variable was called “Information Time Delay,” with two levels: “No
Delay” and “With Delay.” For the No Delay level, the performance plot was just as shown in
Figure 48b, where the area coverage performance blue line was updated immediately. For the
With Delay level, a 120-second information reporting delay was implemented, as shown in
Figure 49, with the blue line filled in after a 120-second delay. A 120-second delay was chosen
because the model sensitivity analysis in Section 4.3.1 showed that £10% changes (£30 seconds)
in TPPP did not have a strong enough impact on system performance. Thus, the delay was raised
to 120-seconds and pilot testing confirmed that operators noticed the information reporting
delay. It should be noted that this was a within-subjects factor, in that each test subject

experienced both levels of Information Time Delay.

In order to provide quantitative predictions of the impact of the information time delay, TPPP
values for operators in each Information Time Delay group had to be estimated. The TPPP
parameter value was set to 10 seconds for the No Delay group, assuming that there was still an
inherent perception delay due to operator attention allocation inefficiencies (Cummings &
Mitchell, 2008). TPPP was set to 130 for the With Delay group, adding in the 120-second delay.
All other parameter values were maintained at the baseline level. The results of these model

predictions are shown in Table 14.

Table 14. Model predictions for impact of information time delay on area coverage performance.

Information Time Delay Level TPPP parameter value | Area Coverage Performance
No Delay 10 66.1%
With Delay 130 63.1%
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These predictions were based on the assumption that a time lag in the performance plot would in
fact delay the perception of performance of each operator. Once again, while there was no way
for the experimental testbed to measure the actual time delay in operator perception of changes
in system performance, operator actions and system performance could be measured to evaluate
the impact of this system design change. It should be noted that the predicted difference in
system performance was small (5%) and thus it was likely that the experimental data would not
have statistically significant differences. However, based on these predictions, the following

results were expected:

e Hypothesis 5: the addition of an information reporting time delay to the performance plot

is expected to result in a 5% decrease in system performance by the end of the mission.

5.3 Test Subjects

To test these hypotheses, 48 test subjects were recruited from undergraduate students, graduate
students, and researchers at the Massachusetts Institute of Technology (MIT). As the concept of
multiple UV supervisory control through a decentralized network is a futuristic concept, without
current subject matter experts, it was determined that a general user base would provide a

sufficient sample of potential future UV system operators.

The 48 test subjects consisted of 35 men and 13 women. The age range of test subjects was 18-
32 years with an average age of 23.08 and a standard deviation of 3.84. Only 5 test subjects had
served or were currently serving in the military, but a previous experiment using the OPS-
USERS testbed showed that there was no difference in performance or workload between test
subjects based on military experience (Cummings, Clare, et al., 2010). Each participant filled out
a demographic survey prior to the experiment that included age, gender, occupation, military
experience, average hours of television viewing, video gaming experience, and perception of
UAVs. Additionally, all test subjects filled out a 52-question Metacognitive Awareness
Inventory (MAI) prior to conducting the experiment. Metacognitive awareness “refers to the
ability to reflect upon, understand, and control one’s learning” (Schraw & Dennison, 1994, p.
460) which is relevant to expectation setting and adjustment. The consent forms and
demographic surveys filled out by test subjects can be found in Appendices L and M. Descriptive

statistics of the results of these demographic surveys can be found in Appendix N.
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5.4 Apparatus

The human subject experiment was conducted using two Dell 17 flat panel monitors operated at
1280 x 1024 pixels and a 32-bit color resolution. The primary monitor displayed the testbed and
the secondary monitor showed a legend of the symbols used in the system (Appendix O). The
workstation was a Dell Dimension DMO051 with an Intel Pentium D 2.80 GHz processor and a
NVIDIA GeForce 7300 LE graphics card. System audio was provided using standard
headphones that were worn by each participant during the experiment. All data regarding the test
subjects’ interactions with the system for controlling the simulated UVs was recorded

automatically by the system.

5.5 Experimental Design

Three scenarios were designed for this experiment: a practice scenario and two test scenarios.
Each scenario involved controlling four simulated UVs (one of which was weaponized) in a
mission to conduct surveillance of an area in order to search for targets, track these targets, and
destroy any hostile targets found (when instructed). The area contained both water and land
environments and targets could be either tanks on the ground or boats in the water. The vehicles
automatically returned to the base when necessary to refuel and were equipped with sensors
(either radar or cameras) which would notify the operator when a target was detected so that the
operator could view sensor information in order to designate the target and give it a priority
level. Perfect sensor operation was assumed, in that there were no false detections or missed

target detections.

Each scenario had 10 targets that were initially hidden to the operator. These targets always had
a positive velocity and moved on pre-planned paths throughout the environment (unknown to the
operator), at roughly 5% of the cruise velocity of the WUAV. Each scenario had three friendly
targets, three hostile targets, and four unknown targets. The operator received intelligence
information on the unknown targets through the chat window, revealing that two of the targets
were friendly and two were hostile. Upon receiving this intelligence, the operator could re-
designate the targets. The operator would also be asked by the “Command Center” through the
chat window to create search tasks in specified quadrants at various times throughout the

mission. Finally, new Rules of Engagement (ROEs) were presented to the operator through the
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chat window every 5 minutes during the 20 minute mission. The ROEs instructed operators on
aspects of the mission that were most important at the time in order to guide their high level
decision making. The ROEs also specified when hostile target destruction was permitted. The
ROEs are listed in Appendix P. The scenarios were all different, but of comparable difficulty, so

that operators would not learn the locations of targets between missions.

5.5.1 Independent Variables

The experimental design was a 3x2x2 repeated measures design with three independent
variables: 1) the A Priori Priming level based on a passage that was read by operators
immediately following training, 2) the Real-time Priming level of the reference area coverage
curve shown in the performance plot, and 3) the Information Time Delay of feedback on actual
area coverage performance through the plot. As described above, the A Priori Priming variable
had three levels: Positive Priming, Negative Priming, and a No Priming control condition. The
Real-Time Priming variable had two levels: Low Priming and High Priming. Finally, the
Information Time Delay variable had two levels: No Delay and With Delay. Information Time
Delay was a within-subjects factor, as each subject experienced both a No Delay and With Delay
mission. These missions were presented in a randomized and counterbalanced order to avoid

learning effects.

5.5.2 Dependent Variables

The dependent variables for the experiment were mission performance, primary workload,
secondary workload, Situation Awareness (SA), and subjective ratings, taken both during the
missions and post-mission. Overall mission performance was measured by taking the following
five metrics: percentage of area coverage, percentage of targets found, percentage of time that
targets were tracked, number of correct hostile targets destroyed, and number of mistaken targets
destroyed. The primary workload measure was a utilization metric calculating the ratio of the
total operator “busy time” to the total mission time. For utilization, operators were considered
“busy” when performing one or more of the following tasks: creating search tasks, replanning,
identifying and designating targets, approving weapons launches, interacting via the chat box,
and answering a survey question. All interface interactions were via a mouse with the exception

of the chat messages, which required keyboard input.

159



An alternative method for assessing workload was measuring the spare mental capacity of the
operator through reaction times to a secondary task. Secondary workload was measured via
reaction times to text message information queries, as well as reaction times when instructed to
create search tasks via the chat tool. Such embedded secondary tools have been previously

shown to be effective indicators of workload (Cummings & Guerlain, 2004).

SA was measured through the accuracy percentage of responses to periodic chat box messages
querying the participant about aspects of the mission. Additionally, four of the targets were
originally designated as unknown. Chat messages provided intelligence information to the
operator about whether these targets were actually hostile or friendly (based on their location on
the map). It was up to the operator to re-designate these targets based on this information.
Therefore, a second measure of SA was the ratio of correct re-designations of unknown targets to

the number of unknown targets found.

Throughout the mission, a pop-up survey window (Figure 50) appeared in the lower left corner
of the Map Display to ask the operator to provide three ratings. Operators read the following

during their training session about the survey window:

Every 2 minutes throughout all of your missions, this window will appear in the bottom left
corner of the Map Display. It asks you to rate three questions:

e Rate how well you think the system is performing right at this moment (1=Extremely Poor,
4=0K, 7=Extremely Well)

e Rate how well you expect the system to be performing at this moment (1=Extremely Poor,
4=0K, 7=Extremely Well)

e Rate your trust in the Automated Scheduler that you work with in the SCT (1=No Trust,
4=Neutral, 7=Absolute Trust)

1 2 3 4567
How well you think the system is performing * - ¢ ¢ ¢ 0 O
How well you expect the systemto pefform ¢ ¢ ¢ ¢ © O O
o s s o8 88

Your trust in the Automated Scheduler

Figure 50. Pop-up survey window.
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This survey was used to gather near real-time data on the operator’s perception of performance,
expectations of how well the system should be performing, and trust in the AS. All three of these
variables were essential to the CHAS model and collecting this data enabled the evaluation of
model assumptions. A fourth metric, the Perceived Performance Gap (PPG) was calculated by
taking the percent difference between the expectation and performance rating during data
analysis. A Likert rating scale of 1-7 (low to high) was used simply because that is the scale that
is used in an empirically validated and commonly used trust in automation questionnaire (Jian,
Bisantz, & Drury, 2000). These questions were asked every 2 minutes, starting at 60 seconds into
the mission. The goal was to sample the operator’s perceptions, expectations, and trust level as
frequently as possible without distracting the operator from his or her primary tasks. Based on
the fact that operators typically replan (use the AS to generate a new schedule) 1-2 times per
minute, it was decided that prompting the user every minute would be too frequent and
distracting. Instead, a questioning interval of 2 minutes was adopted. Pilot tests verified that this
frequency of sampling captures the dynamics of perceptions, expectations, and trust without
being too intrusive. Online probes to gather subjective ratings are commonly used in experiments
such as these to measure workload and SA (Endsley, Sollenberger, & Stein, 2000), and they have

been proposed as a method to measure trust (Miller & Perkins, 2010).

A survey was provided at the end of each mission asking the participant for a subjective rating of
their confidence, workload, and satisfaction with the plans generated by the AS on a Likert scale
from 1-5 (low to high). At the end of the entire experiment, test subjects filled out a 12-question
survey which is commonly used to measure trust in automation and has been empirically
validated (Jian, et al., 2000). All of these subjective ratings are crucial, both for providing an
additional measure of workload and for evaluating whether the independent variables influenced
the operator’s confidence and trust in the collaborative decision-making process, factors which

have been shown to influence system performance (Parasuraman & Riley, 1997).

5.6 Procedure

In order to familiarize each subject with the interface, a self-paced, slide-based tutorial was
provided (Appendix Q). Subjects then conducted a fifteen-minute practice session during which

the experimenter walked the subject through all the necessary functions to use the interface. Each
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subject was given the opportunity to ask the experimenter questions regarding the interface and
mission during the tutorial and practice session. Each subject also had to pass a proficiency test,
which was a 5-question slide-based test (Appendix R). If the subjects did not pass the proficiency
test, they were given time to review the tutorial, after which they could take a second, different

proficiency test. All subjects passed on the first test.

The actual experiment for each subject consisted of two twenty-minute sessions, one for each of
the two Information Time Delay levels. The order of the Information Time Delay levels
presented to the subject was counterbalanced and randomized to prevent learning effects. During
testing, the subject was not able to ask the experimenter questions about the interface and
mission. All data and operator actions were recorded by the interface and Camtasia® was used to
record the operator’s actions on the screen. Finally, a survey was administered at the end of each
mission to obtain the participant’s subjective evaluation of their workload, confidence, and trust,
along with general comments on using the system (Appendix S). Subjects were paid $10/hour for
the experiment and a performance bonus of a $100 gift card was given to the individual who

obtained the highest mission performance metrics (to encourage maximum effort).

5.7 Results

This section discusses the results of the experiment and compares them to the hypotheses
described in Section 5.2. The section begins with an analysis of the value that human operators
were adding to system performance as compared to the automation-generated performance.
Then, performance, workload, SA, and subjective response results are compared across the three
independent variables. Demographic predictors of performance are discussed and qualitative
survey comments are presented to provide insight on operator strategy and trust. A more detailed
analysis of the impact of gaming frequency on the reaction to the independent variables and
system performance is presented. Finally, some of the assumptions in the CHAS model which

were previously untested were evaluated using data gathered for the first time in this experiment.

5.7.1 Human Value Added

A histogram of the area coverage performance by the end of the mission of all 48 subjects is
shown in Figure 51. Also shown in the diagram is a red line indicating the area coverage
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performance of the “obedient human” mission, which was described in Section 3.4.2. The
percent area covered in the obedient human mission was 56.2%, while the average human
operator in this experiment achieved area coverage of 63.0%, a 12% increase in performance due
to human value added. Eighty of the 96 missions (83%) had improved performance as compared
to the obedient human mission. The top performer in the experiment achieved area coverage of

85.0%, a 51% increase in performance over the obedient human condition.
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Figure 51. Test subject area coverage performance compared to “obedient human” mission (red line).

This aligns with previous results using this testbed and adds additional support to the assumption
that the human operator can add value over the automation generated performance. It should also
be noted that 16 of the missions (17%) had lower area coverage performance than the obedient
human mission, and thus modeling the potential for negative human value added is also an

important facet of the CHAS model.

5.7.2 Impact of Independent Variables

A statistical analysis of all dependent variables was conducted and details, including descriptive
statistics of all measures and testing for order effects, are provided in Appendix T. The following

sections discuss the results for each independent variable.
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5.7.2.1 A Priori Priming

Beginning with the A Priori Priming independent variable, results showed that test subjects who
experienced the Positive Priming level had higher ratings of trust in the AS following their
training mission, prior to the actual experimental missions. Pairwise Mann-Whitney comparisons
showed that the Positive Priming group had 13.8% higher trust ratings compared to the No
Priming control group (Z = -2.570, p = 0.010) and 20.7% higher trust ratings compared to the
Negative Priming group (Z = -3.186, p = 0.002). There were no significant differences in pre-
experiment trust ratings between the Negative Priming group and the No Priming control group
(Z =-0.807, p = 0.420). Similar results were found for the average real-time rating of trust during
the missions, where the Positive Priming group had 14.9% higher trust ratings compared to the
No Priming control group (Z = -2.614, p = 0.009) and 24.2% higher trust ratings compared to the
Negative Priming group (Z = -3.741, p < 0.001). Again, there were no significant differences in
average real-time trust ratings between the Negative Priming group and the No Priming control

group (Z =-1.036, p = 0.300). These results are shown in Figure 52.
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Figure 52. Trust ratings comparison: (a) Pre-experiment ratings. (b) Average real-time ratings during the
mission. Standard Error bars are shown.

It appears that positive a priori priming had the desired effect of raising initial trust in the
automation. This higher trust level among the positive priming group was maintained on average
throughout the experiment, although trust during the mission was lower than pre-experiment
trust, as shown in Figure 52b. It should be noted that the impact of negative priming was not

strong enough to significantly lower self-reported trust as compared to the control group. This
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may be due to the particular method of priming that was used in this experiment, such as the
quotes that were chosen (Appendix K). It could also show that operators were willing to raise
their trust level in automation based on information about how it has worked in the past, but

lowering their trust level requires actually working with the automation in person.

Overall, these results show that priming can be effective at influencing initial trust level,
especially when the priming is meant to raise trust. Interestingly, after the end of the experiment,
there were no significant differences in trust across the three A Priori Priming groups according
to a Kruskal-Wallis omnibus test of the 12-question post-experiment trust survey data (y°(2,
N=48) = 1.986, p = 0.371). Thus, this data also provides evidence that operators adjust their trust
level over time as they work with the AS and thus the effects of priming are not enduring. This
aligns with previous empirical evidence demonstrating that trust has inertia (Lee & Moray, 1994;
Lewandowsky, et al., 2000; Parasuraman, 1993), where the effect of perceived automation

performance on trust is not instantaneous, but trust does change steadily over time.

In terms of system performance, the only significant difference among the three A Priori Priming
groups was in terms of target destruction mistakes. These mistakes could take two forms: a)
destroying a target against the ROEs or b) incorrectly destroying a friendly target. There were 14
missions with a mistaken target destruction and 11 of these missions were conducted by
operators who experienced Negative A Priori Priming (Figure 53). This difference was

statistically significant according to a Kruskal-Wallis omnibus test, 5 (2, N=14) = 13.0, p=0.002.
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Figure 53. Number of missions with mistaken target destruction across A Priori Priming levels.
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Notably, there were no other significant differences in the system performance metrics, including
the primary metric of area coverage, across the A Priori Priming groups. However, real-time
ratings indicated that operators in the Negative Priming group recognized their mistakes. For the
average real-time rating of how well operators thought the system was performing, pairwise
Mann-Whitney comparisons showed the Negative Priming group had 7.0% lower self-
performance ratings compared to the No Priming control group (Z = -1.832, p = 0.067) and 9.9%
lower performance ratings compared to the Positive Priming group (Z = -2.160, p = 0.031).
There were no significant differences in performance ratings between the Positive Priming group
and the No Priming control group (Z = -0.833, p = 0.405). Similar results were found for the
average real-time rating of how well operators expected the system to perform, where the
Positive Priming group had 10.4% higher expectations ratings compared to the No Priming
control group (Z = -2.674, p = 0.007) and 13.1% higher expectations ratings compared to the
Negative Priming group (Z = -3.189, p = 0.001). There were no significant differences in average
real-time expectations ratings between the Negative Priming group and the No Priming control
group (Z =-0.395, p = 0.693).

In terms of reaction times to accomplish embedded secondary tasks used to measure spare
mental capacity, the results showed that at two points during the mission, operators in the
Negative A Priori Priming group had significantly slower reaction times to a secondary task than
operators in the Positive A Priori Priming group, as shown in Figure 54. Mann-Whitney
comparisons showed that the Negative Priming group had 61% slower reaction times to a chat
question in fifth minute compared to the Positive Priming control group (Z = -3.115, p = 0.002).
Similarly, the Negative Priming group had 46% slower reaction times to a chat question in
eleventh minute compared to the Positive Priming control group (Z = -3.115, p = 0.002). There
were no significant differences in the other three secondary task measures among the A Priori

Priming groups.

As shown in previous research (Cummings & Guerlain, 2004), an embedded secondary tool can
provide an effective indicator of workload by measuring the spare mental capacity of the
operator. These results could indicate that at certain points during the mission, operators in the

Positive A Priori Priming group had more spare mental capacity than the Negative A Priori
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Priming group. This higher level of spare mental capacity could potentially indicate that positive

priming and higher trust in the AS caused operators to have lower workload.
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Figure 54. Reaction times to embedded secondary tasks comparison: (a) Chat question in fifth minute.
(b) Chat question in eleventh minute. Standard Error bars are shown.

These results provide a few potential explanations for the mistakes in target destruction by the
Negative A Priori Priming group. First, operators in the Negative A Priori Priming group had
lower reported trust in the AS, which may have reflected their frustration with the system,
leading to violation of the ROEs. A second possible explanation revolves around the fact that the
Negative A Priori Priming group had lower reported expectations of system performance. These
lower expectations could form a self-fulfilling prophesy, where operators expect to perform
poorly and thus sabotage their own performance. However, all test subjects were instructed that
following the ROEs was part of how they would be judged for the reward at the end of the

experiment.

The third, more likely explanation is that if the Negative A Priori Priming group had less spare
mental capacity, they may have misunderstood or missed the ROE instructing them not to
destroy hostile targets until later in the mission. Similarly, they could have mistakenly designated
an unknown target as hostile, leading to an erroneous hostile destruction. Many previous studies
have demonstrated the negative impact of high cognitive workload on operator performance in
human supervisory control of multiple UVs (Clare & Cummings, 2011; Cummings, Clare, et al.,
2010; Cummings & Nehme, 2010; Dixon & Wickens, 2003; Ruff, et al., 2002) and this result

could indicate that a similar situation was caused by negative priming.
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5.7.2.2 Real-Time Priming

The goal of adjusting the Real-Time Priming level was to set operators’ expectations of how well
the system should perform. The intention was to induce the High Priming group into having
higher expectations of performance as compared to their perception of how well the system was
performing. According to the CHAS model, this higher Perceived Performance Gap (PPG)

would lead to lower trust, a higher rate of intervention, and improved system performance.

Results showed that test subjects who experienced the Low Priming level had higher average
perceptions of how well the system was performing. A Mann-Whitney comparison showed that
the Low Priming group had 8.8% higher average real-time performance ratings compared to the
High Priming group (Z = -2.122, p = 0.034), as shown in Figure 55a. This result was somewhat
expected, as operators viewing the performance plot would likely think that the system was
performing better when the reference line was lower. Surprisingly, the Low Priming group also
had higher average real-time ratings of expected system performance. A Mann-Whitney
comparison showed that the Low Priming group had 6.9% higher average expectations ratings
compared to the High Priming group (Z = -2.145, p = 0.032), as shown in Figure 55b. There
were no significant differences in trust ratings or calculated PPG between the Real-Time Priming

groups.
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Figure 55. Average real-time ratings comparison: (a) Perceived system performance. (b) Expectations of
system performance. Standard Error bars are shown.
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In addition to comparing average ratings for the entire mission, changes in expectation and
performance ratings over time were analyzed. A repeated measures ANOVA was utilized for this
analysis, with a between-subjects factor of Real-Time Priming Level and a repeated measures
factor of time, as shown in Figure 56. This ANOVA indicated a significant effect for Real-Time
Priming Level, F(1,82) = 4.590, p = 0.035. There was also a significant effect for time (F(8,656)
= 3.386, p < 0.001) and a significant interaction effect between time and Real-Time Priming
Level (F(8,656) = 2.118, p = 0.001). It appears that both groups had similar perceptions of the
performance of the system for the first half of the mission, but in the second half of the mission,
the Low Priming group had significantly higher ratings of system performance than the High
Priming group (Figure 56a). For ratings of expectations, the repeated measures ANOVA
indicated a significant effect for Real-Time Priming Level, F(1,82) = 4.140, p = 0.045. This
difference in expectations was consistent over time, with the Low Priming group reporting

higher expectations of performance (Figure 56b).
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Figure 56. Real-time ratings comparison over time: (a) Perceived system performance. (b) Expectations of
system performance. Standard Error bars are shown.

These results suggest that real-time priming had some of the desired effects on operator
expectations and perceptions, but also led to unintended consequences. High Real-Time Priming
did in fact lower operator perceptions of how well the system was performing. However, instead
of raising operator expectations, higher real-time priming actually led to lower expectations of

how well the system would perform throughout the rest of the mission. This likely reflects
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operator frustration due to their perception of system performance compared to the reference line

presented on the performance plot.

As will be discussed further in Section 5.7.4, operators in the High Priming level expressed
frustration that they were struggling to keep up with the high reference area coverage curve
shown on the plot. While there were no significant differences in total mouse clicks or other
measures of operator interventions between the Real-Time Priming groups, some operators
reported that they tried to intervene more frequently to improve system performance. However,
others expressed that things seemed “out of their control,” which may be reflected in the
declining performance ratings towards the end of the mission (Figure 56a). Additional evidence
of this frustration is that following each mission, the High Priming group had lower subjective
ratings in response to the question, “How confident were you about your performance?” A Mann
Whitney comparison showed that the High Priming group had 30% lower confidence ratings
compared to the Low Priming group (Z = -4.462, p < 0.001). Operators likely lost confidence
because they were unable to guide the suboptimal automated scheduling algorithm to achieve the

high performance shown on the reference line in the performance plot.

While the original intention of higher real-time priming was to induce a higher Perceived
Performance Gap (PPG) and lower trust in the AS, results showed that there were no significant
differences in PPG or in trust ratings between the Real-Time Priming groups. This is likely due
to the frustration and lack of confidence expressed by operators in the High Priming group. It is
also possible that the real-time survey used to gather this subjective rating data was not sensitive

enough to measure the differences in PPG or trust due to real-time priming.

In terms of system performance, there were no significant differences among the system
performance metrics, including the primary metric of area coverage, across the Real-Time
Priming groups. Operators in the High Real-Time Priming group were unable to do any better
than their counterparts in the Low Real-Time Priming group, while being shown that their
performance was below the reference line of how well previous operators had performed, driving

frustration higher and confidence lower.

The only other significant difference among the dependent variables for the Real-Time Priming

groups was in terms of reaction times to accomplish embedded secondary tasks. Of the five
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embedded secondary tasks, the results showed that operators in the High Priming group had
significantly faster reaction times to two secondary tasks as compared to operators in the Low
Priming group. Mann-Whitney comparisons showed the that operators in the High Priming
group answered a chat question in the seventeenth minute of the 20 minute mission significantly
faster than operators in the Low Priming group (Z = -3.019, p = 0.003), as shown in Figure 57a.
Also, following a chat message prompt to create a search task in a specific quadrant of the map
during the sixteenth minute of the mission, the High Priming group created the search task
significantly faster than the Low Priming group (Z = -2.735, p = 0.006), as shown in Figure 57b.
There were no significant differences in the other three embedded secondary task reaction times,
which occurred earlier in the mission. While these differences in reaction time only occurred
during only two of the five embedded secondary tasks, it is still worth investigating why
operators in the High Priming group had significantly faster reaction times.
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Figure 57. Reaction times to embedded secondary tasks comparison: (a) Chat question in seventeenth minute.
(b) Prompted search task in sixteenth minute. Standard Error bars are shown.

There are three potential explanations for the faster reaction times of the High Priming group.
First, it is possible, but unlikely that operators in the High Priming group had more spare mental
capacity as compared to the Low Priming group. Both of these embedded secondary tasks
occurred towards the end of the mission and frustration with their inability to keep up with the
reference area coverage curve may have caused operators in the High Priming group to mentally
“check out” from the experiment. However, this likely would not lead to faster reaction times to

a chat message in the experiment. A second possibility is that in their attempts to improve system
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performance, the High Priming group may have been more focused than operators in the Low

Priming group, thus responding faster to chat message questions and prompts.

A third possible explanation is that the High Priming group may have chosen to focus their
attention on the embedded chat tool due to their frustration with how the system was performing.
The chat tool was visible from both the Map Display and the Schedule Comparison Tool (SCT),
thus operators could continually monitor the chat tool. A previous study has demonstrated that
operators may choose to fixate on a real-time chat secondary task instead of the primary
supervisory control task (Cummings, 2004b). If the High Priming group was fixating on the chat
tool in this experiment, then it would explain why the group had faster reaction times to chat
message questions and prompts towards the end of the mission, when their ratings of system

performance were at their lowest levels.

5.7.2.3 Information Time Delay

The goal of adjusting the Information Time Delay level was to evaluate the impact of a delay in
the reporting of performance feedback on operator perceptions, operator behavior, and system
performance. Results from the experiment showed that there were only two significant
differences in the dependent variables between the Information Time Delay levels.

First, a repeated measures ANOVA showed that there was a significant three-way interaction
effect for percentage of time that targets were tracked among all three independent variables (A
Priori Priming Level, Real-time Priming Level, and Information Time Delay), F(2,41) = 3.992, p
= 0.026. It should be noted that there were no factor level or two-way interaction effects. This
three-way interaction effect can be seen in Figure 58. Post-hoc Mann-Whitney dependent
comparisons revealed two interesting results. The eight operators who had no A Priori Priming
and the low reference line on the performance plot (Low Real-Time Priming) performed
significantly worse in terms of percentage of time targets were tracked under the With Delay
condition as compared to the No Delay condition (Z = -2.521, p = 0.012). In addition, the eight
operators who had Positive A Priori Priming and the high reference line on the performance plot
(High Real-Time Priming) also performed significantly worse in terms of percentage of time
targets were tracked under the With Delay condition as compared to the No Delay condition (Z =
-2.380, p = 0.017). A major caveat with these results is the small sample size, only 8 test subjects
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in each of these specific conditions, conducting two missions each. However, it appears that
adding a time delay to the performance plot negatively impacted system performance, but only
under certain combinations of a priori and real-time priming. Notably, operators who
experienced negative a priori priming had generally robust performance in terms of the

percentage of time targets were tracked regardless of the information delay.

96— 96 Info Time
Delay Level
947 947 @ No Delay
k-] | B ! u T & \With Delay
o 92 : g e @
Q Q
S .90 A S 90 L
= ® A = T
4] 1
£ 88 2 88 _
> 1 > I
S 86 S 86 A _
g .84 A % 841
= -
= .82 52 .82+
| A
.80 .80
787 .78
I ] T I [ T
Negative No Priming Positive Negative No Priming Positive
Priming Priming Priming Priming
A Priori Priming Level A Priori Priming Level
(a) Low Real-Time Priming (b) High Real-Time Priming

Figure 58. Three-way interaction effect for percentage of time that targets were tracked. (a) Low Real-Time
Priming condition. (b) High Real-Time Priming condition. Standard Error bars shown.

The only other significant difference among the dependent variables between the Information
Time Delay levels was in terms of Situation Awareness (SA). Chat messages provided
intelligence information to the operator about whether “unknown” targets were actually hostile
or friendly (based on their location on the map). It was up to the operator to re-designate these
targets based on this information. Therefore, a second measure of SA was the ratio of correct re-
designations of unknown targets to the number of unknown targets found. A Mann Whitney
comparison showed that the No Delay missions had a higher average target re-designation
accuracy (71.4%), while the With Delay missions had only 52.6% accuracy (Z = -3.130, p =
0.002).

Taken together, both results show that under the With Delay condition, operators did not perform
as well in terms of tracking already found targets and re-designating unknown targets based on
intelligence information, as compared to the No Delay condition. While adding an information
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time delay did not lead to a statistically significant difference in the primary system performance
metric of area coverage, results show that operators had lower system performance in terms of
another measure and lower SA when there was an information time delay on the performance

plot.

It is not immediately clear why the With Delay missions had lower system performance and
lower SA than the No Delay missions. An analysis of the actions of operators (replan rate, search
task rate, length of time spent replanning, utilization, etc.) in each Information Time Delay level
did not reveal any statistically significant differences in operator behavior. There were also no
statistically significant differences in the subjective ratings provided by operators. One of the
limitations of this independent variable was that there was no way for the experimental testbed to
gather precise data on human visual perception of information in order to measure the time delay
in the perception of changes in system performance.

Finally, it should be noted that there were other ways for the operator to perceive area coverage
performance beyond the performance plot. By default, operators had a “Fog of War” overlay on
the Map View to indicate where they had recently searched (Section 3.2). Only 11 of the 48 test
subjects ever turned the overlay off and in all cases it was turned back on and left on to the
completion of the mission. Thus, the addition of an information time delay to the performance
plot was not a pure information time delay; operators had alternative, albeit less accurate

methods to estimate how well they were doing.

5.7.3 Demographic Predictors

A set of linear regression analyses was performed to see if there were any significant
demographic predictor variables for high (or low) system performance, operator workload, and
average trust. Details of the linear regression analysis can be found in Appendix T. There were
four metrics with significant demographic predictor variables. In each case, there was only one
significant predictor variable, which is equivalent to finding a significant linear correlation, and
thus the results will be reported in this manner. It should be noted that there were no moderate to
strong correlations among these four dependent variables, enabling separate analysis of each

dependent variable.
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For area coverage performance, the significant predictor variable was a metacognitive awareness
score, p = -0.285, p = 0.005. A relatively weak negative relationship was found, indicating that
operators with higher metacognitive awareness performed slightly worse in terms of the primary
performance metric, area coverage. Metacognitive awareness was measured by test subjects’
responses to a 52-question Metacognitive Awareness Inventory (MAI). Higher metacognitive
awareness is typically associated with positive qualities, such as strategic planning for complex
problem solving (Schraw & Dennison, 1994). However, it is possible that the rapid decision-
making under uncertainty required for real-time human-automation collaborative scheduling
relies more on developing heuristics through feedback on small adjustments rather than strategic
and methodically-planned problem solving. Thus, it is debatable how useful MAI scores are for

the type of decision-making necessary for this type of system.

For targets found, the significant predictor variable was self-rated frequency of watching
television, p = -0.298, p = 0.003. Operators who reported that they watched more hours of
television per day had lower system performance in terms of the number of targets found by the
end of the mission. The literature is divided between whether television-viewing enhances
creativity (Kant, 2012; Schmidt & Vandewater, 2008) or decreases cognitive development
(Shejwal & Purayidathil, 2006). It is likely, however, that a passive activity such as watching
television does not exercise the decision-making and attention allocation skills required to
manage a team of UVs in a complex and dynamic environment, in contrast to video gaming, a

more active form of recreation, which is discussed below.

For utilization, the significant predictor variable was self-rated frequency of playing computer
and video games, p = -0.450, p < 0.001. This indicates a relatively strong relationship by human
factors standards. As utilization measures the percent “busy” time of operators during the
mission, this result shows that gamers were able to accomplish the mission with less “busy” time
and thus more spare time for monitoring the system. It is likely that gamers in this experiment
were able to click around the interface faster, accomplishing the same tasks in less time, which is
reflected in the lower utilization level. In contrast to the previous finding on TV watching, video
games are an active form of entertainment, and studies have shown that video game play
improves visual attentional processing in divided attention, multi-tasking scenarios (Green &

Bavelier, 2003). Another study showed that playing action video games improved encoding
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speeds of visual information into visual short-term memory (Wilms, Petersen, & Vangkilde,
2013). Faster visual processing and encoding could lead to a decrease in utilization, as operators
could comprehend the information presented to them faster in order to make quicker decisions.
The impact of gaming frequency on operator trust and performance is explored further in Section
5.7.5.

Finally, for the 12-Question trust survey filled out at the end of the experiment, the significant
predictor variable was whether or not the operator had ever or was currently serving in the
military, p = -0.308, p = 0.002. The survey (Jian, et al., 2000) asked questions that measured
both trust and distrust in the AS, with a total trust score ranging from -28 to 44. The 5 operators
who had military experience had an average post-experiment trust score of 0.8, while the other
43 operators had an average trust score of 14.3. A Mann Whitney comparison showed that this
difference was marginally significant (Z = -1.723, p = 0.085), and the trust ratings for both
civilians and military test subjects are shown in Figure 59. It should be noted that of the 5
military test subjects, three experienced positive a priori priming and two experienced negative a

priori priming.
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Figure 59. Post-experiment trust rating comparison by military experience. Standard Error bars shown.

While the sample size of military personnel is small, these results suggest that operators in the
military may lose trust in automation faster than civilian operators when they perceive

automation faults or poor automation recommendations. Previous studies have been inconclusive
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on differences in military and civilian trust in automation. For example, in one study on maritime
collision avoidance tools, preliminary interviews suggested that civilians were more receptive to
proposed automated planning tools as compared to military personnel, but following testing of a
prototype automation recommendation system, there were no statistically significant differences
in trust ratings between the civilians and military personnel (Cummings et al., 2010). As Adams
et. al (2003) discussed, both risk tolerance and organizational factors can influence trust. Military
personnel understand that the decisions they are making could potentially impact the safety of
their own team, jeopardize a critical mission objective, or waste valuable resources and
expensive equipment. Under these circumstances, skepticism of an automated system is simply a
method to mitigate risk. Adams et. al (2003, p. 67) further stated that “operators may be less
likely to trust automation, a priori, if there is a prior track record of problematic automation
being brought into [military] service.” Historical military incidents involving automation, such as
the Patriot missile system accidents (Cummings, Bruni, et al., 2010), can lower an operator’s
trust “inertia,” leading to steep drops in trust following automation errors or poor automation

performance.

Although significant correlations were found for these four demographic variables, causality is
still unclear, and it will require further research to establish whether these demographic factors
should influence training and selection processes for operators in real-time human-automation

collaborative scheduling systems.

5.7.4 Qualitative Comments

Beyond quantitative subjective data, qualitative evaluations of the system and experiment were
also obtained from all test subjects. While inferring operator perceptions and decision-making
strategy from measureable actions during the missions and survey ratings is useful, valuable

insights can also be gained from comments written by test subjects following the experiment.

Sixty-five percent of test subjects reported that the AS was fast enough for this dynamic, time-
pressured mission. However, as in previous experiments (Clare, Cummings, How, et al., 2012;
Clare, Hart, & Cummings, 2010), a common complaint from test subjects was a desire for
increased vehicle-level control, as opposed to only goal-level control. Thirty-five percent of all

test subjects wrote about wanting to manually assign vehicles to certain tasks because they
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disagreed with an assignment made by the AS. For example, one operator wrote, “At times |
wish | could have specifically assigned a vehicle to a search task directly,” while another wrote,
“Disliked that I could not assign tasks directly to a UV or force a UV to perform a certain task
immediately.” These comments could be due to the fact that the AS was taking into account
variables that the human did not comprehend, such as the refueling needs, speed, or capabilities
of each UV. Regardless of whether or not the AS was generating good schedules, operators

perceived poor AS decisions and performance, supporting a key assumption in the CHAS model.

Another feedback survey question asked operators whether their trust in the AS increased or
decreased over time. Forty-two percent of operators reported that their trust in the AS decreased
throughout the mission, while 17% reported an increase in trust over time. The rest reported that
they either had no change in trust (17%) or had both increases and decreases in trust (21%)
throughout the mission, while 4% did not respond. There were no differences in these results
based on the A Priori Priming level or Real-Time Priming level experienced by the operator.

Examples of written comments include:

e “My trust in the scheduler increased when it successfully completed all the assigned
tasks on time, but decreased when it did not.”

e “[Trust] decreased, as high priority tasks were not always assigned by the automated
scheduler. At times it favored lower priority tasks.”

e “[Trust] decreased when it would fail to assign a task.”

e “[Trust was] always pretty high.”

e “There were times that my trust decreased because it did not assign the tasks I
expected.”

e “At certain points for area coverage it would schedule for a UV to move in directions
that didn't seem logical. | would prefer it to search the west side if most of it had not
yet been searched over the east.”

e “My trust decreased every time | saw a path on the screen that | was not expecting.
Usually I placed search tasks on the screen to influence the resulting path, but that did
not always have the desired effect.”

e “Trust increased with time as | got more comfortable and saw the Automatic
Scheduler was working well.”

e “Trust increased when it visibly showed how assignments changed according to plan
priorities [changing the objective function of the AS].”

e “If there was a lot happening it was easier to just trust [the AS].”

These comments demonstrate that there was a wide a variety of opinions and perceptions of the

AS across the test subjects. A number of insights into operator strategy and perceptions can be
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drawn from these comments. First, the impact of human variability is clearly visible in these
comments, as some operators gained trust over time while others lost trust, some thought the AS
performed flawlessly while others could not understand the decisions made by the automation.
Some operators reported that their trust would fluctuate, both rising and falling, depending on
their perception of performance. This oscillatory behavior has been observed previously in the
intervention actions of operators, as described in Section 4.2.1 and 4.2.3. An effective model of
human-automation collaborative scheduling must have the ability to capture both the varying
initial conditions of human operators, as well as the different possible ways that they could

change their trust over time.

Second, the final comment shown above reflects the fact that under high workload situations,
operators tend to rely on automation in order to reduce their workload. Whether or not this
actually indicates an increase in trust is debatable, as it may simply be an increase in reliance due
to cognitive overload. While the CHAS model captures the direct impact of high workload on the
value that humans can add to system performance, this interesting interaction between high
workload and reliance on automation is not currently captured in the model, but will be discussed
in Chapter 7 under future work.

Third, these comments provide some interesting insights for the creators of scheduling
algorithms and the designers of collaborative interfaces. As described in Chapter 1, there are
often differences between the real world, the automation/engineer’s model, and the human
operator’s models of the world. Generally, operators have expectations for how the automation
should perform, for example which tasks should be assigned, what paths the UVs should take,
and what search pattern should be used. When the automation chooses to do things in a different
manner, even if this method is better in terms of some metric (distance traveled, priority level of
tasks performed, fuel usage, etc.), it can confuse operators and decrease trust. Rather than
training operators to understand the way the automation makes decisions, automation designers
should develop methods that enable the automation to provide reasons for scheduling decisions,
while interface designers should find innovate methods to display this information to operators.
One method of providing insight into automation decision-making is direct-perception
interaction (Gibson, 1979). As mentioned in one of the comments above, by allowing operators

to immediately view the impact of changing the objective function of the AS (described further
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in Section 3.2.1), it increased trust because the operator could infer some of the reasons behind

the decisions made by the automation.

Finally, test subjects were asked about the performance plot and how it influenced their
perceptions and behavior. They were not specifically asked about the time delay. Seventy-five
percent of operators reported that they looked at the performance plot frequently, while 58%
reported that they changed their behavior because of what they saw on the plot. There were no
differences in these results between the Real-Time Priming levels, reinforcing the fact that real-
time priming did not have the intended effect on operators. The intention was for the High
Priming condition to cause operators to perceive a larger gap in performance and to more
frequently intervene in the system as compared to operators in the Low Priming group. As
described in Section 5.7.2.2, there were no significant differences in system performance or in

any of the operator action measures between the Real-Time Priming groups.

However, the language used in comments made by operators in the different Real-Time Priming
groups reveals the frustration created by the High Priming condition. Seventy-nine percent of
operators in the High Priming group wrote about the pressure that they felt to improve their
performance or the frustration that they felt over their poor performance in relation to the
reference line, while only 13% of the operators in the Low Priming group expressed feelings of
frustration or pressure. Forty-six percent of operators in the Low Priming group expressed that
the performance plot made them feel good about their performance or that they felt they were
doing well, while none of the operators in the High Priming group expressed these positive

feelings. Examples of written comments about the performance plot include:

e High Real-Time Priming group

o “It made me feel bad about myself. But more frustrating about it was that for
the most part, the performance was based on the scheduler and a lot of it was
out of my control (i.e. search) where | just had to sit and watch.”

o “It made me feel like | was underperforming by a large margin. | couldn't
really alter my behavior (the output was different than expected), but the chart
definitely added to my sense of frustration.”

o “It made me feel pressure to do better. | generally tried to increase my
coverage area based on the plot.”

o “l gave up trying to use [the performance plot] since | was always below [the
reference line].”
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o “l was always below [the reference line] so it made me want to constantly
change my plans until it started increasing.”

o “It made me realize | must be doing something wrong - which was area
coverage (I was focusing on targets more).”

e Low Real-Time Priming group

o “It made me feel pretty good. Stayed above [reference line] - happy to see
that!”

o “Whenever my actual performance was above the [reference line], | felt better
about myself. When | saw my performance dropping, | tried to cover more
area.”

o “It made me feel good, | was ahead. I did not change my behavior, as | was
always ahead of [the reference line].”

o “l'was usually above average, so | guess | felt good about that.”

o “I probably slacked off because of it though (as in | was calmer making
decisions, but maybe could have been more vigilant).”

o “It made me feel good and in control to see the [performance] line was above
[the reference line]. Once | saw that | was covering the area more than
average, | focused more on tracking targets.”

While the High Real-Time Priming condition may have caused operators to feel pressure to
intervene more frequently in the system, this did not translate into measureable differences in
operator actions or system performance. Instead, the frustration created by the High Priming
condition was reflected both in these comments and in the lower ratings of confidence by
operators in the High Real-Time Priming group (Section 5.7.2.2). It is likely that the reference
line on the performance plot for the High Real-Time Priming condition was set too high, leading
to a sense that the goal was unachievable. It also led to a shifting of responsibility, where some
operators placed all blame for poor system performance on the automation. In contrast, the Low
Priming condition had a low reference line on the performance plot which provided positive
reinforcement to operators, increasing their confidence. Future work should explore whether a
more achievable reference performance curve for the High Priming group could cause the
intended effect of pushing operators to intervene more frequently without lowering operator

confidence.

5.75 Gamer Analysis

A detailed analysis of the impact of frequency of computer and video game playing was
conducted. This analysis was conducted for two main reasons. First, gaming frequency was the

most significant demographic predictor of utilization, implying that frequent gamers could
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operate the interface more quickly than nongamers and potentially had a lower workload level
(Section 5.7.3). Second, although the experiment used random assignment of subjects to
experimental conditions, the between-subjects condition of Real-Time Priming had an uneven
balance of gamers and nongamers. A Mann-Whitney comparison showed that the average self-
reported gaming frequency on a Likert scale from 1-5 (low to high) of the Low Priming group
was significantly higher than subjects in the High Priming group (Z = -2.366, p = 0.018), as
shown in Figure 60.
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Figure 60. Uneven balance of gaming frequency between real-time priming groups.

These two findings encouraged a deeper analysis of the behavior of gamers. To begin, the
analysis investigated whether gaming frequency correlated with performance metrics, behavior
metrics, or subjective ratings from the experiment. Among the performance metrics, gaming
frequency did not correlate with the primary performance metric of area coverage, p = 0.008, p =
0.938. Thus, for the primary performance metric in the CHAS model, there was no direct
correlation with gaming frequency. However, gaming frequency did correlate with the percent of
time that targets were tracked, p=0.211, p=0.039. This indicates that gamers were better at

preventing targets from becoming lost by managing the resource allocation of the UVs.

As reported in Section 5.7.3, gaming frequency correlated with utilization, p =-0.450, p < 0.001.
In addition, gaming frequency correlated with the average length of time to replan, p = -0.286, p
= 0.005. Both of these results indicate that gamers were faster at using the interface, evaluating
information, and making decisions. Also, in terms of operator behavior, there was a marginally

significant correlation between gaming frequency and the total number of search tasks created, p
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=-0.191, p = 0.062. Thus, it appears that gamers were less likely to intervene by creating new
search tasks. In terms of subjective ratings, gaming frequency correlated with higher average
real-time ratings of trust (p = 0.216, p = 0.037), perceived performance (p = 0.248, p = 0.016),
and expectations (p = 0.302, p = 0.003). To summarize, these results indicate that gamers had
higher trust in the AS and thus did not intervene as often. They were faster at using the interface
and were better at preventing targets from becoming lost. They also had higher perceptions of
how well they were doing and how well they expected to do.

While all of these correlations were weak to moderate in strength by human factors standards,
the fact that gamers had a somewhat higher propensity to trust the automation raised the question
of whether frequent gamers reacted to a priori priming differently than nongamers. To facilitate
this analysis, test subjects were divided into categories of “gamers” and “nongamers” based on a
test subject’s self-reported frequency of playing computer and video games. Eighteen test

2 ¢

subjects who reported that they were “weekly gamers,” “a few times a week gamers,” or “daily
gamers” were classified as gamers. The other 30 test subjects reported that they played computer
or video games once a month or less frequently. Test subjects were also asked to describe the
types of games they played. Among the gamer group, all but one test subject reported playing an
“action” video game, defined here as a shooter, real-time strategy, platform, racing, or sports
game where the motion of a character or vehicle must be controlled directly and in real-time.
While a previous study of the impact of video gaming used a more restrictive definition of action
games, only counting shooter-type video games, the other types of games listed above can all
“require fast reaction to multiple visual stimuli in a real time gaming environment” (Wilms, et

al., 2013, p. 110). Future work should explore the differences in behavior and performance

among gamers of different types, such as those who play shooter vs. real-time strategy games.

Beginning with the gamers, there was a fairly equal distribution of test subjects among the A
Priori Priming levels: Negative (5), No Priming (7), and Positive (6). Each of these test subjects
conducted two missions. Gamers who experienced the Positive Priming level had higher ratings
of trust in the AS following their training mission, but prior to the actual experimental missions.
Mann-Whitney pairwise comparisons showed that the Positive Priming gamers had 22.8% higher
trust ratings compared to the No Priming gamers (Z = -2.598, p = 0.009) and 19.1% higher trust
ratings compared to the Negative Priming gamers (Z = -2.364, p = 0.018). There were no
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significant differences in pre-experiment trust ratings between the Negative Priming gamers and
the No Priming gamers (Z = -0.278, p = 0.781). Similar results were found for the average real-
time rating of trust during the missions, where the Positive Priming gamers had 23.9% higher
trust ratings compared to the No Priming gamers (Z = -2.446, p = 0.014) and 35.2% higher trust
ratings compared to the Negative Priming gamers (Z = -2.882, p = 0.002). Again, there were no
significant differences in average real-time trust ratings between the Negative Priming gamers
and the No Priming gamers (Z = -0.536, p = 0.592). After the end of the experiment, there were
no significant differences in self-reported trust across the three A Priori Priming groups using the
12-question trust survey according to a Kruskal-Wallis omnibus test (x*(2, N=18) = 3.653, p =
0.161).

In terms of reported trust, these results are identical to the overall results presented in Section
5.7.2.1, in terms of the reaction to A Priori priming. Positive Priming had the desired effect of
raising initial trust in the automation. This higher trust level among the Positive Priming gamers
was maintained on average throughout the experiment. Negative Priming was not strong enough
to significantly lower self-reported trust as compared to the control group. After the end of the
experiment, there were no significant differences in self-reported trust, as the effects of priming

did not endure.

Gamers began to differ from the overall test subject population in their system performance
across the A Priori Priming groups. First, among the overall subject population, operators who
experienced Negative A Priori Priming had a significantly higher number of mistakenly
destroyed targets (Section 5.7.2.1). Secondary workload metrics showed that the Negative A
Priori Priming group may have had less spare mental capacity during the mission. Thus, they
may have misunderstood or missed the ROE instructing them not to destroy hostile targets until
later in the mission or mistakenly designated a target as hostile. An analysis of the performance
of gamers shows that five of the 14 missions with a target destruction mistake had a gamer as the
operator. This is proportional to the number of gamers in the subject population (38%), thus
gamers were no less likely to make a mistake as compared to nongamers. However, among
gamers, a Kruskal-Wallis omnibus test showed that there were no significant differences in
mistaken target destructions based on A Priori Priming level, X2(2, N=5) =1.778, p = 0.411. One

possible reason why gamers did not make more mistakes under the Negative A Priori priming
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condition is that gamers had lower utilization levels than nongamers, as described above. Thus,
they may have had more spare mental capacity to correctly interpret the ROEs and correctly

designate targets.

A second difference in system performance between the general subject population and gamers
is in the primary performance metric, area coverage performance. The overall test subject
population had no significant differences in area coverage performance across the A Priori
Priming groups (Section 5.7.2.1). However, a Mann-Whitney test showed that there was a
marginally significant difference® between the Positive A Priori Priming gamers and Negative A
Priori Priming gamers in terms of area coverage performance (Z = -1.715, p = 0.086). Gamers
with Positive A Priori Priming had 35% higher average trust, but 10% lower average area
coverage performance as compared to gamers with Negative A Priori Priming. These results are
shown in Figure 61.
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Figure 61. Impact of a priori priming on gamers. (a) Average real-time rating of trust in AS. (b) Area
coverage system performance by the end of the mission.

An analysis of the actions of the gamers in these A Priori Priming groups provides some insight
into why this difference in system performance occurred. Time series data on operator actions

throughout the mission were compared using a repeated measures ANOVA. First, the Negative A

! A separate analysis of gamers who only experienced the Low Real-Time Priming condition showed that there was
a significant difference between the Positive A Priori Priming gamers (8 missions) and Negative A Priori Priming
gamers (8 missions) in terms of area coverage according to a Mann-Whitney test (Z = -1.997, p = 0.046).
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Priori Priming gamers replanned more frequently than Positive A Priori Priming gamers
(F(1,20) = 7.147, p = 0.015), as shown in Figure 8a. Second, in terms of the length of time that
operators spent replanning, Negative A Priori Priming gamers spent marginally significantly less
time evaluating new plans generated by the AS (F(1,20) = 3.433, p = 0.082), as shown in Figure
8b. Third, the Negative A Priori Priming gamers created search tasks more frequently throughout
the mission (F(1,20) = 5.045, p = 0.036), as shown in Figure 8c.
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Figure 62. Differences in operator behavior between gamers who experienced positive or negative a priori
priming. (a) Replan rate. (b) Length of time to replan. (c) Search task rate. (d) Trust ratings. Standard error
bars shown.

Fourth, the Negative A Priori Priming gamers reported lower trust than Positive A Priori
Priming gamers (F(1,18) = 12.142, p = 0.003), as shown in Figure 8d. There was also a
significant effect for trust across time, indicating that trust decreased throughout the mission for
both groups (F(8,144) = 5.720, p < 0.001). It should be noted that there were no significant
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differences in utilization between the A Priori Priming groups for gamers, (F(1,20) = 1.016, p =

0.325), similar to the overall test subject results presented in Section 5.7.2.1.

Remarkably, gamers who experienced Negative A Priori Priming behaved in almost the exact
same way as high performers in a previous experiment using this testbed (Section 3.2 and 3.3).
Gamers in the Negative A Priori Priming group understood the imperfections in the automation,
reporting lower trust in the AS. They modified their behavior appropriately and used the system
as designed by replanning more frequently, spending less time evaluating new schedules
generated by the AS, and creating more search tasks to encourage the UVs to explore new areas
on the map. They were able to intervene at a higher rate without increasing their workload as
compared to the gamers who experienced Positive A Priori Priming. In contrast, a similar
analysis of nongamers revealed that while A Priori Priming did impact their reported trust in the
AS, there were no significant differences in behavior or system performance across the A Priori

Priming groups.

Why did a priori priming of trust only influence the behavior of gamers in a way that impacted
system performance? One potential reason is that gamers may have a higher propensity to
overtrust automation. As described above, gaming frequency correlated with higher average
ratings of trust in the AS (p = 0.216, p = 0.037). Also, gamers began the mission with
significantly higher ratings of trust as compared to all nongamers according to a Mann-Whitney
test (Z = -2.254, p=0.024), but eventually adjusted their trust to the same, lower levels of trust of
nongamers (Figure 63a).

Additional evidence of the different reactions of gamers and nongamers to a priori priming is
provided by an analysis of total mouse clicks (descriptive statistics presented in Appendix T).
This measure was not part of the original experiment design and its use is for post-hoc analysis
only. An ANOVA indicated a significant difference in the total mouse clicks among the A Priori
Priming Levels, F(2,90) = 3.765, p = 0.027. There was also a significant effect for gamer vs.
nongamer: F(1,90) = 4.458, p = 0.038 and a significant interaction effect between
gamer/nongamer and A Priori Priming Level: F(2,90) =4.135, p = 0.019. Gamers overall had
11% fewer total mouse clicks on average as compared to nongamers. There was no difference in

the total mouse clicks of nongamers across the A Priori Priming levels. However, gamers reacted
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to Negative A Priori Priming with a significantly higher number of mouse clicks, while gamers
with Positive A Priori Priming had the lowest number of mouse clicks of any group (Figure
63b). Gamers were prone to overtrusting the automation, and under Positive A Priori Priming,

they did not take as much action to guide the automation.
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Figure 63. Comparison of gamers and nongamers: (a) Real-time trust ratings. (b) Total mouse clicks.
Standard Error bars are shown.

To further analyze nongamers, a clustering analysis was conducted among all 30 nongamers,
identifying 15 nongamers who reported high levels of initial trust in the AS in contrast to four
nongamers who reported low initial trust. The clustering method was similar to the clustering
analysis described in detail in Section 3.2.2, except that the clustering metric was initial reported
trust in the AS. The average trust ratings in the AS for high and low initial trust nongamers are
compared to the trust ratings of all gamers in Figure 64. High initial trust nongamers showed a
decline in trust throughout the mission, similar to gamers. Low initial trust nongamers generally
remained at a low level of trust throughout the mission. However, using the same repeated
measures ANOVA method described above, it was found that there were no significant
differences between high initial trust nongamers and low initial trust nongamers in terms of area
coverage performance (F(1,36) = 0.179, p = 0.675), search task rate (F(1,36) = 0.198, p = 0.659),
replan rate (F(1,36) = 0.847, p = 0.364), nor length of time to replan (F(1,23) = 0.014, p = 0.906).
An ANOVA analysis similarly indicated that there were no significant differences in the total
mouse clicks between high and low initial trust nongamers, F(1,36) = 0.050, p = 0.825.
However, it should be noted that high initial trust nongamers had significantly lower utilization

as compared to low initial trust nongamers according to a repeated measures ANOVA (F(1,36) =
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4.969, p = 0.032), which indicates that high initial trust nongamers were less busy throughout the

mission.
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Figure 64. Real-time trust ratings for gamers, high initial trust nongamers, and low initial trust nongamers.
Standard Error bars are shown.

Overtrust in the AS can lead to the phenomenon of automation bias (Mosier, et al., 1998), where
operators disregard or do not search for contradictory information in light of an AS-generated
solution which is accepted as correct (Cummings, 2004a). A number of empirical studies have
shown that when working with imperfect automation, automation bias occurs (Chen & Terrence,
2009; Lee & Moray, 1994; Muir & Moray, 1996; See, 2002). Thus, Positive A Priori Priming
may have induced automation bias in gamers, where they overtrusted the imperfect AS in this
experimental testbed and did not intervene frequently enough. Negative A Priori Priming may
have pushed gamers to a more appropriate level of trust in the AS, helping them avoid

automation bias and encouraging them to intervene more frequently.

Another possible reason is that priming triggered a learned behavior in gamers. Wickens and
Hollands (2000) proposed in their human information processing model that working memory
has a more direct impact on perception and response selection as compared to long-term
memory. Previous studies have shown that priming can “spread activation,” meaning that the
prime activates an association in memory prior to carrying out a task (Anderson, 1983;
Niedeggen & Rosler, 1999). Additionally, the strength of the effect of the prime on behavior is
influenced by the match between earlier experiences and the current situation (Domke, Shah, &
Wackman, 1998; Lorch, 1982). Gamers, especially those who play action video games, have

learned how to manually control characters or vehicles and manipulate automation to obtain a
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desired result. Thus, Negative A Priori Priming of gamers may have activated this previously
learned behavior to intervene more frequently in order to manipulate the automation to improve
performance. In contrast, nongamers likely did not have as much previous experience working
with automation and thus their behavior did not change significantly even though they reported

lower trust.

These results have interesting implications for personnel selection and training for future real-
time human-automation scheduling systems for multiple UVs. While gamers may bring valuable
skills, such as faster visual attentional processing (Green & Bavelier, 2003) and faster encoding
of visual information into short-term memory (Wilms, et al., 2013), they are also potentially
prone to automation bias. One potential method for overcoming this propensity to overtrust
automation is through priming during training. Results in this experiment demonstrated that the
effects of priming are not enduring, thus regular priming throughout missions may be necessary

to maintain the appropriate level of trust, as Rice et. al (2008) proposed.

While these results are compelling, the limitations of this analysis must be taken into account.
The definition of a “gamer” is based on self-reported information, meriting further research to
establish which types of video games and what frequency of video game play influence operator
trust, behavior, and performance. The sample size of gamers in this data set was small, only 18
test subjects conducting two missions each. Future research should aim to evaluate these findings
with a larger sample size of gamers and nongamers. Despite these limitations, initial evidence
shows that previous experiences with automation and video game play can have a significant

impact on initial trust level in automation and reaction to priming/training methods.

5.7.6 Time Series Data

One of the major objectives of this experiment was to gather data to evaluate the assumptions in
the CHAS model surrounding perceptions of performance, expectations of performance, trust,
and workload. Aggregate time series data from all test subjects was evaluated using a repeated

measures ANOVA to test these assumptions. The results are presented below.

Operators were asked to rate their perception of performance, expectations of how well the

system should be performing, and trust in the AS every two minutes throughout the mission. The
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survey utilized a Likert scale of 1-7 (low to high). The aggregate ratings for all test subjects are
shown in Figure 65. Several observations can be made from this data. First, operator
expectations were significantly higher than perceived system performance throughout the
mission, F(1,166) = 9.279, p = 0.003. This supports the assumption made in the CHAS model
that operators typically have higher expectations than perceptions of performance, leading to a

positive Perceived Performance Gap (PPG).
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Figure 65. Aggregate real-time ratings (1-7, low to high) throughout the mission. (a) Expectations of
performance and perceptions of performance. (b) Perceived Performance Gap (PPG), equal to the percent
difference between ratings of expectations of performance and perceptions of performance. (c) Trust in the

AS. Standard error bars are shown.

Second, operator perception of performance declined throughout the mission, as shown by the
red line in Figure 65a. The repeated measures ANOVA indicated a significant time effect for
perception of performance, F(8,664) = 5.083, p < 0.001. This supports the CHAS model
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assumption that the operator correctly perceives declining system and automation performance
over time as the mission proceeds. It should be noted that the CHAS model can be tuned to a
system which maintains or even improves in performance over time. Third, operators lowered
their expectations based on their perception of system performance. A repeated measures
ANOVA indicated a marginally significant time effect for expectations of performance, F(8,664)
= 1.811, p = 0.072. The fact that operators adjusted their expectations of performance supports
the need for an Expectations Adjustment feedback loop in the CHAS model, rather than

assuming that the operator’s expectations of performance are static.

Fourth, operators adjusted their expectations slowly in comparison to their perception of
performance, as shown in Figure 65a. This is supported by a fourth metric, Perceived
Performance Gap (PPG), which was calculated by taking the percent difference between the
expectation and performance ratings at each two minute interval. There was a significant time
effect for PPG, F(8,664) = 2.519, p = 0.011, indicating that the PPG increased over time,
eventually reaching a 10% difference between expectations and performance ratings (Figure
65b). This supports the need to separately model the time delays for perceiving performance

versus adjusting expectations.

Fifth, operator trust in the AS generally declined throughout the mission, as shown in Figure 65c.
There was a significant time effect for trust, F(8,664) = 8.528, p < 0.001. The CHAS model
assumes that human trust in the AS is negatively dependent on the PPG. This data analysis
demonstrates that PPG generally increased over time as trust was declining. While this analysis
alone cannot conclusively support the causal relationship between PPG and Human Trust, the
qualitative comments described in section 5.7.4 provide additional evidence that as operators

perceived that the AS was performing below their expectations, they lost trust in the AS.

Finally, one of the main objectives of this experiment was to evaluate the dynamic hypothesis of
the CHAS model: if operators can either a) anchor to the appropriate trust in the AS and
expectations of performance earlier in the mission and/or b) adjust their trust and expectations
faster through better feedback about the AS, then system performance should improve. To
evaluate this hypothesis, a cluster analysis was conducted to identify the missions which had

significantly high or low performance, using total area coverage by the end of the mission as the
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clustering metric. Details of the clustering method can be found in Section 3.2.2, where the same
clustering method was used for data analysis with a previous data set. Of the total 96 missions,
there were 17 missions in the High Performance cluster and 15 missions in the Low Performance
cluster. High performers averaged 75.6% area covered by the end of the mission, while low
performers averaged 49.6%. The trust ratings in the AS for High and Low performing missions

are compared in Figure 66.

A repeated measures ANOVA indicated that there was a significant interaction effect for trust
between time and performance cluster, F(8,200) = 2.768, p = 0.006. The main effects for
performance cluster (F(1,25) = 1.103, p = 0.304) and time (F(8,200) = 1.875, p = 0.066) were not
significant. It appears that high performers anchored to a lower level of trust in the AS and
essentially remained at the same level of trust for the entire mission. Low performers, in contrast,
began at a higher level of trust and adjusted their trust over time, reducing it to the point where

there were no statistically significant differences in trust as compared to the high performers.
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Figure 66. Comparison of real-time ratings of trust in the AS (1-7, low to high) throughout the mission
between high and low performers. Standard error bars are shown.

This data provides evidence which supports the overall dynamic hypothesis of the CHAS model.
High performers anchored to the appropriate level of trust early in the mission, understanding the
imperfections in the automation and compensating to improve system performance. Low

performers anchored at a higher level of trust, and while they did adjust their trust over time, by
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the time they fully understood the limitations of the automation, it was too late in the mission to

improve their performance.

5.8 Evaluation of Hypotheses and Model Predictions

Given all of the results presented in Section 5.7, the experimental hypotheses described in
Section 5.2 can be evaluated. Specifically, the CHAS model made quantitative predictions of the
impact of changes in system design and operator training on human and system performance.
The experiment results are compared to the predictions made by the CHAS model below.

5.8.1 A Priori Priming

For the A Priori Priming independent variable, Hypothesis 1 stated that negative a priori priming
of human trust in the AS was expected to result in a 9% increase in system performance by the
end of the mission. Also, Hypothesis 2 stated that positive a priori priming of human trust in the
AS was expected to result in a 4% decrease in system performance by the end of the mission.
Finally, Hypothesis 3 stated that negative a priori priming of human trust in the AS was

expected to result in a 12% increase in over the positive priming condition.

While a priori priming was successful at adjusting initial human trust in the AS, data from the
general test subject population did not support these hypotheses. According to a repeated
measures ANOVA, there were no statistically significant differences in the primary performance
metric, area coverage, across the A Priori Priming levels, F(2,41) = 0.016, p = 0.984 (see Table
28 in Appendix T for descriptive statistics). The only statistically significant difference in system
performance was that operators in the Negative A Priori Priming group had lower performance
in terms of mistakes in target destruction. It is possible that the Negative A Priori Priming group
had less spare mental capacity and thus misunderstood or missed the ROE instructing them not
to destroy hostile targets until later in the mission (Section 5.7.2.1). This contradicts Hypotheses
1 and 3, as negative a priori priming may have caused a significant decrease in one of the system

performance metrics.

When controlling for gaming frequency, however, the experimental data provides support for
Hypothesis 3 and the CHAS model quantitative predictions. As described in Section 5.7.5,
among gamers, there were no statistically significant differences in mistaken targets destroyed
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across the A Priori Priming groups. Gamers had more spare mental capacity because they were
faster at using the interface, evaluating information, and making decisions. Most importantly,
gamers who experienced negative a priori priming had 10% higher average area coverage
performance (M = 66.0%, SD = 8.4%) as compared to gamers with positive a priori priming (M
= 59.6%, SD = 9.2%), a marginally statistically significant difference, which directly supports
Hypothesis 3 (Figure 67). While the sample size of gamers was small and differences in system
performance from the control No Priming group were not statistically significant, there is some
evidence that negative priming can improve system performance while positive priming can

reduce system performance.
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Figure 67. Predictions using the CHAS model compared to experimental results for gamers.

The quantitative model predictions presented in Section 5.2.1 are compared to experimental
results from gamers in Figure 67. As shown, the model effectively captures the impact of
changes in initial trust on area coverage performance for gamers. All predictions fall within £1
Standard Error of the experimental data. These results provide compelling evidence that the
model can accurately predict the impact of a change in operator training on system performance.
A major caveat is that the model’s predictions were only accurate for the gamer population of
test subjects. Controlling for gaming frequency reduced some of the human variability in the

experimental results. Future research should explore whether the model can make accurate
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predictions for a more general population of operators given a different change in operator

training that has a stronger effect on operator perceptions and behavior.

5.8.2 Real-Time Priming

For the Real-Time Priming independent variable, Hypothesis 4 stated that high real-time priming
of operator expectations of performance was expected to result in an 8% increase in system
performance by the end of the mission over low real-time priming. Results from the experiment
did not support this hypothesis, as there were no significant differences among the system
performance metrics, including the primary metric of area coverage, across the Real-Time

Priming groups (see Table 29 in Appendix T for descriptive statistics).

Results showed that real-time priming had some of the desired effects on operator expectations
and perceptions, but also led to unintended consequences (Section 5.7.2.2). Instead of raising
operator expectations, higher real-time priming actually led to lower expectations of how well
the system would perform throughout the rest of the mission. In the second half of the mission,
the Low Priming group had significantly higher ratings of system performance than the High
Priming group. Both of the results likely reflect operator frustration due to their perception of
system performance compared to the reference line presented on the performance plot.
Additionally, the High Priming group had 30% lower confidence ratings compared to the Low
Priming group following the mission. The written comments of operators in the High Priming
group express frustration and a lack of confidence (Section 5.7.4). It is possible that due to this
lack of confidence, the frustration experienced by operators in the High Priming group did not
translate into significant differences in Perceived Performance Gap (PPG), trust, or system
performance. It is also possible that the surveys and measures of system performance failed to

detect a change in these quantities due to the different Real-Time Priming levels.

The CHAS model assumes for the High Priming prediction that operator expectations of
performance are 56% higher than in the Low Priming condition (Section 5.2.2), which should
cause an increase in the operator’s Perceived Performance Gap (PPG). The High Priming group
had an average PPG that was only 13% higher than the PPG of the Low Priming group (see
Table 38 in Appendix T for descriptive statistics), although this difference was not significant
according to a Mann-Whitney test (Z = -0.314, p = 0.753). The model overstated the impact of
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Real-Time Priming on system performance because Real-Time Priming did not have the desired
effect on operator expectations. To further evaluate the CHAS model’s accuracy, the model was
run with only a 13% increase in expectations from the Low to High Priming conditions. The
model results are compared to experimental results in Figure 68. As shown, the model effectively
captures the impact of the actual changes in expected performance on area coverage

performance. All predictions fall within £1 Standard Error of the experimental data.
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Figure 68. Revised predictions using the CHAS model compared to experimental results for all test subjects.

However, as stated earlier, according to a repeated measures ANOVA, there were no statistically
significant differences in area coverage between the Real-Time Priming levels, F(1,41) = 0.002,
p = 0.961. Thus, future research should explore whether a more achievable reference line on the
performance plot for the High Priming condition could cause the intended effect of pushing
operators to intervene more frequently without lowering operator confidence. Also, a different
method of priming expectations of performance could be explored to further investigate the

impact of changes in expectations on system performance.

5.8.3 Information Time Delay

For the Information Time Delay independent variable, Hypothesis 5 stated that the addition of an

information reporting time delay to the performance plot was expected to result in a 5% decrease

197



in system performance by the end of the mission. Results from the experiment both support and
contradict this hypothesis. Under certain combinations of the two priming independent variables
(Section 5.7.2.3), the With Delay missions had significantly lower system performance in terms
of the percentage of time that targets were tracked (see Table 30 in Appendix T for descriptive
statistics). Also, operators in the With Delay missions had significantly lower Situation
Awareness (SA) as measured by the ratio of correct re-designations of unknown targets to
number of unknown targets found. Both of these results support Hypothesis 4. However, in terms
of the primary performance metric of area coverage, there were no statistically significant
differences in area coverage between the Information Time Delay levels according to a repeated
measures ANOVA, F(1,41) = 0.495, p = 0.486.

In retrospect, the implementation of a time delay in this manner was fraught with challenges.
First, as noted in Section 5.2.3, the predicted difference in system performance was small (5%)
and thus it was likely that the experimental data would not have statistically significant
differences. Also, the CHAS model assumed for the With Delay prediction that operators would
perceive changes in the area coverage rate with a time delay of 130 seconds compared to only a
10 second delay for the No Delay condition (Section 5.2.3). However, there was no way for the
experimental testbed to gather precise data on human visual perception of information in order to
measure the actual time delay in the perception of changes in system performance. Future

research could examine this with eye tracking devices for a more precise estimate.

Another major limitation to this implementation of a time delay was that there were other ways
for the operator to perceive area coverage performance beyond the performance plot. Operators
could view a “Fog of War” overlay on the Map View to indicate where they had recently
searched (Section 3.2). Thus, the addition of an information time delay to the performance plot
was not a pure information time delay; operators had alternative, albeit less accurate methods to
estimate how well they were doing. Future research could run a similar experiment without the

“Fog of War” overlay.

Despite these challenges, modeling time delays in operator perception of performance is crucial
to the validity of the CHAS model. In an attempt at model simplification, the time delay in

perception of system performance was removed from the model. However, the model was no
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longer able to replicate the goal-seeking and oscillatory behavior that was observed in previous
experimental data (Sections 4.2.1 and 4.2.3). Sterman (2000, p. 663) wrote that “oscillation
requires...that there be time delays in the negative feedbacks regulating the state of a system.”
Previous research has shown that information time delays can have serious consequences for
human decision-making in dynamic systems (Brehmer, 1990; Sterman, 1989b). Thus, it is crucial
to capture delays in human perception of system performance when modeling human-automation
collaborative scheduling of multiple UVs. Future research should explore whether a different
system design change representative of real-world communications delays, such as delaying all
information displayed to the operator (including visual information on the Map Display) similar
to (Walker, et al., 2012), has a significant impact on operator behavior and performance in the
OPS-USERS test bed.

5.9 Summary

This chapter described a human subject experiment that was conducted to evaluate the ability of
the Collaborative Human-Automation Scheduling (CHAS) model to predict the impact of
changes in system design and operator training on human and system performance. Results from
the experiment led to a number of interesting findings. Eighty-three percent of operators were
able to improve performance as compared to the performance of the system without human
guidance, with an average improvement in performance of 12%. This aligns with previous
results using this testbed and adds additional support to the assumption that the human operator
can add value over the automation generated performance. Next, priming the initial trust level of
operators using quotes from previous users of the system was successful at adjusting initial trust
levels, with the strongest effect from positive priming. Test subjects who play computer and
video games frequently were found to have a higher propensity to over-trust automation, but also
experienced lower workload levels. By priming these gamers to lower their initial trust to a more
appropriate level, system performance was improved by 10% as compared to gamers who were
primed to have higher trust in the AS. The CHAS model accurately predicted the impact of this

change in operator training on system performance.

Two other system design changes to provide feedback on performance were implemented in the

experimental testbed. These two changes were implemented in the performance plot of the main
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display and consisted of a) displaying different reference system performance “expectation” lines
and b) implementing a time delay in the reporting of the actual system performance thus far in
the mission. However, results showed that they did not have the intended impact on operator
expectations and perceptions. Revised model predictions taking into account the actual changes
in operator expectations and perceptions due to these system design changes resulted in more

accurate predictions of system performance.

Both quantitative and qualitative data from this experiment validated a number of the
assumptions in the CHAS model and provided some interesting insights for the creators of
scheduling algorithms and the designers of collaborative interfaces. Operators adjusted their
expectations of performance over time, supporting the need for an expectations adjustment
feedback loop in the CHAS model. Results showed that as operators perceived that the AS was
performing below their expectations, they lost trust in the AS. Operator comments suggested that
rather than training operators to understand the way the automation makes decisions, automation
designers should develop methods that enable the automation to provide reasons for scheduling
decisions, while interface designers should find innovate methods to display this information to
operators. Finally, experimental data supported the overall dynamic hypothesis of the CHAS
model, showing that high performers anchored to the appropriate level of trust early in the
mission, understanding the imperfections in the automation and compensating to improve system

performance.

Having built confidence in the CHAS model’s assumptions and accuracy, Chapter 6 will explore
potential uses for the CHAS model by system designers. The CHAS model will be compared
with another simulation model of human supervisory control of multiple UVs. Finally, the
model’s generalizability to other real-time human-automation scheduling systems will be

discussed and the limitations of the model will be described.

200



6 Model Synthesis

Designers of UV systems currently have few tools to address some of the common challenges in
human-automation collaboration that were identified in Chapter 1, which included inappropriate
levels of operator trust, high operator workload, and a lack of goal alignment between the
operator and AS. To attempt to address these issues, researchers and designers test different
system components, training methods, and interaction modalities through costly human-in-the-

loop testing.

The purpose of the Collaborative Human-Automation Scheduling (CHAS) model is to aid
designers of future UV systems by simulating the impact of changes in system design and
operator training on human and system performance. The goal is to reduce the need for time-
consuming human-in-the-loop testing that is typically required to evaluate such changes. Also,
designers can utilize this model to explore a wider trade space of system changes than is possible

through prototyping or experimentation.

This chapter presents four example use cases of the CHAS model, to illustrate how it could aid
UV system designers. Then, the CHAS model’s accuracy and features are compared with a
previously developed Discrete Event Simulation (DES) model of human supervisory control of
multiple UVs. Finally, the generalizability of the model is discussed along with model

limitations.

6.1 Potential Uses for CHAS Model

Four example applications of the CHAS model are presented to illustrate how the model could
potentially be used by UV system designers. First, designers can use the model to further
investigate the impact of operator trust in the Automated Scheduler (AS) on system performance.
Second, the CHAS model can be used to explore a wider system design space that includes both
traditional system components as well as human characteristics. Third, the CHAS model can
support requirements generation for meeting system design specifications, such as maximum
workload levels. Finally, designers can evaluate the impact of automation characteristics, such as
the need for certain algorithms to have time to reach consensus, on human behavior and system

performance.
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6.1.1 Investigating the Impact of Trust on Performance

The experiment presented in Chapter 5 demonstrated that initial operator trust in the AS can have
a significant impact on system performance. Specifically, test subjects who play computer and
video games frequently were found to have a higher propensity to over-trust automation. By
priming these gamers to lower their initial trust to a more appropriate level, they intervened more
frequently to guide the suboptimal AS, improving system performance by 10% as compared to
gamers who were primed to have higher trust in the AS.

This raises the question: what is the optimal human trust level and intervention rate when
collaborating with a suboptimal algorithm? As described more extensively in Chapter 2, both
overtrust and undertrust in automation can be detrimental to system performance. Low human
trust in the AS can be caused by automation brittleness and operators with low trust may spend
an excessive amount of time replanning or adjusting the schedule. On the other hand, overtrust in
automation has been cited in a number of costly and deadly accidents in a variety of domains.
Overtrust in the AS can lead to the phenomenon of automation bias, where operators disregard or
do not search for contradictory information in light of an AS-generated solution which is

accepted as correct.

Given that the CHAS model has been accurately tuned to a system with a sufficient amount of
data, the model can be used to answer this question. Chapters 4 and 5 built confidence in the
assumptions, predictive accuracy, and robustness of the CHAS model applied to the OPS-
USERS system. Thus, to address this question, the initial trust level parameter was modulated to
explore the predicted impact on system performance. The baseline conditions for the model were
the parameter settings, described in section 4.2.1 and detailed in Appendix F, which replicated
the average behavior of all test subjects in a previous experiment using the OPS-USERS testbed.
Initial Human Trust is an input parameter to the CHAS model and is expressed as a percentage
between 0-100%, matching the definition of Perceived Automation Capability (Section 3.4.4).
The Initial Human Trust level was varied from 0 to 100% in 1% increments and the resulting
impact on system performance is shown in Figure 69. The CHAS model aligns with the previous
literature on trust, predicting that an operator with extremely low trust will have low
performance, while an operator with extremely high trust will also have low performance. There

appears to be an optimal level of initial trust around 25-50%. While 25-50% trust in the AS does
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not have any practical real-world meaning, an investigation of the intervention rate and workload

predictions from this same analysis is more revealing.
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Figure 69. Model predictions of the impact of varying initial trust on system performance.

The model predicts that Initial Human Trust influences the average rate of creating search tasks
and the peak utilization level of the operator as shown in Figure 70. Simulated operators with
low trust intervene frequently (Figure 70a), but also have high peak workload levels (Figure
70b). The CHAS model captures that fact that at such high workload levels, operator
interventions may be ineffective because the operator is cognitively overloaded. On the other
hand, simulated operators with high trust rarely intervene to guide the suboptimal automation
(Figure 70a). The model demonstrates the impact of this automation bias by predicting lower

system performance for these overtrusting operators.

; 6.5 100%
= 55 90%
Q
Q. - -
w 245 8 80%
- .y
[T -
[ = ‘5
F £135 70%
<3 =
g s A
g 225 T 60%
a
@ 15 50%
@
2 05 T T T T 1 40% T T T T 1
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Initial Human Trust in AS Initial Human Trust in AS
€Y (b)

Figure 70. Model predictions of the impact of varying initial trust on (a) intervention rate and (b) workload.
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Thus, the model predicts that the optimal level of trust, 25-50%, results in an average
intervention rate between 3.5-5.5 interventions per two minute interval. This aligns with previous
research on this testbed which indicated that prompting operators to intervene between every 30
and 45 seconds (~2.7-4 times per two minute interval) produced the best system performance
(Clare, Maere, et al., 2012; Cummings, Clare, et al., 2010). The model makes these predictions
because it assumes that operators with initial trust below 25% intervene too frequently, causing
their workload to go above 70% utilization. It has been shown in the previous literature that a
utilization level over 70% can lead to performance decrements (Cummings & Guerlain, 2007;
Nehme, 2009; Rouse, 1983; Schmidt, 1978).

These predictions can be useful for a system designer who is considering implementing a
prompting system, for example, to alert operators to intervene at a specific rate. Or for a designer
who is concerned about the consequences of peak workload and how to either select or train
potential operators. A major limitation of these predictions is that they are based on model
assumptions about the non-linear human relationships between operator trust and the rate of
interventions, the rate of interventions and human value-added to system performance, and the
impact of cognitive overload on human-value added to system performance. While data was
collected to estimate many of these relationships (Section 3.4), the next section explores the

impact of changing these relationships on model predictions.

6.1.2 Exploring the Wider Human-System Design Space

The CHAS model enables tradespace exploration within a much larger design space that includes
the human operator in addition to more typical system components included in such tradespace
analyses, such as the number of UVs or the level of automation of the UVs. For example, a
system designer may have different skills sets for human operators that can be selected for a
specific system. Recently, the U.S. Air Force started a new program that trains UAV operators
with no piloting experience (Clark, 2012). Some of these operators may be frequent gamers, who
may have faster visual attentional processing (Green & Bavelier, 2003) and faster encoding of
visual information into short-term memory (Wilms, et al., 2013). They may be used to multi-
tasking and likely have a high tolerance for workload before cognitive overload begins. While
previous research has shown that performance decrements can occur on average above 70%

utilization, it is certainly possible that some operators can sustain performance up to 80%, 90%,
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or even close to 100% utilization, while others begin to experience cognitive overload as low as
50% utilization. For the purposes of this section, the utilization level where cognitive overload

begins will be called the cognitive overload onset point.

Thus, the CHAS model can aid a system designer in choosing the most appropriate level of
intervention given the different cognitive overload onset points of various operators. The model
was run with three different table functions for the Effect of Cognitive Overload on Human
Value Added (Section 3.4.6, Figure 25). The baseline table function has a cognitive overload
onset point of 70%, but the relationship was modified to set the cognitive overload onset point to
50% and 90%, with the results shown in Figure 71. As shown, operators who can sustain
performance at utilization levels up to 90% can perhaps be prompted to intervene up to 6 times
per two minute interval to maximize system performance. In contrast, operators who begin to
experience cognitive overload onset at 50% utilization should only be prompted to intervene 4.5
times per two minute interval. Alternatively, operators with higher tolerances for workload can
be primed to have lower trust in the AS, causing them to intervene more frequently, without fear
of inducing cognitive overload. As was shown in Chapter 5, gamers who had negative a priori
priming to lower their trust in the AS chose to intervene more frequently, but did not experience

cognitive overload, enabling them to improve system performance.
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Figure 71. Intervention rate vs. system performance for different cognitive overload onset points.
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It is also notable that there is not a large performance improvement when moving from 4.5 to 6
search tasks per two minute interval. This indicates that the system may be robust to varying skill
levels and cognitive overload onset points, a key advantage of a goal-based architecture for real-

time human-automation collaborative scheduling.

Similar limitations apply to these predictions as in the last section. However, this form of
sensitivity analysis by modifying the non-linear relationships in the CHAS model can also help a

system designer fine tune the model to more accurately represent the system they are analyzing.

6.1.3 Supporting Trust Calibration for Workload Specifications

Designing systems involving human operators requires understanding not just average
performance, but also the range of expected performance. For example, while average workload
may remain below cognitive overload conditions, it may be crucial to evaluate what percentage
of operators are expected to experience significant cognitive workload at some point during a
mission. System designers may want to enforce boundary conditions such as designing a system

that 50% of typical operators will not exceed 70% utilization at any point during a mission.

The CHAS model can aid them in this process through Monte Carlo simulations. Using the same
techniques and parameter distributions described in Section 4.3.2 and Appendix J, Monte Carlo
simulations of the CHAS model were run with Initial Human Trust levels of 40%, 60%, 80%,
and 100%. The results are shown in Figure 72. In order to achieve the specification of 50% of
typical operators remaining below 70% utilization for the entire mission, the CHAS model
predicts that operators would need to calibrate their initial trust level between 80% (Figure 72c)
to 100% (Figure 72d) prior to starting the mission. This would require priming/training the
operator to have complete trust in the AS prior to the mission, which should lead them to
perform few interventions to guide the automation, keeping their workload at a low level.

As an alternative to calibrating trust prior to a mission, which is very difficult, system designers
could investigate other methods of encouraging the appropriate rate of intervention to satisfy
such workload specifications. In general, system designers could utilize similar Monte Carlo
simulations to evaluate the impact of different workload specifications or design interventions on
both average performance and the expected range of performance. In fact, maximizing the

minimum expected performance is a common technique in robust optimization (Bertsimas &
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Thiele, 2006), and thus the CHAS model could enable the designers of collaborative human-

automation systems to adopt this technique.

Once again, one of the key benefits of the CHAS model is that it simulates the operator
throughout a mission, showing the potential times when utilization may peak (early in the
mission up to ~400s, as shown in Figure 72), or generally how trust, intervention rate, and
performance change over time. This is in contrast to previous simulation models, which only

predicted average utilization over a mission, as will be explored further in Section 6.2.
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Figure 72. Monte Carlo simulations showing dynamic confidence intervals for operator utilization
throughout the mission, with different initial trust levels: (a) 40%. (b) 60%. (c) 80%. (d) 100%.

6.1.4 Evaluating the Impact of Automation Characteristics

The final example of an application for the CHAS model involves evaluating the impact of
automation characteristics, such as the need for certain algorithms to have time to reach
consensus, on human behavior and system performance. The CHAS model was developed to
model the OPS-USERS testbed (Section 3.2), a collaborative, multiple UV system which
leverages decentralized algorithms for vehicle routing and task allocation (Cummings, et al.,
2012). Previous research on the AS used in the OPS-USERS testbed has shown that the
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automated search process is suboptimal and can be improved either with a centralized global
search algorithm (Whitten, 2010) or with a collaborative human assisting the AS (Cummings, et
al., 2012), both of which extend the “effective planning horizon” of the search algorithm. The
goal-based architecture (Section 2.1) implemented in OPS-USERS was specifically designed
such that if there were more tasks to do than UVs capable of completing the tasks, tasks would
be left unassigned, representative of real world resource constraints. Given this architecture and
analysis of a previous OPS-USERS data set (Section 3.2.2), the CHAS model assumes that an
increasing rate of creating search tasks is beneficial to the performance of the system, but with
diminishing returns at higher rates. It is not assumed that extremely high rates of creating search
tasks has a negative impact on the automation itself, but the CHAS model does capture the
potential negative impact of operator cognitive overload. This non-linear logit relationship
between search tasks and system performance was quantified using data from a previous

experiment (Section 3.4.5), as shown by the baseline curve in Figure 73.

In contrast, other automation architectures which rely on decentralized swarming algorithms may
need time to stabilize before further operator interventions should be conducted (Walker, et al.,
2012). This “neglect benevolence” concept, where high rates of intervention may actually reduce
automation performance, can be represented notionally by the green dashed-line curve? in Figure
73. At low to moderate rates of intervention, the impact on performance is roughly the same as
the baseline. However, at high rates of intervention, as opposed to diminishing returns, there is a
decline in the human value added to system performance. While this curve is simply for
demonstration purposes, data on the neglect time necessary for algorithm stabilization could be
used to fit and validate this curve. This demonstration curve was implemented in the CHAS
model through a normal distribution curve, defined by four parameters, similar to the baseline
logit function (Section 3.4.5).

Z Generally, System Dynamics modelers avoid implementing U-shaped curves (Section 3.4.6). Thus, the most
appropriate way to model Neglect Benevolence would be through the addition of a Neglect Benevolence reinforcing
feedback loop, similar to the Cognitive Overload loop. This would consist of a monotonically decreasing function
showing the negative impact of high rates of intervention (which do not allow the decentralized algorithms to have
enough time to reach consensus). However, for simplicity, this curve was implemented using a U-shaped curve
purely for demonstration purposes.

208



2.5

1.5

0.5

Added (Cells/Second)

-0.5

Effect of Search Tasks on Human Value

-1.5
Search Task Rate (Tasks per Two Minute Interval)

4 Experimental Data  essss=Baseline  —— =Neglect Benevolence

Figure 73. Two potential relationships between Search Task Rate and Effect of Search Tasks on Human
Value Added. Empirical data shown with +1 Standard Error bars.

Similar to Section 6.1.1, Initial Human Trust was varied from 0 to 100% and the impact on
system performance is shown in Figure 74. Recall that the CHAS model assumes that a high
level of human trust should result in a low rate of intervention. Thus, at high levels of trust, the
performance of the baseline automation architecture as compared to the Neglect Benevolence
architecture is the same. However, for operators with lower levels of trust, below 50%, the
CHAS model predicts that there will be a sharp decrease in system performance. The CHAS
model predicts that these operators would intervene by creating 5.25 search tasks per two minute
interval. According to Neglect Benevolence curve in Figure 73, this rate of intervention would
actually generate negative Human Value Added, as the operator is negatively impacting the
performance of the automation. Data analysis in Section 5.7.1 supports this concept, showing
that some operators can in fact hurt system performance.

It should be noted that system performance does not continue to decrease below 30% Initial
Trust for the Neglect Benevolence curve in Figure 74. This is caused by the model’s
representation of the impact of cognitive overload. All operators who begin with initial trust
below 30% are predicted to have an average utilization level near or above 70%. The model
assumes that interventions will become less impactful on system performance once the operator
reaches cognitive overload, as high levels of stress have been shown to induce perceptual
narrowing (Kahneman, 1973). This assumption may hold when frequent operator interventions
cannot directly harm automation performance. However, for automation architectures that need

time to stabilize before further operator interventions should be conducted, this assumption does
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not hold. The model does not capture the fact that even ineffective interventions under conditions
of cognitive overload can continue to negatively impact decentralized algorithms. Performance
should continue to drop with lower levels of trust below 30% that cause higher rates of
intervention. Refining the implementation of the cognitive overload loop to capture this fact is

discussed further in the future work section of Chapter 7.
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Figure 74. Model predictions of the impact of varying initial trust on system performance given different
automation characteristics.

In summary, four example use cases of the CHAS model have been shown to illustrate how it
could aid UV system designers. Next, the CHAS model’s accuracy and features are compared
with a previously developed Discrete Event Simulation (DES) model of human supervisory

control of multiple UVs.

6.2 Comparison of SD and DES Model

One of the major goals of this thesis was to attempt to adapt System Dynamics modeling
techniques to model human-automation collaboration for scheduling multiple semi-autonomous
UVs. One of the research questions posed in Chapter 1 was “How does it compare to other
relevant models?” Thus, it is important to compare both the quantitative accuracy as well as the
qualitative features of the CHAS model to a previously developed computational model of

human supervisory control of multiple UVs.
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Nehme (2009) developed a queuing-based, multi-UV discrete event simulation (MUV-DES)
model of human supervisory control of multiple UVs. MUV-DES captures both UV variables,
such as the types of UVs and the level of autonomy of the vehicles, as well as operator variables,
such as attention allocation strategies and Situation Awareness (SA). Similar to the CHAS
model, MUV-DES aims to support the designers of future UV systems by simulating the impact
of alternate designs on vehicle, operator, and system performance. MUV-DES uses
DES/queuing-based constructs including events, arrival processes, service processes, and
queuing policies to model the human operator as a serial processor of tasks. The input variables
to MUV-DES are primarily the distributions of the arrival rate of various operator tasks and the
distributions of service times for these tasks. These distributions are drawn from previous

experimental data.

While there is an ongoing argument in the modeling community about the scenarios for which
SD is more appropriate than DES (i.e. (Ozgin & Barlas, 2009; Sweetser, 1999)) a key
contribution of this thesis is the evaluation of the adaptation of SD techniques to model human
supervisory control of UVs in comparison to DES techniques. To begin this comparison, both
MUV-DES and CHAS were used to simulate the high task load OPS-USERS experiment
(Section 4.2.2). In this experiment, operators were prompted to view automation-generated
schedules at prescribed intervals of either 30 or 45 seconds. Changing the rate of prompts to
view new schedules modulates the task load of the operator, such that 30s replan intervals should
induce higher workload than the 45s intervals. The average utilization of operators in the 30 and
45s replan prompting interval conditions is shown in Figure 75. The CHAS model was applied to
simulate this experiment (Section 4.2.2) while distributions of arrival rates and service times
were generated from experimental data for use in MUV-DES model. The utilization results from
the CHAS and MUV-DES simulations are compared to the experimental results in Figure 75.

The MUV-DES model was more accurate for the 30 second replan prompting interval condition
as compared to the CHAS model, which had an average utilization prediction that was higher
than the experimental data. For the 45 second replan prompting interval data, both models were
slightly off, although both predictions fell within the 95% confidence interval of the data. Both
models captured the decrease in utilization from the 30 to 45 second replan prompting interval

conditions.
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Figure 75. Average utilization for OPS-USERS high task load experiment, with CHAS and MUV-DES
predictions. 95% confidence intervals for the experimental data are shown.

While both models replicate average utilization values for the experimental data, a qualitative
comparison of the features of MUV-DES and the CHAS models is more revealing. There are
certainly some similarities, such as capturing the impact of delays in operator perception on SA
and modeling the impact of high operator workload on system performance. However, Nehme
wrote that the MUV-DES model lacked the “consideration of interaction between human-UV
system variables (i.e. the variables that form inputs to the model) [which] can result in lower
predictive accuracy” (Nehme, 2009, p. 152). In addition, Nehme wrote that “the research in this
thesis focused on situational awareness. However, there are other operator characteristics which

can significantly influence UV-team performance, such as operator trust” (Nehme, 2009, p. 153).

The CHAS model aimed to address these limitations of the MUV-DES model. There are three
major features of the CHAS model that build upon the MUV-DES model:

e The CHAS model captures the feedback interactions among perception, workload, trust,
decisions to intervene, and performance. Rather than treating the aforementioned variables as
separate factors, the CHAS model captures the interaction among these components.

e The CHAS model explicitly represents qualitative variables such as human trust and its
impact on the rate at which humans intervene into the operations of the team of UVs, and
thus on system performance. The dynamics of trust are captured by enabling trust to adjust

over time throughout the mission with some inertia.

212



e The CHAS model can provide predictions of continuous measures, a key attribute of all SD
models. While the MUV-DES model provided predictions of system performance based on
the occurrence of events (i.e. visually identifying targets), this form of performance

prediction is not as useful for a continuous performance metric such as area coverage.

Both the MUV-DES model and the CHAS model have specific domains for which they are most
appropriate. The MUV-DES model is best suited for using probabilistic distributions to
accurately model an operator who is a serial processor of discrete tasks, such as visually
identifying targets. The CHAS model is better suited for modeling continuous performance
feedback that is temporally dependent and capturing the impact of qualitative variables such as
trust. Based on this, the CHAS model enables diagnosticity, allowing a system designer to more

precisely characterize the reasons behind behavior and performance patterns.

6.3 Model Generalizability

In addition to evaluating the adaptation of SD modeling techniques, one of the aims of this
research was to create a model that was generalizable to a variety of scenarios where a human
operator collaborates with an automated scheduler for real-time scheduling of multiple vehicles
in a dynamic, uncertain environment. These scenarios could include searching a designated area,

finding and tracking moving targets, visiting designated locations for delivery or pickup, etc.

The CHAS model was developed through an inductive modeling process. GroRler and Milling
defined the inductive SD modeling process by stating that “the solution to a specific problem is
sought as well as a specific situation serves as the basis for the model. Later in the process,
insights gained in the project might be generalized...” (GroBler & Milling, 2007, p. 2). The
process began by analyzing a specific experimental data set in order to develop a dynamic
hypothesis, defined as a theory that explains the behavior of the system as an endogenous
consequence of the feedback structure of the holistic system (Sterman, 2000). The dynamic
hypothesis of human-automation collaborative scheduling which was developed was: if operators
can either a) anchor to the appropriate trust in the automation and expectations of performance
earlier in the mission and/or b) adjust their trust and expectations faster through better feedback

about the automation, then system performance should improve.
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This hypothesis, which has been validated throughout the development and testing of the CHAS
model on a variety of data sets, is in fact generalizable to wider variety of scheduling domains.
Regardless of whether an operator is collaborating with an AS for real-time multi-UV control,
Air Traffic Control (ATC) planning, rail operations scheduling, manufacturing plant operations,
or space satellite control, appropriate trust and better feedback about the automation should lead
to superior performance. Many of these domains require scheduling under significant
uncertainty, which means that human judgment and adaptability must be leveraged in order to
guide automation in a collaborative scheduling process. For example, Section 4.3.3 demonstrated
how the CHAS model could be generalized to a different domain, an Urban Search and Rescue

(USAR) mission with a large team of robots.

However, the CHAS model assumes that the operator is working in a goal-based, decentralized
control architecture, where each vehicle has onboard autonomy enabling it to compute its locally
best plan to accomplish the mission goals with shared information. Many of the other domains
mentioned above still rely on completely centralized scheduling methods, where information is
collected from each vehicle, an attempt is made to develop a globally optimal schedule, and then
the plan is sent out to all vehicles. This is a limitation of the generalizability of the CHAS model,
especially in the computation of workload, as the operator would need to dedicate far more
mental resources to scheduling in a centralized architecture. However, these domains will likely
move towards goal-based, decentralized control architectures in the future. This would enable
systems to respond to changes in the environment more quickly, scale to larger numbers of
vehicles while taking advantage of each vehicle’s added computational power, and maintain

performance despite communications failures (Alighanbari & How, 2006; Whitten, 2010).

To further demonstrate how the model could be generalized for use in these other scheduling
domains, the model terminology has been adjusted to more general terms, as shown in Figure 76.
Common among the many possible scenarios in which a human operator is collaborating in real-
time with an automated scheduler is the accomplishment of mission goals. Thus, the system
performance module has been generalized to focus on the completion of mission goals. These
mission goals could include a measure of how much area has been covered for a search mission,
a measure of how many victims have been found in a search and rescue mission, or how many

locations have been visited for a delivery mission.
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Figure 76. Generalized version of the CHAS model.



In order to model the system, it is still assumed that there are a total number of mission goals
(sometimes, but not always known to the human operator or automation). For an area coverage
and target finding mission, for example, there might be a defined limit to the total area to cover.
For a mission without a clearly defined boundary or end-point, the Total Mission Goals
parameter can be set to a near-infinite number to represent an ongoing mission. System
Performance is measured by the rate at which mission goals are accomplished, for example the
rate of finding new victims in a search and rescue operation. Finally, it is still true that once there
are few incomplete mission goals left to accomplish, such as finding the last victim in a search
and rescue scenario, the rate of accomplishing mission goals, System Performance, must

decrease.

The method by which humans add value depends on the specific system being modeled (see
Section 2.2.6 for further discussion). For example, naval aircraft carrier deck operators apply
heuristics to quickly change the schedules for launch catapults and a variety of aircraft while
minimizing disruptions (Ryan, 2011; Ryan et al., 2011). Operators can change the objective
function of an algorithm while planning for a multi-UAV mission (Malasky, et al., 2005) or
decide when to loosen constraints on the scheduling problem for a network of satellites (Howe,
et al., 2000). Also, operators can manually modify AS-generated solutions, guide the algorithm
to replan for only a small portion of the problem, or backtrack to previous solutions for a
multiple vehicle delivery scheduling problem (Scott, et al., 2002). Finally, the generalized CHAS
model still assumes that the rate of operator interventions to guide the suboptimal automation is

negatively non-linearly dependent on Human Trust level.

One of the major assumptions that still remains in the generalized model is that the automation
which the operator is guiding is suboptimal. Some scheduling domains may be well-defined
enough for automation to provide near-optimal solutions, and thus human intervention is
unnecessary. However, many scheduling problems, such as assigning multiple vehicles or
satellites to many possible tasks with capability, location, and timing constraints in uncertain,
dynamic environments are likely situations with unbounded indeterminacy (Russell & Norvig,
2003). The set of possible preconditions or effects either is unknown or is too large to be
enumerated completely. It is thus likely that the optimization problem is NP-hard, meaning that

the AS cannot find an optimal solution in polynomial time (Russell & Norvig, 2003). Also, the
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objective function for this optimization may be non-convex, meaning that certain algorithms may
become stuck in local minima. In many of these cases, where either the environment is stochastic
or the search space is large, it is unlikely that an optimal plan can be found or will remain
optimal throughout the mission. In addition, the definition of “optimal” may be difficult to
quantify and represent in a single, static objective function for a command and control situation,
where unanticipated events such as weather changes, vehicle failures, unexpected target
movements, and new mission objectives often occur. Thus, in the presence of unknown
variables, possibly inaccurate information, and changing environments, automated scheduling

algorithms can be “brittle” and can benefit from human guidance.

In summary, the CHAS model can be applied to a variety of system design problems across a

number of domains that involve real-time human-automation collaborative scheduling.

6.4 Model Limitations

Finally, one of the research questions posed in Chapter 1 was “What are the boundary conditions
of the model?” Based on the results of the multi-stage validation process, the predictive
validation experiment, and the potential applications of the CHAS model presented in this
Chapter, a number of limitations have been identified. These limitations can be categorized into
three categories: computational modeling assumptions and simplifications, the need for data to
tune the model, and model boundary conditions.

First, the CHAS model is a computational model of human behavior and decision-making. In
contrast to purely descriptive or conceptual models, computational models typically leverage
computer simulations to both promote deeper understanding of how human operators behave and
provide testable predictions about human behavior under different circumstances (Gao & Lee,
2006; Parasuraman, 2000). While there are numerous benefits to developing and using a
computational model, all such models make a number of difficult-to-test assumptions about the
complexities of human perception, cognition, emotions, and decision-making. Reducing the
judgment, adaptability, flexibility, and reasoning abilities of humans to a few formulae is
certainly a simplification and such models will never fully capture the variability from individual
to individual human. Given these limitations, however, the CHAS model can still be useful to a

system designer, as described earlier in this Chapter. While the model makes certain inferences

217



about perceptions, expectations, and trust, these variables are secondary to the more quantifiable
metrics, such as the frequency of interventions, the percent busy time during a mission, or overall
system performance. Capturing the interactions and relationships between measureable human
behavior and the underlying characteristics of human operators is an ongoing and important

endeavor, which always has room for improvement.

The second major limitation of the CHAS model is the need for sufficient data to validate and
tune the causal relationships throughout the model. While the three historical data sets and new
data set presented in this thesis were utilized in an attempt to validate as many model
assumptions as possible, further work is necessary to validate some of the causal relationships in
the model. For example, future work should gather additional data to characterize in more detail
the negative, non-linear relationship between PPG, Perceived Automation Capability, and
Human Trust. Also, it must be acknowledged that these four data sets all come from simulation-
based experiments with MIT students serving as test subjects. Thus, it remains an open question
how these results would generalize to the broader population and non-simulation environments
where actual, expensive UVs and potentially human lives are on the line. Finally, the need for
prior data to tune the model means that the CHAS model is limited to assisting designers who
aim to make evolutionary changes to existing systems. It would be desirable to assist designers
of revolutionary systems, those that are radically different from previous systems. However,
without some data about human interactions with the automation, such a model would not be

accurate enough to be useful.

It should be noted that the CHAS model was specifically tuned for the OPS-USERS testbed
(Figure 12), and utilizes area coverage as the primary performance metric. As explained in more
detail in Section 3.2, the area coverage metric provided beneficial features for developing and
testing a System Dynamics model, as it is a continuous measure of performance. However, in a
typical OPS-USERS mission, the goal is not simply to maximize area coverage, but to find and
track moving ground targets. Thus, performance metrics such as targets found are crucial to the
validity and usefulness of the CHAS model. Earlier versions of the CHAS model (Appendix A)
estimated the number of targets found based on an empirical, logarithmic relationship between
area covered and targets found. This relationship had an R? value of 0.60, meaning that area

coverage could explain 60% of the variance in targets found. While the relationship was
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removed because it did not directly contribute to a feedback loop in the final, parsimonious
CHAS model, it would be simple to add this relationship back to the model. Additionally, future
work should investigate the addition of new model constructs to more accurately calculate
targets found and other important performance metrics.

The third major limitation of the CHAS model relates to the boundary conditions of the model.
As described in Section 4.1.1, the “model boundary” (Sterman, 2000), or the scope of the CHAS
model was chosen to keep the initial model simple enough to attempt to validate given the
available experimental data. The CHAS model in its current form is limited to simulating a
single operator in moderate to high task load missions, given the real-time human-automation
collaborative scheduling system presented in Section 2.1. This definition includes a goal-based
architecture (Clare & Cummings, 2011), where the vehicles are semi-autonomous and with the
guidance of the AS, can conduct much of the mission on their own. The human operator only
guides the high-level goals of the vehicles, as opposed to guiding each individual vehicle. This
means that the human operator is monitoring the system and makes decisions to intervene
throughout the mission in order to adjust the allocation of resources at a high level. The CHAS
model would not be well-suited for modeling lower-level, manual control of robotic vehicles.
Also, the CHAS model assumes that the operator is physically removed from the environment
that the UVs are operating in and conducts supervisory control through a computer interface. In
its current form, the model is not suited for modeling manned-unmanned teaming or human-

robot personal interaction.

An additional boundary condition of the model is the assumption that the operator begins the
mission with sufficient Situation Awareness (SA) and has a general understanding of what he or
she is viewing on the interface, where the UVs are, which targets require tracking, etc. For the
experimental datasets used to validate the model, all operators first went through a tutorial
explaining the interface and a practice mission to become familiar with the system. Few order
effects were found for the actual experiment missions (Appendix T), thus it appears that this
assumption was an acceptable simplification. Future work could add to the model to capture the
initial transients in operator perceptions, behavior, and workload prior to achieving SA.
Similarly, there are often differences between novices and experts in their behavior and

interactions with the system. As shown in Chapter 5, operators who played video games
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frequently had higher initial trust in the AS and were able to click around the interface faster,
accomplishing the same tasks in less time and making faster decisions. While the model attempts
to capture these differences through a set of human and system parameters, such as Initial
Human Trust and Length of Time to Replan, future work could further study the differences

between novices and experts and expand the model constructs to better capture these differences.

Finally, the CHAS model could potentially be expanded to include many other features. For
example, consideration of teams of operators controlling teams of UVs through the addition of
multiple feedback interactions. This would include modeling team communication, the impact of
team structure on interaction with the automation, as well as interpersonal trust in addition to
simply trust in the automation. Also, the CHAS model could be extended to take into account the
impact of low task load, vigilance missions. All of the data used to build and test the CHAS
model came from medium to high task load missions. The CHAS model would need to be tested
on low task load experimental data and refined as necessary to take into account the negative
impact of vigilance on human performance. Finally, the implementation of multi-UV systems in
real-world settings will require an intensive investigation of how both operators and automation
respond to vehicle failures, communications delays, and safety policies. All of these attributes
could be added to a future iteration of the CHAS model.

6.5 Summary

This chapter presented four example use cases of the CHAS model, to illustrate how it could aid
UV system designers. First, it was shown that designers could use the model to further
investigate the impact of operator trust in the Automated Scheduler (AS) on system performance.
Second, the CHAS model was used to explore a wider system design space that includes both
traditional system components as well as human characteristics, such as cognitive overload onset
points. Third, it was shown that through Monte Carlo simulations, the CHAS model could
support robust system design to specifications such as maximum workload levels. Finally,
designers can evaluate the impact of different automation characteristics, such as the need for

certain algorithms to have time to reach consensus, on human behavior and system performance.

Then, the CHAS model’s accuracy and features were compared with a previously developed

Discrete Event Simulation (DES) model of human supervisory control of multiple UVs. It was
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shown that both models replicate average utilization values for the experimental data. The CHAS
model has three major features that build upon the MUV-DES model. First, the CHAS model
captures feedback interactions among components. Second, the CHAS model explicitly
represents qualitative variables such as human trust and its impact on the rate at which humans
intervene into the operations of the team of UVs, and thus on system performance. Third, the
CHAS model can provide predictions of continuous measures, a key attribute of all SD models.
Both the MUV-DES model and the CHAS model have specific domains for which they are most
appropriate. The MUV-DES model is best suited for using probabilistic distributions to
accurately model an operator who is a serial processor of discrete tasks, such as visually
identifying targets. The CHAS model is better suited for modeling continuous performance
feedback that is temporally dependent and capturing the impact of qualitative variables such as
trust. Based on this, the CHAS model has improved diagnosticity, enabling a system designer to

more precisely characterize the reasons behind behavior and performance patterns.

Finally, the generalizability of the model was discussed along with model limitations. The CHAS
model could be generalized to a variety of scenarios where a human operator is collaborating
with an automated scheduler in a goal-based architecture for real-time scheduling of multiple
vehicles in a dynamic, uncertain environment. These scenarios could include reconnaissance
missions, package delivery, multi-UV control, Air Traffic Control (ATC) planning, rail
operations scheduling, manufacturing plant operations, or space satellite control. Many of these
domains require scheduling under significant uncertainty, which means that human judgment and
adaptability must be leveraged in order to guide automation in a collaborative scheduling
process. Thus, appropriate trust and better feedback about the automation should lead to superior
performance. In addition, a number of limitations of the CHAS model have been identified
through the multi-stage validation process, the predictive validation experiment, and the potential
uses of the CHAS model presented in this Chapter. These limitations were categorized into three
categories: computational modeling assumptions and simplifications, the need for data to tune

the model, and model boundary conditions.
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7 Conclusions

Recent advances in autonomy have enabled a future vision of single operator control of multiple
heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain
environments will require the computational ability of optimization algorithms combined with
the judgment and adaptability of human supervisors. Automated Schedulers (AS), while faster
and more accurate than humans at complex computation, are notoriously “brittle” in that they
can only take into account those quantifiable variables, parameters, objectives, and constraints
identified in the design stages that were deemed to be critical. Previous experiments have shown
that when human operators collaborate with AS in real-time operations, inappropriate levels of
operator trust, high operator workload, and a lack of goal alignment between the operator and AS
can cause lower system performance and costly or deadly errors. Currently, designers trying to
address these issues test different system components, training methods, and interaction
modalities through costly human-in-the-loop testing. The Collaborative Human-Automation
Scheduling (CHAS) model was developed to aid a designer of future UV systems by simulating
the impact of changes in system design and operator training on human and system performance.
This chapter summarizes the important results in the CHAS model’s development and validation.
Also, this chapter evaluates how well the research objectives were met, suggests potential future

work, and presents the key contributions of this thesis.

7.1 Modeling Human-Automation Collaborative Scheduling

Real-time human-automation collaborative scheduling of multiple UVs was defined as a
potential future method for a single human operator to control multiple heterogeneous UVs (air,
land, sea) by guiding an Automated Scheduler (AS) in a collaborative process to create, modify,
and approve schedules for the team of UVs, which are then carried out by the semi-autonomous
UVs. The representative setting for this thesis was a reconnaissance mission to search for an
unknown number of mobile targets. The mission scenario was multi-objective, and included
finding as many targets as possible, tracking already-found targets, and neutralizing all hostile
targets. Scheduling was defined in this thesis as creating a temporal plan that assigns
tasks/targets among the team of heterogeneous UVs, determines when the tasks will be

completed, and takes into account capability, location, and timing constraints. In order to
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conduct this mission in uncertain, dynamic environments, a human operator would need to

collaborate with a decentralized AS through a goal-based architecture to guide the team of UVs.

Based on this definition, a review of previously developed relevant models of humans in
scheduling and control situations was conducted to evaluate their applicability to the
representative setting. The review identified crucial gaps with regards to real-time human-
automation collaborative scheduling of multiple UVs. Previous computational models did not
capture the feedback interactions among important aspects of human-automation collaboration,
the impact of AS characteristics on human behavior and system performance, and the impact of

qualitative variables such as trust in automated scheduling algorithms.

7.1.1 CHAS Model

Through a review of the relevant literature, six attributes that were important to consider when
modeling real-time human-automation collaborative scheduling were identified, providing a
theoretical basis for the model proposed in this thesis. These attributes were attention allocation
and situation awareness, cognitive workload, trust in automation, human learning, automation

characteristics, and human value-added through interventions.

A computational model was then developed that incorporated all of these attributes. Following
the System Dynamics (SD) modeling process, a previous experimental data set was analyzed,
which led to the creation of a dynamic hypothesis: if operators can either a) anchor to the
appropriate trust in the AS and expectations of performance earlier in the mission and/or b)
adjust their trust and expectations faster through better feedback about the AS, then system
performance should improve. Using this dynamic hypothesis, the data analysis, and prior
literature in human supervisory control, three major feedback loops were developed. These
feedback loops were implemented into a SD simulation model, the Collaborative Human-
Automation Scheduling (CHAS) model. The CHAS model utilizes SD constructs (stocks, flows,
causal loops, time delays, feedback interactions) to model real-time human-automation

collaborative scheduling of multiple UVs.
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7.1.1.1 Model Inputs and Outputs

The exogenous input parameters to the CHAS model, which a system designer could use to

explore the design space, consist of four categories:

System characteristics: Operators engaged in these dynamic, high workload environments
must both concentrate attention on the primary task (e.g., monitoring vehicle progress and
identifying targets) and also be prepared for various alerts, including incoming chat messages
or automation notifications about potential changes to the vehicle schedules. Thus, the first
category of input variables includes the Nonscheduling Task Load (NST) that an operator
must deal with, as compared to the scheduling activities that the operator chooses to conduct.
Also, the total amount of area to be searched during the reconnaissance mission is considered
a system characteristic.

Automation characteristics: The model explicitly represents the contribution of the
automation to the performance of the system. This provides the system designer with the
ability to quantitatively evaluate the impact of improved automation, such as a better search
algorithm, on the performance of the system and potentially on the operator’s trust level and
workload. Also, the model uses an exogenously defined, non-linear relationship to capture
the effect of operator interventions on the automation and thus on system performance. As
described in Chapter 6, this could potentially allow a system designer to investigate the
impact of evolutionary changes to a current system, such as using a different AS, on human
and system performance.

Human-automation interaction time lengths and frequencies: The length of time that an
intervention takes is modeled as an input parameter. Interventions by the human operator can
include replanning to request a new schedule from the AS or creating a search task to guide
the search pattern of the team of UVs. If the designer is able to reduce the time that these
interactions take or influence the frequency of these interventions, the impact on operator
workload and performance can be evaluated.

Human characteristics: The initial conditions of the human operator (i.e. initial trust level)
are modeled as input parameters. In addition, the CHAS model assumes that a number of
human characteristics and time constants (i.e. the time constant for adjusting trust) are static

and could be modeled as exogenous parameters. These parameters can capture a variety of
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human attributes, including the impact of previous experiences with automation and video
games. Finally, a set of non-linear relationships, such as the impact of cognitive workload on
human value added to system performance, were estimated from experimental data where
possible and are set by exogenous input parameters or table functions. Chapter 5
demonstrated the impact of changing the initial trust level of human operators on
performance. Also, as described in Chapter 6, by varying these non-linear relationships, the

impact of different cognitive overload onset points on performance can be modeled.

All of these inputs could also be studied as outputs. In addition, the CHAS model provides a
number of endogenously-calculated variables that a designer might be interested in capturing. A
designer could investigate system performance by analyzing the rate of area coverage or the total
area coverage by the end of the mission. Changes in human trust in the AS can be captured,
which can be beneficial for the designer to understand, as both undertrust (Clare, Macbeth, et al.,
2012) and overtrust (Parasuraman & Riley, 1997) in automation have been shown to hurt the
performance of a system. The rate at which a human operator decides to intervene can be
analyzed. This can be important for a system designer to know, for example, to analyze the
impact of communications delays between the operator and the vehicles in a decentralized
network of UVs (Southern, 2010). The effect of alternative system designs on the workload of
the operator can also be captured. Since operator workload is a key driver of human
performance, the ability to design a future UV system with an understanding of the impact on

operator workload is crucial.

7.1.1.2 Model Benefits

The CHAS model addresses three gaps with regards to real-time human-automation
collaborative scheduling of multiple UVs that were identified among the previously developed
models reviewed in Chapter 2. First, the CHAS model captures the feedback relationships among
perception, workload, trust, decision-making, and performance. Components are not static in the
CHAS model, but can change over time throughout the simulation of a mission due to feedback
interactions. Second, the CHAS model captures crucial details of the automation used in a real-
time human-automation scheduling system. These details include the contribution of the
automation to the performance of the system and the impact of operator interventions to guide

the automation on system performance. This provides a system designer with the ability to
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quantitatively evaluate the impact of different algorithms and interaction modalities on system
performance and operator trust and workload. Third, the model explicitly represents human trust
and its impact on the rate at which humans intervene into the operations of the team of UVs. The
dynamics of trust are captured by enabling trust to adjust over time throughout the mission with
some inertia. The alignment of human and AS goals influences both their expectations of how
well the system should perform and their perception of the capability of the AS, both of which
are captured in the model.

By addressing the three gaps above, the CHAS model built upon a previously developed Discrete
Event Simulation (DES) model of human supervisory control of multiple UVs (Nehme, 2009). In
Chapter 6, it was shown that both models can successfully replicate average utilization values for
experimental data. However, the DES model and the CHAS model have specific domains for
which they are most appropriate. The DES model is best suited for using probabilistic
distributions to accurately model an operator who is a serial processor of discrete tasks, such as
visually identifying targets. The CHAS model is better suited for modeling continuous
performance feedback that is temporally dependent and capturing the impact of qualitative
variables such as trust. Based on this, the CHAS model enables diagnosticity, allowing a system

designer to more precisely characterize the reasons behind behavior and performance patterns.

The CHAS model can aid a designer of future UV systems in predicting the impact of changes in
system design and operator training. This can reduce the need for costly and time-consuming
human-in-the-loop testing that is typically required to evaluate such changes. It can also allow
the designer to explore a wider trade space of system changes than is possible through
prototyping or experimentation. The CHAS model can be used to investigate the impact of trust
level on performance, explore the design space for operators with different levels of cognitive
overload onset, aid in designing systems to workload specifications, and investigate the impact
of neglect benevolence time for decentralized algorithms to stabilize on human and system

performance. These four potential applications are discussed further in Section 7.2.
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7.1.2 Model Confidence

Through a multi-stage validation process, the CHAS model was tested on three experimental
data sets to build confidence in the accuracy and robustness of the model under different
conditions. Additionally, a new human subject experiment was conducted to evaluate the ability
of the CHAS model to predict the impact of changes in system design and operator training on
human and system performance. The experiment had three independent variables: priming to
influence initial operator trust, a system design change to prime expectations of system
performance, and a time delay in feedback on system performance. The experiment gathered
near real-time data on operator perceptions of performance, expectations of how well the system
should be performing, and trust in the AS. All three of these variables were essential to the
CHAS model and collecting this data enabled the evaluation of model assumptions. While no
model can ever be truly validated, results from both the replication and predictive validation
testing have built confidence in the CHAS model’s accuracy and robustness, which are discussed

in more detail below.

7.1.2.1 Model Accuracy

First, the CHAS model was able to replicate the results of the real-time human-automation
collaborative scheduling experiment that provided data to inform construction of the model. The
model was able to capture the differences in system performance and rates of intervention
between high and low performers. The model was also able to accurately simulate changes in
output variables over time, including the decline in workload throughout the mission.
Additionally, the model replicated oscillations in intervention rate which were seen in the data
set, as operators sought the appropriate level of trust and the rate of intervention that would
produce performance that matched their expectations.

Second, a slightly modified version of the CHAS model was able to replicate the results of a
second experiment in which operators were subjected to a much higher task load. The model
replicated the impact of different replan prompting intervals accurately by showing an increase
in workload, a change in search task intervention rates, and no significant difference in
performance between the two groups. The model’s predictions of system performance were

accurate because the model simulated the negative impact of cognitive overload. This built
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confidence in the model’s method of capturing the impact of cognitive overload on human

decision-making and system performance.

Third, as an external validation, a tailored version of the CHAS model was also used to replicate
a data set from a multi-robot Urban Search and Rescue (USAR) experiment. The only major
change to model structure was a simplification of the workload calculation. The model
accurately captured the impact of an increased rate of interventions on system performance. The
long-term learning behavior of operators in the data set was accurately replicated, as operators
adjusted their expectations of performance and trust in the automation over time. Once again, the
model captured the diminishing returns of extremely high rates of interventions due to cognitive
overload. This external validation test demonstrated the ability to generalize the model for use

with other real-time human-automation collaborative scheduling systems.

Fourth, the predictive accuracy of the model was tested through a new human subject
experiment. Test subjects who play computer and video games frequently were found to have a
higher propensity to over-trust automation. By priming these gamers to lower their initial trust to
a more appropriate level, system performance was improved by 10% as compared to gamers who
were primed to have higher trust in the AS. The CHAS model provided accurate quantitative
predictions of the impact of priming operator trust on system performance. Also, system design
changes were implemented in the experiment to influence operator expectations and perceptions
of performance. When provided with accurate input data on operator responses to these system
design changes, the CHAS model made accurate predictions of the impact on system

performance.

Both quantitative and qualitative data from this experiment validated a number of the
assumptions in the CHAS model. Operators adjusted their expectations of performance over
time, supporting the need for an expectations adjustment feedback loop in the CHAS model.
Results showed that as operators perceived that the AS was performing below their expectations,
they lost trust in the AS. Finally, experimental data supported the overall dynamic hypothesis of
the CHAS model, showing that high performers anchored to the appropriate level of trust early in
the mission, understanding the imperfections in the automation and compensating to improve

system performance.
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7.1.2.1 Model Robustness

In addition to testing the model’s ability to accurately replicate experimental data, the validation

tests presented in Chapter 4 also evaluated the model’s robustness under a variety of conditions.

First, the adequacy of the model boundary was evaluated by comparing the endogenous and
exogenous variables in the model to determine whether the model was appropriate for the
purpose for which it was built and whether the model included all relevant structure. Also, tests
were conducted to show that the model structure captures important aspects of real-time human-
automation collaborative scheduling, such as the tension between the positive impact of operator
interventions and the effectiveness of those interventions once the operator is cognitively

overloaded.

Second, a set of extreme conditions tests were conducted and in all cases, the model behaved as
expected. Through the use of logit curves to characterize key causal relationships, the model was
robust to extreme conditions such as large differences between expected and perceived
performance. In addition, an integration error tested demonstrated that the model was robust to

changes in the time step and integration method used for simulation.

Third, a numerical sensitivity analysis was conducted to evaluate whether model outputs change
in important ways when there are errors in parameter estimates. The analysis demonstrated that
the model is not overly sensitive to errors in parameter values, but did indicate that accurately
estimating certain relationships, such as the impact of interventions on system performance, is
crucial to model accuracy. Through human subject experiments, sufficient data can be gathered

to estimate these relationships, enabling accurate model replications and predictions.

Finally, through Monte Carlo simulations, the CHAS model was able to characterize the impact
of human variability on system performance. The CHAS model is able to provide a system
designer with a prediction of not only the average value of system performance or workload, but
also the plausible range of performance or workload that could occur. This is beneficial to a
system designer who wants to evaluate the impact of system changes on the boundary conditions

of system design.
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7.1.3 Model Generalizability and Limitations

One of the aims of this research was to create a model that was generalizable to a variety of
scenarios where a human operator is collaborating with an automated scheduler for real-time
scheduling of multiple vehicles in a dynamic, uncertain environment. These scenarios could
include searching a designated area, finding and tracking moving targets, visiting designated
locations for delivery or pickup, etc. Regardless of whether an operator is collaborating with an
AS for real-time multi-UV control, Air Traffic Control (ATC) planning, rail operations
scheduling, manufacturing plant operations, or space satellite control, appropriate trust and better
feedback about the automation should lead to superior performance. Many of these domains
require scheduling under significant uncertainty, which means that human judgment and
adaptability should be leveraged in order to guide automation in a collaborative scheduling
process. While the method by which humans add value depends on the specific system being
modeled, it was shown in Chapter 6 that the CHAS model can be applied to a variety of system
design problems across a number of domains that involve real-time human-automation

collaborative scheduling.

In addition, a number of limitations of the CHAS model have been identified through the multi-
stage validation process. These limitations were categorized in Chapter 6 into three categories.
First, the CHAS model is a computational model of human behavior and decision-making and
thus makes a number of simplifications and assumptions about the complexities of human
perception, cognition, emotions, and decision-making. However, capturing the interactions and
relationships between measureable human behavior and the underlying characteristics of human
operators is an ongoing and important endeavor, which always has room for improvement.
Second, the CHAS model requires sufficient data to validate and tune the causal relationships
throughout the model. Thus, the model is limited to assisting designers who aim to make
evolutionary changes to existing systems. Third, the CHAS model in its current form is limited
to simulating single operator, moderate to high task load missions, within the definition of real-
time human-automation collaborative scheduling presented in Section 2.1. This definition
includes a goal-based architecture (Clare & Cummings, 2011), where the vehicles are semi-
autonomous and with the guidance of the AS, can conduct much of the mission on their own.

The human operator only guides the high-level goals of the vehicles, as opposed to guiding each
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individual vehicle. In addition, the CHAS model assumes that the operator is physically removed
from UV environment, thus there is no direct human-robot interaction. Finally, the CHAS model
does not consider vehicle failures, communications delays, and safety policies. These boundary
conditions are addressed further in Section 7.3 on future work.

7.2 Model Applications

Four example applications of the CHAS model were presented in Chapter 6, to illustrate how the
model could potentially be used by UV system designers. First, designers can use the CHAS
model to further investigate the impact of operator trust in the Automated Scheduler (AS) on
system performance. It was shown that the optimal level of trust in the AS and the optimal
intervention rate to maximize system performance could be estimated, given the tradeoff
between operator interventions to coach the suboptimal automation and the impact of operator

cognitive overload.

Second, the CHAS model can be used to explore a wider system design space that includes both
traditional system components as well as human characteristics, such as the cognitive overload
onset point. The model was able to demonstrate that operators with higher tolerances for
workload could be prompted to intervene more frequently to enhance system performance

without inducing cognitive overload.

Third, the CHAS model can support requirements generation for meeting system design
specifications, such as maximum workload levels. System designers could utilize the CHAS
model with Monte Carlo simulations to evaluate the impact of different workload specifications
or design interventions on both average performance and the expected range of performance.
Maximizing the minimum expected performance is a common technique in robust optimization
(Bertsimas & Thiele, 2006), and it was shown that this technique could potentially be adopted by

designers of collaborative human-automation systems.

Finally, designers can evaluate the impact of different automation characteristics on human
behavior and system performance. For example, the concept of “neglect benevolence” (Walker,
et al., 2012), where certain decentralized algorithms may need time to reach consensus, was

implemented in the CHAS model. The CHAS model replicated the fact that operators who
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intervene too frequently when collaborating with this type of automation may negatively impact

the performance of the automation.

7.3 Future Work

Three main areas of future work have been identified: model refinements, model extensions, and

recommendations for human-automation collaborative scheduling system designers and

researchers.

First, there are a number of ways that the existing CHAS model could be refined to provide more

accurate simulations of a variety of different systems. These include:

Modeling additional human characteristics endogenously. While the CHAS model assumed
that a number of human time constants (i.e. the time constant for adjusting trust) were static
and could be modeled as exogenous parameters, future work should analyze whether these
assumptions were valid or whether these characteristics should be modeled endogenously.
Also, additional human characteristics such as experience using the system could be
explicitly added to the model.

Adding additional causal relationships to the model. For example, qualitative data from the
new human subject experiment indicated that under high workload situations, operators tend
to rely on automation in order to reduce their workload. Whether or not this actually indicates
an increase in trust is debatable, as it may simply be an increase in reliance due to cognitive
overload. While the CHAS model captures the direct impact of high workload on the value
that humans can add to system performance, this interesting interaction between high
workload and reliance on automation is not currently captured in the model, but should be
explored in future work. Additionally, a more sophisticated model of operator decisions to
replan would increase model accuracy. This model should also include the fact that creating
new search tasks would not have a positive impact system performance if the operator does
not replan to assign these search tasks to the team of UVs. Finally, automation learning and
adaptation could be modeled in addition to human learning.

Implementing a non-linear representation of Nonscheduling Task Load (NST). This could
replicate the rise and fall of NST that was seen in experimental data. Alternatively, the
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CHAS model could be driven with external data that contains accurate NST information for
each mission.

Refining the implementation of the cognitive overload loop. As part of testing the
applicability of the CHAS model to systems with different automation characteristics, it was
observed that the model does not capture that fact that even ineffective interventions under
conditions of cognitive overload can continue to negatively impact decentralized algorithms.
Future work should address this limitation of the model.

Adding additional constructs to the model to capture the initial transients in operator
perceptions, behavior, and workload prior to achieving SA. Similarly, the model could be
expanded to better capture the differences between novices and experts when performing
real-time human-automation collaborative scheduling. Further model structure could also be
added to calculate different performance metrics, such as targets found, which are important

to real-time human-automation collaborative scheduling missions.

Second, there are a number of ways that the existing CHAS model could be extended to simulate

different types of human-automation collaborative scheduling situations. These include:
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Consideration of teams of operators controlling teams of UVs. This would include modeling
team communication, the impact of team structure on interaction with the automation, as well
as interpersonal trust in addition to simply trust in the automation.

Modeling the impact of low task load, vigilance missions. All of the data used to build and
test the CHAS model came from medium to high task load missions. The CHAS model
should be tested on low task load experimental data and refined as necessary to take into
account the negative impact of vigilance on human performance.

The CHAS model could potentially be expanded to include many other features, such as the
impact of vehicle failures, communications delays, and safety policies. All of these attributes
were excluded from the model boundary to keep the initial model simple. Also, all model
validation data came from simulation-based experiments that did not incorporate vehicle
failures, communications delays, or safety policies. However, the implementation of multi-
UV systems in real-world settings will require an intensive investigation of how both

operators and automation respond to all of these attributes.



Third, from the results of the new human subject experiment, design recommendations and

insights for the creators of scheduling algorithms and the designers of collaborative interfaces

were developed:

A number of the qualitative comments from the human subject experiment (Section 5.7.4)
indicated that operators lost trust in the automation because they did not always understand
the decisions that the automation was making. Thus, rather than training operators to
understand the way the automation makes decisions, automation designers should develop
methods that enable the automation to provide reasons for scheduling decisions. Also,
interface designers should find innovative methods to display this information to operators.

The CHAS model can assist researchers in quantitatively assessing the impact of different
automated scheduling algorithms. First, the model explicitly represents the contribution of
the automation to the performance of the system through the Automation Generated Search
Speed variable. This provides the system designer with the ability to quantitatively evaluate
the impact of improved automation, such as a faster search algorithm, on the performance of
the system, as well as potentially on the operator’s trust level, intervention rate, and
workload. Second, the model takes as an exogenous parameter the average Length of Time to
Replan. If an algorithm designer reduces the time that the AS takes to generate a new
schedule, the impact on operator workload and overall system performance can be evaluated.
Additionally, it might be shown quantitatively that additional improvements in schedule
generation speed beyond a certain point have diminishing returns for operator workload and
system performance, and thus some less complex, more predictable, yet potentially “slower”
algorithms may, in fact, be fast enough for real-time human-automation collaborative
scheduling. Such an approach could indicate whether more effort should be put into reducing
computation time versus improving the robustness of the algorithm. Third, the model
captures the effect of operator interventions on the human-automation collaboration and thus
on system performance. This effect is implemented in the model using an empirically
derived, non-linear relationship between the search task rate and human value added which is
specific to the AS used in the testbed. As demonstrated in Section 6.1.4, the CHAS model
could potentially allow a system designer to investigate the impact of a different AS on

human and system performance. The empirical relationship between operator interventions
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and the value that the human adds to system performance could be adjusted for a new AS
using, for example, data on the neglect time necessary for algorithm stabilization (Walker, et
al., 2012).

e Both quantitative and qualitative data from the experiment indicated that the reference line
on the performance plot may have been set too high for the test subjects who experienced
High Real Time Priming, leading to a sense that the goal was unachievable and lower ratings
of confidence. It also led to a shifting of responsibility, where some operators placed all
blame for poor system performance on the automation. In contrast, another group of test
subjects had a low reference line on the performance plot which provided positive
reinforcement to operators, increasing their confidence. Future work should further explore
the impact of expectation setting, including whether a more achievable reference
performance curve could cause the intended effect of pushing operators to intervene more
frequently without lowering operator confidence.

e Future work should further explore the impact of gaming on the behavior and performance of
UV operators. A more detailed and structured demographic questionnaire on gaming activity
could enable deeper analysis of the impact of different types of gaming, i.e. shooter vs. real-
time strategy games.

e It is crucial to accurately capture the impact of delays in human perception of system
performance when modeling human-automation collaborative scheduling of multiple UVs.
Thus, future research should further explore the impact of real-world communications delays,
such as delaying or restricting information displayed to the operator, on operator behavior,
trust, and system performance. Also, future research could utilize eye tracking devices for a

more precise estimate of human perception patterns and delays.

7.4 Contributions

The objective of this thesis was to develop and validate a computational model of real-time
human-automation collaborative scheduling of multiple UVs that could be used to predict the
impact of changes in system design and operator training on human and system performance. In
striving to achieve this objective, several contributions have been made to the domain of human-
automation collaboration research. These include theoretical, modeling, and experimental design

contributions, which are discussed below. Additionally, this thesis begins to fill an
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interdisciplinary research gap among the fields of human factors, autonomy, and complex system
modeling by adapting System Dynamics modeling techniques to model human-automation

collaboration for the control of multiple semi-autonomous UVs.

Three research questions were posed in Chapter 1 to address this objective. By answering the
first question, “What are the major attributes and interactions that a model of real-time human-

automation collaborative scheduling must capture?” this thesis resulted in the:

e Identification of six attributes that are important to consider when modeling real-time human-
automation collaborative scheduling, providing a theoretical basis for the model developed in
this thesis. The attributes are: attention allocation and situation awareness, cognitive
workload, trust in automation, human learning, automation characteristics, and human value-
added through interventions.

e Development and initial validation of a dynamic hypothesis of human-automation
collaborative scheduling: if operators can either a) anchor to the appropriate trust in the
automation and expectations of performance earlier in the mission and/or b) adjust their trust
and expectations faster through better feedback about the automation, then system

performance should improve.

By answering the second question, “Can the model be used to predict the impact of changes in
system design and operator training on human and system performance?” this thesis resulted in
the:

e Implementation and initial validation of a System Dynamics (SD) simulation model, the
Collaborative Human-Automation Scheduling (CHAS) model. The CHAS model utilizes SD
constructs (stocks, flows, causal loops, time delays, feedback interactions) to model real-time
human-automation collaborative scheduling of multiple UVs.

e Successful quantitative prediction of the impact of a priori priming of trust in automation on
test subjects who play computer and video games frequently. These gamers were found to
have a higher propensity to over-trust automation and lowering their initial trust level helped
them recognize the imperfections in the automation. This encouraged them to intervene more
frequently to coach the suboptimal automation, leading to an improvement in system

performance.
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Finally by answering the third set of questions, “What level of accuracy can be expected of this
model? How does it compare to other relevant models? What are the boundary conditions of the

model?” this thesis resulted in the:

e Quantification of the non-linear relationships, in a very specific instantiation, for human trust
in automation, the rate of human interventions to guide automation, and the impact of
intervention rate on automation and system performance. These relationships were quantified
using data from two different simulation testbeds, demonstrating the positive effects of initial
increases in intervention rate along with the diminishing returns of high rates of intervention.

e Novel use of a real-time survey to gather data on operator perceptions of performance,
expectations of how well the system should be performing, and trust in automation. This
survey was able to gather valuable data to evaluate model assumptions without substantially

increasing operator workload.

Real-time scheduling in uncertain environments is crucial to a number of domains, especially
UV operations. With the ever-increasing demand for UVs for both military and commercial
purposes, inverting the operator-to-vehicle ratio will become necessary. Real-time scheduling for
multiple UVs in uncertain environments will require the computational ability of optimization
algorithms combined with the judgment and adaptability of human supervisors. Despite the
potential advantages of human-automation collaboration, inappropriate levels of operator trust,
high operator workload, and a lack of goal alignment between the operator and automation can
cause lower system performance and costly or deadly errors. The CHAS model can support
designers of future UV systems working to address these challenges by simulating the impact of
changes in system design and operator training on human and system performance. This could
help designers save time and money in the design process, enable the exploration of a wider
trade space of system changes than is possible through prototyping or experimentation, and assist

in the real-world implementation of multi-vehicle unmanned systems.
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Appendix A: Model Reduction Process

The CHAS model underwent significant iteration, including a model reduction process. The
original CHAS model (Figure 77) had many more parameters, modules, and feedback loops than
the parsimonious model presented in Chapter 3. The goal of this reduction process was to
determine which modules were necessary through progressive “loop knockout” tests. Known as
“behavior anomaly” testing (Sterman, 2000), if a loop knockout test generates anomalous
behavior, it suggests the importance of the loop. The reduction process consisted simply of
evaluating whether there was an increase, decrease, or no change in the goodness of fit for seven
variables that could be compared to experimental data, using the data set described in Chapter
3.2. These variables were: area coverage, length of time to replan, utilization, the probability of
performing a what-if assignment, the probability of modifying the objective function of the AS,
search task rate, and replan rate. Three major modules that were removed following loop

knockout tests are presented below.

Short-Term Learning

The first module to be removed was the “Short-Term Learning” module. The original intention
of this module was to capture learning effects as operators became more comfortable using the
interface and evaluating schedules. Both the experimental data set presented in Chapter 3.2 and
the experiment presented in Chapter 5 had data showing that operators became faster at
replanning over time through the mission. Thus, the Short-Term Learning module was important
to the fit of the model with regards to length of time to replan. Once the module was removed,
however, there was no change in the fit of the model to the area coverage performance metric or
probability of a what-if assignment. The fit of the utilization and probability of modifying the
objective function fit decreased, while the search task rate and replan rate fit improved. Thus, it
was decided to remove the Short-Term Learning module, as removing it did not change the fit to

the primary performance metric and actually improved the fit to important intervention metrics.
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By removing the Short-Term Learning module, it reduced the number of exogenous parameters
in the model by 2 and the number of endogenous variables by 3. As opposed to modeling the
length of time to replan as an endogenous variable that changed over time based on a learning
curve, the CHAS model now captured the length of time to replan as a static exogenous
parameter. It should be noted that the Short-Term Learning module could always be re-instated

in the model if the system being modeled had a significant short-term learning curve.

Automation Capability

The second module to be removed was the “Automation Capability” module. This module
assumed that the operator perceived the capability of the automation separately from the
performance of the overall system, which is likely true, but a fine distinction. Written feedback
from test subjects (Clare, Cummings, How, et al., 2012) indicated that operators often perceived
the capability of the AS based on the tasks that the AS chose to assign in resource constrained
situations. For example, one operator wrote, “I did not always understand decisions made by the
automated scheduler...namely it would not assign tasks...while some vehicles were seemingly
idle.” Another operator wrote "The automated scheduler would assign a different UAV [to a

task] than I would have picked.”

Thus, this module attempted to capture the capability of the AS by relating the number of
unassigned tasks to AS capability. The AS often could not assign all available tasks due to UV
resource shortages, which is representative of real world constraints. In order to model the
number of unassigned tasks, the module first calculated the number of targets that had been
found based on an empirical relationship between area coverage and targets found. It also
maintained a stock of “Tasks to Do” based on the search task creation rate and the average time
to complete search tasks. Combining the number of targets to track with the Tasks to Do stock

enabled estimation of the number of unassigned tasks and perceived automation capability.

In the pursuit of a parsimonious model, it was desirable to evaluate the potential impact of
removing the Automation Capability module. However, in order to remove the Automation
Capability module, the Trust module also needed to be modified. Instead of calculating the
perception of AS capability from the number of unassigned tasks, it was modified to use the

Perceived Performance Gap (PPG), as described in Chapter 3. The model now assumes that the
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operator’s perception of the capability of the AS is directly related to the operator’s overall
perceptions and expectations of system performance, as opposed to a distinct perception of the

automation capability based on the number of unassigned tasks in the schedule.

In the test that removed the Automation Capability module and modified the Trust module, there
was no change in the fit of the model to the area coverage performance metric, utilization, search
task rate, or replan rate. The fit to the probability of modifying the objective function fit and
probability of a what-if assignment decreased. However, the cluster analysis presented in Section
3.2 found no significant differences in the probability of modifying the objective function or the
probability of a what-if assignment between high and low performers. While these may be
important measures of operator interaction with the AS, there was a lack of evidence that these
specific interventions influenced the primary performance metric in the experimental data, and
thus they were removed from the model. This specific change reduced the number of exogenous

parameters in the model by 4 and the number of endogenous variables by 4.

With the probability of modifying the objective function fit and probability of a what-if
assignment no longer in the model, it was decided to permanently remove the Automation
Capability module and modify the Trust module to simplify the model. By removing the
Automation Capability module, it reduced the number of exogenous parameters in the model by
5 and the number of endogenous variables by 7. However, the relationship between PPG and
Perceived Automation Capability in the Trust module required two new exogenous parameters to
define the non-linear logit relationship (Section 3.4.4).

Decision to Intervene

The final major change to the model involved removing the Decision to Intervene module and
simplifying the Intervention module. A key assumption in the original Decision to Intervene
module was that the operator’s desire to make a schedule change could be modeled as a
continuously increasing function based on his or her Perceived Performance Gap (PPG),
followed by a discrete decision to intervene based on a threshold. There is some precedence in
the SD literature for modeling a decision-making process in this manner, for organizational
change (Sastry, 1995) and in high-risk, time-critical environments such as emergency operating

rooms (Rudolph, et al., 2009). Thus, the Decision to Intervene module contained novel mixed
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continuous/discrete modeling elements. The model represented the operator’s Desire to Make a
Schedule Change as a stock that increased when there was a positive PPG, when the operator’s
expectation of performance was higher than the perceived present performance. Once the
operator’s desire to intervene was greater than a threshold, a discrete intervention event occurred,
causing the operator’s Desire to reset to zero. The interventions that were chosen for this model
were creating a search task and replanning. The model components shown in the original
Intervention module convert the discrete intervention events back into continuous variables

through the use of a pipeline delay function.

Once again, in the pursuit of a parsimonious model, it was desirable to evaluate the potential
impact of removing the Decision to Intervene module. In order to remove the Decision to
Intervene module and simplify the Intervention module, two major changes were made. First, the
model was modified to have Human Trust drive decisions to intervene in terms of search task
creation and replanning. This removed the need for a “Desire to Intervene” stock, which did not
have real-world meaning and would be impossible to measure. Second, the model calculated a
continuous “search task rate” and “replan rate” directly from Human Trust, without the use of

continuous to discrete to continuous conversions.

In the test that removed the Decision to Intervene module and simplified the Intervention
module, there was no change in the fit of the model to the area coverage performance metric or
to utilization. However, the fit to search task rate and replan rate both improved. Thus, this
change was made permanent. This reduced the number of exogenous parameters in the model by
12 and the number of endogenous variables by 11. However, the relationship between Human
Trust and Search Task Rate in the Intervention module required four new exogenous parameters

to define the non-linear logit relationship (Section 3.4.5).

Other additional minor changes to the model were made, but the major modules and feedback
loops remained the same from this point on to the final parsimonious model presented in Chapter
3.
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Appendix B: Time Series Data Analysis

This section presents additional data and statistics for time series data analysis discussed in
Section 3.2.2. Two separate clustering analyses were conducted, with the first analysis using
total area coverage by the end of the mission as the clustering metric, and the second analysis
using total number of targets found by the end of the mission. A hierarchical clustering was
conducted using Ward’s Method to determine the number of clusters. Afterwards, the k-means
algorithm was used to assign missions to clusters. Following clustering, two performance
metrics, one measure of workload, and five operator action measures were compared between
the high and low performance clusters for each performance metric. These measures were: area
coverage, targets found, utilization, length of time to replan, the probability of performing a
what-if assignment, the probability of modifying the objective function of the AS, search task
rate, and replan rate.

The first analysis used area coverage by the end of the mission as the clustering metric. Three
clusters were identified: low, medium, and high performance groups. Of the total 60 missions,
there were 11 missions in the High Performance cluster and 26 missions in the Low Performance
cluster. A comparison of the performance metrics between the high and low clusters is shown in
Figure 78. Workload and operator action metrics are shown in Figure 79. All 8 metrics were
evaluated with a repeated measures ANOVA and the results are summarized in Table 15. There
were significant differences between the performance clusters in terms of 3 of the operator action
metrics: length of time to replan, search task rate, and replan rate.
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Figure 78. Performance metrics for cluster analysis based on area coverage. (a) Area Coverage. (b) Targets
Found. Standard Error bars shown.
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Figure 79. Workload and operator action metrics for cluster analysis based on area coverage. (a) Utilization.

(b) Length of time to replan. (c) Probability of performing a what-if assignment. (d) Probability of modifying
the objective function of the AS. (e) Replan rate. (f) Search task rate. Standard Error bars shown.
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Table 15. Summary of repeated ANOVA results for cluster analysis based on area coverage.

Metric

Main Effect for
Performance Cluster
(2 levels: High and Low)

Main Effect for Time
(10 time intervals)

Interaction Effect
Between Time and
Performance Cluster

Area Coverage

F(1,35) = 145.801,

F(9,315) = 1652.294,

F(9.315) = 46.441,

p <0.001 p <0.001 p <0.001

Targets Found F(1,35) = 0.300, F(9,315) = 259.299, F(9,315) = 1.744,
p = 0.587 p <0.001 p =0.078

Utilization F(1,35) = 2.472, F(9,315) = 16.215, F(9,315) = 0.580,
p <0.125 p <0.001 p=0.814

Length of time to replan F(1,27) =5.910 F(9,243) = 0.402, F(9,243) = 0.625,
p =0.022 p =0.933 p=0.775

Probability of performing a F(1,27) = 3.799, F(9,243) = 1.060, F(9,243) = 1.020,

what-if assignment p = 0.062 p =0.393 p =0.425

Probability of modifying the F(1,27) = 0.096, F(9,243) = 2.272 F(9,243) = 0.837,

objective function of the AS p=0.759 p=0.018 p =0.583

Replan rate F(1,35) =10.485, F(9,315) = 2.705 F(9,315) = 1.520,
p =10.003 p = 0.005 p=0.140

Search task rate F(1,35) = 18.697 F(9,315) = 2.517 F(9,315) =1.299,
p <0.001 p =0.009 p=0.236

The second analysis used targets found by the end of the mission as the clustering metric. Three

clusters were identified: low, medium, and high performance groups. Of the total 60 missions,

there were 14 missions in the High Performance cluster and 13 missions in the Low Performance

cluster. A comparison of the performance metrics between the high and low clusters is shown in

Figure 80. Workload and operator action metrics are shown in Figure 81. All 8 metrics were

evaluated with a repeated measures ANOVA and the results are summarized in Table 16. There

were no significant differences found between the performance clusters in terms of the 5 operator

action metrics.

T
—— High Perform
11 - -~ LowPerform

075

0.5

Area Coverage

e
s

1

025 i/f,L

300

600 900 1200

Time (s)

@)

Targets Found

T
—— High Perform
11 - -~ LowPerform

075

05 T/I/

pFFi-EEE R

¥

025

300 600

Time (s)

(b)

900 1200

Figure 80. Performance metrics for cluster analysis based on targets found. (a) Area Coverage. (b) Targets
Found. Standard Error bars shown.
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Figure 81. Workload and operator action metrics for cluster analysis based on targets found. (a) Utilization.

(b) Length of time to replan. (c) Probability of performing a what-if assignment. (d) Probability of modifying
the objective function of the AS. (e) Replan rate. (f) Search task rate. Standard Error bars shown.
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Table 16. Summary of repeated ANOVA results for cluster analysis based on targets found.

Metric Main Effect for Main Effect for Time Interaction Effect
Performance Cluster (10 time intervals) Between Time and
(2 levels: High and Low) Performance Cluster
Area Coverage F(1,25) = 2.032, F(9,225) = 668.514, F(9,225) = 3.047
p=10.166 p <0.001 p =0.002
Targets Found F(1,25) = 62.561 F(9,225) = 281.269, F(9,225) = 5.327,
p <0.001 p <0.001 p <0.001
Utilization F(1,25) = 5.609 F(9,225) = 16.721, F(9,225) = 1.811,
p = 0.026 p <0.001 p =0.067
Length of time to replan F(1,20) = 0.388, F(9,180) = 0.942, F(9,180) = 1.248,
p=0.541 p =0.490 p = 0.268
Probability of performing a F(1,20) =0.072, F(9,180) = 1.023, F(9,180) = 1.206,
what-if assignment p=0.791 p =0.423 p =0.294
Probability of modifying the F(1,20) = 2.855, F(9,180) = 3.027 F(9,180) = 1.234,
objective function of the AS p = 0.107 p =0.002 p =0.277
Replan rate F(1,25) = 0.092, F(9,225) = 2.692, F(9,225) = 1.257,
p =0.764 p = 0.005 p =0.262
Search task rate F(1,25) = 0.460, F(9,225) = 1.290, F(9,225) = 0.898,
p = 0.504 p=0.243 p =0.528
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Appendix C: CHAS Model Equations and Parameters

System Performance Module

Human Value Added=

Effect of Cognitive Overload on Human Value Added*Effect of Search Tasks on Human Value Added

Units: Cells/Second

Area Coverage Rate=

Probability of a cell being unsearched*(Automation Generated Search Speed+Human Value Added)

Units: Cells/Second

Area Coverage Percentage=
Searched Cells/Total Number of Cells
Units: % Area Covered

Probability of a cell being unsearched=
Unsearched Cells/Total Number of Cells
Units: %

Automation Generated Search Speed=
2.9
Units: Cells/Second

Total Number of Cells=
4150
Units: Cells

Unsearched Cells=
INTEG (-Area Coverage Rate, Total Number of Cells)
Units: Cells

Searched Cells=
INTEG (Area Coverage Rate, 1)
Units: Cells

Perception of Performance Module

"Perceived Present Performance (PPP)"=
SMOOTH3(Area Coverage Rate , Time to Perceive Present Performance)
Units: Cells/Second

Time to Perceive Present Performance=
150
Units: Seconds

Initial EP=
9.8
Units: Cells/Second

"Expected Performance (EP)"=
INTEG (Change in EP, Initial EP)
Units: Cells/Second
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Change in EP=
("Perceived Present Performance (PPP)" - "Expected Performance (EP)")/Time Horizon for Expected
Performance

Units: Cells/(Second*Second)

Time Horizon for Expected Performance=
190
Units: Seconds

"Perceived Performance Gap (PPG)"=
("Expected Performance (EP)"-"Perceived Present Performance (PPP)")/"Expected Performance (EP)"
Units: % PPG

Trust Module

Perceived Automation Capability=
(1-1/(1+EXP(-4*PPG Max Slope*("Perceived Performance Gap (PPG)"-Base PPG))))
Units: % Automation Capability

Base PPG=
13
Units: % PPG

PPG Max Slope=
3
Units: Dimensionless

Change in Trust=
(Perceived Automation Capability-Human Trust)/Trust Change Time Constant
Units: % Trust/Second

Human Trust=
INTEG (Change in Trust, Initial Human Trust)
Units: % Trust
Min: 0%
Max: 100%

Initial Human Trust=
88
Units: % Trust

Trust Change Time Constant=
410
Units: Seconds

Intervention Module

Search Task Rate=
(Max Search Task Rate-Min Search Task Rate)*(1-1/(1+EXP(-4*Trust Max Slope*(Human Trust\
-Midpoint Trust))))+Min Search Task Rate
Units: Search Tasks Per Two Minute Interval
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Max Search Task Rate=
8
Units: Search Tasks Per Two Minute Interval

Min Search Task Rate=
1.9
Units: Search Tasks Per Two Minute Interval

Midpoint Trust=
25
Units: % Trust

Trust Max Slope=
2
Units: Search Tasks per Two Minute Interval/% Trust

Replan Rate=
Search Task Rate*Number of Replans per Search Task
Units: Replans per Two Minute Interval

Number of Replans per Search Task=
11
Units: Replans/Search Tasks

Effect of Search Tasks on Human Value Added=
(Max Human Value Added-Min Human Value Added)/(1+EXP(-4*Search Task Rate Max Slope*(\
Search Task Rate-Base Search Task Rate)))+Min Human Value Added
Units: Cells/Second

Max Human Value Added=
2
Units: Cells/Second

Min Human Value Added=
-1
Units: Cells/Second

Base Search Task Rate=
2.85
Units: Search Tasks Per Two Minute Interval

Search Task Rate Max Slope=
0.6
Units: Cells/(Second*Search Tasks per Two Minute Interval)

Workload Module

Human Workload=
MIN(1,((Search Task Rate*Search Task Creation Time Length+Replan Rate*Length of Time to Replan\
)/Sampling Interval)+"Nonscheduling Task load (NST)")
Units: % Utilization

Search Task Creation Time Length=

2.8
Units: Seconds/Search Task
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Length of Time to Replan=
6.5
Units: Seconds/Replan

"Nonscheduling Task load (NST)"=
MAX(0,MIN(Z,Initial NST+NST Rate*Time))
Units: % Ultilization

NST Rate=
-0.0002
Units: % Utilizaiton/Second

Initial NST=
30
Units: % Utilizaiton

Sampling Interval=
120
Units: Seconds

Effect of Cognitive Overload on Human Value Added=
Table for Cognitive Overload(Human Workload)

(see table function below)

Units: Dimensionless

Table for Cognitive Overload(

(0,1.05),(0.7,1),(0.75,0.9),(0.8,0.7),(0.85,0.4),(0.9,0.1),(0.95,0.05),(1,0))
Units: Dimensionless

Simulation Control Parameters

FINAL TIME =1200
Units: Seconds

INITIAL TIME =0
Units: Seconds

TIME STEP =0.125
Units: Seconds
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Appendix D: Nonscheduling Task load Analysis

This section presents additional figures and statistics for the analysis of Nonscheduling Task load
(NST) discussed in Section 3.4.6. There were three activities in the OPS-USERS testbed that
were considered to be nonscheduling activities. First, the operator had to visually identify or re-
designate targets. This was done through the pop-up window shown in Figure 82a. Second, the
operator had to approve weapons launches on hostile targets, through the pop-up window shown
in Figure 82b. These windows would appear over the Map Display (Figure 4) when the operator
was prompted to conduct these visual identification tasks. Third, the operator was responsible for
reading and answering chat messages, through the chat window shown in Figure 83. When a new

chat message arrived, the window blinked and an auditory alert played.
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Figure 82. Pop-up windows for (a) target identification/re-designation and (b) approving weapons launch.
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have heen found?
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Send

Figure 83. OPS-USERS chat window.
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The required utilization due to NST was calculated from aggregate experimental data (Section
3.2.2), using two-minute intervals over the twenty minute experiment. Descriptive statistics for

the required utilization due to NST in each interval are shown in Table 17.

Table 17. Descriptive statistics for required utilization due to Nonscheduling Task load (NST).

Interval 0-2 2-4 4-6 6-8 8-10 10-12 | 12-14 | 14-16 | 16-18 | 18-20
(min)

Mean 38.9% | 24.8% | 26.7% | 16.1% | 16.4% | 22.6% | 17.1% | 17.4% | 9.5% | 10.3%

Median | 35.7% | 23.2% | 24.6% | 12.7% | 15.3% | 20.1% | 14.9% | 16.5% | 8.6% | 9.3%

Min 20.0% | 59% | 83% | 42% | 42% | 42% | 43% | 42% | 0.0% | 0.0%

Max 73.6% | 46.1% | 66.4% | 61.7% | 49.0% | 59.4% | 40.3% | 45.7% | 30.5% | 28.4%

St.Dev | 12.7% | 9.0% | 11.7% | 10.8% | 8.7% | 11.8% | 8.0% | 8.6% | 6.6% | 7.3%

SE 1.6% 1.2% 1.5% 1.4% 1.1% 1.5% 1.0% 1.1% 0.9% 0.9%

A repeated measures ANOVA of the required utilization due to NST was conducted. There were
no between-subject variables and there were 10 levels of time (representing each interval). The
repeated measures ANOVA of the required utilization due to NST indicated a significant effect
for time, F(9,531) = 55.140, p < 0.001.

Finally, the same analysis was conducted for data sets from four different OPS-USERS
experiments, with aggregate results for all operators shown in Figure 84. The first experiment
had medium workload, 10-minute long missions (Cummings, Clare, et al., 2010), with NST data
shown in Figure 84a. Second, the analysis was conducted for a high task load experiment, with
10-minute long missions, but double the number of targets to identify, more chat messages, and
faster UVs (Section 4.2.2), with NST data shown in Figure 84b. The third experiment had 20-
minute long, medium workload missions, where operators could adjust the objective function of
the AS (Section 3.2), with NST data shown in Figure 84c. Finally, the NST analysis was
conducted for the experiment presented in Chapter 5 of this thesis to validate the CHAS model,
as shown in Figure 84d. The required utilization due to NST is shown in red and the self-
imposed utilization from scheduling activities (creating search tasks and replanning) is shown in

blue stripes.

In Figure 84a, c, and d, there appears to be a roughly linear decline in utilization due to NST over
time. It is notable, however, how different the required utilization due to NST is among the

various experiments, all of which use the same OPS-USERS testbed, but have different
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experimental conditions, numbers of targets, speeds of UVs, chat message questions, and Rules

of Engagement. Having an accurate representation of NST is thus important to the CHAS

model’s accuracy for calculating operator workload.
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Figure 84. Utilization due to self-imposed scheduling activities and required utilization due to Nonscheduling
Task load (NST) for different OPS-USERS experiments. (a) Medium workload replan prompting experiment.
(b) High task load experiment. (c) Dynamic objective function experiment. (d) CHAS validation experiment.

Standard error bars are shown.
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Appendix E: Model Validation Test Results

Sections 4.1.3 and 4.1.4 described two types of model structure tests: extreme conditions tests

and integration error tests. Results for these tests are presented below.

Extreme Conditions Tests

Extreme conditions tests “ask whether models behave appropriately when the inputs take on
extreme values” (Sterman, 2000, p. 869). Three extreme conditions tests were conducted, with a
focus on: area coverage rate, Perceived Performance Gap (PPG), and human workload. In each
test, the behavior of the model under extreme inputs was evaluated for the variable of interest, in

addition to an evaluation of the resulting operator interventions and system performance.

First, Section 4.1.3 presented the behavior of the model when the Automation Generated Search
Speed parameter was set to extremely low and high values. It was shown that the overall system
performance calculated by the model was appropriate even under these extreme conditions
(Figure 26).

For the second test, operator expectations of performance were initialized to an extremely high
level. Initial EP was set to 10x the baseline value in the simulation, causing the Perceived
Performance Gap (PPG) to go to extremely high levels (100% PPG) compared to the baseline
simulation (Figure 85a). However, the Perceived Automation Capability (Figure 85b) went no
lower than 0% as designed. Through the use of non-linear logit curves to define the relationships
between variables such as PPG and Perceived Automation Capability (Section 3.4.4), the model

is robust to extreme inputs.

Additionally, operator expectations of performance were initialized to an extremely low level.
Initial EP was set to 10% of the baseline value in the simulation, causing the Perceived
Performance Gap (PPG) to go to extremely negative levels compared to the baseline simulation
(Figure 85a). This indicates that the simulated operator perceived that the system was performing
far better than expected. However, the Perceived Automation Capability (Figure 85a) went no
higher than 100% as designed, once again due to the non-linear logit curve defining te
relationship between PPG and Perceived Automation Capability.
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Figure 85. Extreme conditions test: Initial EP set to 10x and 10% of baseline value. (a) PPG. (b) Perceived
automation capability. (c) Search task rate. (d) Workload. (e) Area coverage performance.
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It should be noted that in both the extreme high Initial EP and extreme low Initial EP tests, the
operator’s expectations adjusted to a more realistic level over time, as shown by the changes in
PPG in Figure 85a. Even though the simulated operator initially had a -500% PPG (the system
was far outperforming expectations), the simulated operator eventually adjusted its expectations
to the point at approximately 450 seconds into the mission where the operator began to have a

positive perceived performance gap (expectations higher than perceived performance).

Additionally, Figure 85 shows the behavior of the model in terms of operator interventions,
workload, and system performance under these extreme input conditions. When the operator has
extremely high expectations of performance, the expected reaction would be to intervene at a
high frequency, as shown in Figure 85c. This causes the operator’s workload to exceed 70%
(Figure 85d), negating many of the positive effects of these interventions due to cognitive
overload. Thus, the operator with extremely high expectations of performance does not perform
substantially better than the normal condition (Figure 85e) due to the impact of cognitive

overload.

When the operator has extremely low expectations of performance, the typical reaction would be
to intervene less frequently, as shown in Figure 85c, resulting in a slightly lower workload level
(Figure 85d). However, because the operator is not guiding the suboptimal automation frequently
enough, system performance suffers compared to the baseline condition (Figure 85e). Overall,
the model behaved as expected in terms of operator interventions, workload, and system
performance under these extreme input conditions. All model outputs remained within defined

limits and the model behavior was reasonable.

In the final test, the Number of Replans Per Search Task was set to 10x the baseline value in the
simulation. This caused the Replan Rate to go to extremely high levels compared to the baseline
simulation (Figure 86a). However, Human Workload (Figure 86b) went no higher than 100% as
designed. The mathematical cap discussed in Section 4.1.3 prevents utilization from exceeding
100%. This artificial means of limiting the workload parameter is necessary for maintaining the

validity of model outputs.
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Replans Per Two Minute Interval

AreaCoverage Percentage

Once again, the model demonstrated that under conditions of cognitive overload, system
performance would decline (Figure 86c¢). Additionally, the simulated operator detected that the
system was performing poorly and attempted to “work harder” to counteract the poor system
performance. This is reflected in the increasing search task rate for the extreme simulation

(Figure 86d). As described in more detail in Section 4.1.5, this cycle of attempting to make up
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Figure 86. Extreme conditions test: Number of Replans Per Search Task set to 10x baseline value.

(a) Replan rate. (b) Workload. (c) Area coverage performance. (d) Search task rate.

for poor performance by intervening more frequently simply leads to further cognitive overload.
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Thus, the model behaves appropriately under these extreme workload conditions, capturing the
impact of these extreme conditions on system performance and operator interventions. It should
be noted that setting the Number of Replans per Search Task to an extremely low value did not
have a substantial impact on model behavior. It simply lowered the workload of the operator
slightly, but did not impact performance or intervention behavior. In reality, performance should
have suffered because the operator was not replanning to assign the newly created search tasks to
the team of UVs. Chapter 7 describes the need for future work to develop a more sophisticated
model of replanning that also recognizes the impact of replanning on system performance.

Integration Error Test Results

The time step chosen for the CHAS model was 0.125 seconds and the integration method chosen
was Euler (the Vensim® simulation software package provides four integration method options:
Euler, fourth order Runge-Kutta, second order Runge-Kutta, and Difference). To evaluate
whether the model results were sensitive to changes in the time step, the model was run with a
time step of 0.0625 seconds, then with a time step of 0.25 seconds. In both cases the overall
results of the model simulations did not change, as shown in Figure 87. Similarly, the model was
run with a different integration method, fourth order Runge-Kutta integration with a fixed step
size, and there were no changes in the results (Figure 88). For all integration error tests, there
were differences in the results at the fifth decimal point, however, precision at that level is
unnecessary for a model of human decision-making. Thus, it appears that the model results are

robust to changes in the time step and integration method.
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Appendix F: Model Parameters for Original OPS-USERS

Experiment

Table 18. All parameter values that remained constant across the three groups: All Missions, Low
Performers, and High Performers.

Parameter Value Units

Automation Generated Search Speed 2.9 Cells/Second

Base PPG 13 % PPG

Base Search Task Rate 2.85 Search Tasks per Two Minute
Interval

Max Human Value Added 2 Cells/Second

Max Search Task Rate 8 Search Tasks per Two Minute
Interval

Midpoint Trust 25 % Trust

Min Human Value Added -1 Cells/Second

Min Search Task Rate 1.9 Search Tasks per Two Minute
Interval

Mission Time Length 1200 Seconds

PPG Max Slope 3 Dimensionless

Sampling Interval 120 Seconds

Search Task Creation Time Length 2.8 Seconds

Search Task Rate Max Slope 0.6 Cells/(Second*Search Tasks
per Two Minute Interval)

Total Number of Cells 4150 Cells

Trust Max Slope 2 Search Tasks per Two Minute
Interval/% Trust

Table 19. All parameter values that were allowed to vary across the three groups: All Missions, Low
Performers, and High Performers.

Parameter All Low High Units
Missions | Performers | Performers

Initial EP 9.8 4 6.25 Cells/Second

Initial Human Trust 88 91 26 % Trust

Initial NST 30 30 30 % Utilization

Length of Time to Replan 6.5 7.7 4.5 Seconds

NST Rate -0.0002 -0.0002 -0.0002 % Utilization/
Second

Number of Replans per Search Task | 1.1 1.2 0.9 Replans/
Search Tasks

Time Horizon for Expected 190 220 220 Seconds

Performance

Time to Perceive Present 150 220 210 Seconds

Performance (TPPP)

Trust Change Time Constant 410 445 60 Seconds
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Appendix G: Individual Mission Replication Testing

While Chapter 4 evaluated the ability of the model to replicate aggregate performance, workload,
and intervention actions for groups of operators, another key test of model accuracy is the ability
to replicate individual operator behavior and performance. Sterman (1989a) performed similar
tests by fitting a human decision-making model to individual data gathered using a computer-
based simulation of an economy where test subjects deciding how to invest capital to satisfy
customer demand. Similarly, Sterman (1989b) fit a different decision-making model to
individual trial data using a computer simulation of an industrial production and distribution

system, called the “Beer Distribution Game.”

The CHAS model was used to replicate the 60 individual missions in the OPS-USERS
experimental data set, described in Section 3.2. In order to fit the model to each mission, the
optimization feature in the Vensim® simulation software was utilized. The software uses a
modified Powell (1964) search to find a local minimum by searching within defined boundaries
for each parameter. The optimizer evaluated the fit of the model to experimental data for the
following variables: area coverage performance, human workload as measured by utilization,
search task rate, replan rate. These four output variables were the only endogenous variables in
the CHAS model for which experimental data was available for comparison. Data on the average

length of time to replan was used to set the exogenous parameter for this interaction time length.

In the optimization, nine input parameters were allowed to vary: Initial Human Trust (IT), Initial
Expected Performance (EP), Trust Change Time Constant (TC), Time to Perceive Present
Performance (TPPP), Time Horizon for Expected Performance (THEP), Number of Replans per
Search Task (NRST), Length of Time to Replan (LTR), Initial NST, and NST Rate. All other
exogenous parameters in the model were either a) known from the testbed and constant for all
operators, b) had negligible variation and were kept constant for all operators, or c) estimated
from aggregate data in order to define one of the non-linear relationships in the model and thus
were kept constant between model runs (see Section 4.1.5 for more details on the selection

criteria for these parameters).

The analysis of the results of this individual fitting process was based on the method that

Sterman (1989b) utilized to analyze the accuracy of the model fit. The results of the individual
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fitting process are presented below. Descriptive statistics of the nine estimated parameters for
each mission are shown in Table 20. The R® and Root Mean Square Error (RMSE) values of the
model fit to the experimental data for four output variables are shown in Table 21. The mean R?
for the primary performance metric of area coverage was 0.968. The minimum R? for area
coverage among all 60 missions was 0.838. The other outputs variables had mean R? values

ranging from 0.160 to 0.335, similar to the aggregate fits achieved in Chapter 4.

Table 20. Descriptive statistics of estimated parameters for model fit to 60 individual missions.

IT Initial Trust TPPP THEP | NRST LTR Initial NST

EP TC NST Rate
Mean 0.664 4.638 | 529.274 | 468.023 | 552.208 1.031 6.986 0.307 | -0.0002
Median 0.794 4.747 | 300.462 | 247.557 | 296.880 1.040 6.649 0.299 | -0.0002
Min 0.000 0.263 1.000 1.000 | 106.824 0.364 2.287 0.105 | -0.0004
Max 1.000 | 10.000 | 1200.000 | 1200.000 | 1200.000 1.890 | 14.773 0.533 | 0.0000
St. Dev 0.373 3.493 | 477.554 | 467.427 | 441.927 0.319 2.845 0.087 | 0.0001
SE 0.048 0.451 61.652 60.345 57.053 0.041 0.367 0.011 | 0.0000

Table 21. Descriptive statistics of goodness of fit measures for model fit to 60 individual missions.

Area Coverage Utilization Search Task Rate Replan Rate

R’ RMSE R’ RMSE R’ RMSE R’ RMSE
Mean 0.968 0.082 0.335 0.103 0.299 1.478 0.160 1.083
Median 0.978 0.074 0.354 0.103 0.303 1.386 0.128 1.031
Min 0.838 0.015 0.001 0.033 0.000 0.756 0.000 0.524
Max 0.997 0.238 0.886 0.168 0.896 2.455 0.563 1.847
St. Dev 0.031 0.047 0.243 0.031 0.279 0.438 0.170 0.317
SE 0.004 0.006 0.031 0.004 0.036 0.057 0.022 0.041

As a further test, the model simulation was run with the estimated parameters for each mission.
The final area coverage performance by the end of the mission calculated by the simulation was
compared to the experimental results for every mission. If the model were perfect, the simulated
and experimental performance results would be equal, and regressing the simulated scores on the
experimental scores would produce a slope of 1. The actual results for this regression showed a
slope of 0.753, with an R? value of 0.537. The slope of the relationship was significant (p <
0.001) and 2.9 standard errors from unity, indicating a moderate correspondence between the

actual and simulated final performance.
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Appendix H: Model Parameters for High Task Load

Experiment

Table 22. All parameter values that remained constant across the two sets of missions: 30 Second Replan
Prompting Interval and 45 Second Replan Prompting Interval.

Parameter Value | Units

Automation Generated Search Speed 30 Cells/Second

Base PPG 13 % PPG

Base Search Task Rate 6 Search Tasks per Two Minute
Interval

Max Human Value Added 2 Cells/Second

Max Search Task Rate 12 Search Tasks per Two Minute
Interval

Midpoint Trust 40 % Trust

Min Human Value Added -1 Cells/Second

Min Search Task Rate 0 Search Tasks per Two Minute
Interval

Mission Time Length 1200 Seconds

PPG Max Slope 15 Dimensionless

Sampling Interval 120 Seconds

Search Task Creation Time Length 2.8 Seconds

Search Task Rate Max Slope 0.25 Cells/(Second*Search Tasks per
Two Minute Interval)

Total Number of Cells 4150 Cells

Trust Max Slope 6 Search Tasks per Two Minute

Interval/% Trust

Table 23. All parameter values that were allowed to vary across the two sets of missions: 30 Second Replan

Prompting Interval and 45 Second Replan Prompting Interval.

Parameter 30 Second Replan 45 Second Replan Units
Prompting Interval Prompting Interval

Initial EP 33.6 31 Cells/Second

Initial Human Trust 36.5 36.5 % Trust

Initial NST 45 47 % Utilization

Length of Time to Replan 2.9 3.2 Seconds

NST Rate 0 -0.0001 % Utilization/
Second

Replan Rate 5.1 45 Replans/
Search Tasks

Time Horizon for Expected 235 60 Seconds

Performance

Time to Perceive Present 400 333 Seconds

Performance (TPPP)

Trust Change Time Constant 1550 2000 Seconds
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Appendix I: Model Parameters for USAR Experiment

Table 24. All parameter values that remained constant across the three groups: Low, Medium, and High
Teleoperation Groups.

Parameter Value Units
Automation Generated Search Speed 0.011 Victims/Second
Base Number of Teleoperations 200 Teleoperations
Base PPG 5 % PPG
Effect of Teleoperations on Workload 0.0013 % Utilization/
Teleoperations
Max Human Value Added 0.01 Victims/Second
Max Number of Teleoperations 800 Teleoperations
Midpoint Trust 45 % Trust
Min Human Value Added -0.0035 Victims/Second
Min Number of Teleoperations 0 Teleoperations
Mission Time Length 1500 Seconds
Number of Teleoperations Max Slope 0.00125 Victims/(Second
*Teleoperations)
PPG Max Slope 1.25 Dimensionless
Total Number of Victims 17 Victims
Trust Max Slope 15 Teleoperations/% Trust

Table 25. All parameter values that were allowed to vary across the three groups: Low, Medium, and High
Teleoperation Groups.

Parameter Low Medium High Units

TeleOp TeleOp TeleOp

Group Group Group
Initial EP 0.041 0.041 0.041 Victims/Second
Initial Human Trust 80 80 80 % Trust
Time Horizon for Expected 100 100 290 Seconds
Performance
Time to Perceive Present 30 30 240 Seconds
Performance (TPPP)
Trust Change Time Constant 10000 466 165 Seconds
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Appendix J: Monte Carlo Simulation Distributions

The fitted distributions for the four model variables that were selected for use in Monte Carlo

simulations are presented in Table 26. These were generated using the EasyFit® Software

package, with data from the OPS-USERS experiment described in Section 3.2. Graphical

representations of the experimental data and fitted distributions are shown in Figure 89.

Table 26. Fitted distributions for Monte Carlo simulation variables.

Model Variable

Lognormal Distribution Parameters

Base Search Task Rate

o =0.56146, u = 0.91572, min=0.6, max=6

Initial NST

o6 =0.31293, u =-0.99429, min=0.2, max=0.55

Length of Time to Replan

o =0.77659, p = 1.5937, min=0.5, max=25

Number of Replans per Search Task

o = 0.33953, p =0.29366, min=0.5, max=2.5
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Figure 89. Fitted distributions for (a) Base Search Task Rate. (b) Initial NST. (c) Length of Time to Replan.
(d) Number of Replans per Search Task.
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Appendix K: A Priori Priming Passages

Both passages were derived from written comments from a previous OPS-USERS experiment

(Clare, Cummings, How, et al., 2012):

Positive Priming:

To give you a better sense of how the Automated Scheduler works, here are some stats and quotes from
previous operators who used this system:

87% percent of participants indicated that the automated scheduler was fast enough for this dynamic,
time-pressured mission.

“Once you got the hang of it, it was easy to become quickly familiar with the system.”

“I liked that it gave instructions and helped us. It was easy to gain confidence.”

“The system is easy to use and intuitive to work with.”

“The automated scheduler was very fast.”

“There were times when I didn’t have to do anything except identify a new target. I usually just
accepted the plan created by the automated scheduler.

“Where can I get one of these? This is fun!”

Negative Priming:

To give you a better sense of how the Automated Scheduler works, here are some stats and quotes from
previous operators who used this system:

53% percent of participants indicated that they did not agree with the plans created by the automated
scheduler and wanted to be able to manually assign tasks.

“I did not always understand decisions made by the automated scheduler...namely it would not assign
tasks...while some vehicles were seemingly idle.”

“The automated scheduler makes some obviously poor decisions...I feel like a lot is hidden from me
in the decision making...I felt like I had to trick it into doing things.”

“I wish I could manually assign vehicles to certain spots. It seemed like the automated scheduler
wasn’t great.”

“I wish that I could have rearranged tasks in the schedule created by the automated scheduler.”

“The automated scheduler would assign a different UAV than I would have picked.”

“The actual [automated scheduler] assigning robots to tasks was a little screwy...Maybe an option to
let user designate certain missions to certain vehicles would take full advantage of the superior
reasoning capacity of humans.”
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Appendix L: Consent to Participate Form

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Modeling Human-Automation Collaborative Scheduling of Multiple UVs

Yo are asked to participate in a research study conducted by Professor Julie Shah Ph.D,
and Andrew Clare, SM., from the Aeronautics & Astronautics Department at the
Massachusetts Institute of Technology (M.LT.}. Results from this study will contribute
to a PhD. Thesis by Andrew Clare. You were selected as a possible participant in this
study because the expected population this research will influence is expected 1o contain
men and women between the ages of 18 and 50 with an interest in using computers. You
should read the informaticn below, and ssk questions about anything you do not
understand, before deciding whether or not to participate.

¢ PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose
whether o0 he in it or not. If vou choose to be in this study, yvou may subscquently
withdraw from it ar any time without penalty or consequences of any kind. The
investigator may withdraw vou from this research if circumstances arise which warrant
doing so,

« PURPOSE OF THE STUDY

The purpose of this study is to investigate the sifect of different svstem designs and
training on everall mission performance when a human operator collaborates with an
automated scheduler to contral multiple unmanned vehicles,

= PROCEDURES
If vou volunteer to participate in this study, we would ask you to do the following things:

o [l out a demographic survey and 8 Metacognitive Awareness  [nveniory
(Estimatcd |3 minuies)

s DParticipate in training to leam a video game-like software environment that will
have you control a team of simulated vomanned vehicles. (Estimated 20 minutes)

* Practice on the software environment will be performed until an adequate level of
performance is achieved, which will be determined by your defncnstration of
basic proficiency in operating the unmanned vehicles and repianning the mission.
{one 15 minute training session)

= Execute two 20 minute irials consisting of the same tasks as sbove (Estimated 50
minutes].

o Atend a debriefing to determine your subjective responses and opinion of the
software (Estimated 10 minutes),

Approved on 31-0CT-2002 - MIT IRB Protocel #; 1210005279 - Expires on: 30-00CT-2013
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*  After each trial yvou will be assigned a score for the rial based what percentage of
the total area of interest is searched, the number of targets you successfully find,
how long thev are successfully tracked thereatier, and how well you follow
instructions provided by the chat box.

= All testing will take place at MIT in room 35220,

s Total time: 2 hours, depending on skill level,

s POTENTIAL RISKS AND DISCOMFORTS
There are no anticipated physical or psvehelogical risks.
« POTENTIAL BENEFITS

While you will not directly benefit from this study, the results from this study will assist
in the design of interfaces for human/unmanned vehicle systems.

o PFAYMENT FOR PARTICIPATION

Wou will be paid 320 for vour participation in this study, which will be paid upon
completion of vour debrief, Should vou elect to withdraw during the study, vou will be
compensated for your time spent in the study. The subject with the best performance will
be given a reward of a $100 Amazon Gift Cervificate.

e CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified
with vou will remain confidential and will be disclosed only with your permission or as
required by law, You will be assigned a subject number which will be used on all

related documents to include databases, summaries of results, ete. Only one master list of
subject names and numbers will exist that will remain only in the custedy of Professor

Shah.
+ IDENTIFICATTION OF INVESTIGATORS

If vou have any guestions or concerns about the research, please leel free to contact the

Principal Investigator, Julie Shah, at (617) 324-4879, e-mail, amoldji@mit.edu, and her
address is 77 Massachusetts Avenue, Room 33-305, Cambridge. MA 02139, The
eraduate student investigator s Andrew Clare. He may be contacted at {617) 253-0993

or via email at aclareffmitedu.
+ EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result
of participating in this study, please contact the person in charge of the study as s00n as
possible,

Approved on 31-0CT-2012 - MIT IRE Proiocol it: 1210005279 - Expires on: 30-0CT-2003
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In the event you suffer such an injury, MLLT, may provide itself, or arrange for the
provision of, emergency transport or medical treatment, ineluding emergeney treatment
and follow-up care, as needed, or reimbursemeant for such medical services. MLT. does
not provide any other form of compensation for injury. In any case, neither the offer to
provide medical assistance, nor the actual provision of medical services shall be
considered an admission of fault or acceptance of liability. Cruestions regarding this
policy may be directed to MIT s Insurance Office, (617) 253-2823. Your insurance
carricr may be billed for the cost of emergency transport or medical treatment, if such
services are determined not to be directly related to your participation in this study,

s RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in
this research study, I you feel you have been treated unfairly, or you have questions
regarding vour rights as a research subject, you may contact the Chairman of the
Committes on the Use of Humans as Fxperimental Subjects, M.LT., Room E25-142B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787,

| SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE |

I understand the procedures described above, My questions have been answered to my
satisfaction, and | agree to participate in this study. I have been given a copy of this

form,

Mame of 5 uh_'rl:cl"m R

MName of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

f SIGNATURE OF INVESTIGATOR H

In my judgment the subject is voluntarily and knowingly giving informed consent and
possesses the legal capacity to give informed consent to participate in this rescarch study.

Stgnature of Investigator Date

Approved on 31-0CT-2012 - MIT IRB Protocol #: 1210005279 - Expires on: 30-OCT-2013
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Appendix M: Demographic Survey

Pre-experiment Survey

Page 1
1. Subject number___
2 Ager
3. Gender:
4. Qccupation:
if student, (circle onel: Undergrad Masters FhD
5. Military experience [circle one):  No Yes

If yes, which bramch:
Years of service:

&, Give an overall rating of your past two nights of sleep.

Poor Fuair Good Great
7. On average, how much TV do you watch daily?

Never watch TV Infrequently watch TV About 1 hour About 2 hours  More than 2 hours
& How often do you play computer games ?

Rarely ploy games  Play gomes once g month Weekly gomer A few times o week gomer  Daily gomer
Types of pames played:

3. Rate your comfort level with using computers.

Not comfortable Somewhat comfortable Comfortable Very Comfortable

10. What is your perception toward unmanned vehicles?

Intense dislike Diislike Newtral Like Really Like
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Metacognitive Awareness Inventory

Pre-experiment Survey
Page 2

Subject number:

Slroagly Meutral/ Strongly

Dbcggres Sometines Agres

Mever Alw
1.1 ask omyself periodically if | am meeting my poals 1 2 3 4 5
2.1 consider seweral alternatives to a2 problem before | answer. 1 2 3 4 5
3.1 try to use strategies that have worked in the past 1 2 3 4 5
4. 1 pace myself while learning in erder te have enongh time. 1 2 3 4 5
5. l understand my intellecinal strengths and wealmesses. 1 2 3 4 5
6. I think about what [ really need to learn before [ begin a task. 1 2 3 4 5
7. 1 kmow how well I did ence I finish a test 1 2 3 4 5
B. 1 set specific goals before [ begin atask 1 2 3 4 5
9. 1 slow down when [ encounter important infermation. 1 2 3 4 5
10. [ know what kind of information is most important to learm. 1 2 3 4 5
11. [ ask my=elf if [ have considered all options when solving a problem. 1 2 3 4 5
12 [ am good at organizing information. 1 2 3 4 5
13. I consciously foous miy attention on important information. 1 2 3 4 5
14. [ have a specific purpose for each strategy [ use 1 2 3 4 5
15. [ learn best when [ know something about the topic 1 2 3 4 5
16, [ know what the teacher expects me to learn. 1 2 3 4 5
17. [ am good at remembering information 1 2 3 4 5
18. [ use different learning strategies depending on the sitnation. 1 2 3 4 5
19. [ ask muy=elf if there was an easier way to do things after [ finish a task 1 2 3 4 5
20. [ have control over how well I learn. 1 2 3 4 5
21. | periodically review to help me understand important relationships. 1 2 3 4 5
22 [ ask my=elf questions about the material before [ begin. 1 2 3 4 5
23. [ think of several ways to solve a problem and choose the best one. 1 2 3 4 5
24. [ summarize what ['ve learned after I finish 1 2 3 4 5
25. [ ask others for help when | don’t understand something. 1 2 3 4 5
26, [ can motivate noyself to learn when I need to. 1 2 3 4 5
27. [ am aware of what sirategies [ use when [ study. 1 2 3 4 5
28. [ find myself analyzing the wsefulness of strategies while [ study. 1 2 3 4 5
29. [ use my intellectual strengths to compensate for my weaknesses. 1 2 3 4 5
30. [ focus on the meaning and significance of new information 1 2 3 4 5
31 [ create my own examples to make information more meaninzful, 1 2 3 4 5
32 [am a good judgze of how well [ understand something, 1 2 3 4 5
33. I find myself using helpful leaming strategies automatically. 1 2 3 4 5
34. | find myself pausing regularty to check my comprehension. 1 2 3 4 5
35 [ know when each stratesy [ use will be most effective. 1 2 3 4 5
36 [ ask myself how well | accomplish my poals onee ['m finished. 1 2 3 4 5
37. [ draw pictures or diagrams to help me understand while learning, 1 2 3 4 5
38 [ ask myself if [ have considered all options after | solve a problem. 1 2 3 4 5
39. [ try to translate new information inte my own words 1 2 3 4 5
4 [ change strategies when [ fail to understand. 1 2 3 4 5
4 1. [ use the organizational stucture of the text to help me leam. 1 2 3 4 5
42 [ read instructions carefully before | begin a task 1 2 3 4 5
43. [ ask nuyself if what I'm reading is related to what [ already know. 1 2 3 4 5
44. [ reevaluate my assumpitions when [ get confused. 1 2 3 4 5
45. [ organize my time to best acoomplish my goals. 1 2 3 4 5
4. [ learn more when [ am interested in the topic. 1 2 3 4 5
47. Ly to break studying down into smaller steps. 1 2 3 4 5
48. [ focus on overall meaning rather than specifics. 1 2 3 4 5
49, [ ask myself questions about how well | am doing while | am learning something new. 1 2 3 4 5
50, [ ask myself if [ learned as much as [ could have once | finish a task 1 2 3 4 5
51. [ stop and go back over new information that is not clear. 1 2 3 4 5
52 [ stop and reread when | get confused. 1 2 3 4 5
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Pre-experiment Survey
Page 3
1 Subject number:

2. How confident were you about your performance?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

3.  How much do you trust the Automated Scheduler on a scale from 1-77 (please circle one)

Mot at all Absolute Trust
1 2 3 4 5 & 7

4. How busy did you feel during the practice mission?

Extremely Busy Busy Not Busy Idle

5. Do you understand how to create search tasks?

No Somewhat Yes

6. Do you understand how to use the target identification window?

MNo Somewhat Yes

7. Do you understand how to approve a weapon launch on hostile targets?

No Somewhat Yes

& Do vyou understand how to use the Schedule Comparison Tool [SCT)?
No LZomewhat Yes
2. Do you understand that you must accept a plan in order for the unmanned vehicles to perform new ssarch, track and
destroy tasks?

No Somewhat Yes

10. Do you understand how to modify the objective function of the automated planner?

MNo Lomewhat Yes

Now is the time to ask the experiment administrator any guestions you howve obowt the mission or interfoce.
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Appendix N: Demographic Descriptive Statistics

Category N Min Max Mean | Std. Dev.
Age (years) 48 18 32 23.08 3.842
Rating of past 2 nights of 48 1 4 2.56 0.848
sleep (1-4)
Rating of TV watching (1- 48 1 5 2.27 1.106
5)
Rating of gaming 48 1 5 2.23 1.309
experience (1-5)
Rating of comfort level 48 2 4 3.54 0.617
with computers (1-4)
Rating of perception of 48 2 5 3.94 0.783
unmanned vehicles (1-5)
Occupation Undergraduate: 17 - - - -
(Student/Other) Masters: 14

Ph.D: 15

Non-student: 2
Military experience (Y/N) 5/43 - - - -
Gender (M/F) 35/13 - - - -
Metacognitive Awareness 48 141 229 189.71 18.96

Inventory (MAI) Score
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Appendix O: Experiment Legend

Legend
UxV Symbols
Weaponized Unmanned Aerial Vehicle (WUAWV) Unmanned Aerial Vehicles 2 & 3 (UAVs)
Primary Mission: Detect and Destroy *  Pnimary Mission; Search and Track
Hostiles

o & AR
=i ——

) Base — Refueling Location
Unmanned Surface Vehicle 1 [USY)

Primary Mission: Search and Track E'
1

Search Task Symbols

High Priority Medium Priority Low Priority

XD 4

Loiter Symbols

High Priority Medium Priority Low Priority
Target Symbols
Hostile Unknown Friendly

G
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Legend

Destroyed Hostile
Lost Target Target

Performance Plot: Area Coverage

based on how well
previous operators
have done on this

Red is the

Baseline
Performance

mission

Blue is your
Actual
Performance

PERFORMANCE

and sometimes there

is @ delay in receiving

this information \

Current Time

Red above Blue, you have work to do.

Blue above Red, you're getting ahead!

Your Mission Score

Overall Mission Score will be calculated by:

% Area Covered by Mission End

% Targets Found

% Time Targets Tracked

% Hostile Targets Destroyed

Chat Box Response Time and Accuracy



Appendix P: Rules of Engagement

The following Rules of Engagement were sent through the Chat Window to the operator at the

specified times:

START: Cover as much area as possible to find new targets. Tracking found targets is
low priority. Do not destroy any hostiles.

FIVE MINUTES: Conduct search tasks in SE and SW Quadrants. 2nd priority: Track
all targets previously found. Do not destroy any hostiles.

TEN MINUTES: Track all targets closely - it is important not to lose any targets! 2nd
priority: conserve fuel. 3rd priority: destroy hostile targets.

FIFTEEN MINUTES: All Hostile Targets are now high priority - destroy all hostiles!
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Appendix Q: Experiment PowerPoint Tutorials

Your Mission

Mavember 2012

OPS-USERS Tutorial
Onboand Planning System for Unmanned-Yehides Supgorting
Expeditionary

Andrew Clars U

Reconnassance and Surveillance

ncharslimi s | + 1817 35000 | Sitpc’ ik onit s

& You are a mission operator in charge of comemaniding multiple:
unmarned wehickes [ Lhovs)

+ Unmanned Aeral Vehices (LAWY

+ Unmanned Surface Viehicie [US)

« ‘Weaponized LAV (WLIANY

Your mission & to seamh the desgnated anea for targets

Once a target is found, it Is o be revisted as often a5 possible,
pericchcally tracking its movement

Once a hostile tanget emerges, it & o be destroyed by the WA
You will be assisted by an autcnomous planner in scheduling the
tashes of each Usv

| sEARCH, TRACK, DESTROY

El [ 347

Interface Displays

Interface Symbols

Zokeduls Comparieon Tool

E A 47

There are sevesal symbok o wil e 0 Foognbe when aoing 2 the
SR Opesrabod. Thes retad e slices will diriens Thisse: SyTniboR.

v Uy Symiboks: fepheseni the I vwehickss moing o the mag

* Soarch Task Symibois: markers on e mag thal repeesent 3 place: you wank
e Lids: i e for hidden tangess

* Lodier Symbok: points on the: map you would B the Weaponied Wehicie
o Pieer it witlie: waiting I CHESOy e Pt hostie: Eanget

* Target Symibok: Hostles, Unknown taegets, and Friendies: foond roaming
ithe map that must be acked

Ux¥ Symbois

LS (B s i are 19 charge of) e identiie with surmbers
T yroer Bars belirw el L indiame ol lewss. & Blach e incioiss Ly Saectery.

El A e

Search Task Symbol

High Pricrsty Nl Priceity

wmhﬁhrﬂtﬂ

Urirarirad Aaisl sshicis (L)

Pt WP = Heslicogter
Largs fusl mmares and rngs - Sralier Fasl ceenes ans rge
Largss rmcher Fsctprion (or crmuier Pald of v - Fecrguls kogring

Frrary Fiaior: Dt and Cestoy HorSe

Urnrarrad davial wkicis 1 (LA
= ey BT
= Sroiier Feal ceeres ans Qe

Urirararased Sufuce 'wabicds £ [LEN)

Shi

i fusl caares and rwnge In e v
Badhm meder B for orwiee Peld of sew]  [ms - Fefuaing Locazon
Frrary Flaior: Sesrch ans Tack

E [ sia7

5 the cpea iy, you an add ~Search” @sks i e mission. & “Seech™ Dol
desionaivs 2 locyton for 3 L' boogo o in sesech of 2 @get.

= Coks shies pricely kel

= The leiber o the right of T Search ek dantfes B (e & name)

= The muimbeer ket of the Search el symbol indicates which sl & assigned
I prforTn e Search sk (nole than Search ek F i unassigred)

For escaimpde, the Seaech task on the: left b called Seaech ok D, UsY 3 6
kNt I T 0 the lonatioe o the: map whene: this Sessch Task Syminod
sk, LAV 3 will search the 2een Jt the: Sesech Task kacation and during the
traredt i Ehee kocation.

Bi47
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Lolter Symbols

The loiter symiol far the WUAV sesembies 3 $10p sign.
The color Incicates proety level

High Pricrity Medium Priortty Low Priority
The Weaponized UAV does not attend 10 seanch tasks.  The auto-planaer will not
scheduie the WUAY to sack targets. The mission of the WUAV is 10 detect and
mt‘-w The WUAY can be sent to loles, of hover ower 3

waling tn destroy hostle trgets. The WUAV can only

particuldr position,
search the map (NCraasing e Covenge 26 ) on the rowe 1o 3 loher @sk. The
WUAY Wil not search on s own e the other Usvs.

] I— e

Target Symbol Priority Levels

X!

Fags desgrete target pririty bever,

-umhnudh:pwmmm

-mwamnmm.&um

* Priedies do fot Parve & (riorty level flag bectuse they do not need 1 be Sacked
* Ory Nesitfe ard wriromwn Srpets e Tecked

=3
ﬂ I cincmernawsxiraoviis e

Getting Started

Clck the green start button In the center of the interface 10 beghn the scenario.

(3] L —— e

294

Target Symbols

Hoctlie Unknown
The Ldvs st pariodically track, or reviit, $ie Sages St fave been fousd. e
Wesoortand LAY (st destroy hostile targets.

* Red darnonds are Mosfe Wpess

* Yelw Govers are wsaown tagets

* Sue rectaghe e ey and e (ot Sede!
-m&mnz:mng

» The chamcter on te ket redcaes Ly s e to P Laget

For exargie, sxoedng to Se lesie seba On P left, S Wesporiaed UAY S saigred

B deirvy fentie tpet D Ned, the certer syrabol Shows st U 2 will rack Unscrown
Tayst B LAV 2 will bive o the locaton whire B Laget syrelud B (eaitined on e

i and Segi Rlowtey e Beget. 1 LAY 2 s anctfier bk o perform or s go

ach b0 bese 0 refudd, the sigortive wil calculen o eitivated ew posison o Be Lirget
Based o e BapetS st kowe soston end Friendly tanet G, on Be g, &
ot Serches are et B b

- /47

B0 o vt s o8 i

Overview of the Map Display

Parts of the Map Display

Sedecting a UxV
Creating or Edeing a Search Task

Selecting an Existing Search Task
Chat Message Bax

* ldentfying 2 Target

El —— v

Map Display
The Map Display Shows Symsbols for UsVs, Search Tasks, Loker Taeis, & Tgess




Selecting a Ux¥

T seiet o L, ket click DR LS symibol.

LtaVs Thmeline i highlighted in ight pelow

ﬂ [ 13447

Selecting an existing Search Task

Task eutlineed inthe tirseline of e Uy 2scioned o perfonm the sk
(I assignet)

Creating or Editing a Search Task

cliciing o locirtion o Be M View Sriiga g B Seer Tk Creaon Windon.
xﬂ.htﬂ.ﬂumﬂh-ﬂlmhhm

[ L= L s miriom b

k] cruate or it WUAY

Snarch rmssst | L itar Task, Seiect Be
WL Lo et

Prinrity

Yo fraey ot b iomirie & Search Tk o arwSree. S e Ol Mesiage Boe wil
iyt you B fenite A St Bk e will spectfy B wirdlow of oarorhaity.

b ™ Tarh Expures or barrees (Sfpkdinl & pellw memmps in B Cweright oomer
of T= Map Ve sl oy ou of el ssnt

M Laj47

Chat Box: Intelligence Information

Command Canter sends inteligence: information Sicuch chat b IPstant
messaging. The Chat B ghes Imporeant informaion, dictating grioity el for
1= oo

Do Carder: Hnrila e 10 e [=
rarst s el B T i Y e
LSSES

) i Hi vy L

it fs

it i 1 gt Tk

sk Sl inpul =
ey — S

| Sand bumes

mlmmnm wll Dt 3 bt 2] e e petine: of thie bos
will bilnk. You o2 ok in the Chst Box i shop & From Slinking.

‘S MesEages P Chokl In the reesage input window. Trpe
pind (THSEDE Then Bt ety oF il the sehd Balbon. One- w08t 3 NEwes o
TRAMCES Ane prefersd.

ﬂ [T 1547

Chat Bow: Rules of Engagement

Command Cenber 350 sends changes (o the Rules of Engagement Hrough cat
ot Instant messaging. These Ruks of Engagement (ROE) cictabe what & most
gt for 1] adjust Shategy for managing
sooee depends on Fow wasl pou esecute the mission describad by e ROE. 17y
b mamw ROE, T obd ROE no ionger apply.

1Bl - Comerard ek ARG AT =)
ELCALENCHT Camrrh tae GE ord FIE
mowcnes Eviwgen. Dwsim al

el i b i e sy

=
ﬂ | [ —————— 1riar

ﬂ T 1047

Mini Map

The: wppes righi-hand comer of the Map DEpisy s equipperd with 2 Minl Hap that
shows e symiboks for Uv's, sessrch and loker tasks, and mngets o they appeas on
he g, Sinoe yied CN 2006 N on the big mag the raller whissl o your
mnse, Itk coresnient 0 lanoe 38 the Minl Map fr 3 quick viess of the svel
phture. The Hinl Map fessiuse can be o on or off Dy checing o

hez: Hird Map boe sl B M Map Rmef, The Chode: i e this s bt 1 yous.

Mini Map

ﬂ [ a7
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Identifying a Target

In real sedech & tack missions, when 2 Rget & found, an opeator mest iaently

what type of teget has been found. To simulate this, 3 Theget ID Window pogs uwp

aupmatically when a target s found. The Chat Box will provide Infonmation on
ID Window 2eound the screen.

jeved. You
inthaly target may  Oick and dag over  Click the appropriane  Oick 3 priority lowed
nothe visée.  the an to pan for  Laeget designation button.
the target symbdol. button.
Unizown mus frst De marked " but the be
Sarviuch 2 e Imation S B B GO

M ccinarn avivacens 19/47

Left Schirg & Brget wil cse the fllowng:
» TarygetS olsteces sppesr (Lrpes i be lnd o weter velacdies)
» Targets dhedy posion s shown by bhe crveerie probatity sogs Of e Srpes has ot
Seen) vaitnd in & while)
» Tyt gigited n e tnalre of e LV exigred £ perfoen 1t (f ssgred)

Rt g & Target wil chase B Dllowey:
» Taryet 1D Window appeirs S adng deiy\aton o priosty e

=
|} - -
M e v 2147

Target Concentric Rings for possible new location

Blue Concontric wmuu?mmmwm
n 2 while that %000 become ko6t Qirgets. blue concentric fings shown
next o the tasget symidol represent the Jgothm's best estimate of whese the
eget might be. The darker the biue, the more probable the position of e
Reget. A UV should be assigned a seanch task nedr this location ASAP, lest the
eget become kst

Target 1D Video—Click on the Picture to Watch

Changing Target Designation Video

Right cicing 2 targes allows you 1o oot the eget desigration and priorly iewel,
The viden below shows how 1o 20 wiknown Beget o 3 hostle,
prioekty teget. The Lrknowen target beon right cicked to bving W e

ID Window. Click the picture to watch.

: -
)2 |, [t 2247

Lost Targets

Targets become kst I Usvs do not track them for 3 whiie.
Lost apoedr dimmec The probabiity distrbution (Dhue concentric fings)
Wpesy the target becomes kst and cims.

Compare the gray color of iost Target L on the left 1 Target A on the right thae &
not lost.

Lost Target Target (not kost)

Tt can take anywhere from 30 1 120 seconds for 3 target to become b,

Alcst target I8 removed from the map and he schedule queus afer the LikVs have

P ecssarniacesrs movn /47
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reviaed the Jost ioon five times wih no success of finding the el Wrget

¥ BB riimonsimssons 47




on the Map View.

Opesator approval must be ghen before the WUAV & aliowed o destioy a hostie
teget. The Misie Launch Aoproval Window pogs L automatically when the
WUAV sights the hostile target for destruction and a second UV has the hostlie in
s Sights 25 the “eyes 0™ Pan the soeen for 3 direct view of e target, and
cick the red Approve Launch bution o destroy the Leget.

1R un

Illll |

The tmaline gves tempoml information for each UV for the nest five
minutes into the future Indcated In Me format hours minuIes: seconcs.

Green bars n the Timaline Indcane dmamhuhnm

times parforming 2 @k, The ketter of the sk (whether Saaech Task or Target
Track Task) appears In the blue bae. Each UV & Bmied to two task
assignments 2t 3 tme. White 0ace Indicates die time or tine tavelng
Detwecn ks, The timelng maeches fonwaed as Sme Qoes on.

1

The timedine wil 0 Gray-out,
Indcating the end of he mission. The
MSS0N nd UME 00CWS At the border
from white to gray.

13|  —— e

b L paa—— 2047

Coverage Area Overlay

Performance Plot: Area Coverage

The Frobabiity Dstribution Overlyy can be tumed onjof by
selecting the Coverage Area checkbox
The choice 10 Lse this featuee & yous., [

map shows the aeea that has not been
visod recently. These blue doeas ane
more Biely 1 have hidden becacse
2 UsV has not visRed there

mmrmmmmmd.-m have
achieved throughout the mission In row
mmmdmmm&mumm The
piot marches foeward 25 time goes on, much Bke the Timelne.

|, [ s e 27/47

Red & the
Peformance o Red above
based on how wed E e Yo e
previous cpenoes | = work to do.
hawe dore on Tk g
mission Blue adove
Bue & your & Red, you're
_ Actusl w Fetting sheadt
and sometines these
& 2 Gelay In receMng \
this Information e
o | Pma— an47

Replan

Overview of the Schedule Comparison Tool

The Repian button In the iower left comer of the Map Display will turn graen when
2 new pian & valiadie from the auo-plannes. You will hedr the audiory “Replan™
2ot Click to bear the "Replan” Alert s

2 better schedule for

The autn-plannes prompes you 10 seplan when it has generated
the LidVs. New tanpets 3nd @sks n the soenaed often result n 3 new proposed

* Schedule Companson Yool Dsplay
« Configural Display
Number on Bars Feature
Mult-Color Bars Feature
Assgning Unassgned Tasks
Nothing to Assgn

* Seecting 3 Task
Swiching Schedules

scheduie.
E] | W— =4

E]  — /47
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Schedule Comparison Tool {SCT)

ey click e neplam buiton, T Schedle Comparison Tool [50T) appasars,
shsaing 2 perfionmance: crenview for theee schedules: the: Current Selwdils
(gray], the Werking Schedule (biue), and the Propossd Schedule ghen by the
SUAATRNLION (geeeen.

Al wsieg M ST, o s Ok
Arompt N ol D ImsETeErE e
wrircry scinadue pou dreated and B
refurn i e Fas Chplig.

Tou Mty awincs Cancall o] retam D B
M Dby, Hoseelr, Bt Srogeisess] Sl
will Fiok b dirreTuricated B He Lidds.

I M ST nderfecs, M Hriacliee B bt grivspes] ok B indicate St B B e Smaine
for e “Clrere Schwerbuie”™ amd will iy Srmssporsd B S Corrent Sfede ”

i iy bl the: Peplan bufton and oo b the SCT amyime pou e, S
without beding prompied.

El P e 2y

Chamnging the Priorities of the Automated Flanner

Area Covensge: When seecind the wehides will
DO it mch 2o o porslbie

In order i opbmaly
senech Hhe ans.
Search/Laer Tasks: When sefemed, e
veticies will perform seaech Gsks that you hawe
oyt 2o S WILES will Qo to specifle ol
poinis that you Favee created.
Tanget Trecking: Whan soiated, Te vehices
will trck aiready found toaegets. Hosdkes et be
raecord By 3 Unlv' Dot iy i B RSO,

Hestile Destruction: Onoe 3 hostic @ige §

Tound and trached by one of e reguiar Lhivs, B &
edigibie oo b descierassd by the WILEY - e WLIEW
el ody b ebed by Jesiroy theee hocties If this

Pan Priceiy & sedeched

Fsial Efficianhoy: Wi soiecmnd, e vehicles will
trareed moee: Showly, bl s bim B o sive by
and not Faree o refond 25 offen.

El [T— 33447

Changing the Friorities of the Automated Flanner

Change: the prioiites of the Aulomated Panmes wsing e “Flan Prioibes”
chiecidowess bn e SCT. 'Wow e choose: aimy oom bination of e opbons by didng
n e charkhosrs

Aler changieg By of B Pricriies,
wiad rramd bk R sboul ke B
Sulvil B PrioriSes B B
Fiomarie) Parmer and fo vicw B
Teow welrma

17 yins click Aeempt o et the ST, pour P Priosities will be saved and po wil

e proampied o seplan when & plin b cemsbed tht & “tetier,” e on the
Fricefties: thai were sovesd. 1T won ciick Canosd, the: Priorities rever o the: last

sy Prinrities feom wfeen pou accepinda plan in the SCT.

El [ 3247

Assigning Unassigned Tasks

ehon & bk by dragging | into conier “Accion™ aeea . Doing ths queries the
SUACNMOUS plannes o see i the Gl can be assigned of nok. I the (el dees
mivt o Bac oul, the: auin-planner was able o schedule the s, Somedimes a
different sk pops out beraese: the aubo-planres Fad o uorarssign that @sk in
odey for the sk you dagged In o become assigned. This will be seflecied in
e hieraichical b i Seks: pop i and ool of thes srhedile gy "ASEr™ 6.

Alteq wi Ankh assigning ks and working with the schadile, Oick Accept io
nipheTeany. e plan {oF Canosl ), 20 you will retuen i the Map Dispiay.

El [T 3447

Aszigning Unassigned Tasks Video—Click the Picture to Watch

Configural Display

El - 3147

The: top rectangle reps
e “rap™ aeen Fat will be
st for 3 Qv Sohaciade.
The: Mo codnefial The 2eea, the
bemer co e K s,

The: battom hieranchical ladder shiwes
e pesoeniages of Righ,
i, and e priority

kS 10 e oomphees for High—s-

o Qv Soheride Medium—
T muoee onice-flied 2 pectangie

ks, the moe of that Lo

LEck-prinnity & Desing done.
Whettl & sl B asslgnesd the ooeresponding Wooes ruing fertange changes

sine in 2 “ghosting effect” 0 vEuwmly Show wiat R canged. The
darler color |5 the new siee, whensas the Iighiry crverlay &5 the old sine.

El [ /a7
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Ghosting Effect Video—FPay Attention to the Working Schedule

H Mir . 37447

Configural Display “Numbers on Bars” Feature

The ratio of ks assgned tn ol ks wil show wp on the bars of the
hierarchical bdder wihen the optional “Numbers on Baes™ chackbox & selectod.
For cample, on the high priodty bag 3 of the S high priority @asks aee xssigned,

Configural Display

Area Covered

Comparing these three schadules In the above esampie: both “Wosking™ and
Froposed” covey more A than “Current.”

Tashs Completed

Comparing these three schadules: both “wWorking™ and “Moposed”™ pesform mose
high pricrity @asks than “Cument” "Working™ has Just boen atesed (a5 shown by
the ghosting change In the: high peiority Rader rung).

"Working” staets ot identical to “Froposad”™ and changes as you work on L

3| Mir - 3047

Configural Display “Multi-Color Bars"” Feature

¥l Mir . 39147

The pricelty level of the bars on e hieraechicy Dader will how op for quick
priorky recogrition when the "Mt Color Baes™ checkbox & selectad. It & your
choice 10 use this feature.

El Mif - soi47

Nothing to Assign

Selected Task shown on configural display

Sometims e ALOONYer S Bie 0 2N & s, The “Unassioned Tass® aes wil
De ety Ok Accept 10 proces] Wil De COMpatiely Ssgned sCnedule Qonenstad Dy
e 320 payer 1f pou 00 MOt Nose ACCegt, e Lbavs will not recesve the

ERLRCRtON Of LS they fotxd 1O pertiern BL, you SO Dawe the Opon b Cande,

Mir . ayar

= :

The red X appearing in the “map™ of each Configual Display corresponds 10 the
ocation of the cumenty selected task.

El Mir e
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Switching Schedules

Tasks viewad I the uwassignes central 2002 Aways COMespond to the “Working”™
Schedue. T view wrassigned sks for either the "Cunent” or “Propoced”
Scheduies, cicking on ech schedude's configual cisplay will st the “Working™
Scheduie 2 eqavaient 1o the seiected schaduie (ensEing the old “Working™).

Survey Window

El O i /e

Ewtyy 2 minutes throughout al of your missions, this window will 2ppeas In the
bottom left comer of the Map Dispy. Tt asks you to @te theae questions:
. mmmmmnmummmnmm

» (1Extremely Powr, &0K 7=Exvemely Well)
. mmmhun Scheduler Tt you work with In the 5CT
. Trust, &=Newval 7=Ateckate Trust)

Cick on one 2dio button for each question, then dick “Scbanit™ and the window
will diappeac

Main parts of your role

Your lon Score

1dentifying Tarpets

Overall Mission Score will be calculated by
* Fercentage of Area Covered by Mission End
* Number of Targets Found
« Percentage of Targets Tracked (ratio of the time each targes &5
tracked to the total time after the targes 15 found)
* Number of Hostfe Targess Destroyed
« Chat Box Resporse Time and Accuracy

This overal score is different from the performance plot, which shows
anly the percentage of area covered.

Flayer weeh the high score wins a $100 Amazon Gft Card!

| seAnCH, TRACK, DESTROY |

E B i prp

Interactive Practice

You will now have approx. 15 minutes to practice
with the actual interface and to ask questions.

After practicing, you will perform as the multi-UxV
operator for 2 twenty-minute missions.

HAVE FUN!

E] T ge—— e
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Appendix R: Proficiency Tests

Question 21 of 5

November 2012

OPS-USERS
Satisfactory Proficiency Test

E Andrew Clare 1Mix

aciwredrlats | «LEI7250 0WA | g haabomt asy

10u racahve the Ddbwing CHar Massape:
Risk the Wanponbad LAV o kkter b She NW guadiant ¥ the WLV & ke ™

How would you create & loiter task?

-

El I

Question 22 of 5

Question 23 of 5

You rocohve the lbwdng CHat Massape.
Vinkaown Gvgets &1 the NE guadant are Friandlies. ™

What should your mext action in the Map View (see below) be based on
this message?

Fl i - 3

You receive e falowing Ched Mesasge

RULES OF ENGAGEMENT. AX Hostle Tamets ae now Mgh gnoalty - destroy of
hostieal”

In the SCT, what must you change on the Plan Priories in order to be
able to destroy hostile targets?

Far P

Seaculione T
T Taachry
Hoamm Dwarecion

Pt -y

T

E Mii .

Question 24 of 5

Question 25 of 5

Which Schedue has the mest high priceity tasks assigned?

In the Pl Piorties, Ared Coverage & selctad

T or F: The vehicies will cover as much area as posaible, rejecting seasch
Wsks and recking Lpets in order 10 OpBmally seach the ares.
e Scheds Ve Cotwdh . e

Fl Mir - ‘ :

El Mi
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Appendix S: Questionnaires

Scenaric Feedback Survey

Round 1
1. Subject number:

2.  How confident were you about your performance ?

Not Confident Lomewhat Confident Confident Very Confident Extremely Confident
Commenits:
3. How busy did you feel during the mission?
Iale MNot Busy Busy Very Busy Extremely Busy
4. How satisfied were you with the plans created by the Automated Scheduler?
Very Unsatisfied Unsatisfied Satisfied Very satisfied Extremely satisfied
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Scenario Feedback Survey

Round 2
Subject number:

How confident were you about your performance?

Not Confident Somewhat Confident Confident

Comments:

How busy did you feel during the mission ?

Iale Not Busy Busy Very Busy

Very Confident Extremely Confident

Extremely Busy

How satisfied were you with the plans created by the Automated Scheduler?

Very Unsatisfied Unsatisfied Satisfied Very satisfied Extremely satisfied

Questions about the Experiment Overall

‘Were there aspects of the interface that you particularly liked or disliked?

Did you feel that the Automated Scheduler was fast enough? Did it make good plans?

‘Were there times that your trust in the Automated Scheduler increased or decreased? Why?

Did you lock at the performance plot often? How did it make you feel about how well you were doing?

Did you change your behavior based on what you saw there?

Other comments:



Scenario Feedback Survey

Round 2

Subject number____
Mot at all Extremely

1. The automated scheduler is deceptive 1 2 & 7
2. The automated scheduler behaves in an underhanded 1 2 & 7
MLANNer
3.1 am suspicious of the automated scheduler's intent, 1 2 & 7
action, or outputs
4, I am wary of the automated scheduler 1 2 & 7
5. The automated scheduler's actions will have a harmiful 1 2 & 7
of injuricus outcome
6.1 am confident in the automated scheduler 1 2 & 7
7. The automated scheduler provides security 1 2 & 7
8. The automated scheduler has integrity 1 2 & 7
9, The automated scheduler is dependable 1 2 & 7
10. The automated schedulsr is reliable 1 2 & 7
11.1 can trust the automated scheduler 1 2 & 7
12,1 am familiar with the automated scheduler 1 2 & 7
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Appendix T: Detailed Experiment Statistical Analysis and
Descriptive Statistics

This appendix presents the statistical results of the experiment described in Chapter 5. The
experiment included three independent variables: A Priori Priming Level (Positive Priming,
Negative Priming, No Priming), Real-time Priming Level (Low or High), and Information Time
Delay (No Delay or With Delay). Numerous dependent variables were considered in the analysis
of the data in order to capture and measure performance, workload, SA, and subjective ratings of
performance, workload, confidence, and trust, as described in Chapter 5. An analysis of the

dependent variables and all descriptive statistics is presented below.

Statistical Analysis Overview

All dependent variables were recorded by the computer simulation. For Area Coverage and
Percentage of Time that Targets were Tracked, a 3 x 2 x 2 repeated measures Analysis of
Variance (ANOVA) model was used (oo = 0.05). These parametric dependent variables met the
homogeneity of variance and normality assumptions of the ANOVA model. For three measures
of primary workload (Utilization, Total Mouse Clicks, Length of Time to Replan), a MANOVA
model was used because these dependent variables were moderated correlated. All other
dependent variables, including reaction times and Likert scale data, did not meet ANOVA

assumptions, and non-parametric analyses were used. All significant tests are underlined.

Order Effects

First, it should be noted that Information Time Delay level was a within-subjects variable, so
every operator experienced both Information Time Delay levels with the order of presentation
counterbalanced and randomized. All dependent variables were tested for order effects and there
were only two dependent variables with significant order effects. MANOVA results showed that
operators had a 16% lower average length of time to replan in the second mission as compared to
the first mission, F(1,71) = 4.659, p = 0.034. Also, a Mann Whitney comparison showed that
operators had a 21% faster reaction time to all embedded secondary tasks in the second mission
as compared to the first mission (Z = -2.169, p = 0.030). Operators learned to replan faster

between the two trials and had faster reaction times to embedded secondary tasks in the second
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trial. While notable, these learning effects for using the interface did not have a significant

impact on overall area system performance or other operator actions or ratings (Table 27), thus
the analysis proceeded without including an order effect factor in ANOVA and MANOVA

models, to increase the degrees of freedom in these analyses.

Table 27. Summary of statistical tests for order effects.

Metric Statistical Test Main Effect for Order
(2 levels: First and Second Order)

Area Coverage Repeated Measures ANOVA | F(1,35) =0.319, p =0.576
Targets Found Mann Whitney Z=-1.892, p=0.058

% Time Targets Tracked Repeated Measures ANOVA | F(1,35) =0.311, p = 0.581
Correct Hostiles Destroyed Mann Whitney Z =-1.809, p=0.070

Mistaken Hostiles Destroyed Mann Whitney Z=-1721,p=0.085

Utilization MANOVA F(1,71) =2.421,p=0.124
Click Count MANOVA F(1,71) = 0.226, p = 0.636
Average Length of Time to MANOVA F(1,71) =4.659,p =0.034

Replan

Chat Question Accuracy Mann Whitney Z=-1.308, p=0.191
Target Re-designation Accuracy | Mann Whitney Z=-0.112,p=0.911
Embedded Secondary Tasks Mann Whitney Z=-2.169, p=0.030
Average Performance Rating Mann Whitney Z =-0.250, p =0.803
Average Expectations Rating Mann Whitney Z =-0.205, p =0.838
Average PPG Rating Mann Whitney Z=-0.970, p=0.332
Average Trust Rating Mann Whitney Z=-0.288,p=0.774
Confidence Rating Mann Whitney Z=-1587,p=0.113
Workload Rating Mann Whitney Z=-0.707,p=0.480
Satisfaction with AS plans Mann Whitney Z =-0.510, p=0.610

Mission Performance

Mission performance was measured by overall mission performance metrics, computed at the

end of the mission as well as errors made by operators who either destroyed friendly targets or

who destroyed hostile targets against the Rules of Engagement. There were no significant

correlations between these dependent variables. Additionally, Metacognitive Awareness

Inventory (MAI) Score, a demographic variable, correlated with Area Coverage (p =-0.285, p =
0.005) and Percentage of Time that Targets were Tracked (p = -0.201, p = 0.050). While these

relationships were weak to moderate by human factors standards, MAI Score was used as a

covariate in the ANOVA models for these two dependent variables. MAI Score was included in

model to reduce error variance, not to investigate MAI Score as a primary research question.
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Finally, Targets Found, Correct Hostiles Destroyed, and Mistaken Hostiles Destroyed were

evaluated with non-parametric tests.

Area Coverage:

©)

0 O O O

O

®)
@)

A Priori Priming Level, F(2,41) = 0.016, p = 0.984

Real-time Priming Level, F(1,41) = 0.002, p = 0.961

Information Time Delay, F(1,41) = 0.495, p = 0.486

MAI Score, F(1,41) =5.885, p = 0.020

A Priori Priming Level*Real-time Priming Level, F(2,41) = 1.305, p =
0.282

A Priori Priming Level*Information Time Delay, F(2,41) = 2.219, p =
0.122

Real-time Priming Level*Information Time Delay, F(1,41) = 2.673, p =
0.110

Information Time Delay*MAI Score, F(1,41) = 0.930, p = 0.341

A Priori Priming Level*Real-time Priming Level*Information Time
Delay, F(2,41) = 1.396, p = 0.259

Targets Found

o

o

o

A Priori Priming Level, ¥*(2, N=96) = 0.127, p = 0.939 (Kruskal-Wallis
omnibus)

Real-time Priming Level, Z = -0.157, p
Independent)

Information Time Delay, Z
Dependent)

0.875, (Mann-Whitney

-1.293, p 0.196, (Mann-Whitney

Percentage of Time that Targets were Tracked

o

o O O O

o

©)
@)

A Priori Priming Level, F(2,41) = 0.501, p = 0.610

Real-time Priming Level, F(1,41) = 3.403, p = 0.072

Information Time Delay, F(1,41) = 0.002, p = 0.968

MAI Score, F(1,41) = 5.105, p =0.029

A Priori Priming Level*Real-time Priming Level, F(2,41) = 0.233, p =
0.793

A Priori Priming Level*Information Time Delay, F(2,41) = 1.058, p =
0.356

Real-time Priming Level*Information Time Delay, F(1,41) = 0.603, p =
0.442

Information Time Delay*MAI Score, F(1,41) =0.118, p=0.773

A Priori_Priming Level*Real-time Priming Level*Information Time
Delay, F(2,41) =3.992, p = 0.026

Correct Hostiles Destroyed

o

o

o

A Priori Priming Level, X2(2, N=96) = 2.676, p = 0.262 (Kruskal-Wallis

omnibus)

Real-time Priming Level, Z = -0.883, p = 0.377, (Mann-Whitney
Independent)

Information Time Delay, Z = -0.860, p = 0.390, (Mann-Whitney
Dependent)

309



e Mistaken Hostiles Destroyed
o A Priori Priming Level, ¥*(2, N=96) = 14.611, p = 0.001 (Kruskal-Wallis
omnibus)
= Mann-Whitney pairwise comparisons:
= Negative Priming-No Priming: Z = -2.747, p = 0.006
= Negative Priming-Positive Priming: Z = -3.101, p = 0.002
= No Priming-Positive Priming: Z =-0.568, p = 0.570

Table 28. Performance Metrics Summary for A Priori Priming

o Real-time Priming Level, Z = -0.209, p = 0.834, (Mann-Whitney
Independent)

o Information Time Delay, Z = -0.324, p = 0.746, (Mann-Whitney
Dependent)

Metric A Priori Mean Median Std Dev Min Max
Priming

% Area Negative 62.9% 61.9% 8.6% 46.8% 80.0%

Coverage No Priming 63.7% 63.3% 7.1% 43.4% 78.8%

Positive 62.4% 62.6% 9.9% 39.6% 85.0%

% Targets Negative 86.6% 90.0% 9.7% 60.0% 100%

Found No Priming 85.3% 90.0% 11.1% 60.0% 100%

Positive 85.9% 90.0% 11.6% 60.0% 100%

% Time Negative 88.7% 88.9% 7.0% 66.5% 100%

Targets No Priming 87.5% 88.2% 6.2% 73.9% 97.1%

Tracked Positive 87.6% 88.9% 7.2% 68.7% 96.7%
Correct Negative 2.9 3.0 1.1 0.0 5.0
Hostiles No Priming 3.1 3.0 1.2 1.0 5.0
Destroyed Positive 3.4 3.0 0.8 2.0 5.0
Mistaken Negative 0.5 0.0 0.8 0.0 2.0
Hostiles No Priming 0.1 0.0 0.4 0.0 2.0
Destroyed Positive 0.1 0.0 0.4 0.0 2.0
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Table 29. Performance Metrics Summary for Real-Time Priming

Metric Real-Time Mean Median Std Dev Min Max
Priming
% Area Low 62.8% 64.3% 9.2% 39.6% 80.0%
Coverage High 63.2% 61.4% 7.9% 48.9% 85.0%
% Targets Low 85.8% 90.0% 10.5% 60.0% 100%
Found High 86.0% 90.0% 11.1% 60.0% 100%
% Time Low 89.0% 90.6% 6.5% 73.9% 100%
Targets High 86.8% 88.2% 7.0% 66.5% 97.7%
Tracked
Correct Low 3.3 3.0 1.0 1.0 5.0
Hostiles High 3.0 3.0 1.1 0.0 5.0
Destroyed
Mistaken Low 0.2 0.0 0.4 0.0 2.0
Hostiles High 0.3 0.0 0.7 0.0 2.0
Destroyed
Table 30. Performance Metrics Summary for Information Time Delay
Metric Info Time Mean Median Std Dev Min Max
Delay
% Area No Delay 60.8% 60.5% 9.3% 39.6% 85.0%
Coverage With Delay | 65.1% 64.3% 7.2% 43.4% 83.4%
% Targets No Delay 87.3% 90.0% 10.9% 60.0% 100%
Found With Delay | 84.6% 90.0% 10.5% 60.0% 100%
% Time No Delay 90.0% 91.2% 6.1% 74.5% 100%
Targets With Delay | 85.8% 86.9% 6.8% 66.5% 97.7%
Tracked
Correct No Delay 3.1 3.0 1.1 1.0 5.0
Hostiles With Delay 3.2 3.0 1.0 0.0 5.0
Destroyed
Mistaken No Delay 0.2 0.0 0.6 0.0 2,0
Hostiles With Delay 0.2 0.0 0.5 0.0 2.0
Destroyed
Workload

Primary workload was measured through utilization, calculating the ratio of the total operator
“busy time” to total mission time. Average Length of Time to Replan was evaluated as a
component of workload. After the experiment, an evaluation of the total number of mouse clicks

by each operator during the mission was conducted to further analyze workload. This measure
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was not part of the original experiment design and its use is for post-hoc analysis only. As these
three variables were moderated correlated, a MANOVA model was used for analyzing these
three dependent variables. Additionally, Metacognitive Awareness Inventory (MAI) Score, a
demographic variable, correlated with Average Length of Time to Replan (p=0.229, p = 0.025).
While this relationship was weak to moderate by human factors standards, MAI Score was used
as a covariate in the MANOVA model. MAI Score was included in model to reduce error

variance, not to investigate MAI Score as a primary research question

In addition to these primary workload metrics, secondary workload was measured via reaction
times to chat message information queries, as well as reaction times when instructed to create
search tasks via the chat tool. As the chat messages and prompted search tasks were different and
appeared at different times for the two missions performed by each operator, no statistical
analysis was performed on the within-subjects variable of Information Time Delay for the
reaction times. These reaction times did not satisfy the ANOVA assumptions, so non-parametric

tests were used.

e Utilization
o A Priori Priming Level, F(2,83) = 1.444, p = 0.242

o Real-time Priming Level, F(1,83) = 0.000, p = 0.986

o Information Time Delay, F(1,83) =0.005, p = 0.946

o MAI Score, F(1,83) =0.609, p = 0.437

o A Priori Priming Level*Real-time Priming Level, F(2,83) = 0.663, p =
0.518

o A Priori Priming Level*Information Time Delay, F(2,83) = 0.399, p =
0.672

o Real-time Priming Level*Information Time Delay, F(1,83) = 0.351, p =
0.555

o A Priori Priming Level*Real-time Priming Level*Information Time
Delay, F(2,83) = 0.956, p = 0.389
e Total Mouse Clicks
o A Priori Priming Level, F(2,83) =2.089, p =0.130

o Real-time Priming Level, F(1,83) =0.799, p = 0.374

o Information Time Delay, F(1,83) = 0.158, p = 0.692

o MAI Score, F(1,83) =0.255, p =0.615

o A Priori Priming Level*Real-time Priming Level, F(2,83) = 1.313, p =
0.275

o A Priori Priming Level*Information Time Delay, F(2,83) = 0.910, p =
0.406
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o

Real-time Priming Level*Information Time Delay, F(1,83) = 0.001, p =
0.972

A Priori Priming Level*Real-time Priming Level*Information Time
Delay, F(2,83) = 0.635, p = 0.532

Average Length of Time to Replan

(@]

o O O O

(@]

o

o

A Priori Priming Level, F(2,83) = 0.498, p = 0.610

Real-time Priming Level, F(1,83) = 0.029, p = 0.865

Information Time Delay, F(1,83) =0.000, p = 0.989

MAI Score, F(1,83) =4.241, p = 0.043

A Priori Priming Level*Real-time Priming Level, F(2,83) = 0.810, p =
0.448

A Priori Priming Level*Information Time Delay, F(2,83) = 0.386, p =
0.681

Real-time Priming Level*Information Time Delay, F(1,83) = 0.440, p =
0.509

A Priori Priming Level*Real-time Priming Level*Information Time
Delay, F(2,83) = 0.432, p = 0.651

Chat #1 reaction

o

o

A Priori Priming Level, ¥*(2, N=96) = 10.065, p = 0.007 (Kruskal-Wallis
omnibus)

= Mann-Whitney pairwise comparisons:

= Negative Priming-No Priming: Z =-2.135, p = 0.033

= Negative Priming-Positive Priming: Z = -3.115, p = 0.002

= No Priming-Positive Priming: Z =-0.873, p = 0.383
Real-time Priming Level, Z = -0.799, p = 0.424, (Mann-Whitney
Independent)

Chat #2 reaction
o A Priori Priming Level, y2(2, N=96) = 7.491, p = 0.024 (Kruskal-Wallis

omnibus)

= Mann-Whitney pairwise comparisons:

= Negative Priming-No Priming: Z = -0.054, p = 0.957

= Negative Priming-Positive Priming: Z =-2.391, p = 0.017
= No Priming-Positive Priming: Z = -2.337, p = 0.019

o Real-time Priming Level, Z = -1.301, p = 0.193, (Mann-Whitney

Independent)

Chat #3 reaction
o A Priori Priming Level, ¥*(2, N=96) = 1.608, p = 0.447 (Kruskal-Wallis

o Real-time Priming Level, Z = -3.019, p

omnibus)

0.003, (Mann-Whitney

Independent)

Search task #1 reaction
o A Priori Priming Level, ¥*(2, N=96) = 2.514, p = 0.284 (Kruskal-Wallis

o Real-time Priming Level, Z = -1.636, p

omnibus)

0.102, (Mann-Whitney
Independent)

Search task #2 reaction
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o A Priori Priming Level, ¥°(2, N=96) = 5.469, p = 0.065 (Kruskal-Wallis
omnibus)
= Mann-Whitney pairwise comparisons:
= Negative Priming-No Priming: Z =-0.762, p = 0.446
= Negative Priming-Positive Priming: Z = -2.297, p = 0.022
= No Priming-Positive Priming: Z =-1.513, p = 0.130
o Real-time Priming Level, Z = -2.735, p = 0.006, (Mann-Whitney
Independent)

Table 31. Workload Metrics Summary for A Priori Priming

Metric A Priori Mean Median Std Dev Min Max
Priming
Utilization Negative 47.8% 47.9% 5.30% 36.6% 61.0%
No Priming 46.7% 46.2% 8.90% 30.6% 65.7%
Positive 44.8% 45.3% 8.00% 31.0% 61.6%
Total Mouse Negative 359 356 75.2 233 527
Clicks No Priming 338 327 80.6 206 532
Positive 318 296 84.8 186 542
Length of Negative 7.40 6.90 2.70 3.36 12.4
Time to No Priming 7.50 6.60 3.60 2.15 15.5
Replan Positive 7.20 7.10 2.90 2.00 13.2
Chat #1 Negative 19.8 15.7 12.7 4.43 51.1
Reaction No Priming 13.9 11.1 8.90 4.98 38.7
Time Positive 12.3 9.40 8.80 4.81 43.3
Chat #2 Negative 26.9 21.3 16.0 7.30 60.0
Reaction No Priming 27.4 24.2 16.7 7.55 60.0
Time Positive 18.4 15.7 10.5 7.19 60.0
Chat #3 Negative 13.6 10.5 8.00 4.78 42.5
Reaction No Priming 18.2 12.6 15.7 4.80 60.0
Time Positive 14.4 9.60 135 491 60.0
Prompted Negative 27.8 20.0 21.4 3.14 60.0
Search Task | No Priming 27.6 17.3 20.5 541 60.0
#1 Reaction Positive 35.0 23.8 22.6 8.26 60.0
Time
Prompted Negative 33.0 26.5 22.1 7.77 60.0
Search Task | No Priming 28.8 18.1 21.2 6.69 60.0
#2 Reaction Positive 18.2 13.7 13.0 6.44 60.0
Time
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Table 32. Workload Metrics Summary for Real-Time Priming

Metric Real-Time Mean Median Std Dev Min Max
Priming
Utilization Low 46.5% 47.6% 7.60% 30.6% 65.7%
High 46.4% 46.3% 7.60% 31.0% 63.5%
Total Mouse Low 331 330 79.4 206 542
Clicks High 345 331 83.1 186 532
Length of Low 7.50 7.00 3.10 3.18 15.5
Time to High 7.20 6.90 3.10 2.00 13.2
Replan
Chat #1 Low 14.9 10.1 10.8 4.44 50.9
Reaction High 15.7 111 10.7 5.50 51.1
Time
Chat #2 Low 26.9 21.2 16.9 7.19 60.0
Reaction High 21.6 18.9 12.7 7.55 60.0
Time
Chat #3 Low 18.7 14.0 14.9 4.78 60.0
Reaction High 12.1 8.90 9.50 5.23 57.5
Time
Prompted Low 33.7 23.1 23.0 3.14 60.0
Search Task High 26.7 18.0 19.6 541 60.0
#1 Reaction
Time
Prompted Low 32.7 20.1 21.8 6.44 60.0
Search Task High 20.6 13.1 16.1 6.69 60.0
#2 Reaction
Time
Table 33. Workload Metrics Summary for Information Time Delay
Metric Info Time Mean Median Std Dev Min Max
Delay
Utilization No Delay 46.5% 47.2% 7.00% 30.6% 61.6%
With Delay 46.4% 46.1% 8.20% 31.0% 65.7%
Total Mouse No Delay 342 336 83.7 206 542
Clicks With Delay 335 327 79.2 186 532
Length of Time | No Delay 7.40 6.70 2.90 2.00 13.2
to Replan With Delay 7.40 7.10 3.30 2.15 15.5

Situation Awareness

Situation Awareness (SA) was measured through two metrics: the accuracy of responses to

periodic chat box messages querying the participant about aspects of the mission and the
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accuracy of re-designations of unknown targets based on chat intelligence information. For both

metrics, non-parametric tests were needed.

e Chat Question Accuracy
o A Priori Priming Level, ¥*(2, N=96) = 3.308, p = 0.191 (Kruskal-Wallis

omnibus)

o Real-time Priming Level, Z = -1.795, p = 0.073, (Mann-Whitney
Independent)

o Information Time Delay, Z = -0.022, p = 0.982, (Mann-Whitney
Dependent)

e Target ID Re-Designation Accuracy
o A Priori Priming Level, ¥°(2, N=96) = 0.498, p = 0.779 (Kruskal-Wallis

omnibus)
o Real-time Priming Level, Z = -0.965, p = 0.335 (Mann-Whitney
Independent)
o Information Time Delay, Z = -3.009, p = 0.003, (Mann-Whitney
Dependent)
Table 34. SA Metrics Summary for A Priori Priming
Metric A Priori Mean Median Std Dev Min Max
Priming
Chat Negative 58.5% 67.0% 22.6% 0.00% 100%
Question No Priming 65.8% 67.0% 27.5% 0.00% 100%
Accuracy Positive 68.9% 67.0% 18.9% 33.0% 100%
Target Re- Negative 60.9% 66.7% 26.3% 0.00% 100%
Designation | No Priming 59.9% 58.4% 31.6% 0.00% 100%
Accuracy Positive 65.1% 66.7% 27.8% 0.00% 100%

Table 35. SA Metrics Summary for Real-Time Priming

Metric Real-Time Mean Median Std Dev Min Max
Priming

Chat Low 68.3% 67.0% 22.8% 0.00% 100%

Question High 60.5% 67.0% 23.6% 0.00% 100%
Accuracy

Target Re- Low 58.7% 66.7% 29.2% 0.00% 100%

Designation High 65.3% 66.7% 27.5% 25.0% 100%
Accuracy
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Table 36. SA Metrics Summary for Information Time Delay

Metric Info Time Mean Median Std Dev Min Max
Delay
Chat Question | No Delay 64.0% 67.0% 21.7% 0.00% 100%
Accuracy With Delay 64.7% 67.0% 25.2% 0.00% 100%
Target Re- No Delay 71.4% 75.0% 29.8% 0.00% 100%
Designation | With Delay 52.6% 50.0% 23.8% 0.00% 100%
Accuracy

Real-time Subjective Responses

Throughout the mission, a pop-up survey window appeared in the lower left corner of the Map

Display to ask the operator to provide these three ratings:

e How well you think the system is performing (1-7)
e How well you expect the system to perform (1-7)
e Your trust in the Automated Scheduler (1-7)

A fourth metric, the Perceived Performance Gap (PPG) was calculated by taking the percent
difference between the expectation and performance rating. For the analysis below, all ratings
taken during the mission were averaged. Non-parametric tests were needed for this Likert scale
data.

e Performance
o A Priori Priming Level, ¥*(2, N=94) = 5.774, p = 0.056 (Kruskal-Wallis
omnibus)
= Mann-Whitney pairwise comparisons:
= Negative Priming-No Priming: Z = -1.832, p = 0.067
= Negative Priming-Positive Priming: Z = -2.160, p = 0.031
= No Priming-Positive Priming: Z = -0.833, p = 0.405
o Real-time Priming Level, Z = -2.122, p = 0.034, (Mann-Whitney
Independent)
o Information Time Delay, Z = -0.213, p = 0.831, (Mann-Whitney
Dependent)
e Expectations
o A Priori Priming Level, y*(2, N=94) = 11.767, p = 0.003 (Kruskal-Wallis
omnibus)
= Mann-Whitney pairwise comparisons:
= Negative Priming-No Priming: Z = -0.395, p = 0.693
= Negative Priming-Positive Priming: Z = -3.189, p = 0.001
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e Trust

= No Priming-Positive Priming: Z = -2.674, p = 0.007
Real-time Priming Level, Z = -2.145, p = 0.032, (Mann-Whitney
Independent)
Information Time Delay, Z = -1.204, p
Dependent)

0.229, (Mann-Whitney

A Priori Priming Level, ¥%(2, N=94) = 4.520, p = 0.104 (Kruskal-Wallis
omnibus)

Real-time Priming Level, Z = -0.314, p
Independent)

Information Time Delay, Z
Dependent)

0.753, (Mann-Whitney

-0.225, p 0.822, (Mann-Whitney

A Priori Priming Level, y*(2, N=94) = 14.740, p = 0.001 (Kruskal-Wallis
omnibus)

=  Mann-Whitney pairwise comparisons:

= Negative Priming-No Priming: Z =-1.036, p = 0.300

= Negative Priming-Positive Priming: Z = -3.741, p < 0.001

= No Priming-Positive Priming: Z = -2.614, p = 0.009

Real-time Priming Level, Z = -0.851, p = 0.395, (Mann-Whitney
Independent)
Information Time Delay, Z = -0.895, p = 0.371, (Mann-Whitney
Dependent)

Table 37. Real-time Survey Metrics Summary for A Priori Priming

Metric A Priori Mean Median Std Dev Min Max
Priming
Performance Negative 4.80 4.70 0.88 3.20 7.00
No Priming 5.16 5.25 0.93 3.00 6.90
Positive 5.33 5.50 0.98 3.40 6.70
Expectations Negative 5.27 5.20 0.87 3.44 6.50
No Priming 5.40 5.30 0.87 4.00 7.00
Positive 5.96 6.00 0.66 4.73 7.00
PPG Negative 7.16% 8.00% 13.1% -16.0% 35.0%
No Priming 3.65% 2.90% 14.6% -23.0% 42.0%
Positive 10.5% 7.70% 11.5% -2.00% 35.0%
Trust Negative 4.46 4.70 1.01 2.20 6.00
No Priming 4.82 4.80 1.04 2.60 6.90
Positive 5.54 5.80 1.17 2.80 7.00
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Table 38. Real-time Survey Metrics Summary for Real-Time Priming

Metric Real-Time Mean Median Std Dev Min Max
Priming
Performance Low 5.31 5.30 0.95 3.00 7.00
High 4.88 4.90 0.89 3.27 6.50
Expectations Low 5.73 6.00 0.85 4.10 7.00
High 5.36 5.20 0.82 3.44 7.00
PPG Low 6.70% 5.00% 12.04% -15.0% 36.0%
High 7.60% 4.00% 14.50% -23.0% 42.0%
Trust Low 5.08 4.90 1.14 2.60 7.00
High 4.81 4.90 1.17 2.20 6.80
Table 39. Real-time Survey Metrics Summary for Information Time Delay
Metric Info Time Mean Median Std Dev Min Max
Delay
Performance No Delay 511 5.00 0.95 3.27 6.90
With Delay 5.09 5.20 0.95 3.00 7.00
Expectations No Delay 5.58 5.64 0.83 3.50 7.00
With Delay 5.52 5.83 0.88 3.44 7.00
PPG No Delay 7.55% 4.00% 12.38% -15.0% 42.0%
With Delay 6.76% 5.00% 14.21% -23.0% 36.0%
Trust No Delay 4.99 4.90 1.13 2.20 7.00
With Delay 4.91 4.90 1.20 2.60 7.00

Pre- and Post-Mission Subjective Responses

First, a survey immediately following the practice mission asked operators to rate their trust in

the AS on a scale from 1-7 (low to high). Next, at the end of each mission, a survey was

provided asking the participant for a subjective rating of his or her confidence, workload, and

satisfaction with the plans generated by the AS on a Likert scale from 1-5 (1 low, 5 high).

Finally, at the end of the entire experiment, all test subjects filled out a 12-question survey which

is commonly used to measure trust in automation and has been empirically validated (Jian, et al.,

2000). Since each test subject experienced both Information Delay Levels, there is no analysis of

the differences in the pre-experiment or post-experiment trust survey results between

Information Delay Levels. Non-parametric tests were needed for this Likert scale data.
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Pre-Experiment Trust
o A Priori Priming Level, ¥*(2, N=47) = 11.636, p = 0.003 (Kruskal-Wallis
omnibus)
= Mann-Whitney pairwise comparisons:
= Negative Priming-No Priming: Z =-0.807, p = 0.420
= Negative Priming-Positive Priming: Z = -3.186, p = 0.002
= No Priming-Positive Priming: Z = -2.570, p = 0.010
o Real-time Priming Level, Z = -0.993, p = 0.321, (Mann-Whitney
Independent)
Confidence
o A Priori Priming Level, ¥°(2, N=96) = 0.108, p = 0.947 (Kruskal-Wallis
omnibus)
o Real-time Priming Level, Z = -4.462, p < 0.001, (Mann-Whitney
Independent)
o Information Time Delay, Z = -1.483, p
Dependent)
Workload
o A Priori Priming Level, ¥°(2, N=96) = 1.116, p = 0.572 (Kruskal-Wallis
omnibus)
o Real-time Priming Level, Z = -0.707, p
Independent)
o Information Time Delay, Z = -0.354, p
Dependent)
Satisfaction with AS Plans
o A Priori Priming Level, ¥°(2, N=96) = 1.073, p = 0.585 (Kruskal-Wallis

0.138, (Mann-Whitney

0.480, (Mann-Whitney

0.723, (Mann-Whitney

omnibus)

o Real-time Priming Level, Z = -0.589, p = 0.556, (Mann-Whitney
Independent)

o Information Time Delay, Z = -0.592, p = 0.554, (Mann-Whitney
Dependent)

Post-Experiment Trust Survey
o A Priori Priming Level, ¥°(2, N=48) = 1.986, p = 0.371 (Kruskal-Wallis
omnibus)
o Real-time Priming Level, Z = -0.722, p
Independent)

0.470, (Mann-Whitney



Table 40. Post-Mission Survey Metrics Summary for A Priori Priming

Metric A Priori Mean Median Std Dev Min Max
Priming
Pre- Negative 5.13 5.00 0.92 3.00 6.00
Experiment No Priming 5.44 5.50 0.81 4.00 7.00
Trust Survey Positive 6.19 6.00 0.66 5.00 7.00
Confidence Negative 2.50 2.00 0.98 1.00 5.00
No Priming 2.47 2.00 0.98 1.00 5.00
Positive 2.38 2.00 0.91 1.00 4.00
Workload Negative 2.97 3.00 0.60 2.00 4.00
No Priming 3.06 3.00 0.72 2.00 4.00
Positive 2.84 3.00 0.77 1.00 4.00
Satisfaction Negative 2.63 3.00 0.79 1.00 4.00
with AS Plans | No Priming 291 3.00 1.00 1.00 5.00
Positive 2.69 3.00 0.69 1.00 4.00
Post- Negative 9.27 9.00 12.9 -16.0 28.0
Experiment No Priming 14.1 15.0 13.1 -20.0 31.0
Trust Survey Positive 15.3 16.5 15.1 -20.0 36.0
Table 41. Post-Mission Survey Metrics Summary for Real-Time Priming
Metric Real- Mean Median Std Dev Min Max
Time
Priming
Pre-Experiment Low 5.46 6.00 0.93 3.00 7.00
Trust Survey High 5.74 6.00 0.86 4.00 7.00
Confidence Low 2.88 3.00 0.89 1.00 5.00
High 2.02 3.00 0.81 1.00 4.00
Workload Low 3.02 3.00 0.73 2.00 4.00
High 2.90 3.00 0.66 1.00 4.00
Satisfaction Low 2.79 3.00 0.82 1.00 4.00
with AS Plans High 2.69 3.00 0.85 1.00 5.00
Post- Low 13.8 14.0 15.9 -16.0 30.0
Experiment High 12.1 13.0 11.3 -20.0 36.0
Trust Survey
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Table 42. Post-Mission Survey Metrics Summary for Information Time Delay

Metric Info Time Mean Median Std Dev Min Max
Delay

Confidence No Delay 2.38 2.00 0.92 1.00 5.00

With Delay 2.57 2.00 0.95 1.00 5.00

Workload No Delay 2.94 3.00 0.76 1.00 4.00

With Delay 2.96 3.00 0.62 2.00 4.00

Satisfaction No Delay 2.70 3.00 0.86 1.00 5.00

with AS Plans | With Delay 2.77 3.00 0.84 1.00 5.00

Gamer vs. Nongamer Click Count Analysis

Descriptive statistics for comparison of click count between gamers and nongamers across the
different A Priori Priming levels are shown in Table 43.

Table 43. Descriptive statistics for gamers vs. nongamer click count analysis.

Gaming A Priori Mean Median Std Dev Min Max
Type Priming

Gamers Negative 381 366 95.6 251 527

No Priming 299 316 62.7 206 407

Positive 277 269 42.1 229 347

Nongamers Negative 348 354 63.8 233 467

No Priming 368 356 81.5 217 532

Positive 343 335 94.6 186 542
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Statistical Analysis Summary

The results of all omnibus factor level tests are summarized in Table 44, where the conditions

with statistically significant results are shown in bold.

Table 44. Summary of Experimental Findings

Category Metric A Priori Priming Real-Timing Priming Information Delay
System % Area Coverage Indistinguishable Indistinguishable Indistinguishable
Performance (p =0.984) (p =0.961) (p = 0.486)
% Targets Found Indistinguishable Indistinguishable Indistinguishable
(p =0.939) (p =0.875) (p =0.196)
% Time Targets Indistinguishable Indistinguishable Indistinguishable
Tracked (p =0.610) (p =0.072) (p =0.968)
Correct Hostiles Indistinguishable Indistinguishable Indistinguishable
Destroyed (p =0.262) (p =0.377) (p = 0.390)
Mistaken Hostiles Significant difference Indistinguishable Indistinguishable
Destroyed (p=0.001) (p=0.834) (p =0.746)
Primary Utilization Indistinguishable Indistinguishable Indistinguishable
Workload (p =0.242) (p = 0.986) (p = 0.946)
Total Click Count Indistinguishable Indistinguishable Indistinguishable
(p =0.130) (p=0.374) (p = 0.692)
Average Length of Indistinguishable Indistinguishable Indistinguishable
Time to Replan (p = 0.610) (p = 0.865) (p = 0.989)
Secondary Chat #1 reaction Significant difference Indistinguishable N/A
Workload time (p =0.007) (p=0.424)
Chat #2 reaction Significant difference Indistinguishable N/A
time (p =0.024) (p=0.193)
Chat #3 reaction Indistinguishable Significant difference N/A
time (p =0.447) (p =0.003)
Prompted Search Indistinguishable Indistinguishable N/A
Task #1 reaction (p =0.284) (p =0.102)
time
Prompted Search Positive Priming Significant difference N/A
Task #2 reaction (p = 0.065) (p =0.006)
time
Situation Chat question Indistinguishable Low Indistinguishable
Awareness accuracy (p=0.191) (p =0.073) (p =0.982)
Target re- Indistinguishable Indistinguishable Significant difference
designation (p =0.779) (p =0.335) (p = 0.003)
accuracy
Real-Time Average Significant difference Significant difference Indistinguishable
Subjective Performance (p = 0.056) (p=0.034) (p=0.831)
Ratings Average Significant difference Significant difference Indistinguishable
Expectations (p =0.003) (p=0.032) (p =0.229)
Average PPG Indistinguishable Indistinguishable Indistinguishable
(p = 0.104) (p =0.753) (p = 0.822)
Average Trust Significant difference Indistinguishable Indistinguishable
(p =0.001) (p =0.395) (p=0.371)
Pre- and Post- Pre-Mission Trust Significant difference Indistinguishable N/A
Mission Survey (p =0.003) (p =0.321)
Subjective Confidence Indistinguishable Significant difference Indistinguishable
Ratings (p =0.108) (p <0.001) (p=0.138)
Workload Indistinguishable Indistinguishable Indistinguishable
(p=0.572) (p = 0.480) (p=0.723)
Satisfaction with Indistinguishable Indistinguishable Indistinguishable
AS plans (p = 0.585) (p = 0.556) (p =0.554)
Post-Experiment Indistinguishable Indistinguishable N/A
Trust Survey (p=0.371) (p =0.470)
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Other Demographic Effects on Performance

A set of linear regression analyses was performed to see if there were any significant predictor
variables for high (or low) system performance, operator workload, and average trust. The linear
regression estimates coefficients of a linear equation, with one or more predictor variables, that
best predict the value of the dependent variable. As there would be 6 linear regressions, the
typical o = 0.05 significance level was reduced to o = 0.008 using the Bonferroni correction
(Kutner et al., 2004). A backwards elimination linear regression was utilized, which removed
predictor variables that did not meet a significance level of o = 0.008, so that the most
parsimonious model was derived for predicting the dependent variables. Potential predictor
variables were age, gender, frequency of gaming, perception of UAVs, comfort with computers,
recent amount of sleep, frequency of TV watching, education level, and Metacognitive
Awareness (MALI).

The results from the 6 backwards elimination linear regressions are shown in Table 45, including
the variables that were significant predictors of the performance, workload, and trust metrics.
The normality, homogeneity of variance, linearity, and independence assumptions of a linear
regression were met by three of the four regressions that found significant predictor variables,
with the exception of Targets Found, which violates the normality assumption. Also, there was a
weak to moderate correlation between two of the dependent variables: Utilization and Targets
Found (p=0.338, p = 0.001). There were no significant predictor variables for the percentage of

time targets were tracked and the number of hostiles destroyed.

Table 45. Linear Regression Results

Dependent R? Bo Gaming Military TV MAI
Variable
Area Coverage 0.081 B=0.875 - - - B=-0.285
p <0.001 p = 0.005
Targets Found 0.089 B=0.925 - - p=-0.298 -
p <0.001 p =0.003
Time Targets 0 B=0.879 - - - -
Tracked p <0.001
Hostiles Destroyed 0 B=3.146 - - - -
p <0.001
Utilization 0.202 B=0.523 B=-0.450 - - -
p <0.001 p <0.001
12-Question Trust 0.095 B=27.851 - B=-0.308 - -
Survey p <0.001 p =0.002
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