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Abstract

Uncertainties are present in many engineering applications and it is important to ac-
count for their effects during engineering design to achieve robust and reliable systems.
One approach is to represent uncertainties as random inputs to the numerical model of
the system and investigate the probabilistic behaviour of the model outputs. However,
performing optimization in this setting can be computationally expensive, requiring
many evaluations of the numerical model to compute the statistics of the system met-
rics, such as the mean and the variance of the system performance. Fortunately, in
many engineering applications, there are one or more lower fidelity models that ap-
proximate the original (high-fidelity) numerical model at lower computational costs.
This thesis presents rigorous multifidelity approaches to leverage cheap low-fidelity
models and other approximations of the expensive high-fidelity model to reduce the
computational expense of optimization under uncertainty.

Solving an optimization under uncertainty problem can require estimates of the
statistics at many different design points, incurring a significant number of expensive
high-fidelity model evaluations. The multifidelity estimator is developed based on the
control variate method to reduce the computational cost of achieving a specified root
mean square error in the statistic estimate by making use of the correlation between
the outputs of the expensive high-fidelity model and the outputs of the cheap low-
fidelity model. The method optimally relegates some of the computational load to
the low-fidelity model based on the relative model evaluation cost and the strength of
the correlation. It has demonstrated 85% computational savings in an acoustic horn
robust optimization example.

When the model is sufficiently smooth in the design space in the sense that a
small change in the design variables produces a small change in the model outputs, it
has an autocorrelation structure that can be exploited by the control variate method.
The information reuse estimator is developed to reduce the computational cost of
achieving a specified root mean square error in the statistic estimate by making use
of the correlation between the high-fidelity model outputs at one design point and
those at a previously visited design point. As the optimization progresses towards the
optimum in the design space, the steps taken in the design space often become shorter,
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increasing the correlation and making the information reuse estimator more efficient.
To further reduce the computational cost, the combined estimator is developed to
incorporate the features of both the multifidelity estimator and the information reuse
estimator. It has demonstrated 90% computational savings in the acoustic horn
robust optimization example.

The methods developed in this thesis are applied to two practical aerospace appli-
cations. In conceptual aircraft design, there are often uncertainties about the future
developments of the underlying technologies. The information reuse estimator can
be used to efficiently generate a Pareto front to study the trade off between the
expected performance and the risk induced by the uncertainties in the different air-
craft designs. In a large-scale wing robust optimization problem with uncertainties
in material properties and flight conditions, the combined estimator demonstrated
a reasonable solution turnaround time of 9.7 days on a 16-processor desktop ma-
chine, paving the way to a larger scale wing optimization problem with distributed
uncertainties to account for degradation or damage.
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Chapter 1

Introduction

Accounting for uncertainty and variability in engineering design is important to

achieve robust and reliable systems, but is often too computationally expensive to

formalize in an optimization setting. A key challenge is to repeatedly propagate un-

certainties from the inputs of a numerical model to its outputs during the course of

optimization. We propose multifidelity approaches to lower the computational cost

by offloading some of the computational burden to inexpensive surrogates in a rigor-

ous manner. We demonstrate the methods in an aircraft conceptual design problem

and a large-scale wing robust optimization problem.

In this chapter, we begin by motivating the need for optimization under uncer-

tainty in §1.1. We establish the notations and the general problem setup for the

rest of the thesis in §1.2 and §1.3, respectively. In §1.4, we review the literature

on multifidelity methods for optimization and uncertainty quantification as well as

developments based on the control variate estimator variance reduction technique,

which forms the basis of our approach. Based on the review and the open challenges,

we present the thesis objectives in §1.5. We end the chapter with the thesis outline

in §1.6
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1.1 Motivation and Context

Uncertainties are present in many engineering applications and it is often desirable

to quantify and manage the effects of the uncertainties on the system behaviour

during the design process. Additional sources of uncertainties are introduced when

the physical system is modelled mathematically and when the mathematical model

is solved numerically. There are many possible sources of uncertainties, and one

classification of uncertainties consists of [26]:

parameter uncertainty: unavailability of the exact values of some of the inputs to

the mathematical model;

model inadequacy: accuracy of the mathematical model with respect to the true

physics;

numerical uncertainty: numerical errors and approximations in the implementa-

tion of the computer model;

parametric variability: inherent variability of some of the inputs to the mathe-

matical model;

observation error: unavoidable variability of experimental measurements; and

interpolation uncertainty: lack of outputs for all possible inputs due to limited

resources.

Alternatively, uncertainties may also be be classified as [38]:

aleatoric: irreducible uncertainty due to the intrinsic randomness of the physical

system; and

epistemic: reducible uncertainty due to the lack of knowledge about the system or

the model.

In the application problems described in this thesis, we focus on parameter uncer-

tainties (e.g., the yield stress of an advanced composite material that has yet to be

18



thoroughly tested) and parametric variability (e.g., flight conditions experienced by

an aircraft). A system designed without consideration of the uncertainties can have

unexpected results when the actual system is realized—performance may be worse

than predicted and requirements may not be satisfied. To properly account for un-

certainties during the design process, we turn to methods for optimization under

uncertainty.

A computationally inexpensive and simple approach that is commonly applied is

to take conservative estimates of parameters and include safety factors in the analy-

sis. The disadvantage is that the results may be overly conservative, the values of the

safety factors are ambiguous, and, more dangerously, there is the potential to take

the values of these parameters and factors at face value without recognizing that they

are simply a crude attempt to account for uncertainties. More rigorous treatments

of uncertainties include probability theory, possibility theory [12, 53], and Dempster-

Shafer evidence theory [9, 45]. In this work, we represent uncertainties as random

variables with probability distributions based on the quantification of the uncertain-

ties. Therefore, we are concerned with the efficient computation of the statistics of

system metrics of interest during optimization.

An optimization problem in the presence of uncertainties can be formulated in a

variety of ways depending on the context. For example, uncertainties may affect the

reliability of the system—the degree to which the system performs its intended func-

tions over a specified interval of time [22]. Therefore, one approach in reliability-based

design is to formulate the optimization problem with a constraint on the probability

of system failure. Uncertainties may also affect the robustness of the system—the in-

sensitivity of the system to variations [39]. The formulation of the robust optimization

problem depends on the choice of robustness measure—for uncertainties represented

by random variables, the choices include the expectancy measure, the probabilistic

threshold measure, and the statistical feasibility measure [3]. For example, based on

the expectancy measure, the objective function to be minimized may be the mean of

a loss metric plus the standard deviation of the loss metric. In this formulation, the

variance of the loss metric represents the lack of robustness and a balance between the
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expected loss and the lack of robustness is minimized. A drawback to optimization

under uncertainty based on a probabilistic representation of the uncertainties is the

significant computational cost needed to propagate the probability distributions of

the uncertain input parameters to the outputs of the numerical model of the system.

To address the computational expense of optimization under uncertainty, we make use

of surrogate models that provide approximate information at a lower computational

cost than the original model.

In many engineering applications, a range of numerical models—from cheap low-

fidelity models to expensive high-fidelity models—are available to predict the same

physical output of interest. Examples of low-fidelity models include low-order sim-

plifications of the underlying physics, less accurate numerical implementations of the

governing equations, reduced-order compression of the numerical model, data-fit em-

ulators, etc. We consider a hierarchy of models—that is, we trust the output of one

model more than the other (hence high-fidelity versus low-fidelity). Therefore, we

develop multifidelity approaches that seek the high-fidelity model solution of the op-

timization under uncertainty problem; the low-fidelity model accelerates the process

but is not intended to alter the solution nor does it replace the high-fidelity model. A

common theme in multifidelity methods is that a significant portion of the computa-

tion is relegated to the inexpensive low-fidelity model with only occasional recourse

to the expensive high-fidelity model as a check or a correction. The key to the ef-

fectiveness of most multifidelity methods is that the low-fidelity model outputs have

similar trends to the high-fidelity model outputs; in many cases, the absolute errors

of the low-fidelity model outputs with respect to the high-fidelity model outputs are

irrelevant. For example, in optimization, it is usually beneficial for the gradients of

the high-fidelity model to be well-approximated by the gradients of the low-fidelity

model [1]. In uncertainty propagation, for the methods we develop in this thesis,

we require that the random outputs of the low-fidelity model are correlated with the

random outputs of the high-fidelity model when induced by the same random inputs

representing the uncertainties.

20



1.2 General Notations

We begin by defining notations that are relevant to the developments in Chapter 2

and Chapters 3. Let (Ω,F , P ) be the probability space, where Ω is the sample space,

F is the set of events, and P is the probability measure. We define the random

variables A(ω), B(ω), C(ω), D(ω) and U(ω) for ω ∈ Ω and their realizations are

denoted as ai, bi, ci, di, and ui for the ith sample. We are interested in the statistics

of the random variables, such as their means and their variances. We define the exact

statistic of interest as s subscripted by the random variable, e.g. sA, sB, etc., and the

estimator of the statistic as ŝ or s̃ subscripted by the random variable, e.g. ŝA, s̃C , etc.

If necessary, we also include as a subscript the computational effort to compute the

estimator. As an example, ŝA,p is an estimator of the exact statistic sA that costs p

units of computational effort. For the special case of regular Monte Carlo estimators,

we use the typical sample mean notation, e.g. ā, d̄, etc.

We define models as M(x,u) with two inputs: design variables x and input param-

eters u. When we need to differentiate between high-fidelity models and low-fidelity

models, we use Mhigh(x,u) and Mlow(x,u), respectively. We reserve n for the number

of high-fidelity model evaluations, m for the number of low-fidelity model evaluations,

and p for an equivalent unit of computational cost that may depend on both n and

m.

We also define the operators E as the expectation of a random variable, Var as the

variance of a random variable, Cov as the covariance between two random variables,

and Corr as the correlation between two random variables.

Finally, we use bold font to indicate vector quantities when we generalize our

results to multiple model outputs and/or multiple statistics of interest. We reserve q

for the length of the vector.
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1.3 Problem Formulation

Let Mhigh(x,u) be the high-fidelity model of an engineering system of interest. We

consider the case where there are uncertainties in the input parameters represented

by some probability distribution. Therefore, the vector of input parameters u is a

realization of the random vector U(ω) and the model output is a random variable

A(x, ω) = Mhigh(x,U(ω)). In this setting, the statistic of the model output sA(x),

such as the mean and the variance, can be used to describe the system performance.

In most cases and especially for complex engineering models, we cannot determine

sA(x) exactly and so we develop an estimator ŝA(x) that can be computed efficiently.

When there are multiple model outputs and/or multiple statistics of interest, we

generalize to the vector of estimators ŝA(x) for the vector of statistics sA(x).

To perform design under uncertainty, we optimize the statistics sA(x). Therefore,

we consider the following general optimization problem:

x∗ = arg min
x

f(x, sA(x))

s.t. g(x, sA(x)) ≤ 0

h(x, sA(x)) = 0, (1.1)

where the objective and constraint functions f , g, and h may depend on the statistics

sA(x). For example, in robust design, the objective function may be the mean plus

a constant factor of the standard deviation of the model output. Since sA(x) is typi-

cally unknown, we approximate it with its estimator ŝA(x) and so the objective and

constraints are themselves also estimators: f̂(x) = f(x, ŝA(x)), ĝ(x) = g(x, ŝA(x)),

and ĥ(x) = h(x, ŝA(x)).

This thesis focuses on reducing the computational cost of computing the esti-

mator ŝA(x) by making use of approximate information in a rigorous manner. We

assume that the computational cost is dominated by the repeated evaluation of the

high-fidelity model—the algebraic cost of the algorithms is small relative to the cost

of the engineering models considered. In Chapter 2, we make use of a low-fidelity
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model Mlow(x,u) that is inexpensive to evaluate relative to the high-fidelity model

Mhigh(x,u). The low-fidelity model takes the same vector of design variables x and

the same realization of the vector of input parameters u but returns a different out-

put. In Chapter 3, we take advantage of the autocorrelation of the high-fidelity

model over the design space. In both cases, the estimator ŝA(x) converges to the true

statistics sA(x) regardless of the quality of the approximate information; however,

a good and inexpensive approximation1 will provide the greatest benefit in reducing

computational cost.

1.4 Literature Review

Given the background, we now review the literature on related topics in multifi-

delity optimization and uncertainty quantification. We also review the control vari-

ate method, which serves as the framework for the developments in Chapter 2 and

Chapter 3, as well as the related multilevel Monte Carlo method.

1.4.1 Multifidelity Methods in Optimization

Some of the pioneering work on multifidelity methods is in deterministic optimization

to reduce the computational cost of finding the optimum of an expensive high-fidelity

model. There are two important classes of multifidelity optimization methods: trust-

region-based methods and pattern-search-based methods. In a trust-region method,

a surrogate is constructed from the high-fidelity model evaluations and is minimized

within a trust-region to generate candidate steps in the design space. The size of

the trust-region is adjusted based on the predictive capability of the surrogate. The

Approximation and Model Management Optimization (AMMO) [1] extends the gen-

eral trust-region framework to multifidelity models by defining the surrogate as the

low-fidelity model and a correction. Convergence to the high-fidelity model local op-

timum is guaranteed by ensuring that the correction makes the surrogate have the

same value and gradient as the high-fidelity model at the center of the trust-region

1We define what constitutes a “good” approximation in Chapter 2 and Chapter 3.
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[6]. A modification to the general framework removes the need to evaluate the high-

fidelity model gradients, which may be unavailable and difficult to estimate in some

situations [32, 33].

In a pattern search method, the high-fidelity model is evaluated without gradients

on a stencil in the design space called a poll step to try to find an improved design

point. The stencil is constructed on an underlying mesh whose fineness is adjusted

based on the success of the poll step [49]. Additional flexibility is provided by an

optional search step that precedes the poll step to find an improved design point on

the mesh by any means available. A successful search step allows the poll step to be

skipped. The surrogate management framework (SMF) [4] takes advantage of this

flexibility by using the inexpensive low-fidelity model in the search step to try to

find an improved design point and skip the expensive poll step. Furthermore, if the

poll step is required, the order of high-fidelity model evaluations on the stencil can

be arranged based on the values of the low-fidelity model evaluations on the same

stencil to try to find an improved design point earlier and skip the rest of the poll

step. Thus, in the surrogate management framework, the high-fidelity model serves

to check the suggestions provided by the low-fidelity model.

The work on multifidelity optimization developed some of the key ideas for effective

general multifidelity approaches that we also apply to our approach: perform the

computation on the inexpensive low-fidelity model and evaluate the expensive high-

fidelity model as needed only as a check or a correction. A shortcoming in many of

these methods is that they do not take into account the relative computational cost

between the high-fidelity model and the low-fidelity model and often assume that

the low-fidelity model can be evaluated in negligible time compared to the evaluation

of the high-fidelity model. When this is not true, the large number of low-fidelity

model evaluations can become a significant computational burden. A corollary of this

is that these multifidelity methods cannot, in general, guarantee that they reduce

the computational cost relative to the single fidelity method, although numerical

experiments in the above work suggest that they are often effective in practice.
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1.4.2 Multifidelity Methods in Uncertainty Quantification

An early work to bring multifidelity ideas to uncertainty quantification is to use

Bayesian regression to construct a Gaussian process emulator of the high-fidelity

model using both high-fidelity model evaluations and low-fidelity model evaluations,

where the high-fidelity model evaluations are a subset of the low-fidelity model eval-

uations [25]. The structure of the emulator is based on the assumption that, given

the evaluation of the low-fidelity model at a particular design point, we cannot learn

more about the high-fidelity model at that design point from an evaluation of the

low-fidelity model at another design point. The emulator can then be used for uncer-

tainty quantification, such as estimating the statistics of the high-fidelity model. As

an alternative to a Gaussian process emulator of the high-fidelity model, a stochastic

expansion, such as polynomial chaos or stochastic collocation, can be constructed

based on a sparse grid, where the high-fidelity model sparse grid is a subset of the

low-fidelity model sparse grid [37]. The high-fidelity model evaluations are used to

generate a stochastic expansion of the correction between the low-fidelity model and

the high-fidelity model and is then combined with the stochastic expansion of the

low-fidelity model. This approach is effective if the correction can be approximated

accurately with a stochastic expansion of a lower order than that of the high-fidelity

model.

In rare event simulation (e.g., failure probability in reliability analysis), the com-

putational expense is due to the low probability of event occurrence and the need to

simulate the high-fidelity model near the event boundary. When multifidelity mod-

els are available, a large number of inexpensive low-fidelity model simulations can be

performed to narrow down the location of the event boundary so that fewer expensive

high-fidelity model simulations are needed to refine the event boundary [11, 30]. A

multifidelity approach can be particularly effective for rare event simulation because

the values of the high-fidelity model outputs are needed only in a small region of the

stochastic space. This is similar to optimization where the values of the high-fidelity

model are needed only near the path in the design space towards the optimum. In
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both of these situations, we are interested in the local behaviour of the high-fidelity

model. This setting enables the use of the inexpensive low-fidelity model to search

for the region of interest in order to focus the expensive high-fidelity model on that

region.

Unfortunately, other statistics, such as the mean and the variance, are global

in the sense that they require high-fidelity model outputs over the entire stochastic

space. Therefore, the methods for rare event simulation are inappropriate and it can

be challenging to extract the benefits of the low-fidelity model with methods that

construct an emulator of the high-fidelity model over the entire stochastic space. In

this thesis, we investigate an alternative approach that performs a correction to the

low-fidelity model at the level of the aggregate statistics rather than at the level of

the model outputs. Central to this idea is the method of control variates that allows

one to compute statistics of a random variable with the help of an auxiliary random

variable.

1.4.3 Control Variate Methods

In Monte Carlo (MC) simulation, we generate samples of the numerical model out-

puts from the distributions of the random input parameters to estimate statistics

of interest, such as the means and the variances of the model outputs. Due to the

randomness of the samples, the estimators are themselves also random and their ac-

curacy can be measured in terms of their mean squared errors (MSE) or root mean

squared errors (RMSE). For an unbiased estimator, the MSE is simply the estimator

variance. In regular Monte Carlo simulation, the convergence rate of the RMSE of

an estimator scales as n−1/2, where n is the number of samples. The convergence

rate is independent of the number of random inputs, making Monte Carlo simulation

suitable for problems with a large number of input parameters. It is also simple to

implement, using only repeated evaluations of the numerical model, which can be

provided as a closed “black-box”. However, because of the slow rate of convergence,

it may be necessary to generate many samples of the model outputs to achieve the

desired accuracy, requiring many evaluations of the numerical model.
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A variety of techniques have been developed to reduce the estimator variance in

Monte Carlo simulation, such as antithetic variates, control variates, importance sam-

pling, conditional Monte Carlo sampling, and stratified sampling [18]. These methods

do not increase the rate of convergence, but they reduce the constant factor in the

RMSE. In particular, the control variate (CV) method reduces the estimator variance

of a statistic of the random variable A(ω) by making use of the correlation between

A(ω) and an auxiliary random variable B(ω) [35]. We based our multifidelity ap-

proach on this framework by defining A(ω) to be the high-fidelity model output and

B(ω) to be the low-fidelity model output, where the randomness of both model out-

puts are induced by the same random inputs. In the classical control variate method,

the exact value of the statistic of the auxiliary random variable B(ω) is required.

Extensions to the control variate method that relax this requirement include the bi-

ased control variate (BCV) method [44], which replaces the exact statistic of B(ω)

with a deterministic approximation, and the quasi control variate (QCV) method

[14] and the control variates using estimated means (CVEM) method [40], both of

which replace the exact statistic of B(ω) with an estimate from a prior simulation.

In contrast to QCV and CVEM, our multifidelity approach does not utilize a prior

(or offline) simulation. Instead, we generate a single stream of the random inputs

and evaluate the low-fidelity model on this stream of inputs to generate samples of

B(ω) and evaluate the high-fidelity model on a subset of this stream of inputs to

generate samples of A(ω). We make use of the relative computational cost between

the high-fidelity model and the low-fidelity model to balance the number of samples

of A(ω) and the number of samples of B(ω) generated.

The StackedMC method [50] is another extension of the classical control variate

method that is related to our multifidelity approach. Instead of a provided low-fidelity

model, the StackedMC method constructs a surrogate from the samples of the high-

fidelity model using supervised learning techniques. This surrogate can then be used

as the auxiliary random variable B(ω) in the control variate method. The StackedMC

method is useful when a low-fidelity model is not readily available. Alternatively, it

may be combined with our multifidelity approach to further improve efficiency.
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In the context of optimization under certainty, such as problem (1.1), it may

be necessary to estimate the statistics of the high-fidelity model at many different

values of the design variables. In this setting, the high-fidelity model output at

each vector of design variables can be thought of as a different random variable,

providing a selection of candidates for the auxiliary random variable in the control

variate method. The databased Monte Carlo (DBMC) method [5] is also developed

for the case where it is necessary to estimate the statistics at many different values

of some deterministic input parameters. DBMC stores the simulation result at a

particular set of the deterministic input parameters in a database and use it in the

control variate method to improve the estimate of the statistics at other sets of the

deterministic input parameters. In contrast, we develop an approach tailored to

optimization under uncertainty, where the deterministic input parameters are the

design variables provided by an external optimization algorithm and the “database”

is updated with each new vector of design variables.

1.4.4 Multilevel Monte Carlo Methods

While the control variate method can be effective in reducing the estimator variance,

the convergence rate remains at n−1/2, where n is the number of samples, represent-

ing the computational cost of the simulation. The multilevel Monte Carlo (MLMC)

method [15, 48] increases the rate of convergence by making use of multiple levels of

lower fidelity models analogous to multigrid methods in the solution of partial differ-

ential equations. Let the high-fidelity model be a solver for a stochastic differential

equation (SDE) with the desired step size. A sequence of less expensive and lower

fidelity models can be generated by increasingly coarsening the step size, which is

then used as multiple control variates to estimate the statistics of the SDE solution

at the original step size. Since the computational cost of the SDE solver is inversely

proportional to the step size, MLMC can achieve an increased convergence rate as a

function of the total computational cost by using a geometric sequence of increasing

step sizes.

Our multifidelity approach is related to the MLMC method in that a low-fidelity
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model is used in the control variate method to reduce the error of the statistic esti-

mator. Thus, our multifidelity approach may be interpreted as the MLMC method

with one level, although the distinguishing MLMC feature of increased convergence

rate is lost if only one level is used. Since we do not use a sequence of lower fidelity

models with geometrically decreasing computational costs and model errors, we can

accept more general types of multifidelity models, as described at the end of §1.1.

The multilevel idea has also been applied to the case where it is necessary to

estimate the statistics of the high-fidelity model at many different values of some

deterministic input parameters. In some applications, it may be desirable to esti-

mate the function of the statistics in terms of the deterministic input parameters.

This may be done by interpolating the estimators of the statistics over a grid of the

deterministic input parameters. A multilevel approach can be applied here by suc-

cessively coarsening the grid of the deterministic input parameters at each level [19].

In the case of optimization under uncertainty, the deterministic input parameters

are the design variables. However, the design variables are provided by an external

optimization algorithm to search for the optimum and are not in the form of a grid

with spacing that can be controlled in a multilevel framework. Furthermore, it is not

necessary to obtain a functional form of the statistic estimator over the entire design

space. Instead, we make use of estimators only at the design variables chosen by the

optimization algorithm to step toward the optimum.

1.5 Thesis Objectives

Based on our motivation and the literature review, we find a need for a general

multifidelity method for uncertainty propagation that can be applied to a wide range

of models, especially those representing large-scale engineering systems. To further

improve efficiency, we need to exploit the structure provided by the optimization under

uncertainty setting to extract additional approximate information. To summarize, the

high level objectives of this thesis are:

• to develop rigorous approaches that leverage inexpensive surrogate models and
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approximate information to reduce the computational cost of optimization un-

der uncertainty; and

• to demonstrate the effectiveness of the multifidelity approaches in practical

aircraft design under uncertainty problems.

1.6 Thesis Outline

In Chapter 2, we develop the multifidelity estimator of the statistics of the high-

fidelity model based on the control variate method. We show that the multifidelity

estimator reduces computational cost by automatically balancing the computational

load between high-fidelity model evaluations and low-fidelity model evaluations. In

Chapter 3, we develop the information reuse estimator that utilizes estimators at pre-

vious optimization iterations in the control variate method to reduce computational

cost. This estimator is used specifically in an optimization under uncertainty setting

and is increasingly efficient as the optimizer approaches the optimal solution. We

also show how the multifidelity estimator and the information reuse estimator can be

combined to further improve efficiency. In Chapter 4, we demonstrate the effective-

ness of our methods in practical aerospace applications. Finally, we summarize the

thesis contributions in Chapter 5.
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Chapter 2

Multifidelity Models in Monte

Carlo Simulation

In this chapter, we develop a method to compute the estimator ŝA of the exact statistic

sA, where the random variable A(ω) is the high-fidelity model output Mhigh(x,U(ω))

at some fixed values of the design variables x. In §2.1, we introduce the multi-

fidelity estimator that makes use of the random output of the low-fidelity model

Mlow(x,U(ω)). Next, we discuss implementation issues in §2.2. In §2.3, we return to

the optimization problem (1.1) and discuss several optimization algorithms to use in

conjunction with the multifidelity estimator. Finally, we demonstrate the effectiveness

of the multifidelity estimator with numerical examples in §2.4.

2.1 Approach

Given an arbitrary random variable A(ω), consider the problem of estimating sA =

E [A(ω)]. Given n independent and identically distributed (i.i.d.) samples a1, a2, . . . , an

drawn from the distribution of A(ω), the regular Monte Carlo estimator of sA, denoted

as ān, is

ān =
1

n

n∑
i=1

ai
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and its mean square error (MSE) is given by the estimator variance

MSE [ān] = Var [ān] =
1

n2
Var

[
n∑
i=1

ai

]
=
σ2
A

n
, (2.1)

where σ2
A = Var [A] is the (unknown) variance of A(ω). To reduce the number of

samples needed to achieve an acceptably low estimator variance, we focus on the con-

trol variate method [18, 35], which makes use of the correlation between the random

variable A(ω) and an auxiliary random variable B(ω). In the multifidelity setting,

we take A(ω) to be the random output of the high-fidelity model and B(ω) to be

the random output of the low-fidelity model. Therefore, we first review the control

variate method.

2.1.1 Control Variate Estimator

Again, we consider estimating sA = E [A(ω)]. Given an auxiliary random variable

B(ω) in which the statistic sB is known exactly (in this case, sB = E [B(ω)]), let

{ai, bi}ni=1 be n i.i.d. pairs of samples drawn from the joint distribution of A(ω) and

B(ω). The control variate estimator of sA, denoted as ŝA, is

ŝA = ān + α
(
sB − b̄n

)
for some control parameter α ∈ R, where

ān =
1

n

n∑
i=1

ai, b̄n =
1

n

n∑
i=1

bi.

The control variate formulation can be interpreted as an adjustment to the regular

Monte Carlo estimator ān. Since E
[
sB − b̄n

]
= 0, the second term has no effect in

expectation. However, for finite sample size n, α
(
sB − b̄n

)
represents an adjustment

to ān based on the error of b̄n with respect to the exact statistic sB.
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The variance of the control variate estimator is

Var [ŝA] = Var [ān] + α2 Var
[
b̄n
]
− 2αCov

[
ān, b̄n

]
=
σ2
A

n
+ α2σ

2
B

n
− 2α

1

n2

n∑
i=1

n∑
j=1

Cov [ai, bj]

=
σ2
A

n
+ α2σ

2
B

n
− 2α

1

n2

n∑
i=1

Cov [ai, bi]

=
1

n

(
σ2
A + α2σ2

B − 2αρABσAσB
)
,

where σ2
A is the (unknown) variance of A(ω), σ2

B is the (unknown) variance of B(ω),

and ρAB is the (unknown) correlation coefficient between A(ω) andB(ω).1 Minimizing

Var [ŝA] with respect to α results in

α∗ = ρAB
σA
σB

and

MSE [ŝ∗A] = Var [ŝ∗A] =
(
1− ρ2

AB

)σ2
A

n
.

Thus, a reduction in the variance of the estimator can be achieved if B(ω) is correlated

with A(ω)—the higher the correlation, the greater the reduction in estimator variance

for a fixed number of samples n. For the ideal case of ρAB = 1, Var [ŝ∗A] = 0 for any

number samples.

The control variate method can be interpreted from a regression point of view.

Figure 2-1 illustrates a scatter plot of n samples of A(ω) and B(ω) and the linear

regression of the samples with slope α. The locations of ān and b̄n are computed from

these samples. Given sB, the control variate method makes an adjustment to ān from

the error in b̄n with respect to sB and the slope of the regression line α to obtain ŝA.

Based on this framework, we now present the multifidelity estimator.

1We discuss the estimation of these parameters in §2.2.1.
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Figure 2-1: Illustration of the regression interpretation of the control variate method.
The dots are samples of the random variables A(ω) and B(ω).

2.1.2 Multifidelity Estimator

We consider the estimation of the mean of a high-fidelity model at a fixed vector

of design variables. Thus, we drop x from the notation for clarity. Let the random

variable A(ω) = Mhigh(U(ω)) be the random output of the high-fidelity model and

B(ω) = Mlow(U(ω)) be the random output of the low-fidelity model. As we shall

see, for the low-fidelity model to be useful, it should be cheap to evaluate and B(ω)

should be correlated with A(ω).

We adapt the control variate method to multifidelity models using the samples of

model outputs ai = Mhigh(ui) and bi = Mlow(ui), where ui, i = 1, 2, 3, . . . are i.i.d.

samples drawn from the distribution of the random input vector U(ω). However,

sB = E [Mlow(U(ω))] is not known in this case and is approximated by b̄m = 1
m

∑m
i=1 bi

with m � n. Some other extensions to the control variate method address this

problem by generating an independent simulation with m samples to compute b̄m

[14, 40]. In our case, we simply require m− n additional samples of bi beyond the n

samples already available. Thus, the multifidelity estimator of sA, denoted as ŝA,p, is

ŝA,p = ān + α
(
b̄m − b̄n

)
= αb̄m +

(
ān − αb̄n

)
(2.2)

for some control parameter α ∈ R and computational effort p to be defined below.
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The second equality emphasizes the interpretation that the majority of the model

evaluations is performed on the low-fidelity model and then a correction term is

applied. The variance of the multifidelity estimator is

Var [ŝA,p] = Var [ān] + α2 Var
[
b̄m
]

+ α2 Var
[
b̄n
]

+ 2αCov
[
ān, b̄m

]
− 2αCov

[
ān, b̄n

]
− 2α2 Cov

[
b̄m, b̄n

]
=
σ2
A

n
+ α2σ

2
B

m
+ α2σ

2
B

n

+ 2α
1

nm

n∑
i=1

m∑
j=1

Cov [ai, bj]− 2α
ρABσAσB

n
− 2α2 1

nm

m∑
i=1

n∑
j=1

Cov [bi, bj]

=
σ2
A

n
+ α2σ

2
B

m
+ α2σ

2
B

n

+ 2α
1

nm

n∑
i=1

Cov [ai, bi]− 2α
ρABσAσB

n
− 2α2 1

nm

n∑
j=1

Cov [bj, bj]

=
1

n

(
σ2
A + α2σ2

B − 2αρABσAσB
)
− 1

m

(
α2σ2

B − 2αρABσAσB
)
.

The computational effort to compute the regular Monte Carlo estimator from

(2.1) is n evaluations of the high-fidelity model. However, computing the multifidelity

estimator ŝA,p requires n evaluations of the high-fidelity model and m evaluations of

the low-fidelity model. To benchmark against the regular Monte Carlo estimator, we

define a unit of computational effort p based on the “equivalent number of high-fidelity

model evaluations”:

p = n+
m

w
= n

(
1 +

r

w

)
,

where w is the (assumed known) ratio of the average computation time per high-

fidelity model evaluation to the average computation time per low-fidelity model

evaluation and r = m/n > 1 is the ratio of the number of low-fidelity model eval-

uations to the number of high-fidelity model evaluations. Therefore, in addition

to determining the optimal α, we must allocate the computational budget between

high-fidelity model evaluations and low-fidelity model evaluations. We rewrite the
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multifidelity estimator variance in terms of p, r, and w as

Var [ŝA,p] =
1

p

(
1 +

r

w

)
︸ ︷︷ ︸

1
n

[
σ2
A +

(
1− 1

r

)(
α2σ2

B − 2αρABσAσB
)]
.

Given a fixed computational budget p, we minimize Var [ŝA,p] in terms of both α and

r. The result is

α∗ = ρAB
σA
σB
, r∗ =

√
wρ2

AB

1− ρ2
AB

and

MSE
[
ŝ∗A,p

]
= Var

[
ŝ∗A,p

]
=

(
1 +

r∗

w

)[
1−

(
1− 1

r∗

)
ρ2
AB

]
σ2
A

p
. (2.3)

It can be seen that r∗ allocates a greater proportion of the computational budget p

to low-fidelity model evaluations when the low-fidelity model is inexpensive (i.e., w is

large) and “accurate”, where accuracy is in terms of the correlation (i.e., ρAB is close

to 1). Nevertheless, the penalty for approximating the exact statistic sB with b̄m is

that we achieve less variance reduction than the original control variate method.

If w →∞, i.e., the low-fidelity model is almost free, then r∗ →∞ and Var
[
ŝ∗A,p

]
→

(1− ρ2
AB)

σ2
A

p
so that we recover the classical control variate solution. On the other

hand, if ρAB → 1, i.e., the low-fidelity model is almost perfect, then Var
[
ŝ∗A,p

]
→ 1

w

σ2
A

p
.

Therefore, a perfectly correlated low-fidelity model is not sufficient for variance re-

duction over the regular Monte Carlo estimator using the same computational budget

p; it must also be cheaper to evaluate than the high-fidelity model, i.e. w > 1. How-

ever, if the values of w and ρAB are such that r∗ ≤ 1, the correlation is not high

enough and the low-fidelity model is not cheap enough for the multifidelity estimator

to be worthwhile. In other words, given a low-fidelity model that is w times cheaper

to evaluate than the high-fidelity model, it is useful only if its correlation coefficient

with respect to the high-fidelity model satisfies

ρ2
AB >

1

1 + w
.

If this is not the case, it is better to switch back to the regular Monte Carlo estimator.
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2.2 Implementation

The key pieces for the implementation of the multifidelity Monte Carlo simulation

are the calculation of the parameters α∗ and r∗ and an iterative procedure to incre-

ment the number of samples. We also discuss practical aspects including estimating

statistics other than the mean and estimating functions of statistics.

2.2.1 Parameter Calculations

In practice, since σA, σB, and ρAB are unknown, the optimal parameters α∗ and r∗

are replaced by their sample estimates α̂ and r̂ based on the n samples of A(ω) and

B(ω), {ai, bi}ni=1:

α̂ =

∑n
i=1 (ai − ān)

(
bi − b̄n

)∑n
i=1

(
bi − b̄n

)2 , (2.4a)

r̂ =

√
wρ̂2

AB

1− ρ̂2
AB

, (2.4b)

ρ̂2
AB =

[∑n
i=1 (ai − ān)

(
bi − b̄n

)]2[∑n
i=1 (ai − ān)2][∑n

i=1

(
bi − b̄n

)2
] , (2.4c)

σ̂2
A =

∑n
i=1 (ai − ān)2

n− 1
. (2.4d)

To assess the impact of the errors in α̂ and r̂ relative to the exact parameters α∗

and r∗, we plot the ratio

Var [ŝA,p]

Var [āp]
=
(

1 +
r

w

)[
1 +

(
1− 1

r

)(
α2σ

2
B

σ2
A

− 2αρAB
σB
σA

)]

as a function of α and r in Figure 2-2 for some typical values of w and ρAB. A value

less than one indicates a reduction in variance over the regular Monte Carlo estimator

at the same computational effort. It can be seen that there is reasonable room for

deviations from α∗ and r∗ (location indicated by the cross), although optimal variance

reduction will not be achieved.
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Figure 2-2: Contour plots of Var [ŝA,p]/Var [āp] as a function of control parameter α
and ratio of the number of model evaluations r with w = 30 and σA/σB = 1. The
cross indicates the location of (α∗, r∗).

2.2.2 Iterative Procedure

The procedure to compute the multifidelity estimator begins with a set of n = ninit

samples {ai, bi}ni=1 that is incremented by n∆ every iteration. The computation times

for the initial ninit samples can be used to determine w, if not already available, and

n∆ may be chosen based on the number of processors available for parallel evaluations.

During each iteration, the samples {ai, bi}ni=1 are used to calculate the parameters α̂

and r̂. This then determines the total number of low-fidelity model evaluations needed

to compute the multifidelity estimator (including the existing n low-fidelity model

evaluations) as m = nr̂. Omitting algorithm overhead, the computational expense is

therefore p = n+m/w. An algorithm to compute the multifidelity estimator ŝA,p for

sA = E [A(ω)] = E [Mhigh(U(ω))] is shown in Algorithm 2.1. We emphasize that all

of the samples used in the algorithm are generated from the same stream of random

input vectors ui, i = 1, 2, 3, . . . in order to induce the correlation needed for the

multifidelity estimator.
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Algorithm 2.1 Multifidelity Estimator

Given desired RMSE, ratio of average computation time w, initial number of samples
ninit, increment in number of samples n∆, high-fidelity model Mhigh(u), low-fidelity
model Mlow(u), and a sequence of pseudo-random input vectors ui for i = 1, 2, 3, . . .
drawn from the distribution of U(ω):

1 Let nold = 0, mold = 0, ` = 0, and n = ninit.

2 Evaluate samples ai = Mhigh(ui) for i = nold + 1, . . . , n.

3 If ` < n, evaluate samples bi = Mlow(ui) for i = `+ 1, . . . , n and set ` = n.

4 Compute ān using {ai}ni=1 and b̄n using {bi}ni=1.

5 Compute α̂, ρ̂2
AB, r̂ and σ̂2

A, from (2.4) using {ai, bi}ni=1.

6 Set m← max {nr̂,m}.
7 If ` < m, evaluate samples bi = Mlow(ui) for i = `+ 1, . . . ,m and set ` = m.

8 Compute b̄m using using {bi}mi=1

9 Compute multifidelity estimator from (2.2).

10 Compute RMSE from (2.3).

11 If RMSE is too large, set nold = n, mold = m, n← n+n∆ and return to Step 2;
otherwise, stop.

2.2.3 Estimating Variance

The preceding development assumes that we are interested in estimating sA = E [A(ω)] =

E [Mhigh(U(ω))]. We may also use the procedure to estimate other statistics such

as sA = Var [A(ω)] = Var [Mhigh(U(ω))], but some care is needed to ensure that

the method is efficient. For example, computing the variance based on the formula

E
[
A(ω)2]− (E [A(ω)])2 can produce unsatisfactory results because ρA2B2 tends to be

worse than ρAB. Instead, it is usually better to define the samples from the residuals

as

ai =
n

n− 1

(
Mhigh(ui)−

1

n

n∑
j=1

Mhigh(uj)

)(
Mhigh(ui)−

1

n− 1

n−1∑
j=1

Mhigh(uj)

)

bi =
m

m− 1

(
Mlow(ui)−

1

m

m∑
j=1

Mlow(uj)

)(
Mlow(ui)−

1

m− 1

m−1∑
j=1

Mlow(uj)

)
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based on the one-pass algorithm for computing variance [28]. Using the above defini-

tion of the samples ai and bi, we get

ān =
1

n

n∑
i=1

ai =
1

n− 1

n∑
i=1

(
Mhigh(ui)−

1

n

n∑
j=1

Mhigh(uj)

)2

b̄m =
1

m

m∑
i=1

bi =
1

m− 1

m∑
i=1

(
Mlow(ui)−

1

m

m∑
j=1

Mlow(uj)

)2

and so we can apply the approach described in §2.1.2 to the redefined samples {ai, bi}

as if we were estimating the mean. The correlation coefficient based on the residuals

is usually higher than that based on the square of the random variables.2 However,

ai and bi are no longer i.i.d. samples and the theory of §2.1.2 is not valid. Neverthe-

less, the results in §2.4 suggest that this approach is still effective in estimating the

variance.

We can similarly redefine the samples to estimate other quantities of interest, e.g.,

indicator functions of the model outputs to estimate probabilities. More advanced

control variate techniques are available to estimate quantiles [20]. However, special-

ized methods may be needed to efficiently estimate rare probabilities and reliability

metrics [30], since the control variate approach does not directly address the problem

of landing few samples in the rare event region.

2.2.4 Estimating Functions of Statistics

In optimization under uncertainty, we may be concerned with functions of one or

more statistics. For example, a robust objective function may be formulated as

E [Mhigh(U(ω))] +
√

Var [Mhigh(U(ω))]. Let sA be the q × 1 vector of statistics of

interest (e.g., q = 2 and sA = [E [Mhigh(U(ω))] Var [Mhigh(U(ω))]]>) and let ŝA,p be

the q × 1 vector of its estimator. The function may then be written as f(sA) and we

estimate it as f(ŝA,p).

The error in the function estimator f(ŝA,p) can be approximated using a first-order

2For example, consider a low-fidelity model that is simply a constant offset of the high-fidelity
model.
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Taylor expansion about sA:

f(ŝA,p)− f(sA) ≈ ∇sf(ŝA,p)
>(ŝA,p − sA).

Squaring both sides and taking the expectation, we obtain an approximation of the

mean square error [52]

MSE [f(ŝA,p)] ≈ ∇sf(ŝA,p)
>Cov [ŝA,p]∇sf(ŝA,p), (2.5)

where Cov [ŝA,p] is the q× q covariance matrix of the vector of estimators ŝA,p. Thus,

we need to generalize the scalar multifidelity estimator ŝA,p in (2.2) to the vector case

ŝA,p.

Let A(ω) and B(ω) be q × 1 random vectors and let ΣA = Cov [A(ω)], ΣB =

Cov [B(ω)], and ΣAB = Cov [A(ω),B(ω)] be their q × q covariance matrices and

cross-covariance matrix. Also, let α be a q × q diagonal matrix whose elements are

the q (optimal) control parameters for each of the q components of ŝA,p. Then, the

q × 1 vector of multifidelity estimators is

ŝA,p = ān + α
(
b̄m − b̄n

)
and the q × q covariance matrix of the vector of multifidelity estimators is

Cov [ŝA,p] = Cov [ān] + αCov
[
b̄m
]
α> + αCov

[
b̄n
]
α>

+ Cov
[
ān, b̄m

]
α> + αCov

[
b̄m, ān

]
− Cov

[
ān, b̄n

]
α> −αCov

[
b̄n, ān

]
−αCov

[
b̄m, b̄n

]
α> −αCov

[
b̄n, b̄m

]
α>

=
ΣA

n
+ α

ΣB

m
α> + α

ΣB

n
α> +

ΣAB

m
α> + α

ΣBA

m

− ΣAB

n
α> −α

ΣBA

n
− 2α

ΣB

m
α>

=
1

n

{
ΣA +

(
1− n

m

)(
αΣBα

> −αΣBA − (αΣBA)>
)}
.
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The covariance matrix of the vector of multifidelity estimators can then be used to

compute the approximation of the mean square error of the function estimator in

(2.5). This error estimate is useful for predicting the number of samples needed to

control the objective function noise during optimization.

2.3 Optimization Algorithms and Convergence

We return to optimization problem (1.1) and briefly discuss the choice of optimization

algorithms to use in conjunction with the multifidelity estimator. Given the vector of

design variables xk at optimization iteration k, we apply Algorithm 2.1 to compute

ŝA,p(xk) and evaluate the functions f̂(xk) = f(xk, ŝA,p(xk)), ĝ(xk) = g(xk, ŝA,p(xk)),

and ĥ(xk) = h(xk, ŝA,p(xk)). Due to the pseudo-randomness of Monte Carlo sampling,

the objective and constraint values returned to the optimizer, f̂(xk), ĝ(xk), and ĥ(xk),

are noisy with respect to the exact objective and constraint values f(xk, sA(xk)),

g(xk, sA(xk)), and h(xk, sA(xk)) and the optimization problem becomes a stochastic

optimization problem. While the level of noise is controlled by the specified root mean

square error (RMSE) tolerance in Algorithm 2.1, it nevertheless poses a challenge for

any optimization algorithm that is not noise tolerant. Thus, we consider three classes

of optimization algorithms: stochastic approximation, sample average approximation,

and derivative-free optimization.

2.3.1 Stochastic Approximation

The stochastic approximation method (also known as the Robbins-Monro method)

[47] is designed to find at least a local solution to the unconstrained minimization

x∗ = arg min
x

f(x, sA(x)),

assuming the objective function is bounded from below, using only noisy approxi-

mations of the objective. Motivated by the steepest descent method, the algorithm
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generates a new vector of design variables at optimization iteration k as

xk+1 = xk − λk∇xf̂(xk)

starting from an initial vector of design variables x0. The parameters λk, k =

0, 1, 2, . . . is a prescribed sequence of step lengths and ∇xf̂(xk) is the gradient es-

timator. Assuming that x∗ is the unique solution, xk → x∗ as k →∞ if the following

conditions are satisfied [47]:

I. Gain sequence: λk > 0, λk → 0 as k →∞,
∑∞

k=0 λk =∞, and
∑∞

k=0 λ
2
k <∞.

II. Search direction: For some symmetric, positive definite matrix H and every

0 < ξ < 1, infξ<‖x−x∗‖<1/ξ (x− x∗)>H∇xf(x, sA(x)) > 0.

III. Mean-zero noise:3 E
[
∇xf̂(x)−∇xf(x, sA(x))

]
= 0 for all x and k.

IV. Growth and variance bounds: ‖∇xf(x, sA(x))‖2+E
[∥∥∥∇xf̂(x)−∇xf(x, sA(x))

∥∥∥2
]
≤

ν
(
1 + ‖x‖2) for all x and k and some ν > 0.

Using the theoretically optimal step lengths λk = λ
k+1

for some positive constant λ,

the asymptotic rate of convergence is O
[
k−1/2

]
.

The stochastic approximation method requires estimates of the objective gradient.

The expectation operator and the gradient operator can be interchanged, for exam-

ple, ∇x E [M(x,U(ω))] = E [∇xM(x,U(ω))], as long as the function and its gradient

are continuous and are bounded above and below [47]. Thus, we can apply Algo-

rithm 2.1 to the gradient output of the high-fidelity model and the gradient output

of the low-fidelity model and obtain the multifidelity gradient estimator. If gradient

output is unavailable, variations on the stochastic approximation method such as the

simultaneous perturbation stochastic approximation method construct the gradient

estimator using only noisy function evaluations [46]. The basic method can also be

extended to constrained optimization by projecting the vectors of design variables it-

erates into the feasible region. However, the projection technique is only practical for

3This may not be satisfied for some objective functions, but there exists an alternative set of
conditions that allow for some bias [47].

43



simple constraints such as variable bounds and cannot, in general, handle nonlinear

(potentially also noisy) constraints.

2.3.2 Sample Average Approximation

In the sample average approximation method (also known as the sample path method)

[47], the same realizations {ui}ni=1 of the random input vectors U(ω) are used to com-

pute the estimators for all optimization iterations. This effectively turns f̂(x), ĝ(x),

and ĥ(x) into deterministic functions of x, permitting a wide range of deterministic

constrained nonlinear programming techniques to solve optimization problem (1.1).

However, since f̂(x), ĝ(x), and ĥ(x) are approximations to f(x, sA(x)), g(x, sA(x)),

and h(x, sA(x)), respectively, the solution of the deterministic problem using these n

realizations of the random input vectors, denoted as x(n), does not, in general, coin-

cide with true solution x∗ of (1.1). Nevertheless, as long as the function is bounded

above and below, x(n) → x∗ as n → ∞ at an asymptotic rate of O
[
n−1/2

]
[47]. For

finite sample size n, a confidence bound on the optimality gap can be computed to

assess the quality of the solution [31].

In order to use the multifidelity estimator with the sample average approximation

method, n, r, and m = rn must remain fixed for all optimization iterations so that

the same samples {ui}mi=1 can be used to compute b̄m and the same subset of the

samples {ui}ni=1 can be used to compute ān and b̄n. Once n is chosen, a practical

choice is to fix the value of r at the optimal r∗ for the multifidelity estimator at the

first optimization iteration. However, it may no longer be optimal for the multifidelity

estimators at subsequent optimization iterations.

2.3.3 Derivative-Free Optimization

If it is not possible to fix the realizations of the random input vector U(ω) for all

optimization iterations, derivative-free optimization methods may be used to solve

the noisy (stochastic) optimization problem. Although derivative-free optimization

methods are not designed specifically for stochastic optimization problems, they are
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typically tolerant to small levels of noise in practice [8]. Examples of derivative-free

optimization algorithms include mesh adaptive direct search (MADS) [2], implicit fil-

tering [23], derivative-free optimization (DFO) [7], bound optimization by quadratic

approximation (BOBYQA) [42], and constrained optimization by linear approxima-

tion (COBYLA) [41]. Most of these methods sample the objective and constraint

functions relatively widely in the design space to determine the search direction,

which has the effect of smoothing out the high-frequency noise in the function evalu-

ations provided that the magnitude of the noise is small relative to the true function

values. In typical practice, this allows the optimizer to find a solution that is close to

the true optimum x∗ of (1.1). However, there is no guarantee that the derivative-free

optimization methods will actually converge to x∗.

The noise tolerance of these methods can be improved by accounting for the mag-

nitude of the noise when comparing objective function values to accept or reject can-

didate vectors of design variables. The dynamic accuracy framework [6] uses bounds

in the comparison of objective function values in order to specify the acceptable noise

level that enables progress in the optimization. A challenge with this approach is that

the conservative bounds may result in acceptable noise levels that decrease rapidly

from one optimization iteration to the next, requiring increasingly large amounts of

computational effort to compute the estimators f̂(xk), ĝ(xk), and ĥ(xk).

2.4 Numerical Results

We compare the efficiency of the multifidelity estimator against the regular Monte

Carlo estimator with two example problems. The algorithm parameters are set to

ninit = 30 and n∆ = 10. The examples in §2.4.1 and §2.4.2 are designed to illustrate

the effect of the ratio of average computation time w and the correlation coefficient

between the random output of the high-fidelity model and the random output of the

low-fidelity model ρAB, respectively, on the computational cost of the multifidelity

estimator.
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Table 2.1: Distributions of the 5 random inputs for the short column example.

Random Variable Distribution Lower Bound Upper Bound Mean Std. Dev.

b(ω) Uniform 5 15 – –
h(ω) Uniform 15 25 – –
P (ω) Normal – – 500 100
M(ω) Normal – – 2000 400
Y (ω) Lognormal – – 5 0.5

2.4.1 Short Column Uncertainty Propagation

This is a simple analytical example of a short column with rectangular cross-sectional

area bh and yield stress Y subject to bending moment M and axial force P . The

high-fidelity model is the limit-state function defined as [29]

Mhigh(b, h, P,M, Y ) = 1− 4M

bh2Y
−
(

P

bhY

)2

and a “low-fidelity model” is constructed by artificially perturbing the high-fidelity

model:

Mlow(b, h, P,M, Y ) = 1− 3.8M

bh2Y
−

(
P
(
1 + M−2000

4000

)
bhY

)2

.

For the purpose of demonstration, all five inputs are treated as random variables

with distributions listed in Table 2.1. We seek to estimate E [Mhigh], Var [Mhigh] and

f = E [Mhigh] + 3
√

Var [Mhigh].

Both the high-fidelity model and the low-fidelity model take negligible time to

evaluate, but we let the ratio of average computation times be w = 5 and w = 20

to see its effect on the variance reduction. The correlation coefficient between the

high-fidelity model and the low-fidelity model (computed from (2.4c)) is ρ̂AB = 0.984

for the samples used to estimate the mean and is ρ̂AB = 0.952 for the samples used to

estimate the variance. As discussed at the end of §2.1.2, when ρAB is close to 1, the

amount of variance reduction is proportional to 1/w and hence we expect the RMSE

in the multifidelity estimator to be approximately 1/
√
w that of the regular Monte

Carlo estimator. We plot the RMSE (based on (2.3) and (2.5)) of the regular Monte

Carlo estimators and the multifidelity estimators as a function of the computational
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(c) f = E [Mhigh] + 3
√

Var [Mhigh] estimator

Figure 2-3: Root mean square error of the estimators as a function of the computa-
tional effort for the short column example.

effort p in Figure 2-3, where computational effort is the number of high-fidelity model

evaluations for the regular Monte Carlo estimators and the equivalent number of

high-fidelity model evaluations for the multifidelity estimators. The computational

savings are significant. For example, to achieve 10−2 RMSE for the mean estimate, the

regular Monte Carlo estimator requires about 3400 high-fidelity model evaluations,

the multifidelity estimator with w = 5 requires about 1300 equivalent high-fidelity

model evaluations, and the multifidelity estimator with w = 20 requires about 400

equivalent high-fidelity model evaluations.

In Figure 2-4, we plot the parameters ρ̂AB, r̂ and α̂ used to compute the multifi-
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Figure 2-4: Parameters ρ̂AB, r̂ and α̂ versus the number of high-fidelity model evalu-
ations for the short column example with w = 20.

delity estimators. Their values fluctuate but, as discussed in §2.2.1, the multifidelity

estimator is robust to errors in these parameters to a certain degree and we still obtain

variance reduction as shown in Figure 2-3.

Finally, we verify our theoretical error for the multifidelity estimator from (2.3)

and our approximation of the error for functions of statistics from (2.5). For f =

E [Mhigh] + 3
√

Var [Mhigh], we have

∇f =

 1

3

2
√

Var [Mhigh]

 .
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(c) f = E [Mhigh] + 3
√

Var [Mhigh] estimator

Figure 2-5: Comparison of the theoretical root mean square errors to the empirical
root mean square errors of the multifidelity estimators for the short column example
with w = 20.

We compare the theoretical RMSE with empirical RMSE obtained by repeating the

calculation with new realizations of the random inputs 100 times. The results are

shown in Figure 2-5 and show good agreement. In particular, we observe that for

functions of statistics that are not too nonlinear (as in this example), the RMSE

approximation using (2.5) works well.
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Figure 2-6: 2-D horn geometry where a = 0.5, b = 3, and L = 5. The shape of the
horn flare is described by the half-widths bi, i = 1, . . . , 6 uniformly distributed along
the flare.

Table 2.2: Distributions of the 3 random inputs for the horn example.

Random Variable Distribution Lower Bound Upper Bound Mean Std. Dev.

k(ω) Uniform 1.3 1.5 – –
zu(ω) Normal – – 50 3
zl(ω) Normal – – 50 3

2.4.2 Acoustic Horn Uncertainty Propagation

In this example, we model a 2-D acoustic horn governed by the non-dimensional

complex Helmholtz equation ∇2u + k2u = 0. An incoming wave enters the horn

through the inlet and exits the outlet into the exterior domain with a truncated

absorbing boundary Γradiation [13]. The geometry of the horn is illustrated in Figure 2-

6. The output of the model is the reflection coefficient s =
∣∣∣∫Γinlet

u dΓ− 1
∣∣∣, a measure

of the horn’s efficiency, and we again estimate its mean and variance. The three

random inputs considered for this example are the wave number k, upper horn wall

impedance zu, and lower horn wall impedance zl with distributions listed in Table 2.2.

In the next section, we also consider six geometric parameters b1 to b6 describing the

profile of the horn flare for optimization. Here, for uncertainty propagation, the

geometric parameters are fixed at a straight flare profile as shown in Figure 2-6.

The high-fidelity model is a finite element model of the Helmholtz equation with
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35,895 states and the low-fidelity model is a reduced basis model (with 9 parameters)

constructed from the finite element discretization [43]. We consider two cases for

the low-fidelity model: (i) a less accurate reduced basis model with N = 25 basis

functions, and (ii) a more accurate reduced basis model with N = 30 basis functions.

For the first case, the correlation coefficient between the high-fidelity model and the

low-fidelity model (computed from (2.4c)) is ρ̂AB = 0.959 for the samples used to

estimate the mean and is ρ̂AB = 0.897 for the samples used to estimate the variance.

For the second case, it is ρ̂AB = 0.998 for the samples used to estimate the mean

and is ρ̂AB = 0.994 for the samples used to estimate the variance. The increase in

computational cost of the reduced basis model due to the five additional bases in the

second case is negligible compared to the cost of the original finite element model and

so the ratio of average computation times is w = 40 for both cases. This allows us to

examine the effect of the correlation coefficient on the efficiency of the multifidelity

estimator.

The RMSE of the mean estimator and of the variance estimator are shown in

Figures 2-7a and 2-7b. We also plot the RMSE of f = E [s] +
√

Var [s] in Figure 2-

7c. The computational effort is the number of high-fidelity model evaluations for

the regular Monte Carlo estimator and the equivalent number of high-fidelity model

evaluations for the multifidelity estimator. This example demonstrates the benefit

of a good correlation between the high-fidelity model and the low-fidelity model. To

achieve 10−5 RMSE for the variance estimate, the regular Monte Carlo estimator re-

quires about 1800 high-fidelity model evaluations, the multifidelity estimator with the

less correlated low-fidelity model (N = 25 basis functions) requires about 600 equiv-

alent high-fidelity model evaluations, and the multifidelity estimator with the more

correlated low-fidelity model (N = 30 basis functions) requires about 100 equivalent

high-fidelity model evaluations.

Given the high correlation between the reduced basis model with N = 30 basis

functions and the finite element model, it appears to be simpler to throw all of the

computational budget into computing a regular Monte Carlo estimator using only

the reduced order model. If we do this for the mean estimate, there will be a bias
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(a) Mean estimator
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(b) Variance estimator
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Figure 2-7: Root mean square error of the estimators as a function of the computa-
tional effort for the horn example. The dashed line indicates the bias of the low-fidelity
model (N = 30 basis functions).
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of about −3 × 10−3 with respect to the true mean of the finite element model that

cannot be reduced regardless of the number of cheap reduced order model evaluations

used. For this problem, the bias is large relative to the RMSE that can be achieved by

the multifidelity estimator (see Figure 2-7a) and highlights the fact that the choice of

the low-fidelity model should be based on its correlation with the high-fidelity model

rather than point-wise differences in the outputs. Furthermore, this suggests that

the construction of the reduced basis model should be based on its correlation with

respect to the finite element model.

We investigate the correlation between a reduced basis model and the finite el-

ement model for a simplified case. Let Mhigh(u) be the finite element model and

Mlow(u) be the reduced basis model, both with input parameters u. Consider the L2

error between the the two models weighted by the function π(u):

∫ ∞
−∞

(Mhigh(u)−Mlow(u))2π(u) du = − 2

∫ ∞
−∞

Mhigh(u)Mlow(u)π(u) du

+

∫ ∞
−∞

M2
low(u)π(u) du

+

∫ ∞
−∞

M2
high(u)π(u) du.

Let the parameters u be a realization of the random variable U(ω) with density

function π(u) and assume, for simplicity, that both the finite element model and the

reduced basis model has zero mean. The weighted L2 error then becomes

E
[
(Mhigh(u)−Mlow(u))2] = − 2 Cov [MhighU(ω),Mlow(U(ω))]

+ Var [Mlow(U(ω))] + Var [Mhigh(U(ω))].

Thus, a reduced basis model construction strategy that (heuristically) minimizes its

weighted L2 error would attempt to reduce its variance and increase its covariance

with respect to the finite element model, which can have the effect of increasing the

correlation between the reduced basis model and the finite element model.
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Table 2.3: Initial values, lower bounds, upper bounds, and optimal values of the 6
horn flare half-widths.

b0 bL bU b∗

0.857 0.679 1.04 0.679
1.21 1.04 1.39 1.07
1.57 1.39 1.75 1.75
1.93 1.75 2.11 1.99
2.29 2.11 2.46 2.25
2.64 2.46 2.82 2.46

2.4.3 Acoustic Horn Robust Optimization

To demonstrate the effectiveness of the multifidelity estimator in the context of op-

timization under uncertainty, we consider the robust optimization of the shape of

the acoustic horn flare. The design variables are b = [b1 · · · b6]> representing the

half-widths of the horn flare as shown in Figure 2-6. The initial values of the de-

sign variables (corresponding to the straight flare in §2.4.2), their lower bounds, and

their upper bounds are listed in Table 2.3. The minimization of the horn reflection

coefficient is formulated as

min
bL≤b≤bU

f(b) = E [s(b, ω)] +
√

Var [s(b, ω)].

We employ the implicit filtering algorithm imfil v1 [23] developed for bound-

constrained optimization problems without analytical derivatives. The algorithm

calculates least-squares derivatives by evaluating the objective function in a stencil

in the design space. A quasi-Newton search direction is generated from the least-

squares derivatives and candidate vectors of design variables are accepted or rejected

based on a line search. The optimization is conducted with the objective function

evaluated using the regular Monte Carlo estimator and with the objective function

evaluated using the multifidelity estimator. For the multifidelity estimator, the low-

fidelity model is the reduced basis model with N = 30 basis functions. In both

cases, the tolerance on the RMSE of the f(b) estimator is fixed at 2 × 10−3. Note

that it also possible to specify a decreasing tolerance that depends on the size of the

imfil v1 coordinate search stencil, but for simplicity it is not shown here. Three
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Figure 2-8: Comparison of convergence histories for the robust horn optimization
using the regular Monte Carlo estimator and the multifidelity estimator. The opti-
mization algorithm is implicit filtering.

trials were run for each case and the convergence of the objective as a function of the

cumulative computational effort is shown in Figure 2-8. The computational effort is

the number of high-fidelity model evaluations for the regular Monte Carlo estimator

and the equivalent number of high-fidelity model evaluations for the multifidelity

estimator. The computational savings are significant. It can be seen that using the

multifidelity estimator provides cumulative computational savings over the course of

the optimization and we locate the optimum using about 85% less computational

effort. The solution field for the initial straight horn and the optimal horn are shown

in Figure 2-9. The mean reflection coefficient at the initial shape is 0.113 with a

standard deviation of 0.0228 and the mean reflection coefficient at the optimal shape

is 0.0220 with a standard deviation of 0.0124.

2.5 Chapter Summary

In this chapter, we presented a multifidelity approach to estimate statistics of the

output of an expensive high-fidelity model. We showed that employing an inexpensive

low-fidelity model whose output is correlated with that of the high-fidelity model can

reduce the computational cost, measured in terms of the equivalent number of high-

fidelity model evaluations, to achieve a desired error tolerance in the statistic estimates

55



(a) Initial shape (b) Optimal shape

Figure 2-9: Finite element solution of the Helmholtz equation at the initial horn
design b0 and robust optimal horn design b∗.

relative to regular Monte Carlo simulation. Numerical results for the acoustic horn

robust optimization example demonstrated 85% reduction in computational cost.

In practice, we do not always have the luxury of a good low-fidelity model to

compute the multifidelity estimator. In the next chapter, we consider how to perform

optimization under uncertainty using only the high-fidelity model without incurring

excessive computational cost.
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Chapter 3

Leveraging Model Correlation

Over Design Space

In this chapter, we develop an alternative method to compute the estimator ŝA(x)

of the exact statistic sA(x). In §3.1, we consider the situation where we do not have

an inexpensive low-fidelity model and introduce the information reuse estimator that

makes use of another source of approximate information available during optimization

under uncertainty. Next, we discuss implementation issues in §3.2. In §3.3, we return

to the situation where a low-fidelity model is available and combine the multifidelity

estimator and the information reuse estimator to further improve efficiency. Finally,

we demonstrate the effectiveness of the information reuse estimator and the combined

estimator with numerical examples in §3.4.

3.1 Approach

Consider the problem of estimating statistics to evaluate objective (and constraint)

functions for optimization, such as problem (1.1). We cannot compute the multifi-

delity estimator described in Chapter 2 because we do not have a low-fidelity model.

Fortunately, during optimization under uncertainty, the statistics of interest are com-

puted at many different vectors of design variables, generating an alternative source

of approximate information. This is useful information because the random output
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of the model at one vector of design variables is often correlated with the random

output of the model at another vector of design variables.

3.1.1 Model Autocorrelation over Design Space

The model output M(x,U(ω)) can be interpreted as a random process indexed by

the vector of design variables x. Therefore, if A(ω) is the random output of the

model at a particular vector of design variables and C(ω) is the random output of

the model at another vector of design variables, then the autocorrelation structure of

M(x,U(ω)) provides the correlation between A(ω) and C(ω) needed to make C(ω)

a suitable auxiliary random variable for the control variate method. Intuitively, if

the model M(x,u) at a realization u of the random input vector U(ω) is smooth

in the x direction, then a small perturbation x + ∆x produces only a small change

in the output. Considering all realizations of U(ω), it is reasonable to think that

M(x + ∆x,U(ω)) is correlated with M(x,U(ω))

To make the argument concrete, we determine an approximation of the autocorre-

lation of M(x,U(ω)) for the simpler case of a scalar design variable x. Let the model

M(x,u) be twice differentiable in x for all realizations u of U(ω). Applying a second

order Taylor expansion in x, the correlation coefficient between M(x+ ∆x,U(ω))

and M(x,U(ω)) is quadratic in ∆x for |∆x| � 1 (see derivation in Appendix A):

Corr [M(x+ ∆x,U(ω)),M(x,U(ω)))]

≈ 1− 1− Corr [M ′(x,U(ω)),M(x,U(ω))]2

2 Var [M(x,U(ω))]/Var [M ′(x,U(ω))]
∆x2, (3.1)

where M ′(x,u) = ∂M(x,u)
∂x

. We see that Corr [M(x+ ∆x,U(ω)),M(x,U(ω)))]→ 1 as

∆x → 0. The numerator of the expression shows that the correlation also improves

when the change in model output is (positively or negatively) proportional to the

model output across all realizations of U(ω). To illustrate why this is the case,

consider a large number of samples M(x,ui), i = 1, 2, 3, . . . sorted in ascending order.

A change that is proportional to M(x,ui) allows the samples M(x+ ∆x,ui), i =
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1, 2, 3, . . . to remain in ascending order. If the samples are no longer in ascending

order, then clearly the correlation is degraded.

If we let A(ω) be the random output of the model at x and let C(ω) be the random

output of the model at x+∆x, then, based on (3.1), we can maximize the correlation

between A(ω) and C(ω) by choosing ‖∆x‖ to be as small as possible. This motivates

the use of the information reuse estimator within an optimization algorithm, where

a sequence of potentially small steps in the design variables readily provides good

candidates for the choice of the auxiliary random variable C(ω).

3.1.2 Information Reuse Estimator

Let k be the current optimization iteration and let {x0,x1, . . . ,xk} be the sequence

of design variables visited by the optimization algorithm. We define the random

variable A(ω) = M(xk,U(ω)) and we wish to compute an estimator ŝA,p of the exact

statistic sA = E [A(ω)] and the estimator variance Var [ŝA,p], where the computational

effort p is to be defined below. Furthermore, we define the auxiliary random variable

C(ω) = M(x`,U(ω)) for ` < k. We assume that during optimization iteration `,

we have stored the then current estimator and its estimator variance in a database.

Therefore, at the current optimization iteration k, we have available the estimator

ŝC of the exact statistic sC = E [C(ω)] as well as the estimator variance Var [ŝC ].1

Analogous to the multifidelity estimator, we do not know the exact statistic sC of the

auxiliary random variable C(ω) required by the control variate method. Therefore,

we replace it with ŝC and obtain information reuse estimator of sA, denoted as ŝA,p,

as

ŝA,p = ān + γ(ŝC − c̄n). (3.2)

1We do not indicate the computation effort of the estimator ŝC because it is not relevant to the
current optimization iteration.
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for some control parameter γ ∈ R. The variance of the information reuse estimator

is

Var [ŝA,p] = Var [ān] + γ2(Var [ŝC ] + Var [c̄n])− 2γ Cov [ān, c̄n]

=
σ2
A

n
+ γ2

(
Var [ŝC ] +

σ2
C

n

)
− 2γ

ρACσAσC
n

=
1

n

[
σ2
A + γ2σ2

C(1 + η)− 2γρACσAσC
]
.

where η = nVar [ŝC ]/σ2
C . Note that this formulation implies that ŝC is uncorrelated

with ān or c̄n. This can be achieved in practice by ensuring that the set of realizations

of U(ω) used in optimization iteration k is independent of the set of realizations

of U(ω) used in optimization iteration `. Otherwise, additional covariance terms,

Cov [ān, ŝC ] and Cov [ŝC , c̄n], appear in the expression. This is problematic because

ŝC is itself the information reuse estimator at optimization iteration ` with its own

auxiliary random variable at yet another previous optimization iteration and so on,

resulting in a chain of covariance terms between random variables stretching back to

the first optimization iteration. By requiring that ŝC is independent of ān or c̄n, we

break this chain of dependence and simplify the expression.

Computing the information reuse estimator at optimization iteration k using the

samples ui, i = 1, 2, 3, . . . , n drawn from the distribution of the random input vector

U(ω) requires n model evaluations at xk to calculate ān and n model evaluations

at x` to calculate c̄n. Therefore, the computational effort is p = 2n. Given a fixed

computational budget p, we minimize Var [ŝA,p] in terms of γ and obtain

γ∗ =

(
ρAC

1 + η

)
σA
σC

and

MSE
[
ŝ∗A,p

]
= Var

[
ŝ∗A,p

]
= 2

(
1− ρ2

AC

1 + η

)
σ2
A

p
. (3.3)

Therefore, the information reuse estimator has a low variance when the correlation

between the model output at xk and the model output at x` is high. As discussed in
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§3.1.1, this is likely to happen if we select ` = arg min`′<k ‖xk − x`′‖. However, the

amount of variance reduction is degraded when the parameter η is large, which occurs

when Var [ŝC ] is large relative to Var [c̄n] = σ2
C/n. This indicates that the information

reuse estimator may not be beneficial in terms of computational cost if the desired

estimator variance Var
[
ŝ∗A,p

]
at the current optimization iteration is much lower than

the estimator variance at the previous optimization iteration, Var [ŝC ].

Unlike the variance of the original control variate estimator or the variance of the

multifidelity estimator, the variance of the information reuse estimator can potentially

be higher than that of the regular Monte Carlo estimator. When this occurs, we switch

to the regular Monte Carlo estimator as a safeguard. Fortunately, the results in §3.4

suggest that the correlation ρAC is often high enough to prevent this occurrence.

3.1.3 Correlated Estimator Errors

Since the results of an optimization iteration are reused at a later optimization iter-

ation, the information reuse estimators computed during the course of optimization

are correlated with each other. To illustrate, we derive an expression for the correla-

tion coefficient between ŝA,p, the estimator at optimization iteration k, and ŝC , the

estimator at optimization iteration ` < k. Since Cov [ān, ŝC ] = Cov [c̄n, ŝC ] = 0, we

have

Cov [ŝA,p, ŝC ] = Cov [ān + γ(ŝC − c̄n), ŝC ]

= γ Cov [ŝC , ŝC ]

=

(
ρAC

1 + η

)
σA
σC

Var [ŝC ].

Furthermore,

Var [ŝA,p] Var [ŝC ] =

(
1− ρ2

AC

1 + η

)
σ2
A

n
Var [ŝC ]

=

(
1 + η − ρ2

AC

1 + η

)
σ2
A

n
Var [ŝC ].
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Figure 3-1: A contour plot of the correlation of the estimators Corr [ŝA,p, ŝC ] as a
function of the correlation coefficient of the model outputs ρAC and the ratio of
estimator variances η = Var [ŝC ]/Var [c̄n].

Therefore,

Corr [ŝA,p, ŝC ] =
Cov [ŝA,p, ŝC ]√

Var [ŝA,p] Var [ŝC ]

= ρAC

√
nVar [ŝC ]

(1 + η)(1 + η − ρ2
AC)σ2

C

= ρAC

√
η

(1 + η)(1 + η − ρ2
AC)

=
ρAC√

(1 + 1/η)(1 + η − ρ2
AC)

. (3.4)

A contour plot of the correlation of the estimators Corr [ŝA,p, ŝC ] as a function of the

correlation coefficient of the model outputs ρAC and the ratio of estimator variances

η = Var [ŝC ]/Var [c̄n] is shown in Figure 3-1. As the model outputs become more

correlated, i.e., ρAC is high, the estimators become more correlated as well.

If we assume normality, then ŝA,p and ŝC are jointly normally distributed as

ŝA,p
ŝC

 ∼ N
sA

sC

 ,
 Var [ŝA,p] Cov [ŝA,p, ŝC ]

Cov [ŝA,p, ŝC ] Var [ŝC ]

,
where Var [ŝA,p] is given by (3.3). Thus, although ŝA,p is an unbiased estimator of
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sA,2 ŝA,p conditioned on ŝC is biased:

ŝA,p | ŝC ∼ N

(
sA + Corr [ŝA,p, ŝC ]

√
Var [ŝA,p]

Var [ŝC ]
(ŝC − sC),

(
1− Corr [ŝA,p, ŝC ]2

)
Var [ŝA,p]

)
.

In other words, given a realization of the estimator at the first optimization iteration,

the information reuse estimators at subsequent optimization iterations are biased.

For fixed values of Var [ŝA,p] and Var [ŝC ], as Corr [ŝA,p, ŝC ] increases, the estimator

ŝA,p conditioned on a given value of ŝC trades less estimator variance for more bias.

Thus, the information reuse estimator can have a smoothing effect on the noise of the

objective and constraint functions during optimization under uncertainty. This can

impact the selection and behaviour of the optimization algorithm and is discussed

further in §3.4.1.

3.2 Implementation

Many aspects of the implementation of the information reuse estimator are similar to

those of the multifidelity estimator discussed in §2.2. The main difference is that the

procedure to compute the information reuse estimator is necessarily embedded within

an outer optimization loop. We also provide details on the safeguard mechanism that

prevents the information reuse estimator from requiring more computational effort

than the regular Monte Carlo estimator to meet a given error tolerance.

3.2.1 Parameter Calculations

In practice, since σA, σC , and ρAC are unknown, the optimal parameters γ∗ and the

parameter η are replaced by their sample estimates γ̂ and η̂ based on the n samples

2E [ŝA,p] = E [ān] + γ(E [ŝC ]− E [c̄n]) = sA + γ(sC − sC) = sA.
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of A(ω) and C(ω), {ai, ci}ni=1:

γ̂ =
1

1 + η̂

∑n
i=1 (ai − ān)(ci − c̄n)∑n

i=1 (ci − c̄n)2 , (3.5a)

η̂ =
Var [ŝC ]n(n− 1)∑n

i=1 (ci − c̄n)2 , (3.5b)

ρ̂2
AC =

[
∑n

i=1 (ai − ān)(ci − c̄n)]
2[∑n

i=1 (ai − ān)2][∑n
i=1 (ci − c̄n)2] , (3.5c)

σ̂2
A =

∑n
i=1 (ai − ān)2

n− 1
. (3.5d)

3.2.2 Safeguard Mechanism

There is a chance, especially during the first few optimization iterations when the

optimizer tends to take larger steps and there are fewer candidates for the choice of `,

that the correlation between the random model output at xk and the random model

output at x` is low. When this occurs, the information reuse estimator may require

more computational effort than the regular Monte Carlo estimator to meet a desired

error tolerance. The safeguard mechanism detects this situation and falls back to the

regular Monte Carlo estimator.

From the initial set of ninit samples {ai, ci}ninit

i=1 , we calculate the parameters for

the information reuse estimator from (3.5) and compute the initial information reuse

estimator ŝA,pinit from (3.2), where pinit = 2ninit. Using the expressions for the mean

square error (3.3) and (2.1), we can calculate the computational effort needed by the

information reuse estimator and the regular Monte Carlo estimator, respectively, to

meet the desired RMSE. If the information reuse estimator requires less computa-

tional effort than the regular Monte Carlo estimator, we increment the number of

samples as needed and continue to compute the information reuse estimator without

change. Otherwise, we switch and compute the regular Monte Carlo estimator using

the samples ai, i = ninit + 1, ninit + 2, ninit + 3, . . .. In other words, we stop evaluating

the model at x`.
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In the safeguarded case, we obtain the regular Monte Carlo estimator āpsafe using

computational effort psafe = n−ninit. However, there is no reason to discard the initial

information reuse estimator ŝA,pinit in which we have already expended computational

effort pinit = 2ninit to compute. Therefore, we take a linear combination of the two

with parameter θ ∈ R, 0 ≤ θ ≤ 1 to produce the safeguarded information reuse

estimator, denoted as ŝA,p [36]:

ŝA,p = θŝA,pinit + (1− θ)āpsafe (3.6)

with computational effort p = pinit +psafe = ninit +n. The variance of the safeguarded

information reuse estimator is

Var [ŝA,p] = θ2 Var [ŝA,pinit ] + (1− θ)2 Var [āpsafe ],

where Var [ŝA,pinit ] is evaluated from (3.3) and Var [āpsafe ] is evaluated from (2.1). It is

minimized when

θ∗ =
Var [āpsafe ]

Var [ŝA,pinit ] + Var [āpsafe ]
,

resulting in

MSE
[
ŝ∗A,p

]
= Var

[
ŝ∗A,p

]
=

Var [ŝA,pinit ] Var [āpsafe ]

Var [ŝA,pinit ] + Var [āpsafe ]
. (3.7)

The optimal safeguard parameter θ∗ puts more weight on either the initial informa-

tion reuse estimator ŝA,pinit or the regular Monte Carlo estimator āpsafe depending on

which one has a lower estimator variance. The optimal linear combination allows

the safeguarded information reuse estimator ŝA,p to have a lower estimator variance

than either than initial information reuse estimator ŝA,pinit or the regular Monte Carlo

estimator āpsafe .

3.2.3 Iterative Procedure

We first consider the procedure to compute the information reuse estimator for the

exact statistic sA = E [A(ω)] = E [M(xk,U(ω))] at a given vector of design variables
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xk in Algorithm 3.1. The estimator ŝC and its variance Var [ŝC ] are also given.

The procedure begins with a set of n = ninit samples {ai, ci}ni=1. This initial set

of samples serves an important purpose—determining whether to (i) continue with

the information reuse estimator or (ii) switch to the safeguarded information reuse

estimator. Once this is determined, n is incremented by n∆ every iteration and

the procedure is similar to that the of multifidelity estimator. Omitting algorithm

overhead, the computational expense is p = 2n for the first case or p = ninit + n for

the second case.

Since Algorithm 3.1 requires a given vector of design variables x` and the cor-

responding estimator ŝC with variance Var [ŝC ], it is generally used within an outer

optimization loop3 as shown in Algorithm 3.2. At the initial vector of design variables

x0, we cannot compute the information reuse estimator and thus we start with the

regular Monte Carlo estimator. We save the estimator and its variance computed

during every optimization iteration in a database to provide candidates for ŝC and

Var [ŝC ] at subsequent optimization iterations. As discussed in §3.1.2, at each opti-

mization iteration, a new (independent from previous optimization iterations) stream

of random input vectors ui, i = 1, 2, 3, . . . is used to evaluate the model and compute

the estimators. As a result, the information reuse estimator is incompatible with the

sample average approximation method described in §2.3.2 in the outer optimization

loop.

3Technically, the information reuse estimator can be used within any outer loop that generates
a sequence of vectors of design variables. However, it is most effective when the vectors of design
variables cluster together, as is often the case with optimization when it is close to the optimum.
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Algorithm 3.1 Information Reuse Estimator

Given desired RMSE, design variables xk and x`, estimator ŝC and its variance
Var [ŝC ], initial number of samples ninit, increment in number of samples n∆, model
M(x,u), and a sequence of pseudo-random input vectors ui for i = 1, 2, 3, . . . drawn
from the distribution of U(ω):

1 Evaluate samples ai = M(xk,ui) and ci = M(x`,ui) for i = 1, . . . , ninit.

2 Compute āninit
using {ai}ninit

i=1 and c̄ninit
using {ci}ninit

i=1 .

3 Compute γ̂, η̂, ρ̂2
AC , and σ̂2

A from (3.5) using {ai, ci}ninit

i=1 .

4 Compute the initial information reuse estimator from (3.2).

5 Estimate computational effort p1 for information reuse estimator to meet de-
sired RMSE from (3.3).

6 Estimate computational effort p2 for the safeguarded information reuse esti-
mator to meet desired RMSE from (3.7).

7 Let nold = ninit and n = ninit + n∆.

8 If p1 > p2, skip ahead to Step 16; otherwise, continue to Step 9.

9 Continuing on with the information reuse estimator:

10 Evaluate samples ai = M(xk,ui) and ci = M(x`,ui) for i = nold + 1, . . . , n.

11 Compute ān using {ai}ni=1 and c̄n using {ci}ni=1.

12 Compute γ̂, η̂, ρ̂2
AC , and σ̂2

A from (3.5) using {ai, ci}ni=1.

13 Compute information reuse estimator from (3.2).

14 Compute RMSE from (3.3).

15 If RMSE is too large, set nold = n, n← n+n∆ and return to Step 9; otherwise,
stop.

16 Continuing on with the safeguarded information reuse estimator:

17 Evaluate samples ai = M(xk,ui) for i = nold + 1, . . . , n.

18 Compute āpsafe using {ai}ni=ninit+1.

19 Compute σ̂2
A from (3.5d) using {ai}ni=ninit+1.

20 Compute the safeguarded information reuse estimator from (3.6).

21 Compute RMSE from (3.7).

22 If RMSE is too large, set nold = n, n← n+n∆ and return to Step 16; otherwise,
stop.
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Algorithm 3.2 Optimization Using Information Reuse Estimator

Given an optimization algorithm, initial vector of design variables x0, objective (and
constraint) functions, and desired RMSE for the estimators:

1 Compute ān and Var [ān] with n large enough to meet desired RMSE at x0

using regular Monte Carlo simulation.

2 Store in database x0 and the corresponding ān and Var [ān] as ŝC and Var [ŝC ],
respectively.

3 Evaluate objective (and constraint) functions at x0 and ān from Step 1.

4 Optimization algorithm determines the next vector of design variables x1.

5 Let k = 1.

6 Compute ` = arg min`′<k ‖xk − x`′‖
7 Retrieve from database x` and the corresponding ŝC and Var [ŝC ].

8 Compute ŝA,p and Var [ŝA,p] with p large enough to meet desired RMSE using
Algorithm 3.1.

9 Store in database xk and the corresponding ŝA,p and Var [ŝA,p] as ŝC and
Var [ŝC ], respectively.

10 Evaluate objective (and constraint) functions at xk and ŝA,p from Step 8.

11 Optimization algorithm determines the next vector of design variables xk+1.

12 If optimization convergence criteria is not met, set k ← k + 1 and return to
Step 6; otherwise, stop.
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3.2.4 Estimating Functions of Statistics

The information reuse estimator can be used to calculate statistics other than the

mean, such as the variance, by redefining the samples as described in §2.2.3 for the

multifidelity estimator. If the estimator is used to evaluate a function of one or more

statistics, the error in the function estimator can be approximated by (2.5). Thus,

similar to §2.2.4, we need to generalize the scalar information reuse estimator ŝA,p in

(3.2) to the vector case ŝA,p.

Let A(ω) and C(ω) be q × 1 random vectors and let ΣA = Cov [A(ω)], ΣC =

Cov [C(ω)], and ΣAC = Cov [A(ω),C(ω)] be their q × q covariance matrices and

cross-covariance matrix. Also, let γ be a q × q diagonal matrix whose elements are

the q (optimal) control parameters for each of the q components of ŝA,p. Then, the

q × 1 vector of information reuse estimators is

ŝA,p = ān + γ(ŝC − c̄n)

and the q × q covariance matrix of the vector of information reuse estimator is

Cov [ŝA,p] = Cov [ān] + γ(Cov [ŝC ] + Cov [c̄n])γ> − Cov [ān, c̄n]γ> − γ Cov [c̄n, ān]

=
1

n

[
ΣA + γ(nCov [ŝC ] + ΣC)γ> − γΣCA − (γΣCA)>

]
.

The covariance matrix of the vector of information reuse estimators can then be used

to compute the approximation of the mean square error of the function estimator in

(2.5). This error estimate is useful for predicting the number of samples needed to

control the objective function noise during optimization.

3.3 Combined Estimator

In the preceding sections, we assumed that we do not have a low-fidelity model and

instead relied on evaluating the high-fidelity model at a different vector of design

variables as a source of approximate information to reduce the computational cost

69



of estimating statistics of the high-fidelity model output. We return to the situation

where an inexpensive, low-fidelity model is available and discuss how to combine the

multifidelity estimator and the information reuse estimator to further increase the

efficiency of uncertainty propagation in the context of optimization under uncertainty.

Let k be the current optimization iteration and let ` < k be a past optimization

iteration as described in §3.1.2. Given vectors of design variables xk and x`, we define

the following random variables:

• A(ω) = Mhigh(xk,U(ω)) is the random output of the high-fidelity model at xk;

• B(ω) = Mlow(xk,U(ω)) is the random output of the low-fidelity model at xk;

• C(ω) = Mhigh(x`,U(ω)) is the random output of the high-fidelity model at x`;

• D(ω) = Mlow(x`,U(ω)) is the random output of the low-fidelity model at x`.

The multifidelity estimators for the exact statistics sA = E [A(ω)] and sC = E [C(ω)],

as discussed in §2.1.2, are

ŝA = ān + α
(
b̄m − b̄n

)
,

ŝC = c̄n + β
(
d̄m − d̄n

)
,

respectively, for control parameters α, β ∈ R and m� n. We apply the information

reuse estimator formulation (3.2), but replace the regular Monte Carlo estimators

ān and c̄n with the above multifidelity estimators instead. Therefore, the combined

estimator of sA, denoted as s̃A,p, is

s̃A,p = ŝA + γ(s̃C − ŝC)

=
[
ān + α

(
b̄m − b̄n

)]
+ γ
[
c̄n + β

(
d̄m − d̄n

)]
(3.8)

for control parameter γ ∈ R and computational effort p to be defined below, where

s̃C is the combined estimator at optimization iteration `.

The computational effort for the combined estimator is p = 2(n+m/w), where w

is the (assumed known) ratio of the average computation time per high-fidelity model
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evaluation to the average computation time per low-fidelity model evaluation. If we

were to follow the developments in §2.1.2 or §3.1.2, we would derive the expression

for the combined estimator variance Var [s̃A,p] and minimize it with respect to all pa-

rameters α, β, γ, and r = m/n > 1 for fixed computational budget p. Unfortunately,

this minimization is complicated and there is no tractable analytical result as in the

multifidelity estimator and the information reuse estimator. Therefore, we propose a

suboptimal approach to reduce the variance of the combined estimator whereby we

determine the parameters sequentially.

We first calculate the optimal (but suboptimal overall) α and β for the multifidelity

estimators ŝA and ŝC , respectively. From §2.1.2, we have

α∗ = ρAB
σA
σB
, r∗AB =

√
wρ2

AB

1− ρ2
AB

and

β∗ = ρCD
σC
σD

, r∗CD =

√
wρ2

CD

1− ρ2
CD

.

To be conservative in expending computational effort to evaluate the low-fidelity

model, we choose the ratio of the number of low-fidelity model evaluations to the

number of high-fidelity model evaluations as

r∗ =
m

n
= min {r∗AB, r∗CD}.

Using these choices for α∗, β∗, and r∗, the variances of the multifidelity estimators,

based on (2.3), are

Var [ŝ∗A] =

[
1−

(
1− 1

r∗

)
ρ2
AB

]
σ2
A

n

and

Var [ŝ∗C ] =

[
1−

(
1− 1

r∗

)
ρ2
CD

]
σ2
C

n
.

Next, we need to determine γ. Since we already have Var [ŝ∗A] and Var [ŝ∗C ], the
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variance of the combined estimator is

Var [s̃A,p] = Var [ŝ∗A] + γ(Var [s̃C ] + Var [ŝ∗C ])− 2γ Cov [ŝ∗A, ŝ
∗
C ].

Minimizing the variance with respect to γ gives

γ∗ =
Cov [ŝ∗A, ŝ

∗
C ]

Var [s̃C ] + Var [ŝ∗C ]

and

MSE
[
s̃∗A,p

]
= Var

[
s̃∗A,p

]
= Var [ŝ∗A]− Cov [ŝ∗A, ŝ

∗
C ]2

Var [s̃C ] + Var [ŝ∗C ]
. (3.9)

Lastly, in order to use (3.9), we derive the expression for the covariance of the multi-

fidelity estimators:

Cov [ŝ∗A, ŝ
∗
C ] = Cov

[
ān + α∗

(
b̄m − b̄n

)
, c̄n + β∗

(
d̄m − d̄n

)]
= Cov [ān, c̄n] + β∗Cov

[
ān, d̄m

]
− β∗Cov

[
ān, d̄n

]
+ α∗Cov

[
b̄m, c̄n

]
− α∗Cov

[
b̄n, c̄n

]
+ α∗β∗Cov

[
b̄m, d̄m

]
− α∗β∗Cov

[
b̄m, d̄n

]
− α∗β∗Cov

[
b̄n, d̄m

]
+ α∗β∗Cov

[
b̄n, d̄n

]
=

1

n
(ρACσAσC − β∗ρADσAσD − α∗ρBCσBσC + α∗β∗ρBDσBσD)

− 1

m
(−β∗ρADσAσD − α∗ρBCσBσC + α∗β∗ρBDσBσD)

=
1

n

[
ρACσAσC +

(
1− 1

r∗

)
(α∗β∗ρBDσBσD − α∗ρBCσBσC − β∗ρADσAσD)

]
=

[
ρAC +

(
1− 1

r∗

)
(ρABρCDρBD − ρABρBC − ρCDρAD)

]
σAσC
n

As in §2.2.4 and §3.2.4, we also generalize the scalar combined estimator s̃A,p in

(3.8) to the vector case s̃A,p. Let A(ω), B(ω), C(ω), and D(ω) be q×1 random vectors.

Let α, β, and γ be q × q diagonal matrices whose elements are the q (suboptimal)

control parameters for each of the q components of s̃A,p. Also, let ŝA and ŝC be the

vector form of the multifidelity estimators ŝA and ŝC , respectively and let Cov [ŝA]

and Cov [ŝB] be their covariance matrices, respectively, as derived in §2.2.4. Then,
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the q × 1 vector of combined estimators is

s̃A,p = ŝA + γ(s̃C − ŝC)

and the q × q covariance matrix of the vector of combined estimators is

Cov [s̃A,p] = Cov [ŝA] + γ(Cov [s̃C ] + Cov [ŝC ])γ> − γ Cov [ŝC , ŝA]− (γ Cov [ŝC , ŝA])>.

Similar to the scalar case, we need the q×q cross-covariance matrix of the multifidelity

estimators:

Cov [ŝC , ŝA] = Cov
[
ān + α

(
b̄m − b̄n

)
, c̄n + β

(
d̄m − d̄n

)]
=

ΣCA

n
+

ΣCB

m
α> − ΣCB

n
α> + β

ΣDA

m
− β

ΣDA

n

+ β
ΣDB

m
α> − β

ΣDB

m
α> − β

ΣDB

m
α> + β

ΣDB

n
α>

=
1

n

[
ΣCA +

(
1− n

m

)(
βΣDBα

> −ΣCBα
> − βΣDA

)]
,

where ΣCA = Cov [C(ω),A(ω)], ΣDB = Cov [D(ω),B(ω)], and ΣDA = Cov [D(ω),A(ω)]

are the cross-covariance matrices of the random vectors.

Finally, as in the information reuse estimator, we include a safeguard mechanism

to prevent the combined estimator from requiring more computational effort than the

multifidelity estimator. The procedure is the same as that described in 3.2.2, except

that we fall back to the multifidelity estimator instead of to the regular Monte Carlo

estimator.

3.4 Numerical Results

We revisit the acoustic horn robust optimization problem from §2.4.3. We compare

the efficiency of the information reuse estimator against the regular Monte Carlo

estimator in §3.4.1. In particular, we demonstrate the increase in the correlation co-

efficient ρAC between the random output of the model at xk and the random output of
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the model at x` as the distance between the vectors of design variables ‖xk − x`‖ be-

comes shorter. Finally, we compare the combined estimator, the information reuse es-

timator, the multifidelity estimator, and the regular Monte Carlo estimator in §3.4.2.

3.4.1 Acoustic Horn Robust Optimization Revisited

We return to the 2-D acoustic horn governed by the non-dimensional complex Helmholtz

equation described in §2.4.2. The model we consider is the reduced basis model for the

reflection coefficient s with N = 30 basis functions. The three random input parame-

ters are the wave number, upper horn wall impedance, and lower horn wall impedance

with distributions listed in Table 2.2. The design variables are b = [b1 · · · b6]> rep-

resenting the half-widths of the horn flare as shown in Figure 2-6. The initial values

of the design variables (corresponding to the straight flare), their lower bounds, and

their upper bounds are listed in Table 2.3. The minimization of the horn reflection

coefficient is formulated as

min
bL≤b≤bU

f(b) = E [s(b, ω)] + 3
√

Var [s(b, ω)].

We employ the bound optimization by quadratic approximation algorithm (BOBYQA)

[42] developed for bound-constrained optimization problems without analytical deriva-

tives. The algorithm constructs an underdetermined quadratic interpolation model

of the objective function based on the least-Frobenius-norm update of the Hessian.

The quadratic model is used in a trust-region subproblem to generate the vectors of

design variables. The optimization is conducted with the objective function evaluated

using the regular Monte Carlo estimator and with the objective function evaluated

using the information reuse estimator. In both cases, the tolerance on the RMSE of

the f(b) estimator is fixed at 1 × 10−3. Three trials were run for each case and the

convergence of the objective as a function of the cumulative computational effort is

shown in Figure 3-2, where the computational effort is the number of high-fidelity

model evaluations. It can be seen that using the information reuse estimator provides

cumulative computational savings over the course of the optimization and we locate

74



0 0.5 1 1.5 2

x 10
5

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Computational Effort

O
b

je
c
ti
v
e

 

 
Regular MC

Info Reuse

Figure 3-2: Comparison of convergence histories for the robust horn optimization
using the regular Monte Carlo estimator and the information reuse estimator. The
optimization algorithm is BOBYQA.

the optimum using about 50% less computational effort.

We examine the computational cost in more detail by plotting the computational

effort used to compute the regular Monte Carlo estimator and the computational ef-

fort used to compute the information reuse estimator at each optimization iteration in

Figure 3-3a. We see that, while both estimators require about the same computational

effort during the first few optimization iterations, the information reuse estimator re-

quires significantly less computational effort at subsequent optimization iterations,

eventually settling at p = 2ninit. In fact, at later optimization iterations, the compu-

tational effort required is less than 2ninit. Since we maintain at least n = ninit samples

to calculate the parameters in (3.5) needed by the information reuse estimators, the

RMSE of the objective actually decreases and becomes smaller than the specified

tolerance of 1× 10−3 as shown in Figure 3-3b.

The reduction in computational effort corresponds to the high correlation coeffi-

cient ρ̂AC shown in Figure 3-4a due to the optimizer taking smaller and smaller steps

at the later optimization iterations as it refines the optimal vector of design variables.

As discussed in §3.1.1, the correlation between the random model output at a vector

of design variables and the random model output at another vector of design variables

tend to increase as the distance between the two vectors of design variables decreases.

On the other hand, when the correlation coefficient ρ̂AC is not high enough, it may
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Figure 3-3: Computational effort per optimization iteration and the root mean square
error of the objective versus optimization iteration for the robust horn optimization
example.

be necessary to safeguard the information reuse estimator to prevent it from requir-

ing more computational effort than the regular Monte Carlo estimator. We plot the

safeguard parameter θ in Figure 3-4c and show that this has indeed occurred during

the first few optimization iterations.

In Figure 3-4d, we plot the correlation coefficient between the estimators ŝA,p and

ŝC as derived in (3.4). It shows that the errors in the estimators at the later optimiza-

tion iterations become more and more correlated with each other. As discussed in

§3.1.3, this correlation has the effect of smoothing the noise in the objective function

at the cost of introducing a bias. This may help prevent the derivative-free optimiza-

tion algorithm from getting stuck in the noise of the objective function by causing

it to behave more like the sample average approximation method. Furthermore, as

shown in Figure 3-3b, the estimator variances (not conditioned on the previous esti-

mators) decreases at the later optimization iterations. Therefore, unlike the sample

average approximation method, the bias can decrease as the optimization algorithm

progresses.

Finally, we verify our theoretical RMSE for the information reuse estimator from

(3.3) by comparing it with the empirical RMSE. We fix the sequence of vectors of

design variables generated by the optimization and apply Algorithm 3.2 to calculate
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Figure 3-4: The model output correlation coefficient, the distance between vectors of
design variables, the safeguard parameter, and the estimator correlation coefficient
for the information reuse estimator versus optimization iteration for the robust horn
optimization example.
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Figure 3-5: Comparison of the theoretical root mean square errors to the empiri-
cal root mean square errors of the information reuse estimators for the robust horn
optimization example.

the information reuse estimators on this sequence of vectors of design variables, ex-

pending p = 1000 computational effort on every vector of design variables. We repeat

this with new realizations of the random inputs 100 times to calculate the empirical

RMSE of the information reuse estimators. The results are shown in Figure 3-5 and

show good agreement.
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3.4.2 Multifidelity Acoustic Horn Robust Optimization

For the last example of the acoustic horn robust optimization problem, we compare

the regular Monte Carlo estimator, the information reuse estimator, the multifidelity

estimator, and the combined estimator. The problem setup is the same as that in

§3.4.1; however, we now consider the high-fidelity model to be the finite element

model of the Helmholtz equation and the low-fidelity model to be the reduced basis

model with N = 30 basis functions. Figure 3-6 shows the convergence of the objec-

tive with respect to the cumulative computational effort, where the computational

effort is the number of high-fidelity model evaluations for the regular Monte Carlo

estimator and the information reuse estimator and is the equivalent number of high-

fidelity model evaluations for the multifidelity estimator and the combined estimator.

It can be seen that the combined estimator requires significantly less computational

effort than the regular Monte Carlo estimator. For this problem, the multifidelity

estimator is already quite efficient and so the combined estimator does not provide

much additional benefit. Nevertheless, Figure 3-7 shows that the combined estimator

indeed combines the benefits of both the multifidelity estimator and the information

reuse estimator—at the first few optimization iterations, when the optimizer takes

relative large steps in the design space, the combined estimator takes about the same

computational effort as the multifidelity estimator; at the last few optimization itera-

tions, when the optimizer takes relative small steps in the design space, the combined

estimator takes only p = 2ninit computational effort as in the case of the informa-

tion reuse estimator. Overall the information reuse estimator provided about 60%

computational savings, the multifidelity estimator provided about 75% computational

savings, and the combined estimator provided about 90% computational savings, as

shown in Table 3.1.

Table 3.2 presents the four slightly different optimal solutions obtained using each

of the four estimators and shows the challenge in solving noisy optimization prob-

lems using derivative-free optimization algorithms. While the RMSE of 1 × 10−3 is

two orders of magnitude less than the initial objective value, it is only one order of
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Figure 3-6: Comparison of convergence histories for the robust horn optimization
using the regular Monte Carlo estimator, the information reuse estimator, the mul-
tifidelity estimator, and the combined estimator. The optimization algorithm is
BOBYQA.
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Figure 3-7: Computational effort per optimization iteration versus optimization iter-
ation for the robust horn optimization example.
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Table 3.1: Comparison of the total computational efforts for the robust horn opti-
mization using the regular Monte Carlo estimator, the information reuse estimator,
the multifidelity estimator, and the combined estimator. The optimization algorithm
is BOBYQA.

Total Computational Effort

Regular Monte Carlo estimator 209,096
Information reuse estimator 82,928
Multifidelity estimator 48,595
Combined estimator 19,449

Table 3.2: Comparison of the final design variables for the robust horn optimiza-
tion using the regular Monte Carlo estimator, the information reuse estimator, the
multifidelity estimator, and the combined estimator.

Regular MC Info Reuse Multifidelity Combined

0.679 0.679 0.679 0.679
1.06 1.08 1.10 1.06
1.75 1.67 1.66 1.69
1.96 1.86 1.89 1.84
2.26 2.11 2.11 2.14
2.46 2.46 2.52 2.48

magnitude less than the final objective value. As discussed in §2.3.3, derivative-free

optimization methods are not guaranteed to converge to the true optimal solution

in the presence of noise and may terminate prematurely. If computational resources

allow, one may perform multiple runs of the optimization to obtain a spread of the

final objective values, similar to what is sometimes done for the sample average ap-

proximation method. For the acoustic horn problem, the spread of final objective

values for the different estimators would overlap, as can be seen to certain degree in

Figure 2-8 and Figure 3-2.

3.5 Chapter Summary

In this chapter, we presented an approach to estimate statistics of the output of an

expensive high-fidelity model within an outer optimization loop by reusing the esti-

mates of the statistics from previous optimization iterations. We showed that as the

distance between the vectors of design variables become shorter, the correlation be-
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tween the random output of the model at the two vectors of design variables increases.

This means that the estimates of the statistics from the previous optimization itera-

tion are informative and can be used to reduce the computational cost of estimating

the statistics at the current optimization iteration. Numerical results for the acoustic

horn robust optimization example demonstrated 90% computational savings.

In the next chapter, we demonstrate that the estimators developed in Chapter 2

and Chapter 3 enable design under uncertainty for practical aerospace problems.
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Chapter 4

Applications in Aerostructural

Optimization Under Uncertainty

In this chapter, we apply the methods developed in Chapter 2 and Chapter 3 to two

demonstrative applications that are relevant to the aerospace industry. Optimization

under uncertainty for industrial problems can be challenging for at least two reasons.

First, numerical models that capture high-fidelity physics of the engineering system

can be computationally expensive to evaluate. The solvers may also be closed inside

a “black-box”, preventing the use of intrusive methods that require the knowledge

of the governing equations. In particular, the black-box models may not provide

gradients of the outputs that are needed by efficient optimization methods. It may

even fail to evaluate for certain inputs (unknown a priori) due to hidden constraints.

Second, it may be difficult to fully characterize all of the uncertainties associated

with the numerical model for a particular problem due to the lack of expertise and/or

resources. The latter issue is beyond the scope of this work and the forms of the

uncertainties for the following application problems have been provided. Instead, we

focus on reducing the computational cost of optimization under uncertainty using

the multifidelity estimator, information reuse estimator, and combined estimator.

For the first application in §4.1, we consider the conceptual design of an aircraft with

uncertainties arising from simplified physics in the model and projections about future

technology improvements. For the second application in §4.2, we consider a large-
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scale detailed wing design problem with uncertainties in the structural properties and

flight conditions.

4.1 Aircraft Conceptual Design Under Uncertainty

The first application is the conceptual design of an advanced aircraft for the 2035

entry-to-service time frame. We perform a robust optimization using both the reg-

ular Monte Carlo estimator and the information reuse estimator and compare their

computational costs. We also demonstrate how the information reuse estimator can

be used efficiently to study the risk-performance trade-off that requires solving mul-

tiple robust optimization problems.

4.1.1 Problem Setup

The D8 family of aircraft was developed at MIT, Aurora Flight Sciences, and Pratt

and Whitney as part of a NASA-sponsored project to identify enabling technologies

and innovative configurations that will allow a subsonic commercial transport aircraft

to meet the N+3 goals by the year 2035 [16]. The goals include 70% reduction in fuel

burn, 71 dB reduction in effective perceived noise level, and 75% reduction in landing

and take-off NOx relative to the current generation of Boeing 737-800 aircraft. The

D8 aircraft concept, rendered in Figure 4-1, is in the same class as the Boeing 737-

800, carrying 180 passengers over a range of 3000 nautical miles. The highlights of its

features include engines that ingest the fuselage boundary layer, wide lift-generating

“double-bubble” fuselage as illustrated in Figure 4-2, engine noise shielding from the

fuselage and vertical tails, new composite materials, advanced engine thermodynamic

cycle, and active load alleviation [16]. Many of these advanced technologies are still in

development and their expected benefits can only be predicted based on a combina-

tion of historical projections, preliminary simulations, and industry expert opinions.

Therefore, there are uncertainties about the effects of each of these technologies that

can impact the overall performance of the aircraft. The purpose of this application

problem is to demonstrate an approach to account for these uncertainties and hedge
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Figure 4-1: Rendering of the D8 aircraft [16, Figure 1].

against the risks that they represent during the design process. We demonstrate how

the computational cost of achieving this can be reduced by using the information

reuse estimator developed in Chapter 3.

The numerical model for this problem is the Transport Aircraft System OPTi-

mization (TASOPT) software [17]. It is a multidisciplinary tool for aircraft sizing

and mission performance analysis with modules in aerodynamics, structural loads

and weights, engine cycle analysis, and trajectory simulation. In order to support

the design of the D8 family of aircraft with a step-change in technology, TASOPT

is developed from first principles using low-order physics rather than from histori-

cal correlations. This allows TASOPT to capture improvements beyond incremental

change from past aircraft that are needed to meet the ambitious N+3 goals. For this

application problem, we perform a robust optimization on the D8.6 aircraft subject

to randomness in the TASOPT parameters that represents the uncertainties in the

advanced technologies. Therefore, the internal optimization capability of TASOPT

is disabled and, given a set of design variables and a realization of the random pa-

rameters, it is run only in forward mode to size the aircraft and calculate mission

performance.

We consider the D8.6 aircraft for the robust optimization problem. There are eight

design variables (x) representing the wing geometry and cruise conditions. Their ini-

tial values (x0) and bounds (xL and xU) are listed in Table 4.1. The 19 random

inputs (U(ω)) are parameters in the TASOPT low-order physics models whose values
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Figure 4-2: Comparison of the D8 aircraft and the Boeing 737-800 aircraft [10, Fig-
ure 22].
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are chosen to reflect the predicted improvements in technologies. The uncertainties

in the predictions are represented by triangular random distributions with the dis-

tribution parameters listed in Table 4.2.1 The objective of the robust optimization

problem is the mean fuel burn for the mission, i.e. carrying 180 passengers over 3000

nautical miles. It is expressed in terms of the payload fuel energy intensity (PFEI),

which is the energy of the fuel used per unit payload and unit range [kJ/(kg km)].

Given the design variables x and a realization of the random inputs u, TASOPT

solves a set of governing equations to generate a feasible aircraft—that is, sizing and

positional degrees of freedom of the aircraft components are taken up interally to

satisfy constraints in loads, stability, trajectory, etc. However, there are four addi-

tional performance requirements of interest on the aircraft that are treated externally

as constraints for the optimization problem. For the deterministic problem, these

constraints are:

req1(x,u) = balanced field length− 4995 ft ≤ 0

req2(x,u) = required fuel volume− 90% of available internal wing volume ≤ 0

req3(x,u) = span length− 177.5 ft ≤ 0

req4(x,u) = 0.015− top-of-climb gradient ≤ 0.

In the presence of random inputs, all of the performance requirements are formulated

as mean + λ standard deviations ≤ 0 constraints with λ = 1. Therefore, the robust

1The triangular distributions represent reasonable assumptions about the uncertainties. They
are not the result of a rigorous elicitation process, which is beyond the scope of this work.
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Table 4.1: Initial values, lower bounds, upper bounds, and optimal values of the 8
D8.6 aircraft design variables.

Initial Lower Upper Optimal
Variable Value Bound Bound Value

Cruise lift coefficient 0.71092 0.3 1.0 0.71248
Wing aspect ratio 17.07 5 30 16.668
Wing sweep [deg] 17.757 10 30 17.451
Wing thickness at root 0.13441 0.08 0.20 0.13331
Wing thickness at break and tip 0.10079 0.08 0.20 0.10154
Wing cruise lift distribution fraction at break 1.136 0.5 1.5 1.1341
Wing cruise lift distribution fraction at tip 1.2645 0.5 1.5 1.2672
Start of cruise altitude [m] 11,784 10,000 13,000 11,785

optimization problem is

min
xL≤x≤xU

E [PFEI(x,U(ω))]

s.t. E [req1(x,U(ω))] + λ
√

Var [req1(x,U(ω))] ≤ 0

E [req2(x,U(ω))] + λ
√

Var [req2(x,U(ω))] ≤ 0

E [req3(x,U(ω))] + λ
√

Var [req3(x,U(ω))] ≤ 0

E [req4(x,U(ω))] + λ
√

Var [req4(x,U(ω))] ≤ 0.

4.1.2 Numerical Results

We employ the constrained optimization by linear approximation algorithm (COBYLA)

[41] developed for constrained optimization problems without analytical derivatives.

The algorithm constructs linear interpolation models of the objective and constraint

functions using evaluations on a simplex. The vectors of design variables are ob-

tained either by solving a linear programming subproblem using the interpolation

models or by improving the geometry of the simplex. The optimization is conducted

with the objective and constraint functions evaluated using the regular Monte Carlo

estimator and with the objective and constraint functions evaluated using the infor-

mation reuse estimator. In both cases, the tolerance on the RMSE of the objective

function estimator is fixed at 1× 10−3 while the tolerance on the RMSE of the con-
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Table 4.2: Triangular distributions of the 19 random inputs for the D8.6 aircraft.

Random Variable Lower Limit Mode Upper Limit

Vertical load factor for wing bending 2.3 2.5 3.0
Secondary wing components weight fraction 0.49 0.54 0.59
Secondary engine components weight fraction 0.0 0.1 0.2
Material yield stress multiplier 0.8 1.0 1.2
Material density [lb/in3] 0.0504 0.0560 0.0616
Wing excrescence drag factor 1.019 1.025 1.038
Tail excrescence drag factor 1.019 1.025 1.038
Fuselage excrescence drag factor 1.03 1.04 1.08
Fuselage boundary layer ingestion fraction 0.2 0.4 0.6
Turbine blade metal temperature [K] 1450 1500 1550
Turbine cooling Stanton number 0.050 0.065 0.080
Turbine cooling heat transfer efficiency 0.6 0.7 0.8
Turbine cooling film effectiveness factor 0.3 0.4 0.5
Engine overall pressure ratio 45 50 52
Fan efficiency 0.930 0.945 0.950
Low pressure compressor efficiency 0.89 0.93 0.94
High pressure compressor efficiency 0.88 0.90 0.93
High pressure turbine efficiency 0.880 0.925 0.940
Low pressure turbine efficiency 0.91 0.93 0.95

straint function estimators is fixed at 5 × 10−4. The convergence of the objective

as a function of the cumulative computational effort is shown in Figure 4-3, where

the computational effort is the number of high-fidelity model evaluations. It can be

seen that using the information reuse estimator provides cumulative computational

savings over the course of the optimization and we locate the optimum using about

90% less computational effort.

In Figure 4-4, we plot the computational effort required to compute the regular

Monte Carlo estimator and the information reuse estimator at each optimization it-

eration. After the first few optimization iterations, the information reuse estimator

requires significantly less computational effort than the regular Monte Carlo estimator

to meet the required RMSE tolerance because the database of past optimization it-

erations has built up sufficiently to provide good candidates for the auxiliary random

variable. This is particularly advantageous when there is a need to refine the optimal

solution to high accuracy (assuming the RMSE’s of the objective and constraint func-

tion estimators are low enough to do so) because the additional optimization iterations

needed would require relatively little computational effort using the information reuse
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Figure 4-3: Comparison of convergence histories for the D8.6 aircraft robust opti-
mization using the regular Monte Carlo estimator and the information reuse estima-
tor. The objective is the mean PFEI in kJ/(kg km). The optimization algorithm is
COBYLA.

estimator.

4.1.3 Risk-Performance Trade-off Studies

Because of the randomness representing the uncertainties in the aircraft design, there

is always a risk that the realized aircraft will not satisfy one or more of the performance

requirements. Therefore, it is useful to study the trade-off between this risk and the

expected fuel burn of the optimal aircraft.2 For the robust optimization problem in

§4.1.2, λ = 1 is chosen somewhat arbitrarily. Here, we let λ vary from 0 to 3 and

re-solve the robust optimization problem for each value of λ in order to generate a

Pareto front of the risk, defined as the probability of not satisfying the performance

requirements, versus the expected fuel burn of the optimal aircraft.

Generating the Pareto front is computationally expensive even with the savings

provided by the information reuse estimator because many robust optimization prob-

lems have to be solved. Fortunately, each optimization problem need not be solved

from scratch. As discussed in §4.1.2, the first few optimization iterations using the in-

formation reuse estimator require the most computational effort because the database

2The risk may be defined in other ways depending on the context, such as the standard deviation
of the objective.
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Figure 4-4: Computational effort per optimization iteration versus optimization iter-
ation for the D8.6 aircraft robust optimization.

of past optimization iterations has yet to be built up. To reduce this computational

cost, we reuse the database from the previous robust optimization in the next robust

optimization. This is possible because the only difference between the multiple robust

optimization problems is the value of λ; the same statistics, i.e., the mean and the

variance of the TASOPT outputs, are calculated for all vectors of design variables

in all of the robust optimization problems. The result is that there are good can-

didates for the auxiliary random variable starting at the first optimization iteration

(except for the first robust optimization problem) and therefore the information reuse

estimator requires relatively little computational effort.

The Pareto front for the D8.6 aircraft is plotted in Figure 4-5a. We see that, while

it is necessary to sacrifice expected fuel burn to reduce the risk of not satisfying the

performance requirements, the increase in expected fuel burn is not large, demon-

strating that the D8.6 is relatively robust to the uncertainties. In Figure 4-6a, we

show the trend in the wing aspect ratio along the Pareto front. It can be seen that

the reduction in the wing aspect ratio is a major driver for the increase in expected

fuel burn; other design variables do not show such a clear trend. If we solved the

deterministic optimization problem with the input parameters fixed at the mode of

the triangular distributions and then introduce the uncertainties to the deterministic

optimal design, we find that its mean fuel burn is 0.999 on the relative scale in Fig-
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ure 4-5a but its probability of satisfying the performance requirements is only about

30%—the span length requirement being the critical constraint. This demonstrates

the importance in accounting for uncertainties during the design process.

As a comparison, we also generate similar Pareto fronts for the Boeing 737-800

aircraft and the Boeing 777-300ER aircraft. The Boeing 737-800 aircraft is in the same

class as the D8.6 aircraft with 180 passengers and 3000 nautical-mile-range while the

Boeing 777-300ER aircraft is larger with 450 passengers and 6000 nautical-mile-range.

We assume that both Boeing aircraft are outfitted with advanced technologies along

with the uncertainties similar to the D8.6 aircraft. However, they do not have fuselage

boundary layer ingestion because it is incompatible with their configurations. The

results are shown in Figure 4-5b and Figure 4-5c. It can be seen that the Pareto

front for the Boeing 737-800 aircraft is similar to that of the D8.6 aircraft, indicating

that it is also relatively robust to the uncertainties. However, the Boeing 777-300ER

needs to trade off more expected fuel burn to satisfy the performance requirements.

For this study, the larger aircraft is more sensitive to uncertainties in the technologies

that underlie their performance.

4.2 Robust Multifidelity Wing Optimization

The second application is a large-scale aerostructural wing design problem that in-

volves a detailed discretization of the wing geometry and internal structures. We

demonstrate that a coarse discretization can be an effective low-fidelity model by

comparing the computational efforts required by the information reuse estimator and

by the combined estimator to solve the robust optimization problem.
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Figure 4-5: Pareto fronts of mean fuel burn versus probability of satisfying require-
ments.
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Figure 4-6: Trends of the optimal wing aspect ratio along the Pareto front.
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Figure 4-7: Geometry and the free-form deformation control points of the Bombardier
Q400 wing [34, Figure 6-8].

4.2.1 Problem Setup

We consider the robust optimization of a wing whose geometry is loosely based on the

Bombardier Q400 aircraft. The numerical model is a coupled aerostructural solver

using Tripan for the aerodynamic analysis and the Toolkit for the Analysis of Com-

posite Structures (TACS) for the structural analysis [24]. Tripan is an unstructured

panel method using source and doublet singularities for inviscid, incompressible, ex-

ternal lifting flow. TACS is a second-order finite element method using linear or

nonlinear strain relationships for thin-walled structures. The aerostructural solver

is parallelized at both the coupling level and at the individual analysis level to take

advantage of multiple processors. A CAD-free approach based on free-form deforma-

tions [27] is used to parameterize the wing geometry. The wing and the free-form

deformation control points are shown in Figure 4-7 and some data for the initial wing

geometry are listed in Table 4.3.

In the deterministic optimization problem [24, 34], the drag of the wing is min-

imized subject to lift equals weight for 1-g cruise constraint, four Kreisselmeier-

Steinhauser (KS) stress constraints for the ribs, the spars, the upper surface skin,

and the lower surface skin, and 72 constraints on the magnitude of the change in

thicknesses of spars and skins along the span for a total of 77 constraints. The design
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Table 4.3: Geometry data of the Bombardier Q400 wing.

Planform Area [m2] 68.44
Wing span [m] 28.40
Aspect ratio 11.78
Taper ratio 0.54
Taper break [% of span] 40
Airfoil stack NACA 2412
Twist None
Number of ribs 20
Forward spar location [% of chord] 15
Aft spar location [% of chord] 50

variables include the angle of attack, eight wing twist angles along the span, and

19 thicknesses of each of the forward spar, the aft spar, the ribs, the upper surface

skin, and the lower surface skin for a total of 104 variables.3 Since only the wing is

optimized, any savings in wing weight is subtracted from the total aircraft weight for

the lift constraint.

We introduce uncertainties into the cruise condition and structural properties

using triangular distributions listed in Table 4.4. However, the deterministic op-

timization problem cannot be translated into a robust optimization problem in a

straightforward manner because it is not clear how to apply the equality constraint

of lift equals weight when the lift and the weight are random outputs. To resolve

this issue, we wrap the secant root-finding method around the aerostructural solver

to find the angle of attack that satisfies the lift constraint. This effectively moves

the lift constraint out of the optimization problem and into the numerical model and

eliminates the angle of attack from the design variables. The interpretation is that

each set of design variables (wing twists and thicknesses) along with a realization of

the random inputs define a wing for the aircraft that is trimmed for level flight and

the augmented numerical model outputs the drag and stresses for this wing at level

flight. This illustrates that a numerical model for deterministic optimization may not

always make sense in the presence of uncertainties.

We further modify the problem by removing the rib and skin thicknesses from the

3The aspect ratio is a natural choice for the design variables as it provides a trade-off between
aerodynamics and structural loads, but it is not included in the current free-form deformation
parameterization of the wing.
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Table 4.4: Triangular distributions of the 7 random inputs for the Bombardier Q400
wing.

Random Variable Lower Limit Mode Upper Limit

Maximum take-off weight [kg] 29257 × 0.9 29257 29257 × 1.1
Fraction of weight not including wing 0.83 0.86 0.89
Cruise Mach number 0.55 0.6 0.65
Material density [kg/m3] 2810 × 0.95 2810 2810 × 1.05
Material elastic modulus [GPa] 70 × 0.9 70 70× 1.1
Material poisson ratio 0.31 0.33 0.35
Material yield stress [MPa] 370 × 0.9 370 370 × 1.1

design variables and their corresponding change-in-thickness constraints in order to

reduce the size of the problem. Therefore, the robust optimization problem has 46

design variables (8 twist angles, 19 forward spar thicknesses, 19 aft spar thicknesses)

and 40 constraints (4 stress constraints and 36 change in thickness constraints). Let

the vector of design variables be x with lower and upper bounds xL and xU , respec-

tively, and let u be a realization of the random inputs U(ω) listed in Table 4.4. The

four stress constraints are denoted as

ks1(x,u) = KS function for rib stress− yield stress ≤ 0

ks2(x,u) = KS function for spar stress− yield stress ≤ 0

ks3(x,u) = KS function for upper surface skin stress− yield stress ≤ 0

ks4(x,u) = KS function for lower surface skin stress− yield stress ≤ 0.

The change-in-thickness constraints are linear and are represented as the matrix K.

In the presence of random inputs, the objective of the robust optimization problem is

formulated as the mean + λ standard deviations of the drag. The stress constraints

are formulated as mean + λ standard deviations ≤ 0. We chose λ = 2 for both the

objective and the constraints. The change-in-thickness constraints are deterministic
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and do not need to be modified. Therefore, the robust wing optimization problem is

min
xL≤x≤xU

E [drag(x,U(ω))] + λ
√

Var [drag(x,U(ω))]

s.t. E [ks1(x,U(ω))] + λ
√

Var [ks1(x,U(ω))] ≤ 0

E [ks2(x,U(ω))] + λ
√

Var [ks2(x,U(ω))] ≤ 0

E [ks3(x,U(ω))] + λ
√

Var [ks3(x,U(ω))] ≤ 0

E [ks4(x,U(ω))] + λ
√

Var [ks4(x,U(ω))] ≤ 0

Kx ≤ 0.

4.2.2 Numerical Results

We employ the constrained optimization by linear approximation algorithm (COBYLA)

[41] developed for constrained optimization problems without analytical derivatives.

Three levels of discretization of the wing are available to the aerostructural solver

as shown in Table 4.5, making possible a multifidelity approach to solve the robust

optimization problem. We select the aerostructural solver applied to the medium

discretization as the high-fidelity model and the aerostructural solver applied to the

coarse discretization as the low-fidelity model.4 The ratio of average computational

cost between the high-fidelity model and the low-fidelity model, w, is approximately

4. The optimization is conducted with the objective and constraint functions evalu-

ated using the combined estimator and with the objective and constraint functions

evaluated using the information reuse estimator. We do not have the regular Monte

Carlo estimator as a comparison due to unaffordable computational cost. In both

cases, the tolerance on the RMSE of the objective and constraint function estimators

is fixed at 2× 10−4.

The convergence of the objective as a function of the cumulative computational

effort is shown in Figure 4-8. The computational effort is the number of high-fidelity

4As future work, we may consider utilizing all three levels of discretization by extending the
multifidelity estimator to two or more low-fidelity models. However, it is important to investigate
if the additional low-fidelity models contribute enough unique approximate information about the
high-fidelity model to justify the extra complexity and cost.
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Table 4.5: Number of degrees of freedom for different discretizations of the aerody-
namic and structural elements. The approximate evaluation time for the aerostruc-
tural solver wrapped with the secant method is based on a PC with 16 processors at
2.93 GHz each.

Coarse Medium Fine

Aerodynamic panels

Chordwise 30 34 70
Spanwise 20 40 80
Wake 20 40 60
Total panels 1000 2960 10,400

Structural elements

Chordwise 5 8 16
Spanwise 30 80 320
Thickness 4 6 12
Total d.o.f. 5624 14,288 57,152

Approximate evaluation time [s] 6 24 350

model evaluations for the information reuse estimator and the equivalent number of

high-fidelity model evaluations for the combined estimator. The initial wing drag

coefficient has a mean of 0.1254 and a standard deviation of 0.008974 and the final

wing drag coefficient has a mean of 0.1239 and a standard deviation of 0.008515—a

reduction of about 1.2% in expected wing drag and a reduction of 5.1% in the stan-

dard deviation. In Figure 4-9, we plot the computational effort required to compute

the combined estimator and the information reuse estimator at each optimization it-

eration. As discussed in previous examples, the information reuse estimator requires

relatively large amount of computational effort during the first few optimization it-

erations. It can be seen that the main benefit of the combined estimator here is to

reduce the computational effort during these first few optimization iterations by lever-

aging the cheaper low-fidelity model. The solution was obtained in 13.4 days using

the information reuse estimator and in 9.7 days using the combined estimator on a

PC with 16 processors at 2.93 GHz each. If the 90% computational savings of the

combined estimator over the regular Monte Carlo estimator seen in the acoustic horn

robust optimization example in §3.4.2 is extended to this problem, the solution would

have taken about 3.2 months to obtain using the regular Monte Carlo estimator.
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Figure 4-8: Comparison of convergence histories for the Bombardier Q400 wing op-
timization using the information reuse estimator and the combined estimator. The
objective is mean + λ standard deviations of the drag coefficient. The optimization
algorithm is COBYLA.
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Figure 4-9: Computational effort per optimization iteration versus optimization iter-
ation for the Bombardier Q400 wing optimization. The scales of the axes has been
expanded in (b) to show the comparison more clearly.
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4.3 Chapter Summary

In this chapter, we presented two application problems that make use of the estima-

tors developed in Chapter 2 and Chapter 3. The conceptual aircraft design problem,

due to the inherent uncertainties in projecting technological improvements, is a prime

example to illustrate the importance of accounting for uncertainties in the concep-

tual design process. We demonstrated 90% reduction in computational cost using

the information reuse estimator over the regular Monte Carlo estimator in the robust

optimization problem and showed how the information reuse estimator can be effi-

ciently adapted to solve multiple robust optimization problems for risk-performance

trade studies.

In the wing design problem, we showed that numerical models requiring a dis-

cretization of an underlying geometry readily provide models of different levels of

fidelity that can be utilized efficiently by multifidelity methods. Depending on the

amount of control available over the discretization, it is also possible to employ the

multilevel Monte Carlo method to achieve a faster convergence rate than the estima-

tors presented here [15]. We demonstrated that the combined estimator, incorporating

features from both the multifidelity estimator and the information reuse estimator, al-

lows a large-scale robust optimization problem to be solved in a reasonable turnaround

time of 9.7 days on a PC with 16 processors at 2.93 GHz each. Further development

of this problem includes extending the free-form deformation parameterization of the

wing to cover other geometric changes and incorporating distributed uncertainties in

the structural properties along the wing. Distributed uncertainties is a more realis-

tic scenario than uncertainties in the bulk material properties and may also be used

to represent degradation in the wing structure. Since the estimators developed in

this thesis are based on Monte Carlo sampling, they are well-suited to handle this

high-dimensional (in the stochastic space) problem.
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Chapter 5

Conclusions

In this thesis, we addressed the need for a general optimization under uncertainty

approach that leverages inexpensive surrogate models and approximate information

to reduce computational cost. To conclude, we summarize the developments and

highlight the main contributions of this work. We close with suggestions for continuing

work on this topic.

5.1 Thesis Summary

In many engineering applications, a suite of models is available to predict the out-

puts of interest. In Chapter 2, we utilized these multifidelity models to estimate

the statistics of the high-fidelity model at reduced computational cost. There is no

restriction on the types of multifidelity models—from different levels of physics to

data-fit surrogates—but the multifidelity estimator is more efficient than the regular

Monte Carlo estimator only when the low-fidelity model is cheaper to evaluate than

the high-fidelity model and the outputs of the low-fidelity model are correlated with

the outputs of the high-fidelity model. The low cost of the low-fidelity model allows

us to calculate a more accurate estimate of the statistic of the low-fidelity model than

is affordable with the high-fidelity model. The more accurate estimate of the statistic

of the low-fidelity model is used to compute a correction term based on the control

variate method to improve the accuracy of the estimate of the statistic of the high-
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fidelity model without requiring additional high-fidelity model evaluations. In the

numerical results for the acoustic horn robust optimization example, we have demon-

strated 85% reduction in computational cost when we make use of a reduced order

model of the horn acoustics that is 40 times cheaper to evaluate than the high-fidelity

finite element model.

To further reduce computational cost, we take advantage of the optimization under

uncertainty setup in which the statistics of the high-fidelity model are estimated at

many different vectors of design variables. In Chapter 3, we reused the freely available

estimates of statistics from past optimization iterations (free in the sense that they

are sunk cost) to improve the accuracy of the estimates of the statistics at the current

optimization iteration without requiring additional model evaluations at the current

optimization iteration. We showed that, for a model sufficiently smooth in the design

space, the correlation between the model outputs at two vectors design variables

increases as the distance between the two vectors of design variables decreases. This

implies that as the optimization progresses towards the optimal solution and the steps

taken in the design space become shorter and shorter, the information reuse estimator

becomes more and more efficient. We also developed the combined estimator to take

advantage of both the information reuse estimator and the multifidelity estimator

to perform multifidelity optimization under uncertainty. In the acoustic horn robust

optimization example, we have demonstrated 90% computational savings using the

combined estimator.

In Chapter 4, we applied our approaches to two practical aerospace applications.

In conceptual aircraft design, we demonstrated the need to consider uncertainties in

the design process when making projections about the improvements in technologies.

We showed that a simple adaptation of the information reuse estimator can be used

to efficiently solve multiple robust optimization problems, making it computationally

feasible to perform risk-performance trade studies. We also demonstrated that the

information reuse estimator and the combined estimator enables a large-scale robust

wing optimization problem to be solved in a reasonable turnaround time of 9.7 days

on a 16-processor desktop machine, paving the way to accounting for degradation or
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damage to the wing that may be represented as distributed uncertainties in structural

properties.

The methods we developed—the multifidelity estimator, the information reuse

estimator, and the combined estimator—are not much more difficult to implement

than the regular Monte Carlo estimator. They can make use of models that are

provided as closed “black-boxes” and are embarrassingly parallelizable. Furthermore,

they do not require a priori knowledge about the models; if the correlation turns out

to be poor, the computational effort is not worse than that of regular Monte Carlo

simulation. Although all of the estimators share the same slow convergence rate as

the regular Monte Carlo estimator, the reduction in the root mean square error can

be significant enough, as demonstrated in the numerical examples, to mitigate this

disadvantage unless very high accuracy is needed. On the other hand, the methods

are suitable for problems with a very large number of uncertain parameters. They

represent a major contribution towards enabling rigorous accounting and mitigation

of uncertainties in large-scale industrial applications.

5.2 Thesis Contributions

The main contributions of this work are:

• a new multifidelity approach to Monte Carlo simulation that has demonstrated

reduction in computational cost of propagating uncertainties through an expen-

sive high-fidelity model;

• a new method to estimate statistics during optimization under uncertainty that

leverages the model autocorrelation in the design space to reuse information

and reduce computational cost;

• non-intrusive, generally applicable, and easily implementable algorithms to en-

able practical risk-performance trade studies in engineering design problems

with parameter uncertainties and variabilities in the numerical model; and
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• a demonstration of practical design turnaround time for optimization under

uncertainty in a large-scale high-fidelity engineering application.

5.3 Future Work

There are three potential thrusts of further research: in extending the capabilities

and efficiencies of the statistic estimators, in developing optimization algorithms for

noisy problems, and in advancing optimization under uncertainty in large-scale high-

fidelity engineering problems. An apparent extension to the multifidelity estimator is

to consider two or more low-fidelity models. While it is simple to modify the control

variate formulation to include several auxiliary random variables, it is not immediately

clear that the additional low-fidelity models will always provide sufficient additional

benefit. This is because the multiple low-fidelity models are likely to be correlated

with each other, and thus provide less unique new information for the high-fidelity

model. Analogous considerations can be made for the information reuse estimator

to reuse data from two or more past optimization iterations. The estimators may

also be combined with other variance reduction techniques, including the StackedMC

method [50]. Finally, it may be insightful to investigate whether the control variate

based approaches can be generalized to other statistical methods beyond Monte Carlo

simulation, particularly those that exhibit faster convergence rate for smooth prob-

lems. The challenge is in determining which aspect of the high-fidelity model output

should be correlated with the surrogate (i.e., the low-fidelity model output or the

high-fidelity model output at a different design point). For example, for the control

variate method to be effective in quasi-Monte Carlo simulation using low-discrepancy

sequences, the high frequency Fourier components or some derivatives of the high-

fidelity model output should be correlated with those of the surrogate [21]. A similar

situation is encountered in the case of polynomial chaos expansion [37].

While we focused the work of this thesis on developing efficient statistic estima-

tors to be used in optimization under uncertainty, it is also important to advance the

state of the art of optimization algorithms for problems with noisy objective and con-
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straints. One path is to investigate stochastic approximation algorithms with general

constraints using, for example, penalty functions [51], but this must be extended to

include noisy evaluations of the constraint functions. Another avenue of research is

to increase the robustness of derivative-free optimization algorithms to noise. One

approach is to make the dynamic accuracy framework [6] less conservative and more

efficient by tailoring it to the case of random noise—for example, accepting or re-

jecting noise probabilistically based on the comparison of the random noisy function

values.

The final thrust is to deal with practical issues that, in additional to computa-

tional cost, hold back systematic considerations of uncertainties in engineering design.

As demonstrated in the aircraft conceptual design problem, a numerical model that is

set up for deterministic optimization may not be appropriate for optimization under

uncertainty. It may be necessary to rethink the numerical model so that each real-

ization of the random inputs define a physical system that makes sense. Finally the

numerical models should be developed such that the properties of the system, includ-

ing distributed properties, are easily parameterized. While these issues are based on

the experiences in the application problems described in this thesis, more work must

be done to address similar issues in problem formulation and setup for large-scale

high-fidelity engineering design problems.
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Appendix A

Autocorrelation Derivation

In this appendix, we derive the result

Corr [M(x+ ∆x,U(ω)),M(x,U(ω)))]

≈ 1− 1− Corr [M ′(x,U(ω)),M(x,U(ω))]2

2 Var [M(x,U(ω))]/Var [M ′(x,U(ω))]
∆x2

for |∆x| � 1 presented in §3.1.1. To simplify notation, we drop U(ω) from the

argument of the model M .

Let the model be twice differentiable in x for all realizations of U(ω). For some

small ∆x, we apply the Taylor expansion in x to obtain

M(x+ ∆x) ≈M(x) +M ′(x)∆x+M ′′(x)
∆x2

2
,

where M ′(x) = ∂M(x)
∂x

and M ′′(x) = ∂2M(x)
∂x2

. Taking the expectation of both sides, we

get

µM(x+ ∆x) ≈ µM(x) + µM ′(x)∆x+ µM ′′(x)
∆x2

2
,

where µM(x) = E [M(x)], µM ′ = E [M ′(x)], and µM ′′ = E [M ′′(x)].
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We first derive the covariance between M(x+ ∆x) and M(x):

Cov [M(x+ ∆x),M(x)]

= E [{M(x+ ∆x)− µM(x+ ∆x)}{M(x)− µM(x)}]

≈ E
[
{M(x)− µM(x)}2]+ E [{M ′(x)− µM ′(x)}{M(x)− µM(x)}]∆x

+ E [{M ′′(x)− µM ′′(x)}{M(x)− µM(x)}]∆x
2

2

= Var [M(x)] + Cov [M ′(x),M(x)]∆x+ Cov [M ′′(x),M(x)]
∆x2

2

= Var [M(x)]

{
1 +

Cov [M ′(x),M(x)]

Var [M(x)]
∆x+

Cov [M ′′(x),M(x)]

Var [M(x)]

∆x2

2

}
.

Next, we derive the variance of M(x+ ∆x) in a similar manner:

Var [M(x+ ∆x)]

= E
[
{M(x+ ∆x)− µM(x+ ∆x)}2]

≈ Var [M(x)] + Var [M ′(x)]∆x2 + Var [M ′′(x)]
∆x4

4
+ 2 Cov [M ′(x),M(x)]∆x

+ 2 Cov [M ′′(x),M(x)]
∆x2

2
+ 2 Cov [M ′′(x),M ′(x)]

∆x3

2
.

Using the formula for the Taylor expansion of the inverse square root

1√
a+ bz + cz2 + dz3 + ez4

≈ 1

a1/2
− b

2a3/2
z +

3b2 − 4ac

8a5/2
z2,

we obtain

1√
Var [M(x+ ∆x) Var [M(x)]]

≈ 1

Var [M(x)]
− Cov [M ′(x),M(x)]

Var [M(x)]2
∆x

+
3 Cov [M ′(x),M(x)]2 − Var [M(x)]{Var [M ′(x)] + Cov [M ′′(x),M(x)]}

2 Var [M(x)]3
∆x2

Therefore, the correlation coefficient between M(x+ ∆x) and M(x), omitting terms
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of order ∆x3 or higher, is

Corr [M(x+ ∆x),M(x)]

=
Cov [M(x+ ∆x),M(x)]√

Var [M(x+ ∆x) Var [M(x)]]

≈ 1− Cov [M ′(x),M(x)]

Var [M(x)]
∆x

+
3 Cov [M ′(x),M(x)]− Var [M(x)]{Var [M ′(x)] + Cov [M ′′(x),M(x)]}

2 Var [M(x)]2
∆x2

+
Cov [M ′(x),M(x)]

Var [M(x)]
∆x− Cov [M ′(x),M(x)]2

Var [M(x)]2
∆x2 +

Cov [M ′′(x),M(x)]

2 Var [M(x)]
∆x2

= 1− Var [M ′(x)] Var [M(x)]− Cov [M ′(x),M(x)]2

2 Var [M(x)]2
∆x2

= 1− 1− Corr [M ′(x),M(x)]2

2 Var [M(x)]/Var [M ′(x)]
∆x2.

111



112



Bibliography

[1] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. New-
man. Approximation and Model Management in Aerodynamic Optimization
with Variable Fidelity Models. AIAA Journal of Aircraft, 38(6):1093–1101, 2001.

[2] C. Audet and J. E. Dennis Jr. Mesh Adaptive Direct Search Algorithms for
Constrained Optimization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[3] H. G. Beyer and B. Sendhoff. Robust Optimization—A Comprehensive Sur-
vey. Computer Methods in Applied Mechanics and Engineering, 196(33-34):3190–
3218, 2007.

[4] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset. A Rigorous Framework for Optimization of Expensive Functions by
Surrogates. Structural and Multidisciplinary Optimization, 17(1):1–13, 1999.

[5] T. Borogovac and P. Vakili. Control Variate Technique: A Constructive Ap-
proach. In Winter Simulation Conference, pages 320–327, Miami, FL, December
2008.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. SIAM,
Philadelphia, PA, 2000.

[7] A. R. Conn, K. Scheinberg, and P. L. Toint. A Derivative Free Optimization
Algorithm in Practice. In 7th AIAA/USAF/NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, number AIAA-1998-4718, St. Louis,
MO, September 1998.

[8] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimization. SIAM, Philadelphia, PA, 2009.

[9] A. P. Dempster. Upper and Lower Probabilities Induced by a Multivalued Map-
ping. The Annals of Mathematical Statistics, 38(2):325–339, 1967.

[10] M. Drela. Design Derivers of Energy-Efficient Transport Aircraft. SAE Interna-
tional Journal of Aerospace, 4(2):602–618, 2011.

[11] C. Dribusch, S. Missoum, and P. Beran. A Multifidelity Approach for the Con-
struction of Explicit Decision Boundaries: Application to Aeroelasticity. Struc-
tural and Multidisciplinary Optimization, 42(5):693–705, 2010.

113



[12] D. Dubois and H. Prade. Possibility Theory, Probability Theory and Multiple-
Valued Logics: A clarification. Annals of Mathematics and Artificial Intelligence,
32(1):35–66, 2001.

[13] J. L. Eftang, D. B. P. Huynh, D. J. Knezevic, and A. T. Patera. A Two-
Step Certified Reduced Basis Method. SIAM Journal of Scientific Computing,
51(1):28–58, 2012.

[14] M. Emsermann and B. Simon. Improving Simulation Efficiency with Quasi Con-
trol Variates. Stochastic Models, 18(3):425–448, 2002.

[15] M. B. Giles. Multilevel Monte Carlo Path Simulation. Operations Research,
56(3):607–617, 2008.

[16] E. M. Greitzer, P. A. Bonnefoy, E. de la Rosa Blanco, C. S. Dorbian, M. Drela,
D. K. Hall, R. J. Hansman, J. I. Hileman, R. H. Liebeck, J. Lovegren, P. Mody,
J. A. Pertuze, S. Sato, Z. S. Spakovszky, C. S. Tan, J. S. Hollman, J. E. Duda,
N. Fitzgerald, J. Houghton, J. L. Kerrebrock, G. F. Kiwada, D. Kordonowy, J. C.
Parrish, J. Tylko, E. A. Wen, and W. K. Lord. N+3 Aircraft Concept Designs and
Trade Studies, Volume 1. Final Report NASA/CR-2010-216794/VOL1, NASA
Glenn Research Center, Cleveland, OH, 2010.

[17] E. M. Greitzer, P. A. Bonnefoy, E. de la Rosa Blanco, C. S. Dorbian, M. Drela,
D. K. Hall, R. J. Hansman, J. I. Hileman, R. H. Liebeck, J. Lovegren, P. Mody,
J. A. Pertuze, S. Sato, Z. S. Spakovszky, C. S. Tan, J. S. Hollman, J. E. Duda,
N. Fitzgerald, J. Houghton, J. L. Kerrebrock, G. F. Kiwada, D. Kordonowy,
J. C. Parrish, J. Tylko, E. A. Wen, and W. K. Lord. N+3 Aircraft Concept
Designs and Trade Studies, Volume 2, Design Methodologies for Aerodynamics,
Structures, Weight, and Thermodynamic Cycles. Final Report NASA/CR-2010-
216794/VOL2, NASA Glenn Research Center, Cleveland, OH, 2010.

[18] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen,
London, UK, 1964.

[19] S. Heinrich. Multilevel Monte Carlo Methods. In S. Margenov, J. Was-
niewski, and P. Yalamov, editors, Large-Scale Scientific Computing, pages 58–67.
Springer-Verlag, Berlin, Germany, 2001.

[20] T. C. Hesterberg and B. L. Nelson. Control Variates for Probability and Quantile
Estimation. Management Science, 44(9):1295–1312, 1998.

[21] F. J. Hickernell, C. Lemieux, and A. B. Owen. Control Variates for Quasi-Monte
Carlo. Statistical Science, 20(1):1–31, 2005.

[22] K. C. Kapur and L. R. Lamberson. Reliability in Engineering Design. John
Wiley & Sons, New York, NY, 1977.

[23] C. T. Kelley. Implicit Filtering. SIAM, Philadelphia, PA, 2011.

114



[24] G. J. Kennedy and J. R. R. A. Martins. Parallel Solution Methods for Aerostruc-
tural Analysis and Design Optimization. In 13th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, number AIAA 2010-9308, Fort Worth,
TX, September 2010.

[25] M. C. Kennedy and A. O’Hagan. Predicting the Output from a Complex Com-
puter Code When Fast Approximations Are Available. Biometrika, 87(1):1–13,
2000.

[26] M. C. Kennedy and A. O’Hagan. Bayesian Calibration of Computer Mod-
els. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
63(3):425–464, 2001.

[27] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. A CAD-Free
Approach to High-Fidelity Aerostructural Optimization. In 13th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, number AIAA 2010-
9231, Fort Worth, TX, September 2010.

[28] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Reading, MA, 3 edition, 1998.

[29] N. Kuschel and R. Rackwitz. Two Basic Problems in Reliability-Based Structural
Optimization. Mathematical Methods of Operations Research, 46(3):309–333,
1997.

[30] J. Li and D. Xiu. Evaluation of Failure Probability via Surrogate Models. Journal
of Computational Physics, 229(23):8966–8980, 2010.

[31] W.-K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo Bounding Techniques
for Determining Solution Quality in Stochastic Programs. Operations Research
Letters, 24(1):47–56, 1999.

[32] A. March and K. Willcox. Constrained Multifidelity Optimization Using Model
Calibration. Structural and Multidisciplinary Optimization, 46(1):93–109, 2012.

[33] A. March and K. Willcox. Provably Convergent Multifidelity Optimization Algo-
rithm not Requiring High-Fidelity Derivatives. AIAA Journal, 50(5):1079–1089,
2012.

[34] A. I. March. Multifidelity Methods for Multidisciplinary System Design. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 2012.

[35] B. L. Nelson. On Control Variate Estimators. Computers & Operations Research,
14(3):219–225, 1987.

[36] B. L. Nelson, B. W. Schmeiser, M. R. Taaffe, and J. Wang. Approximation-
Assisted Point Estimation. Operations Research Letters, 20(3):109–118, 1997.

115



[37] L. W. T. Ng and M. S. Eldred. Multifidelity Uncertainty Quantification Using
Nonintrusive Polynomial Chaos and Stochastic Collocation. In 14th AIAA Non-
Deterministic Approaches Conference, number AIAA 2012-1852, Honolulu, HI,
April 2012.

[38] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford, K. V. Diegert, and K. F.
Alvin. Error and Uncertainty in Modeling and Simulation. Reliability Engineer-
ing & System Safety, 75(3):333–357, 2002.

[39] G. J. Park, T. H. Lee, K. H. Lee, and K. H. Hwang. Robust Design: An Overview.
AIAA Journal, 44(1):181–191, 2006.

[40] R. Pasupathy, B. W. Schmeiser, M. R. Taaffe, and J. Wang. Control-Variate
Estimation Using Estimated Control Means. IIE Transactions, 44(5):381–385,
2012.

[41] M. J. D. Powell. A Direct Search Optimization Method That Models the Objec-
tive and Constraint Functions by Linear Interpolation. Advances in Optimization
and Numerical Analysis, 7:51–67, 1994.

[42] M. J. D. Powell. The BOBYQA Algorithm for Bound Constrained Optimiza-
tion Without Derivatives. Technical Report 2009/NA06, Department of Applied
Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK,
2009.

[43] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and
A Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Par-
tial Differential Equations. Archives of Computational Methods in Engineering,
15(3):229–275, 2008.

[44] B. W. Schmeiser, M. R. Taaffe, and J. Wang. Biased Control-Variate Estimation.
IIE Transactions, 33(3):219–228, 2001.

[45] G. Shafer. A Mathematical Theory of Evidence. Princeton university press
Princeton, Princeton, NJ, 1976.

[46] J. C. Spall. Multivariate Stochastic Approximation Using a Simultaneous Per-
turbation Gradient Approximation. IEEE Transactions on Automatic Control,
37(3):332–341, 1992.

[47] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons, Hoboken, NJ, 2003.

[48] A. Speight. A Multilevel Approach to Control Variates. Journal of Computa-
tional Finance, 12(4):3–27, 2009.

[49] V. Torczon. On the Convergence of Pattern Search Algorithms. SIAM Journal
on optimization, 7(1):1–25, 1997.

116



[50] B. Tracey, D. Wolpert, and J. J. Alonso. Using Supervised Learning to Improve
Monte Carlo Integral Estimation. In 52nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Material Conference, number AIAA 2011-
1843, Denver, CO, April 2011.

[51] I.-J. Wang and J. C. Spall. A Constrained Simultaneous Perturbation Stochastic
Approximation Algorithm Based on Penalty Functions. In American Control
Conference, San Diego, CA, June 1999.

[52] U. Wolff. Monte Carlo Errors with Less Errors. Computer Physics Communica-
tions, 156(2):143–153, 2004.

[53] L. A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and
Systems, 1(1):3–28, 1978.

117


