
 

Ranking CubeSat Communication Systems Using a Value-centric Framework 

by 

Clayton B. Crail 

B.S. Aerospace Engineering, The University of Texas at Austin, 2007 

 
Submitted to the MIT Sloan School of Management and the Department of Aeronautics and Astronautics 

in Partial Fulfillment of the Requirements for the Degrees of  

Master of Business Administration 
and 

Master of Science in Aeronautics and Astronautics 
 

In conjunction with the Leaders for Global Operations Program at the 
Massachusetts Institute of Technology 

 
June 2013 

 
© 2013 Massachusetts Institute of Technology. All rights reserved. 

 
 
 
 

Signature of Author ____________________________________________________________________ 
Aeronautics and Astronautics, MIT Sloan School of Management 

May 10, 2013 
 

Certified by __________________________________________________________________________ 
Deborah Nightingale, Thesis Supervisor 

Professor of the Practice, Aeronautics and Astronautics and Engineering Systems Division 
 

Certified by __________________________________________________________________________ 
Kerri Cahoy, Thesis Supervisor 

Assistant Professor of Aeronautics and Astronautics 
 

Certified by __________________________________________________________________________ 
Don Rosenfield, Thesis Reader 

Senior Lecturer, MIT Sloan School of Management 
 

Accepted by __________________________________________________________________________ 
Eytan H. Modiano, Chair, Aeronautics and Astronautics Graduate Program Committee 

Professor of Aeronautics and Astronautics 
 
Accepted by __________________________________________________________________________ 

Maura Herson, Director, MIT Sloan MBA Program 
MIT Sloan School of Management 

 



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



 3 

Ranking CubeSat Communication Systems Using a Value-centric Framework 

by 

Clayton B. Crail 

Submitted to the MIT Sloan School of Management and the Department of Aeronautics and Astronautics 
on May 10, 2013 in Partial Fulfillment of the Requirements for the Degrees of Master of Business 

Administration and Master of Science in Aeronautics and Astronautics 

Abstract 

This work focuses on the application of a streamlined version of Multi-Attribute Tradespace 
Exploration (MATE) as a first-order analysis tool to aid in the selection of CubeSat communication 
systems. As CubeSats have become more capable, their need to support ever-increasing amounts of 
mission data has become imperative. However, the selection of a communications system is complex 
endeavor with multiple competing objectives and multiple stakeholders. This already challenging 
environment is compounded by the fact that CubeSats often operate with miniscule budgets on reduced 
timelines. So, in order to aid the decision maker while maximizing value, we show that MATE can be 
applied as a first-order analysis tool.  
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1 Introduction 

The current paradigm of satellite manufacturing is to build and operate very capable, very 

expensive, monolithic satellites with 15-year lifetimes and 10-year development cycles. This paradigm 

has made the consequences of mission failure severe and has led to a no-fail environment for satellite 

manufacturers and operators. However, a new paradigm is starting to emerge in the satellite industry: 

distributed networks of low-cost small satellites with short development cycles that can enable robust, 

redundant, and responsive space systems. One class of these small satellites is a modular, 10 x 10 x 10 

cm3 spacecraft called a CubeSat. First launched in 2003, these small satellites have been used extensively 

for experimental purposes with much success. Owing to the achievements of last decade, stakeholders 

across the satellite industry have started to examine CubeSats for use in operational missions. But, in 

order for CubeSats to transition from experimental projects to operational assets, a key limitation still 

remains to be overcome, the communications system. 

Communications are a vital part of satellite technology, both to command the spacecraft and to 

get mission data to the end users in a timely manner. Compared with larger, monolithic satellites, 

CubeSats typically communicate with a low data-rate to a limited number of receiver stations on the 

ground. This leads to constrained amounts of mission data that suffers from high latency, due to the long 

period between ground station accesses. In order to enable more sophisticated, useful, and/or operational 

missions, that limitation must be overcome.   

However, the problem is a complex one with numerous variables and competing objectives from 

multiple stakeholders. The success of the CubeSat industry has led to many new commercial entrants that 

provide a broad range of communication solutions specifically designed for use on CubeSats. While it is 

certainly positive that many more options exist than did 10 years ago, this presents a new problem for 

decision makers. How can the value of the system be maximized with so many choices? This problem is 

further compounded by the limited time and budgets under which CubeSat decision makers operate. In 
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this environment, there is typically not enough time to explore every option in detail as might be done in a 

traditional engineering trade analysis. 

To aid the decision maker confronted with this problem, the work herein focuses on the 

application of a value-centric framework to investigate, characterize, and rank these communication 

systems. By using a value-centric framework, as opposed to a purely technical one, decision maker 

preference can be included in the design process to maximize overall design utility and help quickly 

explore the complete set of feasible designs early on in the design process while changes are still possible. 

The value-centric framework chosen for this application is Multi-Attribute Tradespace Exploration 

(MATE) (Ross, Diller, & Hastings, 2003), which combines both technical tradespace exploration and 

Multi-Attribute Utility Analysis (MAUA) (Keeney & Raiffa, 1976).  

In the classic application of MATE, a utility function is assigned to each decision maker-derived 

attribute of the system. With this input, custom software calculates and returns the overall utility of all the 

possible designs based on the previously input decision maker preferences, calculates the cost of each 

particular design, and then plots each design in the utility-cost tradespace. The results of this model can 

then be used to help understand the tradespace of a complicated new design, drive rapid design iteration, 

prevent anchoring to previous designs through design enumeration, and ultimately maximize decision 

maker utility  (Nickel, Ross, & Rhodes, 2009).  

The research performed with the MATE framework up to now has focused mainly on rigorous 

application to large-scale systems. While incredibly powerful, a complete application can be time 

consuming, and unfortunately, the constraints of CubeSat programs do not always afford the time a 

complete implementation of MATE deserves. However, as a holistic analysis tool, MATE is still useful to 

guide decision-making under such constraints. The work that follows validates this assertion through the 

application of a streamlined version of MATE as a first-order analysis tool for CubeSat communications 

system selection.  
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2 Motivation and History 

CubeSats are quickly moving from “practical learning tool for engineering students”  (Twiggs, 

2008) towards becoming operational space-based assets. This can be attributed mostly to their low cost 

and short development cycle. These desirable attributes are achieved through the use of a common 

standard and limited size, which enable commercial off the shelf (COTS) components to be developed 

and utilized cost-effectively for a broad range of missions.  

As the transition towards becoming an operational asset continues, it is important that the COTS 

systems selected for use in these small satellites be optimized for each mission in order to get the most out 

of their limited capability. In their infancy, system selection was not so difficult, as only a few component 

systems existed which were specifically designed for CubeSats. However, as CubeSats have proliferated 

over the last decade, and been called upon to perform missions of ever increasing importance, many more 

commercial vendors have entered the space to offer component systems for these small spacecraft. These 

entrants, while fantastic for the success of CubeSats, have resulted in many more system combinations 

than can be thought about at any one time by a decision maker or designer. So with this in mind, we seek 

to aid the decision maker and designer by applying a value-centric framework to the selection of one such 

component system: the communications package. 

Before beginning any detailed analysis and a discussion of value centric methodology as it relates 

to CubeSat system design, we begin by presenting a brief discussion of the CubeSat standard and its 

history to help provide background and some common vocabulary for this work.   

2.1 CubeSats in Brief 

In its simplest form, a CubeSat is a 10 x 10 x 10 cm3 fully functioning spacecraft, which weighs no 

more than 1 kg. This is referred to as a 1U CubeSat. Typical sizes also include 2U (10 x 10 x 20 cm3) and 

3U (10 x 10 x 30 cm3) CubeSats. These pico or nano-satellites are quite a departure from the larger, 

monolithic satellites typically flown today, some of which can easily reach into the hundred of kilograms 
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and be tens of meters in length, width, and height. Small satellites, such as CubeSats, are comprised of a 

similar set of systems which can be found on their larger and much more expensive cousins, though in 

miniature.  

With multiple commercial providers now selling components for CubeSats, one problem CubeSat 

users and builders face is how to select the right mix of components for a particular mission. In the 

following analysis, a value-centric methodology will be applied to aid in this selection. For the purposes 

of explanation and limiting scope, the communications system has been chosen to use as a representative 

case. However, it should be noted that the methodology described herein could be applied to any other 

subsystem or even a complete system. For brevity, descriptions of subsystems other than communications 

will be limited to that required for our analysis. Any further research on these subsystems will be left to 

the reader. 

2.2 The CubeSat Standard 

Much of the success of CubeSats can be attributed to the development and wide adoption of a 

common standard. In this section, we will discuss the history of that standard followed by its chief 

advantages. 

2.2.1 Development History 

The idea for the CubeSat standard started around 1998 with a desire on the part of Prof. Bob 

Twiggs of Stanford University to make student satellite programs more successful, thereby increasing 

interest from engineering students and giving them valuable experience with actual space hardware while 

still in college. He reasoned that this would require the reduction of system development timeline and 

launch cost. Having observed that previous student programs were challenged by these problems, Prof. 

Twiggs decided that limiting the size (and mass) of the satellite would reduce the number of experiments 

which could be flown on a single mission and would thus reduce launch cost and time. 
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 With this in mind, he reasoned that miniaturization is really limited by the amount of power that 

can be produced by a recharging system (solar cells) on-orbit. At the time, in order to achieve charging of 

two lithium-ion batters in series, eight 1.2V GaAs solar cells had to be used which, when affixed to the 

six sides of a cube, measured 3.5 inches cubed. Additionally, in order to accommodate launch rails, a 0.25 

inch clearance was needed all around each face, bringing the CubeSat’s size up to a 4 inch cube. After 

looking around, a plastic “Beanie Baby” box was found and used for the initial conceptual model. Finally, 

in poking some fun at the Mars Lander failure suffered as a result of a metric conversion error between 

JPL and Lockheed Martin, it was decided that the CubeSat standard would be 10 x 10 x 10 cm3 as this 

was very close to 4 inches. Finally, to complete the specification, the maximum mass was defined to be 

1kg, the equivalent weight of a 1000 cm3 volume of water and also the designated upper limit for picosat 

mass (Twiggs, 2008). Table 1, from Janson (2008) shows naming conventions for various sizes of small 

satellite. CubeSats are typically in the “nanosatellite” class of small satellite. 

Table 1: Small Satellite Classification by Mass 

Spacecraft Class Mass Range 

Microsatellite 10 – 100 kg 

Nanosatellite 1 – 10 kg 

Picosatellite 0.1 – 1 kg 

Femtosatellite 0.01 – 0.1 kg 

 

 The next step was to create a standardized launcher. The first prototype was a simple 3U (10 x10 

x 30 cm3) box with a spring-loaded lid and a pusher spring to deploy the CubeSats. Prof. Twiggs brought 

this simple prototype launcher to Prof. Jordi Puig-Suari at Cal-Polytechnic in hopes he and his team could 

handle detailed design, launch vehicle integration, and qualification of the launcher. So, using the initial 

launcher design idea, Profs. Twiggs and Puig-Suari agreed upon a standard for the CubeSat and launcher. 

With that, the team at Cal-Poly created a simple, spring loaded launcher design which could fit up to three 



 17 

1U CubeSats or any combination of sizes, provided it added to no more than 3U. This launcher was called 

the Poly Picosat Orbiting Deployer (P-POD). It is shown in its most recent incarnation in Figure 1 and 

Figure 2 (California Polytechnic State University, 2009). By investing time to qualify the launcher with a 

particular launch vehicle and show that anything put inside it would remain captive, posing little or no 

threat to a primary payload, the time to launch and onerous launch vehicle-specific design requirements 

for a given satellite would be drastically reduced. So, from a “Beanie Baby” box and a desire to keep 

engineering students interested, an entire industry has emerged and a useful standard for small satellites 

has been adopted (Twiggs, 2008). 

 

Figure 1: Six CubeSats and their deployment systems 

 

 

Figure 2: Poly Picosatellite Orbital Deployer (P-POD) and Cross Section 
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2.2.2 Advantages of the CubeSat Standard 

Much of the success of CubeSats over the past decade can be attributed to the adoption of a 

common standard by a broad range of stakeholders. There are many advantages of designing to a 

standard, and we think it important to mention two in particular.  

First, by designing to a standard, the process of securing a ride to orbit can be started well ahead 

of the actual start of satellite design, thus allowing for a much faster CubeSat design cycle. This 

characteristic has resulted in the rise of a middle tier (broker-like) portion of the industry in which private 

corporations secure rides for their P-POD like “launcher” in the spare volume of launch vehicles whose 

primary payload is very large. They then sell space in their launchers to groups with CubeSats at greatly 

reduced costs compared to that of a primary mission. In addition to private companies NASA has also 

gotten into the act with their CubeSat Launch Initiative (NASA, 2013a). Through this initiative, 

university CubeSat teams competitively propose for free launch slots aboard already planned NASA 

missions. 

Second, by having a single standard, the technical requirements for CubeSat buses remain static 

across a widely varied set of missions. Thereby, commercial companies can take advantage of economies 

of scale and offer component systems at a reduced cost to a wide range of CubeSat builders (consumers). 

This removes a significant amount of cost from a CubeSat project, as not everything need be a unique and 

completely new design. An excellent discussion on the advantages of a CubeSat Standard can be found in  

(Chin, Coelho, Brooks, Nugent, & Puig-Suari, 2008) 

2.2.3 Current CubeSat Missions 

With these advantages and some history in our minds, let us turn our attention to the current state 

of the art for CubeSats. The most recent CubeSat launch aboard NROL-36 showed that CubeSats are 

becoming ever more advanced and are maintaining a steady pace toward becoming operational systems 

(CubeSat, 2012). The NROL-36 missions shown in Table 2 represent systems that could, in the not so 
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distant future, be relied upon by both government and commercial stakeholders for critical information 

across a broad range of endeavors. They include on-demand over the horizon communication1 

(USASMDC/ARSTRAT, 2012), autonomous on-orbit inspection technology2  (Hinkley & Hardy, 2012), 

tracking cargo containers over the ocean3 (University of Southern California, 2012), space weather 

monitoring4 (University of Colorado Boulder - Laboratory for Atmospheric and Space Physics, 2012), 

cosmic X-ray background measurements5 (Morehead State University - Space Science Center, 2012), and 

space debris monitoring6 (Fury, 2012).  

Table 2: NROL-36 CubeSat Missions 

Mission Name CubeSat Size CAD Rendering or Photo 

On-demand over the 
horizon communication1 

SMDC-One & 
SMDC-Two 3U 

 

Autonomous on-orbit 
inspection technology2 Aerocube 4 1U 

 

Tracking cargo 
containers over the 

ocean3 
Aeneas 3U 

 

Space weather 
monitoring4 CSSWE 3U 

 

Cosmic X-ray 
background 

measurements5 
CXBN 2U 

 

Space debris 
monitoring6 STARE 3U 
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2.3 CubeSats vs. Large Satellites 

Even with the success of these CubeSats, as well as others, it is still tough to get past the fact that 

CubeSats are less capable than traditional large satellites. As such, this seems like an appropriate time to 

discuss the tangible differences in CubeSats and large (traditional) satellites.  

The current industry paradigm is to build extremely capable, monolithic satellites that can cost in 

excess of $1B each and can have development times well in excess of 5 years. These high development 

costs and long development cycles have led to a no-fail environment for satellite manufacturers, 

operators, and launch providers.  Conversely, “the CubeSat Program is designed so that space missions 

can be completed in two years or less (the average collegiate lifetime of a graduate student)”  (Toorian & 

et al, 2005) Further, the typical cost of a CubeSat is on the order of $1M. These characteristics lead to a 

robust, responsive system with the potential for exceptional reliability gained through redundancy. In fact, 

these qualities are compelling enough that Defense Advanced Research Projects Agency (DARPA), the 

Department of Defense (DoD) Office of Operationally Responsive Space (ORS), and NASA have put in 

place programs to examine the use of small satellites in responsive roles. Specifically, the DoD terms this 

a Tier 2 need scenario, where neither a traditional development timeline nor a current asset could deliver 

what the user needs when the user needs it (DoD Office of Operationally Responsive Space, 2012).  

2.3.1 Responsive Space: Filling the Void between NPP and JPSS-1 

One example of where a CubeSat could be useful in a responsive role is as a gap-filler for the Joint 

Polar Satellite System (JPSS). JPSS is the program of record under which the National Oceanic and 

Atmospheric Administration (NOAA) and NASA manage the United States’ polar orbiting weather 

satellites throughout their lifecycle. This $12.9B program consists of 3 satellites, the Suomi NPOESS 

Preparatory Project (Suomi NPP), JPSS-1, and JPSS-2 (Office of Inspector General, 2012). This suite of 

satellites, of which NPP is the only one currently in orbit, is intended to provide atmospheric observations 

that feed numerical weather models used in storm prediction and climate monitoring, amongst other 

critical weather missions.  
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It is predicted that in the next few years, due to programmatic issues like cost over-runs and 

schedule delays, there may be a gap in satellite coverage. As shown in Figure 3, Suomi NPP, launched on 

October 28, 2011 after 10+ years of development, may die before JPSS-1 is ready to replace it in 2017 

(Office of Inspector General, 2012). This is particularly distressing, as “Polar satellites provide[d] 84 

percent of the data used in the main American computer model tracking Hurricane Sandy” (Cushman, 

2012). So, it is reasonable to assert that this is a capability that greatly benefits the nation and one that we 

would rather not be without.  

 

Figure 3: Potential Continuity Gaps for Polar-Satellite Operational Forecast Data (OIG, 2012) 

As was mentioned previously, CubeSats trade capability in exchange for reduced development time 

and cost. These features also increase the risk tolerance of a decision maker when it comes to allocating 

funds. In turn, this increases the flexibility and responsiveness of small satellites compared with large 

ones. So, given the relatively short development cycle that would be required and relatively limited funds 
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available, a CubeSat seems like a logical choice to provide at least some capability in the interim. So, let’s 

compare Suomi NPP, the current state of the art, to a typical set of CubeSat specifications directly and see 

how a gap-filler satellite might stack up. Table 3 shows this comparison with a notional 1U CubeSat and a 

3U CubeSat (California Polytechnic State University, 2009; ClydeSpace, 2013; NASA, 2013b). 

Table 3: Large Satellite vs. CubeSat Capability Comparison 

Satellite NPP 1U CubeSat (Typical) 3U CubeSat (Typical) 

Mass 2132.8 kg 1.33 kg 4kg 

Dimensions 4.0 x 2.6 x 2.2 m 10 x 10 x 10 cm 10 x 10 x 30 cm 

Power 2600 W 2.1 W – Body Panels Only 7.3 W – Body Panels Only 

Orbit Altitude 824 km 300-900 km 300 – 900 km 

Design Life 5 Years 1 Year 1 Year 

Comm Bands S, X VHF, UHF, S VHF, UHF, S 

Comm Topology LEO to Ground & 
Crosslink 

LEO to Ground LEO to Ground 

Link Availability 100% 5-10% 5-10% 

Data D/L Rate 300 Mbps 115 kbps 115 kbps 

Cost ~$900M ~0.1M ~$1M 

 

In examining this table, the main thing to note is that there is overall less capability on the part of 

a CubeSat, but at far less cost. In particular, as we will be using the communication system for a detailed 

example in the coming chapters, note the Link Availability and Data Downlink Rate lines. These are 

clearly much lower in the case of the 1U and 3U CubeSat than that of the Large (traditional) satellite. 

However, this does not mean that there is no value in a system with reduced performance. 

We may still gain value from even a little bit of data when compared with the prospect of none. 

So, what if we could increase link availability and data downlink rate while still remaining in a decision 

maker’s comfort zone? Or, more formally, what if we could design a system within a set of parameters 
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such that the decision maker derives value from the system? Note that a decision maker is a person 

involved in a program who has the power to affect change. This is a situation where defining and utilizing 

a value centric framework to capture as much value as possible from a complex system could be 

extremely useful. 

2.4 Value Proposition for CubeSats 

CubeSats are important and will continue to be more so in the coming decades, whether as gap-

filler satellites, space qualification platforms for rapidly developing electronics technologies, or as a 

student learning tool to educate and excite the next generation of engineers. They are inexpensive, 

responsive, flexible, and robust. But, the question remains, how do we maximize the value that can be 

gained from any particular CubeSat given its technical limitations? For that matter, how do we select the 

right subsystems to go on CubeSats given all of the possible design choices? These over-arching 

questions frame the research that will be presented in the following chapters. 
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3 CubeSat Communication Technology 

As missions are becoming more sophisticated, the demand to return ever-increasing amounts of data 

from those missions in a timely manner is increasing. In this chapter, an introductory discussion of 

CubeSat communications is presented.  

The analysis herein will be mostly limited to data downlink from the CubeSat, which is the stressing 

case. Uplink scenarios tend to be less stressing due to a lower required data rate and ample available 

transmit power at the ground station. In other words, communicating commands is far less taxing on the 

system than the delivering volumes of mission data. So, if it can perform effectively during downlink, we 

will assume that it will also be able to perform well in uplink scenarios.  

3.1 Current CubeSat Communication Systems 

Generically, a CubeSat communication system is made up of a transmitter onboard the spacecraft 

and a receiver at a ground station, or set of receivers across a geographically diverse ground station 

network. For reference, Table 4 from  (Klofas, Anderson, & Leveque, 2008), shows a summary of 

CubeSat transmitters and their capabilities as of November 2008. 

Table 4: Nov 2008 Summary of CubeSat Transmitters (Klofas, 2008) 
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The overall objective, at least for the purposes of this study, is to get as much mission data to a user 

as possible. It is also desirable to do so in as timely a manner as possible, but we will address this second 

objective in Chapter 5. In order to determine our performance against the first objective, we can begin by 

measuring how much data the system is able to transmit. Total data volume can be calculated by 

multiplying the transmit rate and the access time of the satellite to a receiver station. At first glance, it 

would seem that if we want to maximize the amount of data that is getting to the ground, then all we have 

to do is increase access time and increase the transmit rate. This sounds easy enough, but on a CubeSat 

both access time and data rate are inherently limited. So, let us turn our attention to the elements of the 

communication system that affect the data rate and access time and discuss how these two elements might 

be maximized. 

3.1.1 Maximizing Data Rate 

At this point, we will assume that we are talking about digital communication. As such, data is 

encoded onto an analog signal via a modulation scheme. In the case of CubeSats, this modulation scheme 

is typically rather simple, and thus limits how much data can be transmitted in a given amount of time. 

However, by using higher order modulation, packing the signal with more information over constant 

bandwidth, it is possible to achieve higher data throughput for the system. But, this idea has a problem. 

The more data encoded onto a signal, the more energy is needed in order to ensure that encoded data is 

not lost. Formally, this is termed Eb/N0 (bit energy to noise ratio). So, there is a tradeoff between spectral 

efficiency and power. That is, the more efficiently we use a given section of bandwidth, the more power 

must be used during transmission  (Wertz, Everett, & Puschell, 2011). 

Given that the transmit power emitted by CubeSat is limited, typically around 1W (Selva & 

Krejci, 2012), the alternative is to use a spectrally inefficient (simple) modulation scheme which includes 

a great deal of forward error correction. But, this requires a greater amount of bandwidth. While such a 

plan could work in theory, the radio spectrum, shown in Figure 4 (Office of Spectrum Management, 

2011), is already densely packed and tightly regulated by the Federal Communications Commission 
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(FCC) in the United States and internationally by the International Telecommunication Union (ITU)  

(Maral & Bousquet, 2009). 

 

Figure 4: United States Frequency Allocation Spectrum (Office of Spectrum Management, 2011) 

 

It should be noted that this is a greatly simplified description of the trade analyses required to 

effectively design or select a satellite communication system. The takeaway from this discussion should 

be that this problem is inherently a complex one with many variables and multiple competing objectives. 

During the design process, these technical considerations are accounted for through a link budget. This 

budget accounts “... for increases and decreases in power through each part of the link from the 

transmitter and its antenna, and through space to the receiver antenna and electronics where the signal is 

measured and decoded” (Wertz, Everett, & Puschell, 2011). 
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3.1.2 Access Time 

For the purposes of analysis, let us assume for a moment that increasing the data rate to increase 

the overall data volume isn’t possible. This could be because of physical (technical) restrictions or maybe 

because of bandwidth limits from a regulatory body. So, let us focus on another option, increasing access 

time.  

Typically, CubeSats fly in Low Earth Orbit (LEO) from just outside the upper atmosphere to a few 

hundred kilometers in altitude, and communicate to receiver stations on the ground of varying size and 

performance. These receiver stations can range from an amateur radio operator with a simple Yagi 

antenna to advanced parabolic antennas that are 10s of meters in diameter, like those of the National 

Aeronautics and Space Administration (NASA) Deep Space Network (DSN)  (NASA, 2006; Tuli, Orr, & 

Zee, 2006). 

 Irrespective of the capability of an individual ground station, receiver access time is dominated by 

geographic location of the receiver and the orbit geometry of the CubeSat. For a single ground station in 

an optimal location and the CubeSat in an optimal orbit, we can assume that a typical ground station pass 

for a CubeSat will last approximately 10 minutes and occur once every 90 minutes. In reality, things 

aren’t quite so perfect. The precession of the CubeSat, assuming it is in an inclined orbit, constrains the 

number of passes where data can be downloaded. So, what can be done about that?  

Assuming that CubeSats are going to continue being launched into LEO orbit, and not higher orbits 

with longer dwell times and higher path loss, then there are two options to increase overall access time. 

First, increase the number of ground stations to which the CubeSat can communicate. This idea certainly 

has merit and is currently being actively pursued through various collaborative endeavors, like the Global 

Educational Network for Satellite Operators (GENSO) (Kief, 2011). Second, we could choose a 

completely different network topology. By that, we mean some form of satellite cross-linking to a larger 

dedicated communications satellite that could then forward data to the user on the ground through its own 
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already established communication network. Some of the main advantages and disadvantages of each 

option are presented in Table 5. 

Table 5: Comparison of Options for Increased Access Time 

Option Description Advantages Disadvantages 

1 More Ground Stations Simplicity, Control 
Regulation (Multiple Countries)  
Need to Staff Multiple Locations 

Initial Set-up Cost 

2 Alternate Network Topologies 
(Satellite Cross-link) 

Greatly increased 
access time 

Various Technical Challenges: 
e.g. Free-space loss, Beam 

Handover, Doppler shift, Reduced 
Data Rate, Need for Directional 

Antenna on CubeSat 

 

3.1.2.1 Option 1: More Ground Stations 

At first glance, it would seem that a good solution to the problem of not enough access time 

would be to add a lot of geographically diverse ground-based receiver stations to the mix. They are 

relatively simple, compared with a space-based receiver, and can be controlled directly by the operations 

team, assuming they are networked together. However, there are a few disadvantages that make the 

implementation not so simple.  

First, each country has its own set of complex regulations for bandwidth allocation. As such, 

bandwidth allocation can be a costly and time-consuming process. Second, there is a need to staff each 

location, which is a recurring cost. Though a single ground station might only cost a few tens of 

thousands of dollars to set up, the cost of a staff to maintain that ground station could quickly exceed the 

budget of a CubeSat program intended to minimize cost. It should also be pointed out that even graduate 

student labor is not free.  

The arguments being made here pertain to an operational system. That is, a system which is 

fulfilling a critical need and which must achieve a high reliability. So, the assumption has been made that 
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the communications link must be a controllable and reliable one. Therefore, a solution like partnering 

with the amateur radio community, though incredibly valuable on a research and development basis, 

would not be appropriate for an operational CubeSat system. 

3.1.2.2 Option 2: Alternate Network Topologies 

Now, let us discuss an alternate solution to creating a complex network of ground stations. 

Designers of larger satellites have often solved the problem of increasing access time by selecting a 

communication system that utilizes another satellite already in orbit. This is termed a satellite cross-link 

and can be performed through a variety of on-orbit network topologies, which are shown Figure 5. 

 

Figure 5: Various Satellite Network Topologies 

There are several commercial and government entities that operate satellite networks that perform 

cross-link communication, like the Iridium satellite telephone constellation or NASA’s Tracking Data and 

Relay Satellite System (TDRSS) (Iridium, 2013; NASA, 2008). These systems are a scarce resource, and 

as such are not always available to operators of small satellite missions. However, there is commercial 

interest in increasing this resource for use by small satellites, though no transceivers are yet appropriately 
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miniaturized for use on CubeSats. Many of the technical challenges associated with utilizing this set of 

network topologies can be more easily solved on a larger platform than a CubeSat. These include the need 

for a directional antenna to overcome free-space loss, active attitude control for pointing, performing 

spot-beam handover, and compensating for Doppler frequency shift.  

While no active system to perform CubeSat communication to a commercial asset via cross-link 

exists, the technology is ever advancing. So, we can think about what such a system might look like and 

start to analyze how such a system would stack up against ground-based systems. This could reveal the 

parameters required by such a system to make it feasible and motivate future system development. 

3.2 Stakeholders for CubeSat Communication Systems  

The selection of a communication system is a complex task with many competing objectives. One 

might expect that this is where the complexity ends. However, in addition to the technical trades, 

stakeholders who may have competing interests are involved. There are many groups that have a stake in 

satellite communications and not just those interested in CubeSats. Table 6 summarizes a few of the 

varying stakeholder viewpoints associated with this endeavor in order to give a broad sense of what each 

group cares about before we continue with more detailed analysis in Chapter 5. 
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Table 6: Stakeholder Summary 

Stakeholder Stakeholder Motivation/Need 
End User of CubeSat 

Mission Data 
(Likely a Decision Maker) 

Wants a lot of data, quickly, and at minimum cost. 

CubeSat Development 
Program Manager 

(Likely a Decision Maker) 

Wants to manage the creation of a functioning system to get the user 
his/her data, but at a reasonable cost and in a reasonable time. 

Satellite/Communication 
System Designer 

Wants to design the best system possible. Typically optimizes on 
performance and not cost. The design is typically constrained by 

requirements set by the program manager or other decision maker. 

Regulators (ITU – FCC) 
Are legally responsible for ensuring that all users of the finite radio 

spectrum operate harmoniously. Note: Authorization for spectrum use 
can take a year or more. 

Other Users of the Radio 
Spectrum 

(Not limited to sat. comm.) 

Want to be able to perform communications without interference from 
other users. Typically desire to have as much bandwidth allocated to 

them as possible. 

CubeSat Operator 
Wants to ensure proper operation and reliability of the space vehicle 

while maintaining positive control. Want to get user his/her data 
quickly and efficiently. 

Other Satellites in Orbit Want to operate free of restriction from other space users. In other 
words, want to avoid conjunctions or radio interference. 

Relay Communication 
Satellite Operator 

Wants to handle as much traffic as possible so that profit can be 
maximized. Pricing structure is by the minute or by the kilobit. 

Ground Station Operator Wants to support satellite operations while maintaining minimal 
staffing to reduce cost. 

 

3.3 Summary 

In summary, it has been shown that the design, selection, and operation of CubeSat communication 

systems are complex endeavors with no simple solutions.  There are multiple competing technical 

parameters that must be selected to yield the maximum benefit across a number of competing objectives, 

which are defined by myriad competing stakeholders. In short, complexity is everywhere. In the next 

chapter, in order to bring some order to this complexity, a value-centric framework called Multi-Attribute 

Tradespace Exploration (MATE) will be introduced.   
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4 Multi-Attribute Tradespace Exploration 

Multi-Attribute Tradespace Exploration (MATE) is a value-centric framework, developed by Adam 

Ross and Nathan Diller while completing their graduate work at MIT (Diller, 2002; Ross, 2003). This 

framework combines multi-attribute utility analysis and tradespace exploration to aid the system design 

process through design enumeration and design ranking in the face of complex problems. MATE does 

this by incorporating decision maker preference across important attributes early in the design process, 

thus maximizing utility and overall value to the stakeholder community. The inclusion of preference is 

what sets this methodology apart from traditional engineering trade studies.  

 There have been several successful applications of this framework on large systems, e.g. networks 

of satellites (Ross, Diller, Hastings, & Warmkessel, 2002) and Transportation Infrastructure Planning 

(Nickel, Ross, & Rhodes, 2009). While large-scale systems present good applications for MATE, we 

would like to show that MATE can also be applied effectively to deliver value quickly to problems under 

increased time pressure with reduced resources. This will be shown in Chapter 5 by using MATE in the 

selection of a CubeSat communication system.  

4.1 Value vs. Utility 

Before discussing the details of MATE, it is worthwhile to take a moment and discuss the 

difference in value and utility, as it is a central point in understanding this framework. Informally, value 

can be determined only when a decision maker can make a direct preference ranking of attributes in the 

presence of all relevant information. This is seldom the case in real-world design, so utility allows us to 

actually arrive at an objectively good solution utilizing the decision-maker’s preference to drive the 

creation of an objective function (e.g. to maximize or minimize an attribute) that can be used to 

benchmark a large set of design options. The formal definitions as they appear in (Ross, 2003) are 

presented here: 
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Value: A preference measure that captures the ordered ranking of bundles over all outcomes.  

Utility: A dimensionless parameter that reflects the ‘perceived value under uncertainty’ of an 

attribute. Often used in economic analysis, utility is the intangible personal goal that each 

individual strives to increase through the allocation of resources.  

Utility exists on a cardinal scale and has no absolute zero, only relative zero. This can be very 

powerful in that utility values “have meaning relative to another since they consider both weighting due to 

the attribute and to continuous uncertainty” (Ross, 2003). Put more succinctly, by using a framework that 

includes utility, user preference may be included in a system model.  

4.2 MATE Framework 

The MATE framework is rather complicated and has many steps. So, in order to facilitate 

understanding, the explanation contained herein will begin at a high level and then progress to a more 

detailed explanation of each component.  

At the highest level, MATE has 3 phases: need identification, architecture solution exploration, and 

architecture evaluation. Need identification occurs when a problem is formalized and put on the table for 

action and analysis. Architecture solution exploration and architecture evaluation are accomplished using 

models and simulations to transform a large set of design vectors to attributes and then evaluating each set 

of attributes in utility-cost space (Ross, 2003). Application of this framework results in a distinct set of 

design vectors whose overall utility and cost may be plotted for comparison to look for a Pareto curve 

from which to conduct further analysis and, ultimately, design iteration. This is shown graphically in 

Figure 6, which has been adapted from (Nickel, 2010). 
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Figure 6: MATE Process 

4.2.1 MATE Steps 

Now, with the broad concept in mind, each step may be presented in more detail. This set of steps is 

derived from the original work done by Ross (2003). However, for the purposes of this analysis, in order 

to show that MATE can be used to generate a first-order solution for enhanced tradespace awareness, the 

steps of classical MATE have been combined and reduced in number. This adaptation is appropriate, as 

Adam Ross (2003) points out, “MATE is more a way of thinking than an explicit set of steps to follow.” 

The application of these steps is shown in the next chapter. 
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4.2.1.1 Identify Need 

As might be expected, the process begins with the identification of a need. This step defines 

overarching continuum in which the system will operate or the objective it will seek to satisfy. 

4.2.1.2 Define Mission 

Next, the mission of the system is broadly defined, e.g. satellite communications for operational 

CubeSats. Typically, this mission will have complex value trade-offs and no clear answer, hence the need 

for MATE. 

4.2.1.3 Define Scope 

Following need identification and mission definition, it is necessary to define the scope of the 

mission itself. In other words, how far-reaching will the analysis be? Scope should be large enough to not 

limit the solution space, but no so large as to overwhelm the analyst and decision maker.  

4.2.1.4 Identify Decision Makers 

This is a key step in the MATE process, and should be carefully considered by the analyst. The 

decision maker will ultimately play a key role in that their input will drive the determination of utility. So, 

a careful stakeholder analysis should be performed, from which the decision makers (those empowered to 

make decisions, either through control of funds or other sources of power). Decision makers can be 

differentiated from stakeholders in that stakeholders, though they might care about a system’s attributes, 

will likely not have much power to affect change.  

4.2.1.5 Identify Constraints 

Once the decision makers are identified, it is important to formalize the constraints on the system 

as well as the analysis itself. Constraints further define the space in which a model may be valid and in 

which a solution may be possible. A key strength of MATE is the ability to quickly analyze all feasible 

design choices and present them in an ordered way. By doing so, this framework helps to prevent 
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cognitive bias on the part of the decision maker from adversely affecting the final system solution. As 

such, care should be taken not to over-constrain the model so as not to negate this strength.   

4.2.1.6 Work with Decision Makers to Define Attributes 

In Multi-Attribute Utility Analysis (MAUA), the “…attribute is a decision maker-perceived metric 

that measures how well a decision maker-defined objective is met” (Ross, 2003). For example, we could 

say that an attribute of a communication system is data rate. For later notation, this will be defined as a set 

of decision maker derived attributes, X, consisting of several single attributes, X1, X2, X3, … According 

to Keeney and Raiffa (1976), who developed MAUA as the multi-attribute expansion to Von Neumann 

and Morganstern’s (1944) single-attribute utility theory, each attribute must have a decision maker 

defined definition, units, range, and a direction of increasing value. Further, according to Keeney and 

Raiffa (1976), a set of attributes must be complete, operational, decomposable, non-redundant, minimal, 

and perceived independent. Finally, research has shown that the typical human mind can only keep track 

of 7 ± 2 items at any given time (Miller, 1956). As such, in order to obtain a meaningful result, the 

number of attributes under consideration should be less than or equal to 7 ± 2.  

4.2.1.7 Generate System Concepts 

 In this step, the analyst works with the decision makers and other stakeholders to create a set of 

system concepts. By this, we mean a set of example systems that will be used in the initial development 

of the tradespace. They will also be helpful in framing the problem so that the decision maker can 

reasonably assess his/her preferences when creating utility functions.  

4.2.1.8 Define Utility Functions 

The next step in MATE is to work with the decision maker to define a utility function for each 

attribute in order to capture how much utility that decision maker finds for each attribute across a range of 

values. This is a function whose value is, strictly for convenience, from 0 to 1 based on decision maker 

preference such that a utility function value of 0 represents the least acceptable value for a system 
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attribute and a value of 1 represents the most acceptable value. To be clear, a utility function value of 0 is 

still valuable. It is just derived from an attribute at a value below which the decision maker perceives no 

utility whatsoever. Adopting the notation from Keeney and Raiffa (1976), an attribute at its minimum 

value will be represented as Xo with its associated utility function U(Xo) = 0 and an attribute at its 

maximum value will be represented as X* with its associated utility function U(X*) = 1. 

!"#"$"%"$ &'()*+,-./012,3,4-/5'61+/7+181+1-21//

The use of a utility function is predicated on the idea that decision maker preferences can be captured 

and transformed into utility functions, which can then be plotted on a graph. The reality is, that capturing 

true decision maker preference is a non-trivial problem. This is due to the fact that decision makers are 

humans who, despite their best efforts at analytical thinking, are subject to a considerable number of 

cognitive biases. 

Von Neumann and Morganstern, who developed single attribute utility theory, describe a method for 

capturing decision maker preference over a single attribute in Theory of Games and Economic Behavior  

(Von Neumann & Morgenstern, 1944). They made the problem tractable by utilizing some simple 

assumptions, shown here informally as presented in (Ross, 2003). 
1. The decision maker knows what he/she likes (existence of preference and indifference) 

2. The decision maker is transitive in his/her preferences. (If A is preferred to B and B is preferred 

to C, then A is preferred to C.) (Transitivity property) 

3. If the decision maker is equally happy with either of two sure outcomes, then he/she is also 

willing to substitute one for the other in a lottery. (Substitution property) 

4. The decision maker will always accept a lottery between the best and worst outcome in 

preference to a sure intermediate outcome, provided the probabilities are adjusted properly. 

(Archimedean property) 

Once single attribute utility is known, these attributes can be combined into multi-attribute utility 

functions by making the assumptions of preferential independence and utility independence. 
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Preferential independence - The preference of a decision maker for an attribute at one level over the 

same attribute at a different level is independent of the level of any other attribute.  

Utility independence - The shape of the utility function of a single attribute is the same up to a 

positive linear transformation, independent of any other attribute.  

 

With these two assumptions in place, the multiplicative form of the multi-attribute utility function can 

be used. It is presented here as shown in  (Keeney & Raiffa, 1976) to maintain consistent notation. 

The Multiplicative Utility Function 
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where 

1. u is normalized by ! !!!! !!!! ! ! ! ! !!! ! !!!"#!! !!!! !!! ! ! ! ! ! !!! ! !. 

2. ui is a conditional utility function of Xi normalized by !! !!! ! ! and !! !!! ! ! , i = 1, 2, 

…, n. 

3. ki =  ! !!!! !!! . 

4. k is a scaling constant that is a solution to 

! ! ! ! ! ! !!!

!
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This is an immensely powerful result, which Keeney and Raiffa show holds across a wide range 

of conditions. However, even they note that its application can be exceedingly complex. So, for the 

purposes of this work, we will make use of another simplifying assumption in creating the multi-attribute 

utility function, additive independence. 

Additive Independence - Attributes X1, X2, …, Xn are additive independent if preferences over 

lotteries on X1, X2, …, Xn depend only on their marginal probability distributions and not on their 

joint probability distribution  (Keeney & Raiffa, 1976).  

This assumption, while considerably more restrictive, allows the use of the additive form of the 

multi-attribute utility function, the application of which is significantly less difficult. It is presented here 

as shown in  (Keeney & Raiffa, 1976). 

The n-attribute additive utility function  

! ! ! ! !!! !!!
!

!!!

! ! !!!! !!

!

!!!

 

is appropriate if and only if the additive independence condition holds among attributes X1, X2, 

…, Xn, where: 

1. u is normalized by ! !!!! !!!! ! ! ! ! !!! ! !!!"#!! !!!! !!! ! ! ! ! ! !!! ! !. 

2. ui is a conditional utility function of Xi normalized by !! !!! ! ! and !! !!! ! ! , i = 1, 

2, …, n. 

3. ki =  ! !!!! !!! , i = 1, 2, …, n. 

Scaling the Utility Function 

 Finally, special mention should be made to scaling the single-attribute utility functions for 

inclusion in the multi-attribute utility function. Denoted ki, the scaling constant is found by assessing the 

overall utility of a single attribute at its most acceptable value while holding the other attributes fixed at 

their least acceptable value. 
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4.2.1.9 Define Design Variables and Their Ranges 

Once the attributes have been agreed upon, a set of design variables needs to be created, with 

appropriate ranges, over which to conduct the analysis. These design variables constitute the tradespace to 

be explored. Single design variables are denoted DV1, DV2, …, DVn and a group of design variables 

which compose a unique, complete design are termed a design vector. It should be carefully noted that 

attributes and design variables are not the same thing. For example, an attribute might be system data rate, 

whereas a design variable that affects that attribute might be transmit power, modulation scheme or some 

other independent parameter. Further, there will be many more design variables than attributes in the 

system.  

Design Variable – “A designer-controlled quantitative parameter that reflects an aspect of a 

concept. Typically these variables represent physical aspects of a design, such as orbital 

parameters, or power subsystem type. Design variables are those parameters that will be 

explicitly traded in analysis” (Ross, 2003). 

Design vector – “A set of design variables that taken together uniquely define a design or 

architecture. The vector provides a concise representation of a single architecture, or design. 

Spans the tradespace when enumerated” (Ross, 2003). 

4.2.1.10 Map Design Variables to Attributes 

Now that design variables and attributes have been created, the contribution of the design 

variables must be mapped to the attributes. This allows the analyst, various stakeholders, and decision 

makers to better understand which design variables will have an effect on various system attributes. 

4.2.1.11 Model the System 

With the elements of the system fully documented, it is now appropriate to model the system in 

software. This will include technical and cost models to translate design vectors into attribute values and 
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multi-attribute utility function models to translate those attribute values into utility values. Each design 

vector will then be plotted in utility cost space.  

It should be noted that the technical and cost models could be tremendously complex, potentially 

representing entire spacecraft or entire transportation systems. So, it is up to the analyst to determine the 

amount of software development effort that is appropriate for a given problem.  

4.2.1.12 Simulate the System 

Once the system model is in place, the simulation should be exercised. This is included as a 

separate step due to the large size of the tradespace which will likely result from the previous steps. It is 

possible that the simulation could be computationally intensive, thus taking many days to yield a solution. 

If this is the case, it is up to the analyst to either pare down the set of design variables to reduce run time 

or re-engage with the decision makers to re-define the scope of the problem to something more 

manageable in the time allotted. 

4.2.1.13 Analyze the Output 

In this step, the analyst should engage with the decision makers and begin to iterate. At least to 

first order, the design vectors that compose the Pareto frontier in the utility-cost tradespace are a 

reasonable place to start. By examining the tradespace and searching for sensitivities it may be possible 

to, at the very least, better understand the interactions present in the system (value trade-offs), and at best 

select a design for further consideration which could maximize decision-maker utility. 

4.2.1.14 Next Steps 

Hopefully, at the completion of the MATE process, a candidate design will have been selected. The 

next step is to proceed to detailed design and then build a working system. This is covered through 

several design methodologies, which are beyond the scope of this analysis. 
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4.3 Tradespace Exploration 

Tradespace exploration is the process of enumerating and analyzing a large set of design variables 

on the part of the designer to help understand and select the best possible design for a given problem. 

There are many well-established methodologies in place to accomplish this task, such as Generalized 

Information Network Analysis (GINA)  (Shaw, Miller, & Hastings, March-April 2001) or parametric 

tradespace analysis. However, while these methods have their place, they are inherently limited and do 

not allow for the inclusion of decision maker preference under uncertainty. They require the assumption 

that all information is known and thus seek to maximize to an objective function without a clear upper 

bound.  

Conversely, MAUA, the other element of MATE, does not completely explore the design space 

available to solve a given problem. The inclusion of tradespace exploration is what enhances MATE 

beyond traditional MAUA. By including this additional step, the creators of MATE link the relatively 

abstract ideas of utility functions and attributes to practical engineering design while providing an upper 

bound to which the design team can work. As such, MATE is a useful tool to maximize overall utility to 

decision makers as well as overall value to all stakeholders.   
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5 Application of MATE to the CubeSat Communication Problem 

It is easy to imagine a situation in which there is little money for trade studies, but a group of 

decision makers would like to make a more informed decision. In the author’s experience this situation is 

distressingly common and is the cause of considerable consternation on the part of many decision makers. 

We make the assertion that MATE could be used in a first iteration sense to guide decision-making under 

real-world time pressure to problems which are more tactical than those typically thought about in the 

MATE framework. In order to show empirically that such an application is possible and useful, a 

streamlined version of the MATE analysis process, outlined in Chapter 4, has been applied to the problem 

of selecting a CubeSat communication system. That application is detailed in this chapter. 

5.1 Identify Need 

CubeSats have been used effectively as teaching tools and scientific research platforms for more 

than a decade. As the technology has progressed and these small satellites have become more capable 

assets, the time is rapidly approaching when they will be used as operational assets. However, in order to 

make the leap into the operational asset domain, which demands reliability, robustness, and 

responsiveness, an effective communications system must be selected.  

To this point, CubeSat communication has been inherently limited by its reliance on ground based 

network topologies. Further, in the age of reduced budgets, an increased number of component suppliers, 

and multiple competing stakeholders, selection of the right communication system can be a daunting task 

with no clear ideal outcome. So, this seems an ideal candidate for the application of MATE.  

5.2 Define Mission 

For the purposes of this analysis, the mission will be generally defined as any operational CubeSat 

in Low Earth Orbit. Various scenarios can easily be imagined, but they all have a common need for 

reliable, robust, and responsive communication. 
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5.3 Define Scope 

Scope will be limited to the selection of a communication system for an operational CubeSat. 

Further, the stressing part of the communication system, at least from a technical perspective, is that of 

downlink. Since this is the limiting case, the assumption will be made that if reliable downlink is possible, 

then uplink will be possible. Whereas downlink typically includes large volumes of mission data, uplink 

is relatively more limited to transmitting commands for the spacecraft to execute. So the scope will be 

further limited to data downlink. 

5.4 Identify Decision Makers 

Were this model to be exercised in a real world scenario, the decision makers would likely be a 

program manager, spectrum management official, and/or chief engineer. Note that there is a distinction 

here between stakeholder and decision maker, as described in the previous chapter. There are surely more 

stakeholders involved than decision maker, but at least at this early stage in the streamlined process, 

consideration will be limited to the decision makers. 

This is a key point in the traditional MATE process, just as it is in this abbreviated process. 

However, owing to various limitations and the desire to show the usefulness of this process in an 

abbreviated context, no outside decision makers were used.
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5.5 Identify Constraints & Assumptions 

First, we must identify the constraints and assumptions for the system and the analysis. This step is 

used to make the problem tractable. Table 7 shows the results of this step from the application to CubeSat 

communication system selection. 

Table 7: System and System Model Constraints and Assumptions 

ID Constraint/Assumption 

1 Assume a 3-axis stable, pointable cubesat (pointing error < 0.25°) 
Note: A real system would require a reaction wheel assembly or similar advanced attitude 

control technology to obtain the best possible pointing accuracy. This high level of accuracy 
is required in the case of long-distance transmission with high gain antenna, as used in the 

GEO network topology. 

2 Hardware and capabilities must coincide with CubeSat specifications 

3 Data collection (mission ops) is unaffected by satellite orientation 
Note: No claims are made about how this might be possible 

4 The CubeSat is operating in Low Earth Orbit 

5 The transmitter operates at only one transmit rate 

6 The transmitter operates at its max rate (assuming a cutoff link margin) while connected 

7 The transmitter is limited to single channel communication 

8 Transmit path latency is always negligible 

9 Transmit line loss is negligible 

10 Total pointing loss is no more than 0.5dB                                                                           
Note: 0.5dB loss results from a pointing error of ~20% of the 3dB beam-width 

11 The Spacecraft is capable of instantaneous reorientation 

12 No bandwidth limitation exists 

13 Transmission is allowed on any frequency 

14 All data collected must be downlinked 

15 Telemetry is included in “collected data” 

16 Network topologies may not be combined 
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5.6 Define Attributes 

With the need identified and the problem appropriately scoped, though hopefully not over-

constrained, the next step is to define the system attributes. They are each listed along with an explanation 

in this section. Per the previous chapter, only 7 attributes have been chosen so as not to overwhelm the 

decision maker. 

X1 Data Throughput 

Data throughput is the amount of data that, assuming continuous downlink, could be collected 

and sent to the ground without loss. It is also the average data rate with which the system can 

communicate with the ground. 

X2 Transmit Power 

Transmit power is the amount of power the communication system uses to transmit data. This 

attribute is important, as it is an indication of how much power the communications system will draw 

from the limited supply onboard the CubeSat.  

X3,4 Regulatory Difficulty (RD) 

Regulatory difficulty, or the difficulty of the process of working with the ITU and/or FCC, is 

captured here. In order to maintain the additive independence condition, this has been separated into two 

categories, topology and bandwidth. 

9:/;0/</=4(4>4.?/

Here, the regulatory difficulty associated with a given topology is considered. In general 

it is assumed that it is more difficult to obtain regulatory approval for a ground-based topology 

than a space-based topology. 
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A second component of regulatory difficulty is that of bandwidth allocation. In general, 

the amount of bandwidth requested is directly proportional to the difficulty one might have 

obtaining regulatory approval for that bandwidth. 

X5 Onboard Storage Required 

This attribute accounts for the possibility that data must be collected and then stored prior to 

contact with a receiver station.  

X6 Data Latency 

Data latency refers to how long a particular bit of data must wait before being sent to a user. 

Latency is calculated as an average using Little’s Law (Little, 2011) as stated below. 

! ! !!" 

where:  

L = Average number of items in a queuing system (data stored in bits) 

! = Average arrival rate of items into the system (collection rate in kbps) 

W = Average waiting time of an item (latency in seconds) 

X7 Access Percent 

Access percent refers to the percent of time that the CubeSat is in contact with a control station. A 

decision maker might care about this attribute because it is a measure of how well he/she can actively 

monitor and command the spacecraft. 

5.7 Generate System Concepts 

Various system concepts can be imagined, but only a few are listed here as a starting point for the 

creation of design variables later in the analysis.   

Concept 1 - The first concept under consideration might be a baseline of what is done today. That 

is to say, a low power, low data rate transmitter onboard a CubeSat that communicates to a single 
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Continental United States (CONUS) ground based control station. This has the advantages of 

simplicity and ample design heritage information. It is also a good way to benchmark the analysis 

to be done. 

Concept 2 - Next a slightly more outside of the box solution might be considered. For instance, a 

system with increased power and increased data rate could be considered that remains well within 

the limits of reason. This might be a mid-level power, medium data rate CubeSat to communicate 

to a network of equatorial ground stations.  

Concept 3 - Finally, a concept that is considered way outside the box should be considered to 

determine how well it might perform, despite any cognitive bias that might prevent its incarnation. 

This could be a CubeSat with a high-power, high data rate experimental transmitter that 

communicates to a GEO based satellite. 

Ultimately, the creation of these concepts comes down to picking high, middle, and low values of 

each variable that might matter as well as brainstorming possible network topologies that could be 

utilized. This step need not be exhaustive as its purpose is to create a starting point. 

5.8 Define Utility Functions 

For the purposes of this exercise, generic risk-averse or risk-neutral utility functions of various 

forms have been chosen. In order to further explore the utility cost tradespace, the functions chosen could 

have also been created using risk-seeking equations, but that is left for future work. The exact functions 

chosen as well as the least and most acceptable values of each attribute are shown in Table 8. A logical 

next step would be to engage the decision maker in structured utility interviews. Utility functions could 

then be generated by curve fitting to the captured data so as to accurately reflect the decision maker’s true 

preference space. However, for the purposes of enumerating the tradespace and achieving a first order 

solution that could then be used to motivate informed discussion amongst decision makers, these 

functions will suffice. 
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Table 8: Attribute to Utility Mapping 

Attributes 

! 

Least 
Acceptable 

Attribute Value 

!!! 

!"#$#"% ! ! 

Most 
Acceptable 

Attribute Value 

!!! 

!"#$#"% ! ! 

Utility Equations Plot of Utility for All 
Attribute Values 

!! - Data 
Throughput 

(Mbps) 
!!! ! !!!"#$ !!! ! !!!"#$ ! !! ! ! ! !

!! !!
!!
!  

 

!! – Transmit 
Power (W) !!! ! !!!"##$ !!! ! !!!"##$ ! !! ! !

!! !!
!!
!  

 

!! – Regulatory 
Difficulty – 
Topology 
(Binary)+ 

!!! ! ! !!! ! ! ! !! ! ! ! !! 

 

!! – Regulatory 
Difficulty – 

Bandwidth (MHz) 
!!! ! !"!!"# !!! ! !!!"# ! !! ! !

!! !!
!!
!  
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Attributes 

! 

Least 
Acceptable 

Attribute Value 

!!! 

!"#$#"% ! ! 

Most 
Acceptable 

Attribute Value 

!!! 

!"#$#"% ! ! 

Utility Equations Plot of Utility for All 
Attribute Values 

!! – Onboard 
Storage Required 

(Giga-Bytes)# 
!!! ! !!!" !!! ! !!!" 

! !!

!
!!! !! ! !

!
!! !!!!

!!
! !!! ! !

 

 

!! – Data Latency 
(seconds) !!! ! !"#$""!! !!! ! !!! ! !! ! !

!!!! !!
!!
!  

 

!! – Access 
Percent (%) !!! ! !" !!! ! !""# ! !! !

!!
!""

 

 
+ X3 is a binary attribute such that X3 = 1 indicates a topology with a ground station. 
# In the case of X5, please note that constant maximum utility results from attribute values between 0 and 2 GB. 

D"%"$"$"$ E33133,-./)C1/5*>),FE))+,G*)1/H),>,)?/I*-2),4-/

For the purposes of this analysis, again adopting the notation from  (Keeney & Raiffa, 1976), the 

additive form of the multi-attribute utility function, ! ! ! ! !!! !!!!
!!! ! ! !!!! !!!

!!! , will be used. 

While the required assumptions of preferential, utility, and additive independence are rather restrictive, 

the implementation of this form is less complex than the multiplicative form and thus may be 

implemented in a more expedient manner. Also, the single attribute utility functions which comprise the 

additive multi-attribute utility function have been equally weighted such that !! ! !!!!!!!!. As the goal of 

this analysis is to obtain a first-order solution, this seems a reasonable course of action.  
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5.9 Define Design Variables and Their Ranges 

With the utility functions defined, design variables must be chosen to fill out the tradespace. The 

design variables chosen here are those that are most important in the selection of a CubeSat 

communication system. However, this is by no means an exhaustive listing. Each design variable, along 

with its range and rationale, is presented in Table 9. 

Table 9: Design Variables for Simulation 

Design Variable Value Rationale 

CubeSat Orbit Inclination: 45°, Altitude: 
400 km 

Typical CubeSat Orbit 

Transmit Power 0.5W, 1W, 2W 
These 3 levels chosen to represent a typical power 
level, a high power level, and an extremely high 

power level beyond current regulatory allowance. 

Transmit Antenna 
Gain 1dB, 5dB, 10dB 

These 3 levels chosen to represent an omni-
directional antenna, a relatively achievable 

antenna, and a high gain antenna, respectively. 

Transmit Frequency 2.4GHz, 14.5GHz, 24GHz, 
60GHz 

S, Ku, Ka, and V-Bands were chosen to give a 
broad range of frequencies. 

Receive Antenna Size  
(Assume Parabolic) 

Space Based: 0.25m, 1m, 
2m, 5m 

Ground Based: 2m, 5m, 
18m 

Chose parabolic for simplicity. Could use many 
different types of antennas. Sizes represent a 
spectrum from reasonably attainable to rarely 

attainable for each topology. 

Transmit Data Rate 100kbps, 250kbps, 
500kbps, 1Mbps 

A wide range of transmit rates were chosen which 
might be high enough to support an operational 

mission. 

System Noise 
Temperature 340K 

System noise temperature was held constant due 
to the need to limit the number of design 

variables. 

Modulation See Table 10 – Index 1, 7, 
13, 16, 19, 23 

Modulation parameters were chosen to present a 
large range of spectral efficiencies, code rates, and 
Eb/N0 cutoff margins. No particular modulation or 
standard is endorsed here, but DVB-S2 has been 

chosen for simplicity, as it is well known. 

Network Topology See Table 11 – All Listed 
10 different topologies have been selected, as this 
design variable will likely have the greatest effect 

on the system. 
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Table 10: DVB-S2 Standard & Simulation Index 

*Table derived from  (Wertz, Everett, & Puschell, 2011) 
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Table 11: List of Communication Network Topologies for MATE Simulation 

Simulation 
Index 

Network Topology Orbit Type* Network Topology Description 

1 Ground Equatorial, 3 Ground Stations 

2 Ground Continental United States, 2 Ground 
Stations (Bi-Coastal) 

3 Ground Continental United States, 1 Ground 
Station (East Coast) 

4 Geostationary Earth Orbit 3 Equally Spaced Satellites 

5 Geostationary Earth Orbit 1 Satellite 

6 Highly-Elliptical Earth Orbit  
(24 Hour Tundra Orbit) 

2 Equally Spaced Satellites 

7 Highly-Elliptical Earth Orbit  
(24 Hour Tundra Orbit) 

3 Equally Spaced Satellites 

8 Highly-Elliptical Earth Orbit  
(12 Hour Molniya Orbit) 

1 Satellite 

9 Highly-Elliptical Earth Orbit  
(12 Hour Molniya Orbit) 

2 Equally Spaced Satellites 

10 Low Earth Orbit 16 Satellites, 4 plane Walker constellation 
with evenly distributed node separation 

*Generic depictions of each topology are shown in Figure 5. Each network topology is shown in detail in Appendix A.  
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5.10 Map Design Variables to Attributes 

In this step, design variables are mapped to attributes in order to enhance awareness of the 

tradespace. The mapping for this application is shown in Figure 7, below. It should be noted that the 

design variables for transmit power and regulatory difficulty based on topology map directly to their 

attributes. The remaining attributes are affected by almost all of the design variables. Given this 

complexity, the application of MATE will be highly beneficial to the effective analysis of the tradespace 

under consideration. 

 

Figure 7: Map of Design Variables to Attributes 
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5.10.1 Cost Functions 

While on the subject of mapping design variables to attributes, it is important discuss mapping 

design variables to cost. Here, the cost functions that have been chosen to obtain a lifecycle cost for each 

design vector will be presented. All of the costs presented herein are notional only. It should be stressed 

that the cost functions chosen are intended for use in proving out the model and providing for a first order 

exploration of the tradespace. As such, their values need only be correct to a rough order of magnitude. In 

a more detailed application, cost for each component in the design should be rigorously captured and 

cataloged by the analyst. 

For this application, the cost has been divided into three categories: 1) the communication system 

onboard the CubeSat itself, 2) the cost associated with a receiver station, and 3) the cost associated with 

regulatory approval. Each is discussed in greater detail below. 

5.10.1.1 CubeSat Onboard Communication System Cost 

The cost of the onboard system is based on transmit power and transmit antenna gain, both of 

which are input directly as design variables. In reality, there are many more costs associated with the 

spacecraft transceiver and antenna, but this will suffice for our purposes. In a later iteration, a 

comprehensive design simulation might be done, such that individual resistors and capacitors may be 

chosen. However, that is left for future work. The cost functions used in this model are shown below. 

!"#$!!"!!"#$%&'(!!"#$% ! !!"
!"!!"#$%

!" ! !!"!!!! 

!"#$!!"!!"#$%&'(!!"#$""%!!"#$ ! !!
!"!!"#$

!" !!
! !!!!!! 

5.10.1.2 Receiver Station Cost 

The receiver station cost function has been piecewise defined to accommodate the two network 

topology types used by the model: ground-based and space-based. In the ground-based receiver case, the 

assumption is made that there is a one-time cost of building the station. After the station has been built, it 
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can be used to its maximum technical capability for no additional cost. The one time cost of building the 

station has been directly related to the size of the receive antenna, as shown below.  

!"#$%&!!"#$%!!"#"$%"&!!"#"$%&!!"#$ ! !"#$%&!!"!!"#"$%&' ! !
!"#"$%"&!!"#$""%!!"#$%&%'

! ! !""!!!! 

 In the other case, that of a space-based receiver station, no fixed cost is assumed whatsoever. 

Instead, only variable cost of the data ($0.01/kbit) will be considered. So, the more data the system sends, 

the greater the lifecycle cost it will have to endure. 

!"#$%!!"#$%!!"#"$%"&!!"#"$%&!!"#$ ! !"#"!!"#$ ! !!!"##!!"#$ ! !"!!" 

5.10.1.3 Regulatory Approval Cost 

Finally, the cost of regulatory approval is considered. There are many factors that play into this 

cost, some political, some technical, many of them hard to predict. However, for the purposes of this 

analysis, regulatory approval will be related directly to the amount of bandwidth required by the system 

as shown below.  

!"#$%&'()*!!""#$%&'!!"#$ ! !
!"#$%&$'!
!"!"# ! !""!!!! 

5.11 Model the System 

Using the appropriate mappings and the equations behind them, the system is modeled using a 

combination of Analytical Graphics Inc., Satellite Toolkit (STK) and MATLAB.  

5.11.1 Model Various Network Topologies 

Each network topology is rigorously modeled in STK. These models are presented in Appendix A. 

5.11.2 Calculate Line of Sight (LOS) Access 

A combination of MATLAB and STK are used to calculate the raw line of sight access to each 

station from the CubeSat under consideration. This data is then saved for later use. 
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5.11.3 Input Design Vectors 

At this point, the design vectors are input as shown previously in Table 9: Design Variables for 

Simulation. Each design vector is created from a combination of the design variables and the design space 

is completely enumerated. In other words, every combination of design variables is simulated, which 

results in a large tradespace.  

5.11.4 Calculate Link Budget 

With the various parameters now in place, a critical part of the analysis may be conducted. For 

every LOS access time a link budget calculation is performed. A notional link budget is shown in Table 

12 for reference. 
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Table 12: Notional Simplified CubeSat Link Budget 
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The simulation includes all of the parameters shown in that link budget as well as a specific 

module written to perform atmospheric attenuation as detailed in Radiowave Propagation in Satellite 

Communications (Ippolito, 1986). As link budget analysis is a well-characterized field, it is not presented 

in detail here, though it is implemented within the MATE simulation. A thorough discussion of the link 

budget calculation methodology used can be found in SME-SMAD  (Wertz, Everett, & Puschell, 2011) 

and Satellite Communications Systems  (Maral & Bousquet, 2009).  

An important result of the link budget analysis is the bit energy to noise ratio (Eb/N0) of the 

communication signal. Based on the modulation scheme chosen to encode digital data onto the analog 

signal for transmission and forward error correction, varying levels of Eb/N0 are required to ensure reliable 

communication. Conditions where Eb/N0 required is less than Eb/N0 actual are referred to as positive 

margin links and may be used for communication. This is also referred to as link closure. Referring back 

to Table 12, a situation in which the link closes, referred to as “Best Case,” as well as a situation in which 

the link budget does not close, referred to as “Worst Case,” are included for reference. 

5.11.5 Sort Access and Choose Connection Based on Highest Link Margin 

Now that the Eb/N0 required for link closure is known as well as the Eb/N0 that can be expected by 

the system to every station under consideration for all line of sight access times, the highest margin link is 

chosen over which to perform communication at any given time. This is important, as there may be 

scenarios where a link is possible to more than one receiver station at a time. 

5.11.6 Iteratively Determine Data Throughput, Storage Volume, and Latency 

Once the time and data rate for communication have been determined for a given design vector, a 

simulation of the link is performed in order to determine the actual rate at which the communication 

system can support the collection of mission data without loss. To be clear, this is the average rate at 

which data can be downlinked by the system throughout its lifetime. This simulation also yields the 

required storage volume and the access percent of the system. Finally, Little’s Law (Little, 2011) is 
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applied using collection rate and storage volume to determine the latency of collected data downlinked to 

a receiver station. 

5.11.7 Calculate System Cost 

This step is accomplished by finding the total value of the cost functions for each design vector 

using MATLAB. 

5.11.8 Calculate Additive Utility Based on System Attributes 

Additive utility is calculated by assessment of the utility functions for each design vectors 

attribute level, as described in Section 5.8. 

5.11.9 Plot Results in Utility-Cost Tradespace 

Finally, each of the ~12,000 design vectors which have been assessed are plotted in the utility-

cost tradespace. A tool has been written to enhance the ease of tradespace exploration, which allows the 

analyst to explore the attribute value and full design vector of each point in the tradespace by simply 

clicking on the design vector in which they are interested. 
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5.11.10 System Simulation Flowchart 

 

Figure 8: System Simulation Flowchart 
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5.12 Simulate the System 

The simulation may be run for any number of design vectors. In this case, it was exercised with 

well over 12,000 unique design vectors. With this number, the simulation typically took approximately 36 

hours to complete, running on a 3 GHz, quad core processor with 4GB of RAM. The output from the 

simulation is shown in Figure 9 on the next page. As the analyst clicks on each design vector in the 

utility-cost tradespace, the software displays the information shown in Table 13. 

5.13 Analyze the Output 

Finally, the output of the model may be analyzed to draw some first-order conclusions about the 

tradespace shown in Figure 9. First, taking an overall look at the utility-cost tradespace, varying network 

topology has the greatest effect on system utility and system cost as compared to any other single design 

variable. For reference, the utility-cost tradespace, separated by network topology, is shown in 

Appendices B and C. Second, paying attention to the Pareto frontier, it appears that, at least with the 

current set of assumptions, space-based network topologies (marked with a “+” sign in Figure 9) 

dominate ground-based network topologies (marked with an “o”). Third, of the space-based network 

topologies, the highly elliptical and geostationary topologies produce the highest utility. Last, noting the 

time scale of the analysis, space-based network topologies do not greatly exceed the cost of ground-based 

solutions over a 180-day lifecycle.  

 



 
 

63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Utility Cost Plot - All Topologies 
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Table 13: Example Simulation Output for Selected Design 

Design Vector & Attributes System Cost 
Network Topology: Tundra X 2 Cost of Transmit Power: $16,506.80 
CubeSat Altitude: 400km Cost of Transmit Gain: $13,591.41 
CubeSat Inclination: 45° Cost of Data: $17,118.67 
Transmit Power:  -3 dBW Cost of Bandwidth: $100,248 
Transmit Power in Watts: 0.5 W Total Life Cycle Cost for 180 days: $438,483.09 
Transmitter Line Loss: 0 dB 

!Transmit Antenna Gain: 10 dB System Utility 
Frequency: 2.4 GHz Utility of Data Throughput: 0.0428 
Receive Antenna Diameter: 5m Utility of Transmit Power: 0.1169 
Receive Antenna Efficiency: 0.4 Utility of Regulatory Difficulty (Topology): 0.1428 
Tx Data Rate (Effective): 100 kbps Utility of Regulatory Difficulty (Bandwidth): 0.1423 
System Noise Temp: 340 K Utility of Storage Required: 0.1428 
Modulation: QPSK Utility of Data Latency: 0.1425 
Code Rate: " Utility of Access Percent: 0.1275 
Spectral Efficiency: 1.49 Total System Utility: 0.8578 
Eb/N0 required: 2.31 

!Bandwidth: 0.501 MHz 
!Data Throughput (Effective): 89kbps 
!Access Percent: 89% 
!Storage Required: 14.7 MB 
!Data Latency: 507 s 
! 

5.13.1 Tradespace Exploration 

In order for a decision maker to use the results of the MATE analysis, it is necessary that he/she 

be able to easily explore the tradespace in order to fully understand the different design vectors in the 

system as well as the relationships within the tradespace. In order to enable this exploration, when the 

decision maker clicks on a particular design vector, a high level summary box, as shown in Figure 9, is 

presented to the decision maker within the tradespace itself. This box shows the design vector total cost 

and overall utility as well as each attribute’s contribution to overall utility. Additionally, as shown in 

Table 13, when a design vector is selected, its detailed design variable and attributes as well as the 

components of overall utility and overall cost are output to the MATLAB command window. These tools 
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allow the decision maker to easily visualize and access pertinent information so he/she can actively 

explore the tradespace, increase his/her understanding of the tradespace, and ultimately make better-

informed decisions. 

5.13.2 The Pareto Frontier  

Traditionally, analyzing MATE results begins with exploring the design vectors that exist on the 

Pareto frontier. We can see in Figure 9 that design vectors from the highly elliptical and geostationary 

orbit-based network topologies populate that frontier. In particular, the single-satellite Molniya orbit 

network topology yields the lowest cost Pareto efficient solution and the three-satellite geostationary orbit 

network topology yields the highest utility Pareto efficient solution. The remainder of the frontier is made 

up of design vectors from the two-satellite Molniya and three-satellite tundra obit network topologies.  

Assuming a perfect model, the decision maker should logically choose one of the results on the 

frontier. However, in a complex system, it is not unlikely that unaccounted for variables, unanticipated 

interactions, or inaccurately captured utility functions could place a feasible, or even desirable, solution 

away from the frontier. So it is important to consider dominated solutions, those not on the Pareto 

frontier, as well. In the result shown above, these dominated solutions consist of the LEO, one-satellite 

GEO, and two-satellite tundra orbits as well as all of the ground-based network topologies. In the 

following analysis, we will explore this result, suggest where the greatest sensitivities can be found, and 

characterize the overall limitations of the model. 

5.13.3 Varying Network Topology 

The most obvious characteristic of the tradespace above is that varying network topology has the 

greatest overall effect in regards to both utility and cost. This is most easily seen when examining Figure 

9 with respect to different ground station network topologies. Within this set of topologies, there is a 

significant cost increase associated with each additional ground station. For example, one CONUS ground 

station (red circle) is less costly than two CONUS ground stations of equal size (green circle) with only a 
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relatively small reduction in utility. It can also be seen in Figure 9, and in greater detail in Appendices B 

and C, that an increase in receiver antenna size within a particular network topology significantly 

increases cost while only slightly increasing utility to the decision-maker.  

As the utility functions are currently defined, the model indicates that there is only a marginal 

benefit to the decision maker to use either multiple ground stations or larger receiver antennas. However, 

that result could be somewhat misleading as it is highly dependent on the preferences of the decision-

maker and the assumption that the ground stations must be built from scratch. To explore this further, let 

us say that the decision maker placed a higher utility on overall data throughput (X1) relative to any other 

attribute. In that case, adding ground stations would clearly increase the overall utility to the decision 

maker. Further, if a satellite program could avoid incurring the cost of building a new ground station 

through buying time on commercial ground stations, utilizing a cooperative network, or re-

tasking/updating a legacy ground station, then the cost of using such a network topology could be 

drastically reduced. Overall, either of these changes to the model would move the ground-based 

topologies toward the Pareto frontier. 

5.13.4 Space-Based vs. Ground-Based Network Topologies 

Shown earlier in Figure 9, the Pareto frontier is entirely populated with space-based topologies. 

This is due to a greater utility contribution from increased access percent (X7), decreased data latency 

(X6), lower onboard data storage required (X5), and reduced regulatory difficulty (X3) relative to the 

ground-based cases. It is also a result of how cost is calculated in space-based topologies. Instead of 

incurring a one-time cost as in the ground-based topology case, the CubeSat operator in this model is 

charged based on the amount of data that is sent through the space-based topology in dollars per bit.  

As a result of these characteristics and the equal weighting of the attributes, cross-linked 

communications represent a dominant solution. However, since space-based network topologies generally 

perform with lower data throughput (X1) than ground-based topologies and cost is directly related to 
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throughput, the model shows them having a much lower cost at the Pareto frontier relative to a ground-

based topology of similar utility. If the preferences of the decision maker change such that data 

throughput utility (X1) is weighted higher relative to other attributes, then an alternate tradespace where 

ground-based topologies represent the dominant solution could result.  

A further limitation of the space-based portion of the model relating to cost is the assumption that 

the technology to perform cross-linked communication from a CubeSat exists and could be fielded with 

no cost beyond what could be acquired from a commercial vendor today. In reality, this is not the case 

and some amount of technology advancement would be required to make such a system functional. 

Specifically, this means accounting for the cost of development activity for CubeSat transceivers and bus 

systems that support high-pointing accuracy, high-gain antennas, increased transmit power, and/or 

significant forward error correction. In order to reliably include such information in this analysis, a 

concurrent design effort would be required. While that is not included here, this model does provide an 

indication that the development of such systems would be of great utility to a decision maker once 

fielded. 

5.13.5 Summary of Model Limitations  

Generally, the equal weighting of the attributes relative to one another in this first-order application 

of the model does not necessarily represent the true preference space of a decision maker. In reality, a 

decision-maker might place far more weight on a single attribute and that could drastically change the 

results of this model. In a future application of this model, a decision maker’s true preference space 

should be rigorously captured through structured interviews. 

Additionally, this model does not capture the loss of utility and increased cost to a decision maker 

that is associated with conducting the development of advanced CubeSat communication technology for 

crosslink. As such, the result shown here represents a state of the world in which that technology already 

exists and should be taken as a positive indication that a market would exist for such technology were it 
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commercially available. However, without high Technology Readiness Level (TRL) commercially 

available CubeSat communication systems that can perform cross-link, ground based-terminals are likely 

to remain the dominant choice of decision makers. 

5.13.6 Use of First Order Results 

While this first-order analysis of the data obviously yields more questions, it can be used to 

motivate further research in a direction that will maximize decision maker utility. In this case, that 

research should be conducted in the area of space-based network topologies. As the current industry 

standard is to use ground-based topologies, it could be argued that without the application of a value-

centric framework (such as MATE) the pursuit of such a novel solution, rather than sticking with the 

status quo, would not be as easy to motivate. Though it is tempting to perform further analysis on this 

tradespace, the use of notional utility and cost functions would make doing so a somewhat limited 

endeavor. As such, it is more appropriate to enhance the model and perform more detailed analysis with 

data from a subsequent iteration. The recommended steps to do so are detailed in the next section. 

5.14 Next Steps 

The next step in this analysis is to exercise the model with real cost functions and decision maker-

derived utility functions. Following this model update, the next steps should be to conduct a sensitivity 

analysis over each design variable and then select a reduced solution space for further investigation.  At 

that point it is also appropriate to re-engage with decision makers to refine their preference space. Finally, 

once a design vector has been selected, it can be passed on to an engineering team for detailed design and 

feasibility analysis. This design can then be benchmarked using the MATE simulation and further 

iteration can occur to obtain a maximum utility design. 

  



 
 

69 

6 Conclusion 

MATE is a powerful framework that has been well designed to handle a broad range of 

considerations for value-centric design. In this work, it was shown that it can be an appropriate 

framework for use in a time-constrained application process with imperfect information. Through 

thoughtfully created utility functions and design vectors, the tradespace can be explored, which leads to 

greater understanding of the tradespace relationships. That knowledge can then be applied to drive future 

analysis and system design.  

While an abbreviated application is no substitute for rigorous application of the full MATE 

framework, it is certainly a utility-enhancing endeavor. Further, it is decidedly more desirable than the 

alternative, where decisions are often made in the absence of information. That is to say, picking a 

solution space without understanding the complete utility-cost tradespace in which that solution space 

might exist. Decision makers are aided by the information output by this abbreviated methodology and 

can thus better direct their resources to maximize utility and overall stakeholder value. At the very least, 

they could be spurred into further researching the direction in which a system design should go before 

deciding on a solution. 

In the application to CubeSat communications, though no explicit answer for a design was obvious, 

it has been shown that network topologies with space-based receiver stations should be carefully 

considered for use in CubeSat missions. These network topologies enable high utility design vectors at 

relatively low cost. Further, they dominate the ground-based solutions currently in use today from a 

utility-cost tradespace point of view. While this could be attributed to un-captured utility and cost 

considerations, the difference is large enough to motivate further consideration of space-based network 

topologies for use with CubeSats as they move toward becoming operational assets. 
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6.1 Future Research 

With regard to the application of MATE as a first-order analysis tool, the next step in this research is 

to exercise the simulation in a real-world scenario, under real time constraints, with real decision makers. 

While the model has been shown to work in an academic setting, more stressing conditions would serve 

to expose any flaws and enhance its effectiveness.  

As for the problem of selecting a CubeSat communications system, the next step in the research is to 

rigorously capture actual component cost and technical performance information that is available on the 

market today. This information would better inform a decision maker of what options exist in the 

tradespace. Additionally, structured utility interviews with relevant decision makers who are actually 

facing the problem of selecting a CubeSat communication system would greatly enhance the effectiveness 

of the simulation and lend further credence to its results.  

  



 
 

71 

References 

California Polytechnic State University. (2009). CubeSat design specification. rev-12. San Luis Obispo, 
CA 

Chin, A., Coelho, R., Brooks, L., Nugent, R., & Puig-Suari, J. (2008). Standardization promotes 
flexibility: A review of CubeSats' success. AIAA/6th Responsive Space Conference, AIAA-RS6-2008-
4006 1-9.  

ClydeSpace, I. (2013). Products. Retrieved 02/26, 2013, from http://www.clyde-space.com/products 

CubeSat. (2012). Atlas V OUTSat launch 2012. Retrieved 08/30, 2013, from 
http://www.cubesat.org/index.php/missions/past-launches/122-l36-launch-alert 

Cushman, J. H. J. (2012, October 26). U.S. satellite plans falter, imperiling data on storms. The New York 
Times 

Diller, N. P. (2002). Utilizing multiple attribute tradespace exploration with concurrent design for 
creating aerospace systems requirements. (S.M., Massachusetts Institute of Technology, Dept. of 
Aeronautics and Astronautics). 

DoD Office of Operationally Responsive Space. (2012). Tier 2 - deploy. Retrieved 08/01, 2012, from 
http://ors.csd.disa.mil/tier-2/index.html 

Fury, K. (2012). Launching traffic cameras into space. Science & Technology Review, Lawrence 
Livermore National Laboratory, (April/May 2012), 08/01/2012.  

Hinkley, D., & Hardy, B. (2012). Picosatellites and nanosatellites at the aerospace corporation. In-Space 
Non-Destructive Inspection Technology Workshop, Johnson Space Center, Houston, Tx.  

Ippolito, L. J. (1986). Radiowave propagation in satellite communications. New York, N.Y.: Van 
Nostrand Reinhold Co. 

Iridium. (2013). Company overview. Retrieved 02/28, 2013, from 
http://www.iridium.com/About/CompanyProfile.aspx 

Janson, S. (2008). The history of small satellites. In H. Helvajian, & S. Janson (Eds.), (pp. 47-94). El 
Segundo, Calif.; Reston, Va.: Aerospace Press; American Institute of Aeronautics and Astronautics. 

Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives : Preferences and value tradeoffs. 
New York: Wiley. 

Kief, C. (2011). GENSO - A ground station is a terrible thing to waste. The AMSAT Journal, (May/June), 
27.  

Klofas, B., Anderson, J., & Leveque, K. (2008). A survey of CubeSat communication systems. 2008 
CubeSat Developers Conference, Utah State University.  



 
 

72 

Little, J. D. C. (2011). Little's law as viewed on its 50th anniversary. Operations Research, 59(3), 536-
549. doi: 10.1287/opre.1110.0940 

Maral, G., & Bousquet, M. (2009). Satellite communications systems : Systems, techniques, and 
technology (5th ed.). Chichester; West Sussex UK: Wiley. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for 
processing information. Psychological Review, 63(2), 81-97. doi: 
http://dx.doi.org.libproxy.mit.edu/10.1037/h0043158 

Morehead State University - Space Science Center. (2012). Cosmic X-ray background nanosatellite. 
Retrieved 08/01, 2012, from http://universe.sonoma.edu/CXBNanosat/ 

NASA. (2006). DSN: Antennas. Retrieved 02/28, 2013, from 
http://deepspace.jpl.nasa.gov/dsn/antennas/index.html 

NASA. (2008). NASA space communications: TDRSS. Retrieved 02/26, 2011, from 
https://www.spacecomm.nasa.gov/spacecomm/programs/tdrss/system_description.cfm 

NASA. (2013a). CubeSat launch initiative. Retrieved 2/16, 2013, from 
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html 

NASA. (2013b). Suomi NPP: Spacecraft details. Retrieved 02/26, 2013, from 
http://npp.gsfc.nasa.gov/spacecraft.html 

Nickel, J. (2010). Using multi-attribute tradespace exploration for the architecting and design of 
transportation systems. (S.M., Massachusetts Institute of Technology, Engineering Systems 
Division).  

Nickel, J., Ross, A. M., & Rhodes, D. H. (2009). Comparison of project evaluation using cost-benefit 
analysis and multi-attribute tradespace exploration in the transportation domain. Second 
International Symposium on Engineering Systems, MIT, Cambridge, Massachusetts.  

Office of Inspector General. (2012). Audit of the joint polar satellite system: Continuing progress in 
establishing capabilities, schedules, and costs is needed to mitigate data gaps. (No. OIG-12-038-A). 
Washington, D.C.: United States Department of Commerce.  

Office of Spectrum Management. (2011). United states frequency allocation spectrum. Retrieved 2/16, 
2012, from http://www.ntia.doc.gov/files/ntia/publications/spectrum_wall_chart_aug2011.pdf 

Ross, A., Diller, N., & Hastings, D. (2003). Multi-attribute tradespace exploration with concurrent design 
for space system conceptual design. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 

Ross, A. M., Diller, N. P., Hastings, D. E., & Warmkessel, J. M. (2002). Multi-attribute tradespace 
exploration in space system design. 53rd International Astronaunatical Congress, the World Space 
Congress - 2002, Houston Texas.  

Ross, A. M. (2003). Multi-attribute tradespace exploration with concurrent design as a value-centric 
framework for space system architecture and design. (S.M.)--Massachusetts Institute of Technology, 



 
 

73 

Dept. of Aeronautics and Astronautics; and, (S.M., Massachusetts Institute of Technology, 
Engineering Systems Division, Technology and Policy Program).  

Selva, D., & Krejci, D. (2012). A survey and assessment of the capabilities of cubesats for earth 
observation. Acta Astronautica, 74(0), 50-68. doi: 10.1016/j.actaastro.2011.12.014 

Shaw, G. B., Miller, D. W., & Hastings, D. E. (March-April 2001). Development of the quantitative 
generalized information network analysis methodology for satellite systems. American Institute of 
Aeronautics and Astronautics; Journal of Spacecraft and Rockets, 38(No. 2), 257-268. doi: 
10.2514/2.3679 

Toorian, A., & et al. (2005). CubeSats as responsive satellites. AIAA 3rd Responsive Space Conference, 
Los Angeles, CA. (AIAA-RS3 2005-3001) 

Tuli, T. S., Orr, N. G., & Zee, R. E. (2006). Low cost ground station design for nanosatellite missions. 
2006 AMSAT North American Space Symposium, San Francisco, CA.  

Twiggs, B. (2008). Origin of CubeSat. In H. Helvajian, & S. Janson (Eds.), Small satellites: Past, present, 
and future (pp. 151-173). El Segundo, Calif.; Reston, Va.: Aerospace Press; American Institute of 
Aeronautics and Astronautics. 

University of Colorado Boulder - Laboratory for Atmospheric and Space Physics. (2012). Colorado 
student space weather experiment. Retrieved 08/01, 2012, from 
http://lasp.colorado.edu/home/csswe/ 

University of Southern California. (2012). Aeneas at A glance. Retrieved 08/01, 2012, from 
http://www.isi.edu/projects/serc/aeneas 

USASMDC/ARSTRAT. (2012). SMDC - ONE nanosatellite technology demonstration. Retrieved 08/01, 
2012, from http://www.smdc.army.mil/FactSheets/SMDC-One.pdf 

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior (3d ed.). 
Princeton, Princeton University Press: 

Wertz, J. R., Everett, D. F., & Puschell, J. J. (Eds.). (2011). Space mission engineering : The new SMAD. 
Hawthorne, Calif.: Microcosm Press; Sold and distributed worldwide by Microcosm Astronautics 
Books. 

 



 
 

74 

Appendix A: Various Network Topologies Used in Technical Simulation 
 

1 - Equatorial Ground Station Network, 3 Stations 
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2 -Continental United States Ground Station Network, 2 Stations 
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3 - Continental United States Ground Station Network, 1 Station 
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4 - Geostationary Earth Orbiting Satellite Network Topology, 3 Satellites 
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5 - Geostationary Earth Orbiting Satellite Network Topology, 1 Satellite 
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6 - Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 2 Satellites 
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7 - Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 3 Satellites  
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8 - Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 2 Satellites 
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9 - Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 1 Satellite 
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10 - Low Earth Orbiting Satellite Network Topology, 16 Satellites 
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Appendix B: Tradespaces for Various Network Topologies Plotted on a Common Scale 

1 - Tradespace for Equatorial Ground Station Network, 3 Stations 
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2 - Tradespace for Continental United States Ground Station Network, 2 Stations 
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3 - Tradespace for Continental United States Ground Station Network, 1 Station 
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4 - Tradespace for Geostationary Earth Orbiting Satellite Network Topology, 3 Satellites 
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5 - Tradespace for Geostationary Earth Orbiting Satellite Network Topology, 1 Satellite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

89 

6 - Tradespace for Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 2 Satellites 
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7 - Tradespace for Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 3 Satellites  
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8 - Tradespace for Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 2 Satellites 
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9 - Tradespace for Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 1 Satellite 
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10 - Tradespace for Low Earth Orbiting Satellite Network Topology, 16 Satellites 
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Appendix C: Tradespaces for Various Network Topologies Plotted to Fit Data 

1 - Tradespace for Equatorial Ground Station Network, 3 Stations 
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2 - Tradespace for Continental United States Ground Station Network, 2 Stations 
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3 - Tradespace for Continental United States Ground Station Network, 1 Station 
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4 - Tradespace for Geostationary Earth Orbiting Satellite Network Topology, 3 Satellites 
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5 - Tradespace for Geostationary Earth Orbiting Satellite Network Topology, 1 Satellite 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 



 
 

99 

6 - Tradespace for Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 2 Satellites 
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7 - Tradespace for Highly Elliptical (Tundra) Earth Orbiting Satellite Network Topology, 3 Satellites  
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8 - Tradespace for Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 2 Satellites 
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9 - Tradespace for Highly Elliptical (Molniya) Earth Orbiting Satellite Network Topology, 1 Satellite 
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10 - Tradespace for Low Earth Orbiting Satellite Network Topology, 16 Satellites 

 


