
Parallel Multigrid for Large-Scale Least Squares

Sensitivity

by

Steven A. Gomez

B.S., Massachusetts Institute of Technology (2011)

Submitted to the Department of Aeronautical and Astronautical
Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautical and Astronautical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Aeronautical and Astronautical Engineering

May 23, 2013

Certified by .
Qiqi Wang

Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. .
Etyan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Parallel Multigrid for Large-Scale Least Squares Sensitivity

by

Steven A. Gomez

Submitted to the Department of Aeronautical and Astronautical Engineering
on May 23, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautical and Astronautical Engineering

Abstract

This thesis presents two approaches for efficiently computing the “climate” (long-
time average) sensitivities for dynamical systems. Computing these sensitivities is
essential to performing engineering analysis and design. The first technique is a novel
approach to solving the “climate” sensitivity problem for periodic systems. A small
change to the traditional adjoint sensitivity equations results in a method which can
accurately compute both instantaneous and long-time averaged sensitivities. The
second approach deals with the recently developed Least Squares Sensitivity (LSS)
method. A multigrid algorithm is developed that can, in parallel, solve the discrete
LSS system. This generic algorithm can be applied to ordinary differential equations
such as the Lorenz System. Additionally, this parallel method enables the estimation
of climate sensitivities for a homogeneous isotropic turbulence model, the largest scale
LSS computation performed to date.

Thesis Supervisor: Qiqi Wang
Title: Assistant Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to thank my advisor Professor Qiqi Wang for the continued support over

the past two years. The work required for this thesis would not have been possible

without his intuition, his extraordinary patience, and his ability to quickly identify

any bugs. I would like to thank ANSYS, Inc. for their ongoing financial support

during this project. I would also like to thank my fellow students Patrick Blonigan

for his extensive help in developing the multigrid method presented here, and Eric

Dow for his help utilizing the ACDL cluster to implement my parallel algorithms.

Finally, I would like to thank my parents Julio and Rosemary Gomez for their lifelong

support, my girlfriend Julie Moyer for putting up with me, and our awful cat Clifton.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Climate Sensitivity Problem . 15

1.3 Previous Work . 16

2 Split Periodic Adjoint 19

2.1 Introduction . 19

2.2 Formulation . 20

2.2.1 Tangential Component . 22

2.2.2 Stable Component . 27

2.3 Sensitivity . 27

2.3.1 Period Sensitivity . 31

2.4 Algorithm . 31

2.5 Van der Pol Oscillator . 33

3 Least Squares Sensitivity 39

3.1 Introduction . 39

3.2 Formulation of Continuous LSS Equations 40

3.2.1 Discretization of LSS Equations 42

7

4 Solution of the Discretized Least Squares Sensitivity System 45

4.1 Geometric Multigrid on the LSS System 45

4.1.1 V-Cycle Smoothing Operations 45

4.1.2 Restriction and Interpolation of Solution Residual 47

4.1.3 LSS Operator Coarsening . 50

4.1.4 Coarsening Order (For PDE’s) 53

4.2 Parallel-In-Time Multigrid . 57

4.2.1 Parallel Distribution of Data 57

4.2.2 Parallel Application of the LSS Operator 58

4.2.3 Parallel Restriction and Interpolation 60

4.2.4 Parallel Arithmetic . 64

4.2.5 Implementation Details . 64

4.3 ODE Results (Lorenz System) . 65

4.3.1 Results . 66

4.4 PDE Problem (Homogeneous Isotropic Turbulence) 69

4.4.1 Discretization . 72

4.4.2 Application to LSS . 72

4.4.3 Results . 73

5 Conclusions 81

8

List of Figures

2-1 Two Possible Perturbations Made to a Periodic Orbit 22

2-2 Several primal solutions to the Van der Pol equations 34

2-3 Multiple solutions to the adjoint Van der Pol equations, β = 1.0,

J([x, y]) = x2 . 35

2-4 Objective Function (x2) variation versus β 36

2-5 Predicted sensitivity comparison between split periodic adjoint formu-

lation and finite difference (∆t = 10−3, ∆β ≈ 0.16) 36

2-6 Predicted period variation (top left), Comparison between predicted

sensitivities by FD vs Adjoint (bottom center), and relative error in

period sensitivity predictions (∆t = 10−3, ∆β ≈ 0.16) (top right) . . . 37

4-1 Diagram of Restriction in Time . 48

4-2 Results of coarsening primal four times using naive method (red), and

smoothed method (green) (Lorenz Equations) 52

4-3 Example of space-time coarsening paths (5 Time-Levels × 3 Spatial-

Levels) . 54

4-4 Residual v.s. Time For all possible paths, (N = 2048,M = 48) 56

4-5 Five Best Coarsening Paths for Burger’s LSS 56

4-6 Spiting the primal trajectory into chunks (N = 16, np = 4) 59

9

4-7 Data dependence for parallel restriction, (N = 16, np = 4) 61

4-8 Example Primal Trajectory for Lorenz System (ρ = 28, σ = 10, β =

8/3), over time span T = 40.96 . 65

4-9 Comparison of convergence rates for parallel multigrid versus parallel

MINRES, and parallel conjugate gradient implementations for solving

discrete LSS equations for Lorenz System, perturbations to ρ, (ρ = 28,

σ = 10, β = 8/3), (α = 10
√

10, T = 81.96, ∆t = 0.01), np = 2 67

4-10 Solutions to the LSS equations, the Lagrange multipliers w(t), and

the tangent solution v(t), colored by the local time-dilation η(t) . . . 68

4-11 Iso-surfaces of the Q-Criterion for an example flow field produced by

HIT, (Q = 1
2

(
‖Ω‖2

f − ‖S‖2
f

)
, Ω = 1

2

(
∇U −∇UT

)
, S = 1

2

(
∇U +∇UT

)
) . 70

4-12 Q-Criterion iso-surfaces for several primal solutions (Reλ = 33.06) . . 75

4-13 Average cumulative energy spectrum Ē, for primal solution to HIT . 76

4-14 LSS vs. Finite Difference sensitivity estimates. Finite differences com-

puted using two primal solutions with the forcing magnitude altered

by ±5% (∆β = ±0.05). LSS estimate computed using parallel multi-

grid and equation (3.15). 78

4-15 Absolute value of instantaneous spectrum sensitivity for various wave

number magnitudes (|k|2) computed from LSS. Dashed lines illustrate

this instantaneous sensitivity measure at several values of |k|2. Solid

lines show a few examples curves where the wave number magnitudes

are explicitly labeled. 79

4-16 Q-Criterion of Lagrange multiplier field (w) at several points in time . 80

10

List of Tables

4.1 Example Paths taken in Figure 4-3 55

4.2 Climate Sensitivity values of Lorenz System at (ρ = 28, σ = 10, β =

8/3, z0 = 0). LSS parameters (α = 10
√

10, T = 81.96, ∆t = 0.01).

Equations solved to a relative tolerance of 10−8 67

11

12

Chapter 1

Introduction

1.1 Motivation

Sensitivity analysis is an important tool for engineering design. It deals with finding

the sensitivity of the outputs of a system, due to arbitrary perturbations to system

parameters. Gradient based optimization techniques rely on sensitivity information

to find optimal design specifications for complex engineering systems. Therefore,

accurately and cheaply computing this sensitivity can make a large impact on the

ability of engineers to effectively explore a particular design space. Adjoint and

forward sensitivity approaches can be used to efficiently compute the sensitivity of

a system with respect to perturbations in the equations that govern that system.

However, while these methods have been very successful in the realm of steady state

problems, there has been some difficulties in applying the methods toward time-

dependent, or dynamical, systems.

The long-time-averaged properties of a dynamical system are of particular interest

when dealing with unsteady systems. In the field of climate science, for example,

13

there is a substantial need to predict the effects of climate forcing from humans or

otherwise. Likewise, in the Aerospace field, the issue of understanding, and designing

in situations where unsteady, turbulent fluid flow occurs is of great importance.

There are many problems where current turbulence models fail, and only direct

simulation of the flow field can model all of the complex dynamics that occur. In

these situations scientists and engineers are often most interested in the “climate”,

that is, the averaged properties of the system, rather than information and one

particular instance in time.

However, analyzing the “climate” of a dynamical system, presents many difficul-

ties even for simple chaotic maps and ordinary differential equations (ODE). The

problem worsens for the chaotic partial differential equations (PDE) that appear in

turbulent fluid flow problems. These problems even persist in comparatively sim-

ple periodic systems.Climate sensitivity analysis, which is critical for understanding

these systems, has remained computationally out of reach for all but the most simple

problems. Only simple finite difference methods have been effective at estimating

sensitivities for general chaotic systems. Computation of sensitivities with these

methods is inefficient and the computational effort scales poorly with the problem

size, parameter space, and time scale needed. The more advanced adjoint and tan-

gent sensitivity methods have been difficult to adapt to finding long-time averaged

quantities for ergodic dynamical systems [9, 14, 15, 20]. A recent technique, Least

Squares Sensitivity (LSS) has proposed a method for accurately computing the cli-

mate sensitivity for chaotic and periodic systems, but the computational feasibility

is still an issue.

14

1.2 Climate Sensitivity Problem

This thesis will tackle the climate sensitivity problem, and methods for computing

these sensitivities efficiently. The climate problem starts with some set of differential

equations (1.1) the model the dynamics of the system of interest.

du

dt
= f(u; β) (1.1)

u ∈ RM , β ∈ Rp (1.2)

Solutions to this differential equations u exist in some M -dimensional phase space

where it orbits throughout time infinitely. This u(t) represent anything from the

abstract solution vector of an ODE, to the spatially discretized velocity field in an

incompressible Navier-Stokes problem. The system dynamics f , are parameterized

by some vector β, that represent all the possible problem specific parameters that

can affect the solution u. For example, this may include a set of scalar parameters

or an entire field of data that can affect the properties of the system. In the climate

problem, the long-time average of some function J is examined.

J̄(β) = lim
T→∞

1

T

∫ T

0

J(u(t), β) dt (1.3)

If the original governing equations are ergodic then the long time average quantities

are independent of any initial condition and are dependent only on the system itself,

and the parameters β. The goal is then to find the sensitivity of these long time

average quantities, J̄ , with respect to perturbations in the governing differential

equations, via β.
dJ̄

dβ
= ??? (1.4)

15

This thesis will discuss ways of finding this sensitivity dJ̄
dβ

, and computing its value

efficiently for large scale problems.

1.3 Previous Work

There have been many attempts at dealing with the problem of climate sensitivity

for dynamical systems and chaos in general. Early work by Edward Lorenz first

identified the properties of chaos [16] in a chaotic ODE later named the Lorenz

System. The main property of chaotic systems is a sensitivity to initial conditions,

in other words, small perturbations in the solution at a given time can result in

vastly different solutions at a later time. For this reason, the climate, rather than

instantaneous solution information, is a more feasible property to examine in chaotic

systems. However, Lorenz quickly noticed the difficulty of computing the climate

from system information alone [17].

Lea et. al., [14] quantified the problems of using adjoint sensitivity analysis

naively on simple chaotic systems, and later confirmed the issue persists in chaotic

ocean simulations [15]. Using a typical adjoint formulation, the adjoint equations are

solved backwards in time from some terminal condition. However, in chaotic settings,

these adjoint equations are unstable and solutions grow unbounded backwards in time

[14]. The longer the integration time, the larger the adjoint solutions would grow.

One possible solution to this issue is to limit the integration time, but average many

these short-time adjoints together. This ensemble adjoint approach was examined

by Lea et a. [15] and Eyink et al. [9] for the Lorenz System. However the ensemble

approach requires a large number of ensemble solutions to compute approximate

sensitivities [15, 9].

Thurburn proposed an alternate approaches, the Fokker-Planck adjoint, describ-

16

ing the solution space by a probability density [22], and computing sensitivities via

density perturbations. However, the difficulty of discretizing the phase-space of so-

lutions limits its feasibility. In 2007 Abramov and Majda [1] developed a method

using fluctuation-dissipation theory from statistical dynamics to estimate sensitivi-

ties for statistical quantities, and has been shown to be successful for certain classes

of chaotic systems [2]. Krakos et. al. [13] have developed a method for periodic

climate sensitivity problems. This windowing method has made periodic problems

feasible even for large scale systems, but this thesis will propose an alternative with

several advantages. Recently, Wang [24], proposed a method for computing sensitivi-

ties using a shadow trajectory, and relying on the computation of Lyapunov covariant

vectors. This shadow-trajectory based method was refined into the development of

Least Squares Sensitivity [23]. The climate sensitivity problem is turned into an

optimization problem and ultimately the adjoint and tangent sensitivities come as a

result of solving a boundary value problem in time, rather than a terminal or initial

value problem. This thesis will also examine methods for efficiently solving the LSS

equations for large-scale systems.

17

18

Chapter 2

Split Periodic Adjoint

2.1 Introduction

The breakdown of traditional sensitivity occurs even in the most simple of periodic

dynamical systems. While the occurrence of true periodic systems is rare, the dif-

ficulty in efficiently computing sensitivities for periodic systems can provide some

insight into the problem for chaotic systems. This section 2.2 will formulate the

adjoint sensitivity problem in a new way by splitting the hypothetical perturbation

applied to the system into multiple parts. Then section 2.3 will illustrate how this

formulation results in a simple set of equations for computing adjoint sensitivities.

Finally section 2.4 will describe a method for computing these periodic sensitivity

gradients in a more efficient way than previously attainable.[13]

19

2.2 Formulation

Again, there is a differential equation, defined by f , for finding solutions u(t) given

some parameters β.
du

dt
= f(u; β) (2.1)

This defines a periodic system for some range of β’s. Solutions for u(t) approaches

some unique periodic limit cycle with a period T = T (β). The objective function of

interest is J(u; β), and its long-time average J̄(β). We assume J does not have an

explicit dependence on β, because the sensitivity due to an explicit β dependence can

be computed separately. The goal is to find the sensitivity of this long-time average

to perturbations in the parameters β.

J̄(β) = lim
T→∞

1

T

∫ T

0

J(u(t); β) dt (2.2)

δJ̄

δβ
= ???

As in traditional sensitivity methods we can define the forward tangent equations

governing v and the adjoint equations. In this case there will be two different adjoint

solutions, φ and ψ, governed by the homogeneous (2.4) and inhomogeneous (2.5)

adjoint equations respectively.

dδu

dt
− ∂f

∂u
δu =

∂f

∂β
(2.3)

dφ

dt
+
∂f

∂u

T

φ = 0 (2.4)

dψ

dt
+
∂f

∂u

T

ψ =
∂J

∂u
(2.5)

20

Solutions for u(t), δu(t), φ(t), and ψ(t) are all periodic with the same period T .

Each of these variables, when run from a random initial condition, should converge

to some periodic limit-cycle. However, the two adjoint solutions are not unique. The

homogeneous adjoint φ satisfies and additional invariant property.

d

dt
(φTf) = φT

df

dt
+
dφT

dt
f

= φT
∂f

∂u
f +

(
−φT ∂f

∂u

)
f

= 0

Since φTf is constant along a trajectory, we can additionally scale φ so that φTf = 1,

this will simplify computations. Because the adjoint equations are linear, new inho-

mogeneous solutions may be created by adding a constant multiple of φ to any valid

ψ solution.

All possible perturbations in β result in perturbations of f . In a periodic problem

there are two fundamental directions that this perturbation (δf) can span, the tan-

gent and stable directions. These special directions will be explained and their use

motivated in sections 2.2.1 and 2.2.2 respectively. This will result in a decomposition

of the perturbation into

δf = δfstable + αf (2.6)

δfstable perturbations will will cause transient deviations from the original limit-cycle.

α is some scalar forcing magnitude, and αf is some forcing that will always be tangent

to the original limit-cycle. This decomposition will result in a way to compute δJ/δβ

21

No Phase Shift Pure Time Dilation

General Perturbation

Figure 2-1: Two Possible Perturbations Made to a Periodic Orbit

from stable perturbations and tangent perturbations separately.

δJ̄

δβ
=
δJ̄

δβ

∣∣∣∣
stable

+
δJ̄

δβ

∣∣∣∣
tangent

(2.7)

2.2.1 Tangential Component

Density Definition

To compute the tangent contribution, recognize that perturbations tangent to the

1D attractor do not change the shape of the attractor. If a stationary distribution of

points along the attractor is computed, then these tangent perturbations simply shift

this distribution around. To compute this density the 1D attractor is parameterized

22

by its arc length s defined by the 1D ODE below

ds

dt
= ‖f‖2 (2.8)

The one-dimensional stationary distribution, ρ(s), is effectively a probability density.

It represents the probability that after a long time, a trajectory started from a random

initial condition will be in that region of phase-space. The total arc-length of the limit

cycle is defined as S ≡ s(T), and is the total length of the limit-cycle in phase-space.

Assuming ergodicity, the density must fulfill the following equation.

b̄ =
1

T

∫ T

0

b(s(t)) dt =

∫ S

0

ρ(s)b(s) ds (2.9)

In other words, the time average of any quantity, b, along the attractor can be

computed by integrating the density times the quantity over the arc-length s. This

equivalence allows climate estimates to be computed in the time space, as well as

the density space. Using this definition, the density in 1D has a simple form, namely

that the density at any point along the attractor is inversely proportional the speed

at that point.

ρ(s) =
1

T

1

‖f(s)‖2

(2.10)

Density Perturbations

Under tangential forcing (δf = αf , α � 1), the density will be perturbed. This

section will derive the form that density perturbation will take. For clarity the

23

following norms will be assumed to be 2-norms (‖·‖ ≡ ‖·‖2)

ρ+ δρ =
1

T + δT

1

‖f + δf‖ (2.11)

1

ρ+ δρ
= (T + δT)‖f + δf‖ (2.12)

δ

(
1

ρ

)
= (T + δT)‖f + δf‖ − T‖f‖ (2.13)

Under tangential forcing δf = αf

δ

(
1

ρ

)
= (T + δT)(1 + α)‖f‖ − T‖f‖ (2.14)

= ‖f‖ (T + αT + δT + αδT − T) (2.15)

= ‖f‖ (αT + δT + o(αδT)) (2.16)

= ‖f‖ (αT + δT) (2.17)

= ‖f‖T
(
α +

δT

T

)
(2.18)

To compute δT recognize the following:

∫ S

0

ρds = 1 (2.19)∫ S

0

1

T

1

‖f‖ds = 1 (2.20)∫ S

0

1

‖f‖ds = T (2.21)

24

So that

T + δT =

∫ S

0

1

‖f + δf‖ds (2.22)

=

∫ S

0

1

(1 + α)‖f‖ds (2.23)

≈
∫ S

0

1− α + o(α2)

‖f‖ ds (2.24)

δT = −
∫ S

0

α

‖f‖ ds (2.25)

Then δ
(

1
ρ

)
and δρ can be computed.

δ

(
1

ρ

)
= ‖f(s)‖T

(
α(s) +

δT

T

)
(2.26)

= ‖f(s)‖T
(
α(s)−

∫ S

0

α(ξ)

‖f(ξ)‖T dξ
)

(2.27)

=
1

ρ

(
α(s)−

∫ S

0

ρ(ξ) α(ξ) dξ

)
(2.28)

δρ = −ρ2 δ

(
1

ρ

)
(2.29)

= −ρ2 1

ρ

(
α(s)−

∫ S

0

ρ(ξ) α(ξ) dξ

)
(2.30)

= ρ

(∫ S

0

ρ(ξ)α(ξ) dξ − α(s)

)
(2.31)

= ρ (ᾱ− α) (2.32)

25

Tangential Sensitivity

Using (2.9), the objective function J can be computed. As well as perturbations δJ̄ .

J̄ =
1

T

∫ T

0

J(u(t)) dt (2.33)

=

∫ S

0

ρ(s) J(u(s)) ds (2.34)

δJ̄ =

∫ S

0

(ρ δJ + J δρ) ds (2.35)

=

∫ S

0

(
ρ
∂J

∂u
δu+ J δρ

)
ds (2.36)

Under tangential forcing the shape of the attractor does not change (δu = 0). There-

fore all of the sensitivity comes from the δρ term.

δJ̄tangent =

∫ S

0

J(u) δρ ds (2.37)

Additionally because δρ is proportional to ρ, this integral can be converted back into

a time integral.

δJtangent =

∫ S

0

J(u)δρ ds (2.38)

=

∫ S

0

ρ(s) (ᾱ− α) J(u(s)) ds (2.39)

=
1

T

∫ T

0

(ᾱ− α) J(u(t)) dt (2.40)

By transforming back into the time domain the problem of having to explicitly

compute the arc-length and density can be completely avoided. Equation (2.40) has

26

an intuitive interpretation. A constant tangential forcing will cause no change in the

sensitivity gradient, (ᾱ− α(t) = 0). An increase in the tangential forcing at a point

on the attractor causes a proportional decrease in the local density, and therefore a

proportional drop in the objective function.

2.2.2 Stable Component

δfstable is defined as being orthogonal to the unforced adjoint φ, (φT δfstable = 0).

Because φTf is constant, δfstable will never become collinear with f , and the de-

composition will be well defined. Using this definition, computing δfstable from some

arbitrary δf becomes:

δf = δfstable + αf

φT δf = φT δfstable + α φTf (2.41)

= α (2.42)

δfstable = δf − αf (2.43)

δJ̄stable can then be computed using the regular equation for adjoint sensitivity.

δJ̄stable = − 1

T

∫ T

0

ψT δfstable dt (2.44)

2.3 Sensitivity

Using the two decomposed sensitivities the total sensitivity to some generic pertur-

bation δf can be computed.

27

δJ̄ = δJ̄tangent + δJ̄stable (2.45)

=
1

T

∫ T

0

[
(ᾱ− α)J(x)− ψT δfstable

]
dt (2.46)

=
1

T

∫ T

0

ᾱ J(x)dt− 1

T

∫ T

0

(
αJ(x) + ψT δfstable

)
dt (2.47)

= ᾱJ̄ − 1

T

∫ T

0

(
J(x)φT δf + ψT (δf − αf)

)
dt (2.48)

= ᾱJ − 1

T

∫ T

0

[
J(x)φT δf + ψT δf − ψTfφT δf

]
dt (2.49)

=
J

T

∫ T

0

φT δf dt− 1

T

∫ T

0

[
J(x)φT δf + ψT δf −

(
ψTf

) (
φT δf

)]
dt (2.50)

= − 1

T

∫ T

0

[
−J̄φT + J(x)φT + ψT − (ψTf)φT

]
δf dt (2.51)

= − 1

T

∫ T

0

[(
J(x)− J̄ − ψTf

)
φT + ψT

]
δf dt (2.52)

This takes the form of the normal adjoint sensitivity equation

δJ̄ = − 1

T

∫ T

0

ηT δf dt (2.53)

With the adjoint variable

η ≡
(
J(x)− J̄ − ψTf

)
φ+ ψ (2.54)

28

To see how η evolves in time first look at the coefficient of φ.

d

dt
(fTψ) = fT

dψ

dt
+
dfT

dt
ψ (2.55)

= fT
(
−∂f
∂x

T

ψ +
∂J

∂x

)
+

(
∂f

∂x
f

)T
ψ (2.56)

= −fT ∂f
∂x

T

ψ + fT
∂J

∂x
+ fT

∂f

∂x

T

ψ (2.57)

= fT
∂J

∂x
=
∂J

∂x

T

f (2.58)

d

dt

(
J(x(t))

)
=
∂J

∂x

T dx

dt
(2.59)

=
∂J

∂x

T

f = fT
∂J

∂x
(2.60)

d

dt

(
J − J̄ − ψTf

)
=
dJ

dt
− dJ̄

dt
− d

dt
(ψTf) (2.61)

= fT
∂J

∂x
− 0− fT ∂J

∂x
(2.62)

= 0 (2.63)

The coefficient in front of the unforced adjoint φ is simply a constant along the

attractor.

c ≡
(
J − J̄ − ψTf

)
(2.64)

29

dη

dt
=

d

dt

(
c φ+ ψ

)
(2.65)

= c
dφ

dt
+
dψ

dt
(2.66)

= c

(
−∂f
∂x

T

φ

)
− ∂f

∂x

T

ψ +
∂J

∂x
(2.67)

= − ∂f

∂x

T(
c φ+ ψ

)
+
∂J

∂x
(2.68)

= −∂f
∂x

T

η +
∂J

∂x
(2.69)

η is also a solution of the same forced adjoint equations and can be computed using

any periodic φ and ψ solutions started from random initial conditions. η is simply a

special solution that will satisfy:

fTη = fT
((
J − J̄ − fTψ

)
φ+ ψ

)
(2.70)

=
(
J − J̄ − fTψ

)
fTφ+ fTψ (2.71)

= J − J̄ − fTψ + fTψ (2.72)

= J − J̄ (2.73)

30

2.3.1 Period Sensitivity

This formulation also provides a method for finding the sensitivity of the period T

using equation (2.25).

δT = −
∫ S

0

α

‖f‖ ds (2.74)

= −
∫ S

0

φT δf

‖f‖ ds (2.75)

= −T
∫ S

0

(
1

T

1

‖f‖

)
φT δf ds (2.76)

= −T
∫ S

0

ρ φT δf ds (2.77)

= −
∫ T

0

φT δf dt (2.78)

Taking this into the more familiar adjoint form, it can be shown that the specific

homogeneous adjoint chosen has a physical interpretation. As seen in equation (2.80),

the homogeneous adjoint predicts the sensitivity to the log-period (log T) of the

system.

δ log T =
δT

T
(2.79)

= − 1

T

∫ T

0

φT δf dt (2.80)

2.4 Algorithm

This method forces the arbitrary adjoint ψ towards the correct adjoint trajectory η.

After the adjoints have reached a periodic solution, steps 22-24 should be only very

small corrections. The quadrature for computing J̄ and δJ̄ should be included in

31

1: # Solve Primal Problem
2: x0 = random vector
3: for i = 1→ N do
4: xi = ode step(f, xi−1, ∆t) # some ode stepping (e.g. crank-nicolson)
5: end for
6: # Compute n and k where:
7: # x takes roughly n steps to reach a periodic trajectory with a period of k
8: # then choose quadrature weights, wi, such that
9: wi = 0 if i ≤ n or i > n+ k

10: wi = some chosen weights for the k steps from i = {n + 1, . . . , n + k}. (e.g.
trapezoidal)

11:

12: J̄ =
∑N

i=0 wi J(xi) =
∑n+k

i=n+1 wi J(xi) # quadrature to find J̄
13:

14: # Solve Adjoint Problem
15: φN = random vector
16: ψN = random vector
17: for i = N − 1→ n+ 1 do
18: φi =backward step

(
f, ∂f

∂x
, xi, xi+1, φi+1, ∆t, ∂J

∂x
= 0
)

19: ψi =backward step
(
f, ∂f

∂x
, xi, xi+1, ψi+1, ∆t, ∂J

∂x
= ∂J

∂x

)
20: # some backward stepping using same method as ode step
21:

22: φi = φi
φTi f(xi)

Normalize φ

23: ci = J(xi)− J̄ − ψTi f(xi) # Compute coefficient, should approach zero
24: ψi = ψi + ciφi # Correct ψ onto correct trajectory
25: end for
26:

27: # Compute Sensitivity
28: δJ = −∑N

i=0wi ψ
T
i δf(xi) = −∑n+k

i=n+1 wi ψ
T
i δf(xi) # another quadrature to

find δJ
29:

30:

32

the two loops to avoid storing all of the trajectories. This method provides several

advantages to the windowing adjoint method [13]. Firstly this estimate only requires

one full period of the primal and adjoint dynamics to compute sensitivities. After

spin-up the windowing method requires a weighted integration over several period

lengths. The split-perturbation technique, however, does require two simultaneous

adjoint simulations, nearly doubling the computational time. This will still beat the

windowing methods if the window length is more than two periods long. Also, this

additional adjoint simulation also provides important sensitivity information about

the period of the system without additional cost. Finally, the resulting adjoint solu-

tions that are computed provide a time-accurate view of the sensitivity information.

This extra information could be vital, for example, in automatic control situations,

where time dependent sensitivities could be used for time dependent control inputs.

2.5 Van der Pol Oscillator

The Van der Pol Oscillator is a second order ODE and one of the simplest systems

exhibiting periodic dynamics. This section will examine the application of the pe-

riodic adjoint algorithm described in section 2.4. The dynamics of this system are

described in equation (2.81) below.

d

dt

x
y

 =

 y

β(1− x2)y − x

 (2.81)

Solutions to the differential equation approach a single periodic limit-cycle whose

shape is controlled by the parameter β, as is shown in Figure 2-2. The traditional

adjoint equations, do not have one unique solution. An example of this phenomenon

33

2 1 0 1 2
x

10

5

0

5

10

y

β=0.5

β=1.0

β=2.0

β=5.0

β=7.0

Figure 2-2: Several primal solutions to the Van der Pol equations

34

8 6 4 2 0 2 4 6 8
ψx

3

2

1

0

1

2

3

ψ
y

J=x2

Figure 2-3: Multiple solutions to the adjoint Van der Pol equations, β = 1.0,
J([x, y]) = x2

is shown in figure 2-3. Despite the multiple adjoint solutions there is one “true”

adjoint that will predict the correct sensitivities via equation (2.69). The objective

function examined here is the averaged squared x position along the attractor. As

can be seen in 2-2, a longer and longer proportion of the limit-cycle is further away

from the origin as β increases, figure 2-4 confirms this trend.

The algorithm from section 2.4 was applied to the Van der Pol system. The

adjoint sensitivity estimates are computed for a range of β values. These estimates

are compared to a finite difference estimate of the sensitivity. Figure 2-5 shows these

sensitivity estimates. Note, that the finite-difference estimates seem to provide worse

estimates for a given choice of ∆t, and as ∆t decreases the finite-difference estimates

approach the adjoint estimate. Additionally figure 2-6 shows information pertaining

the sensitivity of the log-period of the Van der Pol Oscillator. These estimates agree

very well with finite-difference estimates.

35

1 2 3 4 5 6
β

2.0

2.1

2.2

2.3

2.4

2.5

2.6

J
(β

)
=
x

2

Figure 2-4: Objective Function (x2) variation versus β

1 2 3 4 5 6
β

0.04

0.06

0.08

0.10

0.12

0.14

δJ δβ

Finite Difference
Adjoint

Figure 2-5: Predicted sensitivity comparison between split periodic adjoint formula-
tion and finite difference (∆t = 10−3, ∆β ≈ 0.16)

36

1 2 3 4 5
β

6

7

8

9

10

11

12

13

14
T
(β

)

1 2 3 4 5
β

0.06

0.08

0.10

0.12

0.14

0.16

δ δβ
lo

gT

Finite Difference
Adjoint

1 2 3 4 5
β

10-5

10-4

10-3

10-2

10-1

lo
g
||r

el
at

iv
e

er
ro

r||

Figure 2-6: Predicted period variation (top left), Comparison between predicted
sensitivities by FD vs Adjoint (bottom center), and relative error in period sensitivity
predictions (∆t = 10−3, ∆β ≈ 0.16) (top right)

37

38

Chapter 3

Least Squares Sensitivity

3.1 Introduction

Least Squares Sensitivity (LSS) is a new technique that can be used to find the

sensitivity to long-time average quantities for ergodic dynamical systems. Traditional

sensitivity methods derive a initial-value or final-value problem which can then be

solved to find sensitivity gradients. However these methods breakdown for the chaotic

systems that often occur in engineering settings. The linearized forward-tangent and

adjoint equations are unstable and solutions grow unbounded as solutions are solved

forward or backward in time. In Least Squares Sensitivity analysis, the problem is

instead cast as an optimization problem for finding the smallest perturbation across

all time, thus relaxing the initial or terminal condition. The result is a boundary-

value problem in time requiring solution for the linearized perturbations across all

time simultaneously.

39

3.2 Formulation of Continuous LSS Equations

To formulate the LSS method we, again, start with a non-linear differential equation

for u(t), that represents either an ODE or a spatially discretized PDE of size M

(u ∈ RM). We also must obtain some solution to those primal equations u(t).

du

dt
= f(u) (3.1)

We still want to find a perturbation v(t) that satisfies the linearized equations given

some small input perturbation δf

dv

dt
=
∂f

∂u
v + δf (3.2)

However instead of a traditional initial value constraint (i.e. v(t = 0) = 0). We

instead require that this perturbation remains small in phase space across time.

For computational reasons we also introduce a local time-dilation parameter η(t)

that represents the amount of perturbation in time from the primal trajectory u(t)

to its shadow trajectory (u + v). α is a constant describing the relative weighting

between minimizing the time-dialation and tangent solution magnitude.

Together these conditions result in the minimization condition

v, η = argmin
1

2

∫ T

0

‖v‖2
2 + α2η2 dt (3.3)

s.t.
dv

dt
=
∂f

∂u
v + ηf (3.4)

40

To solve this problem we introduce the Lagrange multiplier w(t) and the Lagrange

function Λ

Λ =
1

2

∫ T

0

vTv + α2η2 dt+

∫ T

0

wT
(
dv

dt
− ∂f

∂u
v − ηf

)
dt (3.5)

δΛ =

∫ T

0

vT δv + α2ηδη + wT
dδv

dt
− wT ∂f

∂u
δv − fδη dt

=

∫ T

0

δvT
(
v − dw

dt
+
∂f

∂u

T

w

)
+ δη

(
α2η − wTf

)
dt + wT δv

∣∣∣T
0

(3.6)

Enforcing the optimality condition that δΛ = 0 for any possible variation (δv, δη)

the following equations fall out.

v =
dw

dt
+
∂f

∂u

T

w (3.7)

η =
1

α2
fTw (3.8)

w(0) = w(T) = 0 (3.9)

Finally, these equations can be manipulated into one second-order linear PDE for w.

−d
2w

dt2
−
(
d

dt

∂f

∂u

T

− ∂f

∂u

d

dt

)
w +

(
∂f

∂u

∂f

∂u

T

+ P
)
w = δf (3.10)

where Pw =
1

α2
f
(
fTw

)
w(0) = w(T) = 0

41

The continuous linear operators B and E can be defined across time

(Bw)(t) ≡
(
d

dt
− ∂f

∂u

∣∣∣
u(t)

)
w(t) (3.11)

(Ew)(t) ≡ 1

α
f(u(t))

(
f(u(t))Tw(t)

)
(3.12)

Then Equation (3.10) can be re–written as

(
BBT + EET

)
w = δf (3.13)

In this form it is clear that solving for w(t) involves inverting a symmetric positive

definite (SPD) linear operator. Finding w(t) directly gives the tangent solution v(t)

and time-dilatation η(t) via equations (3.7) and (3.8) respectively. Once v and η

have been found the climate sensitivity can be computed.

J̄ =
1

T

∫ T

0

J(u(t)) dt (3.14)

δJ̄ =
1

T

∫ T

0

∂J

∂u
v + (η − η̄)J dt (3.15)

To actually compute these sensitivities this linear PDE must be discretized and

solved.

3.2.1 Discretization of LSS Equations

In order to discretize this problem first the primal solution must first be discretized.

Any traditional ODE forward time solving method may be used. This thesis will

42

assume an implicit trapezoidal method, as a relatively stable and accurate scheme.

un+1 − un
∆t

=
f(un+1) + f(un)

2
(3.16)

Because of ergodicity, starting from any initial condition (u(0) = u0) will eventually

produce the same long-time average quantities. Since a finite time interval (T) is

required an initial condition will be chosen to lie along some attractor. The primal

equations can then be solved forward in time to some sufficiently “large” time. From

now on u will refer to the vector of all time steps from 0→ N . (un ≡ u(n∆t))

u ≡ [u0, u1, u2, . . . uN−1, uN]T , u ∈ R(N+1)M (3.17)

The linear operators B and E are then discretized at the N midpoints between each

time-step. Let’s define

bn ≡
1

2

(
∂f

∂β

∣∣∣∣
un

+
∂f

∂β

∣∣∣∣
un+1

)
b ∈ RNM (3.18)

fn ≡
1

2

(
f(un) + f(un+1)

)
f ∈ RNM (3.19)

An ≡
∂f

∂u

∣∣∣∣un+un+1
2

A ∈ RN×M×M (3.20)

Then the discretized operators become

(Bv)n =
vn − vn+1

∆t
− An

vn + vn+1

2
(3.21)

(Eη)n =
1

α
fnηn (3.22)

B ∈ RNM×(N+1)M , E ∈ RNM×N

43

B is a bidiagonal block matrix with M × M blocks. With Fn = I
∆t
− An

2
, and

Gn = − I
∆t
− An

2
. This corresponds to a trapezoidal discretization of B.

B =


F0 G0

F1 G1

. . .

FN−1 GN−1



E =
1

α


f0

f1

. . .

fN−1


Using this form BBT becomes a block tridiagonal matrix and EET becomes

a block diagonal matrix with rank 1 blocks along the diagonal. The final matrix

(S = BBT + EET) retains the SPD form of the continuous linear operator, and

remains block tri-diagonal with size NM × NM . This tridiagonal property makes

this problem amenable to parallelization, as will be shown in section 4.2.

The final discretized linear equation keeps a form identical to the continuous case as

shown below in equation (3.23)

Sw = (BBT + EET)w = b (3.23)

v = −BTw (3.24)

η =
1

α
ETw (3.25)

44

Chapter 4

Solution of the Discretized Least

Squares Sensitivity System

4.1 Geometric Multigrid on the LSS System

In order to perform multigrid on the discrete LSS system we must be able to con-

struct the system at different coarsening levels and be able to restrict and interpolate

solutions between levels. For this problem we use a simple V-cycle, the pseudocode

for the algorithm is below.

To fully implement this algorithm we must specify the four functions used above;

SMOOTHING, COARSEOPERATOR, RESTRICT, and INTERPOLATE. As well

as the recursion conditions and the number of pre and post iterations.

4.1.1 V-Cycle Smoothing Operations

Traditionally in multigrid methods, smoothing iterations are performed using some

fixed-point iteration like Jacobi, Gauss-Seidel, SOR, SSOR, etc. The symmetric

45

1: function VCYCLE(S, b)
2: w0 ← 0
3: w1 ← SMOOTHING(S, b, w0, npre)
4: if (Can Coarsen) then
5: r ← b− Sw1

6: rc ← RESTRICT(r)
7: Sc ← COARSEOPERATOR(S)
8: ec ← VCYCLE(Sc, rc)
9: e← INTERPOLATE(ec)

10: w2 ← w1 + e
11: else
12: w2 ← w1

13: end if
14: w3 ← SMOOTHING(S, b, w2, npost)
15: return w3

16: end function

tridiagonal block structure of our operator makes something make the block version

of these iterations (i.e. block Jacobi, block Gauss-Seidel) possible. For large-scale

systems with large M it may be infeasible to actually form the block matrices re-

quired to construct a numerical S. Specifically for large PDE systems constructing

the Jacobian (∂f
∂u

) itself may be difficult. Instead a matrix-free representation for

multiplying ∂f
∂u

by some vector is used. These fixed iterators require solution of the

M ×M blocks within S repeatedly which can be slow for large M . Additionally,

of these methods, only Jacobi iterations can be easily parallelized. A parallelizable

Gauss-Siedel/Jacobi hybrid method was tested for this problem. However, because

of the SPD features of our matrix more specialized krylov solvers such as Conjugate

Gradient and MINRES may be utilized.[3, 6] For the implementation described here

standard MINRES iterations were used in all smoothing operations. Using conjugate

gradient gave similar convergence characteristics, but MINRES ensured a smoother,

monotonic decrease in the solution residual.

46

Number of Smoothing Iterations

The correct number of pre-smoothing and post-smoothing iterations must be selected

to run these smoothing iterations. There unfortunately not much theory on select-

ing these parameters optimally. In practice, for LSS problems, a few heuristics for

selecting npre and npost have been identified:

• Convergence is largely insensitive to the number of pre-iterations (npre).

• When the number of time-steps is large, a larger number of post-iterations

(npost) improves convergence and is often necessary for convergence at all.

• Post-smoothing rapidly reduces the residual at first, but the rate of reduction

slows after a few iterations.

• Too much post-smoothing at one level is unproductive and at some point it is

better to run a new cycle rather than to continue.

With these rules in mind the number of pre-iterations is chosen to be some small

constant number, (e.g. npre = 5). The number of post-iterations was chosen dynam-

ically at runtime. The residual was tracked over many cycles, once the convergence

of the residual is below some specified rate the post-smoothing iterator stops. If

this minimum rate is chosen correctly this greatly decreases the time it takes for a

solution to converge.

4.1.2 Restriction and Interpolation of Solution Residual

For a generic ODE problem all restriction and interpolation are done in time. If the

primal problem is a PDE then restriction and interpolation may also be performed

47

in space. There are potentially two restriction operators Rt and Rx

Rt : RNM → RNcM (4.1)

Rx : RNM → RNMc (4.2)

Typically in multigrid Nc = N/2 (i.e. restrict to a time-grid of half the size). The

same convention will be used here. The scheme for spatial coarsening, however, is

completely dependent on the the differential equations used. This issue will be left

for section 4.4 when the specific application to a PDE problem is discussed.

When performing time coarsening, a wide windowed average across time-steps i

used to coarsen from a time grid of size ∆t to 2∆t. Figure 4-1 shows one way in

which the solution on the fine time-grid can restricted to the coarse time-grid.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

0 T=N∆t

w c
0 w c

1 w c
2 w c

3 w c
4 w c

5 w c
6 w c

70 T=N
2

2∆t

Figure 4-1: Diagram of Restriction in Time

The restriction operator in this implementation uses a 4 neighbor weighted aver-

age on the fine grid to compute the values on the coarse grid. At the internal points

48

the operator is given by

Rt =
1

8



. . .

1 3 3 1

1 3 3 1
. . .


At the time boundaries t = 0, and T the boundary condition that w(0) = w(T) = 0

must be enforced. The restriction operator must respect this condition when solu-

tions are moved from the fine to coarse grid. In the discrete setting ghost points are

chosen so that w− 1
2

= w(N− 1
2) = 0.

Using this approach, the equations for the first and last coarsened time-steps are

as follows.

wc0 =
2

17

(
3

2
w− 1

2
+ 3w0 + 3w1 + w2

)
wcN/2−1 =

2

17

(
wN−3 + 3wN−2 + 3wN−1 +

3

2
wN−1+ 1

2

)

The final time restriction operator Rt is shown in equation (4.3)

Rt =



6
17

6
17

2
17

1
8

3
8

3
8

1
8

. . .

1
8

3
8

3
8

1
8

2
17

6
17

6
17


(4.3)

The interpolation operator, is then simply a constant multiple of the adjoint of the

Restriction operator, where the constant is determined so that each of the non-

49

boundary rows will sum to 1. For this restriction scheme that implies that c = 2.

It = c RT
t (4.4)

4.1.3 LSS Operator Coarsening

The variational form of the coarse grid operator (Sc) is derived from applying the

restriction and interpolation operators to the fine-grid matrix (Sc = RSI). However,

for large PDE problems, S may not be explicitly computed and therefore neither

will Sc. One possible method would be to use a functional form of Sc, in which the

operation of the coarse grid operator is computed by the composition of interpolation,

application of the fine grid operator, and then restriction. This however would mean

each operator application on the coarse grid would be even more expensive than on

the fine grid. Because we are using a krylov method as a smoother, almost all the

cost of the algorithm is from repeatedly applying the operator to some vector w.

This method of forming the coarse grid operator would not take advantage of the

fact that solving on the coarser grids should be faster.

To alleviate this problem notice that the fine grid operator is parameterized by

some primal trajectory u ∈ R(N+1)M . This primal trajectory, along with the time-

dilation weighting α fully defines the operator. Instead of applying restriction the the

whole operator, restriction is applied to the primal trajectory in time and/or space.

That coarsened primal solution is then used to define the coarse grid operator.

The obvious way to coarsen u from N + 1 time-steps to N/2 + 1 time-steps is to

50

take every other point in time as shown in (4.5).

u = [u0, u1, u2, . . . uN−1, uN]T

↓

uc = [u0, u2, u4, . . . uN−2, uN]T (4.5)

However, as u is recursively coarsened in time, the variation from time-step to time-

step grows. Figure 4-2 shows what can happen when the primal is naively coarsened

in this fashion. This “jagged” primal will lead to a non-smooth variation in the block

matrices along the diagonals of the linear operator. With a non-smooth operator

high frequency errors cannot be removed from the solution. The correct coarse grid

solution will retain high frequency modes. Instead, when the primal is coarsened it is

also smoothed in time. Similar to how the solution residuals are coarsened, a linear

operator (Rt,p) can be constructed to restrict the primal solution. This is shown in

equation (4.6). This method keeps the end-points of the primal trajectory fixed but

smooths the interior points using a weighted average of nearby time-steps. Figure

4-2 shows this compared to the naive method on a primal solution from the Lorenz

System. This smoothened primal results in smoother variation across the diagonal

of the coarse linear operator. This effectively mimics the important property of the

variational coarse operator, namely that solutions on the coarse grid will have smaller

51

0 1 2 3 4 5
15

5

5

15

x

0 1 2 3 4 5
20

10

0

10

y

0 1 2 3 4 5
t

10

20

30

40

z

Original
Coarsened Naive
Coarsened Smooth

Figure 4-2: Results of coarsening primal four times using naive method (red), and
smoothed method (green) (Lorenz Equations)

52

high-frequency components.

Rt,p =



1

1 3 1

1 3 1
. . .

1 3 1

1


(4.6)

For PDE problems the primal trajectory must also be coarsened in space. However,

the same spatial restriction operator (Rx) used to spatially coarsen the solution

residual may be reused.

4.1.4 Coarsening Order (For PDE’s)

At any given coarsening step there are three options for coarsening. The residual

maybe be coarsened in space, time, or both. This choice on the order of coarsening

has a profound impact on the convergence of the multigrid scheme. To examine the

optimal coarsening strategy a simple sample PDE (Viscous Burger’s Equation (4.7))

will be used. Viscous Burger’s models a simple 1D fluid flow problem, however the

equations themselves do no result in chaotic solutions. Instead, the linear LSS system

that results from viscous burgers will be used. However, the will be coupled with

a primal trajectory from a chaotic system. The primal solution used comes from a

1D slice of a homogeneous isotropic turbulence simulation. The solution of the LSS

system for this contrived problem is meaningless, it predicts no relevant sensitivities.

53

0 1 2 3 4 5
Time Levels

0

1

2

3

Sp
at

ia
l L

ev
el

s

p0

p40

p80

p120

p160

p200

p230

Figure 4-3: Example of space-time coarsening paths (5 Time-Levels × 3 Spatial-
Levels)

It only provides a simple test-case for examining different multigrid parameters.

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
(4.7)

The problem of choosing the best coarsening order is one of choosing the optimal

path from the finest space-time grid to the coarsest space-time grid. For some chosen

problem the solution may be coarsened in time Lt times, and coarsened in space Lx

times. At any instance in the cycle the current level is defined as l = (lt, lx). The

sequence of forward steps (p) from l = (0, 0) to (Lt, Lx) will define the order in

which the coarsening occurs. In this problem a forward step may be one of (1, 0),

(0, 1), or (1, 1) which corresponds to time-coarsening, spatial-coarsening, and both

respectively. The full V-cycle is then defined by this choice of steps. Figure 4-3

shows several examples of how this path may be selected for Lt = 5, Lx = 3. Table

4.1 shows the steps that make up those paths.

54

path steps
p0 [(1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (0, 1), (0, 1), (0, 1)]
p40 [(1, 0), (1, 0), (0, 1), (0, 1), (1, 0), (1, 0), (1, 1)]
p80 [(1, 0), (0, 1), (1, 0), (0, 1), (1, 0), (1, 1), (1, 0)]
p120 [(1, 0), (1, 1), (0, 1), (1, 0), (0, 1), (1, 0), (1, 0)]
p160 [(0, 1), (1, 0), (0, 1), (1, 0), (1, 1), (1, 0), (1, 0)]
p200 [(1, 1), (1, 0), (1, 0), (1, 1), (1, 0), (0, 1)]
p230 [(1, 1), (1, 1), (1, 1), (1, 0), (1, 0)]

Table 4.1: Example Paths taken in Figure 4-3

In order to determine the best path a brute force algorithm is used to solve the

burger’s LSS system for every possible path from (0, 0) to (5, 3). For this (Lt, Lx)

pair there are 231 unique, single-step, forward paths to try. Figure 4-4 shows the

residual of the linear system vs time for all 231 unique paths. The convergence rate

varies wildly depending on the coarsening path chosen. For this system, however,

the best path is clearly p0. The V-Cycle defined by p0 is one which fully coarsens

in time before coarsening in space. Figure 4-5 shows the 5 paths which provide the

fastest rate of convergence. Each of the 5 best paths includes coarsening in time

several times before coarsening in space. The ability to further coarsen in time will

prove to be very important for the convergence of a multigrid LSS solver.

55

0 10 20 30 40 50 60
Wall Time (sec)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101
lo

g
re

s

0 5 10 15 20 25 30 35 40
Wall Time (sec)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p0

p40

p80

p120

p160

p200

p230

Figure 4-4: Residual v.s. Time For all possible paths, (N = 2048,M = 48)

0 1 2 3 4 5
Time Levels

0

1

2

3

Sp
at

ia
l L

ev
el

s

Figure 4-5: Five Best Coarsening Paths for Burger’s LSS

56

4.2 Parallel-In-Time Multigrid

This section will address the techniques used to parallelize the multigrid method

described in section 4.1. Specifically, the method for parallelizing this problem along

the time axis will be examined. Parallelization along the space axis will be necessary

for large classes of PDE’s, however spatial parallelization has been examined in detail

elsewhere and maybe added in to this time parallel approach without much difficulty.

There are many features of the discrete LSS system derived in section 3.2.1, that

can be exploited to more easily parallelize operations on the linear system. Specifi-

cally, the block tridiagonal structure greatly reduces the communication complexity.

For example, when multiplying by the LSS operator, the result at time-step n only

depends on data from time-step n− 1 and n+ 1.

To implement the multigrid solver, there are only a few operations that must

become parallel. The krylov smoother chosen here, MINRES, requires only the

ability to apply some linear operator, to take inner products, and to perform simple

arithmetic on vectors, and scalars [18]. The rest of the multigrid algorithm only

requires application of the restriction/interpolation linear operators, and application

of the primal restriction operator. Once all these operations are parallelized the rest

of the multigrid algorithm can run unchanged from the sequential version.

4.2.1 Parallel Distribution of Data

The Lagrange multiplier solution vector, w, for N time-steps, is a size NM vector.

The data for this vector will be split across np processes. Assuming that N is

a multiple of np, each process will be responsible for Nc = N
np

time-steps. The

implementation described here will perform all coarse cycles on the same np processes,

this puts a limit on the relationship between the number of time-steps (N), processes

57

(np), and time-levels (Lt) in the V-cycle.

N = c np 2Lt , c ∈ Z+ (4.8)

4.2.2 Parallel Application of the LSS Operator

Application of the LSS linear operator S is the dominant cost of the multigrid cycle.

The tridiagonal blocks of the S matrix may not be pre-computed in some PDE cases.

In those cases it is more simple to use the decomposition of S from equation (3.23).

Making the individual matrices B, BT , E, and ET parallel turns out to be an easier

problem. Multiplying by E, and ET is trivial to parallelize in this setting. Each of

these operators are diagonal, as is their product.

(EETy)i = fi (fTi yi) (4.9)

The more interesting problem is to parallelize applications of B and BT . If the

original primal trajectory of length N + 1 is split up into Nc + 1 overlapping sub-

chunks as shown in figure 4-6. By forming the B matrix over each sub trajectory,

there are np sub-matrices (Bn). Each sub-matrix transforms an (Nc+1)M vector into

nNcM . The sub-matrices can be combined to form the fullB matrix as demonstrated

in equation (4.10).

B =


B0

B1

. . .

Bnp−1

 (4.10)

58

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16

n=0
n=1

n=2
n=3

Figure 4-6: Spiting the primal trajectory into chunks (N = 16, np = 4)

Because the rows of the local operators do not overlap, multiplication by B in

parallel simply involves each process multiplying its local (Nc + 1)M vector by its

local sub-matrix. In this step no communication is required.

Applying BT is the final step towards applying the LSS operator in parallel. More

care is required to multiply by BT . The transpose of the same Bn sub-matrices make

up BT as shown in equation (4.11). If each sub-matrix is multiplied locally the result

will be mostly identical to multiplication by the global BT . However, because the

rows between matrices overlap the local result is not the whole answer. At each of

the overlapping time-steps seen in figure 4-6, the results will be incorrect, and will

not match each other. At each of these np − 1 overlapping points the local solution

data is summed between neighboring processes. Once this summation is done, each

59

piece of local data will be correct.

BT =



BT
0

BT
1

. . .

BT
np−1



(4.11)

4.2.3 Parallel Restriction and Interpolation

During restriction and interpolation, the same data splitting described previously is used

across all np processes at all Lt time-levels. Because, the parallelization is only over the

time domain, spatial restriction and interpolation method may remain unchanged. The

time restriction and interpolation operators described in section 4.1.2, are not purely local.

That is, in order to restrict the local data on process n, data is required from process n−1

and n+ 1.

Take, for example, an N = 16, time-domain restricted to an N = 8 time-domain, split

across np = 4 processes. Process number 1 is responsible for time-steps 4-7 on the fine grid,

and 2-3 on the course grid. However, the coarse residual at time-step 2 requires knowledge

of the fine-step 3 which is stored on process 0, not locally on process 1. An identical

problem occurs when interpolating back from the coarse grid to the fine grid. However,

because of the specific restriction operator chosen, only one additional point is required

from the neighboring processes to apply the operator. Figure 4-7 shows one example of

60

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

r c0 r c1 r c2 r c3 r c4 r c5 r c6 r c7

0 T

n=1

Figure 4-7: Data dependence for parallel restriction, (N = 16, np = 4)

how this data dependence works out.

Restriction

Each local data chunk is padded with one additional time-step worth of data on each side

(Note: the first step of process 0 and the last step of process np − 1 are padded with

an M -dimensional zero vector) . These additional ghost time-steps are sufficient so that

restriction can be done locally. The local time-restriction operators (Rnt) are 1
2
N
np
×
(
N
np

+ 2
)

61

matrices, and are shown in equation (4.12).

R0
t =


0 6

17
6
17

2
17

1
8

3
8

3
8

1
8

. . .

1
8

3
8

3
8

1
8



Rnt =



1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

. . .

1
8

3
8

3
8

1
8

 0 < n < np − 1

R
np−1
t =



1
8

3
8

3
8

1
8

. . .

1
8

3
8

3
8

1
8

2
17

6
17

6
17 0

 (4.12)

Interpolation

The local interpolation operators Int can be found in a similar way. These size N
np
×(

1
2
N
np

+ 2
)

sub-matrices can then be applied locally to achieve the same interpolation

62

described before. The local interpolation matrices are shown in equation (4.13)

I0
t =

1

4



0 2

3 1

1 3

. . .

1 3

3 1


I
np−1
t =

1

4



1 3

3 1

. . .

1 3

2 0



Int =
1

4



1 3

3 1

. . .

1 3

3 1


0 < n < np − 1 (4.13)

Primal Restriction

The primal restriction operation is the final operator that must be parallelized. The

parallel primal trajectory already contains some redundancy, one time-step shared

between each pair of processes. However, the specified primal restriction operator

requires the primal to be padded similarly to the residual restriction operators. This

local primal restriction operators Rn
t,p is shown below in equation (4.14).

63

R0
t,p =


0 1

1 3 1
. . .

1 3 1

 R
np−1
t,p =


1 3 1

1 3 1
. . .

1 3 1



Rn
t,p =


1 3 1

. . .

1 3 1

1 0

 0 < n < np − 1 (4.14)

4.2.4 Parallel Arithmetic

The array arithmetic required for parallel MINRES, and other operations required

for multigrid are largely trivial. Addition and subtraction can be done locally within

each process without any communication. A parallel dot product is simply computed

using the sum of all local dot products. Once these operations are parallel there are

no other necessary modifications to make the multigrid solver run in parallel.

4.2.5 Implementation Details

The parallel multigrid solver was written in the PythonTM programming language.

Heavy use was made of the NumPy and SciPy projects [12]. The parallelization was

developed with MPI using OpenMPI, and specifically the mpi4py Python bindings

[8]. The Fast Fourier Transform (FFT) implementation used later in section 4.4, is

provided by anfft [7], a NumPy compatible wrapper to the FFTW library [10].

64

20 15 10 5 0 5 10 15 20
x

0

10

20

30

40

50

z

30 20 10 0 10 20 30
y

0

10

20

30

40

50

z
20 10 0 10 20

x
30

20

10

0

10

20

30

y

Figure 4-8: Example Primal Trajectory for Lorenz System (ρ = 28, σ = 10, β = 8/3),
over time span T = 40.96

4.3 ODE Results (Lorenz System)

The Lorenz equations were first formulated by Edward Lorenz as a very low order

model of Rayleigh-Bernard Convection [16]. For certain combinations of parame-

ters (ρ, σ, β) this third order ODE exhibits chaotic properties. Figure 4-8 shows an

example of a solution to the Lorenz equations in the chaotic regime.

d

dt


x

y

z

 =


σ(y − x)

x(ρ− z)− y
xy − βz

 (4.15)

~u ≡ [x y z]T

In climate sensitivity problems for the Lorenz attractor, people often examine the

time-averaged coordinate positions [14, 19, 20, 24]. Effectively looking at the sensi-

tivity of the center of mass of the attractor with respect to changes in the param-

eters (ρ, σ, β), another simple perturbation is applying a shift to a coordinate (i.e.

65

z′ = z + z0) as shown in (4.16). Perturbations in z0 will then produce an equal

perturbation in the average z coordinate.

d

dt


x

y

z′

 =


σ(y − x)

x(ρ− (z′ − z0))− y
xy − β(z′ − z0)

 (4.16)

Unlike for PDE problems, the LSS operator S, can be fully precomputed for Lorenz system

problems. The result is a 3N × 3N sparse matrix with 3 × 3 blocks. This matrix could

be feasibly solved using sparse direct methods, or various krylov solvers. A finely tuned

sequential direct solve, could very easily out perform the parallel multigrid implementation

described in this thesis. Also, in small ODE problems, like the Lorenz System, com-

munication costs required to parallelize these algorithms are non-trivial compared to the

overall solution time. Therefore, this section is most useful to verify the parallel multigrid

implementation.

4.3.1 Results

The “true” sensitivity to the different parameters in the Lorenz equations have been es-

timated in previous works.[14, 24]. These can be used as baselines to verify the parallel

LSS solver. Table 4.2 shows various possible objective functions and perturbations, and

how the LSS solver compares at computing these sensitivities. In all cases the sensitivity

predicted is fairly accurate, in the cases with non-analytical solutions, the estimates lie

within previously estimated ranges.

Figure 4-9 shows how the convergence of the multigrid LSS system compares to parallel

implementations of conjugate gradient and MINRES on the smae machine. For the cho-

sen parameters, the multigrid solver does not dramatically improve on these more simple

solvers, however it is slightly better. Figure 4-10 shows the trajectories of the Lagrange

multipliers (w) and tangent solution (v) for this problem.

66

Objective (J) Perturbation Sensitivity LSS Prediction
z z0 1 0.9991
x2 z0 0 1.044× 10−3

y2 z0 0 −9.372× 10−3

z ρ 1.01± 0.04 [24] 1.008
x2 ρ 2.70± 0.10 [24] 2.681
y2 ρ 3.87± 0.18 [24] 4.027

Table 4.2: Climate Sensitivity values of Lorenz System at (ρ = 28, σ = 10, β = 8/3,
z0 = 0). LSS parameters (α = 10

√
10, T = 81.96, ∆t = 0.01). Equations solved to a

relative tolerance of 10−8

0 2 4 6 8 10 12 14

Wall Time (seconds)
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

‖b
−
S
w
‖ 2

‖b
‖ 2

Muligrid
MINRES
Conjugate Gradient

Figure 4-9: Comparison of convergence rates for parallel multigrid versus parallel
MINRES, and parallel conjugate gradient implementations for solving discrete LSS
equations for Lorenz System, perturbations to ρ, (ρ = 28, σ = 10, β = 8/3), (α =
10
√

10, T = 81.96, ∆t = 0.01), np = 2

67

x

1.5 1.0 0.5 0.0 0.5 1.0

y
2

1
0

1
2

z

2

1

0

1

2

w(t)

x

0.3 0.2 0.1 0.0 0.1 0.2 0.3

y

0.6
0.4

0.2
0.0

0.2
0.4

0.6

z

0.6

0.8

1.0

1.2

1.4

v(t)

Figure 4-10: Solutions to the LSS equations, the Lagrange multipliers w(t), and the
tangent solution v(t), colored by the local time-dilation η(t)

68

4.4 PDE Problem (Homogeneous Isotropic Tur-

bulence)

To validate the LSS solver further, the same solver was run on a model of Homogeneous

Isotropic Turbulence (HIT). A traditional HIT solver involves a direct numerical simulation

of the three-dimensional Navier-Stokes equations on cube of fluid. The boundaries of the

cube are periodic in each direction, and the fluid is forced, deterministically, to drive the

flow [11]. Given the correct choice of forcing F , the result is a fully three-dimensional,

unsteady, flow, that is chaotic with some bounded energy distribution. Typically, this flow

is assumed to be incompressible, as shown in equation (4.17).

∂

∂t
U(x, t) +∇ ·

(
U(x, t)⊗ U(x, t)

)
= −∇P (x, t) + ν∇2U(x, t) + F (U(x, t)) (4.17)

∇ · U(x, t) = 0

The simple, periodic, domain lends itself to a pseudo-spectral solution method. Given

a spatial Fourier transform F , equation (4.19) shows the pseudo-spectral transformation

of incompressible Navier-Stokes. Ĝ represents the nonlinear convection operator, and is

computed in the physical domain (4.20).

Û(k, t) = F [U(x, t)] (4.18)

∂

∂t
Û(k, t) + Ĝ

(
Û(k, t)

)
= −ikP̂ (k, t)− ν|k|2Û(k, t) + F̂

(
Û(k, t)

)
(4.19)

k · Û(k, t) = 0

69

Figure 4-11: Iso-surfaces of the Q-Criterion for an example flow field produced by
HIT, (Q = 1

2

(
‖Ω‖2

f − ‖S‖2
f

)
, Ω = 1

2

(
∇U −∇UT

)
, S = 1

2

(
∇U +∇UT

)
)

70

U(x, t) = F−1
[
Û(k, t)

]
Ĝ
(
Û(k, t)

)
= ik · F [U ⊗ U] (4.20)

Spectral Forcing

The spectral forcing, F̂ (Û), is chosen to inject energy at some rate to balance the energy

loss from viscosity. In the spectral domain this forcing is applied to the lower frequency

modes (k̃) with wavenumber given in (4.21).

k̃0 ≡ (1, 0, 0), k̃1 ≡ (0, 1, 0), k̃2 ≡ (0, 0, 1) (4.21)

The energy ε is computed on these low-frequency modes (4.22). The forcing is proportional

to some constant power P divided by the low-frequency energy ε, and proportional to the

low-frequency spectral velocity (4.23). The higher-frequencies are left unforced.

ε =
2∑
i=0

∣∣∣Û(k̃i, t)
∣∣∣2 (4.22)

F̂ (k̃i, t) =
P

ε
Û(k̃i, t) (4.23)

F̂ (k 6∈ k̃, t) = 0

The spectral forcing coefficient, P , may be chosen to achieve the desired Taylor micro-

scale Reynolds number. Here the coefficient is chosen to be proportional to the kinematic

viscosity (ν) (4.24). β is a fractional deviation from the nominal power coefficient, and will

be the perturbation parameter considered here.

P ≡ 2ν (1 + β) (4.24)

71

Objective Function

The objective function considered in this problem is the cumulative energy spectrum of

the flow field (4.25), and its long-time average (4.26). When increasing β, the energy at all

values of the wavenumber magnitude (|k|) are expected to increase on average, however,

the exact amount is difficult to obtain. The goal will be to simulate one primal flow field.

That one primal trajectory is then used to predict the sensitivity of the energy spectrum

dĒ(|k|)/dβ, across all frequencies.

E(|k|, t) =
∑
k≥|k|

∣∣∣Û(k, t)
∣∣∣2 (4.25)

Ē(|k|) = lim
T→∞

1

T

∫ T

0
E(|k|, t) dt (4.26)

4.4.1 Discretization

The spatial domain is a cube of size [0, 2π]3, each velocity component is discretized on

a (3k × 3k × 3k) Cartesian grid (U ∈ R3×3k×3k×3k). In the spectral domain the 2/3 rule

is applied to avoid aliasing, giving a maximum wave number of 2k in each dimension.

Additionally because the flow is real valued, the fourier modes will be symmetric and may

be further reduced by about a half (Û ∈ C3×2k×2k×(k+1)). The discrete Fourier transforms,

and inverse transforms are computed via a real valued Discrete Fourier Transform [7, 10].

4.4.2 Application to LSS

For the purposes of the LSS solver, and to emphasize the generality of the method, these

equations will be treated as a black-box differential equation. The discrete isotropic flow

solver will implement a simple interface, providing access to evaluating f and multiplication

by ∂f
∂u and ∂f

∂u

T
. In fact, the LSS solver does not even know that the isotropic turbulence

model is solved in the complex domain, it simply treats the discretized solution as real

72

system of twice the size, (Mk = 2 × 3 × 2k × 2k × (k + 1) = 24k2(k + 1)). The flow

solver will also provide the spatial restriction and interpolation methods. The temporal

restriction and interpolation techniques described previously still apply.

Spatial Restriction and Interpolation

The spatial restrictions and interpolations are performed in the frequency domain. To

coarsen in space from size Mk to Mk/2, the higher frequency modes are simply truncated.

At grid size k, all the discrete frequencies (k) satisfy the inequality 0 ≤ ‖k‖∞ ≤ 2k.

Therefore at size k/2 the coarse solution is given by

ŵc(k, t) = ŵ(k, t) ∀k : 0 ≤ ‖k‖∞ ≤ k (4.27)

Mk/2 = 6k2(k/2 + 1) (4.28)

Similarly, to interpolate back from size k/2→ k, the solution is simply padded with zeros

for all wave numbers above the threshold.

ŵ(k, t) =


ŵc(k, t) 0 ≤ ‖k‖∞ ≤ k

0 k < ‖k‖∞ ≤ 2k

(4.29)

4.4.3 Results

One primal solution of the Isotropic Flow solver is produced using the discretized isotropic

flow equations. The solution is obtained using the same implicit trapezoidal method de-

scribed previously. For all future results assume the isotropic flow is solved using the

73

following parameters.

ν = 0.01

k = 16

∆t =
2π

16

The Taylor micro-scale for this flow is λ = 1.22 and the associated Reynolds number

Reλ = 33.06. The primal solution is solved for N + 1 time-steps from 0 → N∆t, here

N will be assumed to be 212 = 4096. Several example solutions are shown in figure 4-12.

Figure 4-13 shows the mean energy spectrum for one such run. The LSS equations for the

long scale N = 212 problem are solved utilizing np = 64 processes. Because of a limitation

in the implementation of the parallelization, the multigrid cannot coarsen in time below

np time-steps. Again the time-dilation weighting, α = 10
√

10, is used.

The climate sensitivity is then computed in two ways. A finite difference estimate of

the β sensitivity is performed. β is perturbed ∆β = 0.05 which produces a 5% change to

the input power P .

β+ = 0.05 β− = −0.05 (4.30)

Two new primal trajectories are simulated with these two perturbed β values.

Û+ = Û(k, t; β+) (4.31)

Û− = Û(k, t; β−) (4.32)

The difference in the instantaneous cumulative energy spectrum (4.26) between the two

74

Figure 4-12: Q-Criterion iso-surfaces for several primal solutions (Reλ = 33.06)

75

100 101

Wave Number (log|k|2)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

lo
g
Ē

(|k
| 2

)

Minimum
Maximum
Mean

Figure 4-13: Average cumulative energy spectrum Ē, for primal solution to HIT

76

perturbed runs is computed, and time-averaged.

E+ = E(|k|, t)
∣∣∣∣
Û+

E− = E(|k|, t)
∣∣∣∣
Û−

(4.33)

d

dβ
E(|k|, t) ≈ E+ − E−

2∆β
(4.34)

d

dβ
Ē(|k|)(FD) =

1

N + 1

N∑
i=0

E+
i − E−i
2∆β

(4.35)

These are compared against the sensitivity estimate given by the LSS equations given by

the unperturbed trajectory (Û). The LSS solution is obtained using the parallel multigrid

algorithm to compute w, v, and η.

b← ∂f

∂β
=
∂F̂

∂β
(3.18)

w ← Sw = b (parallel multigrid)

v, η ← w (3.24), (3.25)

Then the sensitivities from that solution are approximated using equation (3.15).

η̄ =
1

N

N−1∑
j=0

ηj (4.36)

Ûmj =
1

2

(
Ûj + Ûj+1

)
(4.37)

∂

∂β
Ē(|k|)(LSS) =

1

N + 1

N∑
i=0

∂E

∂Û

∣∣∣∣
Ûi

vi +
1

N

N−1∑
j=0

(η̄ − ηj) E
∣∣∣∣
Ûm
j

(4.38)

Figure 4-14 shows how these two methods compare. The LSS method seems to produce

relatively good sensitivity estimates compared with finite difference. Figure 4-15 shows the

absolute value of the instantaneous spectrum sensitivity. Figure 4-16 contains a visualiza-

tion of the Q-criterion of the Lagrange multiplier solution of the LSS system.

77

100 101

Wave Number (log |k|2)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

lo
g

d d
β
Ē

LSS Sensitivity Estimate
Finite Difference Sensitivity

Figure 4-14: LSS vs. Finite Difference sensitivity estimates. Finite differences
computed using two primal solutions with the forcing magnitude altered by ±5%
(∆β = ±0.05). LSS estimate computed using parallel multigrid and equation (3.15).

78

0 100 200 300 400 500 600 700 800
Time (t)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|d d
β
Ē

(|k
| 2
,
t)
|

|k|2 =0.000

|k|2 =12.247

|k|2 =15.524

|k|2 =18.138

|k|2 =22.045

Figure 4-15: Absolute value of instantaneous spectrum sensitivity for various wave
number magnitudes (|k|2) computed from LSS. Dashed lines illustrate this instanta-
neous sensitivity measure at several values of |k|2. Solid lines show a few examples
curves where the wave number magnitudes are explicitly labeled.

79

Figure 4-16: Q-Criterion of Lagrange multiplier field (w) at several points in time

80

Chapter 5

Conclusions

There are many difficulties with computing accurate sensitivity gradients for periodic and

chaotic dynamical systems. Looking at “climate” properties of dynamical systems can give

a window into understanding the dynamics of a chaotic system. However, even by reducing

the problem scope to climate sensitivities, general methods for efficiently computing these

sensitivities have been difficult to obtain. In this thesis, two approaches were examined for

computing sensitivities to long-time averaged quantities in dynamical systems.

The first approach involved the special case of periodic systems. Here the instability

that comes with solving the adjoint equations on chaotic systems is not a problem. Instead,

the adjoint equations do not produce unique solutions. This is rectified by introducing the

concept of the homogeneous adjoint equations, which in periodic and chaotic systems,

have non-trivial solutions. Solutions to the homogeneous adjoint equations can be added

to any inhomogeneous solution to make more valid adjoint solutions. The result is an

additional constraint that is placed on the inhomogeneous adjoint solution. The solution

that satisfies this constraint is the “true” adjoint solution that can predict both averaged

and instantaneous sensitivities. An algorithm for computing this corrected adjoint is also

presented, involving the additional cost of the simultaneous solution of an additional set

81

of homogeneous adjoint equations. This approach is verified on the Van der Pol Oscillator

ODE system.

The second approach deals with the Least Squares Sensitivity (LSS) method of com-

puting sensitivities to “climate” properties. Contrary to traditional sensitivity methods,

an optimization problem is formed to minimize the linear solution perturbation v, and the

time-dilation η. This minimization problem results in a large sparse SPD linear system

for computing the Lagrange multipliers of the sensitivity. For ODE systems this resulting

LSS system may be directly solved, however for large scale systems, there are difficulties

constructing this system, let alone solving it. A parallel multigrid algorithm for solving

the resultant LSS equations is developed to deal with both small scale chaotic ODEs and

large scale PDEs. This algorithm makes no assumptions about the ability to numerically

form the LSS system, and instead only requires a functional interface for computing the

system dynamics, and multiplying by the Jacobian and its adjoint. This parallel LSS solver

is then verified using a chaotic ODE, the Lorenz System, and also a chaotic PDE, from a

direct numerical simulation of Homogeneous Isotropic Turbulence. Solution of both sys-

tems yield approximate sensitivity estimates that agree with literature and finite difference

approximations.

These two methods increase the efficiency with which periodic and chaotic climate sen-

sitivities may be computed. While periodic systems are very rare, understanding these

problems can lead to better understanding of the more difficult chaotic problems. The

parallel-in-time multigrid algorithm presented here shows great promise of making sensi-

tivity computations for large scale chaotic systems more feasible than they have previously

been. The success of the approach for a relatively small turbulent fluid flow problem could

be extended to more complex turbulent flows seen in engineering applications. The struc-

ture of the LSS system lends itself to massive parallelization. In addition, the generality of

the multigrid method developed here allows for a generic LSS solver to handle a variety of

different dynamical systems without modification. This ability to compute sensitivities us-

82

ing arbitrary systems is an important step towards the development of push-button design

tools that can handle chaotic dynamical systems.

83

84

Bibliography

[1] R.V. Abramov and A.J. Majda, Blended response algorithms for linear fluctuations-
dissipation for complex nonlinear dynamical systems. Nonlinearity, 20, Issue 12, 2007,
pp. 2793-2821

[2] R.V. Abramov and A.J. Majda, A new algorithm for low-frequency climate response.
Journal of Atmospheric Sciences, 66, 2008, pp. 286-309.

[3] R.E. Bank and C.C. Douglas, Sharp estimates for multigrid rates of convergence with
general smoothing and acceleration. SIAM journal on numerical analysis, 22.4:617633,
1985.

[4] P.J. Blonigan, R. Chen, Q. Wang, and J. Larsson, Towards adjoint sensitivity analysis
of statistics in turbulent flow simulation. Stanford, 2012, pp. 229-239

[5] V. Bugnion, C. Hill, P. Stone, An adjoint analysis of the meridional overturning
circulation in an ocean model Journal .of Climate, V.19, 2005 pp. 3732-3750

[6] T. F. Chan and W. L. Wan. Robust multigrid methods for nonsmooth coefficient elliptic
linear systems. Journal of Computational and Applied Mathematics, 123.1:323352,
2000.

[7] A. Collette, et. al., ANFFT: An FFT package for PythonTM, based on FFTW, 2012,
“https://code.google.com/p/anfft/”

[8] L. Dalcin, et. al., MPI4PY: MPI for PythonTM, 2012,
“https://code.google.com/p/mpi4py/”

[9] G. Eyink, T. Haine, and D. Lea, Ruelles linear response formula, ensemble adjoint
schemes and Levy flights. Nonlinearity, Vol. 17, 2004, pp. 18671889.

[10] M. Frigo and S.G. Johnson, The design and implementation of FFTW3. Proceedings
of the IEEE 93 (2), pp 216-231

85

[11] T. Ishihara, T. Gotoh, Y. Kaneda, Study of HighReynolds Number Isotropic Turbu-
lence by Direct Numerical Simulation. Annual Review of Fluid Mechanics, Vol. 41,
2008, pp. 165-180.

[12] E. Jones, T. Oliphant, P. Peterson and others, SciPy: Open source scientific tools for
PythonTM, 2001–2013, “http://www.scipy.org”

[13] J.A. Krakos, Q. Wang, S.R. Hall, and D.L. Darmofal, Sensitivity analysis of limit cycle
oscillations. Journal of Computational Physics. Volume 231, issue 8, pages 3228-3245,
2012.

[14] D. Lea, M. Allen, and T. Haine, Sensitivity analysis of the climate of a chaotic system.
Tellus, Vol. 52A, 2000, pp. 523532.

[15] D.J. Lea, T. Haine, M. Allen, and J. Hansen, Sensitivity analysis of the climate of a
chaotic ocean circulation model. Q.J.R Meteorol. Soc. 2002, pp 2587-2605

[16] E.N. Lorenz, Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 1963,
V.20, pp. 130-141

[17] E.N. Lorenz, The problem of deducing the climate from the governing equations. .
Tellus, 1964, V.20, pp. 130-141

[18] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equa-
tions. SIAM J. Numerical Analysis 12, 1975, pp. 617-629.

[19] T.N. Palmer, A nonlinear dynamical perspective on climate prediction. Journal of
Climate, V.12, 1999, pp 575-591

[20] T.N. Palmer, Extended-Range atmospheric prediction and the Lorenz model. American
Meteorological Soc. V.74, 1993, pp. 49-65

[21] D. Ruelle, General linear response formula in statistical mechanics, and the
fluctuations-dissipation theorem far from equilibrium. Phys. Lett, A245, 220-4

[22] J. Thuburn, Climate sensitivities via a FokkerPlanck adjoint approach. Quarterly Jour-
nal of the Royal Meteorological Society, Vol. 131, No. 605, 2005, pp. 7392.

[23] Q. Wang and R. Hu, Sensitivity computation of periodic and chaotic limit cycle oscil-
lations. submitted to SIAM Journal of Scientific Computing. revised and submitted.
arXiv:1204.0159

[24] Q. Wang, Forward and adjoint sensitivity computation for chaotic dynamical systems.
Journal of Computational Physics, Vol. 235, No. 15, 2013, pp. 115.

[25] Q. Wang, S. Gomez, and P. Blonigan, Towards scalable parallel-in-time turbulent flow
simulations. submitted to Physics of Fluids, 2013

86

