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Abstract—A grand challenge of computational systems
biology is to create a molecular pathway model of the whole
cell. Current approaches involve merging smaller molecular
pathway models’ source codes to create a large monolithic
model (computer program) that runs on a single computer.
Such a larger model is difficult, if not impossible, to maintain
given ongoing updates to the source codes of the smaller
models. This paper describes a new system called CytoSolve
that dynamically integrates computations of smaller models
that can run in parallel across different machines without the
need to merge the source codes of the individual models. This
approach is demonstrated on the classic Epidermal Growth
Factor Receptor (EGFR) model of Kholodenko. The EGFR
model is split into four smaller models and each smaller
model is distributed on a different machine. Results from
four smaller models are dynamically integrated to generate
identical results to the monolithic EGFR model running on a
single machine. The overhead for parallel and dynamic
computation is approximately twice that of a monolithic
model running on a single machine. The CytoSolve approach
provides a scalable method since smaller models may reside
on any computer worldwide, where the source code of each
model can be independently maintained and updated.

Keywords—Systems biology, SBML, Model composition,

Biochemical simulation, Distributed computing, Molecular

pathways, Kinetic modeling, Parallel simulation, Collabora-

tory, Systems architecture, Software.

INTRODUCTION

A grand challenge of computational systems biology
is to model the whole cell. Biologists use experiments,
not first principles or ‘‘laws’’ (ab initio) as in physics, to

derivemolecular pathways, as shownon the left inFig. 1,
which are the diagrammatic representations of molec-
ular interactions.16 Computational systems biologists
translate these molecular pathways into molecular
pathway models, as shown on the right in Fig. 1, which
are the quantification of molecular interactions. They
alsowork to build large-scalemodels of cellular function
by integrating the biomolecular kinetics across multiple
models at the molecular mechanistic level.1,10,13,15,22,26

A molecular pathway model M can be thought of as
‘‘black box’’ which describes the biomolecular kinetics
of a set of molecular species, SM. The input to the
black box are the concentrations of species at time
t = n, denoted as SM,n,. The internals of the black box
contain computer source codes that evaluate the input
using mathematical methods to yield an output. The
output of the black box are the concentrations of
species at time t = n + 1, denoted as SM,n+1.

The current methods for integrating models attempt
to use direct computation to solve the problem, i.e.
developing a program from scratch for each set of
coupled reactions, or a monolithic approach, which
takes individual component models in a single sup-
ported computer source code format such as Systems
Biology Markup Language (SBML)11 and manually
integrates them to create one monolithic software
program. A variation on this second approach is to use
semi-automation tools that help to automatically read
and integrate source codes together to create one
monolithic software program.24 The most common
architectures such as Cell Designer,16 COPASI21 or
E-CELL,26 use the monolithic approach.

The monolithic approach presents significant hur-
dles in scaling to large numbers of models. All models
have to reside in the same geographical location, and
the person integrating the models must be intimately
acquainted with all the multiple pathways to be
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merged. Maintenance of the larger monolithic model
emerges as a critical issue since new biological experi-
ments may yield results that require changes to indi-
vidual molecular pathways and their models’ source
codes. If each model is in different source code format,
conversion to a single format is required.

This paper describes CytoSolve, a computational
environment for integrating multiple independent
pathways dynamically in parallel to address the
shortcomings of monolithic methods.

Characteristics of a Dynamic Methodology

A method that dynamically integrates the compu-
tations of the smaller molecular pathway models may
obviate the need to: (1) merge source codes and (2)
centrally maintain and update the source codes of each
model. In fields such as ecology and earth sciences,
platforms such DANUBIA3 have shown the value of
integrating distributed models in parallel without the
need to merge source codes. There are a number of
important characteristics that such a dynamic method
should exhibit.

First, it should be scalable. Scalability means the
effort to integrate a new model is comparable to the
effort to integrate the first model. Scalability has little
to do with complexity. Two models with numerous
equations, for example, can integrate easily if they are
in the same programming language, have similar time
scales, belong to the same knowledge domain and were
developed on the same hardware and operating sys-
tems. Second, the method should be able to connect
multiple knowledge domains in an opaque manner;

such opacity will treat each model as a ‘‘black box’’
shielding the integrator from internal details. The
integrator needs only know the inputs and outputs of
each model. This will allow for integration of emerging
compartmental models.

Third, the method should provide support for both
public and proprietary models. Public models have
accessible source codes. Proprietary models have
inaccessible source codes. A pharmaceutical company,
for example, with proprietary models may seek to
integrate with public models, and researchers in an
academic environment, alternatively, may seek to
integrate their public models with proprietary models.
Fourth, it should be extensible to provide support for
heterogeneous source code formats including support
for long standing formats such as MML generated by
JSIM,21 and more recent standards such as SBML
and CellML.12 Other important models have been
published using programming languages such as
MATLAB, Java or C. A computational architecture
that supports dynamic integration will not require
conversion to one standard format. Keeping a model
resident on its native format will reduce time in source
code rewriting and testing. An analogy is having a
single program to display a collection of digital pic-
tures stored in various graphical formats.

Last, the architecture should support localized
integration. This means that users at all locations can
initiate integration from their own local environment.
Consider the scenario of the author of a Model A, who
wishes to quickly test or integrate with an ensemble of
three other models: Model B, C and D which are dis-
tributed across different machines. The author of

FIGURE 1. A molecular pathway, represented diagrammatically on the left, can be converted to a molecular pathway model, M, on
the right, which receives inputs, SM,n and evaluates outputs, SM,n+1 using various mathematical approaches (e.g. ODE’s). The
model can be encoded using various programming languages.
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Model A should not have to download the other three
models to his/her local computer to perform the inte-
gration.

Ease of integrating an ensemble of disparate and
distributed molecular pathway models, each owned by
different authors is therefore critical to building large-
scale models such as the whole cell. In his seminal
work, Brooks5 demonstrated that as the number of
different authors (or models) increases, the effort to
perform such integration increases geometrically with
the number of personnel communications required to
simply coordinate the software development among
the different authors. CytoSolve provides a new
methodology to integrate models without requiring
personnel interaction with the authors since each
model need not be manually loaded, understood and
interconnected into a single monolithic program.

ARCHITECTURE

CytoSolve’s parallel and distributed architecture
addresses the various scalability problems of integrat-
ing multiple models. In this architecture, the whole cell,
using the theoretical framework and conditions pre-
scribed in Appendix A, can be viewed as a network of

D molecular pathways as shown in Fig. 2a or modelled
as an interconnected ensemble of Dmolecular pathway
models, shown in Fig. 2b. CytoSolve as shown in
Fig. 2c uses a dynamic messaging approach to exchange
data via message passing across the ensemble of
models, {Mi} (for i = 1 to D) to evaluate the inte-
grated solution.

CytoSolve computes the integrated solution using
the n-tier layered architecture shown in Fig. 3. This
architecture consists of the following layers: Presenta-
tion, Controller, Communications, Models and Data-
base.

The Presentation layer includes a Graphical User
Interface (GUI) and Web Services. The user interacts
with the GUI to specify one or more molecular path-
way models to be integrated. A set of molecular
pathway models may have common species and/or
duplicate reaction pathways. For the former case, e.g.
two models may refer to species Calcium but one may
have refer it as ‘‘Ca++’’ and another as ‘‘Cal’’, a Web
Service is provided, which parses the models and
detects potential naming conflicts and allows the user
through the GUI to confirm or reject identical species.
The Web Services also provides the user a mechanism
to identify common reaction pathways to enable
alignment across models. All user-defined changes or

FIGURE 2. Abstraction of cell being represented as an integration of D molecular pathway models. A large pathway is partitioned
to smaller pathways, which are represented as mathematical models that are integrated using the CytoSolve system.
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such annotations to the models to resolve species
differences and reaction duplications are stored and
updated within the Ontology of the Database, for later
use by the Controller, during model integration. Once
the user has specified models and resolved conflicts, the
Controller via the Monitor, is invoked for executing
model integration.

The Controller coordinates individual computations
and couples models to derive the integrated solution.
The Controller includes libraries that support direct
model-to-model messaging as well as model-to-con-
troller messaging. CytoSolve’s Controller has three
components: the Monitor, the Communications
Manager (Comm Mgr) and the Mass Balance. The
Monitor serves to track the progress of each model’s
computation. The Monitor knows, for a particular
time step, which models have completed and which
models have not completed their calculation. The
Comm Mgr or Communications Manager coordinates
the communication across all models. The Comm Mgr
initiates a model to compute a time step of calculation
and also can instruct a model to wait or hold on
computing the next time step. The Mass Balance
integrates, for each time step, the calculations across
an ensemble of models by ensuring mass conservation
of species, to derive the integrated solution.

The Communications layer contains the Inter-process
Communications (IPC) infrastructure. The IPC allows
communication of user parameters (e.g. which models
to run) and results between the Controller and the
Models. IPC allows the Controller to perform dynamic
messaging using two important operations. First, the
Controller may message a model with input values of
species concentrations at time step n, SM,n and request
the model to execute one time step of calculation.
Second, a model, following execution of one time step
of calculation, can message the Controller to send the
output values of species concentrations at time step
n + 1, SM,n+1. These operations enable the Controller
to manage and steer the individual computations
across multiple models in parallel.

The Data Base layer consists of storage of the
Solution and the Ontology. The Solution (as detailed
in Appendix B) holds memory resident data to track
species concentrations across all models for each time
step. The Ontology manages nomenclature and the
annotations of species identification and duplicate
reaction pathways, across models to ensure consis-
tency during the Controller’s computation of the
integrated solution (see Appendix C). The Ontology
can be evolved to support more complex descrip-
tions.

FIGURE 3. The architecture design underlying the CytoSolve method employs a dynamic messaging approach to manage and
integrate communications across a distributed ensemble of D models based on instructions by the GUI at the Presentation layer.
The Controller layer integrates the solution among the models using three components: Monitor, Comm Mgr and Mass Balance.
The Communication layer provides infrastructure to communicate input and output values across models running as separate
processes on a single server or separately on individual servers. The Data Base layer provides storage for the Solution to hold the
results of the integrated and individual model solutions along with Ontology for registering and describing each model’s char-
acteristics and annotations made by the user. The Models layer denotes the ensemble of models, which may be remote or local.
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The Models layer denotes the set of models to be
integrated. These models may each reside on different
servers, remote to the GUI. Or, the models may reside
on a single server, possibly the same server as the GUI,
but may run as individual processes. CytoSolve treats
each model as a module whose model code can be as
simple or as complex as possible. However, what is
important is the format of the inputs and outputs to
and from the model, respectively. Appendix D pro-
vides a diagrammatic representation of a model, its
input and outputs and how these inputs and outputs
are linked with the temporal inputs and outputs of
other models to evaluate a solution.

IMPLEMENTATION

CytoSolve is implemented using open source soft-
ware to reduce expense and to ensure that future work
can be pursued with minimal reliance on proprietary
tools. Figure 4 illustrate the components used at vari-
ous layers of the CytoSolve architecture. At the Pre-
sentation layer, the web-based GUI currently
implemented using the Java language running on
Apache Tomcat,7 can also easily be implemented in
PHP or ASP, for example. The GUI allows a user
multiple ways to run and couple model(s): (1) Execute
a model(s) local to the GUI as multiple processes;
(2) Execute a models remote to the GUI; (3) Execute in
parallel a model locally and multiple models on remote
servers; and (4) Execute all models on remote servers

and couple their results. The Web Services are written
in J2EE.

At the Controller layer, the three components,
Monitor, Comm Mgr and Mass Balance, are pro-
grammed using J2EE. The Controller is executed on a
Pentium 4 CPU 3.00 GHz Dell Workstation with
2 GB of RAM running Windows XP with Service Pack
2. Each component can be multi-threaded and com-
municates using message passing. At the Data Base
layer, Virtual Memory is allocated for the Solution
storage (as detailed in Appendix B) and a Java DB and
ASCII files are used for the Ontology (as described in
Appendix C).

At the Communications layer, IPC were originally
implemented using the Simple Object Access Protocol
(SOAP),23 but for performance reasons have been
rewritten using the Java Native Interface (JNI lib).19

This XML-based messaging format established a
transmission framework for IPC communication via
HTTP. Both SOAP and JNI are vendor-neutral tech-
nologies that provide attractive alternatives earlier
protocols, such as CORBA or DCOM. The Web Ser-
vices Description Language (WSDL)6 supplied a lan-
guage for describing the interface of the web services.

The Models used in the implementation are written
in SBML and were acquired from the BioModels
Database17 which provides access to published, peer-
reviewed, quantitative models of biochemical and cel-
lular systems delivered in SBML and CellML formats.

The CytoSolve architecture uses an interpreter to
enter reaction and specie data relative to the pathway.

FIGURE 4. The implementation of CytoSolve is done using open source tools as indicated at each layer.
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In the current production version, we provide an input
filter only for models coded in SBML. Other input
filters for models stored in other formats can
be incorporated within the architecture, provided the
input filter for that format is developed and tested. In
our earlier internal development efforts, we have pro-
duced prototype input filters for model formats written
in MATLAB and Java. Our development roadmap,
for future production versions looks to release these
and other input filters to support CellML and MML.
Such development may occur by our research team or
through collaboration with the developers of those two
formats.

Fundamentally, CytoSolve treats each individual
pathway as a ‘‘black box’’ to which input concentra-
tions are sent and from which time-evolved outputs are
received. In principle, CytoSolve’s architecture is not
dependent on the internal computational methods e.g.
ODE, Petri Net, Stochastic, etc., for evaluating the
models dynamics, nor the source code formats they are
written. As aforementioned, MATLAB representa-
tions in parallel with SBML ODE solvers have been
tested in earlier versions. The critical issue for inte-
grating the black boxes across different computational
methods is the pre-computational alignment of the
individual pathways. This requires that the species and
the equations be precisely defined such that common
species and common pathways among models are
identified. We are developing automated methods to
do this for pathways expressed in SBML that we
believe can likely be generalized to CellML and MML.
We do not have standard packages to do this with
models written in C and MATLAB, however, for
example. For those cases, the alignment between the
different pathways would have to be done by hand.

The web-based GUI, recently ported from a non-
GUI environment, currently runs on a server through a
web connection to http://www.cytosolve.com. The
browser is cross-platform a design that can be run on
workstations, laptops and even mobile devices such as
the iPhone. The servers which the Models run on is a
Pentium 4 CPU 3.00 GHz Dell Workstation with
2 GB of RAM running Windows XP with Service Pack
2, or a Mac Pro Server with two Intel quad-core pro-
cessors with 4 GB of RAM running OSX10.6 (Snow
Leopard).

The SBML ODE Solver (SOS) library (SOSlib)20 is
used to enable symbolic and numerical analysis of
chemical reaction networks. SOSlib takes as input a file
encoded in the SBML and computes time history of
species concentrations for specified initial conditions
and time steps. In this implementation, the SOSlib was
modified, using the C programming language, to
enable single time-step evaluation. Other solvers
supporting CellML, MML,4 and other pathway

description dialects can be used interchangeably with
SOSlib. Even MATLAB programs have been used.
After the setting of the parameters, the model(s) are
executed and the results are displayed and stored. An
Appendix E has been added which provides the main
steps for using the CytoSolve system. As the web-based
environment is new and developing, documentation,
on-line help, tutorials and video demonstrations are
forthcoming and being updated to provide more
detailed instructions.

COMPUTATIONAL METHODOLOGY

CytoSolve dynamically integrates the computations
of each model M to derive the species concentration
of the integrated model O (derived in Appendix A),
denoted as SO (defined in Appendix B). The flow
chart of the computational methodology is illustrated
in Fig. 5.

The Controller performs initialization of the system
by allocating memory storage for the computed species
concentrations of each model and the integrated model
in Local Vectors, and Global Vector, respectively, as
detailed in Appendix B. During this initialization, the
initial species concentrations, SO,0, are set in the Global
Vector. In addition, CytoSolve during this initializa-
tion performs various types of pre-checks on models
prior to integration.

One pre-check is to ensure coordination of physical
dimensions e.g. conversion of species concentrations to
uniform units, for example, molecules/cell or nM units.
The other pre-check is to ensure coordination of
common species, e.g. conversion of species names
referring to the same species to a uniform name, for
example, ‘‘Ca++’’ or ‘‘Calcium’’. Finally, one other
pre-check is to ensure coordination of common path-
ways, e.g. conversion of reactions referring to the same
reaction to a consistent and common one. For the
coordination of physical dimensions, CytoSolve cur-
rently performs unit checking and unit conversion on
all input parameters. This is done both at the species
level and at the equation level. For the latter two pre-
checks, coordination of species names and pathways,
CytoSolve uses a graph-theoretic approach, based on
reaction-component (species) reachability to identify
duplicate graph (reaction) pathways. A combination of
Uniprot ID’s and sub-string matches are used to
identify common species and duplications to align the
graphs. During pre-checking, the user is alerted on any
inconsistencies across species naming. In that event,
the user can confirm or reject CytoSolve’s identifica-
tion of common species. The user’s changes are
annotated and both the Uniprot ID’s and species
names in the model are updated.

CytoSolve: Scalable Integration of Molecular Pathways 33
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Monitor, which monitors the progress of each
model’s computation, during its initialization, accesses
the initial conditions, SO,0, from the Global Vector, and
sets these as the initial conditions for each model’s
species concentration, SM,0. Control is then passed to
the Comm Mgr which awakens all the models to start
up and become ready to process a time step of calcu-
lation, and then invokes the Monitor.

The Monitor proceeds to invoke all models in par-
allel to execute a time step of calculation using SO,n,

the species concentration values of the integrated
modelO at time step n, as the input to all models. Each

model executes and computes one time step of calcu-
lation on its own Remote Server. Monitor tracks the
progress of each model’s completion. Once a model
completes its computation, the output is stored in its
Local Vector within the Virtual Memory, and the
model then goes to sleep to optimize use of the Remote
Server’s CPU usage. By sleep, we mean that the model
goes dormant until invoked again by the Comm Mgr
to process another time step of calculation. Once all
models have completed their processing for a time step,
the Monitor passes control back to the Comm Mgr,
and the Monitor itself goes to sleep.

FIGURE 5. The flow chart of CytoSolve’s computational methodology.
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Once all models have completed a time step of
calculation, the Comm Mgr invokes Mass Balance to
dynamically couple the computations at time step
n of each Model to evaluate the integrated model
O solution SO. Using the derivation in Appendix B,
the Mass Balance component of the architecture,
using Eq. (1), after each time step, n, calculates local
species concentration changes of each model denoted
as;

XD

i¼1
Sj;i
M;n � Sj;i

M;nþ1

� �
ð1Þ

where SM,n is input to model M containing species
concentration values at time step n; SM,n+1 is output
from model M containing species concentration values
at time step n + 1; i references a model with i = 1 to
D, with D being the total number of models; j refer-
ences a molecular species with j = 1 to C, with C being
the total number of unique molecular species across
the union of all models M. Any one model may only
utilize a subset of those C species; and, n references
time step with n = 0 to N � 1, where N being total
number of time steps; and,

Mass Balance adds these local changes to the inte-
grated model’s species concentration values for the
current time step, SO,n, to compute the species con-
centration, SO,n+1 at the next time step, n + 1, as
denoted in Eq. (2).

Sj
O;nþ1 ¼ Sj

O;n þ
XD

i¼1
Sj;i
M;n � Sj;i

M;nþ1

� �
ð2Þ

where SO,n is the time-evolved solution of the inte-
grated model O at time step n; SO,n+1 is the time-
evolved solution of the integrated model O at time step
n + 1.

NOTE: The Mass Balance component uses the
Ontology (as described in Appendix C), to ensure that
the species identities are correct. For example, if two
different nomenclatures (e.g. Ca++ and CALCIUM)
exist for the same species, and the species are treated as
different, then one species may get depleted while the
other floats at near its original value, which is not
going to give the correct result. The Ontology is
therefore critical in ensuring the species identification
across models is correct.

If the last time step has been computed, the Con-
troller stops, performs a variety of cleanup functions to
release resources, memory, etc., and returns control
back to the GUI; otherwise, the Comm Mgr cycles
again for the next time step. All models, even those
with different time scales, as of now are invoked with a
homogeneous time step. This will be area for future
research as noted in the sub-section ‘‘Adaptive Time

Stepping of the Controller’’ in the ‘‘Discussion and
Conclusions’’ section.

Currently CytoSolve is only concerned with the
concentrations of species changes at each time step,
and has limited its input output stream to these values;
however, the architecture supports transfer of other
attributes, which could be invoked, tracked and coor-
dinated by the Controller.

VALIDATION OF CYTOSOLVE

CytoSolve is validated by comparing the solution it
produces with the one generated by Cell Designer, a
popular tool for building molecular pathway models in
a monolithic manner. As a control, the Epidermal
Growth Factor Receptor (EGFR) model published by
Kholodenko14 is selected for this comparison. Snoep25

have authored the model into the SBML language. The
entire EGFR model, as shown in Fig. 6, is loaded into
Cell Designer and executed on a single computer.

The same entire EGFR model, to test CytoSolve, is
split into four models and distributed on four different
computers as shown in Fig. 7.

Note, in Fig. 7, that species (EGF_EGFR)2-P,
encircled in red, is shared by all four models; however
the species SOS, encircled in green, is shared only
between two models. CytoSolve and Cell Designer are
run for a total of 10 s in simulation time.

RESULTS

CytoSolve and Cell Designer produce near exact
results as shown for two example species in Fig. 8.

The results in Table 1, column 1, provide the per-
cent (%) in difference of the solutions calculated using
CytoSolve and Cell Designer. The Solution Difference
is calculated as an average of the percent (%) differ-
ence for each species, over five test runs. None of the
solutions diverged. The small differences are a result of
the selection of the time step, which presents some
important and subtle issues. The selection of the time
step is discussed in the sub-section entitled ‘‘Optimi-
zation of Time Step Selection’’ in the ‘‘Discussion and
Conclusions’’.

Column 2 and Column 3 in Table 1 provide the
compute times for using CytoSolve and Cell Designer,
respectively. CytoSolve’s compute time is roughly
twice that of Cell Designer. The additional compute
time is primarily due to network latency required for
CytoSolve’s Controller to contact and receive infor-
mation back from each model running on different
Remote Servers. Cell Designer has no network latency
since each model runs on a single computer.
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DISCUSSION AND CONCLUSIONS

This paper has introduced CytoSolve, a new com-
putational environment for integrating biomolecular
pathway models. The initial results from the EGFR
example has demonstrated that CytoSolve can serve as
an alternative to the monolithic approaches, such as
Cell Designer. Most important is CytoSolve’s core
feature for integrating multiple pathway models, which
can be distributed across multiple computing systems
and solved in parallel, obviating the need to merge
models into one system, running on a single computer.
In the EGFR example, this means that if changes are
made to Model 1, in Fig. 7, then CytoSolve simply has
to be executed to evaluate a new solution; however,
Cell Designer will require that changes to be manually
merged back into the whole model and then executed.
So in practicality, if each Model (1, 2, 3 and 4) is each
owned by different authors, who make changes,
then constant maintenance will be needed using Cell
Designer to ensure the model is up to date.

The purpose of CytoSolve is to offer a platform for
building large-scale models by integrating smaller
models. Clearly, modeling the whole cell from hun-
dreds of sub-models, each of which is owned by vari-
ous authors (each making changes to their models)
using the monolithic approach is not scalable. Cyto-
Solve’s dynamic messaging approach offers a scalable
alternative since the environment is opaque (treats
each model as a black box) support for both public and
proprietary models is extensible to support heteroge-
neous source code formats, and finally supports
localized integration, a user can initiate integration
from their own local environment.

From CytoSolve’s viewpoint a sub-model or module
is a ‘‘black box’’. We are agnostic to the meaning of
that module and its biological context, and CytoSolve
will simply integrate any set of modules. The user can
of course intervene and decide which species are
duplicates and provide context through the user
interface. CytoSolve’s requirement, therefore, in this
aspect, is minimal: each sub-model or module must
accept as input a vector of species concentrations at a
particular time step, and provide an output vector of
species concentrations at the next time step.

Two other systems, CellAK and Cellulat, also offer
an alternative to the monolithic approach.9,28 How-
ever, both of them use a static messaging approach. In
the static messaging approach, the models remain
independent programs and do not affect each other as
they are executing. Any one model accepts as input a
dataset and executes to completion to generate an
output dataset. That output dataset is then given to
another model, which that model uses it as input and
also executes through to completion. This process can
then be continued with other models, and they can be
executed concurrently if there are no dependencies
between their datasets.

CellAK and Cellulat treat each biological pathway
model as a single entity (or agent) obeying its own pre-
defined rules and reacting to its environment and
neighboring agents accordingly. These two approaches
offers many positive ways for integrating biomolecular
pathway models; however, a non-specialist has a very
high learning curve in preparing a set of biological
pathway models for use with this approach because the
integrator has to understand deeply the biology and

FIGURE 6. Complete EGFR model of Kholodenko implemented in Cell Designer on a single computer.
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architecture behind them. Furthermore these tools do
not use ordinary differential equations to determine the
time evolution of cellular behavior, since differential
equations find it difficult to model directed or local
diffusion processes and sub-cellular compartmentali-
zation and they lack the ability to deal with non-
equilibrium solutions. Most common biological mod-
eling systems use traditional ODEs to simulate the
models. Finally these two approaches are not designed
to perform simulations on a distributed computational
environment, which CytoSolve offers.

The implementation of CytoSolve to enable dis-
tributed and parallel computations across an ensemble
of models also presents many new and unique chal-
lenges. Such challenges include the need to advance
and optimise elements of the architecture, which par-
ticularly becomes relevant in a software implementa-
tion, which is a dynamic work in progress. These
challenges have become important areas for our
ongoing research, some of which are noteworthy to
discuss in this manuscript.

Optimization of Time Step Selection

CytoSolve’s Controller, for example, ensures mass
conversation of all species in the integrated molecular
network. To ensure thermodynamic feasibility, how-
ever, the detailed balance constraint, which demands
that at thermodynamic equilibrium all fluxes vanish
must be imposed during computational integration by
the Controller.8 This is a subtle but important issue
that CytoSolve is aware of, which becomes apparent
during the Controller’s evaluation of a common spe-
cies concentration, across a set of models. To discuss
by example, consider the case of two models, both with
large rate constants, which share a common species,
that are being communicated through the Controller.
In this case, detailed balance demands that the asso-
ciated species concentrations balance each other off.
However, if the two opposing reactions do not com-
municate, the computational problems become far
more difficult. Whereas, if the two competing rates net
to zero the solution is stable and expressible as a simple

FIGURE 7. Complete EGFR model of Kholodenko split on four remote servers for CytoSolve solving.
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ratio of concentrations. Segmenting the two competing
rates into two separate independent pathways requires
high accuracy calculations and a very small time step
for the finite difference calculation to achieve a stable
equilibrium meeting the requirements of detailed bal-
ance, one that will always be slightly displaced from
the ‘‘true’’ equilibrium solution. We recognize that the
displacement error is probably infinitesimal compared
to the probable error in the reaction rates used in the
calculation, but it is nonetheless a finite calculable
error. The accurate and optimal selection of the time
step during integration must be small to keep the error
of species concentration, at each time step to an
acceptable level. We are aware of this problem and are
currently examining efficient ways to select time steps,
by sharing information across pathways.

Spatial Scale Variation

At the present time, CytoSolve supports only com-
putational models that represent one single pool of

material or several distinct pools connected with spe-
cific transport relations. We have not considered
changes in concentrations on a continuous spatial
scale. We believe that the architecture, based on its
modular approach and support for multiple compart-
ments, can support varying spatial scales. However,
more testing will have to be performed to understand
the computation times required to fully support such
spatial variations. The description language FieldML
is available to support this process.

Adaptive Time Stepping of the Controller

All models are currently computed using a single
adaptive time step, which is taken to be the fastest time
step among the ensemble of models. This is not opti-
mal, as some component models may be varying more
slowly than others. Additional effort is required to
implement intelligent adaptive time stepping at the
Controller level to observe the time scales of different
models and invoke them only when necessary. Such an
effort will result in improved computation time per-
formance.

Stiffness of ODE Systems

Stiffness is a common problem of ODE systems
where integration of molecular pathway models may
involve processes at different time scales. While adap-
tive time steps at the Controller level (during integra-
tion) will help towards addressing this problem,
control of the ODE solver for simulation of sub-
models will also be necessary. The current method
within CytoSolve is to choose the time constant suffi-
ciently small that additional decreases in the time step
do not lead to different results. We are currently pur-
suing a more sophisticated algorithm that accounts for
the different stiffness of different pathways that are
being merged. This is complicated by the fact that
some pathways assume a particular molecular com-
ponent has a constant value whereas that component
has production or removal within a parallel pathway.
These interdependencies couple the time steps in novel
ways. Additional work is underway to completely
resolve this issue.

Implementation and Integration with Emerging Ontolo-
gies

The CytoSolve PID has support for integrating
other ontologies such as MIRIAM; however, future
research needs to be done to fully integrate MIRIAM
and other such ontologies. This effort will enable
CytoSolve to support many more model formats with
greater ease, leveraging standards that the systems

FIGURE 8. Comparison of results from CytoSolve and Cell
Designer for two species. (a) Compares values of the EGF-
EGFR species. (b) Compares values of EGF concentration.

TABLE 1. Comparison of cytosolve and cell designer.

Solution

Difference

(%)

CytoSolve

compute time

(ms)

Cell Designer

compute time

(ms)

0.026 5932 3217

Column 1 compares the % difference in solutions. Column 2 and

column 3 compare the compute time differences.
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biology community globally accepts. Future work will
include a more sophisticated native Ontology to
manage nomenclature and species identification across
all individual biological pathway models to be inte-
grated by means of the web application, and auto-
mated searching for related biological pathways.

CytoSolve is now available at http://www.cytosolve.
com as on-line web computational resource. We are
providing access to source code on an as request basis.
In such cases, we assume that the receivers of the
source code are familiar with the coding language and
are capable of independently updating and maintain-
ing their revisions. The user interface of the CytoSolve
system, as an ongoing research effort, continues to
evolve based on feedback. On-line documentation,
context-based help, tutorials, and video presentations
are being added and will be updated and made avail-
able on an ongoing basis. Appendix E provides the
important steps for using CytoSolve.

APPENDIX A

Theoretical Framework and Conditions for Integrating
Multiple Molecular Pathway Models

This Appendix provides the theoretical framework
and the conditions upon which integrating an ensemble
of molecular pathway models, {Mi} (for i = 1 to D)
yields the dynamically integrated solutionO is possible.

This theoretical framework is based on the Discrete
EVent system Specification (DEVS) as introduced by
Ziegler for a rigorous basis for discrete-event modeling
and simulation.27,29 DEVS allows for the description
of system behavior at two levels. At the lower level, an
atomic DEVS describes the autonomous behavior of a
discrete-event system as a sequence of deterministic
transitions between sequential states as well as how it
reacts to external input events and how it generates
output events; and, at the higher level, a coupled DEVS
describes a system as a network of coupled compo-
nents.27

The integrated model O, composed of an ensemble
of molecular pathway models, using the DEVS
framework is the same as a coupled DEVS29 and is
described as:

coupled DEVS � O �<Xo;Yo;D; fMig> ðA1Þ

As a coupled DEVS may have coupled DEVS
components or integrated molecular models may have
integrated molecular models, hierarchical modeling is
supported using this framework.27 Xo is the set of
allowed inputs to the integrated or coupled model
O. Yo is the set of allowed outputs of the integrated

model O. D is a set of unique component references
(names); in this case, it is the list of the names or ref-
erences to each molecular pathway model. The set of
components is the ensemble of molecular pathway
models is {Mi|i 2 D} and is defined using the atomic
DEVS formalism as:

Mi ¼<Qi; ta;i dint;i; Xi; dext;i;Yi; ki>; 8 2 D ðA2Þ

In Eq. (A1), the time base T is continuous (=<) and
is not mentioned explicitly. The state set Qi is the set of
admissible sequential states: the DEVS dynamics con-
sists of an ordered sequence of states from Q for each
model i within the ensemble. Typically, Qi will be a
structured set (a product set) Qi = 9j=1

p Qi,j. This for-
malizes the multiple (p) concurrent parts of a system.

The time the system remains in a sequential
state before making a transition to the next sequential
state is modeled by the time advance function:
ta;i : Qi ! <þ0;1; denoting that ta,i be non-negative
numbers. This time advance function can be used to
define the time step of a particular model.

The internal transition function for any model i,
dint;i : Qi ! Qi is used to describe the transition from
one state to the next sequential state and describes the
behaviour of a finite state automaton, where the ta,i
adds the progression of time, or during computation
the advance in time, by the time step.

The input to any model i is denoted as Xi. This input
will be a structured set (a product set) X ¼ �m

j¼1Xi;j:
This formalizes multiple (m) input ports. Each port is
identified by its unique index j. For each molecular
model i, each j denotes a particular species of the
molecular model.

The external transition function dext,i allows for the
description of a large class of behaviors typically found
in discrete-event models (including synchronization,
preemption, suspension, and re-activation).

The output from any model i is denoted as Yi. This
output will be a structured set (a product set)
Y ¼ �l

j¼1Yi;j: This formalizes multiple (l) output ports.
Each port is identified by its unique index j, with each
j denoting a particular species of the molecular model i.

The output function ki : Qi ! Yi [ ;f g maps the
internal state onto the output Yi. A model i only
generates output events at the time of an internal
transition. At that time, the state before the transition
is used as input to ki. For a particular model i, ki
represents the internal mathematical model, the ODE’s
for that particular model i, for example.

Based on the DEVS formalism, we now seek to
formulate a mathematical description of the dynami-
cally integrated model O, as described in Eq. (A1), as a
function of all possible states of molecular species at all
times. To perform this formulation, from the DEV
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formalism, we allow Xo and Yo, the input and output
to the integrated model, respectively to be mapped as
follows:

xr � Xo; and x � Yo

and the total number of input and output ports, m and
l, is set to C, the total number of species within the
integrated model such that m = l = C. The input, xr
is a vector of the species concentrations of species at
time t = n, the state before the reaction occurs

xr ¼ xr1; xr2; . . . ; xrCð ÞT ðA3Þ

The output, x is a vector of the species concentra-
tions at time t = n + 1, after the reaction occurs or
after the execution of the internal model calculation k
(per the DEVS formalism).

x ¼ x1; x2; . . . ; xCð Þ ðA4Þ

The internal model calculation k is denoted by
wr(xr) which represents the propensity of the chemical
reaction, as illustrated below:

xr �!
wr xrð Þ

x ðA5Þ

The following assumptions are made on the system
(e.g. cell or compartment) where such a reaction takes
place:

1. The system is assumed to be well-mixed. Well-mixed
means that a sufficiently long-time between reaction
collisions takes place to ensure that each pair of
molecules is equally likely to be the next to collide.
This also means that the concentration of each spe-
cies is high and transport essentially instantaneous.

2. The progress of the system only depends on previ-
ous state (e.g. Markov process).

3. Between cells and compartments, transport is
slower and associated with an observable rate.

Based on the above assumptions, p(x, t), the prob-
ability at time t that the species are in state x can be
represented as:

dpðx; tÞ
dt

¼
XR

r¼1
wrðxrÞpðxr; tÞ �

XR

r¼1
wrðxÞpðx; tÞ ðA6Þ

where p(xr, t) is the probability of state change to x;
wr(x) is the propensity of no reaction occurring

Equation (A6) is known as the classic Chemical
Master Equation (CME).2 For integrating an ensemble
of molecular pathway models, {Mi}, the above formu-
lation is valid as long as the following conditions hold:

(A) Each molecular pathway model can be treated as a
black box as long as we assume that system is well-
mixed

(B) The inputs and outputs for each biological path-
way model represent the state at times n and
n + 1, respectively.

(C) Changes in localization are represented by com-
partments and species are defined by their com-
partments, e.g. Ca++ within the Golgi or Ca++

in the Cytosol, or Ca++ in the extracellular fluid
(D) Species canmove within these compartments freely
(E) Species can inhabit one or more compartments,

but the laws governing the transition from one
location to another must be specified.

APPENDIX B

Structure of the Solution Storage and Formulation
of the Integrated Solution

This Appendix provides the internal details of what
is contained in the Solution Store and the Mass Bal-
ance Formulation. There are two key items in this
Solution Store: the Local Vector and Global Vector.

Local Vector

As previously stated a model M is treated as a black
box. It receives an input, performs a calculation and
sends an output. The input of a model, M, is a vector
containing the concentration values of the all molec-
ular species at time step n and is formally denoted as:

Sj;i
M;n ðB1Þ

where i references a model with i = 1 to D, with
D being the total number of models; j references a
molecular species with j = 1 to C, with C being the
total number of unique molecular species across the
union of allmodelsM. Any one model may only utilize
a subset of those C species; and, n references the time
step with n = 0 to N � 1, where N being total number
of time steps.

The output of a model, M, is a vector containing the
concentration values of the all molecular species at
time step n + 1 and is formally denoted as:

The output of a model, M, is a vector containing the
concentration values of the all molecular species at
time step n + 1 and is formally denoted as:

Sj;i
M;nþ1 ðB2Þ

Based on (B1) and (B2), we define the Local Vector,
for a model i to be the computational store of the
species concentration values across all the molecular
species (i = 1 to C), across all time steps (n = 0 to
N � 1). Figure 9a illustrates the Local Vectors for
D number of models. Each row of the Local Vector
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contains a species concentration value, denote by [],
for each species, used in that Model, i. If a Model does
not use one of the species, the value will be zero for
that species.

Global Vector

CytoSolve’s goal is to integrate or couple the com-
putations of all the Models and dynamically compute
the integrated model, O, as previously defined in
Appendix A. The integrated solution forO is denoted as:

Sj
O;n ðB3Þ

where as before j references a molecular species with
j = 1 to C, with C being the total number of unique
molecular species across the union of all models M;
and, n references the time step with n = 0 to N � 1,
where N being total number of time steps.

The integrated solution is stored as shown in
Fig. 9b. Each row of the Global Vector is computed
using the formulation of the integrated solution.

Formulation of the Integrated Solution

This formulation is used to compute the integrated
solution denoted in (B3). At each time step, each
Model will have receive an input SM,n and produce an
output SM,n+1. Since mass must be conserved, for each
species j, the formulation calculates the production and
consumption of species j, across all Models by:

XD

i¼1
ðSj;i

M;n � Sj;i
M;nþ1Þ ðB4Þ

The integrated solution, at each time step n, for each
species j, is evaluated as:

Sj
O;nþ1 ¼ Sj

O;n þ
XD

i¼1
Sj;i
M;n � Sj;i

M;nþ1

� �
ðB5Þ

At n = 0, the initial conditions are such that for all
species:

Sj
M;0 ¼ Sj

O;0 ðB6Þ

At each time step n, the Controller computes the
Local Vectors for each Model. Equation (B5) is then
used to compute the Global Vector at each time step
n for each species j.

APPENDIX C

Structure of the Ontology Store

CytoSolve allows new models to be added to an
ensemble through its ontology. Currently, the ontology
is rudimentary using an ASCII file system. One set of
files, in a Pathway Interface Document (PID) format,
stores data on the specifics of each model. Another file
contains a list of Unique Identifiers for resolving species
name conflicts across models. During model registra-
tion, a PID file is created for each model. The format
of the PID is show in Table 2.

In Fig. 10 is a picture of an example PID file for a
model called Model 1. The Loc is the location ID
denoting which compartments the species appears in
the cell. The species STAT1, for example, can appear
in two locations. Loc ID ‘‘1’’ may denote the nucleus
and Loc ID ‘‘2’’ may denote the mitochondrion, etc.
Species need to be distinguished by their location. The
MIRIAM standard was published which serves to
provide a framework for model developers to provide a
minimal set of information for defining biochemical
models.18 Our basic ontology can take advantage of
this emerging standard. Each model when it registers
itself to be part of an ensemble creates a PID file.

There are some interesting challenges that can take
place during registration of two different models. One

FIGURE 9. Local vectors and global vector solution store. There are D local vectors and one global vector.
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example is if two species names are assigned the same
name but mean something different or two species
names are assigned different names but mean the same
thing. The creators of SBMLMerge24 have identified
this as a problem in the implementation of their tool to
support semi-automatic source code merging of SBML
model files. CytoSolve, includes as as a part of the
basic ontology, a file containing a list of Unique
Identifiers for mapping Unique Identifier # with a
Species Name. This file is like a thesaurus. An example
is shown in Table 3.

Let us consider the case where two models have two
different names for the exact same species. For exam-
ple, suppose one model refers to a species called
‘‘Calcium’’ and another model refers to a species called
‘‘Ca+’’. In Table 3, during registration, both of these
species will point to Unique Identifier # 11231. The

system will automatically resolve those species to be
the same species internally. Prior to registering a new
model, one can decide to use existing identifiers and
names or add their own identifiers and name to the
ontology. For example, let us say a developer has a
species called ‘‘Cal’’ and that also refers to the same
species as ‘‘Calcium’’ or ‘‘Ca+’’, then the developer
can update the ontology so 11231 also has an entry for
‘‘Cal’’ or they can adjust their species name to one of
the existing synonyms.

Alternatively, let us consider the case of two models
where the species name ‘‘CALCIUM’’ is assigned the
same name in each model. When any model registers
itself with the system, the PID file for that model is
compared with other existing PID files and the Unique
Identifier list. If CALCIUM is used in another model,
then the system indicates that CALCIUM is currently
being used by two other models, along with the Unique
Identifier # for CALCIUM. If the author of that
model believes that CALCIUM in fact refers to the
same species, then no changes are required. If the
model’s author believes that the species name should
be different, then the onus is on the author to create a
new Unique Identifier # and Species Name and
resubmit.

The basic ontology of CytoSolve provides the
Controller the basic knowledge to integrate species
values across an ensemble of models. Currently, PID

TABLE 2. Basic ontology PID format.

Name of variable Meaning

ModelName The unique name of the model

ModelURL The location on the Internet where the model executable code resides

Species The number of species in the model

Species 1, Loc The name of the first species (as used in the Model) and its location ID

Species 2, Loc The name of the second species (as used in the Model) and its location ID.

… …
Species n, Loc The name of the nth species (as used in the Model) and its location ID

FIGURE 10. PID File example for storing CytoSolve’s representation of simple biological pathway model.

TABLE 3. Unique Identifier file example.

Unique Identifier # Synonym

11231 Ca

11231 Calcium

11231 Ca+

11245 SOCS

… …
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file creation and the Unique Identifier list maintenance
and update is done manually; however, an automated
process is under development to enable automatic
comparison across models of species and reactions.

APPENDIX D

Sample Example of a Model and Input and Output
Format for a Model

The purpose of this Appendix is to provide an
example of a simple model, how CytoSolve interacts
with the model, and how the model interacts with
other models. Figure 11a shows a molecular pathway.
This pathway contains five species with each species
coded in a particular color. Each species interacts with
other species as denoted by the arrows. Figure 11b
shows the equivalent molecular pathway model of the
same pathway. CytoSolve treats the model as a black
box, concerned with its inputs and outputs. There are
five (5) inputs to the model and five (5) outputs from
the model, associated with the five species as indicated
by color in Fig. 11b. The input to the model is the
values of the species concentration at time step n and
the output from the model is the values of the species
concentration at time step n + 1.

The code within the ‘‘black box’’ of the model is not
shielded even from CytoSolve. Thus, unlike monolithic
systems, where model codes have to be linked together,
with CytoSolve, there is no linking of model codes.
Rather, at each time step, a model receives its inputs,
executes, and returns its outputs. In Fig. 11b, the
model format is in SBML, and the model’s mathe-
matical approach is to use ODE’s. CytoSolve however
is agnostic to the internal representation of the model.
CytoSolve’s Controller processes the input and output

streams across all models, as discussed in the
‘‘Computational Methodology’’ section to link and
dynamically integrate solutions across all models
to yield solutions for temporal changes in species
concentrations.

APPENDIX E

Using CytoSolve

The first two basic requirements for use of the sys-
tem are registering and logging in. There are three (3)
main use cases of CytoSolve: Case I—Remote Mode;
Case II—Local Mode; and, Case III—Combined
Mode. During Remote Mode, the user can select
models loaded on CytoSolve’s remote servers, and then
integrate them. During Local Mode, the user simply
downloads the local solver and combines and runs
models resident on their local computer. During
Combined Mode, the user can combine models resi-
dent on their local machines and with models resident
on CytoSolve’s remote servers.

The initial steps in using CytoSolve for each mode
vary. The initial steps for each mode are outlined in the
sub-section ‘‘Initial Steps Across All Modes’’. There-
after, the usage steps are common across all modes as
outlined in the sub-section ‘‘Common Steps Across
Modes’’.

Initial Steps Across All Modes

I. Remote Model Case

� Step 1—Select Remote Solving.
� Step 2—Select Models to be Integrated. Iteratively,

using the drop-down, individual models, which have

FIGURE 11. Simple example of a molecular pathway and model in CytoSolve. (a) Molecular pathway with five species and reac-
tions. (b) Molecular pathway model with five inputs and five outputs of species concentrations at t = n and t = n + 1, respectively.
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been pre-registered and loaded onto the remote
CytoSolve server(s) are selected.

To make models accessible for use by others, one
simply loads up themodel from the user interface tomake
it available for others to ‘‘see’’ and use. To create the
original model itself, for example in SMBL, tools such as
Cell Designer, MATLAB and others can be used.

II. Local Model Case

� Step 1—Select Local Solving.
� Step 2—Download the Local Solver. Currently we

support the SBML ODE solver, which can be
downloaded to PC or MAC. Once the solver is
downloaded, a README file provides instructions
on how to install and initiate and run the solver.
� Step 3—Select the Models to Run. Once the local

solver is installed, one simply browses and selects the
model(s) that one wishes to run and integrate
locally.

III. Combined Mode Case
(Here it is assumed that the user has set up the
Local Solver).

� Step 1—Select Combined Solving.
� Step 2—Select Models to be Integrated. Iteratively,

using the drop-down, select individual models,
which have been pre-registered and loaded onto
the remote CytoSolve server(s) as well as the local
models, which will appear on the drop down list.

Note: In this drop down list, CytoSolve lists models
from the entire Biomodels.Net repository as well as any
other models loaded by users of the system. If a local
user wishes to make their model available for others to
‘‘see’’, the user can simply upload their model into the
CytoSolve system by entering the Remote Mode and
doing so. Within the current web-based GUI, we are
porting features from our non-web interface to enable
users to simply register their local models and make
CytoSolve aware of the model on their local personal
computer, so no upload is necessary. However, some
important network security issues need to be addressed,
before that feature is released to the public, since
CytoSolve will have direct access to the user’s local
machine through the Web, in such cases.

Common Steps Across Modes

Step A—Perform Pre-Checks (Align Models). Align
models by executing pre-checks and determine
duplicate species and reactions. User may be alerted
to resolve species naming conflicts. These naming

conflicts can be resolved manually or through auto
alignment.

Step B—Set Initial Conditions. Set the initial condi-
tions for all species, spanning all models to be
integrated.

Step C—Execute. CytoSolve performs dynamic inte-
gration of the models selected.

Step D—Display Data. Results from the integration
can be viewed as graphs or the data, alternatively,
can be downloaded for local analysis.
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