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Abstract Mental stress modifies both cholinergic neuro-
transmission and alternative splicing in the brain, via
incompletely understood mechanisms. Here, we report that
stress changes brain microRNA (miR) expression and that
some of these stress-regulated miRs regulate alternative
splicing. Acute and chronic immobilization stress differen-
tially altered the expression of numerous miRs in two
stress-responsive regions of the rat brain, the hippocampal
CA1 region and the central nucleus of the amygdala. miR-
134 and miR-183 levels both increased in the amygdala
following acute stress, compared to unstressed controls.
Chronic stress decreased miR-134 levels, whereas miR-183
remained unchanged in both the amygdala and CA1.
Importantly, miR-134 and miR-183 share a common
predicted mRNA target, encoding the splicing factor

SC35. Stress was previously shown to upregulate SC35,
which promotes the alternative splicing of acetylcholines-
terase (AChE) from the synapse-associated isoform
AChE-S to the, normally rare, soluble AChE-R protein.
Knockdown of miR-183 expression increased SC35
protein levels in vitro, whereas overexpression of miR-
183 reduced SC35 protein levels, suggesting a physiolog-
ical role for miR-183 regulation under stress. We show
stress-induced changes in miR-183 and miR-134 and
suggest that, by regulating splicing factors and their
targets, these changes modify both alternative splicing
and cholinergic neurotransmission in the stressed brain.
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Introduction

Mammalian psychological stress is known to induce
prominent changes in neuronal activity and gene regulation
across multiple brain regions (McEwen 2007). Acute and
chronic stress both lead to the remodeling of dendrites in
the hippocampus (McEwen 1999), which controls learning
functions via establishing spatial, episodic, and contextual
memory formation (Kenney and Gould 2008; Otto and
Eichenbaum 1992). Specifically, in the CA1 region of the
hippocampus, both neurons and glia are affected by mental
stress (Espinosa-Oliva et al. 2009; Hirata et al. 2009). In the
amygdala, stress reactions impact emotion, addiction, fear,
and anxiety (Vyas et al. 2002; Walker and Davis 2008).
Chronic stress also increases aggression, likely to reflect
hyperactivity of the amygdala (Wood et al. 2003). At the
physiological level, cholinergic neurotransmission is altered
under stress (Kaufer et al. 1998; Soreq and Seidman 2001).
These stress-induced changes are mostly attributed to the
combinatorial regulation of many genes’ altered transcrip-
tion levels (Anguelova et al. 2000). However, the contri-
bution of posttranscriptional regulation mechanisms to
these stress-associated responses is increasingly acknowl-
edged (Battaglia and Ogliari 2005; Gattoni et al. 1996;
Meshorer et al. 2005). One such mechanism is the production
of multiple proteins with divergent or even opposite
functions from a single transcript via alternative splicing,
which accounts for much of the proteome's flexibility
(Stamm et al. 2005). A case in point is the stress-induced
alternative splicing of the primary ACh-hydrolyzing enzyme
acetylcholinesterase (AChE), which modifies cholinergic
neurotransmission (Meshorer and Soreq 2006) and affects
neuronal processes in a pathway involving the splicing
factors SC35 and ASF/SF2 (Meshorer et al. 2005). However,
the molecular mechanism(s) underlying the apparent rela-
tionship between stress, alternative splicing, and cholinergic
neurotransmission remain incompletely understood.

An important posttranscriptional mechanism for gene
regulation involves microRNAs (miRs). miRs are 20–28-
nucleotide noncoding RNAs encoded in the genomes of
plants and animals, exerting translational repression and/or
degradation of target mRNAs via complementary binding
to the 3′ untranslated region (UTR; Maniataki and
Mourelatos 2005). miR levels vary across cell type, tissue,
and developmental stages (Baek et al. 2008; Liang et al.
2007; Plasterk 2006; Sood et al. 2006). Each miR targets
multiple mRNAs (Krek et al. 2005; Lewis et al. 2005),
which in some cases code for proteins participating in the
same signaling pathway (Li et al. 2007). Thus, both the
overall profile of miR expression and the expression levels
of particular key miRs impact diverse biological processes
(Chen et al. 2004; He et al. 2005; Kluiver et al. 2007;
Laneve et al. 2007; Li et al. 2007; Thai et al. 2007).

miR-18 and miR-124 were recently reported to regulate
glucocorticoid receptors, suggesting involvement in a variety
of systemic stress responses (Vreugdenhil et al. 2009).
However, the mechanistic involvement of miRs at large in
psychological stress remains unknown. We predicted that
miR-mediated regulation contributes to the yet incompletely
understood link(s) between the molecular and the physio-
logical reactions of particular brain regions to psychological
stress and more specifically to the regulation of alternative
splicing. To test for miR involvement in governing the
region-specific stress-induced changes in alternative splicing,
we studied the expression profiles of miRs in the hippocam-
pal CA1 and the central amygdala brain regions in stressed
and control rats and challenged the relevance of observed
changes by manipulating miR-183 levels in cultured cells.

Materials and Methods

Immobilization Stress Adult male rats (Charles River;
200–225 g) were subjected to a single 4-h session of
immobilization stress (acute stress group), 4 h of complete
immobilization stress per day for 14 days (chronic stress
group), or brief daily handling (no-stress group). Twenty-
four hours after the last stress or handling session, the
animals were sacrificed, and tissues were carefully
dissected, flash-frozen, and stored at −80°C. RNA was
then purified using the mirVana kit (Ambion), which
preserves short RNAs, from the dissected central amyg-
dala and hippocampus CA1 region. For each brain region
in each of the three groups, pooled samples were
generated from the RNA of three to four rats.

Spotted Array Methods Spotted array methods were adap-
ted from Ben-Ari et al. (2006). The mirVana oligo set
(Ambion, Austin, TX, USA; Cat. Num. 1564V1) was used
to construct an in-house array with >200 spotted probes
complementary to known human and mouse miRs. Dye-
swapping tests served to exclude dye-specific labeling
differences (Dombkowski et al. 2004). Labeling used the
CyDye reactive dye pack (Amersham, NSW, Australia), as
instructed 2 dye-swapped arrays were used for every
comparison, each with at least 6 replicate spots per miRNA
probe. Hybridization was performed in chambers (Corning,
NY, USA) for 15 h at 64°C. Scanning used an Affymetrix
428 Array Scanner at 532 and 650 nm, controlled by the
“Jaguar” software (Affymetrix, CA, USA), and results were
exported to the “Imagene” program (BioDiscovery Inc.,
CA, USA) for quantification. Data normalization, exclusion
of unreliable spots, and combination of the information
from all slides were performed using the Normalize Suite
(Beheshti et al. 2003). Significantly altered transcripts (with
a p value of the sign-test smaller than 0.05), which were not
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disqualified due to any quality parameter, were identified
by setting an arbitrary threshold.

Cell Culture Chinese hamster ovary (CHO) cells were
grown in 5-ml flasks in Dulbecco’s modified Eagle’s
medium (Biological Industries, Beit Haemek, Israel)
supplemented with 10% fetal bovine serum and 2 mML-
glutamine (Biological Industries). Transfection of pre-miR-
183 and anti-miR-183 oligonucleotides (Ambion) was
performed using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) at 80–90% confluence. For each transfection
sample, 3 μg of oligonucleotide or plasmid and the
lipofectamine reagent were both diluted in 0.25–1 ml of
unsupplemented growth medium. After 5 min, the diluted
oligonucleotide and lipofectamine were combined, incubat-
ed for 20 min, and added to the cells. Medium was replaced
at 6 h, and cells were harvested 24 h posttransfection. A
scrambled sequence oligonucleotide and lipofectamine
treatment alone served as negative controls; a green
fluorescent protein (GFP) expression vector served to assay
transfection efficiency.

Quantitative RT-PCR Total RNA including transcripts that
are 200 bases and smaller was extracted using the mirVana
(Ambion, Austin, TX, USA) and the miRNeasy (QIAGEN)
isolation kits from cultured cell samples. Contaminating
DNA was removed with DNA-free (Ambion). RNA
concentration was determined using the NanoDrop
ND-1000 instrument (NanoDrop Technologies, Wilming-

ton, DE, USA). Reverse transcription (RT) of miRs was
performed using SuperScript III First-Strand Synthesis
Systems kit reagents for RT-polymerase chain reaction
(PCR; Invitrogen) as detailed elsewhere (Raymond et al.
2005). Primer extension quantitative PCR (QPCR) was
conducted as previously described (Raymond et al. 2005)
using Power SYBR Green PCR Master Mix (Applied
Biosystems), LNA-modified forward primer, and a univer-
sal reverse primer and amplified using the ABI-7900HT
instrument (Applied Biosystems) equipped with dedicated
software (ver. 2). Triplicate values of each treatment were
normalized to β-actin mRNA, 5S rRNA, or the U6 small
RNA. Absolute quantification of miR levels was performed
using standards containing known dilutions of a commer-
cial pre-miR-183 (Ambion). mRNA RT and QPCR were
performed as previously described (Gilboa-Geffen et al.
2007). Triplicate values of each sample were normalized to
β-actin or GAPDH mRNA.

Immunoblots These were performed as previously described
(Berson et al. 2008) using mouse monoclonal antibodies
(Zymed 339400) against arginine–serine-rich (SR) proteins
and mouse monoclonal antibodies (SC-32293) targeted to
α-tubulin.

Statistics Student's T test, the Kolmogorov–Smirnov two-
sample test, and the nonparametric Wilcoxon test were
employed for defining the significance of differences
between analyzed groups. p values<0.05 were considered

Table 1 miRs with a mean LR change >0.25 in absolute value (p<0.05) 24 h after acute or chronic immobilization stress in rats, sorted by brain
region and stress regimen (left to right)

miRs with established brain or stress-related functions are shown in italics. miR-1 targets the nAChR (Simon et al. 2008); miR-134 regulates
dendritic spine development (Schratt et al. 2006); miR-132 and miR-182* regulate AChE levels (Shaked et al., submitted). miR-17-5p (Hebert et
al. 2009) and miR-124 (Makeyev et al. 2007) control neuronal development and differentiation

J Mol Neurosci (2010) 40:47–55 49



significant. Hierarchical clustering of array data was
performed using MeV rev.4 software (Saeed et al. 2003)
for Mac OS X, with Euclidian metrics and default
parameters.

Results

Amygdala and Hippocampus Display Distinct
Stress-Induced Changes in miR Profiles Following Acute
or Chronic Stress

To test if stress-responsive brain regions display altered
miR profiles following psychological stress, miR-specific
spotted arrays were hybridized with short RNAs from the
central amygdala or the CA1 region of the hippocampus of
rats subjected to acute or chronic stress or from the
corresponding regions of nonstressed controls. Several
miRs appeared to be differentially regulated in the stress-
responsive brain regions by acute and chronic stress
(Table 1). In both regions, we observed, more decreases
than increases in miR levels under chronic stress (Table 1),
possibly indicating a tendency of upregulated expression
of the target mRNAs of these miRs under stress.
Additionally, chronic stress resulted in numerically larger
changes than acute stress in both brain regions. In the
central amygdala, ten different miRs were modified
(upregulated or downregulated) under acute stress, as
compared to 28 following chronic stress, whereas the
hippocampal CA1 region showed 16 and 22 modified
miRs after acute and chronic stress, respectively. More-
over, the expression profiles of stress-responsive miRs
were different in the analyzed regions, so that there was
very limited overlap between miRs modified in each of
these regions under acute and chronic stress. For example,
in the central amygdala, miR Let-7a-1 was the only miR
affected by both acute and chronic stress, whereas, in the
hippocampal CA1 region, miR-376b and miR-208 both
increased under either acute or chronic stress whereas
miR-9-1 decreased in both these conditions. All of the
other changes were unique to either acute or chronic stress
and particular to the analyzed brain regions.

Clustering analysis of rat central amygdala and hippo-
campus CA1 array data (Fig. 1a) confirmed that the
majority of miRs represented on the array are differentially
regulated by acute and chronic stress. The stress-induced
changes in miR profiles in the two brain regions were also
dissimilar in the clustered profiles. Thus, the changes
observed varied both for the different brain regions and
for the different stress paradigms employed. Furthermore,
several of the miRs showed distinct patterns of regula-
tion, suggesting functional relevance. Thus, miR-17-5p is
upregulated in the hippocampus CA1 region under

chronic stress and was recently shown to suppress the
amyloid precursor protein (APP) and to undergo down-
regulation in the course of neuronal development and
differentiation (Hebert et al. 2009). Additionally, several
let-7 family members were downregulated in both the
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Figure 1 Stress-responsive miR-134 and miR-183 are predicted to
target the splicing factor SC35. a Hierarchical clustering of signal
ratios of miRs that passed the quality control in at least three out of
four comparisons, from left to right: amygdala (central nucleus) acute/
control, hippocampus (CA1) acute/control, amygdala chronic/control,
CA1 chronic/control. SC35-targeting miR-134 and miR-183 are
emphasized in blue and orange, respectively. Gray fields denote
signals that did not pass the more stringent quality control due to low
expression levels or high variability between spots. b Predicted targets
of stress-regulated miRs seem to affect all the major stages of gene
regulation. c, d PicTar-predicted (pictar.bio.nyu.edu) duplexes for
miR-183 (b) and miR-134 (c; in green) with 3′ UTR of SC35 mRNA
(in red)
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central amygdala and the hippocampal CA1 under both
acute and chronic stress and were recently reported to
similarly suppress APP in the course of development in
Caenorhabditis elegans (Niwa et al. 2008).

Several of the stress-regulated miRs have validated
target mRNA transcripts and functional significance.
Importantly, the functions of several of these targets are
largely relevant to brain stress responses in general and
to cholinergic stress reactions in particular. For example,
miR-1 targets and regulates two different subunits of the
nicotinic ACh receptor (nAChR) and alters presynaptic
ACh secretion (Simon et al. 2008). We have recently
shown that miR-132 and miR-182* regulate AChE levels
downstream of the transcriptional regulator nuclear factor
kappa B and AP1 signaling (Shaked et al., submitted).
Other miRs appear to control neuronal development and
differentiation, both of which are modified under stress.
These include miR-17-5p (Hebert et al. 2009) and miR-
124, which promotes neuronal differentiation by targeting
PTBP1, a repressor of alternative splicing in nonneuronal
cells (Makeyev et al. 2007).

Stress-Regulated miR-134 and miR-183 Are Both Predicted
to Target Stress-Responsive Transcripts

miR-134 and miR-183 were both upregulated by acute
stress in the central amygdala; mir-134 additionally showed
a trend of downregulation following chronic stress in both
the central amygdala and the hippocampus CA1 region
(Table 1, Fig. 1a). These two miRs share a number of
putative targets as predicted by the PicTar algorithm (Krek
et al. 2005; Table 2), suggesting common regulatory roles.
Specifically, these predicted targets included two different
transcription factors (ZPFM2, CBFA2T1), one of which
was reported to be causally involved with controlling
oxidative stress and inflammation (Martinez et al. 2004),
and several signaling molecules (integrin-β, casein kinase
1G3, OGT), one of which (integrin-β) is involved in
regulating sheer stress (Chen et al. 1999) and another
(OGT) functioning as a chaperone to control heat shock
reactions (Sohn et al. 2004). Finally, three of these
predicted targets are known regulators of alternative
splicing (MBNL1, CUGBP2, SFRS2), with CUGBP2 also

Table 2 PicTar-predicted targets common to miR-134 and miR-183

Human RefSeq miR-134 score miR-183 score Annotation

NM_012082 6.49 3.37 Zinc finger protein, multitype 2 (ZFPM2)

NM_002211 5.61 5.93 Integrin, beta 1 (ITGB1), transcript variant 1A

NM_019063 4.56 2.15 Echinoderm microtubule-associated protein-like 4 (EML4)

NM_016279 4.12 3.51 ZFPM2

NM_004349 3.97 2.27 Core-binding factor, runt domain, alpha subunit 2 (CBFA2T1), transcript variant 1

NM_175634 3.97 2.27 CBFA2T1 transcript variant 2

NM_175635 3.97 2.27 CBFA2T1 transcript variant 3

NM_175636 3.97 2.27 CBFA2T1 transcript variant 4

NM_003016 3.9 2.22 Splicing factor, arginine/serine-rich 2 (SFRS2, SC35)

NM_004384 3.21 2.91 Casein kinase 1, gamma 3 (CSNK1G3)

NM_173683 2.99 2.48 Chromosome 8 open reading frame 21 (C8orf21)

NM_182485 2.38 1.46 Cytoplasmic polyadenylation element binding protein 2 (CPEB2), transcript variant B

NM_182646 2.38 1.46 CPEB2 transcript variant A

NM_003605 2.36 2.97 O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), transcript variant 3

NM_006561 2.32 1.34 CUG triplet repeat, RNA binding protein 2 (CUGBP2)

NM_021038 2.22 1.55 Muscle blind-like (Drosophila; MBNL1), transcript variant 1

NM_207292 2.22 1.55 MBNL1 transcript variant 2

NM_207293 2.22 1.55 MBNL1 transcript variant 3

NM_207294 2.22 1.55 MBNL1 transcript variant 4

NM_207295 2.22 1.55 MBNL1 transcript variant 5

NM_207296 2.22 1.55 MBNL1 transcript variant 6

NM_207297 2.21 1.54 MBNL1 transcript variant 7

ZPFM2 and CBFA2T1 are transcription factors (CBFA2T1 is involved with controlling oxidative stress and inflammation (Martinez et al. 2004));
integrin-β, casein kinase 1G3, and OGT are signaling molecules (integrin-β is involved in regulating sheer stress (Chen et al. 1999)); OGT
controls heat shock reactions (Sohn et al. 2004). MBNL1, CUGBP2, and SFRS2 are known regulators of alternative splicing (CUGBP2 is
involved in RNA editing (Anant et al. 2001); SC35 accumulates in the PFC following acute stress and regulates the stress-induced alternative
splicing of AChE mRNA in brain neurons (Meshorer et al. 2005))

J Mol Neurosci (2010) 40:47–55 51



prominently involved in RNA editing (Anant et al. 2001).
Together, this agrees with a central functional role of the
stress-regulated miRs, impacting all the major tiers of gene
regulation (scheme, Fig.1b). Notably, miR-134 and miR-
183 were both predicted by PicTar to bind the 3′ UTR of
SFRS2 (SC35) mRNA (Fig. 1c, d). The SC35 protein
accumulates in the prefrontal cortex (PFC) following
acute stress and regulates the stress-induced alternative
splicing of AChE mRNA in brain neurons (Meshorer et
al. 2005). However, long-term excess of AChE induces a
reduction in SC35 (Ben-Ari et al. 2006). Therefore, we
selected the miR-183/SC35 regulatory module for a
functional validation study.

Manipulating miR-183 Levels Affects SC35 Levels
in Cultured Cells

To test the direct effects of miR-183 on SC35 levels, CHO
cells were transfected with a pre-miR-183 precursor stem
loop, an anti-miR-183 oligo, or a GFP expression vector as
negative control. Transfection with pre-miR-183 elevated
miR-183 levels by up to four orders of magnitude; the
QRT-PCR analysis did not differentiate between the mature
and precursor forms (as tested in QRT-PCR calibration;
data not shown). Anti-miR-183 did not alter the amount of
endogenous miR-183 (Fig. 2a), consistent with a functional
interference effect rather than degradation of the endoge-
nous miR. Anti-miR-183 elevated SC35 protein levels by
more than twofold (quantification of immunoblot, Fig. 2b).
Conversely, pre-miR-183 suppressed SC35 protein levels,
although not dramatically; this can be attributed to only
partial processing of the exogenous precursor. Thus, tests in
cultured cells validated miR-183-mediated suppression of
SC35 protein levels.

Discussion

The molecular mechanisms underlying the brain’s response
to psychological stress are still incompletely understood.
Posttranscriptional regulation by miRs can add flexibility
and robustness to the control of alternative splicing, in line
with the observed complexity of the mammalian stress
response at the physiological level (McEwen 2007). In our
current study, changes in miR expression profiles were
characterized within the stress-responsive amygdala and the
CA1 region of the hippocampus of rats subjected to
immobilization stress. Microarray analysis and cell culture
validation experiments identified specific miRs (e.g., miR-
183, miR-134) as regulators of key splicing factors (e.g.,
SC35 which controls the stress-induced alternative splicing
of AChE mRNA; scheme, Fig. 2c). Together, these findings
support the notion that stress responses in the mammalian

brain involve miR-mediated control of other posttranscrip-
tional regulators of gene expression, including (but not
limited to) proteins regulating alternative splicing.

miR-134, a previously reported regulator of dendritic
spine development in the brain (Schratt et al. 2006), is
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factor SC35) contributes to the complexity of stress responses in the
brain, including regulation of the alternative splicing choice between the
major “synaptic” AChE transcript AChE-S and the normally minor
stress-induced variant AChE-R
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elevated in both the hippocampus CA1 and the central
amygdala under acute stress and downregulated in both
these brain regions under chronic stress, while miR-183,
also upregulated in both regions under acute stress,
maintains unchanged levels in the chronically stressed
hippocampus CA1 and central amygdala. This tentatively
suggests the relevance of the observed miR-183 and
miR-134 changes to both the acute and chronic stress-
induced alterations in SC35. Apart from targeting the
splicing factors SC35, MBNL1, and CUGBP2, both
miR-134 and miR-183 are predicted to target other
splicing factors (e.g., SRP46 and SFRS11, respectively),
potentially expanding the impact of these miRs on the
pre-mRNA splicing machinery. Both SRP46 and SFRS11
are SR proteins that participate in composing the
multicomponent splicing complex and play pivotal roles
in both regular and alternative splicing. SRP46 is an
SC35 homolog (Soret et al. 1998), while SFRS11
regulates the alternative splicing of Tau, the missplicing
of which causes frontotemporal dementia with Parkinson-
ism linked to chromosome 17, an autosomal dominant
neurodegenerative disorder (Wu et al. 2006). Additionally,
miR-183 is predicted to bind two sites on the 3′ UTR of
profilin 2 (PFN2) mRNA. PFN2 regulates actin polymeri-
zation, determining dendritic spine morphology in neurons; its
knockout severely affects neurotransmitter homeostasis and
behavior in mice (Witke 2004). Elevation of PFN2 mRNA
was observed in nucleated blood cells from bipolar-disorder-
diagnosed twins in five monozygotic twin pairs, compared
with their healthy twins (Matigian et al. 2007). Thus, miR-
134 and miR-183 both appear to regulate known mediators
of neuronal stress reactions, compatible with our current
findings and relevant to stress-associated diseases.

There is compelling evidence that bipolar disorder, as
well as schizophrenia and some neurosensory pathologies,
involves hypercholinergic neurotransmission, and nAChRs
were suggested as targets for treatment (McEvoy and Allen
2002; Shytle et al. 2002). The local and temporal
regulations of cholinergic neurotransmission via the alter-
native splicing of AChE are therefore of high relevance to
the understanding and treatment of mental stress and
disease. We previously demonstrated a shift in the splicing
pattern of AChE following acute stress (Kaufer et al. 1998).
Furthermore, alternative splicing of the AChE mRNA
transcript modifies the effect of the resultant protein
product with regards to fibril formation from the APP C-
terminal peptides, from an upregulation by the primary
“synaptic” AChE-S protein (Inestrosa et al. 1996) to
suppression by the stress-induced AChE-R variant (Berson
et al. 2008). Our current findings suggest that SC35 mediated
alternative splicing of AChE, and, downstream to it, the
amyloid fibril formation outcome in neurodegeneration
processes is subject to regulation by stress-responding miRs.

In conclusion, our data point at miR functions in regulating
alternative splicing under mental stress. The micromanage-
ment of alternative splicing thus merits special attention.
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