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Abstract

A new paradigm in engineering design, known as set-based concurrent engineering
(SBCE), has been proposed which seems to offer advantages over more traditional techniques.
This research, therefore, had three goals: 1) to develop a clear understanding of the definition of
SBCE and to contrast that definition with other theories, 2) to assess the “ set-basedness’ of the
aerospace industry, and 3) based on the assessment, to propose a model for implementing SBCE
within an aerospace development project. While set-based concurrent engineering consists of a
wide variety of design techniques, the basic notions can be stated in two principles. 1) engineers
should consider alarge number of design alternatives, i.e., sets of designs, which are gradually
narrowed to afinal design, and 2) in a multidisciplinary environment, engineering specialists
should independently review a design from their own perspectives, generate sets of possible
solutions, and then look for regions of overlap between those sets to develop an integrated final
solution. Thisresearch found that while no company’ s design process completely fulfilled both of
these criteria, many set-based techniques are used within the aerospace industry. Building on
some of the observed industry practices, a design process model is proposed which combines
concepts from lean manufacturing, such as “flow” and “pull,” to implement set-based concurrent
engineering.
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1. Introduction

1.1 Motivation and Objectives of This Research

A new paradigm in engineering design, known as set-based concurrent engineering, has
been proposed which seems to offer advantages over more traditional techniques. Traditiona
methods of engineering design focus on setting requirements early, converging on a design
concept rapidly, and then iterating over the design until it meets all specifications. In contrast, set-
based methods delay fixing requirements and suggest that it is better to design a variety of concepts
which would meet a range of requirements. Over time, as the customer’s needs are better
understood and the design problem itself becomes more clear, the range of designsis gradually
narrowed, ultimately leading to one, globally optimal design. Set-based approaches to design
seem to offer advantages over other methods in terms of improved design quality, reduced
development risk, and shorter cycle times.

This research project, therefore, has several goals. The first is to develop a clear
understanding of the definition of set-based design -- what it entails, what benefits it offers, what
requirements it places on organizations, etc. Second, based on this definition, the primary aim of
this research isto assess the “ set-basedness” of design practices in the aerospace industry. Finally,
based on the results of the industry assessment, the thesis will propose a model for how aerospace
companies might implement a design process incorporating set-based concurrent engineering.
Several policy recommendations will also be proposed, including actions that the government
could take to facilitate better design practices.

To facilitate these objectives, this research attempts to provide answers to the following key

guestions about aerospace product development practices:
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Defining Requirements. How are requirements usually specified -- as single values, as ranges,
or as combinations of both? When are requirements set in the design process -- early, late,

etc.?

Number of alternative concepts considered. How many alternatives are considered during the
design process? How do these alternatives differ, i.e., are completely different systems being
compared or are comparisons made between “variations on atheme”? Are different aternatives
considered at each level of design, i.e., complete systems, subsystems, small parts? How long
are the different alternatives considered, and are multiple concepts developed in paralel? What

means are used to eliminate designs from consideration?

Iteration. What are the major causes of iteration in design? Do design schedules include plans
for iteration? In this context, iteration refers to the negotiations which take place between
functional specialties during the design process. For example, a warhead size could be made
larger or smaller depending upon the accuracy of the targeting system. Are these tradeoffs

considered in series (iterated) or in parallel (set-based)?

1.2 Thesis Overview and Outline

Thisthesisis essentially divided into three parts, each corresponding to one of the three

goals outlined above. Chapters 2, 3 and 4 comprise the first part. Chapter 2 presents an overview

of “traditional” design methods, while Chapter 3 introduces the primary concepts behind set-based

concurrent engineering. Chapter 4 then describes some features of the Toyota development

process, which demonstrates many set-based methods. Chapters 5 through 10 present the industry

assessment, including twelve examples of current design practices. The final part of the thesis

includes Chapter 11, which presents the model for implementing set-based concurrent engineering,

and Chapter 12, which discusses several policy recommendations and makes suggestions for

further research.
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2. Point-Based Approaches and Concurrent Engineering

2.1 Chapter Introduction

In order to understand a new idea, it is often useful to contrast it with an old one. To that
end, this chapter briefly reviews some important concepts about traditional approaches to design
and concurrent engineering. The discussion of this materia will then provide a point of
comparison for the introduction of set-based concurrent engineering, which is explained in the next
chapter.

This chapter begins with an introduction to point-based design strategies and the
communications chalenges posed by the separation of knowledge in complex product
development. Subsequent sections then discuss concurrent engineering and some of the various
tools and methods used to aide in implementing this approach to engineering design. The chapter

concludes by setting the stage for the introduction of set-based concurrent engineering.

2.2 Point-Based Strategies

Typical design processes can be characterized as point-based or iterative approaches. They
seek to develop and select a single concept, i.e., asingle pointin the design space, as quickly as
possible. In general, point-based strategies consist of five basic steps (Liker et al., p. 167):

1. First, the problemisdefined. This step typically means understanding the customer’s

needs and establishing product requirements.

2. Oncethe problemis clearly stated, engineers and designers generate a large number of

alternative design concepts usually through individua or group brainstorming
Sessions.
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3. Engineersthen conduct preliminary analyses on the aternatives, leading to the selection
of a single concept for further development.
4. The remaining concept is then further analyzed and modified until all of the product’s
goals and requirements are met.
5. If the selected concept fails to meet the stated goals, the process begins again, either
from step 1 or 2, until asolution is found.
The overall aim of these strategies is to identify the “best” solution to adesign problem asearly in
the development process as possible, and to avoid wasting time considering other options. If the
selected solution falls short of customer needs in some respect, it is modified as much as possible,

or it issimply discarded in favor of a new concept.

2.3 Point-Based Strategies and Concurrent Engineering

Applying point-based strategies in a concurrent engineering framework has a variety of
conseguences which complicate the design process. The remaining sections will, therefore, first
review traditional approaches to engineering design and discuss the problem of knowledge
separation in product development. The definition of concurrent engineering will then be

reviewed, along with strategies and tools to help implement this design method.

2.3.1 Traditional Approachesto Product Development: Over the Wall

Traditional models of engineering design processes tended to group engineering specialists
together, into functional groups. One functional group would begin to design a new product and
would then “throw it over the wall” to another group, with little or no communication. This
method led to development delays, often associated with “ omitting important design considerations
early in the design” (Anderson, p. 26).

This type of development processisillustrated in Figure 1. As can be seen, there are a

significant number of feedback loops, and each loop is typically associated with the need to modify
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or rework some aspect of the design. A description of one company’s method based on this
process illustrates the major problems:

A considerable amount of rework and backtracking was required to get from the
initial concept to a complete production ready design. (The primary cause of the
backtracking was that the design didn’t fit the needs of the next speciaist in the
line -- “there’ s not enough room for my control panel,” etcetera-- and was sent
back for modification. A frequently employed aternative to sending the design
back was to secretly redesignit.) (Womack and Jones, p. 107)

Product

Definition 4-‘

Engineering [«
Specifications

Product Eng’g:
Mechanical i‘

N

Product Eng’g:
Electrical a_

.

Manuf’ g/Tool

Engineering 4“

Process/Launch
Engineering

Figure 1: "Over the wall” product development. Traditiona methods of engineering
design employed little coordination between upstream and downstream tasks, leading to the need
for considerable backtracking and rework in the development process. (Adapted from Womack
and Jones, p. 107)

2.3.2 The Separation and Integration of Knowledge

This highly iterative approach to design becomes inefficient for the development of
complex systems. To develop such products requires that a wide and diverse set of skills be
brought to bare on a problem. These skills tend to be beyond the grasp of any one individual, and,

consequently, groups of engineers and designers must bring together their individual knowledgeto
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collectively solve a problem (Krishnan, 1997, p. 485). A criticd issue in new product
development, therefore, becomes the effectiveness with which engineers communicate.

As noted above, highly iterative methods tend to be inefficient at achieving such
communication. Thisdilemmais an issue to which a substantial amount of research and literature
is dedicated, and it is not the intent of this thesisto review it in detail. To understand set-based
approaches, however, it isimportant to review several conceptsin this area.

Gulati and Eppinger define three critica phases of communication: the availability of
information, the transfer of that information, and the proper use and application of the information.
They suggest, therefore, that not only must engineers exchange information, but that “it is
important to assure that the correct information exchange takes place” (p. 14). But, as von Hippel
(1990) notes, when problem solving extends beyond a single person, organizational and physical
boundaries can degrade cross-boundary communication and coordination, reducing the
effectiveness of engineers attemptsto share their knowledge (p. 409). Thus, in addition to
designing a product, a product development team must design its organization to facilitate the
proper information flow.

Thisinformation flow is complicated, however, by what von Hippel (1995) defines as
“sticky information.” Sticky information istypically in the form of tacit knowledge -- rules of
thumb or guidelines -- which a person or organization takes for granted and would not necessarily
think to communicate to others. Though von Hippel describes this theory in the context of a user
or customer working with a manufacturer, the theory can also be applied to multidisciplinary
design. In this context, the “user” is a downstream design process, such as production system
design, and the “manufacturer” is an upstream process, such as conceptual design. Continuing the
analogy, upstream design processes can be viewed as manufacturers of design information, and
downstream design processes can be thought of as users of that information. To develop a
product, however, requires the combination of both groups knowledge.

The difficulty posed by sticky information isthat it limits the ability of two groups to

effectively communicate, reducing the success of their combined efforts (von Hippel, 1995). The
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problem is not that the two groups are unwilling to assist one another or that they do not possess
the knowledge required for joint problem solving. Instead, the problem is either that one group
may not realize that the other group possesses some needed knowledge, or that one group can not
effectively communicate some knowledge to the other. The basic issue, therefore, becomes how to
best transfer knowledge from one group to ancther.

Von Hippel identifies four strategies to cope with the problem of sticky information, and
these concepts can be adapted for use in a multidisciplinary engineering environment. The first
two, upstream-based design and downstream-based design, areillustrated in Figure 2 and Figure
3, respectively. In upstream-based design, knowledge possessed by the downstream group is
transferred to the upstream group. The upstream group then uses this knowledge along with their
own to develop adesign solution. To achieve this knowledge transfer generally requires that the
downstream group (or a portion of it) be co-located with the upstream group, at least temporarily.
Once the downstream group’ s knowledge has been incorporated by the upstream group, the need
for co-location ends. Downstream-based design is essentially the same, except in this case
upstream knowledge is assimilated by the downstream process, which then manages the design

effort.
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Downstream
Process

Upstream
Process

downstream knowledge

upstream knowledge +
downstream knowledge

Figure 2: Upstream-based design. Downstream design knowledge is assimilated by the
upstream design group, allowing the upstream group to possess all of the knowledge required to
solve the design problem. (Adapted from von Hippel, 1995)

Downstream
Process

downstream knowledge +
upstream knowledge

| upstream knowledge

Figure 3: Downstream-based design. Upstream design knowledge is assimilated by the
downstream design group, allowing the downstream group to possess all of the knowledge
required to solve the design problem. (Adapted from von Hippel, 1995)

A third strategy isiterative design, shown in Figure 4. Inthis strategy, the upstream group
develops a prototype of a design, which is then sent to the downstream group. The downstream

group experiments with the prototype, providing feedback to the upstream group. The upstream
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group modifies the design and the prototype, which is again reviewed by the downstream group.
The process continues until each group is satisfied with the design. Note that in this method, as
opposed to the previous two, the location of the development work must switch back and forth
between groups. This changing emphasis from one group to the other can result in waste, both in
time and money, as design activities are started and then stopped at each group (von Hippel,
1995).

Downstream
Process

Upstream
Process

downstream knowledge | upstream knowledge

downstream knowledge +
upstream knowledge

upstream knowledge +
downstream knowledge

Figure 4: Iterative design. The upstream design group first develops a prototype which the
downstream group reviews and modifies. The process continues until both groups are satisfied
with the design. (Adapted from von Hippel, 1995)

Thefinal strategy is sub-problem design. Illustrated in Figure 5, this method decomposes
theinitial design problem into several smaller ones, each of which can be independently handled by
either the upstream group or the downstream group. These independent solutions are then

combined to form the final solution.
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Figure 5: Sub-problem design. The design problem is decomposed into smaller problems
which each group can solve independently. (Adapted from von Hippel, 1995)

The decision as to which method to choose for a given project is based primarily on the
costs and feasibility of transferring knowledge between the upstream and downstream groups (von
Hippel, 1995). If this knowledge transfer is easy, a downstream- or upstream-based approach
would most likely work best. When knowledge transfer is difficult, on the other hand, iterative or
sub-problem design would provide the best strategy. These methods illustrate that the interactions
between two design groups should be based both on the sequence in which their design work must
be completed (upstream vs. downstream) and also on the ease or difficulty associated with
transferring knowledge between the groups.

In a smilar vein, Wheelwright and Clark define four modes in which upstream-
downstream interactions might occur, illustrated in Figure 6. 1n mode 1, the upstream group does
not communicate with the downstream group until it has completed its work, and the downstream
group does not begin to do any work until it receives this communication. Mode 2 is similar,
except in this case the downstream group makes assumptions about the upstream group’ s work.
The downstream group then begins its design process prior to actually receiving any information
from the upstream group. Though this mode could be faster than the first, the downstream group

runsahigh risk of having to redo a significant amount of work if their assumptions prove
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incorrect. Modes 3 and 4 increase the intensity of the communication between the upstream and
downstream groups, and in mode 4 this communication occurs much earlier than in other modes.
This final mode of interaction, mode 4, is the one which best facilitates the incorporation of

upstream and downstream knowledge into a product’ s design.

upstream upstream
Mode 1 batch I\E/Ia(rJIde ° corLrﬁ]?Jr:lsi'gaii on
Serial/Batch communicatio downstream =ary downstream
involvement
upstream upstream
Mode 4
Mode 2 batch Integrated intensive
“Early start communication downstream Problem communication
in the dark” Solving ~ 1-~-t-
----- downstream

Figure 6: Modes of upstream and downstream interaction. Modes 1 and 2 permit little
(if any) interdisciplinary problem solving between upstream and downstream groups, while modes
3 and 4 allow progressively greater interaction. (Adapted from Wheelwright and Clark, p. 178)

2.3.3 Transitioning to Concurrent Engineering

Based on these models of communication, it is clear that companies could improve their
product development processes by facilitating better interactions between their upstream and
downstream design groups. To this end, many companies have moved to implement concurrent
engineering (CE) and cross-functional design teams.

Smith (p. 67-68) defines concurrent engineering in terms of four principles:
an increased role for manufacturing process design in product design decisions;
formation of cross-functional teamsto jointly develop new products and processes;

afocus on the customer throughout the development process; and
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the use of lead time as a source of competitive advantage.

Hauptman and Hirji broaden this definition slightly, such that CE intendsto address as many
downstream issues as possible early in the design process. Concurrent engineering is “the
integrated and parallel design of products and their related processes, including manufacturing, test
and support” (p. 154). By facilitating such integrated design, concurrent engineering shortens
development lead times. Note, however, that this decreased devel opment time is not achieved by
reducing the time required to complete design tasks, but rather by executing these tasks
simultaneously (Hauptman and Hirji, p. 154). Thisreduction in lead time can be significant and
represents a competitive advantage to those firms which can apply it well.

To facilitate CE, design organizations have moved away from the traditional functiona
configuration to adopt cross-functional design teams or integrated product teams (1PTs), illustrated
in Figure 7. The primary aim of assembling such a cross-functional team isto enable a variety of
perspectives to develop a product design concurrently, so that the final product is better integrated,
and is developed more quickly and at alower cost (Anderson; Krishnan, 1992; Pomponi). These
interdisciplinary teams typically include engineers from upstream functions (such as design) as
well as downstream functions (such as manufacturing). In addition, representatives from support

groups such as marketing, test, finance, etc. aso participate on the team (Anderson).
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Figure 7. Design in the CE environment. In concurrent engineering, both upstream and
downstream design groups simultaneously participate in the development of a product. (Adapted
from Womack and Jones, p. 120)

Womack and Jones further characterize cross-functional, concurrent engineering and
design as lean product development. They note that an ideal design process would operate much
like a single-piece flow in a manufacturing system. Such an analogy suggests that in a lean
development process, a new product design would move continuously from concept to production,
without stopping due to bureaucratic needs and without backflow to correct mistakes (Womack and
Jones, p. 119). As discussed earlier, a functional organization, with its strict separation of
engineering specialties, often requires such backflow and rework. By alowing for direct
communication between speciaties, however, concurrent engineering moves closer to this
continuous flow model. A product design no longer needs to be passed around to several
independent engineering departments, but isinstead worked upon by multiple engineers within the
same team.

In terms of the communication models described previously, cross-functional teams and
|PTsfacilitate mode 4 interactions (integrated problem solving), and are a means of implementing

upstream-based design (downstream groups are co-located with upstream groups). Many design
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organizations also make use of prototypes during product development efforts, enabling cross-
functional teams to use iterative design methods in conjunction with the other strategies. These
cross-functional teams are, consequently, the key enabler in concurrent engineering: They bring
together the individual knowledge of engineers required to develop a single, integrated design

solution.

2.3.4 Interteam Communication: An Integration Problem

Typically, a cross-functional design team might be established to develop both a single
product and its manufacturing plan. For more complex systems, the system itself might be
decomposed, i.e., broken into several smaller elements, and an IPT assigned to develop each
element. In such cases, not only must multiple skills be brought together within an IPT, but
multiple skills must be brought together across severa IPTs.

Under these conditions, the communication problem can viewed as an integration problem,
i.e., how to integrate the knowledge of these multiple individuals or groups. Browning (1997)
thus defines integrative mechanisms (IMs) as “strategies and tools for effectively coordinating
actions between multiple” design organizations, such as integrated product teams (p. 86). These
IMs have two primary purposes:. to facilitate information flow and to regulate information flow
(Browning, 1997). Examples of IMsinclude information and communication technologies (such
as linked CAD tools and common databases), co-location, face-to-face meetings, manager
mediation, and interface contracts and scorecards (Browning, 1997). Note that the goal of all of
these methods and tools is the same: to help ensure that the right information is delivered to the
right people at the right time and in the proper amount. These IMs are used to supplement the basic
structure of the design team so as to further enhance the members' abilities to share and combine

their knowledge.



2.3.5 Task Sequencing

Despite the effort placed on integrated problem solving, concurrent engineering, and the
associated design tools and methods, many problems in engineering design are coupled; that is,
one design group is dependent upon information from another group (Krishnan et al., 1992).
Examples of such coupling abound in the aerospace environment: in aircraft design, for example,
engine selection is tied to wing design, while in spacecraft design, solar array sizing is linked to
antenna size and power. In such cases, Group A might depend on Group B to provide data on
variablesx andy. Group B, however, might require information w and z from Group C. But, to
provide this data, Group C might require Group A’sresults (Browning, 1997, p. 83). Such
interdependent, chicken and egg problems are difficult to sort out, becauseit is “rarely possible to
identify an unambiguous sequence for making decisions’ (Chang et al., p. 212). The concurrent
environment previously described can, therefore, be thrown into disarray, while each engineer
waits for information from other engineers.

To cope with these coupled design problems, many firms resort to a sequential decision
making strategy (Krishnan et al., 1997, p. 485). Such strategies require that a design problem first
be partitioned -- divided up -- into a“number of subtasks that may then be distributed among a
number of individuals...[or] firms” (von Hippel, 1990, p. 407). Once aproblem is partitioned, a
tool such as a design structure matrix can be used to sequence the tasks to minimize the impact of
iteration in the design (Browning, 1996). By properly sequencing tasks, the costs of downstream
changes to adesign can be minimized (von Hippel, 1990 p. 409).

The drawback of such tools, however, is that while they might minimize the extent of the
changes which need to be made during an iteration, they may not help engineers determine the best
sequence in which to make decisions (Krishnan et al., 1991). As decisions are made in series,
choices made by upstream engineers will constrain the design options available to downstream
engineers. Depending upon the nature of these constraints, the design quality of the product might
suffer or the product might fail to meet requirements associated with downstream issues (Krishnan

et al., 1991). Thus, not only should engineers attempt to sequence their decision-making strategy
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to limit the extent of iterations, they should also initially sequence the decisionsto limit the loss of
design freedom by downstream designers (Krishnan et al., 1997, p. 488). By properly
sequencing the steps in a design process, the coupling between problems can be reduced, allowing

more effective use of other integrated problem solving techniques, such as the ones noted above.

2.3.6 Establishing Requirementsin the Point-Based Approach and Doing It Right

the First Time

To help cope with al of the difficulties associated with both integrating information across
design groups and limiting the effects of iteration, conventional practice suggeststhat it is best to
establish firm requirements early in the development process (Ward et al.). Requirements are
finalized quickly to impose “as much constraint as possible in order to simplify the interactions
among subsystems’ and other members of a design team (Sobek, 1997, p. 224). Thelogic behind
this approach is that since one design group does not necessarily know or understand the
constraints faced by another group, each group must specify their subsystemsin great detail to
ensure their functionality and that they interface properly with other systems (Sobek, 1997, p.
224).

Therefore, conventional approachesto design, which rely on iteration to devel op a product,
lead to goals of freezing requirements and specifications as early as possible and philosophies of
“doing it right thefirst time” (Ward et al., p. 48). Thisreliance, however, leads to two paradoxes.
The first paradox relates directly to the development of requirements. System design methods
emphasi ze establishing requirements early, but iterative methods imply that the requirements will
change over the course of successive iterations (Ward, 1990, p. 50). Solving this paradox is not a
simple matter. Flexible requirements, for example, run exactly counter to the idea of finalizing
requirements early, yet allowing afirm requirement to change could invalidate previous design

decisions (Ward, 1990). To facilitate iterative approaches to design, therefore, engineers and
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managers continuously emphasize the need for firm requirements at the very start of a program, but
must also be adaptabl e as the requirements change over a product’ s devel opment.

The second paradox relates to the very reason for initiating a development effort.
Reinertsen states that “the purpose of a design processisto generate information” (p. 11). An
efficient design process, therefore, is one which generates information cost-effectively. When
developing a design, the feasibility and appropriateness of the concept is determined through
testing, so to be cost-effective, each test should generate as much information as possible. When
conducting tests, more information is contained in the results of afailure than in the results of a
success (Reinertsen). A design process, therefore, does not maximize the amount of information
which it generates by maximizing test success rates, but by ensuring “an adequate failure rate to
generate sufficient information” (Reinertsen, p. 71). A philosophy of “do it right the first time”
implies that a design would always successfully complete its development tests. Such outcomes,
however, would not necessarily produce information in a cost-effective manner. The second
paradox of iterative methods, therefore, isthat a“do it right the first time’” mentality actualy
decreases the cost-effectiveness of a design process by degrading the amount of information which
the process produces.

These two paradoxes limit the efficiency and effectiveness of iterative design methods.
While engineers and managers have developed many toolsto aide in coping with these problems,

current engineering methods do little to actually eliminate the sources of these paradoxes.

2.4 The Risks and Limitations of the CE Solution

While IPTs, IMs, task sequencing, and early requirements definition help to make CE
approaches effective, working in anon-serial, concurrent environment still introduces additional
risks to the development process. A CE-approach to product and process development “requires
that the downstream phases be able to operate... using early upstream information” (Krishnan et

al., 1996, p. 210). Making use of such information entails risk because the information may not
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be finalized (Chang et al.; Krishnan et al., 1996). Changes which are made to this information,
therefore, force changes to both the upstream phases providing the information and the
downstream phases attempting to make use of it.

The continued reliance on iterative, point-based strategies, therefore, represents alimitation
of current CE approaches to design. When multiple views areinvolved in developing a new
product, each group will recommend changes to a proposed solution to better reflect that group’s
constraints and requirements (Sobek, 1997, p. 201). This scheme of proposition and change,
however, leads to several possible problems. Since each group in the design process does not
necessarily understand the limits and needs of every other group, recommended changes can
produce conflicts, leading to waste in the devel opment process (Sobek et al., p. 16). Further, “the
more tightly parts [of aproduct] are coupled to other components, the greater the impact changesin
one component have on other components, and the more rapidly and pervasively such changes
propagate through the system” (Liker et al., p. 170).

There isthe potential, therefore, that a change made by one group in a design team could
invalidate previous decisions made by other groups (Ward et al., p. 58). This potential for work to
become obsolete tends to “ deter simultaneous design” because engineers would rather wait to make
adecision than have to redo their work (Liker et al., p. 165). Work that could be conducted in
paralel then revertsto atruly sequentia pattern, and the emphasisin project planning becomes the
establishment of the proper sequence in which to make decisions (Liker et al., p. 167). Finally,
there exist no guarantees that the iterative, point-to-point approach will ever converge on afinal
solution (Sobek et al., p. 7). Instead, the iterative loops are never quite closed, and, in the worst
case, “problems are resolved when production begins, by sdecting whatever last minute

compromiseiseasiest” (Ward, 1990, p. 50).
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2.5 Summarizing the CE Solution

Although concurrent engineering and IPTs have dramatically changed (and improved)
engineering design, they have not significantly altered the nature of the design process. Non-CE
methods were typified by one engineering group throwing a design over the wall to another group.
What CE and IPTs have doneisto “lower the wall:” upstream design groups now receive quick
and extensive input and feedback on their design decisions from downstream organizations. But,
asillustrated in Figure 8, within the team the nature of the design process has not changed: one
group or person establishes requirements, another proposes a design solution, several others make

comments about and recommend changes to the solution, etc. (Liker et al., p. 165).
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Figure 8. Looking inside the black box of CE. Looking inside the black box of
concurrent design reveal s that typical CE practices have simply moved feedback |oops upstream in
the development process, rather than altering the nature of the design process.

Rather than fundamentally altering the nature of engineering design, the effect of concurrent

engineering and IPTsis to move engineering feedback |oops upstream in the design process

39



(Sobek et al., p. 7), and to tighten and shorten these loops (Liker et al., p. 165). By decreasing
the amount of time required for changes to circulate through a design team, CE- and I PT-based
solutions aim to limit wasted time and effort spent pursuing designs which will not meet
downstream requirements (Sobek, 1997, p. 226). The nature of the interaction between upstream

and downstream groups, however, has not changed.
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3. Defining Set-Based Concurrent Engineering

3.1 Chapter Introduction

Concurrent engineering has improved product development processes significantly, but it
has not altered the fundamental nature of the interactions which go on during that process. This
chapter introduces the primary concepts of set-based concurrent engineering, and illustrates how
set-based concepts have the potential to fundamentally change the manner in which engineers
interact.

The chapter begins by introducing severa concepts which suggest why making decisions
early, a core tenant of point-based methods, is not aways the best strategy in product
development. The principal concepts of set-based concurrent engineering are then summarized,
followed by a more detailed description of those concepts. Other design methods which support
the use of sets are then discussed, as well as how these methods, though different, are compatible
with set-based concurrent engineering. The chapter concludes by summarizing the principles of
set-based concurrent engineering, providing the foundation for the remainder of the thesis:
examples of set-based practices and how set-based concurrent engineering could be applied in the

aerospace industry.

3.2 The Triple Problem: Factors Motivating the Need to Delay Decision-
Making

In addition to the challenges posed by attempting to work in a concurrent environment,
design is complicated by three other factors: the evolution of a product’s cost, management’s

ability to affect these costs, and the evolution of designers' knowledge about adesign problem. As
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will be discussed, these factors all lead to a direct conflict with traditional concepts of design:
Rather than making decisions as early as possible, there are advantages to making decisions as late
as possible.

Consider first the issue of aproduct’s cost. Asanew product is designed, engineers will
make decisions affecting how much the product will cost: how expensive it will be to manufacture,
for how much it will have to be sold in order to earn a profit, how much the product will cost to
support and maintain, etc. The difficulty associated with these decisions, however, isthat “[t]he
earliest decisions about designs have the largest impact on the ultimate quality and cost, but these
decisions are made with the least data” (Ward, et al., p. 59). As shown in Figure 9, sixty percent
of aproduct’ stotal life-cycle costs have been designed into the product by the end of its conceptual
development -- even before preliminary or detail design has begun (Anderson, p. 133). Thus,
decisions made very early in the product’ s devel opment will have long-lasting consequences on the
total cost of the system, while decisions made late in its development will have little successin

lowering these costs (Anderson, p. 230).
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Figure 9: Designing-in costs. Although the mgority of the costs associated with a
development program are not incurred until late in the project, costs are committed to the product’s
lifecycle very early. (Adapted from Anderson, p. 132)

This problem becomes even more difficult when one considers management’ s ability to
influence a product’sdesign. As illustrated in Figure 10, management can exert its greatest
influence on a product early in the development cycle. Asthe cycle progresses, however, this
power is greatly diminished (Wheelwright and Clark, p. 33). In addition, the costs associated with
making any changes to a product’s design rise exponentially during the design process
(Reinertsen, p. 14). As Anderson summarizes, “ The further one progresses into a design, the
harder it will be to start satisfying additional needs’ (p. 229). Thistrend appears because every
decision made by engineers constrains the options available for future decisions (Anderson;
Krishnan etal., 1991). Thus, late in the design process, engineers have already made numerous

decisions, severely limiting the alternatives available at that time. As a consequence, not only do
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early decisions have long-term effects on a product’ s costs, but management’ s power to influence

these costs declines rapidly as the product devel ops.

All
Amount of
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Figure 10: The diminishing power to make changes. The further a development project
progresses, the less power both managers and engineers will have to influence its final outcome.
(Adapted from Wheelwright and Clark, p. 33)

These factors conspire to make early design decisions more powerful than later ones. But
they are further complicated by yet athird factor: lack of knowledge. Asshown in Figure 11,
early in a product’s development (such as during conceptual design), engineers' and managers
knowledge about virtually every aspect of the product will be at a minimum (Reinertsen, p. 15).
Their early decisions, therefore, will be relatively uninformed. Asthey “work the problem” and
become more familiar with the constraints which they face and better understand the customer’s
needs, they will be able to make better design decisions. But, aswas just discussed, it isthe early

decisions which will have the most dramatic effects on the long-term costs of the product.



Engineers and managers, therefore, are placed in the awkward position of having to make high-

leverage decisions with very little knowledge.
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Figure 11: Evolution of design knowledge. Though it increases fairly rapidly,
designers’ knowledge about a new product is quite low early in the product’'s development.
(Adapted from Reinertsen, p. 15)

In summary, early decisions have the greatest effects on a product’s costs, yet these
decisions are based on the least information. When engineers and managers have acquired the
knowledge to make better informed decisions, however, their ability to significantly affect the
product’s costs is severely limited.

As shown in Figure 12, a useful advance in product development practices would either
delay the commitment of these costs until greater knowledge was available or would increase
managers’ ability to affect the design late in the process. (This proposition assumes, of course,
that one cannot know the future, and therefore, cannot increase the rate at which knowledge about

the new product becomes available.) In fact, Kalyanarum and Krishnan go so far as to suggest
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that an ideal development program would enable designers to adapt a product to current market

reaities at the time of the product’s launch (p. 277). They note additional benefits of such delayed

decision making would include:

allowing the product to achieve a better bal ance between what the customer desires and

what istechnically feasible;

allowing for the inclusion of the latest technology; and

allowing competitive products and changes in customer desires to be better tracked

(Kalyanarum and Krishnan).

While point-based strategies have continuously emphasized making decisions as early as possible,

it isclear that there are equally valid reasons to delay decision making.
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Figure 12: Advancing product development practices.

Useful advances in product

development practices would help to both delay the commitment of costs to a product and to

increase management influence late in the devel opment cycle.
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3.3 The Need for a Paradigm Shift

The intent of concurrent engineering has been to increase the influence of downstream
groups on upstream design decisions and to improve the quality of critical, early design decisions.
In anideal environment, concurrent engineering also intends for downstream groups to work
simultaneously with upstream groups. The reliance of point-based methods on iterative
techniques, however, increases the risks associated with this parallelism. In addition, iterative
methods lead the paradoxical situation of needing to establish requirements early, yet knowing
these requirements are likely to change as iterations are completed. They also seek to develop a
design “right the first time,” though such an approach is not necessarily cost-effective. Finally,
point-based approaches require that decisions be made as early as possible, even though there can
be benefits to delaying design decisions. As Liker et al. note, “Full implementation of CE involves
a corresponding revolution in the underlying paradigm of design” (p. 165). Set-based concurrent

engineering is offered as such a paradigm shift.

3.4 Set-Based Concurrent Engineering Defined

3.4.1 AnIntroductory Summary

Sobek (1997) summarizes the definition of set-based concurrent engineering (SBCE) as
engineers and product designers “reasoning, developing, and communicating about sets of
solutionsin parallel and relatively independently” (p. 202). This definition is best understood by
analyzing it one piece at atime. The first component of SBCE isto develop sets of designs, i.e.,
groups of design alternatives, for a given design problem. Rather than trying to identify one
solution, engineers should instead develop a variety of design options, and then gradually eliminate

alternatives, until only one option remains.
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The second component of SBCE involves inter- and intrateam communication for
concurrent engineering. Given that a complex design problem will require the involvement of
multiple engineers or functional groups, SBCE suggests that these groups should each develop
sets of solutions to the problem from their own perspectives. The groups then interact by
comparing these sets, looking for regions of overlap in their design alternatives. These regions of
overlap are then narrowed in parallel, until one solution remains.

By using sets, therefore, engineers are able to implement a design strategy very nearly akin
to von Hippel’ s sub-problem design. As was noted during the discussion of von Hippel’s work,
sub-problem design is best suited to design problems in which it is difficult to share knowledge
between groups. The knowledge possessed by highly specialized engineering functions often has
this characteristic, and, therefore, sub-problem design is an appropriate strategy. Independent
exploration of design sets enables several engineering specialties to consider a design problem
from their own perspective (i.e., to allow each specialty to work on a sub-problem) and then to
effectively re-combine those independent alternatives into an integrated final solution. These
concepts areillustrated in Figure 13, and the following sections will explore these ideas in greater

detail.
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Figure 13: Set-Based Concurrent Engineering. (1) Three specidties, or functiona
groups, areillustrated within the design space (which contains all possible solutions) for a product
development problem. (2) First, the specidties expand the number of options which they
consider, establishing asmall region of overlap between their design solutions. (3) They work
together to expand this region of overlap, increasing the number of solutions which will satisfy all
of the product’ s requirements. (4) The specialties then begin to eliminate options, and the region
of overlap shrinks. (5) The solution space then is narrowed until only one design remains, that
design being the final solution. (Illustration concept developed with Dr. William Finch.)

3.4.2 Developing Sets of Alternatives

As noted, the first element of SBCE is the development of sets of alternative solutions for a
design problem. These sets might include several discrete design options or arange of parameter

values (Liker et al., p. 167). For example, a set might consist of one aircraft design based on a
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canard-wing configuration, one based on a conventional tail arrangement, and one based on aV-
tail, while another set might simply vary the surface area of the V-tails.

To arrive at these sets of options, SBCE approaches the initial concept development stage
of design differently than do point-based methods. In a point-based approach, initial development
activitiestypically seek to define several potential solutionsto the design problem. Set-based
approaches, in contrast, seek to define regionsof the design space: to characterize boundaries of
current capabilities and to discover where these boundaries can be expanded (Sobek, 1997, p.
205). The emphasisis not on finding a solution, but rather on defining what is possible. An initial

set, therefore, islikely to be relatively large and to contain a number of possible design solutions.

3.4.3 Using Setsto Communicate and Guide Development

Once an initid set has been developed, engineers begin to narrow the set, gradually
eliminating design alternatives. Asthe set narrows, engineers also increase the level of detail in
their design work, so that “the resolution of each idea or design grows sharper” (Sobek et al., p.
22). An important principle to which to adhere during this process is that of “establishing
feasibility before commitment” (Sobek et al., p. 22). Before committing to keep a certain design
concept, engineers must ensure that, at the current level of detail, the designisin fact feasible, i.e.,
that it does meet the product’ s requirements. The goal of this principle is to avoid uncovering
problems late in the design process.

Note, however, that the intent is not to necessarily test every concept to the highest level of
detail possible. On the contrary, designs should only be tested to the level of detail appropriate to
the size of the set. If the setislarge, implying that the product is still early in its development, tests
should be simple and quick, just detailed enough to expose problems that are near the surface.
This testing philosophy is consistent with Reinertsen’ s notion that cost-effective tests are those that
demonstrate failures rather than successes. Then, as the set narrows and the level of detail in the

designs increases, the fidelity of tests should also increase. SBCE, therefore avoids the less cost-
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effective approach of attempting to “do it right the first time.” In addition, the size of the set
provides a clear guide to analysis groups regarding how detailed their tests should be.

Sets are also useful in coordinating the design activities of multiple design groups. As
noted previously, SBCE suggests that each functional group should be developing its design
solution relatively independently. But as Krishnan et al. (1992) note, “the decisions made by the
various functional decision makers are generally coupled and often in conflict,” (p. 2), and,
consequently, “weakly coordinated cross-functional [teams] can perform worse than fully
integrated teams..., because... confusion can arise from conflicting goals and cause iterations,
delays, and rework” (p. 1). Therefore, communication between functional groups must not only
transfer design knowledge, it must also help to coordinate the groups.

The narrowing process used in set-based concurrent engineering helps to facilitate such
coordination. Sets help to organize the evolution of a design because the alternatives discarded by
one designer guide the decisions of other designers (VanDyke Parunak et al., p. 289). In addition,
as designs are eliminated in stages, engineers have “time to consider the most important alternatives
more fully... [allowing] them time to react and to influence one another’s narrowing process’
(Sobek, 1997, p. 218). SBCE thereby provides a communication mechanism that is naturally
suited to coordinating diverse groups of engineers and designers.

Set-based concurrent engineering also increases the likelihood that engineers communicate
the proper information between groups. Chang et al. note that engineers “need to provide feedback
to the designers of neighboring components about their preferred valuesfor... connecting variables
and the cost of deviation from those values’ (p. 214). Rather than only communicating a single
design concept, engineers using set-based practices communicate about several. This set then
provides information about the limits and boundaries faced by each group, allowing designersto
better understand what decisions they can make to accommodate the needs of other engineers.
Further, Liker et al. state that when communicating between functional groups early in the design
process, “[p]artial information is most useful if it involves boundaries on parameters” (p. 170).

Such bounding information is exactly the type of knowledge contained within a set.
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Set-based communication thus directly aides in the implementation of concurrent
engineering by improving the use of early design information. As discussed earlier, concurrent
engineering requires downstream engineers to make use of preliminary data from upstream
engineers. Using such information entailsrisk -- there is a high probability that the information
will change. In addition, in a study of effective concurrent engineering practices, researchers
found that “the use of incomplete and uncertain information -- atask structure requirement in CE --
had a negative effect on [a] team’ s satisfaction [with the development process]” (Hauptman and
Hirji, p. 161). Set-based methods, however, “[allow] team members to communicate information
they actudly possess in the early stages of the design process, rather than sharply defined
decisions that they cannot be confident will survive” (Liker et al., p. 166). Instead of
communicating about a single, specific design that will likely change, set-based practices allow
engineers to discuss designs at alevel that more precisely indicates the certainty of design data.
This more precise communication then facilitates more effective use of preliminary design
information, improving engineers ability to implement concurrent and simultaneous design.

Another set-based principle which helps to facilitate early use of preliminary information is
that of conceptual robustness. This concept is based on Taguchi’s notion of functional robustness.
Taguchi states that a product is functionally robust “if it inherently tends to diminish the effect of
input variation on performance” (p. 9). Similarly, design decisions are conceptually robust if the
decisions remain valid regardless of the choices made by other engineers working on the product
(Sobek etal., p. 21; Chang et al., p. 212). Asengineers narrow their sets and communicate about
their remaining alternatives, they should also seek to make future choices that will accommodate as
many of the other engineers options as possible. When engineers are able to follow this principle,
they significantly reduce the likelihood of having to redo their work because of decisions made by

other designers.
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A simple example helps to illustrate this point'. In the typical concurrent engineering
environment, structural design engineers and manufacturing die designers will be working
simultaneously to develop the structural design of a product and the dies used to stamp out the
parts. In atraditional approach, the structural designers might show the die designers preliminary
drawings of their parts. The die designers would then use this information to begin designing
dies. If the structural designers alter the part design, however, the die designers will also have to
alter their work.

A set-based approach, however, eliminates this potential for scrap and re-work. Early in
the design process, structural engineers would show die designers the likely range, i.e., set, for
their parts. This range would illustrate the maximum size likely for the parts as well as the
minimum size. Based on thisrange, die designers could begin to design the dies, so long as the
designs accommodated all of the possible shapes which the structural designers were considering -
- that is, so long as the die designs were conceptually robust to the decisions of the structural
designers. As the structural designers refined their set and narrowed the possible span of
dimensions, the die designers could do the same, increasing the detail in their die designs.
Ultimately, each group would narrow down to a single design, and would have done so (ideally)
without ever having to backtrack through the concurrent devel opment process.

This illugtration also demonstrates another important principle for the effective
implementation of set-based concurrent engineering: stay within a set once committed to it (Sobek
etal., p. 24). Once engineers have narrowed a set, it isimportant that one engineer not “jump out”
of the set to introduce a new design concept, unless absolutely necessary. This commitment is
essential “so that other [engineers] can rely on [each other’s] communication” (Sobek et al., p. 24).
By remaining within a set, “as the set narrows, the earlier communications remain valid but are
supplemented with further, more precise information” (Ward et al., p. 58). For example, if a set
of designs, B, isasubset of A, then aproperty that is universally true for al of the designsin set A

isalso true for all of the designsin set B (Sobek, 1997, p. 232). Since downstream sets are

! This exampleis based on material in Ward et al.
53



simply subsets of upstream ones, “any work or communication based on upstream setsis also
valid for all downstream sets, including the final solution” (Sobek, 1997, p. 232).

In many ways, therefore, these concepts illustrate a key notion of SBCE: In a set-based
approach, “designs converge rather than evolve” (Liker et al., p. 168). Each functional group
narrows “their respective setsin parallel, communicating throughout to ensure that each function
converges to a solution that integrates with the overall system” (Sobek, 1997, p. 218). In this
manner, set-based methods allow for “truly parallel” design, enhancing the benefits of concurrent

engineering practices (Liker et al., p. 168).

3.4.4 Using Setsto Integrate and Optimize a Design

In general, any design problem requires that engineers satisfy multiple and often conflicting
godls (Otto and Antonsson; Krishnan et al., 1997.). In addition, different functional organizations
might prefer opposing values for a given performance characteristic (Krishnan et al., 1997).
Developing an optimal design can also be further complicated because performance features might
not always have mathematical descriptions which lend themselves to optimization (Krishnan et al.,
1997). In addition, an optimal system design is not necessarily one which optimizes specific
features individually, but one which maximizes the overall performance of a design (Otto and
Antonsson). Authors such as Pugh recommend a variety of techniques to optimize product
designs. These authors, however, do “not explore the power of different actors independently
defining sets of possibilities from their own perspectives, then looking for intersections, thereby
achieving paralldl development” (Sobek et al., p. 8).

In set-based design, optimization isintimately tied to integration. Following typical design
methods, set-based design first decomposes a complex design problem into numerous smaler
ones, each of which isthen assigned to individual engineers or teams. Each group then explores

their design space using sets. This exploration allows each group to define their feasible regions,



their sets of possible design solutions. The integration process, then, consists of the groups
looking for regions of overlap in these sets (Sobek, 1997, p. 216).

Attempting to integrate the solutions then leads to the optimization of the system. If an
intersection exists, for example, its existence implies that the solution is acceptable to all of the
groups (Sobek et al., p. 17). Further, the solution contained in the intersection islikely to be a
globally optimal solution -- “the one that best achieves integration, the one that best meets the
objectives of all of the stakeholders in the process’ (Sobek, 1997, p. 222). In fact, if no
intersection is found, it is likely the result of engineers attempting to “marry independently
optimized concepts’ (Sobek et al., p. 17). In such cases, engineers must broaden their search,

i.e., expand their sets, to increase the potential for finding an intersection.

3.4.5 Requirementsin the Set-Based Context

The communication, integration, and optimization processes described above all have a
common implication for the manner in which requirements should be specified. Like a new
product’ s design, a new product’ s requirements should gradually evolve and then converge during
the course of the development process. By using evolving requirements, rather than attempting to
quickly finalize requirements that will only change later, set-based methods are able to avoid much
of the requirements paradox common to iterative methods.

Set-based requirements can be stated in two basic forms: ranges or minimum/maximum
constraints’. When requirements are given as ranges, the parameter is specified as being allowed
to be “no less than x and no greater thany.” Using ranges on requirements “ provides freedom and
focuses effort on exploring regions of the design space so that they can be narrowed rationally,” to
help facilitate the integration and optimization process (Ward et al., p. 49). The second mode for

stating requirements is to use minimum or maximum constraints -- specifying that the parameter

2 The SBCE literature tends to refer simply to “minimum constraints,” without formally noting the opposite but
conceptually similar concept of maximum constraints.
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“can be no less (or can be no greater) than x.” Like ranges, minimum or maximum constraints
give other engineers “the opportunity to optimize the design from their perspective, and if that
makes no difference [to another engineer’'s] subsystem, then the minimum [or maximum]
constraint helps to optimize the system asawhole” (Sobek, 1997, p. 224).

In both instances, the goal of such requirementsis to incorporate some flexibility in the
design process, so that a product’ s performance goals can be adjusted as engineers become better
informed about what ispossible. Liker et al., for example, found that companies using set-based
requirements practices tended not to use these methods based on any formal intent to do so.
Instead, they were simply unsure of exactly what the requirements should be early in the design
process (Liker et al., p. 177). By allowing the requirements to evolve, these companies avoided
placing unnecessary and inappropriate constraints on their designs, while also clearly stating the

goalsfor the fina product.

3.4.6 Managing Set-Based Concurrent Engineering

Supervising these narrowing processes for both designs and requirements mandates a
dightly different management approach than is normally used in engineering design. SBCE
“views the [design] process as more of aflow than as an arrangement of tasks” (Sobek, 1997, p.
233). Consequently, management practices must be geared to regulating this flow. Specificaly,
the major issue for managing set-based design is to ensure that the narrowing process does in fact
occur.

An efficient means of controlling this development is through the use of process gates. As
oppossed to design reviews or checkpoints, gates are based on integration activities such as the
construction of prototypes (Sobek, 1997, p. 233). As Wheelwright and Clark state, prototypes
provide “feedback about the choices made thus far and highlight remaining unresolved issues’ (p.
259). In addition, prototypes serve as bridges “between individuals and groups with very different

backgrounds, experiences, and interests’ (Wheewright and Clark, p. 274). A prototype,
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therefore, provides an effective mechanism for integrating the various solutions being pursued by
different functional groups.

In addition to prototypes, sets themselves are actually a useful tool for managing the design
process. The size of aset isan indication of the feasibility of the remaining design alternatives
(Sobek, 1997). If asetisstill very large, it indicates that engineers are still uncertain about the
design. When a set becomes small, on the other hand, it demonstrates that engineers are confident
that they are nearly at the final solution. Thus, process gates serve as formal points in the
development process at which managers and engineers can review how large various sets are. Sets
that are larger than others provide managers and engineers with a clear signal as to which aspects
of the design are progressing more slowly than others, and, therefore, which aspects require more
attention. Hence, in addition to aiding engineers communicate with one another, sets help

engineers and managers control the design process.

3.5 Other Methods Which Recommend Carrying Options

3.5.1 Two Examples

Many authors on design and engineering emphasi ze the importance of considering multiple
design alternatives, especially early in the design process. Pahl, for example, states that “the
solution field should be as wide as possible” (p. 112). Ulrich and Eppinger cite several common

failuresin concept development which stem from not evaluating enough design options, including:
only considering one or two alternatives,
failing to consider concepts used by other firms*in related or unrelated products;”
failing to successfully integrate severa promising “partia solutions;” and

failing to consider “entire categories of solutions’ (p. 79).
In addition they note that “[t]horough exploration of alternatives early in the development process

greatly reduces the likelihood that the team will stumble upon a superior concept late in the process
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or that a competitor will introduce a product with dramatically better performance than the product
under development” (p. 78). Two specific approaches help to illustrate how designers might
consider multiple design alternatives.

Pugh recommends a method of “controlled convergence.” In this approach to design,
engineers and designersinitially develop avery large number of design concepts. These concepts
are then compared to the customer’ s needs and to one another. Concepts which rate highly are
retained, while others are discarded. Once the initial number of designs has been reduced, the
design team again considers additional alternatives -- either modifications of some of the initial
concepts or entirely new concepts. This set of designsis narrowed further, and then, again, new
options are added. The process continues in this fashion, with the generation of ideas followed by
convergence. Each successive iteration of the process results in a narrower and narrower field of
aternatives, until only one option remains. This repetitive expansion and contraction approach is

illustrated in Figure 14.
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Figure 14. Method of controlled convergence. A number of design concepts are
generated and then reduced, so that numerous design options are considered, until only one design
remains. (Adapted from Pugh, p. 75)

Wheelwright and Clark propose a similar approach to design based upon the design-build-
test cycle. Illustrated in Figure 15, the first step in the process is to frame the problem: establish
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product and manufacturing process requirements, clarify user needs, etc. Once the requirements
are clearly understood, several alternative designs are devel oped, the purpose of which “may be to
explore the relationship between design parameters and specific customer attributes’ (Wheelwright
and Clark, p. 223). Models, either physical or computer-based, are then constructed and
“subjected to tests that simulate product use” (Wheelwright and Clark, p. 6). If the modelsfall
short of performance requirements, “engineers search for design changes that will close the gap”
between the models' performance and the required performance (Wheelwright and Clark, p. 6).
The design-build-test cycle isthen repeated, until all of the requirements are fulfilled.

This approach to design, therefore, is built around the concept of repetition. A single
design-build-test cycle is used to provide information to the next iteration of the cycle. The
effectiveness of this method, then, depends upon the effectiveness of a single cycle, the number of
cyclesthat are completed, and how well the results of individual cycles are combined into coherent

solutions (Wheelwright and Clark, p. 226).

DESIGN BUILD TEST
establish generate build models run experiments
goals alternatives or prototypes or simulations
Al Alternative 1
targets
/V meets
frame the . evaluate| 90als -
solution
gap problem a . results -
\b ‘;U”_e“‘ \ falls short
esgn A3 Alternative 3 of goajs
T repeat cycle

Figure 15: The design-build-test cycle. Product and process goals are first established,
leading to the development of several design alternatives. The aternatives are modeled and tested,
and the results of the tests are used to determine if a design meets the goals or if further
development isrequired.
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3.5.2 Contrasting These Methods with SBCE: Different but Highly

Complimentary

Both of these approaches emphasi ze the importance of considering multiple alternatives.
They differ, however, from SBCE in one key respect: how the options are used. Controlled
convergence and design-build-test both suggest that rather than considering multiple aternatives
and then quickly selecting only one, several should be carried for a protracted period of time. This
concept is analogous to one of the two primary principles of SBCE -- considering multiple design
aternatives. Where these methods differ from SBCE, however, is the manner in which the design
options are used. In both Pugh’s controlled convergence method and Wheelwright's and Clark’s
design-build-test cycle, alternatives are generated to understand how different design parameters
impact a concept’ s ability to satisfy a user’s requirements. SBCE uses design options in this
manner, but set-based methods also use options to allow each specialty group working on a
product to explore the design space independently. By allowing specialty groups to independently
analyze their design options, set-based methods diminate the iterative paths which can be so
problematic in point-based approaches. Controlled convergence and design-build-test do not
necessarily emphasize this use of design options.

It is important to recognize, however, that set-based methods and approaches such as
controlled convergence and design-build-test are not mutually exclusive. In fact, they are highly
complimentary. For example, set-based methods rely on periodic tests to help narrow sets of
design options, and these testing cycles are essentially the same as those described by Wheelwright
and Clark. The principal differenceisthat whereas Wheelwright and Clark use tests to determine
whether or not to consider new design options, SBCE uses tests to eliminate previously generated
options and to determine when to increase the level of detail in the remaining design alternatives.

Similarly, Pugh’s technique and SBCE can aso be used together. Controlled convergence
accepts aredlity of design: Rarely (if ever!) isit possible to identify every design option at the start
of adevelopment project. Instead, an initia set of designsis generated, and, based on the analysis

of these designs, engineers develop new concepts. Pugh’s method provides a means for allowing

60



the inclusion of such additional ideas while preventing engineers from simply developing new
options without ever driving toward afinal solution.

Ideally, a set-based approach would begin by considering every possible design option and
would then eliminate designs, so that number of solutions was aways reduced and never
increased. If such atask were possible, however, the design process would in fact be quite dull:
The ability to generate every possible option at the beginning of a project essentially implies the
ability to foresee the future. Rather than clinging to the false belief that engineers could possess
such vision and then attempting to prevent increases in the set of design options at all costs, the
blending of controlled convergence with SBCE allows for the flexibility of considering additional
options while at the same time maintaining the advantages offered by pure set-based practices, such
as removing iterative paths between specialty groups. Though this practice violates the principle of
remaining within a set, if used cautiously, controlled convergence could help engineers avoid
narrowing their designsto anull set, that is, afinal solution which in fact will not work.

Rather than suggesting that SBCE replace other approaches to design, therefore, it is
important to identify the similarities between different methods and then to cepitaize on the
advantages offered by each. By combining elements of several design techniques, engineers will
be able to develop robust design capabilities which will be highly adaptable to a wide variety of

product devel opment problems.

3.6 SBCE versus Platform Design

At first glance, another strategy with similarities to SBCE is platform design. There are,
however, important distinctions between SBCE and platform design. To understand these
differences, one must first understand what is meant by platform design.

Platform design refers to a product development strategy in which a company develops a
family of products which can share components and assests to target specific market segments

(Meyer and Utterbeck). A product platform, therefore, consists of the design and components
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which are “shared by a set of products’ (Meyer and Utterbeck, p. 30). By combining components
in different arrangements, a platform can give rise to a product family, in which each member is
tailored to the needs of a specific customer group.

Platform design, therefore, refers to the product strategy of developing product families.
In contrast, SBCE refers specifically to the design strategy used to implement a product strategy.
Thus, a platform product could be developed using SBCE, but it could also be developed using a
point-based, iterative strategy. Furthermore, SBCE can be used to devel op a specific product, one
that is not part of afamily.

Note, however, that SBCE is highly conducive to a platform design: Asa set of product
components are devel oped, individual elements of that set could give rise to the product variations
used to implement a product family. On the other hand, when pursuing a specific product design
(onethat will not lead to afamily), individual elements of a set are discarded when they are shown
to beinferior. The purpose of considering those alternativesisto ensure that the design space was
thoroughly explored so that the best design is chosen. In the context of a platform product
strategy, the aternatives might be used instead to develop the interchangeable elements of a
platform.

In summary, therefore, platform design refers to the product strategy, while SBCE refers

to thedesign strategy used to develop a product.

3.7 Summarizing Set-Based Concurrent Engineering

To summarize, SBCE consists of two principle concepts:
1. Consider alarge number of design alternatives, i.e., sets of designs; and
2. Allow specialists to consider a design from their own perspective, using the overlap
(intersection) between individual setsto optimize a design.
Table 1 expands these fundamental concepts of SBCE, and Table 2 illustrates how it differs from

point-based, iterative methods. The overall effects of this method are depicted in Figure 16, a
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reproduction of Figure 12: Set-based methods are used to delay decisions so that engineers can

delay designing costs into a system and increase their leverage late in the development process.

Table 1: Principles of SBCE (Adapted from Sobek et al.)

Understand the design space
Define feasible regions
Explore tradeoffs by designing multiple alternatives
Communicate sets of possibilities
I ntegrate by intersection
Look for intersections of feasible sets
Impose minimum (maximum) constraint
Seek conceptual robustness
Establish feasibility before commitment
Narrow sets gradually while increasing detail
Stay within set once committed
Control by managing uncertainty at process gates
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Comparison of Point-Based and Set-Based Approaches (Adapted from

Point-Based Approach

Set-Based Approach

Table 2:
Sobek, 1997)
Function
Search: How should solutions be
found?

Iterate on existing ideas.
Brainstorm new idess.

Define feasible regions.

Communication: Whichideasare
communicated to others?

Communicate the best idea.

Communicate sets of
possibilities.

Integration: How should the

Pass the idea among the team for

Look for intersections.

system be integrated? critique.
Sdlection: How isthebestidea | Forma schemesfor selecting the Design in parallel on each
identified? best alternative. aternative until it is not worth
Make prototypes to confirm that pursuing.
the solution works. Look for low cost tests to prove
infeasibility.
Design in paralel on each

Optimization: How should the
design be optimized?

Analyze and test the design.
Modify the design as necessary to
achieve objectives and improve
performance.

alternative until it is not worth
pursuing.
Look for low cost tests to prove
infeasibility.

Soecification: How should you
constrain others with respect to
your own subsystem design?

Maximize constraintsin
specifications to assure
functionality and interface fit.

Use minimum control
specifications to allow
optimization and mutual
adjustment.

Decision risk control: How
should one minimize the risk of
“going down the wrong path?’

Establish feedback channels.
Communicate often.
Respond quickly to changes.

Establish feasibility before
commitment.
Pursue high-risk and conservative
optionsin parallel.
Seek solutions robust to physical,
market, and design variation.

Rework risk control:
one minimize damage from
unreliable communications?

Management: How should the

process be controlled?

How should

Establish feedback channels.
Communicate often.
Respond quickly to changes.
Review designs and manage

information at transition points.

Stay within sets once committed.

Manage uncertainty at process
gates.
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Figure 16: The effects of SBCE.

In essence, SBCE provides a mechanism to allow

managers and engineers to delay decisions while at the same time continuing to develop a product.
The effects of SBCE, therefore, are to delay the commitment of costs and to increase management

influence late in the devel opment process.
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4. Example of SBCE from Toyota and Its Suppliers

4.1 Introduction: “The Second Toyota Paradox”

Toyota' s design and devel opment practices clearly form atightly integrated process, and it
is not the intent of thisthesisto review it in detail’. Instead, the following paragraphs will
illustrate some set-based practices which Ward, Sobek, and their associates have detailed. These
examples are useful both to clarify the theory presented in the previous chapter and as reference
points for comparison with aerospace practices (described in the coming chapters).

In their study of Japanese and American car manufacturers’ development practices, Ward et
al. had hoped to be able contrast design methods between the two countries. What they
discovered, however, was that practices across the Pacific were becoming quite similar, except for
one company, which stood out from the others: Toyota (Ward, et al., p. 45). Based on their
research, they coined the phrase “The Second Toyota Paradox” to describe Toyota' s development
process’. Sobek et al. summarize the paradox as “consider[ing] a broader range of possible
designs and delay[ing] certain design decisions longer than other companies, yet [having] what
may be the fastest and most efficient vehicle development cyclesin the industry” (p. 3).

The following sections of this chapter will provide examples of set-based practices from
Toyota. The next section will describe set-based practices within Toyota, while the subsequent

section will illustrate set-based methods between Toyota and its suppliers.

3 For an excellent description of the Toyota development process see Sobek, 1997, from which much of the material
in these sectionsis drawn.
* The “first” Toyota paradox refers to the Toyota Production System (TPS).
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4.2 Set-Based Practices within Toyota

4.2.1 Design Organization

At the corporate level, Toyota' s design engineers are organized into platform divisions.
Within each division, engineers on a specific project are arranged in a*“chimney” structure based
on amatrix organization (Ward et al., p. 46). For each program, as was noted above, ateam’s
structure follows functional lines, such as styling, body engineering, chassis, powertrain,
prototype, and manufacturing (Sobek, 1997). In fact, the manufacturing organization is actually
located in a separate building nearly twenty milesfrom the rest of the development engineers
(Sobek, 1997). Engineers are usually assigned to multiple programs, working on the same aspect
of adesign for each project in which they are participating (Sobek, 1997, p. 139).

An important feature of Toyota’ s design organization is the chief engineer. Similar to a
heavyweight program manager, the chief engineer is responsible for the entire development of a
new car, from the very first notions of what type of car should be developed all the way through
manufacturing and sales (Sobek, 1997; Ward et al.). The chief engineer is responsible for defining
the architecture of a new vehicle, developing the vehicle’s specifications, performance and cost
targets, and schedule and product plan. Furthermore, when conflicts arise between engineering
groups, the chief engineer has the final word in any design compromises (Sobek, 1997, p. 167).

To balance this considerable authority, the chief engineer actually has no formal control
over any of the engineers which work for him (Sobek, 1997, p. 145). Instead, engineers assigned
to a particular program report back to their own functiona organizations. This apparent
organizational paradox functions well because of the mutual dependence of the functiona
organizations and the chief engineer (Sobek, 1997). The chief engineer depends upon the
functional groups to provide engineers to actually do the work required to develop a new car.
Since the chief engineer is responsible for overseeing the development of new vehicles, however,

the functional organizations depend upon chief engineers to provide them with work.
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Furthermore, both groups, the functional engineers and the chief engineer, are evaluated within
their own organizations based upon the success of a development program. These mutual

dependencies, therefore, force cooperation between the two groups, alowing the process to work

effectively.

4.2.2 A Quick Overview of the Process Highlighting the Use of Sets

Based on material presented in Ward et al., Sobek (1997), and Sobek et al., Figure 17
presents a simplified overview of the Toyota development process. The following paragraphs
review their approach in greater detail, highlighting how Toyota employs set-based methods in

their development process.

Chief Concept
Engineer P
Styling 5-10 Concepts  2-3 1
/—
Product — detail design
Eng’g kentouzu K4 o
(ex: Body) —
Prototype 1S 2S
Manuf’g Prﬁ'quL:Ct 1A 2A
checkasts TIME (~42 mos.) -

Figure 17: A simplified overview of the Toyota development process. As shown,
the design process begins with the chief engineer’s concept. Styling then develops a range of
aternative designs, which are analyzed by the engineering departments. Two prototype cycles are
used to finalize design decisions, leading to two trial production runs. Note that in thissimplified
illustration, only body engineering is listed under product engineering. Other product engineering
groups include chassis and powertrain. (Based on material in Sobek, 1997; Sobek et al.; and
Wardet al )
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Toyota' s development process begins with the chief engineer and his support staff.
Together, they conceive of an overall vision of the new vehicle that is to be developed, referred to
asthe chief engineer’s concept. This concept will suggest the basic style of vehicle, what type of
engine and suspension it will use, and what its performance and cost targets will be. Next, stylists
begin to develop arange of potential design options, essentially creating a set of aternatives.
Typically, they develop five to ten concepts which are then shown to the product engineering
groups. Toyota's genera manager of styling commented that they pursue so many designs
because they “prefer lots of torpedoesto asingle sniper bullet” (Ward et al., p. 47).

Simultaneously, manufacturing engineers will review current and future manufacturing
capabilities, and then summarize these capabilities on pre-product checklists. These checklists,
which are given to the engineers and stylists developing a new design, detail only those process
capabilities which will be relevant to a particular program. As one production manager explained,
by providing the checklists, manufacturing hands over their design experience to the stylists and
engineers (Sobek, 1997, p. 180).

Using body engineering as an example, the engineering groups review the pre-product
checklists and the initial concepts provided by styling. They then develop initia engineering
drawings, which in the case of body engineering, are referred to as kentouzu, or “study drawings’
(Sobek, 1997, p. 91). These drawings present preliminary concepts for the structural design of
each style under consideration by the stylists. Importantly, these drawings are then shared with the
stylists, informing them as to what problems the body engineers have with a particular style and
what improvements can be made.

Using the information provided by the kentouzu, the stylists then narrow the number of
designs which they consider to two to three alternatives. These designs are then made into full-
scale clay models for further review and critique. In paralel, body engineering develops the
kozokeikaku, referred to as the K4 by American engineers, which are more detailed structural

designs (Sobek, 1997, p. 92). These drawings refine the concepts initially developed in the

70



kentouzu. In addition, body engineering conducts crash analyses, and uses checklists developed
from past lessons learned to further understand the performance of each design. This data, along
with similar information from other engineering groups, and the input of manufacturing engineers
and the chief engineer, isthen used to select afinal style.

Detail design then begins. Stylists become less involved in the process, though the chief
stylist will continue to observe the engineering process, ensuring that modifications made by the
engineering groups do not spoil the intended style of the vehicle. In general, decisions during
detail design are delayed for as long as possible. For example, the final locations of body
hardpoints, which can significantly affect the shape of the vehicle, are made as late in the process
as possible, even though such delays decrease the time available for die designersto finalize die
shapes (Ward et al., p. 48). The general manager of body engineering explained that such late
decision-making is required to ensure that the customer’ s expectations are fully understood and that
the design will be manufacturable (Ward et al., p. 52).

As detail design progresses, two prototype cycles are used to refine the design. The first
set of prototypes, the 1S prototypes, are used to select between different subsystems and to test
variations in specific design features. Based on the results of this testing, specifications are
modified, and the 2S prototypes are constructed. Aslong as the test results of the 2S prototypes
confirm the decisions made after the 1S vehicles, the final set of specifications will be released
(Ward et al., p. 23). Importantly, however, it is after this second round of prototypes that
requirements are finalized, very late in the design process indeed.

Changes made during the prototype cycles are incorporated into the detailed engineering
drawings, which are then released to manufacturing for the first pre-production build, referred to
asthe 1A production run. An interesting feature of this process is demonstrated in the construction
of body panel stamping dies’. Drawings for the body panels will be released to manufacturing

without tolerances. Manufacturing engineers then build the dies as closely as possible to the

® The following account is supplemented by material in Liker et al. in addition to information provided in Sobek
(1997) and Ward et al.
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nominal dimensions indicated by the body designers. The dies are then tested, and, if they yield
satisfactory results, the final part dimensions are then sent back to body engineering, which
updates their drawings to reflect what is actually built. A second trial production run, 2A, isthen

conducted to verify the final designs, followed by the start of full-scale production.

4.2.3 Discussion of the Process: The Relationship between Upstream and

Downstream Groups and the Use of Standardized Processes

Two feature of the process described above are worthy of additional comment. Thefirst is
the relationship between upstream and downstream processes, and the second is the extensive use
of checklists and standardized processes.

As suggested by SBCE theory, the different groups involved in the design process all
clearly consider a set of design options. In addition, they independently analyze these options
from their own perspectives. The Toyota development process, therefore, seems to satisfy both
elements of the definition of SBCE. But what is particularly interesting is how the different groups
coordinate their exploration of this set. For example, once the stylists present a set of design
aternatives, body engineers use the kentouzu to provide information back to the stylists asto their
preferred options. The pre-product checklists provided by manufacturing provide a smilar
function. These checklists inform the other design groups about the capabilities of the
manufacturing department, and, consequently, what designs will be easiest to manufacture, i.e.,
which designs would be preferred by the manufacturing engineers. These communication tools,
therefore, provide mechanisms for downstream groups to inform the upstream groups about their
design preferences.

Another feature of the Toyota development cycle which stands out isits use of standardized
design practices. A common manifestation of these standards is the use of design checklists.
Functional groups exchange these checklists to share their knowledge and experience and also to

help ensure that a design will be acceptable to other groups: “If the design conforms to the
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checklist, the part is guaranteed to meet a certain level of functionality, manufacturability, etc.”
(Sobek et al., p. 13).

While checklists can help to ensure success in the design effort, they could also stifle
engineers creativity, and, consequently, their ability to develop products which will satisfy the
customer. To avoid such problems, Toyota uses an approach which Sobek (1997) refersto as
“flexible standardization” (p. 194). For example, a design standard will not require that a specific
flange radius be used for a certain part, but will instead recommend that the radius fall within a
certain range depending upon the grade of steel used in the design. In addition, efforts are made to
continuously improve design standards, so that the realm of possibilities is always increasing
(Sobek, 1997, p. 194). Finally, Toyota does allow deviations from the standards, so long as an
engineer can demonstrate that such a deviation will result in a significant improvement in adesign
(Sobek, 1997, p. 194).

Standardized practices are also important at Toyota for several additional reasons. First,
they provide a basis for measuring improvements (Sobek, 1997, p. 192). If the design process
itself varied every time, engineers would have no way of knowing whether or not problems and
successes were the result of chance or something specific which they did. Once a process is
standardized, on the other hand, changes which result in improved designs can readily be
discerned when compared to prior techniques. Similarly, when problems do occur, engineers can
trace their steps through the standard process to determine where a problem originated and then
change the process so that the problem is avoided in the future (Sobek, 1997, p. 192). Finaly,
these gradual changes and improvements to standardized processes provide Toyota with asimple
technique for capturing knowledge as engineers leave the company (Sobek, 1997, p. 193). By
embedding the experience of past engineersin a standardized process, the engineering knowledge

possessed by an individual is transferred to the company.
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4.3 Set-Based Practices between Toyota and Its Suppliers

In addition to practicing many set-based techniques within its own processes, many of the
methods used by Toyota to interact with its suppliers also illustrate set-based techniques. Figure
18 presents on overview of the supplier development timeline, and the following paragraphs

provide details of the process and some examples.

A
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S Supplier presentations
Number of \
designs rgmal ning Spec targets est'd 1st Prototype
under

2nd Prototype
Final specs; drawing release
Production

consideration
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Months until start of production

Figure 18: The supplier timeline. Suppliersfirst become involved in the design process
when they present their latest developments to Toyota. Once selected for a specific program, target
specifications are first established, which are used to guide the development of a subsystem. Two
prototype cycles are used to validate the design, leading to the final specifications that drawing
release, followed shortly thereafter by production. (Based on material in Carbone; Sobek, 1997;
Sobek et al.; and Ward et. al.)

To begin to understand Toyota' s relationships with itsfirst tier (i.e., closest) suppliers, one
must recognize that Toyota does not use a bid system, asis common practice at other companies.
Instead, “when Toyota conceives an idea for a new car model it uses the design expertise of its
suppliers to devel op the specifications of parts and systems” (Carbone, p. 15). A supplier’s
involvement in a new product development effort begins when the supplier presents its latest
technologies to Toyotaengineers. Toyotawill then use these presentations to establish preliminary

target specifications for anew part or subsystem (Ward et al., p. 57). The supplier is then
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expected to return several months later “with a number of alternative designs, analysis and test
data, and, when possible, prototypes” (Sobek, 1997, p. 212). These practices “allow the [chief
engineer] to understand the trade-offs and set [refined] targets to produce the best possible design”
(Wardet al., p. 57). Asthe supplier refinesits design, the target specifications are narrowed, until
finally very precise requirements are stipulated for the supplier’s product (Ward et al.). As shown
in Figure 18, however, these final specifications are not released until very late in the devel opment
process, after Toyota and the supplier have been able to test the product extensively.

Interestingly, this gradual development of requirements seems to be complemented by the
scheduling techniques used between Toyota and its major suppliers. Rather than establishing
numerous, specific deadlines, Toyota only specifies maor program milestones and then allows the
suppliers to decide schedule details, such as when to initiate efforts to obtain information or to
refineadesign (Ward et al.). These practices are similar to those which Toyota uses in-house, to
establish its own program schedules and timelines (Sobek, 1997).

Two examples help to illustrate these practices. Consider first the development of an
exterior plastic mold®. Toyota designers first draw a sketch of the part which is then shown to
several suppliers. Each supplier then develops five to six alternative concepts, which they share
with the Toyota designers. Based on these sets of designs, Toyota selects asingle supplier. Then,
working together, the Toyota designers and engineers from the supplier refine the details of the
design, “reducing the set until arriving at the final specifications’ (Sobek etal., p. 15).

A similar process is followed in the case of the exhaust system. In thisinstance, however,
asingle supplier will typically produce ten to twenty prototypes, and has constructed as many as
fifty (Sobek et al., p. 14; Liker et al., p. 169). The motivation behind the development of so many
prototypes was to allow “for knowledgeable tradeoffs to define the optimum subsystem” (Sobek et
al., p. 14).

These examples help to demonstrate how Toyota relates to its suppliers, but several

additional points should be noted. First, Toyota does not use these techniques with all of its
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suppliers. Suppliers which are regarded highly are treated in the manner described above, while
othersreceive very detailed specifications which must be fulfilled exactly (Liker et al., p. 169). In
addition, the communication skills required to use these techniques take time to evolve. As severd
supplier representatives explained, they “understand from the stage of the process, the body
language of [Toyota s] engineers, and the atmosphere of [a] meeting how much flexibility remains
around [a specification], i.e., an implicit range of requirements’ (Liker et al., p. 176).

Finally, when a prime makes use of such set-based techniques with its suppliers, the prime
“must trust that the supplier will not take advantage of the tolerance and send back the cheapest
design that falls within the acceptable range,” while the supplier “must understand that the
customer has some implied tolerance and take responsibility for understanding the [prime’ s] intent
and creatively explore designsto meet it” (Liker et al., p. 169). Clearly Toyota s methods for
supplier relations are innovative and can potentially improve such alliances. At the same time,
however, managers at primes and at suppliers must trust one another to not abuse the system, so

that both groups’ needs are satisfied.

® This example is based on material presented in Sobek et al.
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5. Assessing the “Set-Basedness” of the Aerospace Industry:

Setting the Stage

5.1 Chapter Introduction

Thefirst goal of this research wasto provide a clear definition of the principles of set-based
concurrent engineering so that it could be compared and contrasted with other approaches, a goal
accomplished in the preceding chapters. The second goal of this research was to assess whether or
not current aerospace industry design methods demonstrated any SBCE-like practices. To that
end, the following chapters will present several “mini-case studies’ describing design processes at
avariety of aerospace companies. Aswill be seen, no company used the term “set-based” to
describe their techniques, though methods at some firms had elements of SBCE in them. Other
companies, however, used approaches which much more closely resembled point-based methods
of design.

The next section will provide a brief overview of the research design used to conduct the
industry study. Following sections and chapters will then present the mini-case studies, along
with discussion and comment relative to SBCE principles. Chapter 10 then concludes with an

overal assessment of industry practicesin the context of set-based concurrent engineering.

5.2 Research Design

Design methods present a challenge for research. By its nature, “design” istypically an
inexact science (Suh). It does not, therefore, readily lend itself to quantitative study, especially in
the specific case of design methods -- how engineers do design. Furthermore, the intent of this

research was not necessarily to propose that one design method is better than another -- acommon
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use of quantitative measures. Instead, this research aimed to understand the current state of
aerospace design practices and the reasons behind those practices. Based on that understanding,
SBCE can be placed in the proper context within the aerospace engineering environment, and
presented to engineers as another tool which they might choose for a given problem.

To gain this needed understanding of design methods, this investigation approached the
problem through a series of mini-case studies. Site visits were conducted at several Lean
Aerospace Initiative consortium members' facilities, where interviews were held with engineers
working on avariety of programs at severa levels, from program managers to detail design
engineers. For reasons of confidentiality, no company or program names can be used in this

thesis, though Table 3 provides a sense of the scope of this research effort.

Table 3: Measuring the scope of thisinvestigation.
Number of Sites Visited: | 9

Sectors Represented: Combat Aircraft, Missiles and
Electronics, Space Systems
Total Number of 88

I nterviews Conducted:
Number of Interviewees | 65 (74% of tota)
with Titles of Manager,
Director, Leader, or Chief
Engineer:

Number of Interviewees | 23 (26% of tota)
with Title of Engineer:

Interviews were typically conducted with individuals, though some interviews took placein
small groups usually no larger than three. Prior to going to a site, a brief overview of the research
(which essentially contained the material presented in the introduction to the thesis) was forwarded
to the company, although not every individual who was interviewed had necessarily seen the
summary. Each interview began in the same fashion, with a brief introduction to the research, its
goals, an overview of SBCE theory, and a hypothetical example of how SBCE could be applied to

an aerospace problem. This presentation isincluded in Appendix A.
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Depending upon the person being interviewed and his or her prior degree of preparation,
sessions usually followed one of two paths. |If the person had had the opportunity to prepare
material prior to the meeting, he or she would present that information, often tailoring it “on the
fly” to more specifically address issues raised during the SBCE presentation. A discussion would
then ensue, guided by reference to the questionslisted in Table 4. If the person had not had the
opportunity to prepare in advance, the session moved immediately to the interview questions.
Answers varied, of course, depending upon the program on which the person worked, his or her
role on that program, and the individual’s own personal perceptions. Typicaly, however,
responses to questions were fairly consistent across a company, even when engineers were

working on different programs.
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Table 4: Interview questions.

Defining Requirements.
How are requirements usually specified -- as single values, as ranges, or as combinations of both?
When are requirements set in the design process -- early, late, etc.?
Aretools such as quality function deployment used, and, if so, how?

Number of alternative concepts considered.

How many alternatives are considered during the design process?

How do these alternatives differ, i.e., are completely different systems being compared or are
comparisons made between “variations on atheme”?

Are different alternatives conddered at each level of design, i.e., complete systems, subsystems,
small parts?

How long are the different alternatives considered, and are multiple concepts developed in parallel?

What means are used to eliminate designs from consideration?

Iteration”.

What are the major causes of iteration in design? Iteration defined in terms of trades between
engineering specialties.

Arethese tradeoffs considered in series or in paralel?

Do design schedules include plans for iteration?

Use of prototypes’.
Are prototypes regularly used in the devel opment process?
If s0, how many prototypes are developed?
Are these prototypes shown to the customer?

Team organization and communication’.

How are design teams organized?

What mechanisms are used to facilitate inter-team communication?
Interface between design and manufacturing’.

How is a part design communicated to manufacturing?

What constraints, tolerances or specifications are given on drawings prior to manufacture, and how
are these requirements derived?
Are there other features of the design process which these questions fail to capture?
What do you think works well about the way in which you do design?

What aspects of your design method do you think need improvement, if any?

Have there been instances in which you would have preferred to delay making a
decision?

“These questions were not addressed in every interview.

Notes from the interviews were then compiled into one or more summaries, each summary
covering a specific topic. These summaries were then passed back to each company for their
comment and approval. Once corrected and approved, the summaries were incorporated into the

following sections.
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5.3 Overview of Results

As was summarized in the previous chapter, SBCE consists of two primary concepts:
considering a large number of design aternatives and allowing specialty groups to consider
aternatives independently. Thus, interview discussions tended to focus on topics related to
demonstrating that set-based concepts were either followed or not followed, and why. Asthe next
sections will demonstrate, no company clearly practiced both of the core principles of SBCE.
Interestingly, almost every company visited was in the midst of reforming their design process in
one way or another. Several of these reform efforts included tools aimed at allowing engineersto
consider a greater number of design alternatives, while others focused on the development of
standardized products which could be applied to severa programs. Therefore, evidence was found
demonstrating that some aerospace companies do consider sets of concepts Furthermore, some
engineers described how engineering specialists do consider several design options from their own
perspective. However, these engineers also stated that specialists typically share only one idea --
their “best” idea -- with other engineers. Hence, these practices fall short of ideal set-based
techniques which call for the sharing of multiple ideas to establish regions of overlap.

The following sections and chapters present eleven examples based on site visits. Thefirst
presents an overview of the design process at an airframe manufacturer, and this example is used
to frame a discussion of common themes seen on many of the site visits. Later sections provide
examples of more specific design strategies, followed by a chapter providing descriptions of new
virtual product development tools being developed at two companies. Standardized product and
process development initiatives at three companies are then discussed, as are the effects of reform
efforts such as Cost as an Independent Variable (CAIV). Thefina chapter to this portion of the
thesis closes by considering additional design process constraints which aerospace companies face
and then by providing an overall assessment of the set-basedness of the industry, as represented by

the companies visited for this study.
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5.4 Common Themes: An Example

A description of the traditional product development cycle at an airframe manufacturer
provides a good example of several themes common throughout the aerospace industry. Aswill be
discussed, these shared traits include the nature of the conceptua development effort, the
relationships between engineers, and the effects of the government contracting environment on the
design process.

At this company, design work for a new system began during the proposal stage, which
typically lasted for one year and culminated in a bid for a development contract. The company
began design at this stage by defining basic parametersrelated to the airplane's configuration:
number of engines, tail arrangement, wing layout, etc. An in-house-developed computer aided
design system was used to assist configuration engineers to consider a variety of concepts by
making rapid parametric design changes.

Once the configuration engineers selected an initid baseline design, this concept was
passed onto the structural engineers, who designed the preliminary structural arrangement. Asthe
structural engineers began their analysis, the configuration engineers often passed on one or two
more designs, each of which was analyzed in turn. It isimportant to note, however, that the
configuration team might have considered several other designs that were not passed on to the
structural engineers.

Structural engineers began their work by considering different wing structura
arrangements and means of attaching wingsto the fuselage, as well as how many spars and
bulkheads should be incorporated into the airframe. Next, a coarse-grid finite element model
(FEM) was generated, which was used to develop an initial estimate of the loads in the airframe.
Historical data were also used to supplement this analysis. The FEM and |oads analyses were
repeated severa times, with each iteration in the analyses being used to refine the design.

One structural engineer said that his group typically began with a basdeline design and
conducted afirst analysis. He suggested that in many cases, a structural engineering team was able

to determine the “best” arrangement on their first attempt at a solution based on past experience.
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When a significant amount of uncertainty was present in a design, alternative arrangements were
developed which explored variations in the spacing of bulkheads, variations in web or skin
thickness, and possibly some different joint designs. Sketches were often used to communicate
these alternatives, rather than detailed engineering drawings. These variationsin design, however,
were only considered for the configuration being analyzed at that time -- different configurations
had their own structural alternatives.

Manufacturing engineers were brought into the design process at this point in the system’s
development as well. “Working side-by-side” with the structural engineers, as described by one
designer, these two groups devel oped subassemblies, designated structural breaks for economic
manufacturing, and detailed other structural and manufacturing elements. This process was
described as a give and take procedure, with one group proposing a design, the other group
commenting, and the design then being revised.

One engineer also noted that design reviews were a source of concept exploration during
thistime. He described a process in which engineers explored “ranges’ of designs, alowing
different engineers from different specialties to understand one another’ s limits and constraints.
This process has become more important as systems have become more tightly integrated, forcing
closer coordination between specialties. In parale with this design analysis, preiminary
schedules for the entire program (i.e., concept design through production) were developed, along
with an initial top level schedule for the release of drawings.

As the time approached to submit a bid, the design group converged on a single concept
from the two or three which had been analyzed, as typically required in government-sponsored
concept exploration contracts. Once the company won the proposal, the selected configuration
progressed into conceptual design. At thistime, it was common that there would be revisions to
the system’s requirements. These changes would prompt the design team to consider some
variations in the design, and to further update the configuration. More detail was added to the

design at this point, and wind tunnel models were constructed and tested.
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During this stage of development, a three-step analysis cycle drove the design process. 1)
an FEM analysis was conducted, 2) which was used to generate internal loads data for the design,
and 3) this data was then used to update the structural design and layout of the vehicle. One such
iteration typically lasted two to four months, and three of these cycles were usually executed during
the conceptual design phase, thus requiring 6-12 months for the complete process. By the end of
conceptual design, the basic concept for the vehicle had been finalized. The outside moldlines of
the design were fixed, as were the magjor structural components.

Once conceptual design was completed, the configuration engineers left the program, and
preliminary design then began, further refining the selected concept. Approximately three more
cycles of the FEM-loads-design process were conducted during preliminary design. Data from on-
going wind tunnel tests were also used to update the concept’ s configuration. In parallel, major
suppliers were contacted, and long-lead items were ordered. Layouts released at the end of
preliminary design included fasteners, clips, and brackets; all of which had been properly sized
based on stress analyses.

While the design of the vehicle itself was being completed, tool designers were beginning
their work. In conjunction with that effort, need dates for parts were established, and
manufacturing engineers determined in what order drawings should be released to meet the
manufacturing schedule.

Engineers described the next phase of the process, detail design, as “fast paced” and with
“little time to make changes.” A final stress analysis was released, though its results should not
have been drastically different from the last analysis (this analysis was described as the “ good
copy”). Tool designs were released along with final parts and assembly drawings, and additional
long lead items and other production materials were ordered.

Thefinal stagesin the development process were fabrication, assembly, and testing. The
fabrication and assembly of the first few vehicles provided an opportunity to address

manufacturing issues with operational hardware and suggestions were often made for how to



improve the design for a smooth transition into production. Sometimes these changes would be
incorporated “on the fly,” otherwise they might be incorporated in later vehicles.

The design process “ended” asthe first airframes were completed. Flight testing would
begin, and this testing might result in modifications to the design. Overall, however, the vast

majority of the design effort was completed at this point.

5.5 Discussion

As was noted, this example highlights several common themes which were seen during
amost all of the site visits. Each of these recurrent ideas will be reviewed in turn, following the

sequence of the design process described above.

5.5.1 Conceptual Design Processes

The conceptual design process at most companies took on one of two forms. The first
form was similar to the one illustrated above: a small group of engineers, akin to the configuration
engineers, would develop several different concepts, each of which would be analyzed by support
engineering groups. Based on the results of these analyses, the design group would narrow the
number of designs under consideration, until only one design remained. The second approach to
conceptual design focused on developing one design, and then passing that single concept on for
analysis. Inthe event that the design was dlightly deficient, it was modified, and then reanalyzed.
If the results of the analyses were completely unsatisfactory, a new design would be devel oped.

Of these two conceptual design techniques, the first -- considering several options and then
gradually selecting one -- is clearly more set-based than the second. Engineers using this process
readily accepted the ideas behind set-based concurrent engineering, and said that they practiced a
similar approach. These designers stated that the purpose behind the consideration of a large
number of alternatives was specifically to “understand the trade space,” as one engineer described.

By carrying out alarge number of conceptua trade studies, engineers gained a better understanding
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of what design features contributed to meeting requirements and what design features could be
used to help exceed requirements.

The second approach is not without merit, however. Engineers who practiced this
technique -- of considering just one idea at atime -- typically cited one of two reasons. Thefirst
reason was budget constraints. To consider a greater number of concepts usually requires more
engineers be assigned to aprogram. This greater staffing, obviously, requires more funding. In
programs without large budgets, money is often not available to allow for more engineers. The
small staff isthen only able to consider one or two options at atime. In these cases, engineers
often expressed a desire to consider a greater number of designs, but the budget realities of their
programs prevented such approaches.

The other case in which the more point-based approach was often used was when
engineers had a high degree of confidence that they knew the answer at the start of the program.
Such foreknowledge was typical on programs which were closely based on previous projects (as
opposed to a project requiring the invention of new technologies) or on programs when a specific
technology was required by the customer. In these instances, an engineer’s first guess would not
be far from correct relative to the final answer. Thus, rather than considering and then discarding
other options, engineers were comfortable “skipping ahead” to the one solution. A further
discussion of this design approach is presented in Section 6.2.

While there were some variations in these approaches to generating a design, one issue
which did not vary across all the companies was engineers’ emphasis on establishing a baseline
design. Engineers and managers at almost every company described the importance of having a
single design point around which specialty groups could base their design trades and analyses.
Depending upon the company, the amount of change expected in the baseline varied from “alittle’
to more than “ eighty-five percent.” Regardless of the degree of change, however, the purpose of
the baseline was always the same: to ensure that all the engineers on a program were working on
the same concept so that designers did not end up working on something irrelevant to the rest of

the team. Many of the managers and engineers interviewed described programs awash in chaos
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when a baseline was either not established or when it was improperly communicated among a
design team. The baseline clearly played an important coordination and integration role at almost

every company which was visited.

5.5.2 The Departure of the Conceptual Designers

As noted in the example, the configuration engineers -- the conceptual designers for the
company -- typically left a program by start of preliminary design. This tendency to have one
group of engineers responsible solely for conceptual design was seen at every company studied
during thisinvestigation. Engineers described conceptual designers as being very good at taking
amorphous notions and customer requirements and trandating those concepts into a concrete
design. These designers, however, often tended to show little interest in the later, more detailed
phases of the design process. Consequently, these conceptual designers have developed
specialized roles within programs, allowing them to apply their skills, and then to depart a program
when these skills are no longer needed.

This practice contrasts sharply with those at Toyota. The role of the conceptual designer at
Toyota appears to be shared by both the chief engineer and the stylists. Significantly, however,
both the chief engineer and a program’s lead stylist will stay with a project until its very end
(Sobek, 1997). This continued presence by the stylist allows him to ensure that later changes,
which must be made to accommodate engineering needs, do not violate the original styling intent.
His continued presence al so ensures that he has the opportunity to observe what difficulties were
encountered downstream because of decisions which had been made by the stylists. The lead
stylist will then be able to carry this knowledge with him to his next project, ensuring a feedback
loop in the design process (Sobek, 1997).

This feedback loop does not appear as strong at many of the sites visited for this research.
Some engineers, in fact, openly stated that they believed conceptua designers did not receive

enough feedback from downstream groups. Instead, conceptual design engineers tended to move
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directly from one program to the next and, as one engineer pointed out, would design features on
several programs, which caused downstream problems, before they received feedback information

about these difficulties.

5.5.3 Relationships between Engineers

As was illudtrated in the example, even very early stages of an aerospace product
development effort require the involvement of a diverse array of engineers. Interestingly,
regardless of the formal design process at a company, it appeared that the personal communications
between engineers were almost always set-based in nature. In the processillustrated above, for
example, a design engineer commented that he would often seek the advice of a manufacturing
engineer when he encountered a specific problem. In the ensuing discussion, the two would often
discuss a variety of options, explaining to each other the advantages of one design over another
from their own perspective. The discussion ended when a design was devel oped that met both
engineers’ needs.

The frequency and extent of these kinds of conversations seemed to vary across companies
-- they were described by virtually every engineer at the company used for the above example,
while at another company such conversations seemed more rare. Regardless of the how often such
conversations occurred, however, they were clearly quite set-based in character: Each engineer
would consider the design from his own perspective, make suggestions, and then the two would
modify their suggestions until a suitable degree of overlap was established. Thus, both tests of
SBCE are met: considering sets and working from an independent perspective. While these
conversations were often about very specific features of a design, and, therefore, extrapolating
across an entire development process is difficult, it seems clear that at an interpersonal level, set-

based methods are fairly common in the industry.
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5.5.4 Thelmpact of the Contracting Environment

Ancther issue raised at many of the companies was the effect of the contracting
environment on the design process. As shown in the example, designers selected a single concept
for presentation during the bid process. This rapid narrowing of concepts prior to submitting a bid
was described at many companies, across all of the sectors in which data was collected. Engineers
stated that they believed presenting multiple options for a bid would lower their standing in a
competitive selection process, so only one design was formally presented to the customer.

Therefore, from the per spective of the contractors, government practices seem to constrain
aerospace companies’ abilities to carry multiple concepts for an extended period of time’. As
described by engineers at several companies, typically after a contract award, both the winning
contractor and the government would review the design and the requirements, and often changes
would be made to both. Despite this period of review, however, the contractor will have
committed to adesign very early in the process possibly with relatively little development work to
substantiate the design.

Note that this development process contrasts dramatically with the relationship between
Toyotaand its top tier suppliers, which provide a good analogy for the aerospace environment. In
the aerospace industry, the contractors might be viewed as analogous Toyota' s suppliers, while the
government can thought of as analogous to Toyotaitself. While the real Toyota prefers to see
many options from all of its suppliers during their “bidding” process, it appears that the aerospace
industry operates using a slightly different model. Contractors might consider a large number of
design options, but, unlike Toyota' s suppliers, only one of these optionsis ultimately presented to
the government.

Engineers did note that depending upon the specific program, government and customer

representatives would review early design options, at which time multiple alternatives would be

"1t isimportant for the reader to note that this research only addressed the design process from the contractor’s
perspective, and not the government’s. Therefore, there likely exist important reasons for the government to insist
on this narrowing which were not uncovered during this investigation.
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shared. One program manager stated that he had worked on several programs in which the
customer dipulated that multiple designs be considered for a specified period of time.
Significantly, however, these requests for multiple design options were made during the pre-
proposal phases of the program. Once it was time to bid for the contract, only one design was
presented. It seems, therefore, that regardless of the preferences within a company, the external
contracting environment can and does have a significant impact on the number of optionswhich are

considered and the length of time during which these options remain under consideration.

5.5.5 The Analysis Cycle as a Driver of the Design Process

As described in the example, in the case of aircraft design, the design process itself seems
to revolve around the analysis of the loads inside the airframe. One of the first detailed analyses of
adesign -- the first FEM model -- begins to generate this data, and the loads are also some of the
last data confirmed at the end of the design process. This emphasis on loadsis for good reason --
the internal loads dictate the size of the internal structure, where certain subsystems may be placed,
etc. In essence, the loads data can affect virtually every aspect of an aircraft’s layout. Similar
analysis cycles were seen in other aerospace sectors, such as thermal analyses in satellite design,
and dynamics analyses in sensors and weapon systems.

What is interesting about these analysis cyclesis the effect which they seem to have on the
design process. Again, the degree of the effect varied across each company, but the nature of the
effect itself was same: The presence of such a complex analysis problem -- one which could often
drive changes to be made in to complete system design of the product -- was often a driver for
finalizing adesign as rapidly as possible. For example, in aircraft design, the longer designers
wait to finalize the airframe’ s shape, the later in the process the loads are fully characterized.
Depending on the results of the loads analysis, however, changes may need to be made to the
design. If this data does not come back until very late in the process, little time may be available to

make the needed adjustments. But the problem is yet more complicated still: to develop good

90



|loads data requires that the design be highly detailed. Analysis engineers must wait to complete
their final analyses until a product’s design isamost entirely complete. Consequently, when
changes do have to be made, they can often be significant, affecting multiple aspects of a product’s
design. Thus, there is often pressure at the very beginning of the program to finalize the design as
early as possible, leaving as much time as possible to make changes and modifications based on

such analyses.

5.5.6 Long Lead Items as Drivers of the Design Process

Finally, and along similar lines as the analysis cycles, the last common issue raised at
several sites was that of long lead items. Engineers and managers in every sector described a
similar dilemma associated with such components and design decisions: while designers might
want to delay a decision on a part’s design or on which product to order, lead times often force an
early decision. If the decision were delayed, the length of time associated with finally receiving the
component would delay the entire program. Designers are often pressed, therefore, to make such
decisions as quickly as possible. Clearly such decisions poserisks: if changes are made later in
the process, a part that was ordered will need to be scrapped or sent back to the vendor, etc. But if
no decision is made, the consequence -- delay -- is assured. Thus engineers described instancesin
which they had to commit to a design earlier than they might have liked. Interestingly, however,

no instances of severe consequences were cited based on such decisions.

5.6 Common Themes: In Closing...

Product development practices varied widely across companies. Despite their many
differences, however, common trends were observed across almost all of them. To an extent these
similarities are not surprising -- the complex nature of the productsis similar between sectors, even
if their technologies are not. At the same time, however, the degree of these similarities was

somewhat surprising to the author. Regardless, the fact that many of the underlying notions were
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similar across the sectors implies that a general model for implementing SBCE is not unreasonable,

and this model is presented in Chapter 11.
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6. Examples of Design Strategies

6.1 Chapter Introduction

The previous chapter presented on overview of an aerospace design cycle. The following
sections present more focused, detailed accounts of specific approaches to design within several
companies. Four examples are presented from different companies. Thefirst two tend more
toward the point-based model of design, while the second two illustrate more set-based

approaches.

6.2 Example 1: Capitalizing on the Point Design

6.2.1 Introduction and the Underlying Theme: Speed

One company’ s philosophy for design has focused on the development of “point designs,”
aerospace systems which excel at very specific missions. Their approach to the design process has
evolved to match the development of these highly specialized systems. As will be seen, one
underlying theme described by designers and managers was an emphasis on schedule. Engineers
all stressed the need to develop the system in as short atime as possible. This focus on a short
design cycle time, they believe, allows them to limit the cost of their development effort and to
deliver operationa systemsto their customersin atimely fashion. Three additional key features of
their design approach stand out from other companies processes. requirements, design decision

making, and people. Each of these features will be discussed in turn.
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6.2.2 Approach to Requirements and the Limitation of the Method

To be successful, engineers emphasized that their devel opment process demands a specific
approach to requirements: the customer should specify what the system must do, but cannot
specify how the system should do it. To facilitate this practice, the company prefers that the
customer specify as few requirements as possible at the start of development. In addition, the
customer should only specify top level system requirements -- the “what’s’” and not the “how’s.”
These system level requirements should aso be verifiable, such that designers will be ableto easily
determine when their design has satisfied their customer’ s needs.

Development of more detailed subsystem specifications must be left to the design team
itself. Asthe design evolves, the team devel ops the appropriate subsystem requirements. If the
customer had specified these detailed requirements at the start of development, engineers stated that
their design space would be tightly constrained, limiting their ability to develop designs which
would fully satisfy the customer’s primary needs. If these needs are truly the important ones, the
company’ s engineers argue, they should be allowed to sacrifice other aspects of the design to
satisfy these most important requirements.

This approach to requirements definition also defines the primary limit of this design
method. To be effective, designers at this company prefer that the customer only specify one or
two characteristics that are the most important — speed, survivability, maneuverability, etc.
Designers will then trade away performance in other areas to maximize performance relative to
these one or two most important requirements. The products, therefore, tend to be point designs:
they perform one or two mission exceptionally well, but have limited flexibility to perform other
roles.

One engineer used the analogy of islands in the ocean to demonstrate this point. In this
analogy, requirements can be viewed as the ocean’s height. Each individual island represent a
different mission (Figure 19). These individua islands, however, might turn out to share a

common base, which would become visible if the ocean was lower (Figure 20). In design,
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therefore, establishing demanding requirements relative to several missions might push the water

level up very high, requiring designersto select one mission over any others.

Figure 19: Demanding requirements force choices. By specifying very demanding
requirements, a customer may force the designer to select one of two possible high-performance
missions.

\ \

MISSION 1 MISSION 2

Figure 20: Less demanding requirements allow fulfillment of multiple missions.
Reducing the requirements allows a reduction in performance relative to each mission, revealing
areas of overlap in design or performance, so that both can filled.

This need to select only oneisland, i.e., mission, if the requirements are demanding is
what drives the company to point designs. If the requirements were lowered, the system could
perform more missions, but it would probably not perform any of them particularly well. This
company’s philosophy, however, isthat it is better to perform afew missions very well rather than
to perform severa poorly.

One further risk which this approach to design runs, however, is that one loneisland (i.e.,
aspecialized design) may not share a common base with other islands (be adaptable to other
missions). Were one to reduce performance requirements in an attempt to uncover other missions
and roles, it might be discovered that the system is so speciaized that it can do no missions beyond
the one for which it was originally designed (Figure 21). Designers were able to describe several

instances of this occurring. In one case, the product had been deployed and used very
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successfully. In an effort to sell more units, engineers attempted to modify the design so that it
would be more flexible. While several studies were conducted, no additional systems were
fielded: The studies revealed that in fact the design could not be readily modified to accomplish
other missions. The product was atrue point design.  Engineers at the company believed,

however, that such risks were worth running in order to develop exceptional designs.

MISSIONl

g

MISSIONZ

M odified Requirements

Figure 21. Therisk of a point design. Even though requirements are reduced, the design
still cannot satisfy both missions.

6.2.3 “Just Do It” Design: The 80/20 Rule, Select an Option Quickly, and Plan
for Success

Although detailed approaches used by specific design teams vary across the company, one
overarching attitude toward design seemed to emerge from all of them: “just do it,” or, expressed
another way, “go make it work.” Managers and engineers at the company stress that their

approach to design focuses on moving through the design process as quickly as possible. This
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philosophy seemsto find expression in several aspects of their design approach: the 80/20 rule,
rapid development of baseline concepts, and the rapid completion of trade studies.

Engineers and managers at this company consistently expressed a belief in the 80/20 rule.
As described above, the company tries to work on programs which emphasize one or two
requirements more than all others. Such a specific focus allows designers to subvert all other
aspects of the project’s performance to meet these most important requirements. Their design
approach, therefore, prescribes that it is best to meet 80% of the customer’sideal goals with 20%
of the effort and quickly field the system rather than struggling to fulfill the last 20% of the
objectives with 80% of the effort. Instead of increasing the program’ s schedule and cost to achieve
thislast 20% of performance and optimize the design, managers and engineers preferred to deliver
the system faster and cheaper. As one manager expressed, a design approach which attempts to
find the “end all, be al solution” to a design problem represents the “ antithesis’ of this company’s
approach. Once asystem is fielded, if the last 20% of performance is required it could be
incorporated through modifications. The company’s belief, however, isthat it is better to add such
performance later, rather than struggling to incorporateit early.

Within this framework of the 80/20 principle, the first aspect of the company’s design
approach isto develop a baseline concept as quickly as possible. The basdline establishes a
common framework for a program, including its schedule, costs, design concepts, manufacturing
issues, etc. One manager stated that the purpose of the baseline is simply to “get everyone
marching to the same drum.” Team members know that the baseline design will change, perhaps
by as much as 85%, but the baseline is not intended to be afinal solution. Instead, it isintended to
be a communications tool, to be used to coordinate the efforts of the team members.

In addition, the development of the baseline provides an opportunity to understand “what’s
down the road,” as expressed by a development manager. By going through the exercise of
developing the baseline, engineers have the opportunity to preview what problems will be
encountered later during the design process and what variables or design parameters will be the

most important. Several engineers also pointed out that there are times when they are unsure of
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which guestions they should even be asking at the start of the design process. Instead, they must
“go down the line” to determine what issues must be addressed. The development of the baseline,
therefore, provides designers with an opportunity to learn what issues will be important,
improving the following design effort.

Asthe baseline is devel oped, specialty engineers and designers begin considering different
design options and conduct trade studies to eval uate these options. The options are based on what
one manager caled a “technology basket.” These baskets identify several technologies and
estimate when those technologies will be operational. Technologies are then only considered
during trade studies if their availability will meet the need date for the system under development.
Programs will not necessarily use the term technology basket, but most do tend to follow the
associated process.

Asin other aspects of this company’s design process, the emphasis when conducting these
trade studies is to do the trades quickly. Managers suggested that their strategy for trade studies
was to “do enough engineering to understand the trade space,” but not to necessarily explore all of
it. They also stressed that prior to the start of any trade study, trade study criteria must be
established. These criteriaare critical because they establish natural exit points for trade studies.
Once a criterion has been met, the trade study can be stopped, since a design which meets the
reguirements has been found.

This trade study approach returns to the idea that designs should meet 80% of the
customer’ s ideal goals, but should not necessarily be optimized. Rather than keeping the trade
study going, managers prefer that their engineers select a design as quickly as possible. In this
context, one manager suggested that hisrole wasto first allow his engineers to study a problem,
but then to “corral” them to select a solution.

If during the development of a system a better option is discovered, however, engineers
and managers said they would not hesitate to incorporate it. One manager summarized the
approach as “funnel [the design space] early,” but then reexamine the decisions later, “just to be

sure.” When the design is reexamined, this manager said he has in fact made changes on several
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occasions. But, to be able to make such changes requires afirm baseline design, to which changes
can be applied. If the baseline did not exist, changes might be made at random and for far too
long.

These approaches to trade studies and incorporating improvements find further expression
in the company’ s method for design problem solving. In this context, problem solving refersto
how engineers and designers cope with design failures, such as wind tunnel datarevealing an
unexpected flutter problem or an FEM analysis revealing that a structure will fail under too light a
load. Engineers described their strategy under such circumstances as planning “on success.”
Designers and engineers make their best “guess’ (which is backed by analysis) and then go test the
solution. They assume that the design concept will meet the requirements during the test. If the
concept does falls short, engineers then go back and look at what can be done locally in the design
spaceto fix the design.

In one development program, for example, wind tunnel data revedled a severe control
problem for an air vehicle. Engineersdid not reevduate the entire vehicle configuration, but
instead searched for solutions which could be incorporated into the existing design. Prior to
developing these solutions, however, engineers established their trade study criteria, in this case
based on the moment coefficient and weight (which would reflect changes in performance).
Twenty-two different alternatives were developed, tested, and discussed. Severa options satisfied
the trade study criteria, and engineers then used their experience to select the one they believed
most appropriate. Interestingly, engineers and managers in several programs referred to this type
of process. In general, they al seemed to share acommon belief: quickly develop adesign, test it

to uncover problems, and then fix the problems.
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6.2.4 Making the Method Work: Robustness, People, and Small Teams

The engineers and program managers who described these processes cited a variety of
factors which enabled the methods to work effectively. Three appear to be the most important:
robustness, people, and small teams.

The concept of robust design was raised by conceptual designers at the company. Since
the design process stresses the need to make decisions as soon as possible, the process does run
the risk of awrong decision being made early in a product’s development. Asjust described,
engineers focus on making specific modifications to a concept late in the development process to
compensate for such possibilities. In conceptual design, therefore, it isimportant that a design be
robust enough to accommodate such modifications without forcing a complete redesign. Note that
in this case, then, that this use of robustnessis similar to the one used in SBCE: It refersto the
design’ s ability to adapt to modifications which might be instituted by other engineers.

Configurationists suggested that the best way to achieve such robustness is to “center
designs” in the design space. Rather than pushing product concepts to perform better relative to
some measures than to others, practice at this company tends to be to balance the performance
between several measures. This design centering is manifested through the use of large margins for
the design’ s performance measures, such as weight or power. Since the overall product concept is
intended to perform best along one or two measures, however, the need for robustness applies
primarily to other aspects of the design. In fact, these other features of the design must be robust,
because, as discussed earlier, these features will be modified to achieve the primary design
objectives.

In almost every interview, engineers and managers emphasized their reliance on people.
As described, the company’ s design methods rely on rapid, but knowledgeable decision making.
Therefore, the method depends upon the ability of engineers to make good decisions without the
need for too much analysis, a skill which they develop with experience. Engineers at the company

believe that their experience limits the likelihood that incorrect design paths will be chosen. In
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addition, this experience minimizes “perturbations” in the design process, such as being able to
handle problems downstream during design.

Totake advantage of this experience and design skill, the company organizes project
personnel into small design teams, the final important aspect of their design strategy. Several
managers described that the short lines of communication and the minimum number of interfaces
facilitated by small teams reduces the likelihood of errors being introduced into the process. Small
teams also mean that each engineer becomes responsible for a significant amount of the design
effort. Thisresponsibility then both empowers individuals to make design decisions, and, since
they will be held accountable for the decisions, to make well-planned and timely decisions.
Finally, the design teams are usually co-located, at least at the beginning of a project. Numerous
engineers testified about the need to be able to gauge the responses and information provided by
other engineers. Such personality intuition, they said, was often crucial in judging whether or not
another engineer’ s design or analysis might change. Thus, at afundamental level, this company’s
design strategy relies on nothing less complicated than the technical and communication skills of its

engineersto facilitate a design process emphasizing arapid build, test, fix cycle.

6.3 Discussion of Example 1

This company’s approach to design is clearly better described by the point-based model
than the set-based model, although there are some elements of both. Consider first its similarity to
the point-based approach. In this model of design, engineers brainstorm multiple options, then
select the best one. If problems are found downstream with the selected option, changes are
instituted locally, modifying specific features of the design to improve it relative to the need
measures. Thismodel appears to describe this company’ s approach quite well. Engineers conduct
quick trade studies so that they can select adesign as quickly as possible. Then, aswasillustrated,
when problems are encountered during testing, small changes are made to fix each specific

problem. Inits most basic features, this design method illustrates a point-based approach.
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Note, however, that several additional aspects of the company’s product development
philosophy are well-suited to this design method. Perhaps most importantly, the company’s
designs tend to emphasize just one or two features above all others. Set-based methods, in
contrast, are intended to help designers balance multiple, conflicting requirements. In the
programs pursued by this company, such issues are less of a concern (although many of their
designs do require tradeoffs between several parameters). Thus, it seems quite appropriate to
avoid the expense attributabl e to considering large numbers of options.

Further, the company does make use of other set-based practices to help cope with some of
the challenges raised by other aspects of its methods. Their emphasis on top-level requirements,
for example, is similar to set-based approaches to requirements. Mangers and engineers noted the
importance of having only the most important requirements explicitly stated by the customer so as
to ensure design freedom downstream in the process. Thisline of reason is very similar to set-
based approaches to requirements. In addition, engineers references to robustness, which
essentially matched the definition of conceptual robustness given in Chapter 3, illustrate a second
set-based practice. By using margins around critical features of a design, upstream engineers help
to ensure that changes made downstream do not invalidate the earlier work. Again, the concepts
behind these actions are consistent with the basic concepts of SBCE.

In summary, it is clear that this company’s approach is better aligned with the point-based
model than with the set-based. Their approach to design, however, does make use of set-based
concepts to help facilitate other point-based practices. Thus, this example helps to illustrate
situations in which a point-based approach might work best: specifically, when there are alimited
number of requirements, allowing engineers to trade other performance features to ensure success
among just aselect few. And, finally, this example aso helps to point out an important lesson:
that point-based and set-based methods are not mutually exclusive, but rather can be mutually

supportive.
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6.4 Example 2: Design by Constraint

6.4.1 Introduction

A program manager at one company has developed aflexible design approach intended to
be adaptabl e to the particular requirements and goals of each product development effort. Ashe
described, typical approaches to design focus on defining the solution -- what the system will ook
like, how it will execute the needed functions, etc. These solutions are developed to meet the
requirements defined for the system. The goal, therefore, is to develop the highest performing
system relative to those requirements.

This manager’ s approach, however, works from a slightly different perspective. Rather
than initially working from requirements to define solutions, this method uses the requirements to
define constraints.  Since the requirements are defined by the customer, the constraints also
represent the customer’ s needs and desires. These constraints then dictate how a design concept
should evolve and how the design process itself should be adapted to each particular design
problem. By modifying the design process, one ensures that the system design evolves as a direct
reflection of the constraints, and, therefore, the customer’ s requirements. While stepsA, B, and C
might all be required to arrive at afinal system design, the sequence in which these steps are
executed may change. The goal, therefore, isto develop a balanced system meeting the needs of

the customer.

6.4.2 A Multi-Tiered Approach

This manager’ s approach to design operates at two, tiered levels. At the higher level, the
process is based around the concept of systems engineering. The second level focuses on
sequence of the design process steps. Each of these tiers will be discussed in turn.

The manager described his approach to systems engineering as follows. Customer’ s needs

arefirst defined and clarified, and these needs are then used to develop product concepts. Based
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on these concepts, the total system is decomposed into smaller subsystems. The approach
emphasizes that it is better to select only one system-level concept, and then develop a variety of
subsystem options and combinations, rather than attempting to manage the pursuit of multiple
system-level designs. As concepts (both system and subsystem) are devel oped, they are compared
to the performance and interface requirements, which are derived from the customer’s needs. Later
steps in the process focus on managing the configuration (by thoroughly documenting
requirements, designs, and decisions) and balancing the system, (i.e., ensuring that decisions
made at the subsystem level do not adversely affect the complete system’ s performance). Finally,
the design must be verified and validated, to confirm that it does meet al requirements and
specifications.

This process is then repeated for each subsystem, beginning again with the definition of
requirements for that particular subsystem, and then following the other steps as described above.
Since the second step in the process is to generate system concepts, subsystems can begin
concurrent devel opment as soon as their interfaces and functional requirements have been defined.
During the initial development of these subsystem, designers are free to make their own design
decisions, limiting the number of additiona groups that must approve of changes. Once a
subsystem has been released to the system, however, other design groups directly affected by the
subsystem should review the design. Note, however, that is not necessary for all other subsystem
design groups to participate in the review -- only those that are directly affected by the subsystem.

The decomposition process then allows for the second tier of the method to come into play,
the sequencing of design activities. For agiven product composed of numerous subsystems, all of
the subsystems will have to be designed and developed. Depending upon the exact requirements
for the product, however, the sequence in which these activities will occur may vary. Different
customers will likely have dlightly different requirements. These differences in requirements may
change which product features or subsystems are more important. Product characteristics which
are more important to the customer must then drive the design and development of the entire

system, such that the system is an accurate reflection of the customer’ s desires.
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To alow these customer-defined features to dominate the product’s development, the
design processitself must be adapted. Features or systems most important to the customer should
be addressed first, so that these systems then establish constraints for other aspects of the design.
If the design process is fixed without regard for the customer, earlier design decisions might limit
the ability of later decisions to accurately reflect the customer’s needs. By rearranging the process
as needed, such arbitrary constraints can be eliminated, allowing the design to fully address the

desires of the customer.

6.4.3 An Example

An example helps to illustrate these concepts. One design problem to which the method
was applied was the conceptual design of alow Earth orbit (LEO) spacecraft. Aside from the
specific mission to be performed by the spacecraft, the customer specified that low cost was the
most important requirement.

As the program manager described, amore traditional approach to design might have begun
by addressing system or subsystem details about the spacecraft, and how these details could be
traded to arrive at alow-cost design. In such circumstances, specialty engineering groups would
develop design dternatives for their respective subsystems and select the ones with the lowest cost.
Such details, however, are not the only determinants of a spacecraft’s cost.

Rather than starting from spacecraft design issues, per se, the manager first addressed the
customer’s highest priority: low cost. Cost, therefore, was the first constraint defined for the
spacecraft. All other design decisions flowed down based on this top objective. Thus, the first
guestion addressed was, what contributed to spacecraft cost?

Among other design issues, a maor driver of the spacecraft cost was launch cost.
Therefore, the first step in containing the cost of the design was to contain the launch costs for the
system. This goal was historically accomplished by using a smaller, rather than alarger, launch

vehicle. To use a smaler launch vehicle and meet system mission requirements, however,

105



required that the designers maximize the use of available volume within the spacecraft to minimize
itstotal size.

At this point, design on the vehicle itself could begin. Since volume was defined as a
constraint (based on minimizing launch costs which was derived from minimizing the system
cost), the first steps in the design process addressed how the vehicle’'s volume would be used.
The design team began by considering the cross-section configuration for the spacecraft. Using
this area efficiently would enable the overall volume of the spacecraft to be minimized. In the
course of developing this cross-section, initial details of the spacecraft design were considered for
the first time, such as stowage of solar arrays and mission antennas, stiffness of the spacecraft’s
structure, and the desired maximum spacecraft mass.

Once the cross-section had been determined, the next issue addressed was the spacecraft’s
overdl length. Again, the goal was to minimize spacecraft size by maximizing the use of
gpacecraft volume. Since the cross-section had been established, fixing the length of the spacecraft
determined the maximum total solar array area which would be available, as well as the total
mission antennaarea. Together with the launch vehicle fairing constraints, the requirements for the
array and antenna areas determined the minimum length of the spacecraft.

Note that the mission antenna area was dictated by the customer’s initidl mission
requirements. Thus, this point in the design process represented one of the first opportunities for
the customer to understand what design trades his requirements forced. If, for example, the
antenna could have been reduced in size by changing the mission requirements, the vehicle length
or cross-section could have been reduced. Such areduction could have potentially allowed for the
use of an even smaller launcher, further lowering costs. On the other hand, if the customer wanted
to change the mission requirements such that alarger antenna had been required, engineers could
have quickly estimated the effects on the system’ s costs based on whether or not a larger launch
vehicle would have been required. Thus communication between designers and customers was

improved through the use of this documented, structured method.
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The manner in which design trades on spacecraft systems were handled at this point also
highlights how this method forced engineers to view the design from the customer’ s perspective.
The design of the solar array provides an example. Had the responsible engineer been told to
simply maximize the power available from the array, he likely would have designed the largest,
most efficient array that was technically feasible. In this case, such an array would probably have
cost too much for the customer and have required a very large launch vehicle. If the engineer had
been told to design the lowest cost array possible, he might have re-used on old design which was
cheap but had very poor performance. Such a design, therefore, would not have fulfilled the
customer’s mission requirements. The engineer could have been given both requirements --
maximize power and minimize cost -- but, again, the solution would likely have falen short.
Given both requirements, the engineer would have done everything he could to meet them, but he
would have done so based only on what he knew about solar array design, not the design of the
total spacecraft system.

Instead, as the design process was executed, the solar array designer understood that the
constraints were not quite as simple as maximize power and minimize cost. Rather than having to
consider these options from the solar array-perspective alone, the issues were set against the
backdrop of minimizing system cost by using the smallest possible launch vehicle by maximizing
the use of a constrained volume. Thus, the designer did not necessarily have to design small
arrays, but he had to design arrays which could be stowed in asmall area. At the sametime, if he
required slightly larger arrays he could influence the design by suggesting an increase in the
gpacecraft’ s length. In this manner, trades on subsystems could occur from a systen' s per spective
and with afocus on the customer’ s requirements.

The rest of the conceptual design process is shown Figure 22. Note that as the design
progressed, the issues addressed became less and less of a concern relative to the customer’s
mission requirements. Initially, the most important customer requirement was cost, which was
addressed by minimizing the launch costs. Sizing of the spacecraft within that constraint was then

dictated by the required size of the mission antenna and the power requirements for its associated
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subsystems. Later design decisions dealt with issues such as payload mounting, attitude control,
and propulsion. Asthe design progressed through these steps, the customer became less interested
in the details of the design. For example, the customer did not necessarily have a preferred
propulsion system concept. He did, however, want to be guaranteed that the spacecraft would be
reliably positioned in time and space for the lifetime of the system. These needs -- reliability,
position accuracy, lifetime, etc. -- were the customer’ s concern, but such needs did not pre-specify
aparticular choice of propulsion system.

The final step shown in the design flow, the structural architecture, did not concern the
customer at al, other than how this architecture met the other needs of the system. Note, however,
that these last design decisions were also the most constrained. The size of the spacecraft had
already been determined, as had the desired stiffness, center of mass, and the points of maximum
loads (such as where the propulsion system had been mounted). The trade space of the structural
designers, therefore, was more constrained than had been the case for any other system.
Importantly, the design of the spacecraft’s structure was aso of virtually no concern on the part of
the customer. While the customer would not have accepted compromises on items such as the
gpacecraft antenna (which directly affected mission performance), structural engineers could make
as many compromises as they wished, so long as none of the previous design decisions were

invalidated.
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Figure 22: Design process flow. Thisflow diagram illustrates the primary steps and
considerations for the conceptua design of a LEO spacecraft, given that the design was subjected
to tight volume constraints as aresult of the customer’s low cost requirement.

6.4.4 Additional Issues

The manager who developed this design method also stressed three additional issues:
documentation, iteration, and people. The importance of documenting design decisions can best be
illustrated by reconsidering the structural design. Since the structural design was the most
constrained, it also ran the highest risk of invalidating many other decisionsif a design solution
could not be found. To provide insurance in the event of such a problem, the program manager
running the project emphasized the need to thoroughly document design decisions. In the event of

a downstream problem, documentation would enable the engineers to understand what decisions
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they had made and why they had made the decisions. Perhaps more importantly, documentation
would also allow them to select another option quickly, without having to repeat analyses which
had already been completed. If such documentation were not available, engineers would have had
adifficult time retracing their steps and would have run a high risk of redoing work that they had
already done but not recorded. Documenting all analyses, design trades, and design alternatives,
therefore, was an important theme within this approach to design.

Another important aspect emphasized by the manager was the nature of design iteration. In
general, the manager did not support carrying multiple system-level alternatives throughout the
design process. Doing so would increase the cost of the development effort and could potentially
lead to confusion. Instead, he preferred that subsystem engineers consider several design options,
conduct trade studies, select a preferred option, and then document everything related to the
decision. Then, should a problem occur later in the design process, the trade space was not simply
expanded at that point -- the entire process began again.

For example, should the propulsion group have conducted their analysis and determined
that they could not meet the system requirements as then defined, the search for solutions would
not have been constrained to simply evaluating esoteric propulsion concepts. Nor would each
subsystem search frantically for what it could contribute to solving the problem. Instead, a new
constraint would be placed on the design based on the propulsion limits, and the process restarted
at the very beginning. Asthe manager stated, such problems tended not to be a result of never
considering “theideal solution.” Instead, that “ideal solution” was not chosen because the wrong
criteria had been used to make a selection. Thus, refining the constraints placed on the system
through iteration would modify the criteria used to select design options, usually leading to avalid
solution being chosen. Since every design decision would have been well-documented, early steps
could have been repeated much more quickly than they had the first time, limiting the loss in
schedule caused by the rework. The fundamental objective is not to search until the “idedl
solution” has been identified and justified, but rather to retain flexibility and objectivity, so that a

valid solution is devel oped and accepted by the customer.
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Finally, the manager stressed the importance of ensuring that the people working on a
program understand the design process and what motivatesit. Since this design process must be
adapted to each specific design problem, it is not a method that can be memorized and repeated the
same way every time. Program leaders and engineers must be trained to understand the
overarching concepts of the method -- such as understanding the customer’ s needs, developing
system alternatives, decomposing the system, etc. -- and they must also be taught how to adapt the
details of these concepts to address a particular design problem. The program leaders must be
aware of the sensitivity of the method to theinitial customer requirements and to program and/or
company imposed constraints so that the desired flexibility isretained. Furthermore, the inherent
iteration process must be accepted by the program leaders and the reassessment of early decisions
permitted without reproach. In addition, engineers must be trained to fully document their design
work and decisions. If engineers do not understand these needs for flexibility and accountability,

the process will flounder, preventing efficient accomplishment their goals.

6.5 Discussion of Example 2

As was the case with Example 1, this method is more closely aligned with the point-based
model, but, as was also true of Example 1, this approach also demonstrates a variety of set-based
techniques. The approach is point-based due to its reliance on selecting a single design as quickly
as possible and then using iteration to correct any deficiencies with the design. Note, however,
that this method’ s use of iteration is different than the one used in Example 1. In Example 1, when
a problem was uncovered in the design, engineers rapidly considered alarge number of optionsto
fix the problem without significantly changing the rest of the design. The method of Example 2, in
contrast, uses a much more comprehensive approach to iteration: when a problem is uncovered,
not only are immediate solutions considered, but the entire design process to that point is reviewed,

and, if needed, redone. But within this more extensive iterative process, a similar philosophy to
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the 80/20 rule is applied: Aswas described, the goal is not an “ideal” solution, but one which
simply satisfies the customer’ s needs.

In the context of this drive to a single solution which is optimized through iteration, the
Example 2 method also includes several set-based techniques. The first of these isthat subsystem
engineers are allowed to work independently until their designis “released” to the rest of the team.
This relative autonomy of subsystem teams was not described at other sites, and is similar to set-
based concepts of team independence.

The primary distinction between the set-based method and this one, however, isthat in the
set-based model the subsystem teams share multiple concepts with another, while in this approach
the subsystem teams only share their one, released concept. Aswas noted above, the manager
stated a very pragmatic motivation behind this limitation: limiting confusion. At times when
subsystems had shared multiple design concepts, this manager has seen inter-team communication
become confused and strained. In an effect to ensure easy communication, therefore, subsystem
teams discuss only their best option. Note, however, that they retain their analyses for other
design options, should the selected option not work as planned. Thus this approach to design
combines some features of point-based and set-based approaches to achieve a flexible, but
manageabl e design process.

Finally, Example 2 is unigue among the others seen during this research in its complete
subversion of the design process to the needs of the customer. The use of constraintsto order the
steps in the process and then limit the decisions available to engineers was not explicitly seen at any
other site. This concept of design by constraint will be discussed again during the development of
the SBCE model in Chapter 11.
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6.6 Example 3: Combining Parallel Concept Development with
Conceptual Robustness

Engineers at one company described two approaches to design which they commonly use
to help ensure that their final solution isacorrect one: the paralel (i.e., smultaneous) devel opment

of aternative design concepts and conceptual robustness.

6.6.1 Development of Parallel Design Conceptsto Explore the Design Space

Several engineers at the company described the importance of considering multiple design
aternatives throughout the evolution of a product’s design. While many companies conduct trade
studies to determine a design concept’ s sensitivity to various parameters and requirements, this
company follows a dlightly different model. In their model, trade studies are not only conducted
based upon one configuration to understand its senditivities; instead, substantidly different
configurations are devel oped to explore specific regions of the design space.

Thefirst step in this processis to establish a baseline for the system’s design. The baseline
isthe result of extensive preliminary design studies and trades, and may quite closely represent the
final product. This baseline serves as the primary focus of the program’ s effort, and it also serves
asthe starting point for further design studies.

Once the baseline is established, separate teams of engineers are assigned to the program to
explore specific features of the product’s design. These teamsfirst select a particular requirement
or performance measure. They then develop a new concept, rooted in the baseline design, which
attempts to maximize performance relative to the selected parameter. For example, one concept
might be developed to determine what would happen if the system were made as affordable as
possible, while another concept might explore extreme performance features. Some of these
studiesresult in only afew changes being made to the baseline design; they are used primarily

educate the company about the benefits and sacrifices it has made in its baseline configuration.
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Other studies, however, have revealed methods for improving the baseline design, and elements of

these exploratory designs were then incorporated into the baseline.

6.6.2 Conceptual Robustness

Several engineers also discussed the importance of conceptual robustness in their design
concepts. Asit was defined previously, in this setting robustness refers to both the product’s
ability to function in awide range of manufacturing and operating environments and to the design’s
ability to adapt to modifications which might be instituted later in its development. Engineers at
this company stressed that since some design decisions must be made prior to their impacts on
downstream design issues being completely understood, they attempt to make design choices
which will be best suited for accommodating future aterations.

In atrade study during a past aircraft program, for example, three different tail-wing-flight
control configurations were initially explored. When the analysis for the three arrangements were
compared using the airframe’ s initial evaluation criteria (such as size, weight, and performance
requirements) no advantage could be seen in one design over the others from a pure design
standpoint. Considering the potential for future modifications, however, revealed that one design
would accommodate changes (such asincreases in weight) better than the other two. This concept,
therefore, was selected for further development.

Another aspect of conceptual robustness described by engineers involved the use of an
open architecture for many subsystems. Engineers recognized that an airframe will likely bein
service over aperiod of time which sees the development of many subsystem improvements. The
company manages this potential for change by allowing for growth in the subsystems and by
planning for changes to be made in these subsystems. Such advanced planning reduces the risk
that the complete system will become obsolete. Instead, individual subsystems can be replaced and

updated, without forcing the development of an entirely new system.
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6.7 Discussion of Example 3

Example 3 demonstrates once again that aerospace firms do make use of set-based methods
at various pointsin aproduct’s development. In addition, the example reinforces ideas introduced
in Example 1 about conceptual robustness.

As has been described in other examples, engineersin aerospace firms do tend to consider
multiple design options throughout the devel opment of a new product. This company’s approach,
however, is dightly different from methods seen elsewhere. Typically, multiple options are
considered by other firms when problems are discovered in a design -- its aerodynamics are not
good enough, it does not dissipate heat well enough, etc. In Example 3, on the other hand,
alternatives are explored as part of the basic nature of the design’s evolution, regardless of the
existence or absence of other problems. Instead, the alternatives are explored to seek opportunities
to improve the design relative to the needs of the customer -- to look for ways in which the design
might exceed the customer’ s requirements.

In addition, the nature of this exploration processiillustrates some of the set-based notion of
specialty independence. In the complex world of modern engineering design, a*“ specialty” group
can mean many things. Traditional specidties include engineering organizations, such as
aerodynamics, thermal, or structures. More recently, specialty groups such as affordability and
maintainability have taken on greater importance.

In Example 3, it is these more recent speciaty groups which tend to dominate the
development of alternative designs. Due to the complex nature of the product under development,
these specialty groups cannot work in complete isolation -- they simply do not possess all of the
knowledge required to develop an alternative product concept. Thus, they require the support of
other engineers. A given dternative design, however, may be dominated by the concerns of one of
the specialties. The results of this development exercise are then compared to the baseline, and
improvements are made. While not exactly the same as the concepts used in set-based design, this

approach does illustrate similar ideas. one group explores the design from their own perspective,
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generates alternatives, and then compares this set to another -- in this case, the baseline design -- to
find regions of overlap.

Furthermore, the notion of conceptual robustness -- aterm used by the engineers at the
company -- does exactly match the concept as described in Chapter 3. Designers all described
attempts to make decisions which remain valid, regardless of the choices made by downstream
engineers. Thus these efforts match the idea of conceptual robustness described for SBCE. When
taken together with the method of developing aternatives, practices at this company do illustrate
some basic set-based principles, even if they do not represent set-based concurrent engineering in

its purest form.

6.8 Example 4: Subsystem Installation

6.8.1 Overview of the Design Dilemma

At one company, the subsystem installation group has traditionally not been brought into a
development program until just prior to or just after contract award. At that time, anew system’s
configuration has already been analyzed through numerous trade studies and the design of major
structural elementsis nearly completed. In addition, all of the subsystems themselves have been
sized and suppliers are being put under contract. The group’s job, therefore, is to “make
everything fit,” clearly not asmple task.

As might be expected, a common occurrence is for two subsystem design engineers to
want the same location in a vehicle for two different components. These location preferences are
driven by issues such as tolerances to vibration, temperature, and noise. Since the installation
group must eventually install al of the components, they will obtain the limits of these tolerances
from each component or subsystem engineer. These sensitivities are often given as maximums or
minimums, helping the installation engineer to understand the possible impacts of any changes that
must be made. This processis further complicated, however, by the number of components and

the degree to which the rest of the system’s design has aready been finalized.
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6.8.2 New Developments

To help ease this process, the installation group is developing its own software package.
Initially, this software tool will help the installation engineer design the routing paths for the wiring
which runs between the subsystems. The user will input all of the black boxes which need to be
incorporated into the system, where these boxes will be placed, and with which signals they are
compatible and incompatible. 1n addition, each of the subsystem specialty groups will input their
primary rules and constraints on where boxes can be placed. The program then determines the best
routing schemes for al of the wiring and tubing throughout the system. Once this portion of the
program is operational, the group plans to add a feature that will automatically place the boxes
themselvesin the system.

The desirability of a computer tool for this placement process was illustrated by way of
example. Typically, a system developed by the company will have 300 to 400 electronic boxes.
About 100 of these boxes might be constrained to a specific location for one reason or another.
The other 200 to 300, however, can be placed all over the system. The number of possible
combinations, therefore, rapidly becomesfar too large to be manipulated by a human. It is
anticipated that the computer system will be able to take advantage of this flexibility in the design
possibilities, while at the same time reducing the time required to complete the design.

The engineer describing this computer tool specifically cited the desire to delay decisions as
amotivation for the program. Currently, it requires approximately two years to plan the routing
and to design the harnesses for the wiring. The computer tool isaimed at reducing thistime to a
few days, allowing the group to wait longer before beginning their work and then allowing them to

complete the work more quickly.
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6.9 Discussion of Example 4

Example 4 issignificant in that it illustrates several set-based concepts. First, because of its
nature, the type of design problem presented in this example lends itself to set-based approaches:
there are a large number of design variables, many possible combinations, and conflicting
requirements (typically in the form of two boxes requiring the same location). So, the first lesson
to take away from this example is when to use set-based techniques. (Contrast this problem, for
example, to the type of problem described in Example 1.)

Next, this design group’ s approach to requirements fits the set-based model very closely,
and also illustrates when this method of establishing requirementsisimportant. Aswas described
in Chapter 3, one form of set-based requirements are minimums/maximums. Asillustrated in the
example, this design group makes extensive use of such requirements for the environmental
tolerances of the various black boxes. What is more important, however, is their motivation for
using such requirements. To understand this motivation, one must again consider the nature of the
design problem: These engineers are given locational preferences by other designers which are
often in conflict. Each box, however, does have constraints regarding where it can be placed.

The subsystem installation engineers, therefore, need to know what the limits are regarding
the placement of the boxes, so that they are free to make as many alternations in the locations of
boxes as possible. If requirements were stated as point values, installation engineers would not
have an indication of whether or not one location was necessarily better than another, only that it
did not exceed arequirement. By stating the environmental tolerances as minimums or maximums,
installation engineers can judge the quality of alocation by how much margin remains between
conditions at a location and the box’s limits. Thus, this example clearly illustrates how
minimum/maxi mum requirements can be used in set-based design practices.

The new computer tool being developed by the installation group also helps to demonstrate
how set-based approaches can be used to delay design decisions. As noted earlier, an important
goal of the tool isto enable installation engineers to do their job as late as possible, thereby giving

the other design groups more time or reducing the total cycle time of the development effort. By
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using set-based approaches to requirements, the installation engineers give themselves some design
freedom even though they are working very late in the design process. If very specific, point
requirements were given for every box, the installation engineers would have little, if any, degree
of flexibility in placing the boxes. Their set-based approach to requirements, however, provides
the ability to relocate boxes -- within a given range of tolerances -- to facilitate changes late in the
design process. By applying the computer tool, this flexibility can be used across alarge number
of variables, i.e., box locations, to facilitate a responsive and fast placement process.

Although this example focuses on a very narrow design problem, it does clearly illustrate
several set-based techniques. Importantly, it reinforces the notion that such techniques are most

appropriate for design problems with alarge number of variables which are potentially in conflict.

6.10 Design Strategies: Point-based, with Hints of Sets

In general, the examples presented in this chapter are dominated by point-based strategies
of design. Interestingly, however, in every instance in which a point-based strategy might fail,
set-based techniques are used to aleviate such problems. For instance, in Example 1, conceptual
designers made use of conceptual robustness to limit downstream problemsrelated to changes
which are made to the design. Similarly, in Example 2, even though only one option was pursued
at atime for each subsystem, engineers always kept records of other options in the event of
downstream difficulties. Examples 3 and 4 then illustrated that some design methods actually do
make use of the notion of sets, allowing engineers to consider a wide range of options before
settling on afinal solution.

What is missing from all of these examples, however, is SBCE's notion of independence.
In none of the examples do any specialty groups spend significant amounts of time independently
considering a design and then proposing sets of solutions to find the final answer. In thisregard,
no company’ s design strategy truly follows the SBCE model. However, lessons from the above

examples will be incorporated into the model presented in Chapter 11.
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7. Virtual Product Development Tools

7.1 Chapter Introduction

As was noted, many companies are in the midst of reforming their product development
processes. At many companies, this reform process involves the development of advanced
product development tools. The following sections provide examples of two of those tools from
two companies. Thefirst exampleisbased on a project which has already demonstrated significant
elements of its software tools. The second example has demonstrated several of its elements, but

isabit larger in scope, and, therefore, a greater portion of it still remains under devel opment.

7.2 Example 5: An Integrated Design and Analysis Package

As noted, this first company seems to have progressed fairly far down the development
process in their use of a new virtual product development tool. This computer-based tool has
several components, and it appears the leverage offered by the tool isadirect result of the synergy
between these components.

Thefirst element of the tool is a database management system. A single, integrated
database is established for each project or system under development. When adesign or analysis
engineer wants to work on the system, the tool automatically converts the system’s dataset into the
appropriate form for use with the engineer’ s discipline-specific tools. When the engineer has
completed his work, the tool then re-converts this new data into the standard format, allowing
other engineersto use the data.

This ability to translate between data formats allows engineers using different tools to be
directly linked to one, common database. In the past, each tool required its own data format, and,
therefore, its own database. The need to maintain these separate databases limited the ability of
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engineers to interact easily and in atimely fashion. Relatively minor differences, such as one
analysis program using degrees Celsius while another used degree Fahrenheit, introduced time
delays and opportunities for errors to enter into the system analysis. Working from a common
database should eliminate most such problems.

Another element of this computer tool is an historical database of past system designs.
This database is used by the tool to allow new designs to be analyzed by extrapolating from past
systems performance. This extrapolation process works fairly well, according to engineers
familiar with the tool. They suggested that the tool works effectively when analyzing a system’s
overall performance, but that it fails to provide reliable data when analyzing boundary conditions or
other details of adesign.

The " center-piece” of thetool, according to engineers familiar with the project, isamission
simulator. This simulation program allows asmall group of engineersto consider alarge number
of system designs and system tradesin avery short period of time. The simulation begins with the
designer developing a system-level design for a new vehicle. Using the historical database and
system-level analysistools, the simulator then projectsthe new design’s performance. If the
design is deficient in some respect relative to previous designs, the computer tool will recommend
other designs to the engineer based on data from the historical database.

Engineers suggested that the tool is not quite “point and click,” but that it is nearly so. For
example, the design tool allows an engineer to hold several features of a design constant while
allowing the engineer to then experiment with another element of the design. The simulation then
allows the engineer to see the effects of these variations on the rest of the design.

Developers of the tool reported that during testing, this system has shown significant
improvements over previous methods and tools. Results indicate that in the time that had been
required to develop one to three designs, thirty to forty can now be considered. Not only are more
designs being evaluated in a shorter period of time, however -- fewer engineers are required to

develop these designs than in the past.
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Engineers cited several advantages which were offered by this ability to consider so many
designs so easily. Thefirst was that engineers felt the quality of their designs would be improved.
By investing more effort early in a program, engineers believe they will be able to reduce
downstream problems encountered during the development of adesign. One engineer stated that
designers “want to avoid going down blind alleys.” In the past, the limitations of design and
analysis tools required engineers develop a design to a significant level of detail before good design
analysis results could be developed. As was previously discussed, this meant that engineers
typically had to take a best guess at the design and then move ahead. If later it was discovered that
the design was deficient in some respect, a significant amount of work would have to be redone.
Engineers hope that this new computer tool will limit such massive rework. Rather than having to
pick a concept “blindly,” the tool will help engineers conduct some preliminary analysis of new
designs. Inthisway, they will have more and better information on which to base decisions as to
which designs to continue to pursue.

Another advantage offered by the tool was the ability to examine common features between
programs. This company, like others, is attempting to reduce the total development effort across
several programs by designing common parts to use on several products (see Chapter 8). The
capability of thistool to facilitate trades has greatly enhanced the company’ s ability to identify what
elements of different products can be made common.

A final advantage to the tool discussed by engineerswasitslearning value. For example, a
new engineer, recently entering the work force after leaving school, was given the opportunity to
work with the tool to consider a variety of system designs. The new engineer reported that in the
week he experimented with designs on the tool he had learned more about the design of that type of
system than he had in several semesters of classes.

Engineersnoted that this learning offers two advantages. First, designers will better
understand the trade space of the particular design on which they working, improving the decisions

they make about that design. Second, by learning more about system design on one program,
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engineers will be that much more experienced when they join another program. Their ability to
make decisions relevant to this new project should , therefore, be that much more improved.
Overall, this company’s preliminary experiences with its virtual development tool have
shown the potential for the tool to improve communication between engineers, improve product
quality by facilitating a more informed decision-making process, and improve engineer learning
across projects. At the time of this writing, the company was compl eting the devel opment of the

tool and was about to apply it to a new program.

7.3 Discussion of Example 6

This first example of a virtua development tool provides a good illustration of the
application of the first core concept of SBCE -- sets -- in the aerospace environment. Aswas
described, developers indicated that an important feature of the tool isits ability to allow fewer
engineers to consider a greater number of design optionsin less time than was true in the past.
Thus, in terms of SBCE, the purpose of the tool can be considered as enabling engineers to
analyze sets of designs.

Importantly, the tool developers intuitively followed another SBCE concept related to the
exploration of sets: the use of simple modelsto analyze designs. Aswas described in Chapter 3
tests should be smple and quick, just detailed enough to expose problems that are near the surface
of the design problem. Rather than attempting to incorporate the most advanced and detailed
analysis tools into the system, developers at this company used a simple analysis and modeling
program. Whilethisanalysisislimited, it provides enough detail at the early stages of the design
process. Design options which are clearly inferior will be revealed and eliminated, while those
with potential can be retained, even if they will be eliminated by future, more detailed tests.

Finally, tests of thistool are beginning to confirm the learning potential associated with set-
based techniques. Though still anecdotal, as was described, devel opers believe the learning effects

that have been thusfar will continue once the system isin more widespread use. And, as they
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noted, these learning effects build across programs. what an engineer learns on one program, she
will take with her to another, allowing that program -- its product and its other members -- to

benefit from her increased experience.

7.4 Example 6: Using Computer Tools to Institute a Process-Based

Design Method

7.4.1 Introduction and Overview

One company’s efforts to improve its design processes focus on the use of advanced
computer tools and moving toward a process-based (rather than functionally- or 1PT-based)
process. Engineers characterized the devel opment of these current plans as having evolved from a
series of stepsin integrated product design. Thefirst step in this evolution took a “design-centric”
approach, in which the company was organized along functional lines and communication was
based on the “over-the-wall” model. More recently, companies have moved toward a “team-
centric” approach based upon integrated product teams using cross-functional communication. The
next step in this evolution, according to engineers at thisfirm, is a*®process-centric” approach.
While engineers are ill organized in IPTs under this model, their communication is driven
primarily by processes, rather than any reliance on a specific functional orientation. When asked
what this process-view included, engineers answered “everything,” from what the stepsin the
design process should be, to how parts should be procured, to how the vehicle should be
manufactured and assembl ed.

The company’s effort to improve its design process began in earnest in early 1995.
Engineers specifically cited the support of their company’ s president as a key factor in helping the
program succeed. The primary external motivation for the program was product affordability, so

the program is intended to help consolidate best practices across the company’ s various divisions,
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with the goal of the system being fully implemented by the year 2000. The program hopes to
achieve a 50% reduction in product development costs and cycle time, a 30% reduction in
manufacturing and assembly costs and cycle time, and a 30% reduction in maintenance and support
costs for fielded systems.

The group working to develop this system has identified several bottlenecks in the current
design process. These bottlenecks were seen as major roadbl ocks to improving the process and

were tightly wedded to the company’ s organization. Bottlenecks identified by the group included:

unavailability of product and process information and difficulty in accessing “enterprise

knowledge;”
inability to reuse data (it is often easier for engineersto redo an analysis than to find old data);
aloose association among engineering groups,

too much time required to understand the impacts of design changes, too much time required to

complete these changes, and an inability to control the changes themselves; and

paper-based, “serial communication.”

Specific outputs of the program are to include a variety of advanced, computer-based
design tools. To aide in achieving a process-based approach to design, a simulation-based tool is
under development. In addition, the company is attempting to implement a“virtual development
environment.” This environment is intended to integrate design and analysis tools and to
consolidate the more than a dozen databases used at the company to one common, shared database.
The company is also working to include as many commercial software products as possible in

order to avoid becoming trapped in aclosed architecture.

7.4.2 Theldeal Design Environment

Underlying these process improvement goalsis avision of how the company would like to
be able to do design. Company documents suggest that an ideal design environment would be
characterized by “concurrent communication” and “decomposition of iterative paths.” In this
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environment, each engineering discipline “performs parametric analyses and then meets to
determine where the optimal compromises are.” These paralel parametric trades allow “each
discipline process to be uncoupled from any iterative sequential path... thus providing a
concurrent, integrated design space.” To foster communication and design trades, preliminary
analyses “will focus on the relative differences between configurations, rather than identifying the
absolute answer.” This change in focus will enable “early selection of the most promising
configurations for further investigation and definition.” These comparative studies will then be
used to enable teams to “ share sensitivities so that solutions can be optimized by considering
severad factors at atime.”

One difficulty identified in implementing such goalsis the realization that, as one engineer
expressed, “integration thrives on the design cycle.” Most often, engineers do not even realize that
they will need to make changes in a design until systems are put together and integrated. For
example, astructural engineer may be confident that he has designed the best bulkhead, only until a
systems engineer informs him of the need to drill a hole through the structure for awiring path.
The goal, therefore, is to enable this communication earlier in the design process, thereby
shortening the cycle of design.

To facilitate this goal, the aim of the software development effort isto allow engineers“to
operate at the level of three dimensional objects.” When an engineer needs to modify a design, he
will simply need to make the necessary adjustments to the part’ s shape, and then the computer will
automatically update the part’s detailed features, dimensions, etc. In addition, the rapid ability of
the computer to make such aternations will be used by engineers to vary design features to
understand their impacts on affordability and performance. Ultimately, it is hoped that engineers
will be able to rapidly develop “families of designs” which will allow them to assess the pros and

cons of various aspects of a design concept.
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7.4.3 Involving Downstream Activities

One important goal of the computer systemsisto allow downstream design issues, such as
manufacturability and supportability, to be addressed much earlier in the design process than is
currently possible. For example, manufacturing engineers will be able to study how a certain part
might be machined while the program is still in the conceptual design phase. Lessons learned from
“making” these virtual parts will then be fed back to the design engineers to update and improve
their design.

In addition to involving downstream engineers earlier in the process, their knowledge and
skills are being embedded in “knowledge-based design advisors’ integrated into design tools.
These advisors will help to guide designers’ decisions, and to ensure that design standards are
used. In addition, the computer tools will note when standards are not used and will be able to
assess the impact of such decisions on cost, performance, and cycle time.

As a consequence of this early involvement of downstream issues, engineers expect an
increase in the number of changes that are made to adesign early in its development. Since these
changes are occurring early in the design cycle, however, thereis still significant flexibility in the
design, so that the cost per changeislow. If such changeswere made late in the design process,

as has often been the case, the cost for the changes would be significantly higher.

7.4.4 Convergence Range and Decision Gates

In conjunction with the devel opment of these design tools, the design process itself is being
reformed. A major component of this reformation is the concept of a “convergence range,”
illustrated in Figure 23. Initially, a part design is developed, but only to a given level of detail,
perhaps such that its dimensions are accurate to within 0.1 inches. Then, through the use of
computer ssimulations, the part’ s details are refined to greater levels of fidelity, perhaps all the way
to adimensional accuracy of 0.001 inches. The design of the part is then varied at this very fine

level of detail, allowing severa aternativesto be considered in parallel. Analysistools, which are
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coupled to the design tools, are then used to evaluate the designs, generating a dataset for the part.
Asthetotal vehicle concept progresses through conceptual design, increasing the level of detail in

the concept, the number of part variations is reduced, until only one design remains.

0.1

0.01
0.001

Figure 23: Convergence range. Initialy, parts are only specified to 0.1 inches. Computer
simulation is then used to refine the design to greater levels of fidelity.

An important issue in this convergence process is the development of the “gates’” used to
determine when to narrow the range of options being considered. Currently, the company is
working on developing “globally agreed to convergence criteria” Theintent isfor these criteriato
reflect avariety of perspectives, including engineering, operations, procurement, administration,
dataintegrity, etc. These criteriathen form the foundation used to judge where to place decision
gates. Once datafor a part or component are available to meet all of the convergence criteria, the
part will progress to the next level of detail.

At the present time, the company has demonstrated this process on large components, such
as bulkheads. Their goal, however, isto be able to conduct the required analysis, variation, and
convergence on detail parts. The company sees this ability to consider alarge number of detailed
alternative part designs as a key element to enable the process decoupling described previously.

One engineer also described this process of considering design concept variations as critical

to making good design decisions. As he put it, one “will never have enough information” to make
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afinal decision, and it is also difficult to predict the downstream effects of a decision onceitis
made. The key, he suggested, is being able to understand the “sensitivities’ of the design, i.e.,
how variations in one parameter will affect the total design. Consideration of these sensitivities

therefore provides a guide to making decisions.

7.4.5 Database Management

Engineers emphasized that the key to implementing this approach to design has been
database management. Historically, standards such as Initial Graphical Exchange Specification
(IGES) have been used, and the company is now heavily involved in the development of the
Standard for Exchange of Product Model Data (STEP). Since the convergence process relies
heavily on generating and tracking a large amount of information for any given part, and then
managing all such datafor a number of parts, the effective use of database management systems
has been akey aspect of the process development program.

As noted earlier, the company currently has a dozen database management programs, each
of which supports a variety of computer aided design and analysis tools. These toolswill now be
connected via a product data manager, which will provide a common database for all of the
computer tools. Thisincreased ability to share the same data will eliminate the current efforts
needed to re-define product data for each tool, thereby eiminating problems related to data

trand ation and duplication such as inaccuracies, configuration control issues, and inefficiencies.

7.4.6 Pending Issues

Though the company has started to develop the exit criteria for the convergence gates
discussed above, the processis still not perfected. Complicating their development is not only the
varying levels of detail in analysis which some specialties can provide, but the critical nature of
knowing some information before anything else. Structural loading data was given as an example.

Thisinformation is critical to the entire design of the system’s structure, and, therefore, must be
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available early in the design process. Note that this problem is essentially the same as was
described in Section 5.5.5. Further complicating the issue is addressing the question of what
happens if adesign failsto meet al of the exit criteriafor agiven gate. One engineer suggested that
it will become essential to develop design options prior to entering a gate for areview to hedge
against such failures.

While the approach to design described above is clearly the direction in which the company
is moving, the engineers describing these changes emphasized the preliminary nature of their work:

as noted, they expect to have the system fully functional by the year 2000.

7.5 Discussion of Example 6

Even more than in Example 5, this example seems to be the first evidence of true set-based
concurrent engineering thinking within the aerospace industry. The company’s model of itsideal
design process, with its decoupling of iterative paths, parallel parametric studies, and sharing of
sensitivities, is the only instance that was seen in this study in which engineers describe concepts
similar to SBCE’s notion of sets and independence. As company documents described and
discussions with engineers reinforced, the goal of the reformed design processisto allow different
engineering specialties to consider alarge number of concepts, and then compare these concepts to
optimize adesign. Thisprocessisvirtualy identical to the ideal model proposed in Chapter 3.

Additional concepts presented in this example are also quite similar to notions of SBCE.
The ideas behind the convergence rate and the decision gates, for example, match closely the ideas
presented for the management of set-based processes. In addition, the knowledge-based design
advisors are similar to Toyota' s manufacturing guidelines, and, therefore, are a means of providing
constraints on the size of design sets. Asin the case of Toyota s guidelines, these computer-based
assessment tools should help to ensure that design alternatives explored by different specialties do

exceed the capabilities of other specialties.
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Since this computer-based design system is still under development, one must cautious:
the final form of the virtual development tool may not achieve the ideal environment which was
described. It wasinformative to discover, however, that one company does see SBCE-type

practices as potentialy beneficial.

7.6 Conclusions: The Challenges in Implementing Virtual Product
Development Tools

It appears that given the complexity of aerospace systems, set-based practices are intimately
tied to the development of advanced computer tools. The amount of information which must be
generated to characterize even a small portion of an aerospace product rapidly beginsto exceed to
capabilities of the unaided human. In many regards, then, it is not surprising to see this link
between set-based methods and computer tools.

Using computers to enable avirtual product development approach does not come problem
free. One difficulty raised by several engineers was described as a Catch-22 associated with the
power of computers. Though advanced computer aided design systems could be used to speed up
the iterative cycle or to reduce the number of people needed to develop adesign, they have instead
been used to consider a greater number of designsin parallel. Though not a problem in and of
itself, the ability to generate and analyze such alarge set of concepts has made it difficult to know
how many conceptsto consider. As one engineer expressed, it is becoming even more difficult to
know when it is “time to shoot the engineer and build the [system].”

Another problem associated with the computer analysis systems is that not all of the
specialties can work to same level of detail. Structures, for example, has been a specialty which
has benefited significantly from computer tools alowing numerous concepts to be developed
rapidly. Controls, on the other hand, is still considered a “point-based” specialty, requiring a
separate analysis for every design. Thus, while one specialty may be able to generate and analyze

many concepts early in the design, the same may not be true for another. Coordinating these
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varying levels of design analysisfidelity poses asignificant challenge to successfully implementing
the process reforms.

As discussed by engineers at several companies, obtaining funds to develop advanced
computer tools is also something of a Catch-22. Developers promise that the new systems will
ultimately reduce the cost of design efforts, but initially alarge amount of money is often needed to
implement the computer tools. Managers who control the funds for such development naturally
want proof of the system’s capabilities before making large investments. To see such results,
however, often requires that a significant amount of effort be devoted to developing the system.
Thus, engineers ask for money to implement the system to save money, but managers first want
proof of the savings. While the two companies cited in the above examples have overcome these
challenges, engineers at several companies mentioned encountering such challenges.

Additional issues related to advanced computer tools will be addressed further in Chapter
11.
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8. Standard Products and Practices

8.1 Chapter Introduction

Aswas noted in Chapter 3, thereis aclose link between platform design approaches and
set-based concurrent engineering. During this investigation, several examples were seen of
platform strategies, and these examples highlighted the connection between SBCE and platform
products. The following sections present these examples. Examples 7 and 8 illustrate companies
which have modified their entire development practicesto accommodate and facilitate platform
strategies. The sections describing these examples, therefore, cover arange of topics related to the
entire development process. Because of their smilarities, a discussion of these examples is
withheld until both have been presented. Examples 9 and 10, on the other hand, present much
more limited instances of platform approaches. They are both instructive, however, for reasons

not highlighted in Examples 7 and 8.

8.2 Example 7: A Company Beginning to Implement a Platform Strategy

8.2.1 Background: Motivation; Basic Advantages and Disadvantages

Goals to reduce system cost and devel opment cycle time have provided the impetus at one
company to move toward standardized products and processes. The primary measure used by the
company to track the implementation of standardization is non-recurring engineering costs. This
measure directly reflects the amount of effort spent to engineer apart or component that can only be
used for a specific program. Reusing designs between several programs means that engineering

work completed for one system can be applied to another, thereby reducing the non-recurring
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engineering costs. The question then becomes, how can engineering work be most easily reused
between programs?

The current answer is through product and process standardization. By standardizing a
component’s design, for example, engineers need only verify that the design will meet the
operating conditions of the system in which it will be used, rather than having to completely design
the component from a blank sheet of paper. Similarly, standardized processes mean that lesstime
will be required to determine the best means for manufacturing a component -- simply select the
standard process. By reducing the amount of effort required to generate a design, primarily by re-
using past designs, significant savings can be achieved in both cost and time.

While such savings represent a significant advantage to standardized products, the drive
toward standardization does come with aprice. Asone program manager described, “acommon
product is never an optimum product.” Since a standardized design is sized to meet a wide range
of conditions, components are often over-designed or under-designed for a particular application.

A follow-on trend, therefore, has been to develop products that are not only standardized,
but that can also be tailored. Such products allow for two or three product parameters to be readily
manipulated, usualy in integer increments, such as adding or removing springs from a
mechanism. While such tailoring improves a component’s suitability for a given situation, the
component will still not meet exact requirements; as one engineer pointed out, “tailoring makes it
work, but doesn’'t make it pretty.”

Aerospace products tend not to win contracts based on looks alone, however, and the
advantages in time and cost offered by standardization have provided significant returns for the
company. The following paragraphs present several “snap-shots’ of various aspects of the
company’s efforts to standardize, highlighting the methods and approaches used to implement

standardized products and processes.
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8.2.2 Materials and Processes (M&P): Integrating Standard Materials and

Manufacturing Processes into Design

The standardization effort within the Materials and Processes group (M& P) began with the
development of a database characterizing all of the materials and processes used by the company.
This database contains information on materials such as paints, adhesives, electronic materials,
composites, metals, etc., and describes how the materials can be best used during manufacturing.
The database al so describes what operational or environmental constraints apply to a material or
process.

When a new program begins, an M& P representative is sent to the program team. Based
on theinitial design studies for the system, the representative will develop a preliminary M&P
selection list, which contains an account of what materials and processes might be applicable to this
particular program. Asthe design develops, the representative will compare more specific needs of
the system with thislist. The representative will then recommend which material should be used
for which aspect of the design, usually only making one recommendation for each component of
the design (i.e., one material will be recommended for use on a structural support, not two or three
options).

If adesign team’ s requirements can not be filled by materials listed on the selection list,
trade studies will be conducted to determine what material would fulfill the requirements. Once a
material has been chosen, the M& P group will develop several prototypes (such as coupon tests or
preliminary versions of system hardware) to qualify the material for the specific application. Once
these qualification tests are completed, the material will be released for use on the program and will
also be added to future selection lists so that it can be readily used again in the future.

Due to the evolution of material and process technology and the evolving needs of specific
programs, the M&P group has established Parts, Materials, and Process Control Boards
(PMPCBs). These Boards are forums for debating the development of new materials and
processes, such as described above. PMPCBs also provide the oversight required to qualify anew

material or process, and provide a mechanism for clearing materials for use on future spacecraft.
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M& P engineers cited two primary advantages offered by this standardization approach.
First, the selection lists provide an easy mechanism to provide design ideas to engineers working
on anew program. Rather than having to start from scratch, engineers developing new designs
can use the selection lists to see what materials have been used in the past and incorporate these
materials into their work. Second, the lists provide data on materials and processes which have
already been qualified for the environment in which they will be used. Many aerospace systems
are required to operate in environments which far exceed conditions encountered by most
consumer products, for example. Verifying that a material or process will in fact be able to survive
in the required operating environment can be a costly and time consuming process. By maintaining
a history of how a material has been used in the past, the selection lists allow a new program to

bypass the time and expense of qualifying a material.

8.2.3 Electronics Packaging: Developing Evolving Standards

The eectronics packaging design group provides a good example of how a standard
product design can be initially established and then evolve to become more flexible and meet a
greater variety of needs. This group is responsible for designing the boxes which protect and
integrate mission electronics into asystem. Their process of standardization has helped to reduce
the cost of developing packaging concepts and has contributed to a design cycle time reduction of
nearly fifty percent.

When a new system is being designed, a box designer first determines whether a standard
design can be used. If the system is unique or has special requirements, the designer might be
forced to develop a customized packaging concept. If such customization isnot required, the
designer will then select to use a standardized box design. The first version of this standard design
camein fixed size increments. For example, boxes were available which could hold 5, 10, or 15
electronics cards. The obvious problem with such a standard design, however, was that systems

would often require an intermediate number of cards, such as 3 or 7. In such cases, the box
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design would be larger and, therefore, heavier, than was necessary, since the box would have
empty slots.

The next standard box design allowed for more flexibility. Sincethe 5 and 10 card boxes,
for example, were essentially identical except for their lengths, the first evolution of the standard
was to adesign that could be “cut” to the hold exactly the required number of cards. The
attachment points for the cards were set at afixed interval, thereby allowing the box design to
customized based on the number of cards required.

The next evolution of the standard is to break the box itself into smaller, standard elements.
Rather than having a standard box, the next design will have standard endwalls, card attachment
fixtures, and sidewalls. These standard elements can then be combined for a specific design,
allowing not only the number of cards, but the card pitch (cards per unit length of box) to be
customized for agiven design. Since the design elements themselves are standardized, however,
the design process will still be faster than if the box had to be designed from scratch, while at the
same time achieving a greater level of customization than was possible with the origina standard.

One program manager working to devel op these standards a so noted that new technologies
can be incorporated directly into standard designs. In the case of the boxes, should a new
composite material be developed with advantages over the current material, it could be integrated
into the standard. The design itself would not change dramatically, but endwalls and supports
could be made thinner, for example. Allowing for the inclusion of such developments further

illustrates how standard designs can evolve over time.

8.2.4 Standard Designs and Decision Making

The evolution of standard product designs has impacting decision making during the design
processin several ways. Two of the most interesting are the effect of standard products on when
design decisions must be made, and how the existence of standard designs have affected the design

decisions of various programs.
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First, consider the impact of standard products on design decision timelines. While in
many cases engineers emphasized the need to make decisions as early as possible, another group
suggested that design standards have in fact alowed them to delay making design decisions.
Several program managers described two ways in which this might happen. In the first case,
typically true of small parts or mechanisms, the availability of standard designs means that detailed
consideration of these parts can be delayed while more pressing or critical issues are addressed. In
the past, such parts were often custom designed, requiring one or more engineers devoted to their
design and analysis. In many cases, however, standard parts have now been developed which can
be used with very little additional design or analysis work. Since the designs are dready
completed for these parts, no engineers need to be assigned to work on them until they are required
late in detail design.

In the second case of delaying decisions, standard designs often allow for the “growth” of
asystem. Since standards are often developed around a scaleable architecture, engineers can
initially choose to use the smallest equipment they think will be required. If, however, asthe
design progresses, engineers determine that their initial estimate was low, the next “size” can be
used in the design. Two different examplesillustrate this point.

In one instance, a system’s structure was initidly based around the smaler of two
standardized designs. As details of several of the subsystems evolved, it became clear that the
chosen structure would not accommodate these subsystems. Rather than having to start the design
work from scratch again, however, engineers simply switched to the larger of the two common
designs. While some interface issues were complicated to resolve, these problems were far less
difficult than if the entire structure had to be redesigned.

In a second example, engineers sized the electronics for a control subsystem based on an
initial estimate of the total system’s performance. Again, as the system progressed into detall
design, this estimate proved incorrect, requiring the addition of several more control mechanisms.
In the past, the addition of these mechanisms would have required the control subsystem

electronics to be redesigned. Standardized control subsystem electronics, however, allowed
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engineers to accommodate the growth in the control subsystem by simply adding more control
cards, without having to redesign the entire subsystem.

Both of these examplesillustrate how late changes to a design were accommodated through
the existence of standard designs and products. Program managers stressed the value of this
design flexibility offered by standardized product designs. In past programs, such changes would
have resulted in a significant amount of design re-work. The availability of the next “size” in the
standard products, however, limited this rework to less critical issues.

The existence of standard products has also had other, more direct effects on design
decisions. Standard products are usually developed to accommodate some likely range of mission
requirements. So long as a new system fallsinside of that range, the system can make use of the
standard products. That such an alignment will occur, however, is not necessarily assured.

For example, a program manager responsible for the development of a standard product
described a program which had chosen a particular set of values for several mission parameters.
These choices, however, pushed the system outside of the envelope for which a standard product
was appropriate. The manager illustrated the situation with a sketch, reproduced in Figure 24.
While the chosen values for the system were achievable with available technology, the design
would have to be custom-developed, increasing the time and cost required to design the overall

system.
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Figure 24: Standard product performance envelope. By modifying mission
parameters, a program can take advantage of an existing standard product.

After meeting with design engineers on the program, the manager was able to convince
them to modify their design such that the mission variables would fall within the realm of the
standard product. Although making such a modification changed the system’s performance, the
system would still meet al of its requirements. In addition, it would fulfill these requirements at a
lower cost than if customized products had been used.

This example highlights the potential influence which standard products can exert over a
program’s development. Because of their availability, standard products can be designed into a
new system faster and at less cost than if new products were developed. As another program
manager described, engineers do not select a particular bolt because that bolt is sized to exactly
carry the needed load. The bolt is selected becauseit is available and cheap. Managers of standard
product lines within the company have been portraying their products to development programsin
a amilar fashion. The product may not meet a design’s initid requirements, but if these

requirements are slightly modified, the standard part could be used. Applying the standard product
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then resultsin asignificant savingsin time and cost. At the moment, these benefits are beginning

to outweigh the advantages of customized products.

8.2.5 Standardizing the Design Process

Several groups within the company have moved to not only standardize their products, but
also their design processes.

For example, the electronics packaging group has generated a standard process for the
design of their boxes. Though relatively general, this process flow defines the steps required to
develop abox design, from the receipt of specifications through drawing release to manufacturing.
The process flow not only identifies what must be done by the box design engineer, but also notes
with whom this engineer must communicate to receive permission to continue to refine the design.
Once adesign concept has been finalized, for example, the design must be sent to the reliability,
check, and analysis groups prior to the development of a detailed solids model of the packaging
concept. The flow also clearly notes when iteration might occur in the design process. For
instance, if in the example just described one of the groups has a concern about the design, the
design might require modification. The potentia for thisiteration is clearly indicated in the design
process flow.

Engineersin the packaging group and within other design groups stressed the importance
of standardizing design methods. One program manager specificaly cited the need for well-
defined design practices, suggesting that standard methods “had to be used to be successful.” He
continued, saying that by following a structured process, engineers are less likely to overlook
mistakes, and, therefore, are less likely to “have to go back and do things over.”

One benefit of standard design processes cited by several engineers was its educational
value. Program managers emphasized that having standard design methods simplified the training

process for new engineers. These documented methods avoid telling new engineers, “do it long
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enough and you'll get afeel for it,” and instead provide a concrete methodology in which new
employees can be trained.

A smilar benefit of standardized design processes was aso described in terms of
improving the dissemination of esoteric design knowledge. 1n one engineering group, a particular
manufacturing process had proven difficult to understand, and, consequently, only afew engineers
were very familiar with it. When these engineers would move on to other positions, however,
they would take their knowledge with them. The development of a standardized design method for
this process has since enabled the design group to rely far less on the skills or knowledge of any
particular engineer. The standardized design methods now allow any engineer to be easily trained
in the process, enabling new engineers to move up the learning curve far faster than was
previously the case.

The electronics packaging group also illustrates the synergistic effects that can be achieved
through standardizing both the design process and the design of a component itself. By ensuring
that a predetermined number of reviews have been passed during the development of abox design,
it isnow possible to accelerate the process in its later stages. For example, if a standard box
design is being applied to a new system, and the design has passed all of the needed reviews for
this new application, manufacturing can begin to build the box prior to the formal release of the
drawings. While the drawings go through the formal sign-off procedure required before they are
“officially” released, manufacturing can already begin working on the first versions of the box.
Revisions are incorporated into the drawings as needed as they receive the required signatures and
arethen formally released. Inthe past, al of the signatures would have been required prior to the
start of manufacturing. Allowing for manufacturing to begin to build the box while these formal
reviews are completed has contributed to the reduction in total design cycle time for the design of
these boxes.

The push for standardization has also progressed into other elements of the design process,
such as drawing notes. In the past, every engineer would write his own notes on a drawing, such

as which dimensions were the most important, what tolerances applied where, etc. Though
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typically not problematic, the writing of these notes took away time that an engineer might instead
use for design and also introduced the possibility for mistakes or confusion, particularly during the
hand-off of the drawings from design to manufacturing.

To diminate these problems completely, the design group has adopted standardized
drawing notes. These are a numbered set of notes which are regularly used on the drawings
generated by the group. When appropriate, the note isincluded. If a note does not apply to the
drawing, the number is listed along with the label “NOT USED.” Where needed, customized
notes are still added, but since many designs are based on standard components, many notes are
reused. Though arelatively simple measure to implement, standardized notes have increased
engineers time for design and reduced the possibility for miscommunication between other
engineers and manufacturing.

Though standardized methods have lead to a significant number of advantages, engineers
did cite some drawbacks. For example, in many cases, these methods are technology specific. If
the technology involved in the component changes, the design method itself must change. In chip
design, for instance, the size of the chips has been reduced over time, which has lead to an increase
in chip complexity (since the functionality of a chip has either remained the same or has increased
compared to past chips). Asthis evolution has occurred, design methods have had to be modified
to handle the increased level of complexity. Whereas in the past only one engineer would have
been needed to design a chip, six to seven are now required. This change has aso forced a change
in the way the chip themselves are developed. Previously, the chip was designed as one single
entity. Due to theincreasesin complexity, however, chips are now partitioned into several blocks,
one block then being assigned to an engineer. Clearly these changes have forced the design
process itself to evolve.

Another potential drawback is that standard methods might eliminate some design options.
Again, this consequence is directly related to the technology of the device being designed.
Drawing another example from chip design, engineers described how many circuits can be

designed for synchronous or asynchronous operations. In a synchronous design, commands are
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executed “to the beat of aclock,” while in an asynchronous design, commands are executed simply
as needed. While neither design is necessarily “better” than the other, one design group has
chosen to make all of its designs synchronous. Their standard design methods, therefore, are all
built around the development of synchronous chips, thus limiting the possibility of developing
asynchronous chips. While the design group still retains the knowledge to develop asynchronous
chips, a program requesting such an effort must provide significant justification to convince the
design group to deviate from its standard practices.

Despite these limitations, program managers who had implemented standardized design
processes were confident that the advantages offered through standardization far outweighed their
disadvantages. Asone program manager explained, it is expensive and time-consuming to develop
their systems, therefore they have been “driven to a process that would let [them] be successful the
first time.” By building on and documenting the methods used to develop one successful design,
several engineering groups have increased the quality and reliability of their designs, while at the

same time reducing their costs and cycle time.

8.2.6 Standard Designs and Their Effects on Design Organizations

In addition to affecting the design process, standardized products have begun to influence
changes to the organization of the company itself. A good example of these changesis provided
by one of the mechanical design groups. This group has had responsibility for several elements of
the systems built by the company, including the structure, mechanisms, and mission environment
analysis. Each of these elementsis then represented within the group by a smaller department.
Historically, as a new development program began, engineers from each department would be
assigned to the program and remain dedicated to the program for its entire length. The evolution of
standard designs, however, has changed this process.

The mechanism design department, for example, has developed a wide array of

standardized products. Currently, the department is working to make these standard products
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more customizable, such as spring mechanisms which can use more or fewer leaf springsto tailor
aforce for agiven application. Such products have meant that the design department can serve
several programs using the same design.

Thisincreased breadth of applicability is now leading to new concepts for how this design
department should be used in the company. Whereas in the past, mechanism design engineers
were assigned to a specific program, they are now being assigned to a specific product. For
instance, one engineer (or engineers) will become responsible for supplying al company programs
with spring mechanisms. These product engineers will work to develop more customizable
designs, while at the same time working with specific programs to ensure that the programs can
best capitalize on existing standard products. Therefore, a major benefit of this product-aligned
organization is that one engineer can now interface with several programs, rather than having one
engineer per program. Engineers will be able to focus more directly on evolving their product
designs, and will also be more aware of what needs are faced by multiple programs that could be
met by common products. Engineers expect this organizational change to reinforce the other
benefits of product standardization and consider these changes to be the next step in the evolution

of their standardization effort.

8.3 Example 8: The Evolution of Standardized Products and Processes

8.3.1 The Development of a Gated Process

One company’ s recent success toward developing standard design methods provides a
good illustration of what has occurred at several companies. Historically, most of the company’s
programs emphasized performance first, followed by schedule and cost. These priorities reflected
the needs of the customers, who were typically most interested in performance. The company’s
design processes, therefore, were geared toward addressing these customer preferences. Schedule

and cost constraints were often sacrificed in order to improve a system’s performance. Asone
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manager explained, engineers were “very prone to iterating continuously,” because with each
refinement, the design’s performance would improve. A design concept would be generated,
analyzed, and then redesigned based on this analysis to achieve ever greater levels of performance.

These practices, however, had several inherent problems. For example, each system under
development consisted of numerous subsystems. Every subsystem, however, was continuously
refining its design, so that at any given point in time, managers would have a difficult time
assessing how close a subsystem was to completion. This fluidity in design also contributed to a
fluidity in aproduct’ s requirements. Each time the design was modified, the requirements would
also have to be adjusted. Ultimately, rather than the requirements being finalized prior to the
design, both design work and requirements development would end at the same time. This
simultaneity prevented a design concept from being directly compared to afirm list of requirements
to verify that the design did in fact meet the customer’ s needs.

In addition, as one manager described, this ill-defined process lacked “any sense of
closure.” The process had no clear mechanism to determine when engineers should finalize a
design and stop iterating -- there was no good definition of what made the design “better” as
opposed to what would be good enough. Instead, the design would be refined until time or money
ran out, but, as noted above, even these constraints were often relaxed to allow for performance
improvements.

Over time, however, the company has significantly reformed its process. The pressure to
make these reforms has come primarily from the customers, and largely from one requirement:
lower costs. As previously described, the company’s past practices largely disregarded cost and
schedule issues relative to performance issues, an attitude which reflected the customer’s desires as
well. Even to the customer, higher performance was more important than remaining on time and
under budget. The customers have changed in recent times, however, and so have their priorities.
Customers now consider schedule and budget as important if not more important than
performance. To stay responsive to customer needs and to remain competitive in the industry, the

company has moved to adapt its processes to address these changed customer priorities.
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The company’ s efforts began on the manufacturing floor. Every program in production
was reviewed, and specific dates were assigned for the completion of each product and process.
These dates were then communicated back to the design organizations. If the current design
schedule failed to meet a date specified by manufacturing, the design organization had the
responsibility to make changes to enable the program to conform to the schedule.

Once firm dates and schedules had been established between manufacturing and design, the
company then began to establish timelines for the design processitself. Thefirst step in this
process was to thoroughly review and then understand what steps had to be accomplished to
generate a product design. Important elements of this process included understanding how
different groups, which were responsible for different elements of the system, depended upon one
another for information and how the sequencing of thisinformation impacted the development of
the design.

Based on this data, the company established “process gates’ to define a*“ gated process.”
The gates sequenced design tasks and were essentially a series of checklists which defined what
design tasks had to be accomplished before the next series of tasks could be initiated. The gates
also clearly defined who was involved in generating the data needed to exit the gate, as well as
what organization was responsible for ensuring that the needed data had been collected and
finalized. Thus, each gate was “owned” by one group within the company. For example, the first
gate, which related to the proposal phase, was the responsibility of the business development
manager for anew program. The intent of establishing such clearly defined process checkpoints
and checkpoint ownership was to ensure that the right people were doing the right tasks, at the
right time, and for the proper length of time. In addition, the gates also clearly defined which
design activities could be completed in parallel, and which activities had be to executed serialy.

Program managers emphasized several other important aspects of the gated process. One
was the need to have clearly defined systems and subsystems. For example, a propulsion system

might be defined by some engineers as the engine and the fuel system, while other engineers
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would only include the engine. Clarifying such definitions was essential in enabling the
establishment of proper exit criteriaat each gate.

In addition, common software tools or at least a common design database were critical to
making the system successful. If design data had to be converted from one form to another as it
passed through each gate, the process would become much more complex and would have
increased the potential for errors. Such complexities can be eliminated, however, if different
engineering groups use common design tools, or if their specialized tools can at |east read data
from the same database.

Finally, engineers emphasized the need to commit to keeping a gate closed once it had been
passed. As noted earlier, past tendencies at the company had been to go back and refine a design
whenever room for improvement was found. The gated process, on the other hand, stressed that
once design decisions had been made and a gate closed, the decisions should only be changed if
such changes were critical to meeting the customer’s needs. This commitment to keeping a gate
closed has helped to enforce the discipline required to bring the closure which had previously been
lacking in the design process.

As acceptance of the standardized design approach has spread, the company has begun to
enhance its coordination between programs. In the past, each program under design or
manufacture had its own schedule. Asthe number of programs has expanded at the company,
however, these independent schedules have lead to conflicts over resources, such as testing
facilities. To address these issues, the company has implemented a company-wide scheduling
system. This software tool enables the company to coordinate the schedules of al of the programs
currently under devel opment and manufacture, so that each program can then make realistic trades
regarding its own schedule. For example, if a program wantsto dip its schedule to allow for more
design refinement, it might learn that such aslip would bring it into conflict with another program
for use of atest facility. Inthe past, such a conflict might not be identified until both programs
showed up at the facility at the same time. By coordinating the schedules of all programs, such

conflicts can be eiminated.
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8.3.2 Designing the Design Organization

Several program managers emphasized the importance of aligning the company’s
organization, processes, and products into a coherent system. This alignment occurs at several
levels within the company. At the company-wide level, business units have been established with
responsibility for the major eements of the products. One business unit is responsible for
structures, another for eectronic equipment, etc. These business units then assign specific
engineersto address design issues for each program under development.

Within a program, the gated process helps to ensure that the organization of the programis
properly matched to the product’s development. The gates clearly identify who is responsible for
what tasks and what data, thereby identifying what personnel should be working on the program at
any given point in time. One program manager compared the evolution of a program’ s personnel
to alavalamp: The peopleinvolved in a program would not necessarily change, but the manner in
which those people interacted might. Asone group assumed responsibility for the next gate, their
influence on the program would increase, for example. Once their work was completed, however,
their influence might again decline. Engineers from the group might not, however, leave the
program all together. Asnoted previously, the formalization of these changes provided by the

gates helpsto ensure that right people are involved in the program at the proper time.

8.3.3 Product Design

Along with the company’ s process and organization, its product has changed in recent
times aswell. Like other companies, this one has moved toward a product architecture built
around standardized components. Standardized designs complement the gated process well,
because the use of standard products limits the variability of the design process itself. For
instance, one business unit has devel oped a standardized power amplifier. By adding or deleting

elements on the circuit card, the output of the amplifier can be modified to match a specific
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program’s need. This modification process is much more well-defined than if the amplifier had to
be designed from a clean sheet of paper each time.

As with other companies, managers at this one saw both advantages and disadvantages to
these standardized designs. The largest disadvantage cited by engineers was that a product tended
to be suboptimized for a given application. Since standard components tend to come in integer
increments, rarely does a standard product exactly match the requirements of a given program.

For this drawback, however, programs achieved several advantages. The largest of these
benefits are reduced delivery cycle times and lower costs. As discussed above, these reductions
are directly in line with the current demands of customers. In addition, the standard parts tend to
have a “design heritage,” i.e., they have been successfully used in various operationa
environments. Such components, therefore, require less testing for a specific program and reduce
the program’ srisk.

Standardized products also allow for quick and easy trades to be considered for a system.
The scaleable power amplifier described above, for example, enables designers to quickly consider
several antenna designs for a particular application. Since the amplifier can be readily modified
over afairly significant range of output levels, antenna engineers can reduce the size of antennaand
use a higher output level from the amplifier without incurring any significant penalties in weight or
cost.

Finally, as has occurred elsewhere, design groups at this company have been working to
constantly improve their standard components. Asone example, engineers described how an
el ectronics package that had weighed six pounds has been reduced to size of a pocket calculator.
Such improvements in weight and size have allowed for the total product to become smaller and
lighter or have allowed other elements of the system to become larger without increasing the total
product’ s size.

Establishing standard designs have allowed such advances to evolve off-line from any one
program. Since the components are needed by virtually every product, they can be developed on a

path separate from a particular system, so long as the interfaces between the final product and the
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standard component do not change or are tracked carefully. Again, such practices have reduced the
cost, cycle time, and development risk of any specific project, and have till allowed for significant

advances in product technology and performance.

8.3.4 Taking Advantage of the World Wide Web

Asdifferent design organizations within the company have begun to standardize their
processes, they have aso begun to invest heavily in web-based process pages. Established on the
company’s intranet, each design group has begun to document their standardized processes on
group home pages. The basic goal of developing these web pages has been to enable the sharing
of standard practices both within and between design organizations.

A subassembly design process web page highlights many of the features under
development throughout the company. The main page at the site contains an overview of the
design process, highlighting steps such as Alignment, Convergence, Brassboard, Engineering
Modeling and Analysis, and Manufacturing Readiness. Under each process step, users can select
avariety of pages, each of which documents an aspect of the standardized design process.

Clicking on Alignment, for instance, reveals examples of flow diagrams and parts
checklists from past programs. These documents can be used by new engineers to learn how to
document such aspects of their designs. A standard process list describes the capabilities and
limits of manufacturing processes, documents what information a designer must provide to
manufacturing to allow for the use of a particular process, and has aform to enable the engineer to
request the development of a new process. Under Convergence, engineers can cal up
standardized drawing forms and matrix templates which are used to help facilitate discussions
between different specialty groups. By standardizing the forms used for such conversations, the
company has moved toward a more common frame of reference and language between specialties,
improving the communication between them. Other pages under the other process steps contain

additional examples and forms which have been standardized for the design process.
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An important standardized form on the web pages is the design notebook. Clicking on the
link for the notebook allows an engineer to download a standardized document template to his
desktop computer or workstation. The notebook is intended to be used to track the design and
development of a product -- to provide a history of the product’s evolution. Providing engineers
with a standardized template for such documentation increases the likelihood that they will use it.
At the same time, the standardized form will enable the next step in the development of the web
pages. placing past design notebooks on the web. Theintent isto allow a new engineer to view
the notebooks of past programs to provide access to lessons learned on past programs. Use of the
notebooks already helps current programs when they encounter difficultiesin the design process.
By having documented their decisions, engineers can more easily review their past work to see
where changes can be made. When past notebooks are placed on the web, future programs will be

able to avoid pursuing dead-end design paths in the first place.

8.3.5 Influencing Requirements

The development of these standard components and practices has also impacted the manner
in which the company attempts to influence its customer’ s requirements. In the past, the company
would accept the customer’s requirements and design a system which exactly met those
requirements, regardless of cost or schedule. As customers have become more sensitive to such
factors, however, the company has been working to modify their relationships with customers
early in program. Rather than taking a customer’s requirements as cast in stone, program
managers are now returning to their customers and offering a choice of options. On one hand,
they will offer to build exactly what the customer requested. Moving down such a path, however,
often means that standard products can not be used to avery large extent. In order to provide the
customer with a product in less time and at alower cost, they will also offer to develop a system
which capitalizes on standard products to meet most of the customer’ s requirements, but not all of

them. Under many circumstances, customers have been willing to back off on severa
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requirements to take advantage of the faster cycle times and reduced costs offered by a standardized
product.

Engineers have emphasized that such communication with the customer and influence over
system-level requirements have been critical to realizing the benefits of standard components. If
every customer’s specific requirements were met to the letter, much of the progress which had
been made in standardizing components would be worthless -- each product would have to be
custom-built at every level of design. By working with the customer, however, the company has
been able to reduce the cost and delivery time of its systems, and still satisfy its customers most
important needs. Note that as reforms in this customer-producer relationship take hold, the
company will have successfully changed its entire development process, which began on the
manufacturing floor and has progressed back into the product design process, the product’s

architecture, and, finally, the relationship with the customer.

8.4 Discussion of Examples 7 and 8

Examples 7 and 8 both illustrate companies which are pursuing platform product strategies.
Their design processes are typically more point-based than set-based, but as was noted in Section
3.6, there are important connections between platform design and SBCE.

As shown earlier in Figure 24, platform design clearly has a set-based character: the needs
of aset of programs are compared in order to develop a single product which can be used by all of
the programs. L ooking for such regions of overlap across programsis similar in many respectsto
the logic of SBCE. Set-based concurrent engineering, however, |ooks across the needs of several
functional groups within a program, rather than across multiple programs. Thus the philosophies
are similar, but the execution is quite different.

Other features of the Examples 7 and 8 illustrate additional set-based concepts. The M&P
selection lists described in Example 7, for example, are similar to Toyota's design guidelines.

These selection lists provide a good illustration of the independence concepts of SBCE. Aswas
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described, when a material and process engineer is assigned to a program, he first reviews that
program’s requirements. He then returns to the company’s material and process database, and
uses the requirements to select an initial list of materials and processes for the program. In effect,
the M& P engineer isindependently exploring the design space for the program. Thisinitial listis
then narrowed as the design progresses and more details are revealed. In many respects, therefore,
this processis a good example of SBCE. Where it falls short, however, isin the limited number
of options that are shared between the M& P engineer and other members of the team. Aswas
discussed, typically the M& P engineer only recommends one material for a given application,
although she may have considered several. If the engineer were to share more options with the
other engineers on the team the process would truly fit the SBCE moddl.

Example 8 also demonstrated another concept similar to those in SBCE: once the design
space has been narrowed, avoid expanding it again. Aswas described, once agateisclosed in the
design process, engineers at the company described in Example 8 are instructed not to attempt to
improve the design later in the process unless absolutely necessarily. Thisinstruction is akin to
SBCE’ s notion of staying within a set once committed to it.

In summary then, both Examples 7 and 8 provide good illustrations of the advantages and
disadvantages of platform-based design strategies. In addition to the issues raised in this

discussion, severa other features of these examples will again be explored in Chapter 11.

8.5 Example 9: Design Re-Use

In an attempt to reduce costs and cycle time, one company has embarked upon a major
effort at design re-use. The basic aim of this effort isto allow design work completed for one
project to be used on another, and in many regards is similar to efforts at product and process
standardization. One engineer illustrated this process and compared it to past processesin a sketch
which has been reproduced in Figure 25. As described by the engineer, in the past, programs

were considered one at atime, in isolation from one another. Each program, therefore, essentially

156



required that all elements of a system be designed from scratch. The basic problem with this
approach, however, was that other projects may have already developed systems or components
which would be applicable to a new design. Similarly, since new programs were self-contained
entities, each program was developing its own system elements, even if all of these programs
might have started at the same time and might have shared some design features. In either case, a

significant amount of design work was duplicated between the programs.

Old Process

Common Features/‘

Program-Specific Featuresj

Figure 25: Moving to design re-use. Intheold process, Programs X, Y, and Z were each
considered in isolation. In the new process, the three programs are considered together, so that
common features across the programs may be identified.

In the company’s new approach to design, severa programs will be considered
simultaneoudly. This simultaneous consideration allows engineers to look for elements of overlap
in the designs. Though each program will require design work which is specific to that system,
the total design effort across all of the programs will have been reduced.

Engineers described a multi-step process which facilitates thistype of design re-use. Firgt,
the requirements for several programs are reviewed. These reviews allow engineers to understand
the basic performance needs of each system. The requirements for the programs are then
compared, establishing areas of overlap in the designs. Design engineers are then allowed to

devel op baseline components which can be used by all of the programs. These baseline designs
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are then passed onto each program, which in turn develop derivatives of the common designs to
meet the specific needs of their particular program. This process has reduced the total amount of
design work required across the programs and has consolidated similar design efforts across
several product lines.

This approach to design is also facilitating a major reform effort in the company’s
manufacturing strategy. In the past, each new product developed by the company was
manufactured in a new factory built specifically for that program. Moving to a design process
which emphasizes commonality across programs has enabled the company to stop this practice.
The company is currently in the process of developing a common production facility. Several
projects, all of which share some design features, are to be produced in this single facility. Asin
the case of the design re-use effort, this change in approach to manufacturing is expected to reduce

system costs and cycle time.

8.6 Discussion of Example 9

Though similar to the strategies of standardization presented in Examples 7 and 8, this
company’s approach is slightly different. In the earlier examples, the emphasis was placed on
modifying a new design such that it could make use of old component designs. In this example,
however, adightly different pattern is revealed.

Rather than forcing a new system to simply make use of an old product, this approach
compares several new systems and then develops a new product which can be shared between
them. Furthermore, each system does share exactly the same product -- they share only those
features which are clearly common between them.

Perhaps what is most interesting is the design process used to generate these shared
elements. One design group is charged with the task of developing the shared basdline
components of the product, while engineers assigned to each system are then allowed to modify

and complete the design to meet their specific needs. This approach isinteresting in that it suggests
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something of a narrowing process. A basdine design which is widely applicable is first
developed. Further engineering of the design adds more features and details, and gradually tailors
it to a specific application, i.e., narrows the applicability of the final design. In addition, this
narrowing process is accomplished by different groups of engineers. One group develops a
baseline design, while subsequent, downstream groups refine the design. This progressive

narrowing is a notion which will be seen again in the model presented in Chapter 11.

8.7 Summarizing Standardized Products and Processes

Because a company makes use of standardized products does not mean that it also uses
SBCE. However, companies which follow such strategies clearly make use of several set-based

practices.
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9. Set-Based Approaches and the Influence of Cost

9.1 Chapter Introduction

Many of the previous examples described the impact of cost on the design process. Cost
has motivated many companies efforts in design process reform, from the development of virtual
product design tools to the implementation of standardized products and processes. As the
following sections illustrate, however, cost has aso lead some programs to consider more design

alternatives during a development program. Two examples are presented, followed by discussion.

9.2 Example 10: The Cost of Considering Alternatives

One design manager provided a vivid example of the need, benefits, and justification for
carrying multiple design optionsin parallel. Many of his programs are significantly constrained by
time. These time constraints limit the ability of a given number of engineers to consider design
alternatives. They simply do not have enough time to consider one concept and then consider
another.

In order to evaluate more than one design option, therefore, the manager increases the size
of hisengineering staff for aproject. These additional engineers can then work in parallel with the
initial team, evaluating an alternative design concept. Bringing these additional engineers onto the
program, however, increases the program'’s cost, since the hours spent by these engineers will
now be charged to the program. It was necessary to bring these engineers into the program to meet
the schedule constraints, but the program also faces tight budgetary constraints. How, then, can
the extra expense of these engineers be justified?

The answer, in many of the experiences of this manager, is directly related to the cost of the
system delivered by the program. As shown in Figure 26, four engineers were initially assigned to
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the project. When a second design option became a possibility, two additional engineers were
added. These additional engineers were with the program for about four months, until the team
was required to select a preferred concept. The extra cost associated with the additional engineers

is represented by the shaded region in Figure 26.

A 2 engineers added
when second concept is
suggested

6 + number of engineers reduced
when one concept is selected

# of engineers 4/

assignedto 4

proj ect
Linitially, 4 engineers

working to support one end of design phase
design concept

—t——+——1 -
1 2 3 4 5 6 7
elapsed time

Figure 26: The cost of carrying multiple designsin parallel. When multiplied by the
monthly salary of the engineers, the shaded area represents the approximate cost of carrying a
second design in parallel with thefirst.

As explained by the design manager, this extra expense can be justified in one of two
ways. Thefirstisinthe event that theinitial concept proves unfeasible. By carrying the second
option, the program’s schedule can still be met. In addition, although one design proved
unfeasible, exploring that region of the design space has educated the engineers on the program,
and they will know not pursue similar paths in the future.

The second means of justifying the expenseis directly related to the alternative design. If

this alternative design can reduce the system’ s cost by an amount equal to or greater than the cost
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of the additional engineers, then the investment was worthwhile. By spending more money to
evaluate an alternative concept, the schedule deadlines will still be met, while alower cost system
will be delivered. This second case is the one which the manager has encountered more often.
Faced with program budget and time constraints, he has used extra engineers to develop designs
that would reduce the operational system’s cost, thereby recovering the cost of the additional
engineers and improving the system’s design relative to its expected cost. Thus, the need to
remain within a constrained schedule while at the same time meeting a fixed program budget forced

the manager to consider multiple design optionsin parall€l.

9.3 Example 11: The Impact of Cost as an Independent Variable

9.3.1 Introduction

Cost as an Independent Variable (CAIV) is aDepartment of Defense initiative aimed at
lowering and controlling the costs of weapon systems. As described by one company, the DOD
has not issued detailed directives to contractors, but has instead allowed companies to develop and
then demonstrate their own methods for implementing CAIV. The methods used by one company
illustrate how this new emphasis on cost has affected the design and development of aerospace
products.

Traditionally, the primary focus of engineering trade studies was to identify the design
alternative with the best performance. In such studies, cost was usually only a*“ peripheral issue.”
This company’ s approach to CAIV, however, has altered the nature of these trade studies. As
described in a company document, rather than only considering performance issues, two additional
principles must be obeyed during all studies:

“1) Costisimposed in every trade study as an absolute constraint. If a design option

increase the cost of the baseline design, the option is rejected.
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2) Continuous trade studies are conducted during the entire design cycle for the sole
purpose of identifying means of cutting costs without adversely affecting performance and

schedule.”

In addition, design engineers have received additional training related to cost issues, so that they
might be able to implement these principles directly. Their approaches, described in the following
paragraphs, clearly illustrate how an emphasis on cost has forced companies to consider larger

portions of a product design space than was necessarily true in the past.

9.3.2 Implementation

Engineers described a five-step process which they have used to implement Cost as an
Independent Variable trades. First, the minimum needs of the warfighter were established. These
minimums defined the lowest level of acceptable performance, thereby constraining the design
gpace at one end, while allowing freedom in another direction. The second step of the process was
to quantify cost-performance trades, i.e., explore the design space. The goal of this step was to
establish a“CAIV curve,” showing cost along the horizontal axis and performance aong the

vertical axis (Figure 27).
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CAIlV Curve

Minimum Need

COST

Figure 27: A CAIV curve. The minimum needs of the warfighter, i.e., the customer, are
first indicated on the graph. The CAIV curve is then drawn to illustrate various levels of
performance and the cost associated with each performance level.

Once the curve itself was defined, the next step was to set “ aggressive and reasonable” cost
goas. Theintent of these goals wasto define some level of performance greater than the minimum
need, at a cost that would be affordable to the customer. After the goals were established, the next
step in the process was to manage program risk such that the cost goals were met during
development. Engineers noted that the development process might result in decreasing the
system'’s performance in order to meet cost goals. Finally, once the system was fielded, efforts
were made to continue to reduce the system’ s cost.

Engineers demonstrated the utility of the CAIV curve in analyzing design trades. Figure 28
illustrates the basic relationships which can be depicted on the plane -- more capable (at higher
cost), less capable (at less cost), lessrisk (less performance at greater cost), and higher risk (more
performance at less cost). These basic relations can then be used to help formulate design trade

strategies.
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Higher risk
More capable

& LessRisk
L ess capable

COST

Figure 28: Categories of cost performance. The Cost-Performance plane can be used to
represent avariety of potential trades.

This processisillustrated in Figure 29. In Figure 29, design options A through F are
compared to a baseline design (indicated by the diamond on the curve). As can be seenin the
figure, the curve suggests how trades can be made. For instance, design feature C has a greater
slope than design feature B, meaning that C has a greater performance-to-cost ratio than B. For a
given dollar amount, therefore, the design would benefit more when feature C is added than when
feature B isadded. Similarly, to reduce the system’ s cost, feature D should be removed first, since
it'sremoval will decrease costs to alarger extent than it will decrease performance. The remova of
feature F, on the other hand, would allow some cost savings, but such a decision would also result

in asignificant decrease in performance.
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‘\ Baseline Cost and
Performance

COsST

Figure 29: Using a CAIV curveto guide design trade strategies. Each segment on
the curve indicates how technologies could be added or removed from a design to increase or
decrease the design’ s performance and cost.

Engineers described two possible approaches to design to cost (DTC), which are central to
implementing such CAIV strategiesin “daily life.” Thefirst possible DTC method isto design a
system, analyze it in terms of cost and performance, and, if the system costs too much, redesign it.
A second approach isto allocate the costs throughout all of the systems on the vehicle, design a
system, and then reallocate the costs as needed based on cost and performance trades. The
company has been following this second approach, allocating costs via integrated product teams
(IPTs). Each team, which is responsible for a given element of the system, is allotted a given
amount of “cost” which they must remain below. If they exceed this value, the cost limits of other
IPTs might be reduced to open up more “cost space” for the IPT which requiresit. If such a
reallocation is not feasible or practical, the IPT might then be forced to redesign its system element
to reduce the cogt, potentially sacrificing performance to do so.

While CAIV curves have been useful in showing which areas of the design space have
greater “leverage” for improving performance-cost ratios, they are not intended to make decisions

for an IPT. One engineer suggested that the greatest utility was in using the curves to begin
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discussions and negotiations over design decisions, rather than using the results of the curves

aoneto drive the decisions.

9.4 Discussion of Examples 10 and 11

Examples10 and 11 both demonstrate several interesting effects. First, consider the
similar consequence which they both illustrate: an emphasis on cost can force a program to
consider more options. The manager who described the process described in Example 10
presented the example in terms of two alternative technologies; Example 11, taken from alarger
program, shows how the CAIV curveis used to consider awide range of possible design options.
In each case, the motivation for presenting the choices was to enable the designer and the customer
to select the most cost effective solution. Rather than considering just one design at a given cost,
engineers in both cases instead reviewed a number of possibilities.

These various designs presented differing levels of performance and, more importantly to
the customer, differing costs. 1n essence, both examples lead to the creation of sets of designs,
each set consisting of a group of designs with various levels of performance and various costs. By
comparing the optionsin the sets, the customers and the designers were able to meet the minimum
requirements while doing so at the lowest possible cost. Consideration of only one option might
have sufficed to meet the customer’ s requirements, but in both cases would have done so at a
greater cost. Therefore, despite the increase in cost associated with considering a number of
design aternatives, such an approach may minimize the overall cost of a program by allowing for
the discovery of alower cost final product design.

Example 11 also demonstrated several additional set-based principles, most notably the use
of the minimum constraints and the use of goals. Rather than establishing a specific value for the
customer’ s performance requirements, the CAIV methods illustrated above instead focused on
defining the customer’s minimum needs. So long as these most basic levels of performance were

satisfied, any design would be acceptable. This flexibility then allowed engineers to explore a
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range of design possibilities, which were ultimately captured on the CAIV curve. Both the
designers and the customer were then able to make informed judgments as to which technologies to
include, based on how much performance was gained relative to the minimum needs and at what
cost.

The use of the minimum constraint on performance was then supported by the use of goals
for the costs of specific systems. As described, the goals allowed for some flexibility, enabling
designers from one system to “trade” with another system to increaseits cost limit. Together with
the minimum constraints, these goals helped to facilitate a design process which was flexible yet
which ensured that the customer’s most important requirement -- cost -- was satisfied. Both
techniques are also good examples of set-based methods, enabling engineers to explore multiple

design options while always keeping the customer’ s needs in mind.
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10. An Industry Perspective: Constraints, the Assessment, and a

Summary

10.1 Chapter Introduction

The previous chapters have presented specific examples of design practices throughout the
industry. Some of these practices have matched the set-based model closely, while others were
more akin to the point-based model. This chapter summarizes the results presented in the
preceding five. First, constraints on aerospace industry design processes are summarized,
followed by an overall assessment of the set-basedness of the aerospace industry. The chapter

then concludes with a summary of the lessons learned from the previous eleven examples.

10.2 Constraints on the Design Process

10.2.1 Suppliers

Oneissue touched upon in Section 5.5.6 was raised by engineers at many companies as a
significant constraint in their design processes. the lead time associated with parts that must be
purchased from suppliers. Because of these lead times, designs must be finalized as early as
possible, so that orders can be placed with suppliers. The later design decisions are made, the later
these orders are placed, and the longer the devel opment effort will take.

For several companies, these lead times are complicated by the fact that the aerospace
company may not be the supplier’s largest customer. Rather than being able to place large orders
with the supplier, and, therefore, have a significant amount of influence over the supplier's
delivery schedule, some aerospace companies are forced to “wait in line.” Though companies have

worked to establish long-term relationships with suppliers, and, as one manger expressed,
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communicate with them “incessantly,” the reality is that these companies can not place orders large
enough to “drive’ the decision making of some suppliers.

Companies have tried several tactics to work with suppliers to overcome these limitations.
A good example of these efforts is one design group’s program to qualify families of parts prior to
their being needed by a particular project.

As explained by a manager in this group, many components purchased from suppliers are
the types of parts that will be used repeatedly on a variety of systems. In the past, managers had
waited to order these parts until a specific program required them. The problem with doing so
recently, however, has been the pressure to reduce cycle time. Waiting to order the parts until a
program specifically requests them means that the program will be delayed while waiting for the
partsto be delivered. Theissue isfurther complicated because many of the parts must be qualified
specifically for the aerospace environment. Few facilities exist in the country which can be used
for such qualification testing, potentially adding six months or more to the lead time for a part.

To overcome these problems, this design group has begun to qualify “technology families”’
prior to having a part requested by a specific program. The design group is in constant
communication with its suppliers. When a supplier develops a new component that islikely to be
used by future programs, the group will order several advanced examples of the part. Suppliers
typically develop several smilar versions of a part, thus leading to the manager’'s term of
technology families. The design group will then qualify the various part versions, giving the data
back to the supplier as part of the agreement for being given advanced access to the parts. When a
new program then requires the part, the qualification process can be bypassed, shortening the lead
time for the part.

Another possible way to shorten the lead time for partsin the face of little authority over
suppliersisto carry inventory. Several divisions at various companies have begun this practice,
but they all agreeit will likely be short-lived. By carrying inventory, parts which are likely to be
used by future programs can be ordered in advanced. The parts can be delivered, inspected, and

cleared for use prior to any program needing them.
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While this practice can reduce the lead time associated with a part, easing pressures to make
design decisions, inventory comes with acost. Many design groups are under severe pressure to
limit costs, and, therefore, are pressured to reduce any inventory which they might carry. If the
inventory is reduced for key components, however, cycle time for development projects will
increase due to increased lead times. While the resolution of these issues is beyond the scope of

this research, the effects of such dilemmas on design decision making are important to recognize.

10.2.2 TheLimits of Parametric M odels

Engineers at several companies described some of the difficulties they have encountered in
conducting large numbers of trade studies supporting conceptual design efforts. One issue
discussed at length was the difficulty in moving in the design space defined for a parametric study.
A parametric relationship might exist from historical data on how different engine sizes affect an
aircraft's maneuverability and acceleration, for example. Based on this historical data, it is
relatively easy to develop aninitial point for conducting the study. In addition, small changes from
that point can also be fairly well predicted. Major deviations from the initial point, however, may
result in performance changes that can not be simply extrapolated from the historical data. While
significant effort has been devoted to quantifying these changes by resorting to basic physics,
conducting large numbers of trade studies have nonetheless proven chalenging to severa
programs.

These inherent limits to parametric models ultimately limit the number of possible design
options which can be considered. Analysis programs which rely on basic physics -- such as
computational fluid dynamics codes or finite element models -- typically require alarge effort to
develop the detailed product models needed to use the program. Such tools are, therefore,
expensive and time consuming, and, consequently, are not well suited to considering a large

number of designs which might be discarded.
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Some of the tools currently under development, such as the ones presented in Examples 5
and 6 may overcome many of these limitations. Since the tools are ill under development,

however, such claims cannot be made with absolute certainty.

10.2.3 Communicating with the Customer

Engineers working on an airborne weapons platform described an interesting quandry in
their relations with the customer concerning the use of estimates for system performance and
features. While not a constraint per s the story doesillustrate that idealized design models might
encounter unexpected difficultiesin real life.

Their example was based upon early weight estimates for the aircraft. At one point, the
contractor had estimated the weight of the airframe to within 1000 pounds. The customer then
requested that an additional 300 pounds of equipment be added to the vehicle. Since the weight
estimate was only accurate to 1000 pounds, said the customer, even adding the 300 pounds of
material might still mean the vehicle was 700 pounds below the required weight. The contractor,
on the other hand, also recognized the possibility of the aircraft ultimately being 1300 pounds over
the specified weight.

The use of preliminary estimatesis clearly a set-based practice. At the same time, however,
by stating to the customer that the weight values were only estimates, the manufacturer opened
itself up to additional requirements from the customer. The lesson from this example seems clear:
improving the design process not only means reforming how the designer operates, but al'so how
the customer operates. If acompany were to attempt to implement SBCE without educating the
customer, problems such as the one just described would likely occur with alarming frequency.
Therefore, it is important that not only the designer but that the customer also have a firm

understanding of anew design approach and how to behave given that approach.
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10.3 How Set-Based is the Aerospace Industry?

10.3.1 Three Answers

Aswas presented in the introduction to this thesis, one of the primary aims of this thesis
was to assess the set-basedness of the aerospace industry, i.e., to determine if and to what extent
aerospace firms already practiced set-based methods. Perhaps not surprisingly, thereisno simple
answer to thiscritical question. Instead, three answers should be given.

The simplest of the three answersis based on the definition. Aswas stated in Section 3.7,
SBCE consists of two primary concepts:

1. Consider alarge number of design alternatives, i.e., sets of designs; and

2. Allow specialists to consider a design from their own perspective, using the overlap

(intersection) between individual setsto optimize a design.

Using this strict definition, the answer to the question, “does the aerospace industry practice
SBCE? is, “No, the aerospace industry does not practice SBCE.” The primary reason for this
negative result isthat very few industry practices followed the second principle of SBCE, that of
allowing specialists to consider designs from their own perspectives.  Further, while many
aerospace design teams would consider multiple options, they would not carry the options for an
extended period of time, and would instead select the “ best” option as quickly as possible. Though
a“set” may have been developed, its use was much more closely related to the point-based model
than the set-based. Therefore, based on the obversations made during this research, the aerospace
industry does not currently practice SBCE.

The second answer, however, is, “Yes, the aerospace industry does practice some set-
based techniques.” While thisanswer isin the affirmative, note that it isaqualified yes: Many of
the exampl es presented in the preceding chapters illustrate set-based methods, but none of the
examples coherently demonstrated both of the basic SBCE principles. Techniques such as
conceptual robustness, prolonged consideration of multiple options, minimum or maximum

constraints, and delayed decision making were described by engineers at almost every company
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which wasvisited. In severa of these cases, these practices were an integral part of well-
developed, systematic design methods. But again, no site consistently demonstrated both primary
principles of SBCE.

Finaly, the third answer is aso a qudified yes. *“At the level of interpersonal
communication between engineers, the aerospace industry does practice set-based techniques.”
This result was described in Chapter 5. Engineers stated that when they talked to other specialists,
the nature of the conversation would often fit the definition of SBCE. Each engineer would
present a set of possible options and would explain the advantages of these options from his or her
own perspective. The engineers would then work to arrive at a solution which met both of their
needs. Because each engineer presented a set of options, and because this set was based upon
each engineer’ s independent assessment of the problem, such a dialog does meet the definition of
SBCE. As noted earlier, however, the extent and frequency of such conversations varied
dramatically between companies. Furthermore, where such discussions did occur, they were often
related to very specific issues. Though a given conversation may have been SBCE-like, the overall

pattern of development usualy fit a more point-based model.

10.3.2 Implications of the Answers

The fact that at the present time no company practices SBCE in itsideal form does not
necessarily invalidate the theory. AsWard et. al. noted, Toyota was alone in the auto industry in
their consistent use of sets. While the existence of an aerospace firm which did practice SBCE
would clearly have reinforced the theory, the absence of such an example should not be interpreted
as afailure of the basic concepts.

The presence of multiple set-based practices within the aerospace industry, on the other
hand, does support many of the key tenants of SBCE, if only in isolation rather than as part of an
integrated design strategy. The apparent implication of the somewhat ambiguous assessment

provided by this study is that further research is required. To that end, the following chapters
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present a model for the implementation of a complete SBCE approach to design, as well as what
additional efforts can be made by and with the government to further encourage set-based

practices.

10.4 Lessons from the Examples

The eleven examples presented in the preceding chapters all provide a variety of lessons
which will be used to help develop a model for implementing SBCE. Since references will be

made to these lessons, they have been summarized in Table 5 which appears on the following
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Table5: A summary of the lessons from the industry examples.

EXAMPLE LESSONS
1: Capitalizing Use a point-based approach when there are alimited number of requirements.
on the Point Aim to satisfy most of the customer’s requirements, but do not attempt to satisfy
Design every reguirement at the expense of time or cost.
2: Design by Keep detailed notes of different design options.
Constraint Develop designs that satisfy the customer’s needs, rather than onesthat are
“ideal.”
Allow subsystem engineers to work independently until their designs are released
to therest of the team.
Subvert the entire design process to the customer’ s primary needs to ensure that
these needs are addressed first.
3: Combining Use abaseline design as apoint of departure for the devel opment of sets of design
Parallel Concept aternatives.
Development & In the case of complex systems, alow specialty groups to guide the development
Conceptua of design alternatives explored by teams of engineers.
Robustness Use conceptual robustness to guard against downstream decisionsinvalidating
previously made choices.
4. Subsystem Apply set-based techniques when a design problem includes alarge number of
Installation design variables, many possible combinations of these variables, and conflicting
requirements.
Use minimum/maximum constraints to alow flexibility in the design process
and to aide designers when selecting between several options.
Use computer tools to speed up a design process, once the process itself iswell-
defined.
5: AnIntegrated Use computer tools to allow fewer engineers to consider a greater number of
Design and design options.
Analysis Package Use simple computer models, such as historical databases, to provide quick
analyses of design alternatives.
Enhance individua and corporate learning by allowing individua engineersto
consider large numbers of design alternatives during every program.
6: Using Use computer analysis tools sharing a common database to help decouple design
Computer Tools problems.
to Institute Perform parametric trades from multiple engineering and design perspectives;
Process-Based determine optimal system compromises by comparing these trade studies.
Design Use early trade studies to identify relative differences between design options,
rather than to identify the best option.
Define convergence ranges to guide the narrowing process.
Establish decision gates to clearly indicate when options should be eliminated.
7: A Company Standardize design processes to shorten development cycle times and reduce
Beginning to mistakes.
Implement a Look for regions of overlap both between specialties within a program and
Platform Strategy between programs.

Share selection lists between engineering specialiststo alow engineersto
understand what options are available to other members of a design team.
Arrange the design organization based upon the product’ s design, so that
engineers can support multiple programs.
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Table 5, continued.

8. The Evolution
of Standardized
Products and
Processes

Begin product development reforms on the manufacturing floor. Then work
backwards through the entire development process.

Assign clear responsibilities and authorities to the appropriate elements of a
design team throughout the development cycle.

Once committed to a design, do not make changes to it unless absolutely
necessary.

Arrange the design organization based upon the product’ s design, so that
engineers can support multiple programs.

Align the product, the manufacturing process, the design process, and the
organization to complement each other.

Use the World Wide Web and corporate intranets to share design knowledge across
the company.

9: Design Re-Use

Allow one group of engineers to develop a product design to a given point, and
then allow another group to further refine the design.

Align the product, the manufacturing process, the design process, and the
organization to complement each other.

10: The Cost of
Considering
Alternatives

Consider multiple design options when additional designs have the potential to
lower a system’s cost.

Consider multiple designs in parallel when schedule constraints do not allow for
design dternatives to be considered one at atime.

The cost of considering multiple options can be justified if the final design, a
result of considering the additional options, lowers the total system'’s cost.

11: The Impact of
Cost asan

I ndependent
Variable

Consider multiple design options when additional designs have the potential to
lower asystem’s cost.

Use minimum constraints to allow flexibility in the design process and to aide
designers when selecting between several options.

Establish cost (or performance) goalsto alow flexibility in the design process
and to avoid establishing firm requirements too early in the development process.
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11. A Model for Lean Set-Based Concurrent Engineering

11.1 Chapter Introduction

Thusfar, the first two goals of this research have been addressed: SBCE has been defined
and a preliminary assessment was made of the set-basedness of the aerospace industry. The only
remaining goal isto recommend how SBCE could be applied to aerospace product devel opment
projects. That istheintent of this chapter.

To that end, the following sections will detail how to implement a product devel opment and
design process using set-based techniques. One lesson which was revealed during the course of
this research, however, was that to consider one feature of a design process without considering
the process as a whole limits the amount of improvement one can achieve. Therefore, the
following sections expand the scope of thisinvestigation somewhat, to provide a much more
overarching view of product development processes. This broadened view is not intended to be
authoritative or absolutely complete. It isintended, however, to help place set-based techniques
within the framework of an integrated design process.

The model is developed in the following sections through several steps. First, a basic
question is answered: when should set-based techniques be applied? Once this answer is
developed, the model is introduced initialy by way of analogy to manufacturing processes.
Finally, the complete model itself is presented, beginning with the concept of lean and concluding

with individua and corporate learning.
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11.2 When Should SBCE Be Used?

The most important question a program manager should consider prior to attempting to use
SBCE is whether or not set-based methods are in fact appropriate for his or her development
project. Asthe examples of the previous chapters demonstrated, many design processes are quite
successful without ever formally applying set-based methods. Therefore, the first step in applying
SBCE isto ask, Is SBCE the right approach for a given project?

The examples provided in the previous chapter point to program attributes which can be
used to determine the applicability of set-based practices. Example 1, for instance, seemed to
indicate that when a program faces a limited number of requirements which can not be traded
away, point-based techniques can be very successful. On the other hand, Example 4, which made
use of many set-based methods, was characterized by alarge number of conflicting requirements
and variables. Importantly, however, in this second example many of the requirements could be
adjusted, allowing for avariety of design trades to be considered. More generally, programs
which were characterized by flexibility in requirements and customer needs tended to make more
extensive use of set-based techniques than programs which faced very tight constraints.

These results are consistent with the theories presented in the SBCE literature.  Sobek
(1997) for example, suggests that point-based approaches are best suited to projects in which there
is a mandate to use a specific technology (p. 239). In Example 1, the nature of many project
requirements did in fact force the company to select from avery limited number of technologies.
This example, therefore, seems to support Sobek’s conclusion.  Furthermore, point-based
approaches are also appropriate for projects in which systems are not tightly coupled and where the
problem and the technologies are well understood (Sobek, 1997, p. 14).

In terms of set-based approaches, Sobek (1997) proposes that these methods “ seem most
suited to contexts with tightly coupled complex systems, where rapid learning is critical and when
the problem is not well understood” (p. 13). Again, these conclusions match closely to observed
trends, particularly in the case of Example 4. When there are a large number of connected

variables, the ability to consider and then compare multiple configurations in paralel alows
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engineers to gain a better understanding of the problem and, therefore, make better design
decisions.

Table 6 summarizes these conclusions and provides a method to determine which approach
-- point-based or set-based -- is most appropriate for a given design problem. Note, however, that
this choice in design method is made at the highest level of the design process. At very detailed
levels, engineerswill likely always make use of both set-based and point-based design techniques.
The guidelinesin Table 6 are intended to help managers determine when the overall approach to a
design problem should be point-based or set-based. Regardless of the choice that is made,
managers and engineers should recognize that any design strategy will ultimately use methods and

strategies from both design philosophies.

Table 6: Criteria for selecting between set-based and point-based design
strategies.

If the development project is characterized by: Then apply:

A large number of design variables Set-based techniques
Tight coupling between design variables

Conflicting requirements

Flexibility in requirements allowing for design trades

Technologies and design problems which are not well understood,
and, consequently, require rapid learning

Requirements for specific technologies Point-based techniques

Requirements to optimize the design along only one or two
dimensions or parameters

Well-understood technologies or design problems

11.3 An Analogy: How Design is Like Manufacturing

To help motivate the model presented in the following sections, it isinstructive to begin by
way of analogy. Aswas noted in Chapter 2, the goal of lean product development is to have a
design process which flows, gradually refining a concept until it meets all of the customer’'s

requirements and can be easily manufactured. Since these concepts are borrowed from the world
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of manufacturing, it is worthwhile to explore the analogy in slightly greater detail, as a means of
motivating the model to follow.

In manufacturing, one typically starts with alarge piece of material which will be gradually
machined away. Theinitial size of this pieceisimportant. If it istoo large, significant time and
effort will be wasted making clearing cuts, simply machining off material that will never be used.
On theflip side, if the piece istoo small, material for later cuts will not be available, meaning that
the part cannot be made.

Design can be viewed in asimilar manner. In place of the starting block of material, one
instead has the design space, an abstract region which “contains’ all of the solutions for a given
design problem. Asin machining, theinitial size of this region has important consequences. If too
many design options are considered, engineers will waste time analyzing designs which will never
be produced. If too few concepts are developed, engineers may not be able to satisfy all of a
customer’ s needs.

Thisfirst piece of the analogy, therefore, provides some initial guidance as to the use of
sets. Theinitial set of design options should be large enough to ensure that it contains afeasible
final solution but not so large asto require excessive initial refinement.

Continuing with the analogy, in machining, the material is passed from one cutting tool to
the next, each tool specially designed to trim away more and more of the material. In a lean
manufacturing environment, these tools are typically arranged in U-shaped cells to facilitate easy
transfer from one machine to the next (Black).

In design, therefore, one can concelve of a process in which a product concept is refined as
it is passed from one engineering group to the next. Adapting the analogy, speciaty engineers and
their analysis techniques can be thought of as the “machine tools’ of the design process. One must
be careful with using the analogy at this point, however. In manufacturing, once a part is removed
from a machine, that machine need no longer be involved in the manufacture of the part. In
design, however, engineers often must participate in the design process, then observe changes

which are made by other engineers, and then possibly make adjustments to the design.
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To understand how a design process might avoid these needs for adjustments and
corrections, consider again the manufacturing process. In machining, an upstream machine only
removes as much material as is absolutely necessary, leaving other chunks of the material for
removal by downstream machines. So long as the upstream machines do not remove too much
material, downstream machines can operate without communicating directly with the upstream
ones. Furthermore, aslong as both upstream and downstream machines are aware of the needs of
the final product, their cutting processes can be designed to ensure that a part need not be passed
back to upstream machines for rework.

To apply these concepts to design, one must again return to the notion of sets. Upstream
engineering groups are now responsible for narrowing a set to a given degree, such that all of the
remaining design solutions are acceptable from their perspective. These remaining options are then
passed on to the downstream groups, who can pick and choose from among the narrowed set
those designs which best suit their needs. Since any of these designs have been cleared as
acceptable by the upstream groups, there islittle need for these groups to make adjustments once
the downstream groups have made their selections. In this fashion, set-based methods can help to
eliminate the backflow associated with point-based methods.

These concepts will be explored further in the coming sections. The basic notion of the
analogy should be kept in mind, however: A set of designsislike the starting piece of material ina
manufacturing process. Engineering groups are like cutting tools. By properly managing sets, a
design can be gradually narrowed to afinal solution as each engineering group eliminates design
conceptsin turn, just as a series of machine tools are used to cut away ablock of material into a

final product.

11.4 The Model for Lean Set-Based Concurrent Engineering

Aswas noted in the introduction to this chapter, to present set-based methods in isolation

from the total product development process limits the benefits which can be realized by applying
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such techniques. The following sections, therefore, provide a step-by-step approach to improving
design processes and then incorporating set-based approaches within those improved processes.
Again, the intent is not to provide a final solution to the design of the development process, but

rather to help put set-based techniques in context, to better enable engineersto apply the theories.

11.4.1 Why isthe Concept of Lean Important to SBCE?

Asthetitle of this chapter indicates, many of the important aspects of the following model
will be based around concepts of “leanness’. A fair question, therefore, is why is this concept
important for the implementation of SBCE? The answer is best understood by considering the
concept of leanness at its most fundamental level. When one strips away all references to
production systems, product development techniques, or other processes, the concept of lean
becomes smply the eimination and minimization of waste (Womagck and Jones; Shingo; Black).

Set-based techniques require that engineers be able to consider alarge number of design
options. If the development process which they use to conceive of and then review these concepts
isfilled with wasteful practices, engineers will have a difficult time actually analyzing all of the
designs. If the processislean -- that is, if waste has been eliminated from the process -- engineers
will be able to work through multiple design options very rapidly. Therefore, leanness should be
considered a prerequisite for implementing set-based techniques. The first steps presented in the

following sections help to clarify and define these concepts.

11.4.2 Definitions: Operations versus Processes

Prior to developing this design model, it isimportant to distinguish between processesand
operations. Using the definitions developed by Shingo, “[p]rocesses transform materias into
products,” while “[o]perations are the actions that accomplish those transformations’ (p. 4). Thus,
a design process transforms information -- knowledge about user needs and about parts required

for assembly technologies, technica information, and information about competitors -- into a
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completed product design (Sekine and Arai, p. 25). A design operation could consist of a great
variety of actions, from requirements analyses to CFD modeling to detailing part dimensions on a
CAD rendering. Typicaly, the images generated at the mention of “design” -- of engineers
working at computer terminals, of engineering drawings, etc. -- are design operations. Taken

together, these operations compose the design process.

11.4.3 Improve Processes, then Operations

The first important aspect of design process reform is that processes should be improved
before operations (Shingo, p. 5). To comprehend the reasoning behind this statement, one need
only consider a series of operations within a process. If the process as awholeis slow, it makes
little sense to speed up a single operation; instead, “[w]hat counts is the average velocity”
(Womack and Jones, p. 178). These concepts are similar to ideas espoused in the theory of
constraints. As Goldratt describes, atypical wrong hypothesis about cost is that the only way to
achieve good cost performance is through good loca performance everywhere. In redity,
however, the best way to achieve good performance is to ensure good performance at the system
level first, and then, once the system is properly arranged, to improve local performance.

The problems associated with attempting to improve local performance before improving
system performance can be illustrated most easily using a manufacturing system®. Suppose one
machine, in the middle of the system, is dramatically improved, allowing it to process many more
pieces than had previously been the case. The rest of the manufacturing system, however, is not
changed. Theresults are relatively obvious: The one machine will rapidly process a piece and then
wait as the machines ahead of and behind it complete their work. Since the system’ s speed has not
been changed, no real advantages were realized by improving just the one machine. Thus, the
importance of the first statement in this section: improve the process first, then improve the

activities which make up that process.
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These concepts can and should be applied directly to design processes. Investmentsin an
advanced computer analysis tool, for example, are efforts to improve operations. Reorganizing a
design team such that its structure mirrors the product which it is developing, on the other hand, is
an example of improving process. Importantly, the company discussed in Example 6, Using
Computer Tools to Ingtitute a Process-Based Design Method, illustrates the need to reform
processes and then operations. The company began by first defining an ideal design environment -
- by defining an ideal process -- and then moved to develop tools to realize this environment -- to
devel op operations to support the process.

Another example of thisissue relates to the differing abilities of some analysis groups to
complete their work. Many of the engineersinterviewed during this investigation noted that some
specialties can complete their analyses very quickly, while others can require days or weeks to
complete the review of asingle design. When working to improve design operations, therefore,
reformers should take such issues into account. Effortsto speed up the slower moving functions
will ultimately prove more beneficial then efforts to accelerate already rapid anaysistools.

Furthermore, the need to improve the processes is paramount when implementing SBCE.
Since design tasks will have to be completed numerous times in the course of a single development
project (in order to analyze multiple designs), process inefficiencies will be revealed quickly, and

these inefficiencies will degrade the problem solving effort.

11.4.4 Start in the Factory

An interesting trend noted at several companies which have successfully implemented
design process reforms was that these efforts began on the factory floor, not in the engineering
offices. Example 8, the Evolution of Standardized Products and Processes, provides a good
illustration of this practice. Process designersfirst organized assembly and testing schedulesin the

factory and then used these schedules to determine the engineering and design timelines.

8 This example is adapted from Goldratt.
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Similar practices can be used with the products of the design effort, beyond just its
schedule. In effect, the purpose of design is nothing more than to develop the plans needed to
actualy build the product. As one manager explained, he in fact dislikes the term “design
process;” to hisway of thinking, design is an element of the manufacturing process, and should be
referred to as such. Therefore, the needs of the factory should be used as guidelines to determine
the needs of the design process. Any design operations which do not directly support the needs of

the factory should be considered for elimination.

11.4.5 Understand Value

AsWomack and Jones note, the first step in becoming lean isto define value. Importantly,
value “can only be defined by the ultimate customer,” although it is the producer who creates value
(Womack and Jones, p. 16). Furthermore, value must be defined for a specific product, with
specific capabilities, at a specific price, and for a specific customer (Womack and Jones, p. 19).

Thus, the first step in any development effort, whether it is point-based or set-based, isto
define the value provided to the customer by the final product. Typically, engineers in the
aerospace industry work under a contract which spells out how the customer will measure value:
the cost of the system, the range of an aircraft, the coverage area of a satellite, the accuracy of a
missile, etc. Depending upon the importance placed on such requirements, designers can gain a
good sense of which product features are most valued by the customer.

The mission of engineers and managers, therefore, becomes arranging the design process
to generate a product which provides the value requested by the customer. Aswas shownin
Example 2, Design by Constraint, once valueis viewed from the customer’s perspective, the
sequence of the design process itself might change. In general, this sequence should first address
the customer’ s most important needs, when the design is still the most flexible. Later stepsin the

design process should be used to decide upon features which are less valued by the customer. In
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this manner, the design process itself can be tailored to ensure that engineers develop a system

which meets the customer’ s definition of value.

11.4.6 Eliminate Waste

Concepts of leanness are based primarily on the Toyota Production System (TPS). Thus,
to understand lean techniques, one can turn to this manufacturing system. As Shingo states, the
Toyota Production System is, above all else, “a system for the absolute elimination of waste” (p.
67). Aswas noted earlier, eliminating waste -- becoming lean -- is an important first step to
implementing set-based practices.

Shingo defines waste as “any activity that does not contribute to operations’ (p. 76).
Returning to the definition of operations and design, waste, therefore, is any activity which does
not accomplish the transformation of knowledge into a product concept(s). Womack and Jones
broaden Shingo’ s theories to define six types of waste which can be grouped into two categories of
operations. The six examples of waste are (Womack and Jones, p. 20):

Mistakes which require rectification.

Production of items which no one wants, leading to the build up of inventories.

Processing steps which are not actually needed.

Movement of employees and transfer of goods from one place to another without any purpose.

Groups of people in a downstream activity waiting because an upstream activity has not completed its

work on time.
6. Goods and services which do not meet the needs of the customer.

agkrwdhpE

The two types of operations are (Womack and Jones, p. 38):

Type One: Steps that unambiguously create value.
Steps that do not create value but which are currently unavoidable.

Type Two: Steps that create no value and can be eiminated immediately.

Adapting these examples to the design environment is quite easy. For instance,
“production of items which no one wants’ results when engineers design a subsystem based on an
incorrect understanding of the baseline design. “Processing steps which are not actually needed”

include practices such as conducting detailed computer analyses on avery preliminary design that
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islikely to change. Analyzing a design process and then identifying activities as either Type One
or Type Two alows engineers and managers to “lean out” a development process.

One important caveat must be noted relative to waste in a design process. At first glance,
the consideration of many design options which are ultimately not used may appear to be waste.
The designs are not included in the final product, and, consequently, appear to have added no
value to the process. But upon further reflection, the opposite conclusion is probably more correct:
Considering multiple options adds val ue to the development process. When engineers analyze a
variety of design possibilities, they learn more about the trades which they must make and what
features best satisfy a customer’s needs. Thus, by considering options, engineers create
knowledge about a design problem. As has been noted throughout this thesis, one of the primary
objectives of adesign processisto create knowledge. Therefore, considering multiple options
adds value to adesign effort, rather than creating waste.

Further, in many instances observed during this research, the consideration of new options
enabled engineers to improve their designs. Take, for instance, Examples 10 and 11. These
examples demonstrated that by considering a variety of design options, engineers were able to
deliver a product which met the customer’ s basic needs at aminimal cost. In these cases, value
was added to the process not simply in the form of additional knowledge, but specifically in terms
of the customer’ s definition of value: The designs exceeded aminimum level of performance while
remaining under a given cost. Again, the conclusion seems clear: Considering a variety of

alternative concepts adds value to the design process.

11.4.7 Organize Design Teamsto Mirror the Product Architecture

Complex products will often have to be decomposed into smaller elementsin order to ease
the product development problem. Thus, the nature of this product decomposition “implies a
specific pattern of organizational communication” (Gulati and Eppinger, p. 14). The product’s

decomposition scheme is defined by its architecture -- “the set of technical decisions... for the
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layout of the product, its modules, and for the interactions between the modules’ (Gulati and
Eppinger, p. 5). The product’s architecture, therefore, can be used as template on which to base
the design of the product development team (Anderson; Gulati and Eppinger). Thisrelationshipis
illustrated in Figure 30.

O

Decomposition [——— sub-problems  \———| Integration

Product Organization
Architecture || < = Design

Figure 30: Thelink between product architecture and organization design. A
product’s architecture is used to decompose a complex design problem into several simpler sub-
problems. Proper organizational design then helps to integrate the solutions to these sub-problems
into a coherent final solution. (Adapted from Gulati and Eppinger, p. 26)

Note that this link between product architecture and design organization is used by Toyota.
As described in Chapter 4, Toyota s design teams are organized along “functional” lines. These
functions, however, mirror the subsystems of the cars which they are responsible for designing.
Body, chassis, and powertrain, for instance, are all referred to as functional groups, but thesetitles
also match the major subsystems of the products. Toyota s design teams, therefore, are organized
by the architecture of their products.

This method of organizing a design team has implications for both the team’ s performance
(interms of delivering a product) and the product’ s performance (in terms of how well it satisfies
its customers). Von Hippel (1990), for example, notes that “one of the primary difficulties many
firms encounter in their attempts to respond to innovation [i.e., design] problems of anovel typeis
their continued reliance on historically derived but now suboptima divisions of the problem-
solving task” (p. 409). Rather than considering how design tasks might be interdependent, firms
tend to rely on “assumed economies of specialization” (von Hippel, 1990, p. 410). Instead, firms
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should consider not only how to design the product’ s architecture, but also how this architecture
should influence the team’ s organi zation.

In the case of an unprecedented product, designers may not know in advance how the
product will be decomposed (Browning, 1997, p. 87). In such circumstances, therefore, the
organization must be flexible so that as the product is partitioned and decomposed and its
architecture defined, the organization evolves to match (Browning, 1997, p. 87; von Hippel, 1990,
p. 407). Infollowing such a pattern, afirm’'s design team organization will be afunction of the
specific product under design. Studies suggest that “fixed organizational structures generate
products whose architectures remain fairly rigid” (Gulati and Eppinger, p. 17), so by altering a
design team’ s organization for each new development project, a firm increases the likelihood that
the team will develop anovel design solution. This adaptability can then have an impact on the
firm’'s ability to compete against other companies as well as potentialy increasing customer
satisfaction with the product.

Following such a strategy for organizational design has distinct advantages when
implementing SBCE. If a design team is organized along the product’s architecture, each
“gpecialty group” in effect becomes an element of the product itself. In the case of Toyota, for
example, body engineering was responsible for considering all of the possible structural designs.
The sets developed by each group, then, represent different product configurations. In afunctional
organization, by way of contrast, the responsibility for developing design alternatives would be
spread out among several groups. A product-based design team, therefore, helps to organize and

track the evolution of the design sets.

11.4.8 Standardize Design Operations

Reinertsen notes that “[i]t is very easy to treat product development as a black art rather
than a science, because so many of its elements are unpredictable” (p. 2). Yet, while “many

product designers liken themselves to the fine artist,” in reality, “[d]esigning a product is not like
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creating an oil painting” (Sekine and Arai, p. xiii). As Sekine and Arai explain, “in this age of
diversification it is not possible to handle the myriad of products while treating the design process
asafineart -- rather, it is necessary to stratify it” (p. xiv). Hence the need to standardize design
process.

As described in Section 4.2.3, an important element of the Toyota design processisits use
of standardized design methods. These efforts have had several benefits for Toyota, which can be
realized by other companies who choose to follow a similar approach. One of the most important
of these advantagesisthat standardized practices provide a basis of comparison for design process
improvement efforts. Womack and Jones note that “[j]ust as activities that can’t be measured can’t
be properly managed, the activities necessary to create... a specific product which can't be
precisely identified, analyzed, and linked together cannot be challenged or improved (or eliminated
altogether), and, eventualy perfected” (p. 37). By adopting a standardized design method,
engineers can “ accurately measure throughput time to continually improve the design methodol ogy
itself” (Womack and Jones, p. 54).

Oncethe individua operations within a design process are standardized, new possibilities
for the design process are also created. Example 2, Design by Constraint, suggested that a design
process should be tailored to specifically address the needs of a particular customer. This notion
was reinforced when the concept of value was considered. Thus, an ideal design process would
be one that was highly flexible, allowing it to be easily tailored to each new development challenge.

The desire for such flexibility suggests that a design process should be built out of modules
(i.e., operations) which can be arranged and tailored to meet the exact needs of each design
problem. Therefore, managers and engineers should strive “to create standardized building blocks
that are defined primarily at their interfaces rather than by their internal procedures’ (Reinertsen, p.
121). Standardized interfaces between design operations would allow the individual stepsto be
reconfigured to address a given customer’ s requirements in the needed sequence. In thisfashion,

standardized operations facilitate a highly adaptable design process.
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Standardization is also important specifically for implementing SBCE for the development
of complex products, such as those encountered routinely in the aerospace industry. Example 10,
the Cost of Considering Alternatives, demonstrated that to develop multiple design options
typically requires that a small team of engineers be assigned to each dternative concept.
Standardized practices then become essentia to ensure that the products of these multiple teams are
directly comparable. If each team conducted its trade studies in a different manner, for example,
the results of those studies could not be compared. Thus, whenever different teams are used to
develop design alternatives which will then be compared, the design processes of these teams must

be standardized.

11.4.9 “Right-Size” Design Tools

Another important concept borrowed from lean manufacturing systemsisreferred to as
“right-sizing” by Womack and Jones. This concept states that a tool should be sized to match the
size of the operation in which it will be used (Womack and Jones). Right-sizing is best understood
by considering tools which do not adhere to thisidea. Womack and Jones label such tools as
“monuments.” “any machine which is too big to be moved and whose scale requires operating in a
batch mode” (p. 175). In contrast, atool that has been right-sized is flexible and can be used with
small batches.

In design processes, monuments are most likely to appear in the form of complex, highly
sophisticated computer tools. Asdescribed in Chapter 3, set-based methods work best when used
with simple, quick models and analysis techniques. Example 5, An Integrated Design and
Analysis Package, demonstrated that such approaches are not incompatible with aerospace design
problems. The lesson, then, is that companies should avoid investing large sums of money to
develop highly detailed computer simulation tools to be used early in the design process (Sobek,
1997, p. 239). Such tools precisely fit Womack’s and Jones' definition of a monument. Instead,

computer analysis tools used early in a product’ s design must be adaptable so they can keep pace
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with the many changes that are likely to occur at the beginning of a product’s evolution. Design
tools used late in the design process, when changes are made at a much slower rate and ahigh level
of fidelity isrequired in analyses, can be complex and sophisticated. Efforts to employ such

systems earlier in the effort, however, are likely to result in few benefits.

11.4.10 Use Setsto Make the Design Process Transparent

Womack and Jones assert that an important feature of lean systems is that they are
transparent. everyone in the system “can see everything, and so it’ s easy to discover better ways to
create value” (p. 26). Point-based design methods, in which engineers only share their best design
options, are not at all transparent. In fact, these methods can be thought of as opaque: engineers
prevent other members of a design team from viewing the options which they considered since
they present only their best idea.

Set-based practices, in contrast, are very transparent. By communicating about sets,
engineers share all of their ideas and constraints with one another. As Womack and Jones suggest,
this sharing allows engineers to work together to develop the best overall design, i.e., to discover
the best way to create value.

Beyond simply improving the product, transparency is also intended to ensure that
problems are discovered early, so that they can be eliminated (Womack and Jones). As described
in Chapter 3, sets are a useful tool for tracking the progress of adesign. An element of adesign
whose set is larger than others late in a development project is an indication that engineers are still
uncertain about the solution -- it isa signal that there might be a problem. When a set becomes
small, on the other hand, engineers are indicating that they are confident that they are near afinal
solution. By openly indicating the size of a set and thereby creating a transparent process, design

problems can be quickly identified and the appropriate resources devoted to their resolution.
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11.4.11 Educatethe Customer

As described in Section 10.2.3, if the customer is not well-informed about the use of
ranges or tolerances in adesign process, the customer islikely to inadvertently increase the risk of
the design process. Similarly, as demonstrated by Toyota' s relationships with its suppliers, a
mutual understanding of goals and constraints is essential to facilitating set-based techniques.

Thus, as a company moves to implement set-based concurrent engineering, it must educate
its customers about their role in the process. Three points should be conveyed. First, customers
must be trained in the use of set-based requirements, such as ranges and minimum/maximum
constraints. Second, as described in Chapter 10, designers must help customers to understand that
once requirements are established, the customer should not try to change them, even when he sees
large margins early in a concept’s development. Instead, the customer must trust the designer to
develop the best design possible. If the customer attempts to raise a performance requirement
because preliminary design estimates indicate some margin, for example, the customer will
increase the risk of the development process. Perhaps more importantly, such actions by the
customer may invalidate other decisions which have made in an attempt to optimize the design.
Finally, customers must trust that the designer will indeed deliver the best possible product. Such
trust must, nonetheless, be earned by the designer.

Note that a company which is first attempting to implement set-based practices might
require a“leap of faith” on the part of customer. The designer must say, “Trust me,” and the
customer must grant this trust, even though neither side may have a past history of such
relationships. If the designer does deliver as promised, the customer will be reassured that the

process can work, and will be inclined to follow such practices again.

11.4.12 The Concept of Flow

Once a design process has been improved by defining value from the customer’s

perspective and by eliminating waste, the next step isto make the process flow. When a process
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flows, aproduct “is worked on continuously from raw material to finished good” (Womack and
Jones, p. 22). The primary aim of flow is to eliminate the waste associated with downstream
groups waiting for products from upstream groups. As with other lean concepts, the theory of
flow also comes from the world of manufacturing. In manufacturing system design, a major
source of waste is when stock develops ahead of or behind a machine because other machines are
not working at the same rate (Shingo; Black). To prevent such a build up, production systems are
designed such they are leveled, that is, equal amounts of product are manufactured by each step in
the process (Shingo, p. 27). The kanban system so commonly identified with the Toyota
Production System is in fact the mechanism used to help control the flow of aleveled process
(Shingo).

The goal of aflowing system isthat all backflow, scraps, and stoppages are eliminated
(Womack and Jones, p. 52). As Sekine and Arai state, the point is “to create an uninterrupted flow
in the design process, one that is free from ‘ stagnant pools” (p. 31). Implementing such a system
within adesign processis challenging. Aswas described in Chapter 2, the typical solution isto
implement “concurrent development.” The fact that one design decision depends upon the outcome
of another, however, often means that some sort of sequence must be established for making
decisions. Concurrent development, therefore, reverts to a serial process with an emphasis on
short, quick feedback loops and rapid iterations. Such a process, however, limits the degree to
which the overall design effort can flow: serial, point-based techniques require that engineers
accept and in fact plan for iteration and backflow. Aswas described in the analogy presented
earlier in this chapter, the use of sets can aide in fully realizing this desire for flow. But prior to

explaining how this flow can be achieved, another important concept must be introduced: pull.

11.4.13 Controlling Flow with Pull

The notion of pull can be expressed in a variety of ways, but the basic ideais that an

upstream process should not produce anything until it is requested by a downstream process
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(Womack and Jones). Aswas noted in the previous section, the kanban system was invented by
Toyota to control its production process, and that technique is a pull-based system. When a
downstream process requires a part, a kanban card is sent back to an upstream process, instructing
the upstream process to produce the part (Shingo). The downstream process, therefore, “pulls’
the upstream process to produce an item.

Thus, pull isintimately linked to flow: Pull ensures that the production rate of upstream
processes is matched to the needs of downstream processes. Abstracted to a dightly greater
degree, pull states that information should flow in the direction opposite to the primary flow of the
process (Cochran). Kanban cards, for example flow from downstream processes to upstream
ones, while the production process itself flows from the upstream processes to the downstream

processes. Aswill be explained, the same concepts can be used to help improve design processes.

11.4.14 Using Setsto Achieve Flow

Assuming that the preceding steps have been implemented, a design process has been
organized around the customer’ s definition of value, all forms of waste have been eliminated, the
design team has been organized to mirror the product, design processes and operations have been
standardized, tools have been right-sized, and the process has been made transparent.
Furthermore, the customer has been educated in set-based methods, so that the customer can
properly participate in the development process. SBCE can now be implemented by combining the
notions of flow and pull with sets, and linking these ideas to the lean development process. First,
consider the application of flow to sets.

Using the customer’s requirements as a starting point, each speciaty group initidly
considers the design problem independently. Each group develops a range of possible options,
some of which may exceed their specific needs, others which might not meet al of ther

requirements. Specialty groups then compare their sets, looking for regions of overlap.
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At the beginning of this process, all of the setswill belarge. So long asthe sets are large
enough, a significant region of overlap should also exist. The next step in the process, therefore,
isto shrink this area of overlap until only one, globally optimized solution remains. To accomplish
this narrowing, SBCE turns to the notion of flow.

Whereas point-based strategies often fail to fully achieve a flowing process free of
backflow, set-based techniques offer the potential to attain continuous flow. Backflow occursin
point-based methods because decisions made by a downstream designer can invalidate previous
choices made by an upstream engineer. The upstream engineer, therefore, will have to reevaluate
the design and make adjustments to the product concept -- thisis the essence of backflow in
design.

A set-based approach achieves flow through the narrowing process. Upstream and
downstream designers both participate in the initid development of design sets. Rather than
selecting only one concept to be passed to the downstream groups, however, in SBCE upstream
engineers pass down several design options. Each of these options must satisfy the minimum
needs of the upstream groups, though some designs will perform better than others. Yet, aslong
as the minimum needs are met by all of the designs, the upstream groups will have satisfied their
requirements.

Downstream groups are then free to select from any of the designs which they received
from the upstream groups. They will, of course, select the designs which best suit their own
needs. Importantly, though, these downstream groups now have some flexibility in what choices
they can make, while at the same time limiting the extent of any changes which might be made to
upstream decisions. The likelihood for backflow has thus been reduced, moving the design
process towards the ideal concept of flow.

There are severa important implications of this flowing design process. Thefirst isthat the
hand-off of design concepts from the upstream groups to the downstream groupsis not a return to
the over-the-wall model of design. Upstream engineers continue to participate actively in the

design effort, helping to inform downstream decisions, primarily by indicating which of the
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remaining design options are better from upstream perspectives. In addition, as will described in
the next section, the hand-off between the groups is not blind: by applying concepts of pull, the
upstream group can be well aware of downstream needs.

The second implication of the using sets to achieve flow is that staffing levels can be
reduced for upstream groups as the set narrows. In order to initially develop as large a set as
possible, staffing levels for a project will need to be at their greatest at the very beginning. As
upstream groups select designs and eliminate others, however, the staffing within these groups can
be reduced. Managers should be prepared, therefore, for the need to budget for the largest staff at
the start of the project, but then, as the set narrows, can expect to see the staffing needs and

budgets decrease.

11.4.15 Using Pull to Control the Flow of Sets

As noted above, the hand-off from the upstream groups to the downstream groups is not
blind, but isinstead a well-informed transfer of design options. To achieve this understanding
between upstream and downstream groups requires the use of pull. As described in Section
11.4.13, pull can be defined as information flowing in the direction opposite to the primary
process flow.

To implement pull in design, therefore, two questions must be answered: What is the
primary flow and what information should move backwards through the process? The first
guestion was aready answered in the previous section: As just described, in a set-based
environment, the primary flow is defined by the narrowing of the set of design options.

Pull can then be used to regulate this flow by alowing constraints from downstream
groups to flow backwards to upstream groups. A key aspect of SBCE isits concurrency: both
upstream and downstream groups consider the design problem simultaneously. This simultaneity
enables downstream groups to have a preview of the decisions that will be made by upstream

groups, while aso providing the downstream groups an opportunity to express their preferences
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for certain choices. The expression of these preferences then helps to guide upstream decision-
making processes, increasing the probability that upstream decisions will be compatible with
downstream needs.

The relationship between Toyota' s stylists and body engineers, as described in Chapter 4,
provides a good example of theseideas’. Initially, styling (the upstream group) considers awide
array of potential car designs. While still under development, these designs are reviewed by body
engineering (the downstream group). Body engineering then releases the kentouzu, the study
drawings, back to styling. These drawings indicate how designs might be improved to better
accommodate the needs of the body engineers. The kentouzu are, therefore, atool which the
engineers use to communicate their constraints to the stylists. In essence, the drawings have
moved downstream information back to the upstream group, to influence, or pull, the upstream

group’ s design decisionsin a particular direction.

11.4.16 Apply the Principles of SBCE to Ensure a Globally Optimal Solution

Oncetheinitial set of designs has been identified, engineers and designers can begin to
narrow the number of possible alternatives. Asthey do so, the basic principles of SBCE should be
followed to ensure that the final solution is a globally optimal design. These principlesinclude
(Sobek et al.; and see Chapter 3 for further details):

Define feasible regions. Search to understand what is possible, rather than what is
best.

Seek conceptual robustness. Attempt to make design decisions which will remain valid

regardless of the choices made by other engineers.

Explore tradeoffs by designing multiple alternatives.

° As before, these concepts are based on information presented in Sobek (1997).
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Look for intersections between sets. Designs which fall within these regions of overlap
will represent solutions which are optimal from a system perspective, i.e., they will be

the globally optimal solutions.

Narrow sets gradually, while increasing the fidelity of analyses. Ensurethat adesignis

feasible prior to committing to it, and use ssimple tests to eliminate inferior designs.

Stay within a set once committed to it. Attempt to continuously narrow the field of

solutions. Enlarge the set of designs only if absolutely necessary.

Control the narrowing process by establishing process gates at which integration

activities take place, such as the construction of prototypes.

11.4.17 Ensuring that Learning Occurs throughout the Process

Wheelwright and Clark note that organizations which exce at product development
typically also excel at learning (p. 53). They state that learning from each development effort is
essential to strengthening “the foundation for the next iteration of the development strategy”
(Wheelwright and Clark, p. 52).

In the context of engineering design, “learning from experience means learning from
development projects’ (Whedwright and Clark, p. 284). Set-based methods present the
opportunity for engineers to learn more than they might if point-based design methods were used.
By exploring sets of options, engineers increase the number of designs on which they work for a
given project (Sobek, 1997, p. 235). Each design developed and analyzed by an engineer presents
her with an opportunity to better understand the limits and constraints which she faces.

The challenge for acompany, however, isto transfer the learning that “goes on in the heads
of individuals’ to the devel opment team as awhole (Wheelwright and Clark, p. 293). Thisissueis
one to which large sums of research have been devoted, and this thesis will not attempt to address
theissue in great detail. Sufficeit to say, companies must ensure that records are kept of the

various designs which are explored and then eliminated or further pursued by a design team.
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Example 8, the Evolution of Standardized Products and Processes, demonstrated how technologies

such as the World Wide Web can be combined with standardized design methods and record-

keeping techniques (in the form of standardized design notebooks) to capture such learning.

Whatever methods are pursued by a company, engineers must ensure that lessons learned while

exploring the limits of one design are passed on to future designers working on similar problems.

11.5 Summarizing the Model

Clearly it isimportant to implement SBCE as part of a broader effort to improve a product

development process. The steps recommended to achieve such improvements are listed below.

1
2.

© g M~ W

8.
9.

Overadl, first improve processes, then improve the operations which make up those processes.
Start in the factory. Assess the needs of the factory, and use these needs as guidelines for
improving design operations.

Define value from the perspective of the customer.

Eliminate al waste from the development process.

Organize design teams to mirror the product architecture.

Standardize design operations. Arrange the operations so that a customer’s most important
requirements are satisfied first.

Right-size design tools.

Communicate using sets to make the design process transparent.

Educate the customer about itsrole in alean, set-based process.

10. Use sets to achieve continuous flow through the devel opment process.

11. Use the constraints of downstream groups to implement a pull-based control system.

12. Apply the principles of SBCE to ensure that the final solution isaglobally optimal solution.

13. Ensure that |essons learned while exploring the possibilities and limits for one product are

passed on to engineers working on similar problemsin the future.
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12. Concluding Thoughts

12.1 Policy Issues and Implications

The aerospace industry is one in which the primary customer is usually the government.
Efforts at reforming corporate design processes, therefore, often require complementary efforts to
modify government practices. Throughout this research, the impact of customer routines were
seen on company development practices. Where appropriate, this research has also sought to
indicate how customer behaviors can be modified to best accommodate set-based strategies.
Section 11.4.11 in particular demonstrated some ways in which customer behavior can be used to
reinforce set-based practices within adesign firm. Companies attempting to implement SBCE are
urged to do so in cooperation with government program offices. As noted previously, the first
time that a company attempts to implement set-based techniques may require that the government
make aleap of faith. When deciding how risky such aleap might be, the government has every
right to consider a company’s past performance using traditiona development practices. A
company which has proven itself trustworthy under such conditionsis probably more likely to
continue to demonstrate such behavior using new techniques.

Earlier in thisthesis the author emphasized that this research was conducted solely at
company sites -- no effort was made to visit government contracting offices. This omission
represents a limitation to this research: Views on the government’'s role represented solely
contractor perceptions, without the benefit of the corresponding insights of the government offices
themselves. Despite this shortcoming, the observations shared by engineers should be considered

carefully by the government. This research presents contract offices with an opportunity to
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understand the opinions and perceptions of the companies which work for them, regardless of the
biases which might be present in those views.
Specific actions which contracting offices could take to support the use of set-based

techniques include:

Using performance requirements which specify what a system must do, but which do

not specify how the system should do it.

Stating requirements either as ranges or as minimum/maximum constraints. Then, as
the design evolves, work with the engineers to narrow the requirements toward specific

values.

Avoiding changing requirements, even if initial product designs appear to have

significant performance margins.

Encouraging companies to develop multiple aternative designs and to share these
designs with the customer. Allow the customer to comment on the designsin order to
assist the engineers to narrow the set of concepts.

Note that in general these actionsincrease the flexibility of the designers. The intent of this
increased flexibility is to help facilitate the delayed decision-making for which SBCE strives, to
ensure that the most informed design decisions are made. Contracting offices, however, have
every right to constrain this flexibility to some degree. In particular, customers should rigorously
enforce minimum performance requirements. So long as a contractor satisfies these minimums,
the designers should be free to make any decisions they wish. Customers should also be willing to
consider changing these minimums, however, if the designers can demonstrate significant reasons
for doing so. SBCE intends that the customer and designer work together to develop the best

possible product, and such cooperation will inevitably require some give and take on both sides.
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12.2 Final Thoughts on SBCE and the Aerospace Industry

As noted in Chapter 10, no company seemed to fully demonstrate both of the principles
required to qualify a design process as set-based concurrent engineering. Many industry practices,
however, contained set-based concepts or ideas. Based on the examples presented in Chapters 5 to
9, it does appear that set-based concurrent engineering could be applied to some aerospace design
problems.

Companies interested in attempting to implement SBCE should consider first conducting a
small-scale, controlled experiment. To conduct such atest, acompany should first ensure that its
design operations are standardized. A control test should first be conducted, in which engineers
use the standardized operations with atraditional, point-based approach. The same product should
then be designed using the same standardized operations, but this time engineers should consider
sets of design options. The results of the two design efforts could then be compared to determine
if set-based methods in fact resulted in an improved product, a faster development process, aless
costly process, or al three. Future decisions about the use of sets could then supported or rejected

based on these results.

12.3 Recommendations for Further Research

As with any research project, this one concluded by presenting more questions than were
initially considered at the start of the effort. Some of the issues which the author believes to be the

most worthy of further pursuit are listed below.

Further exploration of the role of the government in set-based development efforts.
Specifically, research should consider how to adapt Toyota' s model of supplier relations to the

contractor-government relationship.

Similarly, additional research should be conducted to determine how aerospace companies

could use the Toyota model of supplier involvement with their own suppliers.
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Further research into the role of computer tools in set-based development processes. Some of
the most vivid examples of set-based techniques were seen in company efforts to develop
advanced computer tools. These efforts, therefore, seem to be a fertile ground for the

refinement of set-based methods within the aerospace industry.

Research to develop “ set-supporting” CAD programs. One issue that was discussed by several
engineers was that typical CAD/CAE/CAM tools are best suited to considering just one design
at atime. Such limited capabilitiesto rapidly evaluate multiple options inhibit the application of
set-based techniquesin complex product development environments. A useful avenue of
research, therefore, would be to develop the tools required to adapt computer systems to

support set-based concurrent engineering.

Finally, avery important area of further research is the Toyota development process. At the
time of thiswriting, only one detailed study existed of this design procedure. Researchis

needed to broaden and deepen academia’ s understanding of this company’ s unique practices.
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Appendix A

The following pages contain the slides used to introduce interviewees to the basic concepts
of SBCE. The brief presentation includes an example of how to apply set-based concurrent
engineering, based on the author’s own experience as a program manager for a student-designed

unmanned aeria vehicle.
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e~ Overview

e Research Goals

e Literature Review Summary

— Introduction to Set-Based Concurrent Engineering/Set-
Based Design (SBCE/SBD)

— Advantages of SBCE
— Design Method Spectrum

e A Quick and Dirty Example
e Discussion...
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LEAN AEROSPACE _¥
W Research Goals

e Define set-based concurrent engineering/design
— What are the major aspects of this method?

— How does it differ from “traditional” methods and those
currently used in practice?

e What elements of SBCE already exist in the
aerospace industry?
— Assess the “set-basedness” of companies
— Looking for histories of the design process

e Could more advanced implementation of SBCE
offer advantages to the aerospace industry?
— What obstacles exist that might inhibit such changes?
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E 4

LEAN AEROSPACE
W Introduction to SBCE

Delay setting requirements -- use ranges rather
than point values

Initially consider a large number of design
concepts, i.e., sets of concepts

Delay selecting a single concept... Carry several
concepts throughout the process “narrowing” the
set of concepts considered as the design problem
evolves

Communicate about sets of designs rather than
individual concepts

Each functional group is pursuing its own design
for a given system... then groups look for
intersections to optimize the final design
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L

SBCE in Pictures

Parallel Narrowing of Designs

SPECIALTY 1
SOLUTIONS

SPECIALTY 3
SOLUTIONS

SPECIALTY 2
SOLUTIONS

Integrate by Intersection
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LEAN AEROSPACE
W Advantages of SBCE

e Improved communication between engineers
— Communicate only what you know

— Communicating about sets allows different specialties to
understand the constraints faced by others

e Decisions must be valid for the entire set

— Allows specialties to work independently to a given level of
detail while improving coordination between specialties

— Helps to prevent downstream decisions from invalidating
upstream decisions
e Designers know to what level of detail to work based
on how narrow a set has become

e Allows for athorough exploration of the design space
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The Spectrum of Design

Approaches
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Development Cycle

Point-Based
lterative
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Wf Quick and Dirty Example: UAV
for Draper L abs

e Consider the design of the engine and wings:

volume available to store wings =V

weight of vehicle =W

wing area=S=S (W, T, V)

engine thrust =T =T(S, W)

Unique requirements environment: Goal was to

maximize loiter, but no specific value was given -- just
make it as large as possible
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Wf Example: Traditional Method
(or, How We Did It)
7y

N

/ - | Begin Detail Wing Design

. ‘ |"' My thrustis T
D »

S “Butmywingis S
7 I ——
e \

W orV Change!
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E

R SPAC:E Example: Set-Based Approach

| Estimate W, V as Ranges | \

Develop Set of
Values for S
Develop Set of "My thrust must be ]
Values for T .. between T1 and T4
‘ =z

Narrow |~ That matches my wing ™

Sets |.Sizes between S3 and S5,
=

W orV Change!
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W Assessing Industry De_S|gn
Practices
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Where

\ ...... b
do you fit.. and why?
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LEAN AEROSPACE
W Discussion

e Your Design Methods
— Requirements Definition
Number of alternatives considered

Iteration -- Tradeoffs between elements of the design and
between functional specialties

Use of prototypes
(Team organization and communication)
— (Communication between design and manufacturing)
— Other aspects...
e Has there ever been an instance when you wished
you could have delayed making a decision?
e Reaction to SBCE
— Implementing SBCE in the aerospace industry
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