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Abstract 

The advent of building information modeling in the structural engineering profession has brought forth 

new challenges to the traditional methods of design and analysis.  The need for faster, more robust 

analyses to mitigate expenses and increase structural insight is a demand that stems from the 

implementation of BIM modeling.  Current software interoperability now allows engineers limited 

opportunity to engage directly and immediately with the design process.  The development of tools which 

can bring together the architectural and structural engineering professions are of paramount importance in 

the next phase of professional design. 

In response to this professional demand, a software framework for Rhino3D modeling software was 

created which explores the various methods of searching a design space and finding solutions.  Both 

parametric design generation and genetic optimizations were employed, allowing architects and engineers 

to explore the design space of a structure using metrics important to each field.  A case study is performed 

using the developed software framework to quantify results and validate the effectiveness of such a new 

design tool in the current engineering profession.  The outcome is an improved design experience that is 

feasible in time and scope, allowing architects and engineers an opportunity to truly explore the design 

space. 
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Chapter 1 

Introduction  

1.1 History and Development of the Structural Engineering Practice 

The practice of structural engineering as it is currently performed is changing.  As the 

Boston Society of Civil Engineers has observed, the industry is moving towards a more 

complex practice with a greater use of and dependence on computational power.  From the 

advent of advanced computer methods and modeling techniques such as Computer Aided 

Design (CAD) in the late 1950’s and 1960’s to the introduction of Building Information 

Modeling (BIM) in the last decade, the design practice has moved into a realm that is 

expanding in scope and interoperability with other disciplines.  At a time where cost strains 

all aspects of an engineer’s job, however, methodologies need to be developed that afford 

engineers the ability to expand their practice while remaining financially responsible.  The 

strain of this design need can be seen in the interaction between engineers and architects. 

For a considerable amount of time, it was common practice to bring the structural 

engineers into the overall design discussion at a stage in which the architecture was set to a 

preliminary degree.  The client would hire an architecture firm, who would then bring on a 

team of engineers, contractors, and construction managers to breakdown the tasks of 

completing the client’s initiatives.  This method of practice has changed, and as a 

consequence the interaction between architects and structural engineers has changed as 

well.  The advent of Building Information Modeling, or BIM, has pushed for less 

stratification of the two design practices and a coherency between architects and engineers. 

BIM seeks to mitigate issues of interdisciplinary work by creating object oriented models 

that can share information pertinent to all parties involved in design. The promises of 
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increased speed of work, better coordination, higher productivity, and cost savings are all 

tenants of a BIM-oriented project (Autodesk, 2003).  Since BIM’s arrival in the structural 

engineering profession, the benefits of information modeling have been studied by various 

research groups such as The National Institute of Standards and Technology (NIST), with a 

focus largely on the savings a BIM-oriented project may have versus a more traditional 

design-build scheme.  Specific studies show that the current building industry may create 

additional costs upwards of 6 dollars per square foot for a new building design from project 

inefficiencies (Eastman, 2008).  As can be seen in the following figure, the use of BIM 

technologies with emphasis and promotion of initial design drivers will help maximize 

savings on a project. 

 

Figure 1: Typical Design Process and Integrated Project Delivery (IPD) or BIM Methods and 

Consequent Project Cost Impact (Smith, 2009)  

If there is to be increased design in the early stages of a project, however, a new burden 

falls on the design team to increase production during initial interdisciplinary explorations.  

Current design practice methods do not allow for this increase in early production at an 

effective rate.  While BIM has certainly played a role in the overall project lifecycle, the 

schematic design and design development stages still rely on a back-and-forth methodology 

to come to consensus on a design package. 
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1.2 Identification of Problem and Proposed Solution 

The task that this thesis attempts to solve is one of integration of disciplines.  In order to 

allow for increased design exploration and evaluation at the early stages of a project, a new 

or remodeled design process needed to be developed.  Before a solution could be had, 

however, the tools used by architects and structural engineers needed to be mapped out in 

order to understand how a new design process could be developed to increase productivity 

and performance.  Rhino3D, a three-dimensional design platform that enables a wide 

variety of modeling, has in recent years been developed through the use of the Grasshopper 

plugin (Grasshopper, 2011).  Grasshopper is an open-source, module based designer that 

allows the user to script designs on many tiers of development.  For structural engineers, 

SAP2000 is a common finite element modeling and analysis tool that has a robustness in 

terms of computational capabilities and data output.  Currently, each of these tools is used 

separately.  For schematic design, a typical process is as follows: 

 

Figure 2: Typical Iterative Design Process Between Architect and Engineer 

This process is linear, and will not typically allow for the amount of design needed to push 

the project into a more efficient process in the long term.  Each architectural model must be 

transferred to the engineers, who then create an analytical model to critique the structure’s 

performance.  The engineers then pass their observations back to the architect for revision 

of the initial model, and the process repeats until a final form is found.  This back-and-forth 

interaction takes time.  Thus, the issue becomes one of combining this dual-discipline 

process into a collaborative effort that has the robustness to explore design and depth to 

provide insight to the furthering of the project structure and architecture.  This thesis thus 

develops a software framework that combines both Rhino modeling software and SAP2000 

analysis software to create a unified process to explore the design space at an early stage of 

development.  With the implementation of this program, which will be discussed in the 

following pages, the new design process takes a different form: 
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Figure 3: Proposed Integrated Design Process 

This process, when complete, allows design teams to make decisions based on an array of 

data that is important to both the engineers and architects.  In effect, it increases the 

robustness of the schematic design, allowing for a consequent increase in depth of 

exploration to meet new standards of practice. 

1.3 Thesis Outline 

The process for developing a parametric modeling software package with optimization 

capabilities relies on creating a wrapper to bring both Rhino and SAP2000 together with 

the ability to explore design options.  Chapter 3 illustrates the methodology behind this 

software framework design, where the first step is creating a Grasshopper plugin that is 

easy to use and understand.  Once this plugin is created, the necessary output for analysis 

must be gathered and stored.  This data then passes to a routine which, when activated, 

creates parametric models based on initial user input.  The results of the analyses are then 

represented in a meaningful way for understanding and interpretation.  Additionally, an 

algorithm is developed to explore the design space and find an optimal solution based on 

various criteria.  The results of the parametric modeling and optimization routine are then 

open for comparison.  It can be seen from the results in Chapter 4 that the optimization 

scheme and parametric analyses complement each other.  The optimization process, using 

the inputs defined for the parametric analysis, was observed to converge on the globally-

optimal design as mapped by the parametric routine. 

 

Software Framework 
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Chapter 2 

Literature Review 

2.1 Chapter Overview 

The intent of this chapter is to provide a background to the practice of structural 

engineering and the role it plays with Building Information Modeling.  Literature on the 

development of parametric modelers and optimization routines are discussed to present the 

current state of such analytical methods in structural engineering practice.  The strengths 

and limitations of existing tools are described in detail and the effects of these tools are 

analyzed through a number of case studies in both research and practice.   

2.2 Building Information Modeling 

The exploration of parametric modeling and genetic algorithm optimization has increased 

in recent years, with many research entities and companies alike developing tools and 

methods to create a more robust and intelligent practice.  Seeking to push the design and 

development standards as they stand into new, more efficient methods adheres to the 

intent of BIM modeling practices.  BIM, as mentioned briefly in Chapter 1, seeks to create 

multi-purpose models for interdisciplinary work.  In doing so, transfer of information 

becomes much more efficient, creating multiple opportunities to save time and money.  

Many universities have studied the benefits of BIM-oriented projects, and have seen 

substantial results in terms of both time and monetary savings.  Researchers at Auburn 

University dissected 10 United States projects from 2005 to 2007 that implemented BIM 

technologies and strategies.  They noted that each project received a significant amount of 

net savings as well as rates of return on the investments put forth for said projects (Salman 

et. all, 2008).  The reasons, the authors describe, for savings on a range of projects that 

included hotels, libraries, data centers, and laboratories,   are the integration of the 
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architecture, engineering, and construction disciplines.  Such integration promotes “faster 

and more effective processes,” and “better design.”  The designs allow for building proposals 

that “can be rigorously analyzed [where] simulations can be performed quickly and 

performance benchmarked, enabling improved and innovative solutions” (Salman et. all, 

2008).   

 

Figure 4: BIM Economics (Salman et. all, 2008) 

A key component to the success of BIM has been the impact of parametric, three 

dimensional modeling.   Issues of deliverable speed, coordination amongst design parties, 

and productivity, have become intrinsically woven into the interoperability of parametric 

modeling (Autodesk, 2003).  The simple schematic below illustrates the shift in paradigm, 

from traditional linear design processes to compact and iterative solution networks.  

Objectives of multiple parties have the ability to influence the final solution, or building 

product, with the least compromise in cost and effort spent. 
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.   

Figure 5: Standard CAD Practice vs. BIM Design Parametric and Object-Based Initiatives 

(Autodesk, 2003) 

The philosophy of creating a system in which multiple sets of data from across the design 

spectrum are accrued and manipulated in a parametric study is a crucial to the 

effectiveness of BIM implementation. 

Specific studies have gone as far as to measure the total impact of parametric modeling on 

the engineering profession, looking to validate not only the benefits associated with cost, 

but with time and productivity as well.  Observations on the design and development of 

three concrete structures ranging from 5000 to 10000 cubic meters in volume give insight 

towards the total amount of time saved when implementing parametric modeling versus 

standard practice.  The benefits vary depending on the size of the structure and the 

consequent amount of information a model must store, but regardless savings of time range 

from 21% to 61%.  Additional research also shows a balance in percent of work done on a 

design project between the architect and structural engineer (Sacks, 2005).  A smoother 

distribution of work allows for both parties to participate fully in the design decisions that 

are imperative to the success of a project.  This research did have its limits, however, as the 

initial geometry of the various concrete structures was provided as a template.  Thus, the 

design initiatives were already largely set, and the parametric study provided means for 

optimization.  This thesis aims to take parametric modeling a step backwards, allowing it to 

search the design space to help define the key variables of a design that should be 



20 

 

optimized.  In doing so, greater influence is placed on finding the correct design initiatives 

for a successful design rather than attempting to simply make an existing design better. 

2.3 Parametric Modeling 

With BIM becoming a mainstay in the work environment, and the studied benefits of 

parametric modeling in such a process, it becomes a key objective to define the notion of 

parametric modeling and study its purpose.  Parametric modeling entails studying 

“quantities of interest which can be varied over a domain specified by the user” (Sarkisian 

et. all, 2012).  Specifically, parametric modeling allows a design team to explore a range of 

options or variations of an idea or concept.  The intent is to determine what is important in 

the design and how different variables affect one another through manipulation in the 

design space.  Parametric modeling alone allows for an increase in the scope of conceptual 

studies and the speed in which data is extracted from them.  Such modeling is crucial to the 

creation of creative solutions.  This process does however depend heavily on a thorough 

exploration early in the design process.  When a problem is still in its infancy, the 

parameters that convey the concept of the designers are neither fixed nor variable.  Once 

the design team begins to fix certain aspects of the concept, the design space shrinks, 

narrowing the variability of the remaining free parameters and consequently the scope of 

possible optimal solutions.  Thus, the architect and engineer should explore as many 

possibilities of the concept in as many directions as they have time.  If a proper search of 

the design space is done, the architect and engineer will have a much greater chance of 

determining what parameters are important and ultimately what solution is the best 

(Buelow, 2008).  The benefits of breadth of exploration are a primary reason as the 

incorporation of a parametric analysis tool in this thesis’ proposed software framework. 

The German firm Knippers Helbig Advanced Engineering is an excellent example of the 

power permitted behind embracing parametric design.  The firm is notorious for attempting 

complex, unique, and highly inter-disciplinary projects and making them feasible.  One 

example of fixed form parametrization is the Bao’an International Airport.  Knippers was 

brought on to remedy the issue of the creation of the structure’s double curved façade.  

Implementing an unique combination of Rhino and Excel platforms, the firm was able to 

create parameters for observation and study of the form, allowing for the creation of the 

façade panels in an efficient and cost effective way.  The figure below shows how the 
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numerous variables controlling design were discretized into analytical boundaries 

(Scheible, 2011). 

 

Figure 6: Parametric Modeling of Bao'an International Airport (Scheible, 2011) 

Without using optimization techniques, the Knippers team was able to study the 

boundaries set by material use and cost.  The firm was able to create a doubly curved 

façade that had planar elements of glass paneling.  This allowed for both a decrease in 

production time and client costs.  The firm also incorporated non-structural parameters to 

increase the overall performance of the structure.  A daylighting tool was developed and 

implemented in Rhino to allow for a parametric study of the passive light, and thus heat, 

gained by the building across a typical day.  Thus, the final design was a synthesis of 

controlled constructability, daylighting, and cost (Scheible, 2011).   

 

Figure 7: Bao'an Facade Composed of Parametric Components (Scheible, 2011) 
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2.3 Structural Optimization  

Genetic Algorithms are excellent methods of optimization in computer aided design due to 

their ability to solve complex optima problems in engineering.  They provide a depth to 

compliment the breadth of parametric design exploration. By maintaining the laws of 

nature, a population of possible solutions is tested for their corresponding “fitness.”  These 

fitness scores are then used to filter the population until an optimal design is reached.  This 

optimum is reached through the iteration of generations that utilize stochastic methods to 

produce test subjects.  (Renner, 2003).  Such iterations use methods of genetic crossover or 

mutation to vary and implement models for analysis.  Figure 10 below displays two of the 

common methods for augmenting an existing population of structure options to create the 

next set of designs for comparison.  The crossover operation incorporates components of two 

“parent” designs to create a “child” for analysis.  The mutation operation modifies a single 

“parent” to create a new offspring structure.  The ability of the genetic algorithm to create 

and test subjects is a key component to the depth of the design space explored for an 

optimal solution. 

 

Figure 8: Genetic Algorithm Variations for Fitness Evaluation (Sarkisian et. all, 2009) 

Within the realm of optimization, structural engineering problems search for the "best" 

design out of a complex system of engineering variables.  The structural problem is 

represented as a mathematical model, which translates the geometry, loads, materials, and 

restraints into objectives and constraints.  The mathematical model is tasked with finding 

variables that return extreme values of the objective without violating the constraints set 

on the optimization.  Thus, the mathematical model is the method by which an engineer 
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moves from a structural problem to an optimal structural design.  The development of a 

real problem and its consequent real solution has been termed a "problem-seeks-design" 

methodology (Cohn, 1994).  This, in essence, is one of the major tenants of engineering 

design practice.  In his paper on the “Theory and Practice of Structural Optimization,” Cohn 

states that 

 

“[The] presentation of optimization applications following the „problem-seeks-design‟ 

approach could expand the understanding and use of optimization by focusing designers‟ 

attention to both physical and mathematical aspects of their problems, with due priority to 

the former.” 

 

The exploration of a design space with optimization routines allow engineers to produce 

analyses in line with the discussion mentioned prior on BIM modeling.  Genetic algorithms 

may produce preliminary designs that could offer additional information that a design 

teams’ intuition and experience may not readily comprehend.  In the formulation of such a 

“problem-seeks-design” model, the problem may be defined in a system of constraints and 

arrays: 

 

                                                                    

               

                                 

     

                                                               

         

                                                           

                                                     

 

The design vector may be whatever metrics are necessary to define the problem.  The 

constraints are then the metrics used to determine whether or not a solution is valid, or 
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“legal,” in the design space (Saunders, 2012).  Thus, the stress limit of a member could 

define a constraint that, when breached, would eliminate the design solution from the 

optimization routine.  The bounds for the design vector create the limits of the search space 

and are correlated to the variables within the design vector itself.  The results of such an 

algorithm can be interpreted to express the performance of the optimization routine, 

whether it is efficient, reliable, accurate, or robust (Chen and Rajan, 1999).  Such metrics 

dictate the speed, versatility, and consistency of a genetic algorithm, and are important in 

determining the best optimization routine for a given design problem.  Issues common to 

genetic algorithms include the finding of local minima in the design space.  The diversity of 

the population, as well as the probability of the variation size between design variables 

searchable by the algorithm, will greatly affect the results (Al-Shihri, 2010).  Thus, results 

of a routine should be compared to the entire list of generation cycles for an understanding 

of the optimization process and its limitations (Sarkisian et. all, 2009).   

 

Figure 9: Example Search Space and Local Minima (Sarkisian et. all, 2009) 

Complexities do arise, however, when multiple objectives are sought at the same time.  In 

structural engineering, a common occurrence of such an issue is topology versus section size 

optimization.  This issue can be avoided in structural engineering through the use of 

volume or weight as a means to control such diverse parameters, or develop fitness 
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functions based on the stiffness of individual members so that deflection may be a unifying 

objective (Jakiela et. all, 1999).   

The Knippers team has also pushed beyond sole parametric modeling into the realm of 

structural optimization.  The MyZeil, a shopping mall in the center of Frankfurt, Germany, 

is perfect example of the application of custom optimization routines to work within a 

dialogue between architects and engineers.  The intent, and ultimately the result, of the 

structure was to create a space with no interior columns.  Working with surfaces from the 

architects, the Knippers team was able to generate a form that minimized material 

consumption to limit the self-weight of the structure (Dimcic, 2012).  The results are telling, 

as they show how effective an optimized routine-based design process can be for the client, 

designers, and users. 

 

Figure 10: MyZeil First and Final, Optimized Model 

 

 

Figure 11: MyZeil Column-Free Interior 
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There are, however, issues with the use of genetic algorithms for design.  If an optimization 

routine is used too early in the design process, the definition of parameters limiting the 

problem may be too narrow to render a wide array of adequate solutions.  This, in essence, 

will reduce the potential for creativity in a design.  The transparency of genetic algorithms 

is also a concern, as many currently available simply output the final “best” solution 

without exposing the individual designs that compose the population.  This does not allow 

for true exploration of the design space.  Limitations in optimization also exist when the 

criteria for the objective function are no longer bound to mathematics.  Issues regarding 

aesthetics or context of a design are not easily integrated into equations for exploration 

(Buelow, 2008).   

The software framework established by this thesis mitigates these optimization issues.  The 

incorporation of a parametric analysis to supplement the genetic algorithm is a key factor 

in the new framework’s success.  The parametric analysis allows the design team to explore 

the relationship between variables of a project.  This exploration gives insight as to the 

importance of different factors and consequently allows the architect and engineer to select 

the correct design variables for optimization.  Thus, the narrowing of scope too early in the 

design stage is avoided.  The parametric analysis also yields transparency to the genetic 

algorithm by defining the design space.  The design space is a map of all the variables 

deemed important by the architect and engineer, and thus may give insight as to where the 

genetic algorithm is exploring for a solution.  The incorporation of the optimization and 

parametric analysis into the Grasshopper interface allows the architect and engineer to 

create the structure together.  While not explicitly defining equations for issues of 

aesthetics or appropriateness, the interface promotes discussion about such issues which in 

turn will influence which design variables are important to both the architect and engineer. 

2. 4 Implementing Object-Oriented Finite Element Modeling 

Finite element analysis program design is driven by many variables.  Issues such as 

development language, environment, and utilization are all important in defining how an 

analysis program will be constructed.  To date there are many approaches to developing a 

finite element solver, each of which has its own benefits and constraints.  Two of such 

methods are the Model-Analysis separation and Model-User Interface separation as 
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presented in the paper “Using Design Patterns in Obect-Oriented Finite Element 

Programming” (Mackie, 2006). 

Model-Analysis separation is a system that breaks a program into modeling and analysis 

processes.  This method is simple in that it creates two stages: one to model the finite 

element geometry, and another to analyze the geometry.  The analysis stage should be open 

to amendments and modifications based on the objects created in the geometry stage.  This 

allows for ease of adaptation to various types of finite elements.  The benefits of the Model-

Analysis separation method are profound.  This program architecture allows for a succinct 

division in labor between the geometry and analysis stages, which in turn makes 

maintenance and expansion of each stage easier.  The openness of the analysis stage also 

allows for ease of reconstructing analysis without having to redefine geometry object 

definitions.  For example, a line element may be used to create nodes, links, or plates for 

analysis. 

Model-User Interface separation is another finite element system that isolates user input 

objects from the model geometry objects themselves.  This simplifies the definitions of the 

geometry objects and allows for a more versatile user interface.  A reference to the model is 

used for manipulation in the user interface, which can be developed to handle and 

manipulate the geometry as needed.  This flexibility is the primary benefit of the disconnect 

between the user definitions and model space.   

The software framework developed by this thesis seeks to combine these two methodologies 

in order to reap the benefits of both systems.  The framework developed uses Rhino3D as a 

modeling tool, with data from the model sent to SAP2000 for analysis.  With the geometry 

library of Rhino3D set, modifications can be made to the API of SAP2000 to interpret and 

analyze model geometry as the design team wishes.  The use of Grasshopper to take the 

data from Rhino3D to SAP2000 separates the model from the user input, allowing for 

manipulation of the geometry to happen without attempting to physically discretize the 

Rhino3D object members.  Thus, a three-part system is created in which each component 

can be modified independently to better suit the needs of the design team.  This separation 

also allows for simplicity in representing the geometry as data for analysis, as well as 

simplifying the analysis process itself. 
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2. 5 Limitations of Parametric Modeling and Optimization in 

Practice 

Since the advent of parametric modeling and genetic optimization in Civil Engineering, a 

few firms have attempted to emulate research regarding the matters in practice.  Two firms 

in particular, SOM and Knippers Helbig Advanced Engineering, have implemented 

variations of the subject matter in a BIM format.  Knippers Helbig developed structural 

optimization of a set form through a modification of Rhino with a C++ plugin.  The plug-in 

then output data to GSA, a finite element package similar to SAP2000, for analysis.  For 

the form, a surface was created in Rhino, which then used meshing tools in the software to 

create members.  Both the surface form and member cross sections were fixed for analysis 

and optimization (Dimic, 2012).  SOM took this approach a step further, introducing 

Grasshopper plugins for Rhino that allowed for parametric structural analysis of a model 

and consequent optimization through a genetic algorithm.  The structural analysis was 

performed by the Grasshopper-based package Karamba, which was developed by the 

University of Applied Arts, Vienna.  This package was coupled with a plugin which took 

surfaces in the same manner as the Knippers Helbig software and developed a structural 

scheme accordingly.  Specifically, the routine focused on the optimization of diagrid systems 

across the set surface (Sarkisian et. all, 2009).   

Both of these packages have their limits, however.  The tool developed by Knippers Helbig 

does not push parametric mapping of a problem and instead focuses on optimization of a 

few variables.  Thus, the solution space is narrow in scope and does not afford exploration 

for new ideas or solutions.  The program implemented by SOM uses parametric modeling, 

but limits its capabilities by using a simple and specific analysis plugin rather than a 

robust finite element package.  Thus, if the design were to switch from a diagrid structure 

to a shell object, a new analysis tool would have to be developed.  Also, both optimization 

tools require some entity to be fixed, be it the geometry, cross sectional area, or both.  This 

paper focuses on creating an optimization scheme that allows for parametric modeling as 

well as genetic optimization.  It also focuses on incorporating design software and robust 

analysis packages to create the complete tool for a broad and deep conceptual analysis. 
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Chapter 3 

Methodology 

 

“The level and the way of cooperation between designers and engineers is slightly changing, 

creating a new area of expertise between those two fields – an area occupied by experts 

with the knowledge in design, programming and static analysis, that can solve the 

problems of structural design and fabrication arising from the complex geometry of the free 

form architectural design.”   

- Florian Scheible and Milos Dimcic, Knippers Helbig Advanced Engineering 

 

3.1 Chapter Overview 

This chapter describes the methodology used to create the software framework for 

parametric analysis and algorithmic optimization.  Inasmuch, it discusses the three main 

portions of the developed framework: the Grasshopper interface as well as the parametric 

and optimization C# codes.  While discussing the framework as a whole, specific detail is 

given to the development of the Grasshopper components, the SAP2000 API analysis code, 

and the C# implementation codes that comprise the final product created.  The final portion 

of the chapter details the final output of the structural framework.  It is here that the 

importance of the tool created is established in schematic design and design development.   
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3.2 Wrapper for Data Consolidation and Output 

 

3.1.1 Grasshopper Development 

In the development of the Grasshopper plugin, key considerations are taken to create a 

quick and effective interface that allows engineers and architects to communicate while 

designing.  Knowing that this tool needs to be implemented at an early stage in design to 

effectively encourage BIM project results, considerations are made as to the scope of the 

wrapper and the tools it required.  The goal of this wrapper is to create a robust parametric 

and genetically optimized design for study at an early stage in the design process.  It is not, 

however, seen as a final analysis tool.  Knowing this, the breadth of the wrapper was 

limited to allow seamless integration of architectural and structural disciplines without 

requiring time-consuming post production analyses such as connection design or 

construction sequencing.  Specifically, the wrapper created may be used to design any type 

of frame-based structure, be it a truss, moment frame, or some hybrid of the two.  For the 

context of this thesis, a truss structure was used for simplicity in analysis and ease of 

examination.  The wrapper also focuses on linear analysis, sacrificing a degree of accuracy 

for the greater benefit of saving time.  Time that would be spent on non-linear analysis may 

now be allocated to the amount of design iterations the program framework can perform, 

increasing the amount of possible solutions.     

The Grasshopper element needed to be robust enough to accommodate different drawing 

and development styles so that only minor changes would be needed to run the analysis 

tools.  Due to the large quantity of illustration methods available in Rhino3D, the 

Grasshopper element needed to be able to transform any structure created into the same 

data required for parametric study and optimization.  Thus, the wrapper moves through 

design space in a similar way that a finite element package would, building a stiffness 

matrix and mapping members to the constructed design space.  When using the wrapper, 

the first step is to define the model geometry.  The primary reason Grasshopper was chosen 

for development is its ability to seamlessly integrate with Rhino3D.  Thus, the architect and 

engineer have the opportunity to sit with one another and create a model that is both 

architectural and analytical in nature.  As current software stands, there is no user 

interface that allows for both architectural design and engineering input to be used with 
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independent packages such as SAP2000 and Rhino3D.  There are small, Grasshopper-based 

analysis tools such as the SOM tool mentioned in Chapter 2 and Kangaroo (Kangaroo 

Physics, 2013) that allow a user to create structures for specific studies, but the depth and 

breadth of analysis is limited in comparison to a full finite element package such as 

SAP2000.  The integration of major design platforms for both professions to use 

simultaneously will save precious time in the back-and-forth interplay of traditional design 

development.   

Once the model is done, the designers then move into the Grasshopper element itself.  The 

second step is defining the materials and section geometry.  All material values required to 

perform a linear analysis are available for selection.  The wrapper also allows the user to 

define the names of the materials and sections for ease of use in the SAP2000 program.  An 

input for initial cross section is given, which for this study was a circular, solid member.  

The section can easily be changed to represent any arbitration of shape supported by the 

SAP2000 shape libraries and configures.   

 

Figure 12:  Grasshopper Wrapper Material and Model Definition 
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 Once the material definitions are developed, the designer simply selects the model for 

analysis and inputs the frames into the tool in the “Members of Model” object.  In the 

current development, there is an option to release members to create axially loaded objects 

or fix them for moment resistance across the structure.  The designers then are free to 

select nodes on the structure for loading and restraining.  The load input takes the form of 

a traditional global interface, calling out forces in the x, y and z directions, as well as 

moments about each of these axes.  Once the corresponding load values are input, and 

corresponding load cases are defined, the model is ready to be output for its multiphase 

analysis.  The users are free to simply copy and paste the existing framework for both the 

selection of loaded and restrained objects as well as load case definitions to create 

additional restraint and load types.  The last step involves directing the output to a 

directory that is convenient for the users.  The module creates a series of text files which it 

uses to send information to the parametric analysis and genetic algorithm C# programs.  

These text files are submitted when a Boolean toggle is switched to “True.” 

 

Figure 13: Nodal Restraints, Nodal Force Locations, and Load Case Definitions 



33 

 

 

Figure 14: Output Station in Wrapper with Text File Location Input 

It is important to note that the intent of the wrapper is to create a dialogue between the 

architect and the engineer.  From the very beginning, the two practices must decide what 

an appropriate model entails, knowing how it will be analyzed through the wrapper.  The 

two practices must then use their relative expertise to give insight and input to the 

constraints and restraints the wrapper requires. 

3.1.2 Understanding and Implementing SAP2000 API 

The wrapper needed to create an output that was meaningful for an analysis package to 

import and manipulate.  The analysis package chosen for this research was SAP2000, the 

CSI finite element modeler (Computers and Structures Inc., 2013).  SAP2000 was chosen 

for many reasons.  The software has a robust solver that lends itself towards quick analysis 

of linear models which constitute most of schematic design and design development.  This 

property is a common concern among authors on the subject, as custom made finite element 

packages are often computationally expensive (Chen and Rajan, 1999).  The analysis 

package also has an intricate and open-source API library that is well documented.  

Another key driver for the use of SAP2000 is the program’s widespread use.  Many firms of 

various scales use the analysis software, and thus the wrapper developed would readily 

integrate into a typical structural engineering work environment.     

Research was conducted that determined how the API of SAP2000 describes the software’s 

use and abilities.  The SAP2000 API is object oriented, and consequently lends itself to 

being developed in a variety of methods and with a variety of programs.  Moving through 

the design space, methods had to be found for constructing the respective parts of an 
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analytical model.  It was crucial at this point to understand the limitations of input for the 

SAP2000 API, as well as those for the output of Grasshopper. Ultimately, a solution was 

found in the creation of a mapping scheme that utilized a series of grasshopper array 

manipulators to form the stiffness matrix and member-to-node map of the structural model.  

This matrix was used by the SAP2000 API to create the model nodes, as each row or 

column was tied to geometry in three-dimensional space, and the members that combine 

them.  This mapping scheme was then reintroduced at multiple levels to allow for quick and 

efficient creation of constraints, restraints, and loads in SAP2000.    

 

            

Figure 15: Model Discretization for Construction of Stiffness Matrix and Consequent Node Map 
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Figure 16: Use of Index Map to Allocate 5 Global Nodes to 4 Restraints (1,2,3,4)  and 1 Load (0) for 

Data Output to SAP2000 

3.1.3 Utilizing C# for Synthesis of SAP2000 API and Grasshopper Plugin 

The C# platform was used as the messenger between Grasshopper and SAP2000, as it is 

object based and supports the libraries of each respective code.  There has also been 

significant development of various optimization routines in C# that can be readily 

integrated into existing problem spaces.  NLOpt, an open source library created by 

professors at MIT, contains numerous algorithms for robust optimization in varying 

programming languages (Johnson, 2013).  A wrapper to C# was created for use and 

manipulation of this library database (Clune, 2012).  Both the parametric and genetic 

algorithm routines used in this paper were produced in C#.   
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3.3 Parametric Analysis Program 

Using the wrapper created for Grasshopper, a parametric modeling software component 

was created in C# for developing a user-based analysis tool to explore a design space.  The 

parametric modeler was developed to manipulate geometry and cross sectional properties of 

a structure for this paper, but can be augmented to adjust any of the properties that 

SAP2000 imports from the Grasshopper user definitions.  To enable the parametric 

modeler, the user simply inputs the type of property to be manipulated, selects said 

properties in the three dimensional model, and develops the array that will manipulate the 

given model property in the SAP2000 analysis.  The parametric array consists of a starting 

value, step size, and total number of operations to be done by the parametric modeler. 

 

Figure 17: Parametric Modeler Design Input 

Once this array is created, the Grasshopper wrapper can be toggled to run and send 

information to C# for compilation and analysis.  The parametric modeler uses the array 

created by the user to loop through multiple variations of the initial design.  For this paper, 

nodal geometry was chosen to be augmented for analysis.  Thus, the C# program creates 

numerous versions of the nodal map that the Grasshopper wrapper outputs.  For each 

version of the nodes and member map created, a new model is built and run for analysis.  A 

final version of the code used may be found in the Appendix. 
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Figure 18: Parametric Modeling Process 
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3.4 Genetic Algorithm Program 

To optimization program was designed to take user input from the Grasshopper wrapper 

and push SAP2000 analysis through a genetic algorithm.  In doing as much, the 

Grasshopper wrapper had to be designed to work with the NLOpt C# wrapper developed for 

the non-linear optimization routines available to the NLOpt online library.  Thus, research 

was performed to determine the best routines for a simple and robust optimization that 

would also be able to tie into the SAP2000 API implementation script that had been created 

for the parametric solver.  The method chosen was the Controlled Random Search with 

local mutation, or CRS method.  The CRS genetic algorithm is coupled with an additional 

algorithm known as the Augmented Lagrangian, which uses inequality constraints and 

simple bounds for the design vector as described in Chapter 2.  The Augmented Lagrangian 

method combines the objective function and constraints into a single modified objective 

function.  This modified objective function, or penalty function, is then passed to the CRS 

which does not have constraints.  A simple representation of the penalty function is as 

follows: 

                                

The CRS compares the penalty function to a set of data points created from variations in 

the design vector space.  If the penalty function is better than the worst point in the data 

set, then it replaces said point.  If the penalty function is not better, local mutation 

introduces a new trial point near the current best point in the data set.  This mutation 

increases the efficiency and robustness of the CRS method (Kaelo and Ali, 2006).  This new 

solution is subject to the Augmented Lagrangian constraints, however, which in return 

assign a penalty to modify the result. This process is repeated until convergence at an 

optimum or a running time threshold is reached (Johnson, 2013).  

The C# program created uses the CRS and Augmented Lagrangian methods to iterate 

through the design space to find an optimal structural configuration.  Once the design team 

defines the objective function and inequality constraint, as well as creates the design vector 

with its bounds and initial guesses, the data can be output through the same toggle in 

Grasshopper as mentioned in Section 3.3.  Them, using the SAP2000 and NLOptDotNet 

libraries, the optimization routine takes the user input from Grasshopper and begins 

searching for the best solution based on the initial start values.  Analysis through SAP2000 
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is performed for each modification of the design variables, with the corresponding fitness 

value from the inequality constraint giving insight as to the next iteration. This is repeated 

until the result is output for comparison.  

 

Figure 19: Grasshopper Genetic Algorithm User Input Showing the Considerations and Constraints 

a User Defines 

The development of the optimization routine and Grasshopper user interface allows for an 

expedient extension or modification of the software framework to solve new problems.  

From the Grasshopper interface, the user may simply copy and paste additional design 

variable inputs to make the design vector larger or smaller.  The same may be said for the 

bounds of the design vector.  To augment the objective function, the user would simply have 

to define a new name and corresponding equation to optimize.  In the figure shown above, 

the WEIGHT objective function triggers a calculation of the structures weight based on 

geometry defined by the design vector.  The same process is applicable for the Inequality 

constraint.  Now, if the user wanted to run multiple constraints simultaneously, some 

additional coding would be required for the C# program to pull the appropriate data from 

Grasshopper.  Regardless, changing the optimization program could happen on the scale of 

minutes, limiting the amount of time used to change the software framework by a design 

team.  
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Figure 20: Optimization Process with Optimization Loop Demonstrating Augmented Lagrangian 

and Controlled Random Search iterations 
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3.5 Data Output 

The final process in developing this wrapper is creating an effective way to view and 

interpret the data created.  Excel was chosen as the collection depot for all analyses, and 

was used to create succinct visuals that would allow designers and engineers to create a 

discussion about the results.  A three dimensional scatter plot graph was developed for use 

in interpreting the parametric analyses, as it allows for a surface to be created mapping the 

benefits and consequences of manipulating a variable in the design space.  In each three-

dimensional plot rotations allow for the design team to observe the trends between two of 

the three plot variables.  The results of the optimization routine were also placed with the 

parametric data so that the optima could be seen relative to the design field.  Additional 

charts compare results of the optimization routines and the time allotted for the algorithm 

to run, allowing the design team the opportunity to weight the cost of an analysis versus 

accuracy.   

3.6 Software Framework Summary 

The development of this software framework allows architects and engineers to collaborate 

and explore designs in s new and effective manner.  Through the integration of many robust 

and independent programs, the tool created allows for both a breadth and depth in analysis 

that, as noted in Chapter 2, current packages are not able to deliver.  The opportunity for 

the framework to be modified to match the scope of a new design problem adds flexibility to 

this system, which in turn gives more options for exploration to the design team.  Rhino3D 

allows designers to create complex geometry, and Grasshopper has the capabilities 

necessary to understand and compile this geometry into data that is then used by the 

parametric analysis and optimization C# routines.  Of key significance to this framework is 

the required interaction of the architect and engineer.  It is this interaction that allows for 

the best design exploration to occur. 
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Chapter 4 

Results 

4.1 Chapter Overview 

A case study was created to test the interoperability of the Grasshopper wrapper and its 

many components.  Although simple, it is sufficiently rich to demonstrate the proposed 

software’s capabilities.  A rectangular pyramid was created in Rhino3D with four members 

combining five nodes.  Each base node lay on the same global XY plane, and the apex node 

was centered at all times between the four base nodes, which allowed for translation only in 

the global Z direction.  The four pyramid members were assigned cylindrical frame sections 

of a six inch initial cross sectional diameter.  The material chosen for the sections was steel 

with a standard modulus of 29000 KSI.  The apex of the pyramid, or first node in the model, 

was loaded with DEAD, WIND, and COMB load cases, each of which described a general 

load scheme typical of schematic design.   

Table 1: Load Case Definitions with Load in Kips 

 

The bottom four nodes in the XY plane were all restrained with translational fixities, thus 

making them pinned.  Once the geometry and corresponding framework definitions were 

established, the data was pushed through for analysis. 

Load Case

X Y Z

DEAD 0 0 -10

WIND 10 0 0

COMB 10 0 -10

Load Direction 
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Figure 21: Rhino Design Model Shown in Both Analytical and Architectural Form 

4.2 Parametric Study 

For the parametric study, the nodal geometry was selected for manipulation by the 

parametric array.  The goal of the study was to understand how the geometry of the 

structure affected the stress of the members, the deflection of the apex node, the total 

weight of the pyramid, and the useable volume contained within the design.  These metrics 

were chosen so that if this were to be a design entering the schematic process, both the 

architect and engineer would have guidelines for discussion and evaluation.   

The four base nodes constrained to the XY plane were allowed to translate along vectors 

away from the center of the pyramid.  The apex node was allowed to move along the Z axis 

in a similar fashion.  The parametric array was set to eight variations of .75 feet which 

were applied to both the apex and the base nodes.  Thus, for each step in the height of the 

apex, the base nodes would translate across the XY plane eight times, allowing for a total of 

64 variations of the same model to be analyzed.    There is also a parametric constraint for 

the cross sectional area, which steps in diameter by .5 inches from a start of .5 inches to 12 

inches.  With each diameter varying according to 64 geometries, the final number of models 

analyzed became 1536.  The base nodes began analysis at .75 feet from the center of the 

4’ 4’ 

7’ 
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pyramid and moved to 6 feet by the eighth iteration.  The apex node began at 1.75 feet from 

the XY plane, and ended at 14 feet in the Z axis direction. 

 

Figure 22: Parametric Model Points Developed by the Grasshopper Wrapper 

Once this model was run, there existed 64 data sets of member stresses and weights, nodal 

deflections, and useable volume for each variation of cross sectional area.  This data is 

exported into Excel from the C# program for three dimensional representation and 

analysis.  For following discussion of results, plots of the parametric analysis with 6 inch 

diameter members were chosen for display.  Due to the simplicity of the model, the results 

for different diameters analyzed were scaled versions of one another.  Thus, any member 

size would be representative of the structure’s response as a whole.   

14’ 

1.75’ 

.75’ 

6’ 
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The output of the parametric modeling gives insight as to how the structure behaves under 

a variety of constraints as developed by the architect and engineer in the Grasshopper 

wrapper.  There are two tiers of graphics produced for the parametric analysis, the first of 

which shows how all of the primary metrics interact with one another.  In the case of the 

pyramid, the primary graph shows the relationship between stress unity, nodal 

displacement, and weight of a given member diameter for a specific load case.  The second 

tier graphics show the individual relationships between the primary metrics and the 

parametric quantities.  In this case, each variable in the primary graphic is shown 

compared to the base spacing and height of the structure.   

The first graph shown below, Figure 21, is the primary output for the parametric model 

under gravity loading.  The vertical axis shows the unity of stress applied versus the 

available stress capacity of the members with respect to buckling.  The horizontal axes 

show deflection and weight.  The planes of the three dimensional space show the projections 

of the data set for corroboration of the trends observed between two of the three metrics 

considered. 

 

Figure 23: DEAD Load Case Parametric Surface – Deflection vs. Weight vs. Unity for 6 Inch 

Diameter Members 

 

σ/σcr 
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Figure 22 displays the same information, with the exception that the color gradient now 

reflects the volume of the structure in cubic feet.  This allows the architect the opportunity 

to understand how useable space correlates to the stresses and key deflections of a 

structure.  Using the secondary plots that correlate each design metric to the geometry of 

the structure, as is described in detail later in this section, the design team is able to link 

the performances shown in Figure 22 with variations of the structural model. 

 

 

 

 

 

Figure 24: DEAD Load Case Parametric Surface – Deflection vs. Weight vs. Unity vs. Volume for 6 

Inch Diameter Members 

 

Volume (cu. Ft.) 
2 

1 

3 

4 

1 2 3 4 
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Table 2: Comparison of Parametric Analysis Results 

 

It can be observed from Figure 23 that stress unity will increase as the weight of the 

structure increases.  This is to be expected, however, the pyramid reaches a design 

geometry in which a decrease in stress unity occurs with a continued increase in weight, 

after which the stress unity will begin to increase further than the initial state observed.  

Visuals such as these allow for designers to immediately set target values for performance 

of a structure and understand workable limits for optimization of correlated parameters.   

 

Figure 25: DEAD Load Case Parametric Surface – Global and Local Optima Between Weight 

vs. Unity for 6 Inch Diameter Members 

 

Model Height Base Spacing Unity Weight Deflection Volume

(Feet) (Feet) - (Pounds) (Inches) (Cu. Feet)

1 1.75 6 0.44 1766 0.002 21

2 1.75 12 2.1 3334 0.024 84

3 7 12 0.94 4233 0.004 336

4 14 12 1.5 6300 0.005 672

Parametric Analysis Model DEAD Results

Sample Model Population 

6 in. Diamter Members

σ/σcr 
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From Figure 22, it may also be observed that there is approximately a linear relationship 

between the stress unity and deflection of the structure.  For the pyramid model created, 

this is intuitive as the relationship between deflection and force is most nearly linear, with 

the length of the members contributing to the change in structure stiffness.  When 

considering weight and deflection, Figure 24 shows that, regardless of total weight, 

approximately 94% of the structures fall under a deflection of .005 inches.  Thus, the design 

team can relax concerns regarding weight and its impact on the structure’s serviceability 

requirements as they move through the proposed design options. 

 

 

 

Figure 26: DEAD Load Case Parametric Surface – Linear Response Between Deflection vs. Unity for 

6 Inch Diameter Members 

σ/σcr 
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Figure 27: DEAD Load Case Parametric Surface – Banded Performance with Global Maxima 

Between Deflection vs. Weight for 6 Inch Diameter Members 

 

These plots, which show the interplay of both engineering and architectural design criteria, 

allow the design team to push forward into schematic design with an understanding of how 

changes will be reflected in the structure as the development process is refined.   

Once design criteria are determined, the architect and engineer are able to move into the 

secondary plots created by the modeler.  These plots relate each primary design metric to 

the geometry of the pyramid.  Thus, the plots act as a map, allowing users to first pick 

limiting engineering and architectural performance criteria, such as member stress or 

deflection, and then trace those performances back to their respective parametric model to 

identify the geometry. 

σ/σcr 
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Figure 28: DEAD Load Case Parametric Surface – Parabolic Surface with Local Optima Between 

Stress Unity vs. Geometry for 6 Inch Diameter Members 

 

Figure 29: DEAD Load Case Parametric Surface – Definite Global Minima and Maxima Between 

Deflection vs. Geometry for 6 Inch Diameter Members 

σ/σcr 

Deflection (in) 
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Figure 30: DEAD Load Case Parametric Surface – Banded Surface Between Weight vs. Geometry for 

6 Inch Diameter Members 

The same process of comparison and evaluation can be created for each load case specified 

by the design team, as well as for each member cross section.  Thus, there is a plethora of 

information at the disposal of the designers.  The time required to generate this data set for 

a single cross sectional area ran between 2.5 and 2.75 minutes.  When there are more nodes 

added to the model, however, the time to run becomes larger as the stiffness matrix 

assembly and consequent mapping scheme for members is more intricate.  When the nodal 

amount is doubled, the time required for parametric analysis becomes approximately 2 

times that of the original run time.  When the node amount is tripled, the time becomes 

approximately 3.75 times that of the original.  This increase is due to the size of the 

stiffness matrix for analysis in SAP2000 as well as the amount of data the program is 

required to output to Excel for storage.  

 

 

Weight (lbs) 
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Figure 31: WIND Load Case Parametric Surface – Conical Performance with Definite Global 

Optimum Between Deflection vs. Weight vs. Unity for 6 Inch Diameter Members 

 

Figure 32: COMB Load Case Parametric Surface – Banded Performance Between Deflection vs. 

Weight vs. Unity for 6 Inch Diameter Members 

σ/σcr 

σ/σcr 
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4.3 Genetic Optimization Study 

Just as in the parametric study, the architect and engineer are free to select what criteria 

they consider important for optimization.  The parametric analysis gives the design team 

insight as to what key interactions of structure and architecture will constitute the primary 

issues of progressing towards the reality of the final product.  For the case study of the 

pyramid, the issue of weight was chosen to be optimized.  Steel structures are typically paid 

for by the ton, and thus weight is of concern to both the engineer and architect.  This cost is 

based largely on the tonnage of steel required to complete the project.  Thus, the best 

solution in the design space was sought that would give adequate performance with the 

lightest overall design.   

The design vector for the optimization was set to three variables: base spacing, apex height, 

and member cross section diameter.  These design components allow the algorithm to 

search the entirety of the structural space, linking the complexities of member performance 

in terms of stress to the global parameters of overall weight.  Upper and lower bounds were 

set to the design vector that reflects the parametric values initially defined by the design 

team.   

Design Vector                                                      

Design Vector Bounds                                                  

Knowing that total weight of the structure was the criteria to minimize, the objective 

function used the properties of steel defined in the Grasshopper wrapper to determine the 

weight of each structure in the optimization process. 

Objective Function                      

Where        is 490 PCF,   is the number of members,   is the cross-sectional area 

calculated from the design vector diameter variable, and   is the length of a member 

calculated from the design vector base spacing and apex height variables.  The performance 

criteria for the structure were prescribed in the inequality constraints of the optimization.  

The first analysis used member performance for constraining the optimization. 

Inequality Constraint  
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The force in each member, over its cross section area as defined by the design vector, was 

compared to the critical buckling stress          .  The critical buckling stress was calculated 

using the standard procedure as defined in the AISC Manual.   

               
√  

              
  

 
                           

Elastic Buckling Stress       
    

 
  

 
  

 

Where    is the yield stress of steel,   is the effective length factor, and   is the radius of 

gyration or the square root of the area moment of inertia divided by the member area.  The 

effective length factor was set to 1 for pinned members.  For this case study, the DEAD load 

case was analyzed, which due to symmetry experiences the same force in each member.  For 

the WIND and COMB load cases described earlier, the total number of members exceeding 

critical stress were counted and used in the penalty function. 

Once the parameters of the genetic algorithm were set, the program was run for different 

time increments.  The augmented lagrangian non-linear optimization allows the user to 

define tolerances for comparison of results and time and evaluation limits.  The maximum 

time allowed for the optimization to run was varied between 100, 300, and 900 seconds.  

The program was limited to 5000 evaluations, and a tolerance of 1e-4 was set for 

comparison of generated solutions. The results of this system were telling of the 

performance of the algorithm and, more importantly, gave insight to the appropriate time 

required for a thorough exploration of the design space.   

When the optimization was run for 100 seconds, the program was unable to find a set 

minimum in the solution, and thus would exit with whatever iteration it was currently on.  

This is evident by the consistency of iterations performed for a single routine completion, 

which were 15 or 16 loops.  The reduction in weight from the starting point, which was 1885 

pounds, ranged anywhere from 60 % to 98 %.  When the routine was allowed to run for 300 

seconds, anywhere from 39 to 84 iterations would be completed.  This entails that the 

program would occasionally find local minima that would be considered the answer to the 

optimization objective function.  The reduction in weight was a much tighter band of 

performance, ranging from 92 % to 99%, with one in every ten runs giving a maximum 

reduction allowable in the design space, or the lower bound of each design variable vector, 
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of 99.7%.  Once the run time was increased to 900 seconds, all iterations developed the 

same solution to give a 99.7% reduction in weight.  Interesting to this analysis are the 

number of solutions explored in the design space, which ranged from 130 to 180.  This is 

approximately the same deviance as seen in the trial ran for 300 seconds.  The following 

graphs show the optimized design vector results versus the resultant weight.   

 

 

 

 

 

 

 

 

 

Figure 33: Results of Genetic Algorithm for 100 (Dark Blue), 300 (Light Blue), and 900 (Yellow) Time 

Limits Relative to Initial Start Point at Top Center 

1 2 3 4 

1 

2 

3 

4 

Initial Value 
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Table 3: Comparison of Genetic Optimization Results 

 

 

Figure 34: Results of Optimization Showing Local (Grey) and Global (Black) Minima as Percent of 

Weight Reduction 

 The optimal result became a pyramid that had a base spacing of 1.75 feet, an apex height 

of 1.75 feet, and a diameter of .5 inches.  When these results are compared to the 

corresponding parametric results for a member of the same diameter, the results confirm 

that a pyramid with this geometry is the lightest option that satisfies the buckling 

constraints of the individual members. 

 

Model Base Distance Height Cross Section D WEIGHT % Reduction

ft ft in lbs of Weight

1 9.147 13.546 2.181 763.1 59.52471911

2 13.214 5.779 1.846 400.14 78.77633483

3 12.214 10.884 0.818 99.37 94.7293557

4 1.75 1.75 0.5 5.728 99.69618345

Genetic Optimization Model Dead Results

Sample Model Population

Initial Value 
% Weight 

Reduction 
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Figure 35: Parametric Surface for Weight vs. Geometry of .5 Diameter Members - Node Shown in 

Red, at Base Spacing of 1.75 and Apex Height of 1.75m is the Only Point Satisfying Buckling Critical 

Stress 

While the geometry found for the pyramid is the lightest form that can withstand the 

DEAD load applied to it, it may not be the target of the design team in the larger scale.  If 

there is a minimum volume that must be contained within the structure, or a limited range 

in height for the apex due to external criteria, then the design space would need to be 

reevaluated and explored.  The benefit of having both the parametric design space and 

global optimum is that it allows the design team to quickly augment the analysis because 

the correlations between variables are clearly presented.  Rather than begin anew, the 

architect and engineer can simply translate across the design space, redefining the scope 

and boundaries of the structure at will.  This ability is an answer to the limitations of 

previous software developments.  Rather than fixate only on a few isolated variables and 

implement parametric analysis or optimization, but not both, the design team may 

adequately explore the solution space for inspiration and solution.  

σ/σcr 
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Chapter 5 

Conclusions 

5.1 Progress of Structural Engineering Practice 

The practice of structural engineering is changing.  In an effort to limit costs while 

maintaining productivity and quality of results, firms have begun to integrate building 

information modeling, or BIM, technologies into their design process.  The use of BIM in 

design has been shown through research to be very effective when specific focus is placed on 

increasing the breadth and depth of schematic design and design development.  There is, 

however, limited software currently available that allows a design team the opportunity to 

adequately explore the design space so early in the project timeline as a collective unit.  A 

few firms, as mentioned in Chapter 2, have developed in-house solutions to this problem.  

These solutions are limited, however, as they are either specific to some constant geometry, 

bound by a simple structural analysis tool, or limited to only parametric exploration of a 

problem.  The solutions are also problem specific and thus cannot easily be adapted to a 

different design problem. 

Thus, this thesis developed a software framework that will allow architects and engineers 

the opportunity to develop a design space and explore it together.  The framework 

developed consists of three major components: a Grasshopper interface for model creation 

and variable designation, a parametric analysis C# code, and a genetic optimization C# 

code.  In order to maximize analytical robustness while minimizing computational effort of 

the framework, the codes created use SAP2000 for analysis. 

The Grasshopper interface allows the architect and engineer to develop a structure 

simultaneously, streamlining the conceptual design process.  The interface also requires the 

design team discuss the important metrics in the scope of the project, as the parametric 
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analysis and optimization tools require variable definitions for augmentation and 

exploration.  The metrics defined, be they limitations in weight, deflection, volume, or some 

other performance criteria, give the architect and engineer common goals to work towards. 

The combination of the parametric analysis and genetic optimization give the design team 

significant breadth and depth to the structural concept.  The three-dimensional output of 

the analysis results allows for an understanding of the relationship between multiple 

design variables crucial to the structure.  For the engineer, trends can be determined that 

give insight to performance which may drive design initiatives.  For the architect, an 

understanding of the tradeoff between architectural values, such as volume or floor area, 

and engineering values, such as stress or deflection, may be garnered.  With the design 

space mapped, a unified solution, or at least direction, can be obtained by both parties early 

in the project timeline. 

The genetic optimization routine permits the design team to delve further into the solution 

of a specific set of variables.  Using the parametric analysis as a map of the design space, 

the architect and engineer are able to make an educated optimization of the structural 

model.  Rather than attempt to optimize every variable of a structure, the architect and 

engineer can use the results of the parametric analysis to target specific aspects of the 

design to run through the genetic algorithm.  This simplifies the optimization problem and 

may consequently save time.   As issues arise and the importance of different variables 

change during the development of the project, the design team may simply return to the 

parametric analysis and determine the consequences associated with said changes.  The 

architect and engineer may then redefine the design vector of the genetic algorithm and 

determine the new optimal design. 

The flexibility and depth of this software framework pushes the design practice in a new, 

versatile direction.  The framework eliminates the limitations of previous work through the 

adaptation of multiple software platforms and the streamlining of a user interface.  Issues 

such as limits of variables for consideration, simplicity of analysis tools, and specificity of 

design objects are mitigated.  In their wake, a single tool is available for development of a 

design.  Time and energy are saved as a consequence of the framework, and thus 

implementation during the schematic design and design development stages of a project is 

feasible. 
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5.2 Future Development 

This thesis represents the first step towards a more unified design practice.  With more 

time and further research, this software framework could become broader in its 

capabilities.  Each component of the framework has the potential to become something 

more. 

The Grasshopper user interface should be developed to discretize not only line elements, 

but surface, shell, and solid objects as well.  The tools to create surfaces are already 

embedded within the Grasshopper design space, so a scheme similar to that discussed in 

Chapter 3 for the mapping of nodes may be created to extract the important mesh 

information for analysis in SAP2000.  For parametric analysis and genetic optimization, the 

mesh size could be augmented along with the geometry. 

In response to the development of the Grasshopper component of the software framework, 

the C# programs for parametric study and optimization should be broadened.  A library of 

definitions should be produced so that the program can easily recognize the variety of data 

being imported from Grasshopper.  In detail, this would include solutions for working with 

frame, shell, and solid objects with a full array of restraints and constraints.  This would 

allow for ease of use of the C# program without manually changing pieces of the code to 

complete a task, ultimately saving time for the design team.  For this to be done, additional 

time will be needed to compile the SAP2000 API into blocks that are called upon only when 

specific criteria are defined by the user in the Grasshopper interface. 

The method for viewing the results of the parametric and optimization routines should be 

developed into a more fluid exploration space.  As it currently stands, data is exported to 

excel spreadsheets from C#.  This data is then organized with some user effort into three-

dimensional plots.  While sufficient to study the design space, an independent graphical 

interface for viewing the results would be ideal.  Such an interface could store all data from 

the output and require simple instructions to display results, rather than have the users 

move the arrays of information across spreadsheets.  The goal of such an interface would be 

to save time. 
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Grasshopper User Interface with Definitions 
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Parametric Analysis Code 
 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using Sap2000; 

using System.IO; 

using Microsoft.Office.Interop.Excel; 

using System.Runtime.InteropServices; 

 

 

 

namespace ConsoleApplication2 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            //Dimension Variables for Script 

            Sap2000.SapObject SapObject; 

 

            Sap2000.cSapModel SapModel; 

            int ret; 

            int i; 

            double[] ModValue; 

            double[] PointLoadValue; 

            bool[] Restraint; 

            string[] Point_Name; 

            string[] FrameName; 

            string[] PointName; 

            int NumberResults; 

            string[] Obj; 

            string[] Elm; 

            string[] LoadCase; 

            string[] StepType; 

            double[] StepNum; 

            double[] U1; 

            double[] U2; 

            double[] U3; 

            double[] R1; 

            double[] R2; 

            double[] R3; 

            double[,] SapResult; 

            string temp_string1; 

            string temp_string2; 

            bool temp_bool; 

 

            //Import values from GH 

            string file_name = "J:\\SAPInput.txt"; 

            string file_node_n = "J:\\SAPnodes.txt"; 

            string file_node_1 = "J:\\SAPnode1.txt"; 

            string file_node_2 = "J:\\SAPnode2.txt"; 

            string file_node_r = "J:\\SAPnodeR.txt"; 

            string file_node_l = "J:\\SAPnodeL.txt"; 

            string file_node_g = "J:\\SAPnodeFG.txt"; 

            string file_node_w = "J:\\SAPnodeFL.txt"; 

            string file_node_c = "J:\\SAPnodeFC.txt"; 

            string file_node_x = "J:\\SAPstep.txt"; 

            string[] MatProp; 

            string[] Nodes; 

            string[] Node1; 
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            string[] Node2; 

            string[] NodeR; 

            string[] NodeL; 

            string[] NodeG; 

            string[] NodeW; 

            string[] NodeC; 

            string[] NodeX; 

            string line; 

            string line0; 

            string line1; 

            string line2; 

            string line3; 

            string line4; 

            string line5; 

            string line6; 

            string line7; 

            string line8; 

 

 

            //Material Values 

            System.IO.StreamReader sr = new System.IO.StreamReader(file_name); 

            line = sr.ReadLine(); 

            MatProp = line.Split(' '); 

 

            //Node Locations 

            System.IO.StreamReader sr0 = new System.IO.StreamReader(file_node_n); 

            line0 = sr0.ReadLine(); 

            Nodes = line0.Split(' '); 

 

            //Member Geometry 

            System.IO.StreamReader sr1 = new System.IO.StreamReader(file_node_1); 

            line1 = sr1.ReadLine(); 

            Node1 = line1.Split(' '); 

 

            System.IO.StreamReader sr2 = new System.IO.StreamReader(file_node_2); 

            line2 = sr2.ReadLine(); 

            Node2 = line2.Split(' '); 

 

            //Restrained Nodes 

            System.IO.StreamReader sr3 = new System.IO.StreamReader(file_node_r); 

            line3 = sr3.ReadLine(); 

            NodeR = line3.Split(' '); 

 

            //Loaded Nodes 

            System.IO.StreamReader sr4 = new System.IO.StreamReader(file_node_l); 

            line4 = sr4.ReadLine(); 

            NodeL = line4.Split(' '); 

 

            //Nodal Loads 

            System.IO.StreamReader sr5 = new System.IO.StreamReader(file_node_g); 

            line5 = sr5.ReadLine(); 

            NodeG = line5.Split(' '); 

 

            System.IO.StreamReader sr6 = new System.IO.StreamReader(file_node_w); 

            line6 = sr6.ReadLine(); 

            NodeW = line6.Split(' '); 

 

            System.IO.StreamReader sr7 = new System.IO.StreamReader(file_node_c); 

            line7 = sr7.ReadLine(); 

            NodeC = line7.Split(' '); 

 

            //Parametric Step Definitions 

            System.IO.StreamReader sr8 = new System.IO.StreamReader(file_node_x); 
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            line8 = sr8.ReadLine(); 

            NodeX = line8.Split(' '); 

 

            //Create Excel Worksheet for analysis input 

            Microsoft.Office.Interop.Excel.Application xlApp = new 

Microsoft.Office.Interop.Excel.Application(); 

            Workbook wb = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet); 

            Workbook wb2 = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet); 

            Worksheet ws = wb.Worksheets[1]; 

            Worksheet ws2 = wb2.Worksheets[1]; 

 

            //Create SAP object 

            SapObject = new Sap2000.SapObject(); 

 

            //Start Sap2000 application 

            temp_bool = true; 

            SapObject.ApplicationStart(Sap2000.eUnits.kip_in_F, temp_bool, ""); 

 

            //Create SapModel Object 

            SapModel = SapObject.SapModel; 

 

            //Initialize Model 

            ret = SapModel.InitializeNewModel((Sap2000.eUnits.kip_in_F)); 

 

            //New blank model 

            ret = SapModel.File.NewBlank(); 

 

            //Define Material Property 

            ret = SapModel.PropMaterial.SetMaterial(MatProp[0], 

Sap2000.eMatType.MATERIAL_STEEL, -1, "", ""); 

 

            //Assign mehcanical properities to material defined 

            ret = SapModel.PropMaterial.SetMPIsotropic(MatProp[0], 

Convert.ToDouble(MatProp[1]), Convert.ToDouble(MatProp[2]), 

Convert.ToDouble(MatProp[3]), 0); 

 

            //Define Section Geometry 

            ret = SapModel.PropFrame.SetCircle(MatProp[5], MatProp[0], 

Convert.ToDouble(MatProp[4]), -1, "", ""); 

 

            //Define Section property modifiers 

            ModValue = new double[8]; 

            for (i = 0; i <= 7; i++) 

            { 

                ModValue[i] = 1; 

            } 

 

            System.Array temp_SystemArray = ModValue; 

            ret = SapModel.PropFrame.SetModifiers("R1", ref temp_SystemArray); 

 

            //Switch Units 

            ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_ft_F); 

 

            //Add Joints 

            Point_Name = new string[Convert.ToInt32(MatProp[9])]; 

            int numnodes = Convert.ToInt32(MatProp[9]); 

            double[,] pointmatrix = new double[numnodes * Convert.ToInt32(NodeX[0]), 

3]; 

            var horiz2 = 0; 

            for (var z = 0; z <= (Convert.ToDouble(MatProp[9]) * 

Convert.ToDouble(NodeX[0])) - 1; z++) 

            { 

                pointmatrix[z, 0] = Convert.ToDouble(Nodes[(z)]); 
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                pointmatrix[z, 1] = Convert.ToDouble(Nodes[z + 

(Convert.ToInt32(MatProp[9]) * Convert.ToInt32(NodeX[0]))]); 

                pointmatrix[z, 2] = Convert.ToDouble(Nodes[z + (2 * 

Convert.ToInt32(NodeX[0]) * (Convert.ToInt32(MatProp[9])))]); 

            } 

 

            string fileContent = File.ReadAllText(file_node_r); 

            string[] integerStrings = fileContent.Split(new char[] { ' ', '\t', '\r', 

'\n' }, StringSplitOptions.RemoveEmptyEntries); 

            double[] matrix = new double[integerStrings.Length]; 

            for (int n = 0; n < integerStrings.Length; n++) 

            { 

                matrix[n] = double.Parse(integerStrings[n]); 

            } 

            //Create Iteration Vectors 

            for (var iteration = 0; iteration <= Convert.ToInt32(NodeX[0]) - 1; 

iteration++) 

            { 

                 

                foreach (string t in NodeR) 

                { 

 

                    double Point1; 

                    Point1 = double.Parse(t); 

                    int horiz = Convert.ToInt32(Point1); 

                    ret = SapModel.PointObj.AddCartesian(pointmatrix[iteration + 

(Convert.ToInt32(NodeX[0]) * (horiz)), 0], pointmatrix[iteration + 

(Convert.ToInt32(NodeX[0]) * (horiz)), 1], pointmatrix[iteration + 

(Convert.ToInt32(NodeX[0]) * (horiz)), 2], ref Point_Name[horiz], 

Convert.ToString(horiz)); 

                } 

                //FOR MULTIPLE PARAMETERS ONLY double Point2; 

                //foreach (string u in NodeL) 

                //{ 

                //    Point2 = double.Parse(u); 

                //    int horiz2 = Convert.ToInt32(Point2); 

                    for (var iter2 = 0; iter2 <= 7; iter2++) 

                    { 

 

                        ret = SapModel.PointObj.AddCartesian(pointmatrix[iter2 + 

(Convert.ToInt32(NodeX[0]) * (horiz2)), 0], pointmatrix[iter2 + 

(Convert.ToInt32(NodeX[0]) * (horiz2)), 1], pointmatrix[iter2 + 

(Convert.ToInt32(NodeX[0]) * (horiz2)), 2], ref Point_Name[horiz2], 

Convert.ToString(horiz2)); 

 

 

                        //Add Frame Objects by Points 

                        FrameName = new string[Convert.ToInt32(MatProp[6])]; 

                        temp_string1 = FrameName[0]; 

                        temp_string2 = FrameName[0]; 

                        for (i = 0; i <= (Convert.ToDouble(MatProp[6]) - 1); i++) 

                        { 

                            ret = 

SapModel.FrameObj.AddByPoint((Point_Name[Convert.ToInt32(Node1[(i)])]), 

Point_Name[Convert.ToInt32(Node2[i])], ref FrameName[i], MatProp[5], 

Convert.ToString(i)); 

                        } 

 

                        //Add Frame Releases 

                        bool[] ii = new bool[6]; 

                        bool[] jj = new bool[6]; 

                        double[] StartValue = new double[6]; 

                        double[] Endvalue = new double[6]; 
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                        if (MatProp[10] == "PIN") 

                        { 

                            for (i = 0; i <= 3; i++) 

                            { 

                                ii[i] = false; 

                                jj[i] = false; 

                            } 

                            for (i = 4; i <= 5; i++) 

                            { 

                                ii[i] = true; 

                                jj[i] = true; 

                            } 

                        } 

                        else 

                        //if (MatProp[11] == "FIXED") 

                        { 

                            for (i = 0; i <= 5; i++) 

                            { 

                                ii[i] = false; 

                                jj[i] = false; 

                            } 

                        } 

                        for (i = 0; i <= 5; i++) 

                        { 

                            StartValue[i] = 0; 

                            Endvalue[i] = 0; 

                        } 

                        for (i = 0; i <= (Convert.ToDouble(MatProp[6]) - 1); i++) 

                        { 

                            ret = SapModel.FrameObj.SetReleases(Convert.ToString(i), 

ii, jj, StartValue, Endvalue, eItemType.Object); 

                        } 

                        //Add Frame/Truss Objects by COORDINATES 

                        //for (i = 0; i <= (Convert.ToDouble(MatProp[6])-1); i++) 

                        //{ 

                        //    ret = 

SapModel.FrameObj.AddByCoord(Convert.ToDouble(Node1[(i)]), 

Convert.ToDouble(Node1[i+Convert.ToInt32(MatProp[6])]), 

Convert.ToDouble(Node1[i+(2*(Convert.ToInt32(MatProp[6])))]), 

Convert.ToDouble(Node2[i]), Convert.ToDouble(Node2[i+(Convert.ToInt32(MatProp[6]))]), 

Convert.ToDouble(Node2[i+(2*(Convert.ToInt32(MatProp[6])))]), ref temp_string1, 

MatProp[5], Convert.ToString(i), "Global"); 

                        //    FrameName[i] = temp_string1; 

                        //} 

                        //ret = SapModel.FrameObj.AddByCoord(0, 0, 10, 8, 0, 16, ref 

temp_string1, "R1", "2","Global"); 

                        //     FrameName[1] = temp_string1; 

                        //ret = SapModel.FrameObj.AddByCoord(-1, 0, 10, 0, 0, 10, ref 

temp_string1, "R1", "3","Global"); 

                        //     FrameName[2] = temp_string1; 

 

                        //Assign Point Object Restraint at Base 

                        PointName = new string[2]; 

                        Restraint = new bool[6]; 

                        double Point; 

                        for (i = 0; i <= 3; i++) 

                        { 

                            Restraint[i] = true; 

                        } 

                        for (i = 3; i <= 5; i++) 

                        { 

                            Restraint[i] = false; 

                        } 
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                        foreach (string s in NodeR) 

                        { 

                            Point = double.Parse(s); 

                            int point = Convert.ToInt32(Point); 

                            System.Array temp_SystemArray1 = Restraint; 

                            ret = SapModel.PointObj.SetRestraint(Point_Name[point], 

ref temp_SystemArray1, eItemType.Object); 

                        } 

 

 

 

                        //Refresh View and update or initialize zoom 

                        temp_bool = false; 

                        ret = SapModel.View.RefreshView(0, temp_bool); 

 

                        //Load Patterns 

                        temp_bool = true; 

                        ret = SapModel.LoadPatterns.Add(NodeG[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 1, temp_bool); 

                        ret = SapModel.LoadPatterns.Add(NodeW[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 0, temp_bool); 

                        ret = SapModel.LoadPatterns.Add(NodeC[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 0, temp_bool); 

 

                        //Assign Nodal Loads 

                        PointLoadValue = new double[6]; 

 

                        //Gravity Loads 

                        for (i = 1; i <= Convert.ToDouble(NodeG.Length) - 1; i++) 

                        { 

                            PointLoadValue[i - 1] = Double.Parse(NodeG[i]); 

                        } 

                        foreach (string s in NodeL) 

                        { 

                            Point = double.Parse(s); 

                            int point = Convert.ToInt32(Point); 

                            System.Array temp_SystemArraya = PointLoadValue; 

                            ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeG[0], ref temp_SystemArraya, false, "Global", 0); 

                        } 

 

                        //Lateral Loads 

                        for (i = 1; i <= Convert.ToDouble(NodeW.Length) - 1; i++) 

                        { 

                            PointLoadValue[i - 1] = Double.Parse(NodeW[i]); 

                        } 

                        foreach (string s in NodeL) 

                        { 

                            Point = double.Parse(s); 

                            int point = Convert.ToInt32(Point); 

                            System.Array temp_SystemArraya = PointLoadValue; 

                            ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeW[0], ref temp_SystemArraya, false, "Global", 0); 

                        } 

                        //Combination (Linear ADD) 

                        for (i = 1; i <= Convert.ToDouble(NodeC.Length) - 1; i++) 

                        { 

                            PointLoadValue[i - 1] = Double.Parse(NodeC[i]); 

                        } 

                        foreach (string s in NodeL) 

                        { 

                            Point = double.Parse(s); 

                            int point = Convert.ToInt32(Point); 
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                            System.Array temp_SystemArraya = PointLoadValue; 

                            ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeC[0], ref temp_SystemArraya, false, "Global", 0); 

                        } 

 

                        //Example of Point and Distributed Loading 

                        //ret = SapModel.FrameObj.GetPoints(FrameName[2], ref 

temp_string1, ref temp_string2); 

                        //PointName[0] = temp_string1; 

                        //PointName[1] = temp_string2; 

                        //PointLoadValue = new double[6]; 

                        //PointLoadValue[2] = -10; 

                        //System.Array temp_SystemArraya = PointLoadValue; 

                        //ret = SapModel.PointObj.SetLoadForce(PointName[0], "2", ref 

temp_SystemArraya,false,"Global",0); 

                        //ret = SapModel.FrameObj.SetLoadDistributed(FrameName[2], 

"2", 1, 10, 0, 1, 1.8, 1.8,"Global",System.Convert.ToBoolean(-

1),System.Convert.ToBoolean(-1),0); 

 

                        //Example of Point Load on Frame 

                        //ret = SapModel.FrameObj.SetLoadPoint(FrameName[1], "7", 1, 

2, 0.5, -15, "Local",System.Convert.ToBoolean(-1),System.Convert.ToBoolean(-1),0); 

 

                        //Switch Units 

                        ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_in_F); 

 

                        //SAVE MODEL 

                        ret = SapModel.File.Save(@"C:\API\API_1-003.sdb"); 

 

                        //Create ANALYSIS model (run) 

                        ret = SapModel.Analyze.RunAnalysis(); 

 

                        //Initialize Sap2000 results 

                        SapResult = new double[Convert.ToInt32(MatProp[9]), 9]; 

                        ret = SapModel.FrameObj.GetPoints(FrameName[1], ref 

temp_string1, ref temp_string2); 

                        PointName[0] = temp_string1; 

                        PointName[1] = temp_string2; 

 

                        //Get Sap2000 results for ALL Load patterns 

                        NumberResults = 0; 

                        Obj = new string[1]; 

                        double[] ObjSta = new double[1]; 

                        Elm = new string[1]; 

                        double[] ElmSta = new double[1]; 

                        LoadCase = new string[1]; 

                        StepType = new string[1]; 

                        StepNum = new double[1]; 

                        U1 = new double[1]; 

                        U2 = new double[1]; 

                        U3 = new double[1]; 

                        R1 = new double[1]; 

                        R2 = new double[1]; 

                        R3 = new double[1]; 

                        double[] P = new double[1]; 

                        double[] V2 = new double[1]; 

                        double[] V3 = new double[1]; 

                        double[] T = new double[1]; 

                        double[] M2 = new double[1]; 

                        double[] M3 = new double[1]; 

 

                        //ObjSta[0] = 0; 

                        //ElmSta[0] = 0; 
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                        //Axial Loads for all Load Patterns 

 

                        //DEAD Load 

                        double[] Axial = new double[1]; 

                        double[,] AxialResults = new 

double[Convert.ToInt32(MatProp[6]), 3]; 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeG[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                        { 

                            System.Array temp_SystemArraya = Obj; 

                            System.Array temp_SystemArrayb = Elm; 

                            System.Array temp_SystemArrayc = LoadCase; 

                            System.Array temp_SystemArrayd = StepType; 

                            System.Array temp_SystemArraye = StepNum; 

                            System.Array temp_SystemArrayf = P; 

                            System.Array temp_SystemArrayg = V2; 

                            System.Array temp_SystemArrayh = V3; 

                            System.Array temp_SystemArrayi = T; 

                            System.Array temp_SystemArrayj = M2; 

                            System.Array temp_SystemArrayk = M3; 

                            System.Array temp_SystemArrayl = ObjSta; 

                            System.Array temp_SystemArraym = ElmSta; 

                            ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArraya, ref 

temp_SystemArrayl, ref temp_SystemArrayb, ref temp_SystemArraym, ref 

temp_SystemArrayc, ref temp_SystemArrayd, ref temp_SystemArraye, ref 

temp_SystemArrayf, ref temp_SystemArrayg, ref temp_SystemArrayh, ref 

temp_SystemArrayi, ref temp_SystemArrayj, ref temp_SystemArrayk); 

                            Axial[0] = 

Convert.ToDouble(temp_SystemArrayf.GetValue(0)); 

                            AxialResults[i, 0] = Axial[0]; 

                        } 

                        //WIND Load 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeW[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                        { 

                            System.Array temp_SystemArrayaa = Obj; 

                            System.Array temp_SystemArraybb = Elm; 

                            System.Array temp_SystemArraycc = LoadCase; 

                            System.Array temp_SystemArraydd = StepType; 

                            System.Array temp_SystemArrayee = StepNum; 

                            System.Array temp_SystemArrayff = P; 

                            System.Array temp_SystemArraygg = V2; 

                            System.Array temp_SystemArrayhh = V3; 

                            System.Array temp_SystemArrayii = T; 

                            System.Array temp_SystemArrayjj = M2; 

                            System.Array temp_SystemArraykk = M3; 

                            System.Array temp_SystemArrayll = ObjSta; 

                            System.Array temp_SystemArraymm = ElmSta; 

                            ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArrayaa, ref 

temp_SystemArrayll, ref temp_SystemArraybb, ref temp_SystemArraymm, ref 

temp_SystemArraycc, ref temp_SystemArraydd, ref temp_SystemArrayee, ref 
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temp_SystemArrayff, ref temp_SystemArraygg, ref temp_SystemArrayhh, ref 

temp_SystemArrayii, ref temp_SystemArrayjj, ref temp_SystemArraykk); 

                            Axial[0] = 

Convert.ToDouble(temp_SystemArrayff.GetValue(0)); 

                            AxialResults[i, 1] = Axial[0]; 

                        } 

                        //COMB Load 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeC[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                        { 

                            System.Array temp_SystemArrayaaa = Obj; 

                            System.Array temp_SystemArraybbb = Elm; 

                            System.Array temp_SystemArrayccc = LoadCase; 

                            System.Array temp_SystemArrayddd = StepType; 

                            System.Array temp_SystemArrayeee = StepNum; 

                            System.Array temp_SystemArrayfff = P; 

                            System.Array temp_SystemArrayggg = V2; 

                            System.Array temp_SystemArrayhhh = V3; 

                            System.Array temp_SystemArrayiii = T; 

                            System.Array temp_SystemArrayjjj = M2; 

                            System.Array temp_SystemArraykkk = M3; 

                            System.Array temp_SystemArraylll = ObjSta; 

                            System.Array temp_SystemArraymmm = ElmSta; 

                            ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArrayaaa, ref 

temp_SystemArraylll, ref temp_SystemArraybbb, ref temp_SystemArraymmm, ref 

temp_SystemArrayccc, ref temp_SystemArrayddd, ref temp_SystemArrayeee, ref 

temp_SystemArrayfff, ref temp_SystemArrayggg, ref temp_SystemArrayhhh, ref 

temp_SystemArrayiii, ref temp_SystemArrayjjj, ref temp_SystemArraykkk); 

                            Axial[0] = 

Convert.ToDouble(temp_SystemArrayfff.GetValue(0)); 

                            AxialResults[i, 2] = Axial[0]; 

                        } 

                        //Nodal Disp. for all Load Patterns 

 

                        //Dead Load 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeG[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                        { 

                            System.Array temp_SystemArray2 = Obj; 

                            System.Array temp_SystemArray3 = Elm; 

                            System.Array temp_SystemArray4 = LoadCase; 

                            System.Array temp_SystemArray5 = StepType; 

                            System.Array temp_SystemArray6 = StepNum; 

                            System.Array temp_SystemArray7 = U1; 

                            System.Array temp_SystemArray8 = U2; 

                            System.Array temp_SystemArray9 = U3; 

                            System.Array temp_SystemArray10 = R1; 

                            System.Array temp_SystemArray11 = R2; 

                            System.Array temp_SystemArray12 = R3; 

                            ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 
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temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                            U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                            U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                            U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                            SapResult[i, 0] = U1[0]; 

                            SapResult[i, 1] = U2[0]; 

                            SapResult[i, 2] = U3[0]; 

                        } 

 

                        //Wind Load 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeW[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                        { 

                            System.Array temp_SystemArray2 = Obj; 

                            System.Array temp_SystemArray3 = Elm; 

                            System.Array temp_SystemArray4 = LoadCase; 

                            System.Array temp_SystemArray5 = StepType; 

                            System.Array temp_SystemArray6 = StepNum; 

                            System.Array temp_SystemArray7 = U1; 

                            System.Array temp_SystemArray8 = U2; 

                            System.Array temp_SystemArray9 = U3; 

                            System.Array temp_SystemArray10 = R1; 

                            System.Array temp_SystemArray11 = R2; 

                            System.Array temp_SystemArray12 = R3; 

                            ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 

temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                            U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                            U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                            U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                            SapResult[i, 3] = U1[0]; 

                            SapResult[i, 4] = U2[0]; 

                            SapResult[i, 5] = U3[0]; 

                        } 

 

                        //COMB Load 

                        ret = 

SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                        ret = 

SapModel.Results.Setup.SetCaseSelectedForOutput(NodeC[0], System.Convert.ToBoolean(-

1)); 

                        for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                        { 

                            System.Array temp_SystemArray2 = Obj; 

                            System.Array temp_SystemArray3 = Elm; 

                            System.Array temp_SystemArray4 = LoadCase; 

                            System.Array temp_SystemArray5 = StepType; 

                            System.Array temp_SystemArray6 = StepNum; 

                            System.Array temp_SystemArray7 = U1; 

                            System.Array temp_SystemArray8 = U2; 

                            System.Array temp_SystemArray9 = U3; 

                            System.Array temp_SystemArray10 = R1; 

                            System.Array temp_SystemArray11 = R2; 

                            System.Array temp_SystemArray12 = R3; 
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                            ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 

temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                            U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                            U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                            U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                            SapResult[i, 6] = U1[0]; 

                            SapResult[i, 7] = U2[0]; 

                            SapResult[i, 8] = U3[0]; 

                        } 

 

                        //Member Lengths 

                        //int[] length = new int[Convert.ToInt32(MatProp[6])]; 

                        // for (var l = 0; l <= Convert.ToDouble(MatProp[6]) - 1; l++) 

                        // { 

                        //     length[l] = 

Math.Sqrt(Math.Sqrt(Math.Sqrt(Math.Pow(Convert.ToDouble(pointmatrix[iteration + (8 * 

(horiz)), 0]),2) + Math.Pow(Convert.ToDouble(pointmatrix[iteration + (8 * (horiz)), 

1]),2))) + Math.Pow(Convert.ToDouble(pointmatrix[iter2 + (8 * (horiz2)), 2]),2)) 

 

                        //Input Results to Excel Files Created Above 

                        Range c1 = (Range)ws.Cells[1 + (Convert.ToInt32(MatProp[6]) * 

iter2) + (Convert.ToInt32(MatProp[6]) * Convert.ToInt32(NodeX[0]) * iteration), 1]; 

                        Range c2 = (Range)ws.Cells[1 + (Convert.ToInt32(MatProp[6]) * 

iter2) + (Convert.ToInt32(MatProp[6]) * Convert.ToInt32(NodeX[0]) * iteration) + 

(Convert.ToInt32(MatProp[6]) - 1), 3]; 

                        Range range = ws.get_Range(c1, c2); 

                        range.Value = AxialResults; 

                        Range c3 = (Range)ws2.Cells[1 + (Convert.ToInt32(MatProp[9]) * 

iter2) + (Convert.ToInt32(MatProp[9]) * Convert.ToInt32(NodeX[0]) * iteration), 1]; 

                        Range c4 = (Range)ws2.Cells[1 + (Convert.ToInt32(MatProp[9]) * 

iter2) + (Convert.ToInt32(MatProp[9]) * Convert.ToInt32(NodeX[0]) * iteration) + 

(Convert.ToInt32(MatProp[9]) - 1), 9]; 

                        Range range2 = ws2.get_Range(c3, c4); 

                        range2.Value = SapResult; 

 

                        //Unlock Model 

                        ret = SapModel.SetModelIsLocked(false); 

 

 

                        //Delete Existing Frame Objects 

                        for (var delete = 0; delete <= (Convert.ToDouble(MatProp[6]) - 

1); delete++) 

                        { 

                            ret = SapModel.FrameObj.Delete(Convert.ToString(delete), 

eItemType.Object); 

                        } 

 

                        //Rename Point Objects in Inner Loop 

                        for (var point = horiz2; point == horiz2; point++) 

                        { 

                            ret = 

SapModel.PointObj.ChangeName(Convert.ToString(point), Convert.ToString(point + 100)); 

                        } 

 

 

                        //Switch Units 

                        ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_ft_F); 

 

                        //var applicationClass = new Application(); 
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                        //var workbook = 

applicationClass.Workbooks.Open("J:\\Forces.xls", Type.Missing, Type.Missing, 

Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, 

Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing); 

                        //Worksheet worksheet = workbook.Worksheets.get_Item(1); 

                        //Range c1 = (Range)ws.Cells[1, 1]; 

                        //Range c2 = (Range)ws.Cells[Convert.ToInt32(MatProp[6]), 3]; 

 

 

                    } 

                    //Rename Point Objects in Outer Loop ONLY IF REQUIRED 

                    //    for (var point = 1; point <= 4; point++) 

                    //    { 

                    //        ret = 

SapModel.PointObj.ChangeName(Convert.ToString(point), Convert.ToString(point + 100)); 

                    //    } 

                    } 

                    //Save Excel Files 

                    wb.SaveCopyAs("J:\\Forces.xls"); 

                    wb2.SaveCopyAs("J:\\Disp.xls"); 

             

                    //Close Sap2000 

                    SapObject.ApplicationExit(false); 

                    SapModel = null; 

                    SapObject = null; 

                } 

            } 

        } 

    //} 

//} 

 

 

 

 

 

 

NLOpt Optimization Code 
 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using NLOptDotNet; 

using Sap2000; 

using Microsoft.Office.Interop.Excel; 

 

namespace NLOPT_TEST 

{ 

    class Program 

    { 

 

        // verbose console output trigger 

        static bool VERBOSE_OUTPUT = false; 

 

        [STAThread] 

        static void Main(string[] args) 

        { 

            string file_node_x = "J:\\SAPstep.txt"; 

            string line8; 

            string[] NodeX; 

            //Parametric Step Definitions 
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            System.IO.StreamReader sr8 = new System.IO.StreamReader(file_node_x); 

            line8 = sr8.ReadLine(); 

            NodeX = line8.Split(' '); 

            //int var; 

            //var = Convert.ToInt32(NodeX[4]); 

            //int var2; 

            //var2 = Convert.ToInt32(NodeX[5]); 

            //int var3; 

            //var3 = Convert.ToInt32(NodeX[6]); 

            //int var4; 

            //var4 = Convert.ToInt32(NodeX[8]); 

            //int var5; 

            //var5 = Convert.ToInt32(NodeX[9]); 

            //int var6; 

            //var6 = Convert.ToInt32(NodeX[10]); 

            //int var7; 

            //var7 = Convert.ToInt32(NodeX[11]); 

            //int var8; 

            //var8 = Convert.ToInt32(NodeX[12]); 

            //int var9; 

            //var9 = Convert.ToInt32(NodeX[13]); 

 

            // The optimization algorithm 

            Algorithm main_alg = Algorithm.AUGLAG; 

            // The local/subsidiary optimization algorithm, which may or may not be 

used (see NLOpt wiki) 

            Algorithm secondary_alg = Algorithm.GN_CRS2_LM; 

 

            // Create optimization object, setting algorithm type and number of 

variables 

            NLOptWrapper wrapper = new NLOptWrapper(main_alg, 3); 

 

            // Turn verbose (console) output on or off 

            wrapper.VERBOSE_OUTPUT = VERBOSE_OUTPUT; 

 

            // Set some stopping criteria 

            wrapper.MaxTime = 900; //in seconds 

            wrapper.XTolRelative = 1e-4; 

            wrapper.FTolAbsolute = 1e-2; 

            wrapper.MaxEval = 5000; 

            wrapper.StopVal = 0.55; 

 

            // Create design vector and set initial guess  

            double[] x = new double[3] {4, 4, 6 }; 

 

            // Apply lower bounds on the design vector 

            wrapper.SetUpperBounds(new double[3] { 14, 14, 12 }); 

            wrapper.SetLowerBounds(new double[3] { 1.75, 1.75, .5 }); 

 

            // Create local optimization object, if appropriate (all AUGLAG 

formulations and MLSL require this) 

            // ...Note that this has to be done before the main wrapper's objectives 

or constraints are set 

            // to prevent crashing. Don't know exactly why yet. Part of the joys of 

mixing unmanaged and managed code!                

            //Creation and Implementation of SAP 

            //Variables 

             

            if (main_alg.ToString().Contains("AUGLAG") || 

main_alg.ToString().Contains("MLSL")) 

            { 

                NLOptWrapper local_wrapper = new NLOptWrapper(secondary_alg, 

wrapper.Dimension); 
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                /* add stopping criteria */ 

                local_wrapper.XTolRelative = 1e-4; local_wrapper.FTolRelative = 1e-2; 

 

                // Haven't figured out whether the local or main algorithm stopping 

criteria dominate, and when.  

                // Need to inspect nlopt source code to be sure of specifics, and 

differences between AUGLAG and MLSL 

                local_wrapper.VERBOSE_OUTPUT = VERBOSE_OUTPUT; 

                wrapper.SetLocalOptimizer(local_wrapper); 

            } 

 

            // Delegate the objective function. Data can be passed in as type 

System.Object and cast in the objective function 

            wrapper.SetMinObjective(new FunctionDelegate(Objective), null); 

 

            // Add inequality constraints. Data can be passed in as type 

System.Object. Feasibility tolerance passed as an argument 

            my_constraint_data[] data = new my_constraint_data[4] {new 

my_constraint_data(0, 0),new my_constraint_data(1, 0),new my_constraint_data(2, 0),new 

my_constraint_data(3, 0)}; 

            wrapper.AddInequalityConstraint(new FunctionDelegate(Constraint), data[0], 

1e-8); 

            wrapper.AddInequalityConstraint(new FunctionDelegate(Constraint), data[1], 

1e-8); 

            wrapper.AddInequalityConstraint(new FunctionDelegate(Constraint), data[2], 

1e-8); 

            wrapper.AddInequalityConstraint(new FunctionDelegate(Constraint), data[3], 

1e-8); 

            //wrapper.AddInequalityConstraint(new FunctionDelegate(Constraint), 

data[4], 1e-8); 

 

            // create variable to store min objective 

            double minf = 0; 

 

            //Run the optimization, passing minf by reference. NLOptDotNet.Result 

returned 

            Result r = wrapper.Optimize(x, ref minf); 

 

            Console.WriteLine("\nFound minimum after " + neval + " objective function 

evaluations"); 

            Console.WriteLine("Found minimum at f(" + x[0] + ", " + x[1] + ", " + x[2] 

+") = " + minf); 

            Console.WriteLine("\nNLOpt Result: " + r.ToString()); 

        } 

 

        // Function signature for objective and constraint function enforced by the 

delegate 'NLOptDotNet.FunctionDelegate' 

        static int neval = 0; // counts how many times the objective fnction is called   

        int[] rho = new int[1] { 490 }; 

        static double Objective(double[] x, ref double[] grad, Object data) 

        { 

            Console.WriteLine(neval++); 

            if (VERBOSE_OUTPUT) { Console.WriteLine(".NET Objective #" + neval + ": 

objective function called with point (" + x[0] + ", " + x[1] + ")"); } 

            //if (grad != null) 

            //{// NLOptDotNet.NLOptWrapper will send a gradient vector by ref when the 

algorithm used is gradient-based 

            //    grad[0] = 0.1; 

            //    grad[1] = 50; 

            //    if (VERBOSE_OUTPUT) { Console.WriteLine(".NET Objective: Gradient on 

objective function is (" + grad[0] + ", " + grad[1] + ")"); } 

            //} 
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            return (Math.Sqrt((Math.Pow(x[0], 2) / 2) + (Math.Pow(x[1], 2)))) * (4) * 

(490) * ((Math.PI * (Math.Pow(x[2], 2)) / 4) / 144); 

        } 

         

        static double Constraint(double[] x, ref double[] grad, Object data) 

        { 

            //Dimension Variables for Script 

            Sap2000.SapObject SapObject; 

 

            Sap2000.cSapModel SapModel; 

            int ret; 

            int i; 

            double[] ModValue; 

            double[] PointLoadValue; 

            bool[] Restraint; 

            string[] Point_Name; 

            string[] FrameName; 

            string[] PointName; 

            int NumberResults; 

            string[] Obj; 

            string[] Elm; 

            string[] LoadCase; 

            string[] StepType; 

            double[] StepNum; 

            double[] U1; 

            double[] U2; 

            double[] U3; 

            double[] R1; 

            double[] R2; 

            double[] R3; 

            double[,] SapResult; 

            string temp_string1; 

            string temp_string2; 

            bool temp_bool; 

 

            //Import values from GH 

            string file_name = "J:\\SAPInput.txt"; 

            string file_node_n = "J:\\SAPnodes.txt"; 

            string file_node_1 = "J:\\SAPnode1.txt"; 

            string file_node_2 = "J:\\SAPnode2.txt"; 

            string file_node_r = "J:\\SAPnodeR.txt"; 

            string file_node_l = "J:\\SAPnodeL.txt"; 

            string file_node_g = "J:\\SAPnodeFG.txt"; 

            string file_node_w = "J:\\SAPnodeFL.txt"; 

            string file_node_c = "J:\\SAPnodeFC.txt"; 

 

            string[] MatProp; 

            string[] Nodes; 

            string[] Node1; 

            string[] Node2; 

            string[] NodeR; 

            string[] NodeL; 

            string[] NodeG; 

            string[] NodeW; 

            string[] NodeC; 

             

            string line; 

            string line0; 

            string line1; 

            string line2; 

            string line3; 

            string line4; 

            string line5; 
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            string line6; 

            string line7; 

             

 

 

            //Material Values 

            System.IO.StreamReader sr = new System.IO.StreamReader(file_name); 

            line = sr.ReadLine(); 

            MatProp = line.Split(' '); 

 

            //Node Locations 

            System.IO.StreamReader sr0 = new System.IO.StreamReader(file_node_n); 

            line0 = sr0.ReadLine(); 

            Nodes = line0.Split(' '); 

 

            //Member Geometry 

            System.IO.StreamReader sr1 = new System.IO.StreamReader(file_node_1); 

            line1 = sr1.ReadLine(); 

            Node1 = line1.Split(' '); 

 

            System.IO.StreamReader sr2 = new System.IO.StreamReader(file_node_2); 

            line2 = sr2.ReadLine(); 

            Node2 = line2.Split(' '); 

 

            //Restrained Nodes 

            System.IO.StreamReader sr3 = new System.IO.StreamReader(file_node_r); 

            line3 = sr3.ReadLine(); 

            NodeR = line3.Split(' '); 

 

            //Loaded Nodes 

            System.IO.StreamReader sr4 = new System.IO.StreamReader(file_node_l); 

            line4 = sr4.ReadLine(); 

            NodeL = line4.Split(' '); 

 

            //Nodal Loads 

            System.IO.StreamReader sr5 = new System.IO.StreamReader(file_node_g); 

            line5 = sr5.ReadLine(); 

            NodeG = line5.Split(' '); 

 

            System.IO.StreamReader sr6 = new System.IO.StreamReader(file_node_w); 

            line6 = sr6.ReadLine(); 

            NodeW = line6.Split(' '); 

 

            System.IO.StreamReader sr7 = new System.IO.StreamReader(file_node_c); 

            line7 = sr7.ReadLine(); 

            NodeC = line7.Split(' '); 

 

 

 

            //Create Excel Worksheet for analysis input 

            Microsoft.Office.Interop.Excel.Application xlApp = new 

Microsoft.Office.Interop.Excel.Application(); 

            Workbook wb = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet); 

            Workbook wb2 = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet); 

            Worksheet ws = wb.Worksheets[1]; 

            Worksheet ws2 = wb2.Worksheets[1]; 

 

            //Create SAP object 

            SapObject = new Sap2000.SapObject(); 

 

            //Start Sap2000 application 

            temp_bool = true; 

            SapObject.ApplicationStart(Sap2000.eUnits.kip_in_F, temp_bool, ""); 
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            //Create SapModel Object 

            SapModel = SapObject.SapModel; 

 

            //Initialize Model 

            ret = SapModel.InitializeNewModel((Sap2000.eUnits.kip_in_F)); 

 

            //New blank model 

            ret = SapModel.File.NewBlank(); 

 

            //Define Material Property 

            ret = SapModel.PropMaterial.SetMaterial(MatProp[0], 

Sap2000.eMatType.MATERIAL_STEEL, -1, "", ""); 

 

            //Assign mehcanical properities to material defined 

            ret = SapModel.PropMaterial.SetMPIsotropic(MatProp[0], 

Convert.ToDouble(MatProp[1]), Convert.ToDouble(MatProp[2]), 

Convert.ToDouble(MatProp[3]), 0); 

 

            //Define Section Geometry 

            ret = SapModel.PropFrame.SetCircle(MatProp[5], MatProp[0], x[2], -1, "", 

""); 

 

            //Define Section property modifiers 

            ModValue = new double[8]; 

            for (i = 0; i <= 7; i++) 

            { 

                ModValue[i] = 1; 

            } 

            System.Array temp_SystemArray = ModValue; 

            ret = SapModel.PropFrame.SetModifiers("R1", ref temp_SystemArray); 

 

            //Switch Units 

            ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_ft_F); 

 

            //Create Nodes 

            Point_Name = new string[5] { Convert.ToString(0), Convert.ToString(1), 

Convert.ToString(2), Convert.ToString(3), Convert.ToString(4) }; 

                    ret = SapModel.PointObj.AddCartesian(x[0], 0, 0, ref 

Point_Name[4], Convert.ToString(4)); 

                    ret = SapModel.PointObj.AddCartesian(0, -x[0], 0, ref 

Point_Name[1], Convert.ToString(1));                 

                    ret = SapModel.PointObj.AddCartesian(-x[0], 0, 0, ref 

Point_Name[2], Convert.ToString(2)); 

                    ret = SapModel.PointObj.AddCartesian(0, x[0],0, ref Point_Name[3], 

Convert.ToString(3)); 

                    ret = SapModel.PointObj.AddCartesian(0, 0, x[1], ref 

Point_Name[0], Convert.ToString(0)); 

                     

            //Add Frame Objects by Points 

                    FrameName = new string[Convert.ToInt32(MatProp[6])]; 

                    temp_string1 = FrameName[0]; 

                    temp_string2 = FrameName[0]; 

                    for (i = 0; i <= (Convert.ToDouble(MatProp[6]) - 1); i++) 

                    { 

                        ret = 

SapModel.FrameObj.AddByPoint((Point_Name[Convert.ToInt32(Node1[(i)])]), 

Point_Name[Convert.ToInt32(Node2[i])], ref FrameName[i], MatProp[5], 

Convert.ToString(i)); 

                    } 

 

                    //Add Frame Releases 

                    bool[] ii = new bool[6]; 
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                    bool[] jj = new bool[6]; 

                    double[] StartValue = new double[6]; 

                    double[] Endvalue = new double[6]; 

                    if (MatProp[10] == "PIN") 

                    { 

                        for (i = 0; i <= 3; i++) 

                        { 

                            ii[i] = false; 

                            jj[i] = false; 

                        } 

                        for (i = 4; i <= 5; i++) 

                        { 

                            ii[i] = true; 

                            jj[i] = true; 

                        } 

                    } 

                    else 

                    //if (MatProp[11] == "FIXED") 

                    { 

                        for (i = 0; i <= 5; i++) 

                        { 

                            ii[i] = false; 

                            jj[i] = false; 

                        } 

                    } 

                    for (i = 0; i <= 5; i++) 

                    { 

                        StartValue[i] = 0; 

                        Endvalue[i] = 0; 

                    } 

                    for (i = 0; i <= (Convert.ToDouble(MatProp[6]) - 1); i++) 

                    { 

                        ret = SapModel.FrameObj.SetReleases(Convert.ToString(i), ii, 

jj, StartValue, Endvalue, eItemType.Object); 

                    } 

 

                    //Assign Point Object Restraint at Base 

                    PointName = new string[2]; 

                    Restraint = new bool[6]; 

                    double Point; 

                    for (i = 0; i <= 3; i++) 

                    { 

                        Restraint[i] = true; 

                    } 

                    for (i = 3; i <= 5; i++) 

                    { 

                        Restraint[i] = false; 

                    } 

                    foreach (string s in NodeR) 

                    { 

                        Point = double.Parse(s); 

                        int point = Convert.ToInt32(Point); 

                        System.Array temp_SystemArray1 = Restraint; 

                        ret = SapModel.PointObj.SetRestraint(Point_Name[point], ref 

temp_SystemArray1, eItemType.Object); 

                    } 

 

 

                    //Refresh View and update or initialize zoom 

                    temp_bool = false; 

                    ret = SapModel.View.RefreshView(0, temp_bool); 

 

                    //Load Patterns 
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                    temp_bool = true; 

                    ret = SapModel.LoadPatterns.Add(NodeG[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 1, temp_bool); 

                    ret = SapModel.LoadPatterns.Add(NodeW[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 0, temp_bool); 

                    ret = SapModel.LoadPatterns.Add(NodeC[0], 

Sap2000.eLoadPatternType.LTYPE_OTHER, 0, temp_bool); 

 

                    //Assign Nodal Loads 

                    PointLoadValue = new double[6]; 

 

                    //Gravity Loads 

                    for (i = 1; i <= Convert.ToDouble(NodeG.Length) - 1; i++) 

                    { 

                        PointLoadValue[i - 1] = Double.Parse(NodeG[i]); 

                    } 

                    foreach (string s in NodeL) 

                    { 

                        Point = double.Parse(s); 

                        int point = Convert.ToInt32(Point); 

                        System.Array temp_SystemArraya = PointLoadValue; 

                        ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeG[0], ref temp_SystemArraya, false, "Global", 0); 

                    } 

 

                    //Lateral Loads 

                    for (i = 1; i <= Convert.ToDouble(NodeW.Length) - 1; i++) 

                    { 

                        PointLoadValue[i - 1] = Double.Parse(NodeW[i]); 

                    } 

                    foreach (string s in NodeL) 

                    { 

                        Point = double.Parse(s); 

                        int point = Convert.ToInt32(Point); 

                        System.Array temp_SystemArraya = PointLoadValue; 

                        ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeW[0], ref temp_SystemArraya, false, "Global", 0); 

                    } 

                    //Combination (Linear ADD) 

                    for (i = 1; i <= Convert.ToDouble(NodeC.Length) - 1; i++) 

                    { 

                        PointLoadValue[i - 1] = Double.Parse(NodeC[i]); 

                    } 

                    foreach (string s in NodeL) 

                    { 

                        Point = double.Parse(s); 

                        int point = Convert.ToInt32(Point); 

                        System.Array temp_SystemArraya = PointLoadValue; 

                        ret = SapModel.PointObj.SetLoadForce(Point_Name[point], 

NodeC[0], ref temp_SystemArraya, false, "Global", 0); 

                    } 

 

                    //Switch Units 

                    ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_in_F); 

 

                    //SAVE MODEL 

                    ret = SapModel.File.Save(@"C:\API\API_1-003.sdb"); 

 

                    //Create ANALYSIS model (run) 

                    ret = SapModel.Analyze.RunAnalysis(); 

 

                    //Initialize Sap2000 results 

                    SapResult = new double[Convert.ToInt32(MatProp[9]), 9]; 
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                    ret = SapModel.FrameObj.GetPoints(FrameName[1], ref temp_string1, 

ref temp_string2); 

                    PointName[0] = temp_string1; 

                    PointName[1] = temp_string2; 

 

                    //Get Sap2000 results for ALL Load patterns 

                    NumberResults = 0; 

                    Obj = new string[1]; 

                    double[] ObjSta = new double[1]; 

                    Elm = new string[1]; 

                    double[] ElmSta = new double[1]; 

                    LoadCase = new string[1]; 

                    StepType = new string[1]; 

                    StepNum = new double[1]; 

                    U1 = new double[1]; 

                    U2 = new double[1]; 

                    U3 = new double[1]; 

                    R1 = new double[1]; 

                    R2 = new double[1]; 

                    R3 = new double[1]; 

                    double[] P = new double[1]; 

                    double[] V2 = new double[1]; 

                    double[] V3 = new double[1]; 

                    double[] T = new double[1]; 

                    double[] M2 = new double[1]; 

                    double[] M3 = new double[1]; 

 

                    //Axial Loads for all Load Patterns 

 

                    //DEAD Load 

                    double[] Axial = new double[1]; 

                    double[,] AxialResults = new double[Convert.ToInt32(MatProp[6]), 

3]; 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeG[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                    { 

                        System.Array temp_SystemArraya = Obj; 

                        System.Array temp_SystemArrayb = Elm; 

                        System.Array temp_SystemArrayc = LoadCase; 

                        System.Array temp_SystemArrayd = StepType; 

                        System.Array temp_SystemArraye = StepNum; 

                        System.Array temp_SystemArrayf = P; 

                        System.Array temp_SystemArrayg = V2; 

                        System.Array temp_SystemArrayh = V3; 

                        System.Array temp_SystemArrayi = T; 

                        System.Array temp_SystemArrayj = M2; 

                        System.Array temp_SystemArrayk = M3; 

                        System.Array temp_SystemArrayl = ObjSta; 

                        System.Array temp_SystemArraym = ElmSta; 

                        ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArraya, ref 

temp_SystemArrayl, ref temp_SystemArrayb, ref temp_SystemArraym, ref 

temp_SystemArrayc, ref temp_SystemArrayd, ref temp_SystemArraye, ref 

temp_SystemArrayf, ref temp_SystemArrayg, ref temp_SystemArrayh, ref 

temp_SystemArrayi, ref temp_SystemArrayj, ref temp_SystemArrayk); 

                        Axial[0] = Convert.ToDouble(temp_SystemArrayf.GetValue(0)); 

                        AxialResults[i, 0] = Axial[0]; 

                    } 

                    //WIND Load 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 
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                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeW[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                    { 

                        System.Array temp_SystemArrayaa = Obj; 

                        System.Array temp_SystemArraybb = Elm; 

                        System.Array temp_SystemArraycc = LoadCase; 

                        System.Array temp_SystemArraydd = StepType; 

                        System.Array temp_SystemArrayee = StepNum; 

                        System.Array temp_SystemArrayff = P; 

                        System.Array temp_SystemArraygg = V2; 

                        System.Array temp_SystemArrayhh = V3; 

                        System.Array temp_SystemArrayii = T; 

                        System.Array temp_SystemArrayjj = M2; 

                        System.Array temp_SystemArraykk = M3; 

                        System.Array temp_SystemArrayll = ObjSta; 

                        System.Array temp_SystemArraymm = ElmSta; 

                        ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArrayaa, ref 

temp_SystemArrayll, ref temp_SystemArraybb, ref temp_SystemArraymm, ref 

temp_SystemArraycc, ref temp_SystemArraydd, ref temp_SystemArrayee, ref 

temp_SystemArrayff, ref temp_SystemArraygg, ref temp_SystemArrayhh, ref 

temp_SystemArrayii, ref temp_SystemArrayjj, ref temp_SystemArraykk); 

                        Axial[0] = Convert.ToDouble(temp_SystemArrayff.GetValue(0)); 

                        AxialResults[i, 1] = Axial[0]; 

                    } 

                    //COMB Load 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeC[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[6]) - 1; i++) 

                    { 

                        System.Array temp_SystemArrayaaa = Obj; 

                        System.Array temp_SystemArraybbb = Elm; 

                        System.Array temp_SystemArrayccc = LoadCase; 

                        System.Array temp_SystemArrayddd = StepType; 

                        System.Array temp_SystemArrayeee = StepNum; 

                        System.Array temp_SystemArrayfff = P; 

                        System.Array temp_SystemArrayggg = V2; 

                        System.Array temp_SystemArrayhhh = V3; 

                        System.Array temp_SystemArrayiii = T; 

                        System.Array temp_SystemArrayjjj = M2; 

                        System.Array temp_SystemArraykkk = M3; 

                        System.Array temp_SystemArraylll = ObjSta; 

                        System.Array temp_SystemArraymmm = ElmSta; 

                        ret = SapModel.Results.FrameForce(Convert.ToString(i), 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArrayaaa, ref 

temp_SystemArraylll, ref temp_SystemArraybbb, ref temp_SystemArraymmm, ref 

temp_SystemArrayccc, ref temp_SystemArrayddd, ref temp_SystemArrayeee, ref 

temp_SystemArrayfff, ref temp_SystemArrayggg, ref temp_SystemArrayhhh, ref 

temp_SystemArrayiii, ref temp_SystemArrayjjj, ref temp_SystemArraykkk); 

                        Axial[0] = Convert.ToDouble(temp_SystemArrayfff.GetValue(0)); 

                        AxialResults[i, 2] = Axial[0]; 

                    } 

                    //Nodal Disp. for all Load Patterns 

 

                    //Dead Load 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeG[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                    { 

                        System.Array temp_SystemArray2 = Obj; 
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                        System.Array temp_SystemArray3 = Elm; 

                        System.Array temp_SystemArray4 = LoadCase; 

                        System.Array temp_SystemArray5 = StepType; 

                        System.Array temp_SystemArray6 = StepNum; 

                        System.Array temp_SystemArray7 = U1; 

                        System.Array temp_SystemArray8 = U2; 

                        System.Array temp_SystemArray9 = U3; 

                        System.Array temp_SystemArray10 = R1; 

                        System.Array temp_SystemArray11 = R2; 

                        System.Array temp_SystemArray12 = R3; 

                        ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 

temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                        U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                        U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                        U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                        SapResult[i, 0] = U1[0]; 

                        SapResult[i, 1] = U2[0]; 

                        SapResult[i, 2] = U3[0]; 

                    } 

 

                    //Wind Load 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeW[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                    { 

                        System.Array temp_SystemArray2 = Obj; 

                        System.Array temp_SystemArray3 = Elm; 

                        System.Array temp_SystemArray4 = LoadCase; 

                        System.Array temp_SystemArray5 = StepType; 

                        System.Array temp_SystemArray6 = StepNum; 

                        System.Array temp_SystemArray7 = U1; 

                        System.Array temp_SystemArray8 = U2; 

                        System.Array temp_SystemArray9 = U3; 

                        System.Array temp_SystemArray10 = R1; 

                        System.Array temp_SystemArray11 = R2; 

                        System.Array temp_SystemArray12 = R3; 

                        ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 

temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                        U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                        U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                        U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                        SapResult[i, 3] = U1[0]; 

                        SapResult[i, 4] = U2[0]; 

                        SapResult[i, 5] = U3[0]; 

                    } 

 

                    //COMB Load 

                    ret = SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput(); 

                    ret = SapModel.Results.Setup.SetCaseSelectedForOutput(NodeC[0], 

System.Convert.ToBoolean(-1)); 

                    for (i = 0; i <= Convert.ToDouble(MatProp[9]) - 1; i++) 

                    { 

                        System.Array temp_SystemArray2 = Obj; 

                        System.Array temp_SystemArray3 = Elm; 
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                        System.Array temp_SystemArray4 = LoadCase; 

                        System.Array temp_SystemArray5 = StepType; 

                        System.Array temp_SystemArray6 = StepNum; 

                        System.Array temp_SystemArray7 = U1; 

                        System.Array temp_SystemArray8 = U2; 

                        System.Array temp_SystemArray9 = U3; 

                        System.Array temp_SystemArray10 = R1; 

                        System.Array temp_SystemArray11 = R2; 

                        System.Array temp_SystemArray12 = R3; 

                        ret = SapModel.Results.JointDispl(Point_Name[i], 

Sap2000.eItemTypeElm.ObjectElm, ref NumberResults, ref temp_SystemArray2, ref 

temp_SystemArray3, ref temp_SystemArray4, ref temp_SystemArray5, ref 

temp_SystemArray6, ref temp_SystemArray7, ref temp_SystemArray8, ref 

temp_SystemArray9, ref temp_SystemArray10, ref temp_SystemArray11, ref 

temp_SystemArray12); 

                        U1[0] = Convert.ToDouble(temp_SystemArray7.GetValue(0)); 

                        U2[0] = Convert.ToDouble(temp_SystemArray8.GetValue(0)); 

                        U3[0] = Convert.ToDouble(temp_SystemArray9.GetValue(0)); 

                        SapResult[i, 6] = U1[0]; 

                        SapResult[i, 7] = U2[0]; 

                        SapResult[i, 8] = U3[0]; 

                    } 

 

                    //Input Results to Excel Files Created Above 

                    Range c1 = (Range)ws.Cells[1 , 1]; 

                    Range c2 = (Range)ws.Cells[Convert.ToInt32(MatProp[6]) , 3]; 

                    Range range = ws.get_Range(c1, c2); 

                    range.Value = AxialResults; 

                    Range c3 = (Range)ws2.Cells[1, 1]; 

                    Range c4 = (Range)ws2.Cells[(Convert.ToInt32(MatProp[9])) , 9]; 

                    Range range2 = ws2.get_Range(c3, c4); 

                    range2.Value = SapResult; 

 

                    //Unlock Model 

                    ret = SapModel.SetModelIsLocked(false); 

 

                    //Delete Existing Frame Objects 

                    for (var delete = 0; delete <= (Convert.ToDouble(MatProp[6]) - 1); 

delete++) 

                    { 

                        ret = SapModel.FrameObj.Delete(Convert.ToString(delete), 

eItemType.Object); 

                    } 

 

                    //Initialize Model in Same File Path 

                    ret = SapModel.InitializeNewModel((Sap2000.eUnits.kip_in_F)); 

 

                    //Switch Units 

                    ret = SapModel.SetPresentUnits(Sap2000.eUnits.kip_ft_F); 

 

            //Save Excel Files 

            wb.SaveCopyAs("J:\\ForcesOpt.xls"); 

            wb2.SaveCopyAs("J:\\DispOpt.xls"); 

 

            //Close Sap2000 

            SapObject.ApplicationExit(false); 

            SapModel = null; 

            SapObject = null; 

 

            //Buckling Considerations 

            double fcr; 

            double Fe; 

            double k; 
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            double E; 

            double I; 

            double A; 

            double Fy; 

            double L; 

            double r; 

            k = 1; 

            E = 29000; 

            I = Convert.ToDouble(Math.PI*(Math.Pow(x[2]/2,4))/4); 

            A = Convert.ToDouble(Math.PI * (Math.Pow(x[2] / 2, 2))); 

            Fy = Convert.ToDouble(50); 

            L = (Math.Sqrt((Math.Pow(x[0], 2) / 2) + (Math.Pow(x[1], 2)))); 

            r = Math.Sqrt(I / A); 

            Fe = Math.Pow(Math.PI, 2) * E / (Math.Pow(k * (L*12) / r, 2)); 

 

            if (k * (L*12) / r <= 4.71 * Math.Sqrt(E / Fy)) 

            { 

                fcr = (Math.Pow(.658, (Fy / Fe)) * Fy); 

            } 

            else 

            { 

                fcr = .877 * Fe; 

            } 

 

            if (VERBOSE_OUTPUT) { Console.WriteLine(".NET Constraint: constraint 

function called with point (" + x[0] + ", " + x[1] + ")"); } 

            // Data passed as System.Object to parameterize the constraint functions. 

Convert to my_constraint_data struct 

            my_constraint_data d = (my_constraint_data)data; 

            double a = d.a; 

            //if (grad != null) 

            //{ 

            //    grad[0] = 3 * a * (a * x[0] + b) * (a * x[0] + b); 

            //    grad[1] = -1.0; 

            //    if (VERBOSE_OUTPUT) { Console.WriteLine(".NET Constraint: Gradient 

on constraint function is (" + grad[0] + ", " + grad[1] + ")"); } 

            //} 

                double answer = 

Math.Abs(AxialResults[Convert.ToInt32(a),0])/(Math.PI*(Math.Pow(x[2],2))/4) - fcr; 

                return answer; 

             

        } 

        // A struct to pass data to constraint functions 

        public struct my_constraint_data 

        { 

            public double a; 

            public double b; 

            public my_constraint_data(double a, double b) 

            { 

                this.a = a; this.b = b; 

            } 

        } 

    } 

} 
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Parametric Analysis Load Results (Forces in Kips) 
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Parametric Analysis Deflection Results
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Optimization Results for DEAD load case 

 

 

Optimization Routine for 4 Element Truss Initial Value (4,4,6)

Variables b,h,D (ft,ft,in) UB (14,14,12)

LB (1.75,1.75,.5)

Runtime (sec) 100 (15-16 Iterations) Initial Weight 1885.34825 lbs

Base Distance Height Cross Section D WEIGHT % Reduction

Trial ft ft in lbs

1 13.8 8.441 0.514 38.39 97.96377142

2 5.637 13.472 0.508 38.8 97.94202477

3 9.147 13.546 2.181 763.1 59.52471911

4 3.623 2.836 0.8438 29.091 98.45699594

5 12.175 8.448 0.699 62.29 96.69610111

6 4.23 3.404 0.786 29.9 98.4140861

9 10.954 6.615 1.283 179.2 90.49512471

8 13.214 5.779 1.846 400.14 78.77633483

9 3.406 11.817 1.034 137.93 92.68411022

10 9.273 8.893 1.396 230.19 87.79058458

Runtime (sec) 300 (39-84 Iterations)

Base Distance Height Cross Section D WEIGHT % Reduction

Trial ft ft in lbs

1 11.741 4.158 0.663 43.6 97.6874299

2 6.041 2.413 1.468 112.96 94.00853397

3 12.214 10.884 0.818 99.37 94.7293557

4 1.75 3.723 0.5 10.485 99.44386932

5 1.75 1.75 0.5 5.728 99.69618345

6 12.394 9.303 1.03 145.5 92.28259289

7 5.806 1.75 0.5 11.929 99.3672787

8 11.146 1.75 0.5 21.577 98.855543

9 4.32 3.741 0.623 20.036 98.93727856

10 2.911 6.805 0.7056 37.8 97.99506537

Runtime (sec) 900 (130-180 Iterations)

Base Distance Height Cross Section D WEIGHT % Reduction

Trial ft ft in lbs

1 1.75 1.75 0.5 5.728 99.69618345

2 1.75 1.75 0.5 5.728 99.69618345

3 1.75 1.75 0.5 5.728 99.69618345

4 1.75 1.75 0.5 5.728 99.69618345

5 1.75 1.75 0.5 5.728 99.69618345

6 1.75 1.75 0.5 5.728 99.69618345

7 1.75 1.75 0.5 5.728 99.69618345

8 1.75 1.75 0.5 5.728 99.69618345

9 1.75 1.75 0.5 5.728 99.69618345

10 1.75 1.75 0.5 5.728 99.69618345


