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Abstract

In this thesis, we study online optimization problems in routing and allocation applications.
Online problems are problems where information is revealed incrementally, and decisions
must be made before all information is available. We design and analyze algorithms for a
variety of online problems, including traveling salesman problems with rejection options,
generalized assignment problems, stochastic matching problems, and resource allocation
problems. We use worst case competitive ratios to analyze the performance of proposed
algorithms.

We begin our study with online traveling salesman problems with rejection options
where acceptance/rejection decisions are not required to be explicitly made. We propose an
online algorithm in arbitrary metric spaces, and show that it is the best possible. We then
consider problems where acceptance/rejection decisions must be made at the time when
requests arrive. For different metric spaces, we propose different online algorithms, some of
which are asymptotically optimal.

We then consider generalized online assignment problems with budget constraints and
resource constraints. We first prove that all online algorithms are arbitrarily bad for general
cases. Then, under some assumptions, we propose, analyze, and empirically compare two
online algorithms, a greedy algorithm and a primal dual algorithm.

We study online stochastic matching problems. Instances with a fixed number of arrivals
are studied first. A novel algorithm based on discretization is proposed and analyzed for
unweighted problems. The same algorithm is modified to accommodate vertex-weighted
cases. Finally, we consider cases where arrivals follow a Poisson Process.

Finally, we consider online resource allocation problems. We first consider the problems
with free but fixed inventory under certain assumptions, and present near optimal algo-
rithms. We then relax some unrealistic assumptions. Finally, we generalize the technique
to problems with flexible inventory with non-decreasing marginal costs.

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor
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Chapter 1

Introduction

Traditionally, optimization tools and methodologies within the operations research commu-

nity have mainly focused on deterministic planning for various problems such as routing

problems and resource allocation problems. However, when reality differs from anticipation,

such solutions may perform poorly. For example, unexpected events such as bad weather

could lead to large losses in the transportation industry. Furthermore, information about

practical problems to solve is rarely completely known a priori. For example, requests for

taxi services are generally revealed over time without advance notice. Waiting for all neces-

sary information is costly if not impossible for many applications. Thus, for such problems,

it is necessary to develop approaches that make decisions online.

The focus of this thesis is on designing and studying algorithms for various online opti-

mization problems. For the traveling salesman problem (TSP), we design online algorithms

for various scenarios. We also study generalized online assignment problems, and propose

two best possible algorithms. Then we focus on two special cases of the assignment prob-

lems: online stochastic matching problems and online resource allocation problems.

Outline: The rest of the chapter is organized as follows: In Section 1.1, we further

motivate our study by presenting some examples and applications. In Section 1.2, we

introduce competitive analysis, the performance measurement used in online optimization.

In Section 1.3, we give a literature review of problems related to the work in this thesis.

Finally, in Section 1.4, we summarize the contributions of the thesis.
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1.1 Examples and Applications

In this section, we discuss some examples to illustrate the importance of online optimiza-

tion. Courier companies such as UPS and FedEx offer expedited services like same day or

overnight deliveries. A priori planning may not be possible because forecast may not be

accurate enough. In such cases, making good real time decisions as service requests arrive

is essential.

Another example is about sponsored ads on search engines. Google and other search

engine companies make billions of dollars by displaying ads to users via pay-per-click or

pay-per-impression models. In both cases, ads should be displayed to users only if they are

related to users’ keywords. Although existing historical data helps forecast future keywords,

heavy-tail phenomena and unexpected rare events make the forecast less than ideal. Hence,

making real time decisions based on historical data as well as incoming information could

help improve the performance of ads placement.

For some NP-hard problems, although they do not have to be solved online, online

algorithms provide good approximation solutions. For example, for bin packing problems,

simple online algorithms (e.g., first-fit) always yield 1.7-approximation solutions.

Other applications can be also found in paging problems, inventory control, and airline

ticket sales problems.

1.2 Competitive Analysis

Competitive analysis is widely used for evaluating the quality of online algorithms. The

key concept in analyzing an online algorithm is the notion of the competitive ratio, which

compares a solution produced by the online algorithm with the best possible solution.

1.2.1 Online versus offline

As mentioned earlier, for many applications, problem inputs are revealed in an online fash-

ion. There are two main models that describe how problem inputs are revealed: sequential

and real time. In the sequential model, requests are ordered and presented one by one.

Decisions regarding the currently revealed requests must be made before the next request.

Generalized online assignment problems studied in Chapter 3 and online stochastic match-

ing problems studied in Chapter 4 mainly use this model. In the real time model, all

16



requests are associated with released times, the time they are revealed to the online algo-

rithm. The TSP with rejection options in Chapter 2 and online resource allocation problems

in Chapter 5 use the real time model.

An algorithm is called an online algorithm if its decision at time t (or step i as in

sequential models) only depends on information that is revealed up to time t (or step i),

not afterwards. Note that, depending on the applications, some decisions are irrevocable

while others are not. For the purpose of evaluating online algorithms, let us introduce

offline algorithms. An offline algorithm is to solve the same problem as an online algorithm,

except that all information of problem instances is revealed to an offline algorithm at the

beginning. Therefore, a decision that an offline solution makes at time t (or step i) could

depend on information revealed before and after t (or step i). However, an offline solution

must satisfy all constraints of the problem. For example, in the online TSP, the release time

of a request is the earliest time that the request can be served. Thus, although an offline

algorithm knows the existence of a request, it cannot serve the request before its release

time.

1.2.2 Deterministic algorithms

For minimization problems, an online algorithm is called c-competitive (c ≥ 1), if c is the

smallest number such that for any instance of the problem, the cost of the solution given

by the online algorithm is at most c times the cost of an optimal offline solution for the

instance:

Costonline(I) ≤ c · Costoptimal(I),∀ instance I.

Equivalently, the competitive ratio equals to

c = sup
I

Costonline(I)

Costoptimal(I)
.

An online algorithm is said to be best possible if no other algorithm has a strictly smaller

competitive ratio.

Similarly, for maximization problems, an online algorithm is called c-competitive (c ≤ 1),

if c is the largest number such that for any instance of the problem, the cost of the solution

given by the online algorithm is at least c times the cost of an optimal offline solution for

17



the instance:

Costonline(I) ≥ c · Costoptimal(I),∀ instance I.

Or equivalently, it equals to

c = inf
I

Costonline(I)

Costoptimal(I)
.

An online algorithm is said to be the best possible if no algorithm has a strictly larger

competitive ratio.

1.2.3 Randomized online algorithms

For randomized online algorithms, competitive ratios could be define in a way similar to

the one mentioned above. However, depending on how the offline version of the problem

is defined, there are three different types of adversaries: oblivious, adaptive online, and

adaptive offline. The following are their definitions for sequential models:

Oblivious adversary: The oblivious adversary knows the randomized algorithm, but

does not know the realization of the algorithm. The adversary constructs the request

sequence in advance before observing the outcome of the randomized algorithm. Hence, the

offline optimal solution in this case is a deterministic solution. For maximization problems,

the competitive ratio is defined as

coblivious = inf
I

E[Costonline(I)]

Costoptimal(I)
.

Adaptive online adversary: The adaptive online adversary knows the randomized

algorithm and the realization of the algorithm up to the current time. The adversary makes

the next request based on the online algorithm’s answers to previous ones, and has to serve

it immediately as well. Therefore, both the online and offline solution are random. The

competitive ratio is defined as

cadaptive online = inf
I

E[Costonline(I)]

E[Costadversary(I)]
.

Adaptive offline adversary: The adaptive offline adversary knows the randomized

algorithm and the realization of the algorithm up to the current time. The adversary makes

the next request based on the online algorithm’s answers to previous ones, but serves all

18



requests optimally at the end. The competitive ratio is defined as:

cadaptive offline = inf
I

E[Costonline(I)]

E[Costoptimal(I)]
.

The three types of adversaries and competitive ratios can be defined similarly for real

time models, by discretizing continuous time into small time intervals.

In this thesis, we only design and analyze online algorithm against oblivious adversaries,

because as the following results state, randomness against the other two types of adversaries

does not help much:

Theorem 1 ([17]). coblivious ≤ cadaptive online ≤ cadaptive offline.

Theorem 2 ([17]). If there exists a c-competitive randomized online algorithm against an

adaptive offline adversary, then there exists a c-competitive deterministic online algorithm.

Theorem 3 ([17]). If there exists a c1-competitive online algorithm against an oblivious

adversary, and a c2-competitive online algorithm against an adaptive online adversary, then

there exists a c1c2-competitive online algorithm against an adaptive offline adversary.

Generally speaking, randomized online algorithms are difficult to analyze. However,

Yao’s principle [69] provide an approach to establish lower bounds on randomized algorithms

against oblivious adversaries. It transform analysis of randomized online algorithms to

analysis of deterministic online algorithms against random instances, which is easier.

Theorem 4 ([69]). Let p be a probability distribution over the algorithms A, and let A

denote a random algorithm chosen according to p. Let q be a probability distribution over

the inputs X , and let X denote a random input chosen according to q. Then,

max
x∈X

E[c(A, x)] ≥ min
a∈A

E[c(a,X)].

1.2.4 An alternative definition of competitive ratios

When both online algorithms and problem instances are random, competitive ratios could

be defined in an alternative way, as we do in Section 4.2. Instead of comparing expected

costs, we compare the realized costs of online solutions and optimal offline solutions:

Pr
(

Costonline(I) ≤ c · Costoptimal(I)
)
≥ 1− ε,∀ instance I,
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where ε goes to 0 as the instance size goes to infinite. As we show in Section 4.2, the two

competitive ratios are closely related for the class of algorithms proposed in Chapter 4.

However, this is not true for algorithms in general.

Throughout the thesis, we use competitive analysis for evaluating online algorithms.

1.3 Literature Review

1.3.1 Online optimization

The first systematic study of online algorithms is given by Sleator and Tarjan [65], who

suggest comparing an online algorithm with an optimal offline algorithm. Karlin et al. [49]

introduce the notion of a competitive ratio. Online algorithms have been used to analyze

paging in computer memory systems, distributed data management, navigation problems

in robotics, multiprocessor scheduling, etc. (e.g. see the survey paper of Albers [6] and

the books of Borodin and El-Yaniv [22] and Fiat and Woeginger [32] for more details and

references.)

1.3.2 Online TSP with rejection options

The literature for the TSP is vast. The interested reader is referred to the books by Lawler

et al. [54] and Korte and Vygen [52] for comprehensive coverage of results concerning the

classical TSP.

Research concerning online versions of the TSP is more recent but has been growing

steadily. Kalyanasundaram and Pruhs [46] examine a unique version where new cities

are revealed locally during the traversal of a tour (i.e., an arrival at a city reveals any

adjacent cities that must also be visited). Angelelli et al. [8, 9] study related online routing

problems in a multi-period setting. Bent and Van Hentenryck [18] have looked at online

stochastic optimization techniques (e.g. scenario-based approaches) for addressing dynamic

online routing problems; see their book [38] for more references and applications of these

approaches.

More closely related to the results in the thesis is the stream of works which started

with the paper by Ausiello et al. [13]. In this paper, the authors study the online version

of the TSP with release dates (but with no service flexibility); they analyze the problem on

the real line and on general metric spaces, developing online algorithms for both cases and
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achieving an optimal online algorithm for general metric spaces, with a competitive ratio of

2. They also provide a polynomial-time online algorithm, for general metric spaces, which

is 3-competitive. Subsequently, the paper by Ascheuer et al. [10] implies the existence of

a polynomial-time algorithm, for general metric spaces, which is 2.65-competitive as well

as a (2 + ε)-competitive (ε > 0) algorithm for Euclidean spaces. Lipmann [55] develops an

optimal online algorithm for the real line, with a competitive ratio of 1.64. Blom et al. [21]

give an optimal online algorithm for the non-negative real line, with a competitive ratio

of 3
2 , and also consider different adversarial algorithms in the definition of the competitive

ratio. Jaillet and Wagner [44] introduce the notion of a disclosure date, which is a form

of advanced notice for the online salesman, and quantify the improvement in competitive

ratios as a function of the advanced notice. A similar approach was taken by Allulli et al. [7]

in the form of a lookahead.

There has also been work on generalizing the basic online TSP framework. The paper

by Feuerstein and Stougie [31] considers the online Dial-a-Ride problem, where each city

is replaced by an origin-destination pair. The authors consider both the uncapacitated

case, giving a best-possible 2-competitive algorithm, and the capacitated case, giving a

2.5-competitive algorithm. The previously cited paper by Ascheuer et al. [10] also gives a

2-competitive online algorithm and a (1 +
√

1 + 8ρ)/2-competitive polynomial-time online

algorithm for the uncapacitated online Dial-a-Ride problem (ρ being the approximation

ratio of a simpler but related offline problem). Their algorithm is generalizable to the case

where there are multiple servers with capacities; this generalization is also 2-competitive.

Jaillet and Wagner [45] consider the (1) online TSP with precedence and capacity constraints

and the (2) online TSP with m salesmen. For both problems they propose 2-competitive

online algorithms (optimal in case of the m-salesmen problem), consider polynomial-time

online algorithms, and then consider resource augmentation, where the online servers are

given additional resources to offset the powerful offline adversary advantage. Finally, they

study online algorithms from an asymptotic point of view, and show that, under general

stochastic structures for the problem data, unknown and unused by the online player, the

online algorithms are almost surely asymptotically optimal.

There also has been other recent work dealing with online routing problems which do not

require the server to visit every revealed request. Ausiello et al. [12] analyze the online Quota

TSP, where each city to be visited has a weight associated with it and the server is given
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the task to find the shortest sub-tour through cities in such a way to collect a given quota of

weights by visiting the chosen cities. They present an optimal 2-competitive algorithm for

a general metric space. In Ausiello et al. [11] provide a competitive analysis of the “prize

collecting TSP”, a generalization of the quota problem where penalties for not visiting

cities are also included, beyond meeting a given quota. They provide a 7/3-competitive

algorithm and a lower bound on any competitive ratios of 2 for a general metric space, and

refer to a 2-competitive algorithm and a lower bound of 1.89 on the non-negative real line.

More generally, assuming a ρ-approximation algorithm for the offline problem, they show

that their online algorithm is a (2ρ + ρ
1+2/ρ)-competitive polynomial time algorithm. In

Jaillet and Lu [43], we provide a competitive analysis of the “TSP with flexible service”, a

special case of the online prize-collecting TSP with no quotas. On the half-line, we provide

and prove the optimality of a 2-competitive polynomial time online algorithm based on

reoptimization subroutines, and extend it to an optimal 2-competitive online algorithm on

the real line. Finally we consider the case of a general metric space and propose an original

c-competitive online algorithm, where c =
√

17+5
4 ≈ 2.28. We also give a polynomial-time

(1.5ρ+ 1)-competitive online algorithm which uses a polynomial-time ρ-approximation for

the offline problem.

1.3.3 Generalized online assignment problems

Many research efforts have been made on generalized assignment problems (GAP) in an

offline fashion. Shmoys and Tardos [64] present an LP-rounding 2-approximation algorithm

for a special case of GAP. Chekuri and Khanna [25] develop PTAS for a special case of

GAP, multiple knapsack problems. They also classify the APX-hard special cases of GAP.

Given an approximation algorithm for a single-bin problem, Fleischer et al. [34] give an

LP-rounding algorithm and a simple local search algorithm for SAP.

Matching problems and generalized assignment problems in an online setting have also

been extensively studied in the last two decades. Karp, Vazirani and Vazirani [50] study the

online bipartite matching problem. They propose a randomized algorithm RANKING with

competitive ratio of 1 − 1/e, and prove its optimality. Kalyanasundaram and Pruhs [47]

study online b-matching problem, where each bidder has a budget of b and each item has

unit price. They propose a deterministic algorithm BALANCE with competitive ratio of

1− 1
(1+ 1

b
)b

. They also show that it is asymptotically optimal for deterministic algorithms. For
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the same problem, Goel and Mehta [36] analyzes the performance of the greedy algorithm

with queries arriving in a random permutation. They prove a tight competitive ratio of

1− 1/e. Mehta et al. [59] and Lahaie et al. [53] consider the adwords problem, where each

bidder has a budget and each item has a price. By introducing a potential function to find

the right tradeoff between acting greedily and keeping bidders able to bid in the future,

they propose an optimal deterministic algorithm with competitive ratio of 1− 1/e. For the

same problem, Buchbinder et al. [24] gives a simple primal-dual algorithm by using weak

duality, which also is (1− 1/e)-competitive, and thus optimal. The same technique is also

applied to other problems [23].

Several different aspects of the adwords problem have also been studied. On the game

theoretic aspect, Aggarwal et al. [2], Edelman et al. [27] and Varian [68] study properties

of different auction mechanism. There are also some papers focus on the optimization

problems from advertisers’ prospective. Rusmevichientong and Williamson [63] consider

how to change the set of interested keywords dynamically to maximize the revenue. Feldman

et al. [30] propose an algorithm to maximize the number of bids won by the advertiser within

his budget.

Depending on the size of budgets, some special cases of GAP have also been studied

extensively. When budgets are all 1, it is known as online matching problems; when budgets

are all large, it is known as online resource allocation problems. We review the two areas

in details in the following two sections.

1.3.4 Online stochastic matching problems

Bipartite matching problems and related advertisement allocation problems have been stud-

ied extensively in the operations research and computer science literature.

As stated in last section, adversarial models where no information is known about re-

quests have been studied. Karp et al. [50] look at the bipartite matching problem and give a

best possible randomized algorithm (RANKING) with competitive ratio 1− 1/e. Kalyana-

sundaram and Pruhs [47] give a 1 − 1/e-competitive algorithm for b-matching problems.

Mehta et al. [59, 60] and Buchbinder et al. [24] propose two different 1 − 1/e competitive

algorithms for the AdWords problem. More recently, Aggarwal et al. [3] give a 1 − 1/e-

competitive algorithm for the vertex-weighted bipartite matching problem.

However, adversarial models may be too conservative for some applications where worst-
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case scenarios are unlikely to happen. Less conservative models have been proposed. In

the random permutation model, when the set of requests is unknown, but the order of the

sequence is random, Goel and Mehta [36] show that a greedy algorithm is 1−1/e competitive.

Devanur and Hayes [26] propose a near optimal algorithm for AdWords under some mild

assumptions. Agrawal et al. [4] further propose a near optimal algorithm for general online

linear programming problems using similar techniques. Mahdian and Yan [56] and Karande

et al. [48] simultaneously show RANKING algorithm is 0.696-competitive for matching

problem. Mirrokni et al. [61] propose an algorithm works well under both adversarial and

random arrival model for Adwords.

The random permutation model may still be too conservative in practice, when statis-

tics about requests may be available. In the stochastic i.i.d. model, when requests are

drawn repeatedly and independently from a known probability distribution over the dif-

ferent impression types, Feldman et al. [29] prove that one can do better than 1 − 1/e.

Under the restriction that the expected number of request of each impression type is an

integer, they provide a 0.670-competitive algorithm. They also show that no algorithm can

achieve a competitive ratio of 0.989. Bahmani and Kapralov [15] modify the algorithm

and give a competitive ratio of 0.699 under the same assumption. They also improved

the upper bound to 0.902. More recently, Manshadi et al. [57] removed the assumption

that the expected number of arrivals is integral, and present a 0.702-competitive algorithm

(the same algorithm achieves a competitive ratio of 0.705 under the integral assumption).

They also improve the upper bound to 0.86 with the integral assumption and 0.823 without

the integral assumption. Finally Haeupler et al. [37] recently proposed a 0.667-competitive

algorithm for the edge-weighted problem under the stochastic i.i.d. model.

1.3.5 Online resource allocation problems

Online resource allocation problems have attracted wide interests in the operations re-

search, computer science, and management science communities. Various special cases of

the problems have been studied extensively. Kleinberg [51] presents a 1−O(
√
k)-competitive

algorithm for k secretary problem under random permutation model. This is the first online

algorithm with a competitive ratio approaching 1 as the input parameters become large.

Devanue and Hayes [26] study the adwords problem under random permutation model.

They propose an online algorithm with a competitive ratio 1−O( 3
√
m2 log(n)/OPT ). Feld-
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man et al. [33] study an online packing problem. They also propose an online algorithm

with a competitive ratio approaching 1 as the input parameters go to infinite. Both pa-

pers assume that the total number of requests is given explicitly in advance, and in order

to achieve 1 − ε-competitive ratio, the number of requests n ≥ O(1/ε3). More recently,

Agrawal et al. [4] study an online linear programming problem under random permutation

model. They present an online algorithm that updates price threshold dynamically. As a

result of the dynamic updating, they reduce the lower bound on the number of requests

from O(1/ε3) to O(1/ε2).

Approximate dynamic programming approaches are also used to study resource allo-

cation problems. For example, Bertsimas and Demir [20], Adelman [1], and Zhang and

Adelman [70] designed approximate dynamic programming heuristics for multidimensional

knapsack problems and network revenue management problems. Although these heuristics

have excellent practical performance, theoretical guarantees are very difficult to obtain.

Fluid models have been considered as well, where stochastic discrete arrival processes

are replaced by fluid arrival processes with deterministic arrival rates. Gallego and van

Ryzin [35] and Akan and Ata [5] studied network revenue management problems under

such models.

1.4 Thesis Outline and Contributions

1.4.1 Chapter 2, online TSP with rejection options

In this chapter, we study two versions of online traveling salesman problems with rejection

options; we propose and evaluate algorithms for a variety of cases. We first consider the

problems where acceptance/rejection decisions need not to be made explicitly, and provide

a best possible online algorithm, with a competitive ratio of 2. We also show that the same

algorithm can be applied for the Prize Collecting TSP as well as some other problems,

and remain 2-competitive. Then, a polynomial-time version of the algorithm that is 2ρ-

competitive is presented, where ρ is the approximation ratio for the offline version of the

problems.

We then consider the problems where acceptance/rejection decisions must be made at

arrivals of requests. We design algorithms for the problems in a variety of metric spaces,

including non-negative real line, real line, and arbitrary metric spaces. In the non-negative
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real line, a best possible 2.5-competitive polynomial time algorithm is presented. In the real

line, we prove a lower bound of 2.64 on any competitive ratios, and propose a 3-competitive

online algorithm. In general metric spaces, we prove that Ω(
√

lnn) is a lower bound on

any competitive ratios. Finally, among the restricted class of online algorithms with prior

knowledge about the total number of requests n, we also provide an asymptotically best

possible O(
√

lnn)-competitive algorithm.

This chapter is also available in [42].

1.4.2 Chapter 3, generalized online assignment problems

In this chapter, we consider generalized online assignment problems, where buyers with

limited budgets are interested in purchasing items coming one at a time from a set of

distinct object types. Each type having a limited resource. Assignment of an item of a

given type to a buyer consumes a given amount of that limited resource as well as the

buyer’s budget. We propose, analyze, and empirically compare two online algorithms, a

greedy algorithm and a primal dual algorithm. Our main result is that both algorithms

are 1/2-competitive under two key assumptions: (i) each buyer’s budget and each object

type’s allocated resource are large compared to both the prices buyers are willing to pay

for a given item, and the amount of resources consumed by the assignment of an item to

a buyer; (ii) prices are proportional to amount of resources consumed. We also show that

there are no other online algorithms, either deterministic or randomized, that achieve a

strictly better competitive ratio. We also prove that without the two assumptions stated

above, no non-trivial algorithm exists.

This chapter is also available in [39].

1.4.3 Chapter 4, online stochastic matching problems

In this chapter, we first consider unweighted stochastic matching problems. A general class

of online algorithms are proposed. Algorithms in this class are robust, and use computation-

ally efficiently offline procedures. Under the integrality restriction on the expected number

of impressions of each types, a (1− 2e−2)-competitive algorithm is presented. Without the

restriction, we provide a 0.706-competitive algorithm.

Our techniques can be applied to other related problems such as online stochastic b-

matching problems (quite trivially) and vertex-weighted version of online stochastic prob-
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lems. For the latter one, we obtain a 0.725-competitive algorithm under the integrality

restriction.

Finally, we show the validity of all our results under a Poisson arrival model, removing

the need to assume that the total number of arrivals is fixed and know in advance, as is

required for the analysis of the stochastic models.

This chapter is also available in [41].

1.4.4 Chapter 5, online resource allocation problems

In this chapter, we first consider online resource allocation problems, where inventory level

is fixed and given in advance, and an unknown number of customers arrive according to

a random process. We present a learning-based online algorithm that updates dual price

for resource based on observation from arrived customers. The algorithm is proven to be

near optimal under certain assumptions. We then relax the assumptions and show similar

results. Our results significantly improve previous ones by removing the need to know a

priori the number of customers.

We then consider a similar problem with flexible inventory level. Instead of fixed inven-

tory level, inventory can be replenished at non-decreasing marginal costs. Under certain

assumptions, we present and analysis a near optimal online algorithm.

This chapter is also available in [40].
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Chapter 2

Online TSP with Rejection Options

2.1 Introduction

In the classical Traveling Salesman Problem (TSP) in a metric space, we are given an

origin, a set of points in that space, and the task is to find a tour of minimum total length,

beginning and ending at the origin, that visits each point at least once. If one introduces

a “time” aspect to the problem by considering a server visiting these points with a given

constant speed, the objective can equivalently be stated as to minimize the time required

to complete a tour. When requests to visit points include release dates, i.e., when a point

can only be visited on or after its release date, we obtain the so-called “TSP with release

dates”. Removing the need to visit all requests, one can associate a penalty with each

request to visit a point. The server can then decide which points to serve and the objective

is to minimize a linear combination of the time to go through all accepted requests plus the

penalties of the rejected ones. In this chapter, we consider online versions of the TSP with

release dates and rejection penalty. When the decisions to accept or reject requests can be

done any time after their release dates, the online version of the problem will be called the

basic version, and when the decisions must be made immediately at the release dates, the

corresponding online version will be called the real-time version.

There are many motivations for looking at such problems. Some come from large scale

fleet management problems associated with the pick-up and delivery of packages in a dy-

namic environment, where a sizable fraction of the requests come in a real-time fashion,

requiring both flexibility and fast response in an ever changing environment, and profitabil-

ity over a longer horizon.
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Other examples come from the emerging field of autonomous spatial exploration and

information harvesting problems, there are many potential applications (some futuristic,

yet within near-term technological capabilities), where micro (unmanned) autonomous ve-

hicles (MAVs) will be launched with the mission of “finding out” and “communicating

back” key information (such as casualties and immediate rescue needs in case of a natural

disaster). Overall, the algorithmic challenges for such complex missions to be possible are

formidable and diverse. In particular, it involves the development of fully autonomous al-

gorithmic capabilities which would allow an MAV to “function” without external help, and

in some cases, without the availability of an existing external infrastructure (for example

a malfunctioning or non-existing GPS infrastructure). Our proposed online versions of the

TSP variant we discussed above provide some of the fundamental building blocks needed to

meet such algorithmic challenges. Requests to visit points could be various signals received

from the multi-sensing capabilities of the MAV and indicating specific location to explore,

rejecting such a request could incur a “penalty” (opportunity cost for missing out on key in-

formation). During the exploration the MAV collects information associated with accepted

and visited requests. At the final state, the collected information can be communicated to

a dispatch center.
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2.1.1 Formal definitions of the problems

Online TSP with Rejection Options

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·). A series

of n requests represented by triples (li, ri, pi)1≤i≤n, where li ∈ M is the location (point

in metric space) of request i, ri ∈ R+ is its release date (first time after which it can be

served), and pi ∈ R+ is its penalty (for not being served). The problem begins at time

0; the server is initially idle at the origin (initial state), can travel at unit speed (when

not idle), and eventually must be back and idle at the origin (final state). The earliest

time the server reaches this final state is called the makespan.

Offline context: The number of requests n is known to the offline server. All requests

are revealed to the offline server at time 0.

Online context: The number of requests n is not known to the online server. Requests

are revealed to the online server at their release dates ri ≥ 0; assume r1 ≤ r2 · · · ≤ rn.

There are two online versions:

Basic: The online server can accept or reject a request any time after the

request’s release date.

Real-time: The online server must accept or reject a request immediately at

the time of the request’s release date. Decisions are then final.

Objective: In all cases, minimize {the makespan to serve all accepted requests plus the

total penalties of all rejected requests} among all feasible solutions.

The offline problem is thus a TSP with release dates and penalty, and the two online versions

of the problem differ as to when decisions to accept or reject a request can be done.

2.2 Notations

The formal definitions of the problems considered in this chapter have been given in Sec-

tion 2.1.1. We assume that we have at our disposal an exact algorithm (a black box) that

solves any instance of the corresponding offline problems.

An instance I consisting of n requests is gradually revealed. The online server observes

a series of partial instances {Ik}1≤k≤n, where Ik is the instance consisting of the first k
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requests. For the instance Ik, let Copt(k) be the objective value of an optimal offline

solution, τk be the corresponding optimal route (tour or path), Tk be the corresponding

makespan, and Sk be the set of accepted requests by the black box. Given a route τ , we

also use τ as a function τ(t) : R+ →M, where τ(t) is the position of the server who follows

τ at t. L(τ) represents the length of the route, i.e. the shortest time to travel through it,

ignoring release dates of requests.

For a given online algorithm A, we let CA(k) be the total cost incurred by the online

server on the instance Ik. We measure the quality of this online algorithm via its competitive

ratio, i.e., the smallest upper bound on CA(n)/Copt(n) for any instances of any size n. If

there exists such a finite upper-bound c, then we say that A is c-competitive, and, in case

no other online algorithms have smaller competitive ratios, we say that A is best possible.

If a finite upper bound does not exist, then one can characterize the asymptotic behavior

of the competitive ratios as a function of n (n representing the problem size) by providing

functions f and g such that an Ω(f(n)) and O(g(n)) are asymptotic lower and upper bounds

on the competitive ratios for the problem.

2.3 The Basic Version

We focus here on the basic version of the problem. In Jaillet and Lu [43], we show a lower

bound of 2 on the competitive ratio of any online algorithms for this problem on metric

space:

Theorem 5 ([43]). Any c-competitive online algorithm on R+ must have c ≥ 2.

In the remainder of the section, we first propose an online algorithm whose competitive

ratio matches this lower bound in any general metric spaces. We then consider the design

of a polynomial time online algorithm for this problem and, we finally address a slight

generalization of the problem, involving both penalty for rejection of a request and prize

for collection, if a request is accepted and served.

2.3.1 Best possible 2-competitive online algorithm

In the proposed algorithm, the online server makes use of the offline black box only when

at the origin, and, any time at the origin, waits an appropriate amount of time (to be
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determined) before it starts on a new route. While engaged on a route, the server ignores

all new requests. We label this algorithm WOGI for “Wait, Optimize, Go, and Ignore”.

Before presenting the algorithm in details, let us first define some notations. We use

i as a counter indicating how many times the online server has left the origin. We let ui

be the number of requests that have been released so far when the online server leaves the

origin for the ith time. We let Pi be the set of all requests among the first ui requests that

have not been served by the online server when it returns to the origin for the ith time. We

let si be the first request, not among the first ui−1 requests, which the online server visits

on route τui (so si > ui−1).

Our algorithm is designed in such a way that when the online server leaves the origin for

the ith time, it has two candidate routes to follow. It either follows the route τui exactly, or

it uses a WOGI shortcut τui,ui−1 , defined as follows: it skips the first requests on τui whose

indices are no greater than ui−1, goes directly to request si, and then follows the remaining

part of τui .

Figure 2-1 below provides an illustration of a WOGI shortcut. In this example, five

requests are released sequentially. The route τ5 on the left, computed by the black box,

passes through requests 1, 5, 3, and 2. According to the definitions above, s5 = 3. As

showed on the right, the WOGI shortcut τ5,2 skips request 1 and goes directly to request 3.

Note that no request is skipped afterwards. Assume that the server have returned to the

origin once and request 1 has not been served, then P2 = {1, 4}. Even if some requests are

released shortly after the server leaves the origin to follow τ5,2, they are not included in P2.

o

1

35

2
4

route τ5 by blackbox

o

1

35

2
4

WOGI shortcut τ5,2

Figure 2-1: WOGI Shortcuts

Now, we are ready to provide a full description of Algorithm WOGI:

Algorithm 1 (WOGI).
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0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If Sk ⊂ {1, 2, ..., ui}, wait for the next released

request, and go to Step 1; otherwise, go to Step 2.

2. Assume k requests have been released, the WOGI server waits until max{Copt(k), tk,ui},

where tk,ui
.
= 2Copt(k)−L(τk,ui)−

∑
j>ui,j /∈Sk pj −

∑
j∈Pi pj is the latest time to leave

the origin to follow τk,ui and maintain a competitive ratio of 2. If a new request is

released during the waiting time, go to Step 1; otherwise, update ui+1 = k, i = i + 1,

and go to Step 3.

3. The WOGI server takes one of the two routes and ignores all new requests before

reaching back the origin:

3a. If tui,ui−1 ≥ Copt(ui), he follows the WOGI shortcut τui,ui−1. After finishing the

route, go to Step 4.

3b. If tui,ui−1 < Copt(ui), he follows τui. After finishing the route, go to Step 4.

4. Update Pi. Go to Step 1.

Let us first look at some properties of WOGI:

Lemma 1. rsi+1 ≥ Copt(ui).

Proof. If i = 0, Copt(0) = 0. Thus, the lemma is trivially true. If i > 0, let t be the time

when the WOGI server leaves the origin for the ith time. According to Step 2, t ≥ Copt(ui).

On the other hand, at time t, only ui requests are released. Thus, ∀j > ui, rj ≥ t ≥ Copt(ui).

In particular, it is true for j = si+1 > ui.

Lemma 2. tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi pj.

Proof. If i = 0, Copt(0) = 0. The lemma is trivially true. If i > 0, the offline server cannot

visit request si+1 before its release time rsi+1 . Thus, Tui+1 ≥ rsi+1 + L(τui+1,ui) − |lsi+1 |.

Therefore,
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tui+1,ui = 2Copt(ui+1)− L(τui+1,ui)−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi pj

= 2Tui+1 + 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)−

∑
j>ui,j /∈Sui+1

pj −
∑

j∈Pi pj

≥ 2rsi+1 + 2L(τui+1,ui)− 2|lsi+1 |+ 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)

−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi pj

≥ 2rsi+1 + L(τui+1,ui)− 2|lsi+1 | −
∑

j∈Pi pj

≥ 2rsi+1 −
∑

j∈Pi pj .

According to Lemma 1, rsi+1 ≥ Copt(ui), we conclude tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi pj .

Lemma 3. The WOGI server returns to the origin for the ith time before 2Copt(ui) −∑
j∈Pi pj.

Proof. We use induction on i to prove this lemma. It is trivially true for i = 0.

Consider i. By induction, the server finishes his (i − 1)th trip before 2Copt(ui−1) −∑
j∈Pi−1

pj . According to Lemma 2, 2Copt(ui−1)−
∑

j∈Pi−1
pj ≤ tui,ui−1 . Thus, the WOGI

is at the origin at max{tui,ui−1 , Copt(ui)}. According to Step 2, he leaves the origin for the

ith time at exactly max{tui,ui−1 , Copt(ui)}. Based on which of the two is larger, we have

two cases:

1. If tui,ui−1 ≥ Copt(ui), then the WOGI server will take the shortcut τui+1,ui , and arrive at

the origin at time tui,ui−1+L(τui+1,ui) = 2Copt(ui)−
∑

ui−1<j≤ui,j /∈Sui
pj−

∑
j∈Pi−1

pj ≤

2Copt(ui)−
∑

j∈Pi pj . The last inequality is due to Pi ⊂ Pi−1 ∪ {j : ui−1 < j ≤ ui, j /∈

Sui}.

2. If tui,ui−1 < Copt(ui), then the server will follow τui , and arrive at the origin at time

Copt(ui) + L(τui) ≤ Copt(ui) + Tui = 2Copt(ui) −
∑

j /∈Sui
pj ≤ 2Copt(ui) −

∑
j∈Pi pj .

The last inequality is due to Pi ⊂ Scui , because τui pass through all requests in Sui .

We now can prove our main result:

Theorem 6. Algorithm WOGI is 2-competitive and best possible.
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Proof. Assume there are a total of m requests and the WOGI server leaves and returns

to the origin i times. According to Lemma 3, after the ith trip, the server returns to

the origin before time 2Copt(ui) −
∑

j∈Pi pj and never leaves again. Therefore, total cost

CWOGI ≤ 2Copt(ui) −
∑

j∈Pi pj +
∑

j∈Pi pj +
∑m

j=ui+1 pj = 2Copt(ui) +
∑m

j=ui+1 pj . Since

the WOGI server does not leaves the origin afterwards, ∀ui + 1 ≤ j ≤ m, j /∈ Sm. Thus,

CWOGI ≤ 2Copt(ui) +
∑m

j=ui+1 pj = 2Copt(m)−
∑m

j=ui+1 pj ≤ 2Copt(m).

2.3.2 Polynomial-time algorithms

WOGI repeatedly calls a black box that provides optimal solutions to corresponding offline

problems. However, because these offline problems are NP-hard, WOGI can’t be considered

to be a polynomial-time algorithm, and this makes WOGI impractical for very large size

problems. To address the complexity issue, we propose here a polynomial time algorithm,

WOGI-apx, at the expense of an increase in the competitive ratio. WOGI-apx is simply

the analog of WOGI with an approximation black box. Instead of solving offline TSPs

optimally, WOGI-apx uses a ρ-approximation black box algorithm. Noting that, other

than optimality, few properties of offline solutions are used in proving 2-competitiveness of

WOGI, we expect the analysis in Section 2.3.1 to carry through for WOGI-apx.

Before presenting and analyzing WOGI-apx, let us first define some notations, which

are analogs of the ones used for WOGI. Given the instance Ik, the offline approximation

algorithm provides a solution that has cost C̃apx(k) ≤ ρCopt(k). Let T̃k be the makespan

of the approximation solution, τ̃k be the corresponding route, and S̃k be the set of requests

served by the approximation solution. ui is the number of released requests when the online

server leaves the origin for the ith time. The rejection set Pi is the set of requests that have

not been served when the online server returns to the origin for the ith time. Request si

is the first request on the route τ̃ui whose index is strictly greater than ui−1. When the

online server leaves the origin for the ith time, it has two candidate routes to follow. It

either follows τ̃ui , computed by the approximation solver, or a WOGI shortcut τ̃ui,ui−1 . The

WOGI shortcut τ̃ui,ui−1 skips the first few requests on τ̃ui whose indices are no greater than

ui−1, goes directly to request si−1, and then follows the remaining fraction of τ̃ui .

Now we can present WOGI-apx:

Algorithm 2 (WOGI-apx).
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0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If S̃k ⊂ {1, .., ui}, wait for the next released

request, and go to Step 1; otherwise, go to Step 2.

2. Assume k requests have been released, the WOGI-apx server waits until max{C̃apx(k), tk,ui},

where tk,ui
.
= 2C̃apx(k) − L(τ̃k,ui) −

∑
j>ui,j /∈S̃k pj −

∑
j∈Pi pj. If a new request is re-

leased during the waiting time, go to Step 1; otherwise, update ui+1 = k, i = i + 1,

and go to Step 3.

3. The WOGI-apx server takes one of the two routes and ignores all new requests before

reaching back the origin:

3a. If tui,ui−1 ≥ C̃apx(ui), he follows the WOGI-apx shortcut τ̃ui,ui−1. After finishing

the route, go to Step 4.

3b. If tui,ui−1 < C̃apx(ui), he follows τ̃ui. After finishing the route, go to Step 4.

4. Update Pi+1. i = i+ 1. Go to Step 1.

As Lemma 1 through 3 use no property of the offline solutions from the black box, their

analogs for the approximated version are also valid:

Lemma 4. rsi+1 ≥ C̃apx(ui).

Proof. If i = 0, C̃apx(0) = 0. Thus, the lemma is trivially true. If i > 0, let t be the

time when the WOGI-apx server leaves the origin for the ith time. According to Step 2,

t ≥ C̃apx(ui). On the other hand, at time t, only ui requests are released. Thus, ∀j > ui,

rj ≥ t ≥ C̃apx(ui). In particular, it is true for j = si+1 > ui.

Lemma 5. tui+1,ui ≥ 2C̃apx(ui)−
∑

j∈Pi pj.

Proof. If i = 0, C̃apx(0) = 0. The lemma is trivially true. If i > 0, the offline server cannot

visit request si+1 before its release time rsi+1 . Thus, T̃ui+1 ≥ rsi+1 + L(τ̃ui+1,ui) − |lsi+1 |.

Therefore,
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tui+1,ui = 2C̃apx(ui+1)− L(τ̃ui+1,ui)−
∑

j>ui,j /∈S̃ui+1
pj −

∑
j∈Pi pj

= 2T̃ui+1 + 2
∑

1≤j≤ui+1,j /∈S̃ui+1
pj − L(τ̃ui+1,ui)−

∑
j>ui,j /∈S̃ui+1

pj −
∑

j∈Pi pj

≥ 2rsi+1 + 2L(τ̃ui+1,ui)− 2|lsi+1 |+ 2
∑

1≤j≤ui+1,j /∈S̃ui+1
pj − L(τ̃ui+1,ui)

−
∑

j>ui,j /∈S̃ui+1
pj −

∑
j∈Pi pj

≥ 2rsi+1 + L(τ̃ui+1,ui)− 2|lsi+1 | −
∑

j∈Pi pj

≥ 2rsi+1 −
∑

j∈Pi pj .

According to Lemma 5, rsi+1 ≥ C̃apx(ui), we conclude tui+1,ui ≥ 2C̃apx(ui)−
∑

j∈Pi pj .

Lemma 6. The WOGI-apx server finishes his ith trip before 2C̃apx(ui)−
∑

j∈Pi pj.

Proof. We use induction on i to prove this lemma. It is trivially true for i = 0.

Consider i. By induction, the server finishes his (i − 1)th trip before 2C̃apx(ui−1) −∑
j∈Pi−1

pj . According to Lemma 5, 2C̃apx(ui−1)−
∑

j∈Pi−1
pj ≤ tui,ui−1 . Thus, the WOGI-

apx server is at the origin at max{tui,ui−1 , C̃apx(ui)}. According to Step 2, he leaves the

origin for the ith time at exactly max{tui,ui−1 , C̃apx(ui)}. Based on which of the two is

larger, we have two cases:

1. If tui,ui−1 ≥ C̃apx(ui), then the WOGI-apx server will take the shortcut τ̃ui+1,ui , and

arrive at the origin at time tui,ui−1 + L(τ̃ui+1,ui) = 2C̃apx(ui) −
∑

ui−1<j≤ui,j /∈S̃ui
pj −∑

j∈Pi−1
pj ≤ 2C̃apx(ui) −

∑
j∈Pi pj . The last inequality is due to Pi ⊂ Pi−1 ∪ {j :

ui−1 < j ≤ ui, j /∈ S̃ui}.

2. If tui,ui−1 < C̃apx(ui), then the server will follow τ̃ui , and arrive at the origin at time

C̃apx +L(τ̃ui) ≤ C̃apx(ui) + T̃ui = 2C̃apx(ui)−
∑

j /∈S̃ui
pj ≤ 2C̃apx(ui)−

∑
j∈Pi pj . The

last inequality is due to Pi ⊂ S̃cui , because τui pass through all requests in S̃ui .

We are now ready to prove our main result. The proof is different from the one of Theorem 6,

because unlike Copt(k), C̃apx(k) is not necessarily non-decreasing in k.

Theorem 7. Algorithm WOGI-apx is 2ρ-competitive.
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Proof. Assume there are a total of m requests, and the WOGI-apx server leaves and returns

to the origin i times. According to Lemma 6, after the ith trip, the server returns to the

origin before time 2C̃apx(ui)−
∑

l∈Pi pl and never leaves again. Therefore, total cost

CWOGI-apx ≤ 2C̃apx(ui)−
∑

j∈Pi pj +
∑

j∈Pi pj +
∑m

j=ui+1 pj

= 2C̃apx(ui) +
∑m

j=ui+1 pj .

If ∀ui + 1 ≤ j ≤ m, j /∈ Sm, i.e. none of these requests are served in the optimal offline

solution, then Copt(m) = Copt(ui) +
∑m

j=ui+1 pj . Therefore,

CWOGI-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj

≤ 2ρCopt(ui) +
∑m

j=ui+1 pj ≤ 2ρCopt(m).

If ∃ui + 1 ≤ j ≤ m, such that j ∈ Sm, then Copt(m) ≥ rj ≥ C̃apx(ui), where the last

inequality is due to Step 2 in the WOGI-apx. Because of Step 1 of the algorithm, C̃apx(m) =

C̃apx(ui) +
∑m

j=ui+1 pj ≥ Copt(ui) +
∑m

j=ui+1 pj , we have ρCopt(m) ≥ C̃apx(m) ≥ Copt(ui) +∑m
j=ui+1 pj . Therefore,

CWOGI-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj

≤ (2− 1/ρ)C̃apx(ui) + Copt(ui) +
∑m

j=ui+1 pj

≤ (2− 1/ρ)Copt(m) + ρCopt(m)

≤ ρCopt(m) + ρCopt(m) = 2ρCopt(m).

From the discussion above, we can conclude that WOGI-apx is 2ρ-competitive.

2.3.3 Prize-collecting generalization

The prize collecting TSP (PCTSP) is a generalization of the TSP (see [16, 28]), where asso-

ciated with each request is a penalty (if rejected) and a prize (if accepted and served). The

server must collect enough prizes exceeding a given quota while minimizing the makespan

needed to collect the prizes plus the total penalty of rejected requests. We consider the
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online version of this problem.

Online PCTSP

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·). A series

of n requests represented by quadruples (li, ri, pi, wi)1≤i≤n, where li ∈M is the location

(point in metric space) of request i, ri ∈ R+ its release date (first time after which it can

be served), pi ∈ R+ its penalty (for not being served), and wi ∈ R+ its prize (collected

if served). A parameter Wmin ∈ R+ (a quota for prizes to be collected). The problem

begins at time 0; the server is initially idle at the origin (initial state), can travel at unit

speed (when not idle), and eventually must be back and idle at the origin (final state).

The earliest time the server reaches this final state is called the makespan.

Feasible solution: Any subset S ⊂ {1, . . . , n} of requests to be served and a feasible

TSP tour with release dates τ(S) through S so that
∑

i∈S wi ≥Wmin.

Offline context: The number of requests n is known to the offline server. All requests

are revealed to the offline server at time 0.

Online context: The number of requests n is not known to the online server. Requests

are revealed to the online server at their release dates ri ≥ 0; assume r1 ≤ r2 · · · ≤ rn.

The online server can accept or reject a request any time after the request’s release date.

Objective: In all cases, minimize {the makespan to serve all accepted requests plus the

total penalties of all rejected requests} among all feasible solutions.

Assume there is a blackbox that provides the optimal offline solution for PCTSP. For the

simplicity of the algorithm, let us assume that if there is no feasible solution for the offline

problem, no request will be accepted. Let us replace the blackbox in WOGI by the blackbox

for PCTSP; and the resulting algorithm is WOGI-PC.

Algorithm 3 (WOGI-PC).

0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If
∑k

i=1wi ≥Wmin and Sk ⊂ {1, 2, ..., ui}, wait

for the next released request, and go to Step 1; otherwise, go to Step 2.

2. Assume k requests have been released, the WOGI server waits until max{Copt(k), tk,ui},

where tk,ui
.
= 2Copt(k)−L(τk,ui)−

∑
j>ui,j /∈Sk pj −

∑
j∈Pi pj is the latest time to leave
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the origin to follow τk,ui and maintain a competitive ratio of 2. If a new request is

released during the waiting time, go to Step 1; otherwise, update ui+1 = k, i = i + 1,

and go to Step 3.

3. The WOGI server takes one of the two routes and ignores all new requests before

reaching back the origin:

3a. If tui,ui−1 ≥ Copt(ui), he follows the WOGI shortcut τui,ui−1. After finishing the

route, go to Step 4.

3b. If tui,ui−1 < Copt(ui), he follows τui. After finishing the route, go to Step 4.

4. Update Pi. Go to Step 1.

For simplicity, let us assume that there exists an feasible offline solution, i.e.
∑n

i=1wi ≥

Wmin. According to Step 2 and 3, it is easy to see that the WOGI-PC server leaves the

origin at least once. During his first trip, the WOGI-PC server follows τu1 exactly. Since

τu1 is a feasible solution,
∑

i∈Su1
wi ≥ Wmin, i.e. the online server collects enough prizes

during his first trip. Therefore, the online solution is also a feasible solution.

Since in the proofs of Lemma 1, 2, 3 and Theorem 6, no property other than the

optimality of the solution provided by the blackbox is used, analogs of these results are also

for WOGI-PC. Please note that in the following statements and proofs, Copt(·) and other

notations correspond to the optimal solution obtained by the blackbox for offline PCTSP:

Lemma 7. ∀i ≥ 1, rsi+1 ≥ Copt(ui).

Proof. Let t be the time when the WOGI-PC server leaves the origin for the ith time.

According to Step 2, t ≥ Copt(ui). On the other hand, at time t, only ui requests are

released. Thus, ∀j > ui, rj ≥ t ≥ Copt(ui). In particular, it is true for j = si+1 > ui.

Lemma 8. ∀i ≥ 1, tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi pj.

Proof. The offline server cannot visit request si+1 before its release time rsi+1 . Thus, Tui+1 ≥

rsi+1 + L(τui+1,ui)− |lsi+1 |. Therefore,
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tui+1,ui = 2Copt(ui+1)− L(τui+1,ui)−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi pj

= 2Tui+1 + 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)−

∑
j>ui,j /∈Sui+1

pj −
∑

j∈Pi pj

≥ 2rsi+1 + 2L(τui+1,ui)− 2|lsi+1 |+ 2
∑

1≤j≤ui+1,j /∈Sui+1
pj − L(τui+1,ui)

−
∑

j>ui,j /∈Sui+1
pj −

∑
j∈Pi pj

≥ 2rsi+1 + L(τui+1,ui)− 2|lsi+1 | −
∑

j∈Pi pj

≥ 2rsi+1 −
∑

j∈Pi pj .

According to Lemma 7, rsi+1 ≥ Copt(ui), we conclude tui+1,ui ≥ 2Copt(ui)−
∑

j∈Pi pj .

Lemma 9. The WOGI-PC server returns to the origin for the ith time before 2Copt(ui)−∑
j∈Pi pj.

Proof. We use induction on i to prove this lemma. It is trivially true for i = 0.

Consider i. By induction, the server finishes his (i − 1)th trip before 2Copt(ui−1) −∑
j∈Pi−1

pj . According to Lemma 8, 2Copt(ui−1)−
∑

j∈Pi−1
pj ≤ tui,ui−1 . Thus, the WOGI-

PC server is at the origin at max{tui,ui−1 , Copt(ui)}. According to Step 2, he leaves the

origin for the ith time at exactly max{tui,ui−1 , Copt(ui)}. Based on which of the two is

larger, we have two cases:

1. If tui,ui−1 ≥ Copt(ui), then the WOGI-PC server will take the shortcut τui+1,ui , and

arrive at the origin at time tui,ui−1 + L(τui+1,ui) = 2Copt(ui) −
∑

ui−1<j≤ui,j /∈Sui
pj −∑

j∈Pi−1
pj ≤ 2Copt(ui) −

∑
j∈Pi pj . The last inequality is due to Pi ⊂ Pi−1 ∪ {j :

ui−1 < j ≤ ui, j /∈ Sui}.

2. If tui,ui−1 < Copt(ui), then the server will follow τui , and arrive at the origin at time

Copt(ui) + L(τui) ≤ Copt(ui) + Tui = 2Copt(ui) −
∑

j /∈Sui
pj ≤ 2Copt(ui) −

∑
j∈Pi pj .

The last inequality is due to Pi ⊂ Scui , because τui pass through all requests in Sui .

Theorem 8. Algorithm WOGI-PC is 2-competitive for PCTSP.

Proof. Assume there are a total of m requests and the WOGI-PC server leaves and returns

to the origin i times. According to Lemma 9, after the ith trip, the server returns to

the origin before time 2Copt(ui) −
∑

j∈Pi pj and never leaves again. Therefore, total cost
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CWOGI−PC ≤ 2Copt(ui) −
∑

j∈Pi pj +
∑

j∈Pi pj +
∑m

j=ui+1 pj = 2Copt(ui) +
∑m

j=ui+1 pj .

Since the WOGI-PC server does not leaves the origin afterwards, ∀ui + 1 ≤ j ≤ m, j /∈ Sm.

Thus, CWOGI−PC ≤ 2Copt(ui) +
∑m

j=ui+1 pj = 2Copt(m)−
∑m

j=ui+1 pj ≤ 2Copt(m).

Similarly, assume there is a blackbox that provides ρ-approximation offline solution for

PCTSP. Replacing the blackbox in WOGI-apx by an approximation blackbox for PCTSP

results in algorithm WOGI-PC-apx.

Algorithm 4 (WOGI-PC-apx).

0. Initialization: counter i = 0, u0 = 0, and P0 = ∅.

1. Assume k requests have been released. If
∑k

i=1wi ≥ Wmin and S̃k ⊂ {1, .., ui}, wait

for the next released request, and go to Step 1; otherwise, go to Step 2.

2. Assume k requests have been released, the WOGI-PC-apx server waits until max{C̃apx(k), tk,ui},

where tk,ui
.
= 2C̃apx(k) − L(τ̃k,ui) −

∑
j>ui,j /∈S̃k pj −

∑
j∈Pi pj. If a new request is re-

leased during the waiting time, go to Step 1; otherwise, update ui+1 = k, i = i + 1,

and go to Step 3.

3. The WOGI-PC-apx server takes one of the two routes and ignores all new requests

before reaching back the origin:

3a. If tui,ui−1 ≥ C̃apx(ui), he follows the WOGI-PC-apx shortcut τ̃ui,ui−1. After

finishing the route, go to Step 4.

3b. If tui,ui−1 < C̃apx(ui), he follows τ̃ui. After finishing the route, go to Step 4.

4. Update Pi+1. i = i+ 1. Go to Step 1.

For simplicity, let us assume that there exists at least a feasible offline solution. Similar

to the argument for the WOGI-PC algorithm, the WOGI-PC-apx algorithm also provides

a feasible online solution.

Lemma 10. ∀i ≥ 1, rsi+1 ≥ C̃apx(ui).

Proof. Let t be the time when the WOGI-PC-apx server leaves the origin for the ith time.

According to Step 2, t ≥ C̃apx(ui). On the other hand, at time t, only ui requests are

released. Thus, ∀j > ui, rj ≥ t ≥ C̃apx(ui). In particular, it is true for j = si+1 > ui.
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Lemma 11. ∀i ≥ 1, tui+1,ui ≥ 2C̃apx(ui)−
∑

j∈Pi pj.

Proof. The offline server cannot visit request si+1 before its release time rsi+1 . Thus, T̃ui+1 ≥

rsi+1 + L(τ̃ui+1,ui)− |lsi+1 |. Therefore,

tui+1,ui = 2C̃apx(ui+1)− L(τ̃ui+1,ui)−
∑

j>ui,j /∈S̃ui+1
pj −

∑
j∈Pi pj

= 2T̃ui+1 + 2
∑

1≤j≤ui+1,j /∈S̃ui+1
pj − L(τ̃ui+1,ui)−

∑
j>ui,j /∈S̃ui+1

pj −
∑

j∈Pi pj

≥ 2rsi+1 + 2L(τ̃ui+1,ui)− 2|lsi+1 |+ 2
∑

1≤j≤ui+1,j /∈S̃ui+1
pj − L(τ̃ui+1,ui)

−
∑

j>ui,j /∈S̃ui+1
pj −

∑
j∈Pi pj

≥ 2rsi+1 + L(τ̃ui+1,ui)− 2|lsi+1 | −
∑

j∈Pi pj

≥ 2rsi+1 −
∑

j∈Pi pj .

According to Lemma 11, rsi+1 ≥ C̃apx(ui), we conclude tui+1,ui ≥ 2C̃apx(ui)−
∑

j∈Pi pj .

Lemma 12. The WOGI-PC-apx server finishes his ith trip before 2C̃apx(ui)−
∑

j∈Pi pj.

Proof. We use induction on i to prove this lemma. It is trivially true for i = 0.

Consider i. By induction, the server finishes his (i − 1)th trip before 2C̃apx(ui−1) −∑
j∈Pi−1

pj . According to Lemma 11, 2C̃apx(ui−1)−
∑

j∈Pi−1
pj ≤ tui,ui−1 . Thus, the WOGI-

PC-apx server is at the origin at max{tui,ui−1 , C̃apx(ui)}. According to Step 2, he leaves

the origin for the ith time at exactly max{tui,ui−1 , C̃apx(ui)}. Based on which of the two is

larger, we have two cases:

1. If tui,ui−1 ≥ C̃apx(ui), then the WOGI-PC-apx server will take the shortcut τ̃ui+1,ui , and

arrive at the origin at time tui,ui−1 + L(τ̃ui+1,ui) = 2C̃apx(ui) −
∑

ui−1<j≤ui,j /∈S̃ui
pj −∑

j∈Pi−1
pj ≤ 2C̃apx(ui) −

∑
j∈Pi pj . The last inequality is due to Pi ⊂ Pi−1 ∪ {j :

ui−1 < j ≤ ui, j /∈ S̃ui}.

2. If tui,ui−1 < C̃apx(ui), then the server will follow τ̃ui , and arrive at the origin at time

C̃apx +L(τ̃ui) ≤ C̃apx(ui) + T̃ui = 2C̃apx(ui)−
∑

j /∈S̃ui
pj ≤ 2C̃apx(ui)−

∑
j∈Pi pj . The

last inequality is due to Pi ⊂ S̃cui , because τui pass through all requests in S̃ui .

Theorem 9. Algorithm WOGI-PC-apx is 2ρ-competitive for PCTSP.
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Proof. Assume there are a total of m requests, and the WOGI-PC-apx server leaves and

returns to the origin i times. According to Lemma 12, after the ith trip, the server returns

to the origin before time 2C̃apx(ui)−
∑

l∈Pi pl and never leaves again. Therefore, total cost

CWOGI-PC-apx ≤ 2C̃apx(ui)−
∑

j∈Pi pj +
∑

j∈Pi pj +
∑m

j=ui+1 pj

= 2C̃apx(ui) +
∑m

j=ui+1 pj .

If ∀ui + 1 ≤ j ≤ m, j /∈ Sm, i.e. none of these requests are served in the optimal offline

solution, then Copt(m) = Copt(ui) +
∑m

j=ui+1 pj . Therefore,

CWOGI-PC-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj

≤ 2ρCopt(ui) +
∑m

j=ui+1 pj ≤ 2ρCopt(m).

If ∃ui + 1 ≤ j ≤ m, such that j ∈ Sm, then Copt(m) ≥ rj ≥ C̃apx(ui), where the last

inequality is due to Step 2 in the WOGI-PC-apx. Because of Step 1 of the algorithm,

C̃apx(m) = C̃apx(ui)+
∑m

j=ui+1 pj ≥ Copt(ui)+
∑m

j=ui+1 pj , we have ρCopt(m) ≥ C̃apx(m) ≥

Copt(ui) +
∑m

j=ui+1 pj . Therefore,

CWOGI-PC-apx ≤ 2C̃apx(ui) +
∑m

j=ui+1 pj

≤ (2− 1/ρ)C̃apx(ui) + Copt(ui) +
∑m

j=ui+1 pj

≤ (2− 1/ρ)Copt(m) + ρCopt(m)

≤ ρCopt(m) + ρCopt(m) = 2ρCopt(m).

From the discussion above, we can conclude that WOGI-PC-apx is 2ρ-competitive.

2.3.4 Multi-server generalization

The multi-server version of the problem is almost the same, except that there are multiple

servers and the final state is when all servers are idle at the origin:
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Online multi-server TSP with Rejection Options

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·). A series

of n requests represented by triples (li, ri, pi)1≤i≤n, where li ∈ M is the location (point

in metric space) of request i, ri ∈ R+ is its release date (first time after which it can be

served), and pi ∈ R+ is its penalty (for not being served). The problem begins at time

0; k servers are initially idle at the origin (initial state), can travel at unit speed (when

not idle), and eventually must be back and idle at the origin (final state). The earliest

time the server reaches this final state is called the makespan.

Offline context: The number of requests n is known to the offline server. All requests

are revealed to the offline servers at time 0.

Online context: The number of requests n is not known to the online server. Requests

are revealed to the online servers at their release dates ri ≥ 0; assume r1 ≤ r2 · · · ≤ rn.

There are two online versions:

Objective: In all cases, minimize {the makespan to serve all accepted requests plus the

total penalties of all rejected requests} among all feasible solutions.

Therkelsen [67] shows that multi-WOGI, a multi-server version of the WOGI algorithm

is 2-competitive.

2.4 The Real-time Version

In this section, we consider the real-time version of our online problem. The decision to

accept or reject a given request must be made immediately upon its arrival.

2.4.1 The case of the non-negative real-line R+

We first study the problem when the locations of the requests are all on the non-negative

real line, equipped with the traditional Euclidean distance. In that case, the notation for

the location of a request i, li, will also represent the distance from the origin to the point.

Lower bound on competitive ratios

Theorem 10. Any c-competitive online algorithm on R+ has c ≥ 2.5.
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Before proving the theorem, let us first present how we construct instances for Theorem 10.

The same idea is used for Theorem 12 later. A series of requests with small penalties with

the same location and almost the same release date are released until the online algorithm

accept one such request. The online algorithm then faces a dilemma on whether to accept

or reject such requests. On the one hand, accepting one such request too early may not be

beneficial, because the offline solution only pays a small amount of penalties while the online

solution must spend some time to visit the accepted request; on the other hand, accepting

one too late may not be beneficial either, because the offline solution can simply accept and

visit all these requests while the online solution must visit the accepted request and pay

a large amount of penalties for rejected ones. Such a dilemma leads to large competitive

ratios. In the proofs of Theorem 10 and Theorem 12, penalties, locations and release dates

are chosen carefully to take advantage of the dilemma.

Proof of Theorem 10. Assume that an online server follows a c-competitive online algo-

rithm, where c is a finite constant. Let c0 = 2.5 and ε be a small positive number. For

an arbitrary integer n, consider a series of up to n + 1 requests as follows: (li, ri, pi) =

(1, 1 + iε, 3/ci0) for 1 ≤ i ≤ n, and (ln+1, rn+1, pn+1) = (1, 1 + (n+ 1)ε,∞).

Let t0 be the time when the online server begins to move away from the origin for

the first time. If 0 ≤ t0 < r1, no request would be presented. As a result, CA > 0 and

Copt = 0, which contradicts with the assumption that algorithm A is finite competitive.

Thus, t0 ≥ r1. Since the last possible request has an infinite penalty, any finite competitive

online algorithm cannot reject all requests. Let request m(1 ≤ m ≤ n + 1) be the first

request that is accepted by A. After the online server accepts request m, no more request

is presented. We now consider two cases to compute the competitive ratio:

1. If m ≤ n, then the optimal solution is to reject all m requests. In this case, Copt(m) =∑m
i=1 pi =

3(cm0 −1)
(c0−1)cm0

, and CA(m) ≥ r1 + 2lm +
∑m−1

i=1 pi ≥
3(cm0 −1)

(c0−1)cm−1
0

. Thus, c ≥
CA(m)
Copt(m) = c0 = 2.5.

2. If m = n + 1, then the optimal solution is to accept all n + 1 requests. In this

case, Copt(n + 1) = rn+1 + ln+1 = 2 + (n + 1)ε, and CA(n + 1) ≥ r1 + 2ln+1 +∑n
i=1 pi = ε +

3(cn+1
0 −1)

(c0−1)cn0
. Using the fact that c0 = 2.5, ε +

3(cn+1
0 −1)

(c0−1)cn0
= ε + 5 − 2/cn0 .

Thus, c ≥ CA(n+1)
Copt(n+1) ≥

5−2/cn0 +ε
2+(n+1)ε . By letting ε = 1/(n + 1)2, and n → +∞, we have

5−2/cn0 +ε
2+(n+1)ε → 2.5. Thus, c ≥ 2.5.
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An optimal 2.5-competitive online algorithm

The algorithm we propose here is an extension of the “move right if necessary” (MRIN)

algorithm introduced in Blom et al. [21] for the online TSP without rejection options. The

acceptance/rejection decisions are based on the offline optimal solutions. Let us call this

algorithm the “estimate and move right if necessary” (EMRIN) algorithm:

Algorithm 5 (EMRIN).

1. Whenever a new request m comes, if m ∈ Sm, accept it; otherwise reject it.

2. If there is an accepted and unserved request on the right side of the server, move toward

it.

3. If there are no accepted and unserved requests on the right side of the server, move back

toward the origin. Upon reaching the origin, become idle.

First, let us show that the total penalty of rejected requests is not large:

Lemma 13. ∀m, Copt(m) ≥
∑

i≤m,i/∈Si pi.

Proof. We use induction on m. When m = 1, if 1 ∈ S1, Copt(1) ≥ 0 =
∑

i≤1,i/∈Si pi;

otherwise, Copt(1) = p1 =
∑

i≤1,i/∈Si pi. Therefore, the assertion is true. Assume now that

the assertion holds for m− 1, and let us consider m. If m ∈ Sm, Copt(m) ≥ Copt(m− 1) ≥∑
i≤m−1,i/∈Si pi =

∑
i≤m,i/∈Si pi; otherwise, Copt(m) = Copt(m− 1) + pn ≥

∑
i≤m−1,i/∈Si pi +

pm =
∑

i≤m,i/∈Si pi.

Then, let us prove our main result:

Theorem 11. Algorithm 5 (EMRIN) is 2.5-competitive, and thus best possible.

Proof. We will use induction on the number of released requests m. When m = 1, if

1 /∈ S1, CA(1) = Copt(1); otherwise, CA(1) = r1 + 2l1, Copt(1) = max{r1 + l1, 2l1}, and thus

CA(1)
Copt(1) ≤ 1.5. Assume now that the assertion holds for m− 1, and let us consider m:

1. If m /∈ Sm, CA(m) = CA(m−1)+pm ≤ 2.5Copt(m−1)+pm ≤ 2.5(Copt(m−1)+pm) =

2.5Copt(m). Thus, c ≤ 2.5.
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2. If m ∈ Sm, assume request k is the rightmost request that is accepted but not be served

at time rn; assume x is the position of the online server at rn.

2a. If x ≤ lk, because request k is an accepted and unserved request, the online

server has been moving right since time rk. Hence, the online server will return

to the origin at later than rk + 2lk. Therefore, CA(m) ≤ rk + 2lk +
∑

i≤m,i/∈Si pi.

Because k ∈ Sk, Copt(m) ≥ Copt(k) ≥ max{rk+ lk, 2lk}. As a result, we conclude

CA(m)
Copt(m) ≤

rk+lk
Copt(k) + lk

Copt(k) +

∑
i≤m,i/∈Si

pi

Copt(m) ≤ 1 + 0.5 + 1 = 2.5.

2b. If x ≥ lk, no extra time is needed to serve the last request, because it can be

served on the online’s way back to the origin. Thus, CA(m) = CA(m − 1) ≤

2.5Copt(m− 1) ≤ 2.5Copt(m).

2.4.2 The case of the real-line R

In this section, we study the problem when the locations of the requests are on the real

line, equipped with the traditional Euclidean distance. On the positive (“right”) side of the

line, the notation for the location of a request i, li, will also represent the distance from the

origin to the point. On the negative (“left”) side of the line, the location of a request i, li

will be given by a negative number, and the distance from the origin to the point will be

its absolute value |li|.

Lower bounds on competitive ratios

General lower bound

Theorem 12. Any c-competitive online algorithm on R has c ≥ 17+
√

17
8 ≈ 2.64.

Proof. Assume that an online server A follows a given c-competitive online algorithm. For

any given ε > 0, there exists N ∈ N, such that Nε > c(4+2ε), and there also exists M ∈ N,

such that 15c− 8 < εcM−1.

Again we use the idea mentioned in Section 2.4.1 to construct an example. In this

example, three series of requests are presented.

First, consider a series of up to N requests as follows: (li, ri, pi) = (1, 1 + iε
N , ε) for

1 ≤ i ≤ N . Note that A cannot reject them all. Otherwise, the cost will be Nε > c(4 + 2ε),
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while the optimal cost is at most 2 + ε, which is a contradiction. Assume the first request

accepted by A is n1. Truncate the first series: only the first n1 requests are presented.

Consider a second series of up to N requests as follows: (ln1+i, rn1+i, pn1+i) = (−1, 1 +

ε + iε
N , ε), for 1 ≤ i ≤ N . Note that A cannot reject them all. Otherwise, the cost will be

at least Nε > c(4 + 2ε), while the optimal cost is at most 4 + 2ε, which is a contradiction.

Assume the first request in this second series accepted by A is n1 +n2. Truncate the second

series: only the first n2 requests in the second series are presented. Let P1 = (n1 − 1)ε,

P2 = (n2 − 1)ε, a1 = min{2 + 2ε, P1 + ε}, and a2 = min{2 + 2ε, P2 + ε}.

At time 1+ε+ n2ε
N , A has two requests at ±1 to visit. Without loss of generality, assume

A is visiting 1 before visiting −1. Assume t0 is the first time when A is at the origin after

visiting 1. Note that the optimal cost is at most a1 + a2. In order to be c-competitive, we

have 3 ≤ t0 ≤ (c− 1)(a1 + a2)− 2 ≤ 5c− 2.

Consider a third series of up to M requests as follows: ln1+n2+i = t0 − 2, rn1+n2+i =

t0 + iε
M+1 , pn1+n2+i = max{0, 3t0−2−(c−1)(P1+P2)−(2c+1)ε

ci
}, for 1 ≤ i ≤ M . We claim that A

has to reject all these M requests. Otherwise, assume the first one accepted is n1 +n2 +m;

then truncate the third series so that only the first m requests in the third series are

presented. The online server’s cost is at least 3t0 − 2 + P1 + P2 +
∑m−1

i=1 pn1+n2+i ≥ c(a1 +

a2 +
∑m

i=1 pn1+n2+i) + ε, while optimal cost is at most a1 + a2 +
∑m

i=1 pn1+n2+i, which is a

contradiction.

Then, we present the last request (ln1+n2+M+1, rM+1+n1+n2 , pM+1+n1+n2) = (t0−2, t0 +

ε,∞). Because of its infinite penalty, A has to accept this request. Thus, online server’s cost

is at least 3t0−2+P1+P2+
∑M

i=1 pi+n1+n2 . Noting that
∑M

i=1 pi+n1+n2 = p1+n1+n2

∑M
i=1

1
ci−1 =

c
c−1p1+n1+n2 −

p1+n1+n2

cM−cM−1 , p1+n1+n2 ≤ 3t0 − 2 ≤ 15c− 8, cM − cM−1 > cM−1, and 15c− 8 <

cM−1ε, we then have ≥ 3t0 − 2 + P1 + P2 + 3t0−2−(2c+1)ε
c−1 − (P1 + P2)− ε = c(3t0−2)

c−1 − 3cε
c−1 .

The optimal cost is at most 2t0 − 2 + ε. Consequently, c · (2t0 − 2 + ε) ≥ c(3t0−2)
c−1 − 3cε

c−1 ⇒

2c− 4− (c+ 2)ε ≤ (2c− 5)t0 ≤ (2c− 5)((c− 1)(a1 + a2)− 2) ≤ (2c− 5)(4c+ (4c4)ε)− 6.

By letting ε→ 0, we conclude 2c− 4 ≤ (2c− 5)(4c− 6)⇒ c ≥ 17+
√

17
8 .

Lower bound on a restricted family of online algorithms

Theorem 13. Any c-competitive online algorithm on R that accepts request i if and only

if i ∈ Si has c ≥
√

33+27
12 ≈ 2.73.

Proof. Assume that an online server follows a c-competitive online algorithm A that accepts
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request i if and only if i ∈ Si . Let ε be an arbitrary small positive number. Consider a

series of up to 6 requests as follows: (l, r, p) = (0, 1, 1−ε), (0, 1+ε,∞), (−1, 1+2ε, 1), (1, 1+

3ε, 1), (−1, 1 + 4ε, 4ε), (1, 1 + 5ε, 6ε). The online server will accept the 2nd, 5th and 6th

request, and he has to visit ±1. Without loss of generality, assume the server visits 1

before visiting −1, and time 3 + a is the first time that he is at the origin after visiting

1. It is easy to see a ≥ 0. If no more request is presented, the online cost is at least

8 + a and the optimal cost is 3. Then, if necessary, present two more requests at 1 + a,

(l, r, p) = (1+a, 3+a, 1+a−100ε), (1+a, 3+a+ε, 1000ε). The online server will accept the 8th

and reject the 7th request. So, the online cost will be at least 11+5a, while the optimal cost

will be 4 + 2a. Consequently, competitive ratio c ≥ max{11+5a
4+2a ,

8+a
3 } ≥

√
33+27
12 ≈ 2.73.

A 3-competitive online algorithm

This algorithm uses a different offline subroutine, hereafter called black box 2, that solves

a variant of the offline problem where the server starts initially at a point x that may be

different from the origin.

Algorithm 6 (ReOpt).

1. Whenever a new request m comes, if m ∈ Sm, then accept it; otherwise, reject it.

2. At any time when a new request is accepted, reoptimize (using black box 2) and follow

the corresponding new optimal route to serve all accepted and unserved requests.

First, let us show that the total penalty of rejected requests is not very large. Consider

if only the first k requests are released, let Lk = min
1≤i≤k,i∈Sk

{li, 0} be the leftmost accepted

request and Rk = max
1≤i≤k,i∈Sk

{li, 0} be the rightmost accepted request. Then,

Lemma 14. If k ∈ Sk and lk < 0, then ∀l ∈ (lk, 0],
∑

i:li<l
pi ≥ l − lk.

Proof. Consider the route τk that the offline server follows if only the first k requests are

released. Let τk(t) be the server’s position at time t. Assume that request k is served at

time t0(≥ rk). Let t1 = max{t : τk(t) = l, t < t0} and t2 = min{t : τk(t) = l, t > t0}.

Consider another feasible solution:

τ ′k(t) =


τk(t), t ≤ t1

l, t1 < t ≤ t0

τk(t− (t2 − t0)), t ≥ t0

.
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Since both solutions have the same motion before t1, all requests served by τk before t1 are

also served by the new solution. Furthermore, because the interval covered by τk after t2 is

also covered by τ ′k after t0 and all the first k requests are released before t0, every request

that is served by τk after t2 will be served by τ ′k. Therefore, all requests served by τk but

not by τ ′k are served by τk between t1 and t2. Because of the definition of t1 and t2, all those

requests are located beyond l. Thus, τk saves at most
∑

i:li<l
pi on penalties and spends

t2− t0 more units of time on traveling. From τk, we have
∑

i:li<l
pi ≥ t2− t0 ≥ l− lk, where

the last inequality is due to the unit speed of the offline server.

By symmetry, we also have:

Lemma 15. If k ∈ Sk and lk > 0, then ∀l ∈ [0.lk),
∑

i:li>l
pi ≥ lk − l.

Then we are ready to prove the competitive ratio of ReOpt:

Theorem 14. Algorithm 6 (ReOpt) is 3-competitive.

Proof. Assume n requests are released:

1. If n ∈ Sn. Both the online and offline servers accept request n. Let Lon = min{0, li : i ∈

Si} be the leftmost request accepted by the online server, Ron = max{0, li : i ∈ Si}

be the rightmost request accepted by the online server, Loff = min{0, li : i ∈ Sn} be

the leftmost request accepted by the offline server, and Roff = max{0, li : i ∈ Sn} be

the rightmost request accepted by the offline server. From the description of ReOpt,

the online server never moves beyond interval [Lon, Ron]. Therefore, the online server

serves all accepted requests and returns to the origin no later than rn − 2Lon + 2Ron.

Thus,

CReOpt(n) ≤ rn − 2Lon + 2Ron +
∑

i≤n,i/∈Si pi

≤ rn + (−2Loff + 2
∑

i:li<Loff
pi) + (2Roff + 2

∑
i:li>Roff

) +
∑

i≤n,i/∈Si pi

≤ (rn +
∑

i/∈Sn pi) + (2Roff − 2Loff +
∑

i/∈Sn pi) +
∑

i≤n,i/∈Si pi

≤ 3Copt(n).

2. If ∀i ∈ {1, 2, · · · , n}, i /∈ Si, then CReOpt(n) =
∑n

i=1 pi = Copt(n).

3. Assume m is the last request such that m ∈ Sm. According to Case 1, CReOpt(m) ≤

3Copt(m). So, CReOpt(n) = CReOpt(m) +
∑n

i=m+1 pi ≤ 3Copt(m) +
∑n

i=m+1 pi ≤

3(Copt(m) +
∑n

i=m+1 pi) = 3Copt(n).
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Note that 3 is a tight competitive ratio for ReOpt as the following example illustrates.

Let ε be an arbitrarily small positive number, k be an arbitrary large integer, and let the

instance consist of the following 2k + 3 requests: (l1, r1, p1) = (1, 0, 2 − 1/k), (l2, r2, p2) =

(−2/k, ε/k,∞), (l3, r3, p3) = (1, 1/k,∞), (li, ri, pi) = (−2/k, (i − 1)/k,∞), 4 ≤ i ≤ 2k + 3.

It is easy to check that CReOpt = 6 + 4/k and Copt = 2 + 4/k. By letting k →∞, we have

c ≥ 3.

2.4.3 The case of general metric spaces

In this subsection, we first construct a series of special metric spaces, for which we prove that

there are no online algorithms with a constant competitive ratio, and show a Ω(
√

lnn) lower

bound on any competitive ratios (where n is the number of requests in the given instance of

the problem). Then, among the restricted class of online algorithms with prior knowledge

about the total number of requests n, we propose one which is O(
√

lnn)-competitive; hence,

asymptotically best possible among that class.

Lower bound on competitive ratios

Splitting operation: Such an operation on an edge AB of length l consists in splitting it

into countably infinite many copies, each represented by a middle points {Ci}i∈N such that:

each Ci satisfies: ACi = BCi = l/2; and any path from one middle point Ci1 to another

middle point Ci2 must pass through either A or B.

BA

C1

C2

C3

C4

l/2

l/2

l/2

l/2

l/2

l/2

l/2

l/2

Figure 2-2: Splitting Operation

The metric spaces {Mj}j∈N: The spaces {Mj}j∈N are created iteratively by the split-

ting operation described above. Given one spaceMj , we split each of its edge into countably

53



infinite many copies to create Mj+1:

• M0: A line segment A0A1 of length 1.

• M1: Split A0A1 into copies with middle points A1/2,i1 .

• M2:

– For every i1, split A0A1/2,i1 into copies with middle points A1/4,i1i2 (Here the

part before the comma indicates the point’s distance from A0. The part after

the comma indicates its location, e.g. A1/4,11 is a middle point of A0A1/2,1, but

d(A1/4,11, A1/2,2) 6= 1/4.);

– For every i1, split A1/2,i1A1 into copies with middle points A3/4,i1i2 ;

• etc, ...

A1A0

A1/2,1

A1/2,2

A1/4,11

A1/4,12

A1/4,21

A1/4,22

A3/4,11

A3/4,12

A3/4,21

A3/4,22

Figure 2-3: An illustration of M2

A point is called α-point if its distance from A0 is α. For instance, A1/2,i1 are all 1/2-points

and A3/4,i1i2 are all 3/4-points. Let V0 = {A0, A1} and Vj be the set of middle points

created when creating the spaceMj . For example, V2 = {A1/4,i1i2 , A3/4,i1i2 |∀i1, i2}. By the

construction of the spaces and the splitting operations, the distance between two nearest

points in Vj is 1/2j−1, and the distance between Vj and Vj−1 is 1/2j .

Proof of unbounded competitive ratio: In order to present requests one by one to the

online server, the release dates of all successive requests should be different. However, for

simplicity in the exposition of our proofs, all release dates are set to be 0. Simply assume that
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the online server is given each request one by one, and has to make an acceptance/rejection

decision before the next one is revealed. (Formally one could instead assume that for all

i ≥ 1, ri = iε, where ε is an arbitrarily small positive number.)

Theorem 15. For any m ∈ N , there is no algorithm with a competitive ratio less than

m− 1.

Proof. Consider the following instance defined on the metric space M2m2 . The online

server is at A0 initially. First, two requests with infinite penalties are released at A0 and

A1. Then requests with penalties 1/m are released one by one at 1/2-points {A1/2,i1} until

the online server rejects one of them. We will later show that this is well defined, i.e.

the online server must reject one such request. Assume he accepts A1/2,1, · · · , A1/2,a1−1

and rejects A1/2,a1
. Then, release requests with penalties 1/(2m) at 1/4-th points A1/4,a1i2

until the online server rejects one (again our formal proof shows that this is a well defined

stopping criteria), and at 3/4-th point A3/4,a1i2 until the online server rejects one. Repeat

this procedure at 1/8, 3/8, 5/8, 7/8, ..., 1/22m2
, ..., (22m2 − 1)/22m2

-points. The penalty of

a request at a point in Vj is 1/(2j−1m). First, let us show that requests accepted by the

online server are not close to each other:

Lemma 16. Consider any two requests that are accepted by the online server. Assume that

one request is at a point in Vj1 and the other is at a point to Vj2 (j1 and j2 may or may not

be different). Then, the distance between those two requests is at least 1/2j1 + 1/2j2.

Proof. Because of the way the instance and the metric spaces are constructed, any path from

one request to the other must pass through a point in set Vmin{j1,j2}−1. Since the distance

between Vj1 and Vmin{j1,j2}−1 is 1/2j1 and the distance between Vj2 and Vmin{j1,j2}−1 is

1/2j2 , the distance between these two requests is at least 1/2j1 + 1/2j2 .

Lemma 16, combined with the fact that any request at a point in Vj has a penalty 1/(2j−1m),

indicates that the distance between two requests accepted by the online server is at least

m/2 times the sum of the penalties of the two requests. Therefore, if the total penalty of

requests accepted by the online server is P , the online server must travel at least mP units

of time to serve all of them. Then, let us show that the instance is well defined, i.e. the

online server cannot accept all requests:
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Lemma 17. Assume the online algorithm is (m − 1)-competitive. For any 1 ≤ j ≤ 2m2,

let kj be the total number of requests at points in Vj that are accepted by the online server.

Then, kj ≤ m22j.

Proof. Assume there exists j such that kj > m22j . Consider the instance in which no

request at points in
⋃2m2

i=j+1 Vi is presented. We will show that the algorithm is worse than

(m− 1)-competitive for the instance.

First, let us consider the cost of the online server. Since the total penalty of accepted

requests is
∑j

i=1 ki/(2
i−1m), from the discussion above, the online server must spend at

least
∑j

i=1 ki/2
i units of time serving these requests. Because for each 1 ≤ i ≤ j the total

penalty of rejected requests at points in Vi is 1/m, the total penalty of rejected requests is

j/m. Thus, the online cost is
∑j

i=1 ki/2
i−1 + j/m.

Then, let us consider a feasible solution B and its cost. Requests rejected by the online

server are accepted and requests accepted by the online server are rejected. Noting a

carefully chosen shortest path from A0 to A1 passes through all requests rejected by the

online server, the new feasible solution spends 2 units of time to visit these rejected requests.

Thus, CB =
∑j

i=1 ki/(2
i−1m) + 2.

Since the online algorithm is (m−1)-competitive, Conline ≤ (m−1)COPT ≤ (m−1)CB.

Thus, kj/(2
j−1m) ≤

∑j
i=1 ki/(2

i−1m) + j/m ≤ 2(m − 1) < 2m, which implies kj ≤ m22j .

Contradict with our assumption.

We are now ready to finish the prove Theorem 15. According to the proof of Lemma 17, the

online cost is at least
∑2m2

i=1 kj/2
i−1 + 2m; there exists a feasible solution B whose cost CB

is
∑2m2

i=1 ki/(2
i−1m) + 2. However, Conline ≥ mCB ≥ mCOPT . Thus, the online algorithm

is not (m− 1)-competitive.

Asymptotic lower bound: From the detailed proof of Theorem 15, at most m22j re-

quests are presented at points in Vj . At most n ≤ m222m2
requests make any online

algorithm worse than (m− 1)-competitive. In other words, we have showed:

Theorem 16. Any c-competitive online algorithm on an instance with n requests must have

c ≥ Ω(
√

lnn), even assuming n is given in advance.
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Best possible O(
√

lnn)-competitive algorithm

The algorithm proposed in this section requires a priori knowledge on the total number of

requests. It is not clear that there exists an algorithm that achieves the same competitive

ratio without such a knowledge.

For the simplicity of the algorithm and its analysis, we would like to consider problems

without release dates. All requests arrive in sequence. The online algorithm must accept or

reject a request before seeing the next. After making all the decisions, the online algorithm

then decides how to serve all accepted requests. We argue that removing release dates (but

preserving the order) only changes competitive ratios by at most 2:

Lemma 18. Given an online algorithm A that is designed to solve the instances with all

release dates 0(but still have to make decisions sequentially before knowing future requests), it

can be transformed to another online algorithm A′, such that for any instance I,
CA′(I)

COPT (I)
≤

CA(I ′)

COPT (I ′)
+ 2, where I ′ is almost the same instance as I, the only difference is all release

dates are 0 in I ′, but the order of requests remains.

Proof. Consider the following algorithm A′:

Whenever a new request m comes, the server applies algorithm A on the in-

stance consisting of first m requests with release dates all zeros, to make an

accept/reject decision for the new request. If he accepts the new one, he goes

back to the origin and then follows the newly computed route; otherwise, he

just continues his current route.

Assume for instance I, ρ =
CA′ (I)
COPT (I) and the last request accepted by offline server is request

m. According to the construction, the online server will go back to the origin at time rm

and then follows his last route. Note that at time rm, the server is at most rm units of

distance away from the origin, thus, CA′(I) ≤ rm+rm+CA(I ′) ≤ 2COPT (I)+ρCOPT (I ′) ≤

(2 + ρ)COPT (I).

As mentioned in Section 2.4.1, accepting a request at a faraway location with a small penalty

may not be beneficial; however, if many requests with small penalties are close to each other,

it may be beneficial to accept them. Let us first define the concept of distance for a group

of requests:
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Definition 1. Given a set U of requests and a route τ , define T (U, τ) as the shortest time

to visit all requests in U along τ if τ passes all requests in U ; otherwise, define as ∞.

According to the definition, a server can begin at any request in U , visit all the other

requests in U , and then go back to its initial position within 2T (U, τ) units of time. A

group of requests that are close and have a large overall penalty may be beneficial to visit.

More formally,

Definition 2. If τ passes all requests in U , given any nonempty subset of U : {i1, i2, ..., ik},

there exists a division of U =
⋃k
l=1 Il, such that ikl ∈ Il,∀l = 1, ..., k, and

∑k
l=1 T (Il, τ) ≤

√
lnn(

∑
i∈U pi −

∑k
l=1 pil), then we call τ a good route to visit U .

We are now ready to present our algorithm. It consists of two stages: decision making and

route traversing. In the decision making stage, decisions to accept or reject requests are

made one by one. At the end of step k, Pk ⊂ {1, ..., k} is the set of requests that have not

been selected for a visit so far, and Vk = {1, ..., k}\Q is the set of requests to be visited

(i.e. those who have been accepted, and those who have been rejected but will be served

anyway). Every request i receives a label bi during the decision making stage, which will

be used for construct a route later. i > bi indicates request i is accepted by the online

algorithm; bi < i <∞ indicates request i is rejected but visited; bi =∞ indicates request i

is rejected and not visited.

DECISION MAKING:

0. Initialization. P0 = ∅, V0 = {0}, and k = 1.

1. Request k is accepted if and only if there exists a subset Qk ⊂ Pk−1 and a good route

µk to visit Qk ∪ {k}, such that T (Qk ∪ {k}, µk) + d(Qk ∪ {k}, Vk−1) ≤ (
∑

i∈Qk pi +

pk)
√

lnn.

2. If request k is accepted, assume j ∈ Vk−1 satisfies d(Qk∪{k}, j) = d(Qk∪{k}, Vk−1).

Update Pk = Pk−1\Qk, Vk = Vk−1 ∪ {k} ∪Qk update labels: bk = j and bi = k for

all i ∈ Qk.

3. If request k is rejected, update Pk = Pk−1 ∪ {k}, Vk = Vk−1, and bk =∞.

4. k = k + 1. Go to Step 1.
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Let Sa be the subset of requests accepted by the online algorithm. After making ac-

cept/reject decisions, a route is constructed iteratively, based on the information gathered in

the DECISION MAKING stage. Traveling along the route, the online server visits requests

in Sa and in Vn:

ROUTE CONSTRUCTION:

0. Initialization. τ̃0 = τn, and k = 1.

1. If k ∈ Sa and τ̃k−1 covers at least one request in Qk∪{k}, let requests ci1 , ci2 , · · · , ciw
be all the requests in Qk ∪ {k} that are covered by τ̃k−1. Find the division of

Qk ∪ {k} =
w⋃
t=1

It that satisfies the condition in the definition of good routes.

Construct τ̃k as follows, it is the same as τ̃k−1 except for w detours: when arriving

at request cit , (1 ≤ t ≤ w), follow the shortest route to visit It, go back to cit , and

then continue to follow τ̃k−1.

2. If k ∈ Sa and τ does not cover any request in Qk ∪ {k}, construct τ̃k as follows: it

is the same as τ̃k−1 except for a detour: when arriving at request bk, follow the

shortest route to visit all the requests in Qk, go back to bk, and then continue to

follow τ̃k−1.

3. If k /∈ Sa, τ̃k = τ̃k−1.

4. k = k + 1. Go to Step 1.

The cost of the resulting solution comes from two parts: the penalties of rejected requests

and the time to visit requests. We will provide upper bounds for both parts. First, let us

consider the penalty part. Let W be the set of requests that are accepted by the optimal

offline solution, but rejected by the online solution. Following is a upper bound for penalties

of requests in W :

Lemma 19.
∑

k∈W pk ≤ (2
√

lnn+ 1)Copt(n).
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Proof. We divide requests in W into some subsets by the following algorithm:

0. Initialization: W1 = W,k = 1.

1. Divide all requests in Wk into mk subsets, such that each subset consists of one or

several successive requests, in every subset Ajk(1 ≤ j ≤ mk), the largest index is

smaller than the smallest label, and τn is a good route to visit Ajk. The division

has the fewest subsets among all possible divisions.

2. If mk ≤ 1, terminate; otherwise, go to Step 3.

3. Let Bk = {j|
∑

i∈Ajk
pi ≥ max{

∑
i∈Aj−1

k
pi,
∑

i∈Aj+1
k

pi}}. Let Wk+1 =
⋃
j∈Bk A

j
k.

4. Update k = k + 1. Go to step 1.

We first show the existence of divisions that satisfy the requirements in Step 1: a trivial

division consists of |Wk| singletons. Thus, this algorithm is well defined. Noting that⋃
j∈Bk A

j
k is also a feasible division of Wk+1, from the minimum number of subsets, we have

mk+1 ≤ |Bk| ≤ mk/2. Furthermore, because m1 ≤ |W | ≤ n, the algorithm terminates after

at most lnn iterations. Let K be the number of iterations before termination.

We then consider any two adjacent subset Ajk and Aj+1
k in iteration k < K. We will

show that T (Ajk ∪A
j+1
k , τn) ≥

√
lnnmin{

∑
i∈Ajk

pi,
∑

i∈Aj+1
k

pi}. Without loss of generality,

let us assume max
i∈Ajk

i < max
i∈Aj+1

k
i. Consider min

i∈Ajk
bi:

1. If min
i∈Ajk

bi < max
i∈Aj+1

k
i, let z = arg min

i∈Ajk
bi. When request max

i∈Aj+1
k

i is re-

leased, all requests in Aj+1
k are released and not covered by τ , and z is covered by τ .

Noting that τn is a good route to visit Aj+1
k , we have

∑
i∈Aj+1

k
pi
√

lnn < T (Aj+1
k , τn)+

d(Aj+1
k , z); or request max

i∈Aj+1
k

i will be accepted. Therefore, T (Ajk ∪ A
j+1
k , τn) ≥

T (Aj+1
k , τn) + d(Aj+1

k , z) >
∑

i∈Aj+1
k

pi
√

lnn.

2. If min
i∈Ajk

bi < max
i∈Aj+1

k
i, then τ is not a good route to visit Ajk ∪ A

j+1
k ; otherwise,

the two subsets can be merged to one. According to the definition of good routes ,we

can show that T (Ajk ∪A
j+1
k , τn) ≥ min{

∑
i∈Ajk

pi
√

lnn,
∑

i∈Aj+1
k

pi
√

lnn}.
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From the above inequality, we have

2Copt(n) ≥
∑mk

j=1 T (Ajk ∪A
j+1
k , τn)

≥
∑mk

j=1 min{
∑

i∈Ajk
pi
√

lnn,
∑

i∈Aj+1
k

pi
√

lnn}

≥
∑

j /∈Bk
∑

i∈Ajk
pi
√

lnn

=
∑

i∈Wk\Wk+1
pi
√

lnn

In the last iteration, from the requirement of divisions, mini∈WK
bi ≥ maxi∈WK

i. Hence

when request maxi∈WK
i is revealed, all requests in WK are still in Pmaxi∈WK i−1. On the

other hand, request maxi∈WK
i is not accepted. Combined with the fact that τn is a good

route to visit WK , we have Copt(n) ≥
∑

i∈WK
pi
√

lnn.

By summing these inequalities up, we conclude
∑

k∈W pk ≤ (2
√

lnn+ 1)Copt(n).

Consider now the route τ̃n that visits all requests in Vn. We have a corresponding lemma:

Lemma 20. L(τ̃n) ≤ (2
√

lnn+ 1)Copt(n).

Proof. Let us establish the upper bound L(τ̃n) by considering L(τ̃k) −  L(τ̃k−1) for all 1 ≤

k ≤ n:

1. If k ∈ Sa and τ̃k−1 passes at least one request in Qk ∪ {k}, then according to the

definition of good route, L(τ̃k)− L(τ̃k−1) ≤ 2
√

lnn
∑

t∈Qk∪{k}\Sn pt.

2. If k ∈ Sa and τ̃k−1 does not cover any request in Qk ∪ {k}, then L(τ̃k) − L(τ̃k−1) ≤

2T (Qk∪{k}, µk)+2d(Qk∪{k}, Rk−1) ≤ 2
√

lnn
∑

t∈Qk∪{k} pt ≤ 2
√

lnn
∑

t∈Qk∪{k}\Sn pt.

3. If k /∈ Sa, then L(τ̃k) = L(τ̃k−1).

Since every request in Rn belongs to at most one of Qi, by summing these inequalities

up, we have L(τ̃n) ≤ L(τn) + 2
√

lnn
∑

t∈Rn pt ≤ (2
√

lnn+ 1)Copt(n).

After providing upper bounds on both parts, we can now conclude:

Theorem 17. The algorithm is O(
√

lnn)-competitive.

Proof. Since the requests rejected by the online server are in Rn ∪W ,

Con(n) ≤
∑

i∈Rn pi +
∑

i∈W pi + L(τ̃n)

≤ Copt(n) + (2
√

lnn+ 1)Copt(n) + (2
√

lnn+ 1)Copt(n)

= (4
√

lnn+ 3)Copt(n).
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Therefore, the algorithm is O(
√

lnn)-competitive.
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Chapter 3

Generalized Online Assignment

Problems

3.1 Introduction

In this chapter, we consider a generalized online assignment problem,whose introduction is

motivated in part by the consideration of several applications arising within the internet

(e.g., sponsored search auctions, load balancing and distributed caching in content-delivery

networks, on demand video/movie requests, etc.) with the following inherent basic charac-

teristics:

• a set of N buyers each interested in purchasing items from a set of K object types;

• items arrive one by one (as “requests”) and their types become known upon their

arrivals only;

• an “operating” entity is managing one key resource (e.g., bandwidth, cpu, web page

size, etc.) essential for enabling the desired transactions (both matching a request to

a buyer and allowing its “consumption”);

• buyer i is willing to pay (the operating entity) an amount fik for getting a request of

type k;

• buyer i has a total available budget ai;

• all items of object type k can use up to a total of bk amount of dedicated resources

from the operating entity;

• when one unit of object type k is assigned to buyer i, it consumes sik amount of

resources away from bk;
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• upon the arrival of any request, the operating entity must either turn down the request

(due to lack of feasibility or possibly lack of economic attractiveness), or allocate it to

one buyer. In the latter case, it receives a revenue corresponding to the fee that this

buyer was willing to pay;

• taking the perspective of the operating entity, the goal is to assign requests to buyers

so as to maximize the total revenue of the operating entity, while respecting the various

constraints.

These characteristics are relevant for modeling many other applications in various settings

such as in finance (e.g., execution over time of buying or selling very large orders in a volatile

and unpredictable real-time market), yield management (e.g., room allocation in hotels, seat

allocation in airlines, trains), online auctions (e.g., many key processes underlying operations

such as those from eBay), to name just a few examples.

3.1.1 Formal problem definitions

Instance: N buyers, each buyer i with a budget ai, and K distinct request types,

each type k with a capacity bk. Each buyer i specifies a price fik for a request of type

k, and each request of type k leads to a resource consumption of sik for buyer i. A

sequence of requests (index by j) arrive online, and the type of a request is revealed at

its arrival. Every request can be assigned to at most one buyer.

Offline context: All the information (number and types of requests) is known before

assigning requests.

Online context: No information on the total number of requests M and on the types

of future requests j + 1, j + 2, ...,M is known when assigning request j.

Objective: To maximize the total revenue while respecting the budget and capacity

constraints.

Special cases:

• If ai = bk = fik = sik = 1, the problem reduces to an online bipartite matching

problem as defined in [50]. We will consider the problem in Chapter 4.

• If there are (i) budget constraints, (ii) no resource capacity constraints (i.e., either

sik = 0 for all i, k, or bk = ∞ for all k), the problem reduces to the initial basic

adwords problem as defined in [59, 30]. We will consider the problem in Chapter 5.
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• If fik = sik, ∀(i, k), we will say that we have an homogeneous case of the generalized

online assignment problem. In this chapter, we will mainly focus on this homogeneous

case.

We recall that for a maximization problem, an online algorithm is said to be r-competitive

(0 ≤ r ≤ 1) if, given any instance I of the problem, the cost of the solution given by the

online algorithm is no less than r multiplied by that of an optimal offline algorithm:

Costonline(I) ≥ rCostoptimal(I), ∀ problem instances I.

The supremum over all r such that an online algorithm is r-competitive is called the com-

petitive ratio of the online maximization algorithm. An online algorithm is said to be best

possible if there does not exist another online algorithm with a strictly larger competitive

ratio.

3.1.2 Mathematical programming formulations

Note that for the offline version of the problem, it is the number of requests rather than the

order of requests that matters. Thus, the offline problem can be formulated as an integer

programming in a concise way:

Maximize:
∑
i,k

fikxik

Subject to:
∑
k

xik ≤ mk ∀j∑
k

fikxik ≤ ai ∀i∑
i
sikxik ≤ bk ∀k

xik ∈ N ∀i, k

(3.1)

where mk is the number of requests of type k, xik are decision variables that denote the

number of requests of type k assigned to bidder i.

However for the online version, the order of requests does matter, and thus an alternative

mathematical formulation of the offline problem, which keeps track of each request identity,

is more useful:
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Maximize:
∑
i,j,k

fikxijk

Subject to:
∑
i,k

xijk ≤ 1 ∀j∑
j,k

fikxijk ≤ ai ∀i∑
i,j
sikxijk ≤ bk ∀k

xijk = 0 ∀ request j not of type k

xijk ∈ {0, 1} ∀i, j

(3.2)

where xijk is 1 if request j is of type k and is assigned to buyer i, 0 otherwise. It is worth

noting that the offline problem is NP-hard, since it is no easier than the knapsack problem.

3.2 General Cases

3.2.1 Inhomogeneous cases

Intuitively, in order to maximize the revenue, we tend to assign a request to the bidder

who is willing to pay the most so that we get more revenue. On the other side, if there are

far more requests than the capacities, because of the capacity constraints, we would like to

use capacity more efficiently, i.e. make more money per unit of capacity. In short, a good

assignment will have both fik and fik/sik large. However, for problems in general where

there is no consistency on the relation between fik and sik, we may not able to make both

both fik and fik/sik large at the same time. In fact, we can show that any deterministic

algorithm can be arbitrarily bad for problems in general:

Theorem 18. ∀m ∈ N, no deterministic algorithm has a ratio ρ ≥ 2/m.

Proof. Assume Algorithm A is a 2/m-competitive deterministic algorithm.

Consider the following instance: there are m + 3 bidders and only 1 request type.

∀i ∈ {1, 2, · · · ,m + 3}, ai = ∞, fi1 = 1/mi−1, si1 = 1/m2i−2, b1 = m. There are m2J−1

requests, J ∈ {1, · · · ,m+2} to be determined by the adversary later depending on how the

online algorithm behaves.

∀j ∈ {1, 2, · · · ,m+ 2}, let xji be the numbers of requests assigned to bidder i after first

m2j−1 requests if applicable. Noting that, after first m2j−1 requests, the optimal revenue is

mj (all requests are assigned to bidder j). Thus, to keep the algorithm 2/m-competitive,
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revenue generated by Algorithm A should be at least 2mj−1, i.e.
j∑
i=1

xji
mi−1 + m2j−1 · 1

mj
≥

2mj−1, otherwise, we can find a contradiction by letting J = j. Because ∀i, x1
i ≤ x2

i ≤ · · · ≤

xm+2
i

.
= xi,

j∑
i=1

xi
mi−1 ≥ mj−1, we can conclude

m+2∑
i=1

xi
m2i−2 ≥ m+ (m− 1)/m. Contradiction

with capacity constraint.

One solution to this issue to make the revenue and the capacity usage consistent, namely

fik = sik,∀i, k.

3.2.2 Large bids

If the revenue or the capacity usage is large compared to the budgets and the capacities,

because of knapsack-like constraints, we can show that there is no non-trivial performance

guarantee for any deterministic algorithm:

Theorem 19. In general, any deterministic algorithm can be arbitrarily bad.

Proof. Consider an instance with only 1 bidder and 2 request types, with a1 = b1 = b2 = n,

f11 = s11 = 1, f12 = s12 = n. A request of type 1 comes first. If it is assigned (to bidder 1),

present another request of types. Note that at that time, the remaining budget is n−1, not

enough to pay for the second one. Therefore, online revenue is 1, while optimal revenue is n.

If the first request is not assigned, then no more request comes. In this case, online revenue

is 0 while optimal revenue is 1. From the discussion above, we can conclude ρ ≤ 1/n. Note

that n is a arbitrary integer, the algorithm can be arbitrarily bad.

As Theorem 19 indicates, there is no hope in finding an algorithm with a non-trivial

competitive ratio for those instances where bid prices are big compared to budgets and

capacities. Thus, we need to assume that the relative size of bid c = max
i,k
{max{fikai ,

fik
bk
}} is

small.

3.2.3 Assumptions on the model

As Theorem 18 and Theorem 19 show, in general, there are no algorithm with a non-trivial

competitive ratio. Thus, we must make some assumptions on the model to have meaningful

results. As discussed in Section 3.2.1 and 3.2.2, homogeneity assumption and small bid

assumption are necessary:

Homogeneity Assumption: fik = sik, ∀i, k.
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Small Bid Assumption: the relative size of bid c = max
i,k
{max{fikai ,

fik
bk
}} is small.

One thing worth noting is that those two assumptions are independent: the instance

constructed in the proof of Theorem 18 satisfies small bid assumption, and the one in

the proof of Theorem 19 satisfies homogeneity assumption. Therefore, we do need both

assumptions.

3.3 Special Cases

In this section, we will only consider the problems with homogeneity assumption and small

bid assumption. As we will show, under those two assumptions, there are deterministic

algorithms with non-trivial competitive ratios.

3.3.1 Upper bound

Theorem 20. No deterministic algorithm has a competitive ratio ρ > 1/2.

We construct an instance such that different bidders have very different valuation on

requests. The number of requests is determined by the adversary. The online algorithm

has to make a tradeoff between the short term revenue and the long term revenue. In the

short term, the algorithm tends to act greedily to keep its revenue not too little compared

to the optimal revenue. Thus, requests tends to be assigned to those bidders who is willing

to pay more. On the other hand, for the sake of long term, the algorithm tends to assign

requests evenly to leave enough flexibility for the future. As a result of this dilemma, any

deterministic algorithm can not do better than 1/2-competitive. The formal proof is given

as follows:

Proof. Consider the following instance: there are 2m bidders and 2m request types. ∀i, j, ai =

bj = n, fij = εi−1, where ε is a very small number such that nε << 1. There are M

groups of requests sequentially (within a group, the order of requests doesn’t matter),

M ∈ {1, · · · , 2m} to be determined by the adversary depending on how the online algo-

rithm behaves. In group k, there are requests of type 1, 2, · · · , k, and the number of type j

requests is nεj−k.

Assume there is a ρ-competitive algorithm. Assume in group k, the algorithm assigns

nxji,kε
1−i requests of type j to bidder i (i ≤ k + 1 − j), i.e. it gets nxji,k revenue from
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those requests. We assume we get nothing from assigning requests of type j to bidder i,

where i > k + 1 − j, since we can get at most nεk−jεi−1 ≤ nε which is neglectable by our

assumption.

We define following notations: ∀j ≤ k, x̄kj =
2m∑
l=k

xjk+1−j,l, āi =
2m−i+1∑
j=1

x̄i+j−1
j , b̄j =

2m∑
i=j

x̄ij ,

r̄l =
l∑

k=1

k∑
j=1

x̄kj . Here nx̄kj means the revenue gained from assigning requests of type j to

bidder k+1−j, nāi means the revenue gained from bidder i, nb̄j means the space used of type

j, nr̄l is a upper bound of the revenue gained from the first l groups. To ease the analysis,

we define two more notations: ∀2m ≥ k ≥ 2i + 1, σki = x̄k1 + · · · + x̄ki + x̄kk−i+1 + · · · + x̄kk,

σi =
2m∑

k=2i+1

σki .

Because of budget and capacity constraints, we have āi ≤ 1 and b̄j ≤ 1. It is easy to

see, if there are only first l groups presented, the optimal revenue is nl, while the online

revenue is at most nr̄l. Since the algorithm is ρ-competitive, we have r̄l ≥ lρ.

∀l ≤ m− 1, σl ≤
l∑

i=1
(āi + b̄i) +

l−1∑
i=1

σi+li − r̄2l−1 − r̄2l ≤ 2l − (4l − 1)ρ+
l−1∑
i=1

σi+li . Adding

all these m − 1 inequalities together, we then have
m−1∑
i=1

σi ≤ (m − 1)m − (m − 1)(2m −

1)ρ +
m−2∑
i=1

m−1+i∑
k=2i+1

σki ≤ (m − 1)m − (m − 1)(2m − 1)ρ +
m−2∑
i=1

σi, which implies σm−1 ≤

(m − 1)m − (m − 1)(2m − 1)ρ. Obviously σm−1 ≥ 0, which implies ρ ≤ m/(2m − 1). By

letting m→∞, we have ρ ≤ 1/2.

3.3.2 Greedy algorithm

One natural algorithm is the greedy algorithm, namely, it always assigns a request to the

bidder who can pay the most. Formally:

The Greedy Algorithm

0. Initialization, j=1.

1. Let k be the type of request j.

1a. Find argmaxi{fik > 0|fik ≤ min{ remaining budget of i, remaining capacity

of k}}. If there is no such i, then j is not assigned to anyone.

1b. Charge i, k fik units of money and capacity.

2. j=j+1. Go to 1.
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One good thing about homogeneous cases is that, for every request, the money earned

equals to the capacity used. Thus, we can transform the revenue in terms of one to another.

The idea to prove the competitive ratio of greedy algorithm is similar to the analysis of

applying the greedy algorithm to the simple bipartite matching problem. All bidders are

divided into two groups: A1, all those bidders who have little money available at the end;

and A2, all the other bidders. All request types are divided in a similar way: B1, all those

request types who have few capacity available at the end; and B2, all the other request

types. (We will give a more precise definition of those sets in the formal proof.) For a

request type in B2, given that the algorithm always does the assignment in a greedy way,

either all requests of that type are won by bidders in A2, or bidders in A2 are not willing to

pay a high price on that request type. In either way, capacity used of that request type in

B2 can be lower bounded in terms of money spend by bidders in A2 of the optimal solution.

On the other hand, capacity used of request type in B1 is close to the total capacity of

that type, which can easily be lower bounded by capacity used of that type of the optimal

solution. By doing some careful algebraic manipulation, we can conclude:

Theorem 21. Greedy algorithm is (1− c)/2-competitive, where c is the relative bid size.

To prove this theorem, we need some notations and some easy observations. Let fi. =

max
k

fik, f.k = max
i
fik, c = max{max

i

fi.
ai
,max

k

f.k
bk
}. A1 = {i ∈ A|remaining budget of i is less

than fi.}, B1 = {k ∈ B|remaining capacity of k is less than f.k}. A2 = A\A1, B2 = B\B1.

Let agi , b
g
k, a

opt
i , bopt

k be money/capacity used by the greedy solution/optimal solution. Let

aopt
ik = fik · xopt

ik be the revenue earned by assigning requests of type k to bidder i in the

optimal solution.

Claim 1. ∀i ∈ A1, a
g
i ≥ a

opt
i − fi..

Proof. Obviously from definition of A1.

Claim 2. ∀k ∈ B1, b
g
k ≥

∑
i∈A2

aopt
ik − f.k.

Proof. bgk ≥ bk − f.k ≥ b
opt
k − f.k ≥

∑
i∈A2

aopt
ik − f.k

Lemma 21. ∀k ∈ B2, b
g
k ≥

∑
i∈A2

aopt
ik .

Proof. There are two different cases,
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1. If every request in type k is assigned to someone, then anyone who wins a bid in type k

pay more than anyone in A2. Because request type k in greedy algorithm is assigned

more times than in optimal solution, so, bgk ≥
∑
i∈A2

aopt
ik .

2. If some requests in type k is not assigned, then that means no one in A2 is interested

in that type. So, bgk ≥ 0 =
∑
i∈A2

aopt
ik .

Claim 3. ∀i ∈ A1, fi. ≤ c
1−ca

g
i .

Proof. fi. ≤ c · ai ≤ c(agi + fi.), which implies fi. ≤ c
1−ca

g
i .

Claim 4. ∀k ∈ B1, f.k ≤ c
1−cb

g
k.

Proof. f.k ≤ c · bk ≤ c(bgk + f.k), which implies f.k ≤ c
1−cb

g
k.

Proof. After having all those lemmas, we can easily conclude Theorem 21. 2
1−cR

g ≥∑
i∈A1

agi+
c

1−c
∑
i∈A1

agi+
∑
k∈B2

bk+
∑
k∈B1

bk+
c

1−c
∑
k∈B1

bk ≥
∑
i∈A1

(aopt
i −fi.)+

∑
i∈A1

fi.+
∑

i∈A2,k∈B2

aopt
ik +∑

i∈A2,k∈B1

(aopt
ik − f.k) +

∑
k∈B1

f.k =
∑
i∈A1

aopti +
∑

i∈A2,k∈B
aopt
ij = Ropt, which implies Rg ≥

(1− c)/2 ·Ropt.

Under the small bid assumption, as c goes to 0, the competitive ratio goes to 1/2. Thus,

the greedy algorithm is an asymptotic optimal algorithm.

3.3.3 Primal-dual algorithm

Primal-Dual algorithms are proven to be useful in many online optimization problems. For

example, the classic adwords problem, where there is no capacity constraint, can be solved

by a primal-dual algorithm [24] with the best possible competitive ratio of that problem.

The basic idea of primal-dual algorithms is to use the weak duality to bound the optimal

solution. The key thing in the primal dual algorithm is to construct a dual feasible solution

which is close to the primal feasible solution.

However, in our problem, it is hard to construct a good dual feasible solution because of

the extra capacity constraints. If we use the same technique used in [24], we will get a pair

of primal and dual solutions with a duality gap of 2+ 1
e−1 , worse than the greedy algorithm.

Thus, to develop an algorithm with a better competitive ratio, we need to introduce some
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new techniques. One way is to project the problem into a smaller space that is similar to

the one in [24], generate a pair of primal and dual solutions in that space, and link back to

the original space. What we are going to do next is to view the capacity constraints as side

constraints, and consider LP relaxation of the remaining problem and its dual problem:

Primal Problem P Dual Problem D

Maximize:
∑
i,j,k

fikxijk Minimize:
∑
j
zj +

∑
i
airi

Subject to: Subject to:

∀j:
∑
i,k

xijk ≤ 1 ∀(i, j, k): fikri + zj ≥ fik

∀i:
∑
j,k

fikxijk ≤ ai ∀i, j: ri, zj ≥ 0

∀j not of type k: xijk = 0

∀(i, j, k): xijk ≥ 0

Based on this pair of LPs, we can develop a primal dual algorithm:

Primal-Dual Algorithm

0. Initially, all r, x, z = 0. Let j = 1.

1. Let k be the type of request j.

1a. Find i that maximizes fik(1− ri). If ri ≥ 1 or there is no more capacity for

type k, then reject that request and go to 2.

1b. Charge i, k fik units of money and capacity.

1c. xijk = 1, zj = fik(1− ri), ri = ri + fik
ai

2. j = j + 1, go to 1.

Claim 5. x is almost feasible to the original problem (2), namely, every budget constrain

and capacity constraint can be violated at most once.

Proof. In the Primal-Dual Algorithm, the dual variable ri is the proportion of remaining

budget of bidder i. If bidder i runs out of money, then ri ≥ 1, and no more requests will

be assigned to him ever again. Thus, bidder i will be overcharged at most once. Similarly,

noting Step 1 of the algorithm, every capacity constraint can be violated at most once.

Therefore, the primal solution generated by this algorithm is almost feasible to the original

problem.
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Given the almost feasible solution, we can construct a feasible solution by removing those

bid assignments which violate budget constraints or capacity constrains. Let R be revenue

actually got, Rp be the primal revenue from the algorithm. Because, the almost feasible

solution violates every budget constraint and capacity constraint at most once, transforming

it to a feasible solution will only lose a small amount of revenue. To be more precise, let A be

the set of all bidders, let A′ be the set of bidders who violate budget constraints; let B be the

set of all request types, let B′ be the set of those types which violate capacity constraints.

The lost revenue will be
∑
i∈A′

max
k
{fik} +

∑
k∈B′

max
i
{fik} ≤

∑
i∈A′

cai +
∑
k∈B′

cbk ≤ 2cRp. Thus

Rp − 2cRp ≤ R, which implies,

Lemma 22. R ≥ Rp(1− 2c).

However, the dual solution may not be feasible. When request j of type k comes, if there

are some capacities available at that time, because i is the bidder that maximize fik(1−ri),

all dual constraints involve request j are valid, even if ri ≥ 1. Nevertheless, if there are

no more capacity for type k at that time, those dual constraints involve request j may not

hold. Thus, to have dual feasibility, we have to remove some dual constraints. We will only

keep request types in B\B′. For ease of notations, we will index the requests types in B\B′

by k′, and the requests of types in B\B′ by j′.

When request j′ comes, if it is rejected, according to the definition of B′, k′ has some

capacity left. Therefore, for all i, either fik′ = 0 or ri ≥ 1. In either case, fik′ri + zj′ ≥ fik′

is satisfied, i.e.

Claim 6. ∀(i, j′, k′), r, z satisfies dual feasibility fik′ri + zj′ ≥ fik′.

Let’s remove all those request types in B′: further relax the primal problem P by

removing all requests of types in B′, and consider its dual problem.

Primal Problem P’ Dual Problem D’

Maximize:
∑
i,j′,k′

fik′x
′
ij′k′ Minimize:

∑
j′
zj′ +

∑
i
air
′
i

Subject to: Subject to:

∀j′:
∑
i,k′

x′ij′k′ ≤ 1 ∀(i, j′, k′): fik′r
′
i + z′j′ ≥ fik′

∀i:
∑
j′,k′

fik′x
′
ij′k′ ≤ ai ∀i, j′: r′i, z

′
j′ ≥ 0

∀j′ not of type k′: xij′k′ = 0

∀(i, j′, k′): x′ij′k′ ≥ 0
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Noting those two pairs of primal dual problems are very similar except for that the

second pair are of a lower dimension, we will construct (x′, z′, r′) by projecting (x, z, r) into

the smaller space. Mathematically, x′k′ = xk′ , r
′
i′ = ri′ , z

′
j′ = zj′ . (x, z, r) is updated when

a new request comes in the original problem; as a projection of (x, z, r), (x′, z′, r′) will also

be updated. To more precise, the updating for (x′, z′, r′) will be:

Update for(x′, z′, r′)

0. Initially, let all r′, x′, z′ = 0. Let j = 1.

1. Let k be the type of request j.

1a. If it is not assigned to anyone, then nothing changes. Go to 2.

1b. If it is assigned to bidder i, and j is of type k in B\B′, x′ij = xij , z
′
j =

fij(1− r′i), r′i = r′i +
fij
ai

. Go to 2.

1c. If it is assigned to bidder i, and j is of type k in B′, r′i = r′i +
fij
ai

(note x′ij

and z′j doesn’t exist in P ′ and D′). Go to 2.

2. j = j + 1. Go to 1.

Given that (z′, r′) is just a projection of (z, r), Claim 6 implies,

Claim 7. z′, r′ are dual feasible to dual problem D′.

Let RB′ =
∑
k∈B′

bk, let Ropt be the optimal value of the original problem (with capacity

constraints), let R′opt be the optimal value of P ′. Let R′p =
∑
i,j′,k′

x′ik′fij′k′ be the primal

revenue of P’. Let R′d =
∑
j′
z′j′ +

∑
i
air
′
i be the dual cost of D’. Because the primal problems

P and P’ are closely related, their optimal solutions are too different. Neither are the

solutions constructed by the algorithm.

Lemma 23. Ropt ≤ R′opt +RB′.

Proof. Projecting the optimal assignment to B\B′ (i.e. withdraw those bids for requests in

B′, and keep the rest) is still a feasible assignment, and will lose at most RB′ .

Lemma 24. Rp ≥ R′p +RB′

Proof. Rp =
∑
i,j,k

xijkfik =
∑
i,j′,k′

x′ij′k′fik′ +
∑

i,j,k∈B′
xijkfik = R′p +

∑
k∈B′

∑
i,j,k

xijkfik ≥ R′p +∑
k∈B′

bk = R′p +RB′ .
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After establishing the relation between P and P’, the only thing left is to bound the

primal solution to P’ in terms of the optimal solution to P’. One natural way is to find the

gap between the primal solution and the dual feasible solution.

Lemma 25. R′d ≤ 2R′p +RB′ + cR.

Proof. When request j comes:

1. If j belongs to types in B′, then R′p remains the same and R′d increases.

2. If j belongs to types not in B′, and assigned to bidder i, then R′p increases by f ′ik and

R′d increases by z′j + ai∆r
′
i ≤ 2f ′ik.

3. If j belongs to types not in B′, and not assigned to anyone, then both R′p and R′d remain

the same.

Note that the sum of increase of R′d in the first case is at most RB′ + cR, and increase

of R′d is no more than twice of R′p in the other two cases. Thus, R′d ≤ 2R′p +RB′ + cR.

Theorem 22. R ≥ 1−2c
2+c−2c2

Ropt

Proof. 2+c−2c2

1−2c R = 2
1−2cR+ cR ≥ 2Rp+ cR = 2R′p+ 2RB′ + cR ≥ R′d+RB′ ≥ R′opt +RB′ ≥

Ropt, thus, R ≥ 1−2c
2+c−2c2

Ropt

Theorem 22 shows that the Primal-Dual Algorithm is asymptotically 1/2-competitive

as c goes to 0.

3.4 Numerical Results

3.4.1 Underlying structures

Here we use the case with 10 bidders and 10 types, all budgets and capacities are equal,

i.e. ai = bj = 20. fij =

 1 w.p. 0.5

x w.p. 0.5
. In each instance, there are 400 requests uniformly

i.i.d. over all 10 types. We test 100 i.i.d. instances and find the average revenue.

We can see that the primal dual algorithm is better when the difference between bids

are larger and there are sufficient requests. This result is quite intuitive. Since there are

sufficient requests, the short term revenue doesn’t matter that much. Thus, the primal dual

algorithm, which takes the long term revenue into account when making an assignment,

works better than the greedy algorithm.
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Figure 3-1: Performance v.s. underling graph

3.4.2 Evolutionary performance

Here we use the case with 10 bidders and 10 types, all budgets and capacities are equal, i.e.

ai = bj = 50. fij =

 Uij w.p. 0.5

0 w.p. 0.5
, where Uij is uniformly i.i.d. over [0, 2] for all i, j. In

each instance, there are 500 requests uniformly i.i.d. over all 10 types. We test 300 i.i.d.

instances and find the average revenue.

From Figure 3-2, we can see that the greedy algorithm works better when there are

fewer requests while the primal dual algorithm is better with more requests. It is easy to

understand because the primal dual algorithm tends to assign requests evenly.

3.4.3 Updating rules

It is hard to tell what is a better updating rule for the primal dual algorithm. For example,

in the adwords problem, a nonlinear updating will lead to an optimal algorithm, meanwhile,

in this problem, a linear one will do the trick. We will compare these two different updating

to find out which one works better empirically.

Here we use the case with 10 bidders and 10 types, all budgets and capacities are equal,

i.e. ai = bj = 20. fij =

 Uij w.p. 0.5

0 w.p. 0.5
, where Uij is uniformly i.i.d. over [0, 2] for all

i, j. In each instance, there are 400 requests uniformly i.i.d over all 10 types. We test 100

i.i.d. instances and find the average revenue.
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Figure 3-2: Performance v.s. time

From Figure 3-3, we can see that the linear updating rules outperform nonlinear updat-

ing rules, unlike in the Adwords problem [23]. It is not very clearly to us, why this is the

case here. It would be interesting to know the set of problems for which linear/nonlinear

updating rules are better.

3.5 Randomized Algorithms

In this section, we will examine how randomized algorithms do for this problem. In general,

randomized algorithms work better than deterministic algorithms for online optimization

problems, because the randomness increases offline cost a lot, while it does not affect online

cost that much. However, as we will show, for this problem, randomized algorithms do not

do any better.

Randomized algorithms are usually much more difficult to characterize than determin-

istic algorithms. Thus, instead of applying randomized algorithms on deterministic in-

stances, applying deterministic algorithms on randomized instances will be much easier. It

is a general practice to use the Yao principle [69] to derive bounds on competitive ratios

of randomized algorithms, by transforming randomized algorithms applying on determinis-

tic instances to deterministic algorithms applying on randomized algorithms. However, in

many online problems, some subtle care should be taken, which leads to annoying technical
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details. Instead, we will use a technique, introduced in [66], to derive a upper bound in a

more straightforward way.

First, let’s introduce some notations. For an online maximization problem, let I be a

set of instances, and A be a set of deterministic algorithms. A randomized algorithm Aq

can be defined as a probability distribution over A and a randomized instance Iq can be

defined as a probability distribution over I. Let ZA(I) and ZOPT(I) be the objective value

produced by algorithm A and optimal objective value on instance I. The competitive ratio

of a randomized algorithm Aq is defined as min
I∈I

EAq [ZAq (I)]

ZOPT(I)
. Then, we have the following

lemma on the upper bound of the competitive ratio of randomized algorithms:

Lemma 26. [66] Given an online maximization problem, with possible input sequences

I, and possible deterministic algorithms A, both possibly infinity. Then, for any random

sequence Ip and any randomized algorithm Aq, we have

max
A∈A

EIp [Z
A(Ip)]

EIp [Z
OPT(Ip)]

≥ min
I∈I

EAq [Z
Aq(I)]

ZOPT(I)
.

Proof. Suppose there is a randomized algorithm Aq with competitive ratio ρ. Then ∀I ∈ I,

EAq [Z
Aq(I)] ≥ ρZOPT(I). Hence, ρEIp [Z

OPT(Ip)] ≤ EIp [EAq [ZAq(Ip)]] = EAq [EIp [Z
Aq(Ip)]] ≤

max
A∈A

EIp [Z
Aq(Ip)].

To derive the upper bound on randomized algorithms, we only need to find a upper
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bound on applying deterministic algorithms on randomized algorithms:

Lemma 27. There exists such Ip that max
A∈A

EIp [ZA(Ip)]

EIp [ZOPT(Ip)]
≤ 1/2.

The instance here is the same one used in Theorem 20 except for the number of requests.

The number of requests is a random variable here other than some number determined by

the adversary in Theorem 20. The online algorithm still has to make a tradeoff between

the short term revenue and the long revenue. The proof is given as follows:

Proof. Consider the following instance: there are 2m bidders and 2m request types. ∀i, j, ai =

bj = n, fij = εi−1, where ε is a very small number such that nε << 1. There are 2M groups

of requests sequentially: in group k, there are requests of type 1, 2, · · · , k, and the num-

ber of type j requests is nεj−k. Here, M is a random variable, uniformly distributed over

{1, 2, · · · , 2m}

For any deterministic algorithm, if all 2m groups of requests are presented, assume in

group k, the algorithm assigns nxji,kε
1−i requests of type j to bidder i (i ≤ k+ 1− j), i.e. it

gets nxji,k revenue from those requests. We assume we get nothing from assigning requests

of type j to bidder i, where i > k + 1 − j, since we can get at most nεk−jεi−1 ≤ nε which

is neglectable by our assumption.

We define following notations: ∀j ≤ k, x̄kj =
2m∑
l=k

xjk+1−j,l, āi =
2m−i+1∑
j=1

x̄i+j−1
j , b̄j =

2m∑
i=j

x̄ij ,

r̄l =
l∑

k=1

k∑
j=1

x̄kj . Here nx̄kj means the revenue gained from assigning requests of type j to

bidder k+1−j, nāi means the revenue gained from bidder i, nb̄j means the space used of type

j, nr̄l is a upper bound of the revenue gained from the first l groups. To ease the analysis,

we define two more notations: ∀2m ≥ k ≥ 2i + 1, σki = x̄k1 + · · · + x̄ki + x̄kk−i+1 + · · · + x̄kk,

σi =
2m∑

k=2i+1

σki .

Because of budget and capacity constraints, we have āi ≤ 1 and b̄j ≤ 1. It is easy to

see, if there are only first l groups presented, the optimal revenue is nl, while the online

revenue is at most nr̄l.

∀l ≤ m−1, σl ≤
l∑

i=1
(āi+ b̄i)+

l−1∑
i=1

σi+li − r̄2l−1− r̄2l ≤ 2l− r̄2l−1− r̄2l+
l−1∑
i=1

σi+li . Adding all

these m−1 inequalities together, we then have
m−1∑
i=1

σi ≤ (m−1)m−
2m−2∑
i=1

r̄i+
m−2∑
i=1

m−1+i∑
k=2i+1

σki ≤

(m−1)m−
2m−2∑
i=1

r̄i+
m−2∑
i=1

σi, which implies σm−1 +
2m−2∑
i=1

r̄i ≤ (m−1)m. Obviously σm−1 ≥ 0,

which implies
2m−2∑
i=1

r̄i ≤ (m− 1)m.
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It is easy to see, the optimal revenue Ropt = M . Therefore, the expected optimal revenue

E[Ropt] = E[M ] = m + 1/2. Meanwhile, the expected online revenue E[R] = 1
2m

2m∑
i=1

r̄i ≤

1
2m(2m + 2m +

2m−2∑
i=1

r̄i) ≤ (m+3)m
2m = (m + 3)/2. By letting m goes to infinity, we can

conclude the lemma.

These two lemmas above conclude our main result here:

Theorem 23. No randomized algorithm has a competitive ratio of ρ ≤ 1/2.

Theorem 23 shows that randomized algorithms don’t help in this problem. The greedy

algorithm and the primal dual algorithm are the best algorithms among all possible algo-

rithms, either deterministic or randomized.

3.6 Extensions

In this section, we will discuss how to solve the problem without those two assumptions we

made previously, and still come up with something that makes sense.

3.6.1 Bounded cases

Although, as Theorem 18 shows, any algorithm can be arbitrarily bad if the instance doesn’t

satisfies homogeneity assumption, its proof also indicates that the worst case happens in

extreme situations where sij/fij varies widely. Actually, as it turns out, if sij/fij is bounded

on both sides away from 0, there exist algorithms with positive competitive ratio.

If we are given a ρ-competitive algorithm for the homogeneous version (eg. greedy algo-

rithm and primal-dual algorithm), then we can come up with a uρ
v -competitive algorithm,

where 0 < u ≤ sij
fij
≤ v,∀i, j.

Modified Algorithm

1. Construct a new instance P2 based on the original one P1. The numbers of bidders

and request types are exactly the same. b2j = b1j , s
2
ij = s1

ij , f
2
ij = s1

ij/v, a
2
i =

u/v · a1
i .

2. Whenever a new request comes in P1, present a request of the same type in P2. If

the original algorithm assigns it to bidder i in P2, assign it to bidder i in P1. If

the original one rejects it, reject it.
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Theorem 24. The modified algorithm is uρ
v -competitive.

Proof. Because
f2
ij

f1
ij

=
s1ij
vf1
ij
≥ u

v and
a2
i

a1
i

= u
v , the modified algorithm always gives a feasible

solution. Also notice that f2
ij = s1

ij/v ≤ f1
ij , we have R1 ≥ R2 ≥ ρR2

opt.

To establish the relation between R1
opt and R2

opt, we consider another problem P3, where

the numbers of bidders and request types remain the same, b3j = b1j , s
3
ij = s1

ij , f
3
ij = s1

ij/u =

v/u · f2
ij , a

3
i = a1

i = v/u · a2
i . It is easy to see R1

opt ≤ R3
opt = v/u ·R2

opt.

Therefore, R1 ≥ R2 ≥ ρR2
opt ≥

uρ
v R

1
opt.

3.6.2 Fractional bids

Indeed, as Theorem 19 and its proof indicate, if the relative bid size is large, there is

nothing we can do in the original settings. However, it will be different if fractional bids are

allowed, where a request can split can be assigned to different bidders. Formally, in terms

of mathematical programming, we do not have the integrality constraints any more:

Maximize:
∑
i,j,k

f(i, j, k)x(i, j, k)

Subject to:
∑
i,k

x(i, j, k) ≤ 1 ∀j∑
j,k

f(i, j, k)x(i, j, k) ≤ ai ∀i∑
i,j
s(i, j, k)x(i, j, k) ≤ bk ∀k

0 ≤ x(i, j, k) ≤ 1 ∀i, j, k

, (3.3)

Given that fractional bids are allowed, we do not lose the revenue of the very last bids

that bidders cannot afford previously, which counts for c in the competitive ratios of both

greedy algorithm and primal-dual algorithm. In fact, both greedy algorithm and primal-

dual algorithm are 1/2-competitive, no matter how large the relative bid size is. We will

propose the algorithms and show the results on the competitive ratios without proof:
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Greedy Algorithm with Fractional Bids

0. Initialization, j=1.

1. Let k be the type of request j, let nj = 1 be the number of request to be assigned.

1a. Find i=argmaxi{fik > 0|min{ remaining budget of i, remaining capacity of

k} ≥ 0}. If there is no such i, Go to 2.

1b. nij = min{ remaining budget of i, remaining capacity of k}/fik. Assign

nij unit of request j to i. Charge i, k nijfik units of money and capacity.

nj = nj − njk. If nj = 0, go to 2; otherwise, go to 1a.

2. j=j+1. Go to 1.

Theorem 25. Greedy algorithm with fractional bids is 1/2-competitive.

Primal-Dual Algorithm with Fractional Bids

0. Initially, all r, x, z = 0. Let j = 1.

1. Let k be the type of request j. Let nj = 1 be the number of request to be assigned.

1a. Find i that maximizes fij(1− ri). If ri ≥ 1 or there is no more capacity for

type k, then reject that request and go to 2.

1b. nij = min{ remaining budget of i, remaining capacity of k}/fij . Assign

nij unit of request j to i. Charge i, k nijfij units of money and capacity.

nj = nj − njk.

1c. xij = nij , z(j) = nijfij(1 − ri), ri = ri +
nijfij
ai

. Update nj = nj − nij . If

nj = 0, go to 2; otherwise, go to 1a.

2. j = j + 1, go to 1.

Theorem 26. Primal-dual algorithm with fractional bids is 1/2-competitive.
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Chapter 4

Online Stochastic Matching

Problems

4.1 Introduction

Bipartite matching problems have been studied extensively in the operations research and

computer science literature. We consider in this chapter variants of the online stochas-

tic bipartite matching problem motivated by Internet advertising display applications, as

introduced in Feldman et al. [29].

We are given a bipartite graph G = {A ∪ I, E}, where A is a set of advertisers and I is

a set of impression types. An edge (a, i) ∈ E if and only if advertiser a ∈ A is interested in

impressions of type i ∈ I. The set of advertisers and their preferences are fixed and known

in advance. Requests for impression come online one at a time at periods t = 1, 2, · · · , n

(n being fixed and known in advance), and the impression type of each request is chosen

randomly and independently from a given probability distribution over the set I.

Upon the arrival of a request, an online algorithm must irrevocably assign it to one of

the interested advertisers or drop it. Overall, every request cannot be assigned to more

than one advertiser, and every advertiser can be assigned at most one request. The goal

is to maximize the expected number of assigned requests over the random sequence of

impressions.

Given that there is a total of n requests, the probability that a request is for an impres-

sion of type i can be written as ri/n, where ri is the expected number of requests of type i

83



among the random sequence. Without loss of generality, we assume that ri ≤ 1 for all type

i; note that if a type i were to be such that ri > 1, we could duplicate node in i ∈ I into a

set of identical nodes, each with the same adjacent edge structure as the original node, and

each with expected number of arrival no more than one.

In this chapter, we consider two variants of this online stochastic i.i.d. model: a special

case for which ri = 1 for all i, which we refer to as the case with integral arrival rates; and

the unrestricted case with general arrival rates.

We also consider a Poisson arrival model, removing the need to assume that the total

number of arrivals is fixed and known in advance, as is required for the analysis of the

stochastic i.i.d. models.

4.1.1 Our results and techniques

In Feldman et al. [29], the authors provide a 0.670-competitive algorithm for the online

stochastic bipartite matching problem with integral arrival rates, the first result to show

that stochastic information on request arrivals could provably improve upon the 1 − 1/e

competitive ratio of Karp et. al. [50]. Removing this integrality restriction, Manshadi et

al. [57] show it is still possible to do better than 1 − 1/e and propose a 0.702-competitive

algorithm, using offline statistics drawn from Monte Carlo sampling. The authors further

prove that the algorithm has a better competitive ratio of 0.705 when the arrival rates are

integral. More recently, Mahdian and Yan [56] and Karande et al. [48] study a much less

restrictive version of the problem where not only the arrival rates are arbitrary, they are

not known to the algorithm a priori.

In this chapter we consider a general class of online algorithms for the i.i.d. model which

improve on [29][57] and which use computationally efficient offline procedures (based on the

solution of simple linear programs of maximum flow types). Under the integrality restriction

on the expected number of impressions of each types, we get a (1 − 2e−2)-competitive

algorithm. Without this restriction, we get a 0.706-competitive algorithm. Although the

model we consider is more restrictive than the one in [56][48], we obtain better competitive

ratio.

Our techniques can be applied to other related problems such as the online stochastic

b-matching problem (quite trivially) and for the online stochastic vertex-weighted bipartite

matching problem as defined in Aggarwal et al. [3]. For that problem, we obtain a 0.725-
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competitive algorithm under the stochastic i.i.d. model with integral arrival rates. Our

vertex-weighted model is a special case of the edge-weighted model considered by Haeupler

et al. [37], who propose a 0.667-competitive algorithm for the edge-weighted case. Finally

we show the validity of all our results under a Poisson arrival model, removing the need to

assume that the total number of arrivals is fixed and known in advance, as is required for

the analysis of the stochastic i.i.d. models.

In order to introduce the main general ideas behind our techniques, let us first de-

fine some basic concepts about optimal offline solutions. From the available information

about the problem (the initial graph G = {A ∪ I, E}, the probability distribution over the

set of impression types I, and the number n of i.i.d. draws from that distribution), one

can solve an optimal maximum cardinality matching for each possible realization of the n

i.i.d. draws. Let OPT be the random variable corresponding to the values obtained by these

offline matchings. The expected value E[OPT] can be written as
∑

e∈E f
∗
e , where f∗e is the

probability that edge e is part of an optimal solution in a given realization. Note that, as

in [57], f∗ = (f∗e )e∈E can also be defined as a so-called optimal offline fractional matching.

Instead of computing f∗ (or estimating it as in [57]) and using the information for

guiding online strategies, our strategy is to formulate special maximum flow problems whose

optimal solutions provide the input for the design of good online algorithms. Moreover these

maximum flow problems are defined in such a way that f∗ corresponds to feasible flows,

allowing us to derive upper bounds on
∑

e∈E f
∗
e , and get valid bounds for the competitive

ratios of the related online algorithms.

We now provide more details. Consider an instance of a single-source single-destination

node-capacitated maximum flow problem on G, with a source s connected to all elements

of A, a destination t connected to all elements of I, a unit capacity on all a ∈ A, and a

capacity ri (expected number of arrivals) on each i ∈ I. Define fe = fa,i to be the flow on

e = (a, i) for all e ∈ E. This problem can equivalently be formulated as a linear program

(LP):
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max
∑
e
fe∑

i∼a
fa,i ≤ 1 ∀a ∈ A∑

a∼i
fa,i ≤ ri ∀i ∈ I

fe ≥ 0 ∀e ∈ E

(4.1)

where i ∼ a and a ∼ i are shortcuts for i : (a, i) ∈ E and a : (a, i) ∈ E, respectively.

One of the key steps behind our approach is to find appropriate additional constraints

on the flows (to add to (4.1)) so that the resulting optimal solutions of the constrained LP

lead to improved guidance for online strategies, while keeping the optimal offline fractional

matching f∗ feasible with respect to the constrained LP.

Let us now formally introduce the concept of a “list of interested advertisers for an

impression of type i”. Consider the set Ai = {a ∈ A : (a, i) ∈ E} and let Ωi be the set of

all possible non-empty ordered subsets of elements of Ai. An element of Ωi will be called a

list of interested advertisers for impression of type i. We are ready to describe our class of

online algorithms:

Random Lists Algorithms (RLA)

1. Add appropriate constraints to (4.1) to get a new constrained LP. Let f be an optimal

solution to this LP.

2. Using f , construct a probability distribution Di over the set Ωi for each impression type i.

3. When a request for an impression of type i arrives, select a list from Ωi using the probability

distribution Di:

• if all the advertisers in the list are already matched, then drop the request;

• otherwise, assign the request to the first unmatched advertiser in the list.

Steps 1 and 2 are problem-specific. Different solutions f and different construction

of distributions Di will lead to online algorithms that may have different properties and

competitive ratios. However, these algorithms all share one common and important prop-

erty: with high probability, they are robust with respect to different realizations of the n

i.i.d. sequence of impression types. This property will be useful for the rigorous analysis of
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competitive ratios. Random lists used in this chapter are extensions of ideas given in [57],

but unlike [57], where the length of lists is at most 2, we consider lists of length 3 in this

chapter.

4.2 Preliminary on Competitive Ratios

As a measure of performance, online algorithms are typically compared to optimum offline

solutions using ratios. In this chapter, an algorithm is called α-competitive if E[ALG]
E[OPT] ≥ α for

any given probability distributions. The goal is to find algorithms with large competitive

ratios. One could use a stronger notion of competitive ratio that ALG
OPT ≥ α would hold for

most realizations as used in [29]. In this section we show that for the algorithms in our

proposed class, the two concepts are in fact closely related and lead to competitive ratios

that are valid under either of these measures.

Let L1, L2, · · · , Ln be the sequence of random lists for the n successive requests. Every

list only contains interested advertisers, and the assignment of requests only depends on

the order of advertisers in the list and their current status. Thus, from a given realization

of this sequence of random lists, we can construct the corresponding matching and find its

cardinality. We can show that the cardinality is stable with respect to the realization in the

following sense:

Claim 8. If two realizations (l1, · · · , lt, · · · , ln) and (l1, · · · , l′t, · · · , ln) only differ by one

list, then the cardinality of their resulting matchings differs at most by one.

Proof. Let Wj and W ′j be the set of matched advertisers right after the jth arrival cor-

responding to the two realizations above, respectively. We will show by induction that

∀j, |Wj\W ′j | ≤ 1 and |W ′j\Wj | ≤ 1. For all j ≤ t − 1, since the two realizations are

identical for the first j lists, Wj = W ′j . Since in every period, at most one advertiser

becomes matched, the claim is also true for j = t. Let us consider j ≥ t + 1. If

Wj\Wj−1 ⊂ W ′j−1, then by induction, |Wj\W ′j | ≤ |Wj−1\W ′j−1| ≤ 1. Otherwise, let

{k} = Wj\Wj−1. Then, in the list lj , all advertisers in front of k are in Wj−1. Noting

that k is unmatched for ALG′ before the jth period, we have W ′j\W ′j−1 ⊂ Wj−1 ∪ {k}.

Therefore, |Wj\W ′j | = |Wj−1\W ′j−1| ≤ 1. Similarly, we can show |W ′j\Wj | ≤ 1. Hence,

|ALG−ALG′| ≤ ||Wn| − |W ′n|| ≤ max{|Wn\W ′n|, |W ′n\Wn|} ≤ 1.
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Note that Lj only depends on the impression type of the jth request, and does not depend

on types and assignments of earlier impressions. Thus, L1, · · · , Ln are independently and

identically distributed. We can then apply McDiarmid’s Inequality which we recall here for

convenience:

McDiarmid’s Inequality [58]: Let X1, X2, . . . , Xn be independent random variables all

taking values in the set X . Let f : X n 7→ R be a function of X1, X2, . . . , Xn that satisfies

∀i, ∀x1, . . . , xn, x
′
i ∈ X , |f(x1, . . . , xi, . . . , , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci. Then ∀ε > 0,

Pr(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > ε) ≤ exp(− 2ε2∑n
i=1 c

2
i

)

and

Pr(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] < −ε) ≤ exp(− 2ε2∑n
i=1 c

2
i

).

Combining McDiarmid’s Inequality with Claim 8 we obtain:

Lemma 28. Pr(ALG− E[ALG] < −nε) ≤ exp(−2nε2).

Similarly, note that the offline solution only depends on the realization of the impression

types. So we can show a similar result:

Lemma 29. Pr(OPT− E[OPT] > nε) ≤ exp(−2nε2).

From the two lemmas above, we can conclude that

Pr(
ALG

OPT
≥ E[ALG]

E[OPT]
− 2ε

c+ ε
) ≥ 1− 2 exp(−2nε2),

where c = E[OPT]/n. If E[OPT] = Θ(n), the inequality above indicates that the two

notions of competitive ratios are closely related and essentially equivalent as far as our

results are concerned.

Throughout the chapter we will assume that n is large enough so that a factor of

1 +O(1/n) is negligible when analyzing the performance of online algorithms.

4.3 Stochastic Matching with Integral Arrival Rates

In this section and the next two, we assume that ri = 1 for all i.
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4.3.1 Online algorithm

As we mentioned, two steps in RLA are problem-specific: finding offline solutions and

constructing random lists. In this subsection, we propose methods for these two steps.

An offline solution

Let us consider the following maximum flow problem on the graph G:

max
∑
a,i
fa,i

s.t.
∑
i∼a

fa,i ≤ 1 ∀a ∈ A∑
a∼i

fa,i ≤ 1 ∀i ∈ I

fe ∈ [0, 2/3] ∀e ∈ E

(4.2)

Note that compared to (4.1) as introduced in 4.1.1, the additional constraints on the flows

are very simple. Since the set of vertices of the feasible polytope of (4.2) is a subset of

{0, 1/3, 2/3}E , there exists an optimal solution to (4.2) in {0, 1/3, 2/3}E .

To ease the construction of random lists and the analysis, based on the optimal solution

f , we first construct a resulting graph Gf = {A ∪ I, Ef}, where Ef = {e ∈ E : fe > 0}.

For simplicity, we try to make Ef as sparse as we can by doing the following two types of

transformations. As argued below, there exists an optimal solution f such that its resulting

graph Gf does not contain cycles of length 4, unless the four nodes in such a cycle do not

have any other neighbors; and such a solution can be found in polynomial time. Cycles

in Figure 4-1 are the only three possible cycles of length 4. The four nodes in the left

cycle cannot have any other neighbor outside the cycle; the middle and right cycle can be

transformed into a non-cycle with the same objective value. Furthermore, if there exists

impression i that has two neighbors a1 and a2 with fi,a1 = fi,a2 = 1/3 and fa1 + fa2 < 2,

without loss of generality, we assume fa2 < 1. Another solution f ′ with f ′i,a1
= 0, f ′i,a2

= 2/3,

and everything else unchanged has the same objective value, and less edges in its resulting

graph. We transform f to f ′. Note that each time, transformations mentioned above remove

one or two edges and does not introduce any new edge. Thus, given any initial optimal

solution, after at most |E| transformations, the optimal solution cannot be transformed

further in the above two ways.
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∑
j,k

faj ,ik = 2

a1 i1

a2 i2

∑
j,k

faj ,ik = 5/3

a1 i1

a2 i2

∑
j,k

faj ,ik = 4/3

a1 i1

a2 i2

a1 i1

a2 i2

a1 i1

a2 i2

Figure 4-1: Cycles of length 4. Thin edges carry 1/3 flow; and thick edges carry 2/3 flow.

The extra constraint fe ≤ 2/3 is added for two reasons: LP (4.2) provides a upper bound

on the offline solution; the resulting graph is sparse. In fact, as showed in Section 4.3.2,

any constraint fe ≤ c with c ≥ 1 − e−1 provides an upper bound on the offline solution;

however, only c = 2/3 makes the resulting graph sparse. The sparsity not only helps the

construction of random lists as described in Section 4.3.1, but also eases the analysis of the

algorithm.

Generation of the random lists

In order to simplify the description of the specific probability distribution used to generate

the random lists, and the analysis of the corresponding online algorithm, let us first add

dummy advertisers aid and dummy edges (aid, i) with faid,i
= ri−

∑
a∈A fa,i for all i ∈ I with∑

a∼i fa,i < 1. Dummy advertisers are flagged as matched from the start, so no impression

are ever assigned to them. Since every edge in the graph has value 1/3 or 2/3, every node

has two or three neighbors.

The construction of the random lists goes as follows. Given an impression type i, if it

has two neighbors a1 and a2 in the resulting graph, the list is 〈a1, a2〉 with probability fa1,i;

the list is 〈a2, a1〉 with probability fa2,i. Otherwise, if i has three neighbors a1, a2, and a3

(in this case, fa1,i = fa2,i = fa3,i = 1/3), the list is a uniformly random permutation of

〈a1, a2, a3〉.
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4.3.2 Upper bound on the offline algorithm

In order to show that LP (4.2) provides a upper bound on the offline solution, we prove that

the offline solution is feasible to the LP. The feasibility of first two constraints is obvious.

The feasibility of the last constraint is implied by a simply lemma:

Lemma 30 (Manshadi et al.[57]). ∀e ∈ E, f∗e ≤ 1− e−1 < 2/3.

From Lemma 30, the expected optimal offline solution is feasible to LP (4.2). Therefore,

the optimal solution fT · 1 is a upper bound on the offline optimal f∗T · 1. From now on,

we will compare the online algorithm with the optimal solution of LP (4.2) instead of the

offline solution, because the former one is much easier to find than the latter one.

4.3.3 Certificate events

One difficulty encountered in previous papers is that an advertiser being matched is highly

dependent on other advertisers. The strong dependence is difficult to deal with, and difficult

to be decoupled. In this chapter, we use a local approach to avoid this issue. To be more

specific, we compute a lower bound on pa, the probability that advertiser a is matched,

using only knowledge of a’s neighborhood.

To ease the analysis, we consider lists associated with all arriving impressions rather

than the types of impressions, because online matching results are a deterministic function

of the former one. As mentioned in Section 4.2, all lists are i.i.d. distributed. It is not

difficult to see that the distribution can be easily inferred from the resulting graph Gf . For

example, a local structure as showed in Figure 4-2 implies that with probability 1/n, a list

starts with 〈a1, ...〉; and with probability 1/6n, a list is 〈a1, a, a2〉.

a1

ia11

a21

Figure 4-2: Possible configurations of i’s neighborhood in the graph. All edges carry 1/3
flow. The number next to advertiser a indicates fa =

∑
i∼a fa,i.

Assume a is the advertiser we are considering, and i is a neighbor of a. Let us consider

the following two types of events: Ba = {among the n lists, there exists a list starting with
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〈a, ...〉} and Gia = {among the n lists, there exist successive lists starting with advertisers

different from a but which are neighbors of i, and ensuring that a is matched}. For example,

in a local structure as showed in Figure 4-2, if three lists appear in order: 〈a1, ...〉, 〈a2, ...〉,

and 〈a1, a2, a〉, then advertiser a is matched; and hence Gia happens. Ba and Gia (for any

i) will be called “certificate events”, in the sense that if any of these events happen, they

provide a certificate that advertiser a is matched.

We now show that these certificate events have some good properties and their prob-

abilities are easy to find. In this section and the next, we will use these certificate events

to lower bound the probability that an advertiser is matched; and further lower bound the

competitive ratios of our algorithms.

Asymptotic Independence

For notation simplicity, we define supporting set S(Gia) as the set of lists that start with

advertisers that are neighbors of i but not a; S(Ba) as the set of lists that start with a.

The supporting set of the intersection of two certificate events is defined as the union of the

supporting sets of the two certificate events.

Lemma 31. Let E1 and E2 be certificate events or intersections of two certificate events.

If their supporting sets S(E1)∩S(E2) = ∅, then E1 and E2 are asymptotically independent,

i.e. |Pr(E1 ∩ E2)− Pr(E1) Pr(E2)| < O(1/n).

Proof. Let M1 be the number of lists among all n lists in S(E1); M2 be the number of lists

among all n lists in S(E2). The proof consists of three key parts: with high probability M1

and M2 are small; when M1 and M2 are small, they are asymptotically independent; given

M1 and M2, E1 and E2 are independent.

According to the construction of our algorithm, we can show that a given list belongs

to S(E1) (or S(E2)) with probability less than 6/n. From the Chernoff bound, with high

probability M1 and M2 are close to their mean: Pr(M1 ≥ 6µ) ≤ exp(− 6µ2

2+µ) ≤ O(1/n) and

Pr(M2 ≥ 6µ) ≤ exp(− 6µ2

2+µ) ≤ O(1/n), where µ = n1/3.

Assuming E[M1] = n1 and E[M2] = n2, for all m1 < 6µ and m2 < 6µ, we have

Pr(M1 = m1,M2 = m2)

Pr(M1 = m1) Pr(M2 = m2)
=

(n−m1)!(n−m2)!

n!(n−m1 −m2)!

(1− (n1 + n2)/n)n−m1−m2

(1− n1/n)n−m1(1− n2/n)n−m2
= 1+O(1/n),

where the last inequality is due to m1m2 = o(n).

92



Since all advertisers other than neighbors of i are assumed to have infinite capacities, all

the lists that are not in S(E1) do not affect E1. Thus, given M1 = m1, E1 is independent

of n−m1 lists that are not in S(E1). Because of the assumption S(E1) ∩ S(E2) = ∅, E1 is

independent of E2 given M1 and M2.

From the three facts above, we have

Pr(E1 ∩ E2) =
∑

m1,m2

Pr(M1 = m1,M2 = m2) Pr(E1, E2|M1 = m1,M2 = m2)

=
∑

m1,m2<6µ
Pr(M1 = m1,M2 = m2) Pr(E1, E2|M1 = m1,M2 = m2) +O(1/n)

=
∑

m1,m2<6µ
Pr(M1 = m1,M2 = m2) Pr(E1|M1 = m1) Pr(E2|M2 = m2) +O(1/n)

=
∑

m1,m2<6µ
Pr(M1 = m1) Pr(M2 = m2) Pr(E1|M1 = m1) Pr(E2|M2 = m2) +O(1/n)

=
∑

m1,m2

Pr(M1 = m1) Pr(M2 = m2) Pr(E1|M1 = m1) Pr(E2|M2 = m2) +O(1/n)

= Pr(E1) Pr(E2) +O(1/n)

By applying Lemma 31 twice, we can show that any four (or less than four) certificate

events are asymptotic independent, as long as their supporting sets do not intersect:

Corollary 1. Consider a set of at most four certificate events {Cj}j∈J (|J | ≤ 4). If

∩j∈JS(Cj) = ∅, then Pr(∩j∈JCj) =
∏
j∈J Pr(Cj) + o(1/n).

Computing Probabilities

As in this section and the next, supporting sets of certificate events are of small sizes

because of the construction of the distribution. In such cases, the probabilities of certificate

events can be calculated via double summation, which is doable even by hand, though

time-consuming.

On the other hand, it also can be done via a dynamic programming approach. Given

n, the probability of an advertiser being matched at the end given the current state can be

computed backward. As we can easily check, the probability converges to the limit with

an error term of O(1/n). In fact, when n = 104, the computed probability is within 10−5

accuracy.

In this chapter, we will only leave the probabilities of certificate events and omit the

process of finding them due to the following reasons. First, the computation of probabilities
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is not the key to our approach, though the actual number matters. Second, it is just simple

algebra and too long to present in the chapter.

4.3.4 Lower bound on the online algorithm

For notational simplicity, define fa ,
∑

i∼a fa,i, and let pa be the probability that an

advertiser a is matched by the online algorithm. Since every edge in the graph G with a

non-zero flow will carry a flow of 1/3 or 2/3, there are very few different local configurations

in the graph Gf = {A ∪ I, Ef}, where Ef = {e ∈ E|fe > 0}. For example, for an edge

e = (a, i) such that fa = 1 and fa,i = 2/3, the only four possibilities for i’s neighborhood

are α1, α2, α3, and α4 in Figure 4-3; for an edge e = (a, i) such that fa = 1 and fa,i = 2/3,

the only five possibilities for i’s neighborhood are β1, β2, β3, β4, and β5 in Figure 4-3.

a11/3
i

a1

(α1)

a12/3
i

a1

(α2)

a11
i

a1

(α3)

a1
i

aidN/A

(α4)
a1

ia11

a21

(β1)

a1
i

a11

(β2)

a1

ia11

aidN/A

(β3)

a1
i

a12/3

(β4)

a1
i

aidN/A

(β5)

Figure 4-3: Possible configurations of i’s neighborhood in the graph. Thin edges carry
1/3 flow, and thick edges carry 2/3 flow. The number next to advertiser a indicates fa =∑

i∼a fa,i.

For each configuration, because a has at most three neighbors, we can easily compute

a lower bound on the probability of its being matched. For example, assume a has two

neighbors i1 and i2, and they are not part of a cycle of length 4. a is matched if one of the

three certificate events happens: Ba, G
i1
a or Gi2a . Since those three events are asymptotically

independent, pa ≥ Pr(Ba ∪ Gi1a ∪ Gi2a ) = 1 − (1 − p)(1 − p1)(1 − p2), where p = Pr(Ba),

p1 = Pr(Gi1a ), and p2 = Pr(Gi2a ) are easy to find. Using such an idea, we can show case by

case that:

Lemma 32. ∀a ∈ A, let Na be the set of advertisers who are at an edge-distance no more

than 4 from a in Gf . Then, there exists µa,a′ ∈ [0, 1] for all a′ ∈ Na, such that

∑
a′∈Na

µa,a′pa′ ≥ (1− 2e−2)
∑
a′∈Na

µa,a′fa′ .
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Proof. For advertiser a with fa = 1/3, pa ≥ Pr(Ba) = 1 − e−1/3 ≥ 0.850fa. For advertiser

a with fa = 2/3, pa ≥ Pr(Ba) = 1− e−2/3 ≥ (1− 2e−2)fa. Thus, we only need to prove the

lemma for a with fa = 1.

Before doing so, let us first find probabilities of events Ba and Gia exa.

a11/3

i
a1

(α1)

a12/3

i
a1

(α2)

a11

i
a1

(α3)

a1

i

aidN/A

(α4)

a1

ia11

a21

(β1)

a1

i
a11

(β2)

a1

ia11

aidN/A

(β3)

a1

i
a12/3

(β4)

a1

i
aidN/A

(β5)

Figure 4-4: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3
flow, and thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

α) fa,i = 2/3.

If i has 2 neighbors a and a1, then fa1,i = 1/3:

α1. fa1 = 1/3.

Pr(Gia) ≥
n∑
j=1

1
3ne
− j

3n

(
1− e−

n−j
3n

)
≈ 1− 4

3e
− 1

3 , p1(≥ 0.044).

α2. fa1 = 2/3.

Pr(Gia) ≥
n∑
i=1

2
3ne
− 2j

3n

(
1− e−

n−j
3n

)
= 1− e−

2
3 − e−

1
3 · 2(1− e−

1
3 ) , p2(≥ 0.080).
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α3. fa1 = 1.

Pr(Gia) ≥
n∑
j=1

1
ne
− j
n

(
1− e−

n−j
3n

)
= 1− e−1 − e−

1
3 · 3

2(1− e−
2
3 ) , p3(≥ 0.109).

If i has only one neighbor:

α4.

Pr(Gia) ≥ 1− e−
1
3 , p4(≥ 0.283).

β) fa,i = 1/3.

If i1 has 3 neighbors a, a1, and a2:

β1. We have fa1 = fa2 = 1; otherwise, we can find another optimal solution to

LP (4.2) with less non-zero flow edges. Therefore,

Pr(Gia) ≥
∑
k>j

2
ne
− 2j)

n · 4
3ne
− 4(k−j)

3n · (1− 7
8e
− 2(n−k)

3n )

= 1− e−2 − 21
8 e
− 2

3 (1− e−
4
3 ) + 9

4e
− 4

3 (1− e−
2
3 ) , p5(≥ 0.160).

If i has 2 neighbors a and a1. Note that fa1,i = 1/3 and fa1 < 1 cannot happen

together; otherwise, f cannot be a maximum flow:

β2. fa1,i = 2/3 and fa1 = 1.

Pr(Gia) ≥
n∑
j=1

1
ne
− j
n

(
1− e−

2(n−j)
3n

)
= 1− e−1 − e−

2
3 · 3(1− e−

1
3 ) , p6(≥ 0.195).

β3. fa1,i = 1/3 and fa1 = 1.

Pr(Gia) ≥
n∑
j=1

4
3ne
− 4j

3n (1− 7
8e
− 2(n−j)

3n )

= 1− e−
4
3 − 7

6e
− 2

3 (1− e−
2
3 ) , p7(≥ 0.299).

β4. fa1,i = 2/3 and fa1 = 2/3.

Pr(Gia) ≥
n∑
j=1

2
3ne
− 2j

3n

(
1− e−

2(n−j)
3n

)
= 1− 5

3e
− 2

3 , p8(≥ 0.144).
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If i has only one neighbor:

β5.

Pr(Gia) ≥ 1− e−
2
3 , p9(≥ 0.486).

We say that “i is in α1 with respect to a” if (a, i) has the neighborhood structure shown in

α1 in Figure 4-4. The same for α2, α3, α4, β1, . . . , β5. “With respect to a” will be omitted

unless otherwise specified. We are now ready to compute lower bounds on pa when fa = 1.

We have two cases:

Case 1: a is contained in a cycle of length 4 in Gf . Let [a1(= a), i1, a2, i2] be the cycle.

According to the choice of the offline solution (see Section 4.3.1),
∑

j,k faj ,ik = 2 as showed

in Figure 4-5. Let N be the number of impressions of type i1 or i2. Then,

pa1 + pa2 = Pr(N = 1) + 2 Pr(N ≥ 2) = 2− 4e−2 = (1− 2e−2)(fa1 + fa2) ≈ 0729(fa1 + fa2).

a1 i1

a2 i2

Figure 4-5: Cycle of length 4. Thin edges carry 1/3 flow; and thick edges carry 2/3 flow.

Case 2: a is not contained in a cycle of length 4. Then it has either three or two neighbors:

1) a has three neighbors i1, i2, and i3, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ∪Gi3a )

= 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))(1− Pr(Gi3a ))

≥ 1− e−1(1− p8)3 ≥ 0.769fa.

Please note that the second equality is due to Corollary 1, which says that four or

less certificate events are asymptotically independent if their supporting sets do not

intersect. We will also use this asymptotic independence property repeatedly in the

rest of the proof.

2) a has two neighbors i1 and i2. Without loss of generality, let us assume that fa,i1 = 1/3

and fa,i2 = 2/3:
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2a. i1 is in case β3 or β5.

pa ≥ Pr(Ba ∪Gi1a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))

≥ 1− e−1(1− p7) ≥ 0.742fa.

2b. i1 is in case β4. Let a1 be the other neighbor of i1.

pa ≥ Pr(Ba ∪Gi1a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))

≥ 1− e−1(1− p8).

Similarly, we can compute

pa1 ≥ Pr(Ba1 ∪Gi1a1
)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j
n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 3

2(1− e−
2
3 )
)
, p10(≥ 0.542).

Since fa = 1, fa1 = 2/3, we have

pa + pa1 ≥ 1− e−1(1− p8) + p10 ≥ 0.736(fa + fa1).

2c. i1 is in case β2.

i. i2 is in case α1. Let a1 be the other neighbor of i2. Since

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p1)(1− p6)

and

pa1 ≥ Pr(Ba1) = 1− e−
1
3 = p4,

Since fa = 1, fa1 = 1/3, we have

pa + pa1 ≥ 1− e−1(1− p1)(1− p6) + p4 ≥ 0.750(fa + fa1).
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ii. i2 is in case α2. Let a1 be the other neighbor of i2.

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p2)(1− p6).

Similarly, we can compute

pa1 ≥ Pr(Ba1 ∪Gi1a1
)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j
n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 3

2(1− e−
2
3 )
)

= p10.

Since fa = 1, fa1 = 2/3, we have

pa + 0.5pa1 ≥ 1− e−1(1− p2)(1− p6) + 0.5p10 ≥ 0.749(fa + 0.5fa1).

iii. i2 is in case α3 or α4.

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p3)(1− p6) ≥ 0.736fa.

2d. i1 is in case β1 and i2 is not in case α3.

i. i2 is in case α1. Let a1 be the other neighbor of i2. Since

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p1)(1− p5)

and

pa1 ≥ Pr(Ba1) = 1− e−
1
3 = p4,

Since fa = 1, fa1 = 1/3, we have

pa + pa1 ≥ 1− e−1(1− p1)(1− p5) + p4 ≥ 0.741(fa + fa1).
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ii. i2 is in case α2. Let a1 be the other neighbor of i2.

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p2)(1− p5).

Similarly, we can compute

pa1 ≥ Pr(Ba1 ∪Gi1a1
)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j
n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 3

2(1− e−
2
3 )
)

= p10.

Since fa = 1, fa1 = 2/3, we have

pa + 0.5pa1 ≥ 1− e−1(1− p2)(1− p5) + 0.5p10 ≥ 0.740(fa + 0.5fa1).

iii. i2 is in case α4,

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p4)(1− p5) ≥ 0.778fa.

2e. i1 is in case β1 and i2 is in case α3, then i2 has two neighbors. Let a1 and a2 be

the other two neighbors of i1, and a3 be the other neighbor of i2.

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p3)(1− p5).

i. a3 has three neighbors. According to the discussion in (1),

pa3 ≥ 1− e−1(1− p8)3.

Since fa = fa1 = 1, we have

pa +
1

3
pa3 ≥ 0.736(fa +

1

3
fa3).

If a3 has two neighbors. Let the other neighbor of a3 is i3.

ii. i3 is in α1 with respect to a3. Let the other neighbor of i3 be a4. According
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to the discussion in (2c-i),

pa3 + pa4 ≥ 1− e−1(1− p1)(1− p6) + p4.

Since fa = fa3 = 1, fa4 = 1/3, we have

pa + pa3 + pa4 ≥ 0.739(fa + fa3 + fa4).

iii. i3 is in α2 with respect to a3. Let the other neighbor of i3 be a4. According

to the discussion in (2c-ii),

pa3 + 0.5pa4 ≥ 1− e−1(1− p2)(1− p6) + 0.5p10.

Since fa = fa3 = 1, fa4 = 2/3, we have

pa + pa3 + 0.5pa4 ≥ 0.738(fa + fa3 + 0.5fa4).

iv. i3 is in α3 or α4 with respect to a3. According to the discussion in (2c-iii),

pa3 ≥ 1− e−1(1− p3)(1− p6).

Since fa = fa3 = 1, we have

pa + pa3 ≥ 0.730(fa + fa3).

Lemma 33. ∃{λa ≥ 0}a∈A such that
∑

a λaµa,a′ = 1, ∀a′.

Proof. Let us first obtain expression of λa for various types of advertisers. Consider an

advertiser a such that fa = 1: if a is in case (1a) in the proof of Lemma 32, λa = 1 −

#(nodes in (2e) that are of distance 2 from a)/3; if a is in (2c) and there exists a node in

(2e) that is of distance 2 from a, then λa = 0; otherwise, λa = 1. For all the other advertisers

a such that fa < 1, we have λa = 1 −
∑

a′:fa′=1 µa′,aλa′ . We can now verify that for all a,

λa ≥ 0 and
∑

a′ λa′µa′,a = 1:
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• If a is in case (1a), let N ′a = {a′ : a′ is a 2-neighbor of a and a′ is in (2e)}. Because

|N ′a| ≤ 3, we have λa ≥ 0. On the other hand, from the proof of Lemma 32, µa′,a = 1/3

if a′ ∈ N ′a, and 0, otherwise. From the construction of λ above, λa′ = 1 for a′ ∈ N ′a
and λa = 1− |N ′a|/3. Therefore,

∑
a′ λa′µa′,a = 1.

• If a is in (2c) and it has a 2-neighbor a1 who is in (2e), then from the proof of

Lemma 32, µa1,a = 1 and µa′,a = 0 for all a′ 6= a or a1. From the construction of λ

above, λa = 0 and λa1 = 1. Therefore,
∑

a′ λa′µa′,a = 1.

• For all a with fa = 1 and not in the two cases above, µa′,a = 0 for all a′ 6= a. Since

λa = 1, we have
∑

a′ λa′µa′,a = 1.

• For all a with fa < 1, µa′,a = 0 for all a′ 6= a with fa′ < 1. Because of the construction

of λ,
∑

a′ λa′µa′,a = 1 is trivially true. We will show that λa ≥ 0.

– fa = 1/3. We can show that there is at most one advertiser a′ such that λa′µa′,a >

0. Therefore, λa ≥ 0.

– fa = 2/3, and a has only 1 neighbor. We can show that there is at most one

advertiser a′ such that λa′µa′,a > 0. Therefore, λa ≥ 0.

– fa = 2/3, and a has 2 neighbors. We can show that there is at most two adver-

tisers a′ such that λa′µa′,a > 0. Furthermore, for all a′, µa′,a ≤ 1/2. Therefore,

λa ≥ 0.

Combining the two lemmas above, a conical combination of inequalities leads to our

main result:

Theorem 27. E[ALG] =
∑
a∈A

pa ≥ (1− 2e−2)
∑
a∈A

fa ≥ (1− 2e−2)E[OPT ].

4.3.5 Tight example

It is worth mentioning that the ratio of 1−2e−2 is tight for the algorithm. The ratio can be

achieve in the following example: the underlying graph is a complete bipartite graph Kn,n

with n even. One optimal solution to LP (4.2) consists of a disjoint unions of n/2 cycles of

length 4; within each cycle, two of edges carry 1/3 flow, and two carry 2/3 flow. Since the

underlying graph is Kn,n, the optimal offline solution is n. On the other hand, for any cycle
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in the offline optimal solution, the expected number of matches is 2(1 − e−2). Therefore,

the competitive ratio in this instance is 1− 2e−2 ≈ 0.729.

4.4 Extension to Vertex-Weighted Stochastic Matching

In this section, we consider the online stochastic vertex-weighted matching problem as

defined in Aggarwal et al. [3]. The problem is exactly the same as the online stochas-

tic matching problem introduced in Section 4.1 except for the objective function. In the

weighted problem, every advertiser a has a nonnegative weight wa, indicating his impor-

tance or value. The objective is to maximize the sum of weights of matched advertisers

rather than the number of matched advertisers as in the unweighted problem.

The techniques used in Section 4.3.4 are based on local properties of graphs and thus

also work for the vertex-weighted case.

4.4.1 Original algorithm

Let us consider the maximum flow problem on the graph G:

max
∑
a,i
wafa,i

s.t.
∑
i
fa,i ≤ 1 ∀a ∈ A∑

a
fa,i ≤ 1 ∀i ∈ I

fe ∈ [0, 2/3] ∀e ∈ E

(4.3)

Again, since the set of vertices of the feasible polytope of (4.3) is a subset of {0, 1/3, 2/3}E ,

there exists an optimal solution to (4.3) in {0, 1/3, 2/3}E , and let f be such an optimal

solution that satisfies requirements in Section 4.3.2. To ease the analysis, we try to make

Ef as sparse as we can by doing the following two types of transformations as we did in

Section 4.3.2. As argued before, there exists an optimal solution f such that its resulting

graph Gf does not contain cycles of length 4, unless the four nodes in such a cycle do not

have any other neighbors. Furthermore, if there exists impression i that has two neighbors

a1 and a2 with fi,a1 = fi,a2 = 1/3, fa1 < 1, and fa2 < 2, without loss of generality, we

assume wa1 < wa2 . Another solution f ′ with f ′i,a1
= 0, f ′i,a2

= 2/3, and everything else

unchanged has a larger or equal objective value, and less edges in its resulting graph. We
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transform f to f ′. Note that each time, transformations mentioned above remove one or

two edges and does not introduce any new edge. Thus, given any initial optimal solution,

after at most |E| transformations, the optimal solution cannot be transformed further in

the above two ways.

Based on f , the probability distributions over lists can be constructed as in 4.3.1, and the

same idea as in 4.3.4 leads to the proof that pa ≥ 0.682fa for all a ∈ A. Summing up these

inequalities, we have
∑

a∈Awapa ≥ 0.682
∑

a∈Awafa, which implies that the algorithm is

0.682-competitive.

Worth noting that although Lemma 32 and Lemma 33 still hold, they are of little value

to weighted problems because of different weights associated with different advertisers.

Out of the same reason, results and techniques proposed in previous papers dealing with

unweighted stochastic matching problems are unlikely to be adapted for weighted problems.

4.4.2 Modification

However, modifying f and construction of random lists leads to a better algorithm. If i has

neighbors with f = 1 and f < 1, as showed in Figure 4-6, f will be modified as follows: in

(1), f̃a1,i = 0.1 and f̃a2,i = 0.9; in (2), f̃a1,i = 0.15 and f̃a2,i = 0.85; in (3), f̃a1,i = 0.6 and

f̃a2,i = 0.4; in (4), f̃a1,i = 0.1, f̃a2,i = 0.45 and f̃a3,i = 0.45; in (5), f̃a1,i = 0.15, f̃a2,i = 0.425

and f̃a3,i = 0.425. For all the other edges e, f̃e = fe.

a11/3

i
a21

(1)

a12/3

i
a21

(2)

a12/3

i
a21

(3)

a11/3

ia21

a31

(4)

a12/3

ia21

a31

(5)

Figure 4-6: Modification of f . Thin edges carry 1/3 flow, and thick edges carry 2/3 flow.
The number next to advertiser a indicates fa.

Now use f̃ instead of f for the construction of the probability distributions over lists in

a way similar to the one described in Section 4.3.1 as follows. Given an impression type i,

if it has two neighbors a1 and a2 in the resulting graph, the list is 〈a1, a2〉 with probability

f̃a1,i; the list is 〈a2, a1〉 with probability f̃a1,i. If i has three neighbors a1, a2, and a3; the

list is 〈aj , ak, al〉 with probability f̃aj ,if̃ak,i/(1− f̃aj ,i).

Let p̃a be the probability that advertiser a is matched in the modified algorithm. Using
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the same idea as in Section 4.3.4, we can then show that:

Lemma 34. p̃a ≥ 0.725fa,∀a ∈ A.

Proof. As discussed in Section 4.3.1, the left case in Figure 4-1 is the only possible cycle

in the resulting graph. Let N be the number of impressions of type i1 or i2. Then,

p̃a1 + p̃a2 = Pr(N = 1) + 2 Pr(N ≥ 2) = 2− 4e−2. Because of the symmetry between a1 and

a2, p̃a1 = p̃a2 = 1− 2e−2 = 0.729.

From now on, we only need to consider advertisers a who are not part of cycles of

length 4. Therefore, the supporting sets of their certificate events do not intersect, thus are

asymptotically independent.

We first consider the case fa = 1. We can show case by case that:

a11/3

i
a1

(α1)

a12/3

i
a1

(α2)

a11

i
a1

(α3)

a1

i

aidN/A

(α4)

a1

ia11

a21

(β1)

a1

i
a11

(β2)

a1

ia11

aidN/A

(β3)

a1

i
a12/3

(β4)

a1

i
aidN/A

(β5)

a1

ia11

a21/3

(β6)

a1

ia11

a22/3

(β7)

Figure 4-7: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3
flow, and thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

Claim 9. ∀a with fa = 1, pa ≥ 0.7250fa.

Proof. Let us first compute probabilities of certificate events:

α) fa,i = 2/3.

If i has 2 neighbors a and a1, then fa1,i = 1/3.
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α1. fa1 = 1/3. We use a Markov Chain approach to approximate Pr(Gia). The state

space consists of three states: “a is full” (state 1), “a is empty and a1 is full”

(state 2), and “a is empty and a1 is empty” (state 3). The transition probabilities

are p32 = 0.1/n, p33 = 1− 0.1/n, p22 = 0.1/n, p21 = 1− 0.1/n, and p11 = 1. The

initial probability distribution is (0,0,1), i.e. both a and a1 are empty. Pr(Gia)

is the probability of state 1 after n time step. We use n = 106 here and for all

other cases:

Pr(Gia) ≥ 0.0047(, p1)

The same idea can be used to compute the probability for all cases. The only

difference is the size of state space, and the transition probability. Please note

that we can also calculate Pr(Gia) exactly, as we did in the proof of Lemma 32.

α2. fa1 = 2/3.

Pr(Gia) ≥ 0.0194(, p2)

α3. fa1 = 1.

Pr(Gia) ≥ 0.1091(, p3)

If i has only one neighbor:

α4.

Pr(Gia) ≥ 0.2835(, p4)

β) fa,i1 = 1/3.

If i has 3 neighbors a, a1 and a2. Then at least one of fa1 or fa2 is 1; otherwise, we can

find another solution that has less non-zero flow edges and a better objective value.

β1. fa1 = fa2 = 1.

Pr(Gia) ≥ 0.1608(, p5)

β6. fa1 = 1 and fa2 = 1/3.

Pr(Gia) ≥ 0.1396(, p6)
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β7. fa1 = 1 and fa2 = 2/3.

Pr(Gia) ≥ 0.1304(, p7)

If i has 2 neighbors a and a1. Note that fa1,i = 1/3 and fa1 < 1 cannot happen

together; otherwise, f cannot be a maximum flow.

β2. fa1,i = 2/3 and fa1 = 1.

Pr(Gia) ≥ 0.1955(, p8)

β3. fa1,i = 1/3 and fa1 = 1.

Pr(Gia) ≥ 0.2992(, p9)

β4. fa1,i = 2/3 and fa1 = 2/3.

Pr(Gia) ≥ 0.1219(, p10)

If i1 has only one neighbor:

β5.

Pr(Gia) ≥ 0.4866(, p11)

We are now ready to compute lower bounds on pa when fa = 1:

1) a has 3 neighbors i1, i2, and i3.

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ∪Gi3a )

= 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))(1− Pr(Gi3a ))

≥ 1− e−1(1− p10)3 = 0.7509fa.

2) a has 2 neighbors i1 and i2. Without loss of generality, let us assume that fa,i1 = 1/3

and fa,i2 = 2/3.
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2a. i2 is in case α4, then

pa ≥ Pr(Ba ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi2a ))

≥ 1− e−1(1− p4) = 0.7364fa.

2b. i2 is in case α1, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−0.9−1/3(1− p1)(1− p10) = 0.7449fa.

2c. i2 is in case α2, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−0.85−1/3(1− p2)(1− p10) = 0.7360fa.

2d. i2 is in case α3,

i. i1 is in case β1, 2, 3, or 5, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−1(1− p3)(1− p5) = 0.7250fa.

ii. i1 is in case β4, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−2/3−0.4(1− p3)(1− p10) = 0.7308fa.

iii. i1 is in case β6, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−2/3−0.45(1− p3)(1− p6) = 0.7491fa.

iv. i1 is in case β7, then

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−2/3−0.425(1− p3)(1− p7) = 0.7400fa.
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Claim 10. ∀a with fa = 1/3, pa ≥ 0.7622fa.

a1/3

ia11

a21

(1)

a1/3

i
a12/3

(2)

a1/3

i
a11

(3)

Figure 4-8: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3
flow, and thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

Proof. There are 3 possible local configurations:

1. The probability of certificate event Pr(Gia) ≥ 0.1756, thus,

pa ≥ Pr(Ba ∪Gia) = 1− (1− Pr(Ba))(1− Pr(Gia))

≥ 1− e−0.1(1− 0.1756) = 0.2541 = 0.7622fa.

2. pa ≥ Pr(Ba) = 1− e−1/3 = 0.2835 = 0.8504fa.

3. The probability of certificate event Pr(Gia) ≥ 0.2275, thus,

pa ≥ Pr(Ba ∪Gia) = 1− (1− Pr(Ba))(1− Pr(Gia))

≥ 1− e−0.1(1− 0.2275) = 0.3010 = 0.9030fa.

Claim 11. ∀a with fa = 2/3, pa ≥ 0.7299fa.

Proof. Let us first compute the probabilities of certificate events.

α). fa,i = 1/3,

α1.

Pr(Gia) ≥ 0.1748

α2.

Pr(Gia) ≥ 0.1443
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a2/3

ia11

a21

(α1)

a2/3

i
a12/3

(α2)

a2/3

i
a11

(α3)
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i
a11/3

(β1)

a2/3

i
a12/3

(β2)

a2/3

i
a11

(β3)

Figure 4-9: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3
flow, and thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

α2.

Pr(Gia) ≥ 0.1748

β). fa,i = 2/3,

β1.

Pr(Gia) ≥ 0

β2.

Pr(Gia) ≥ 0

β3.

Pr(Gia) ≥ 0.2016

We are now ready to bound pa when fa = 2/3.

1). If a has only one neighbor i,

1a. i is in case β1 or 2, then pa ≥ Pr(Ba) = 1− e−2/3 = 0.4866 = 0.7299fa.

1b. i is in case β3, then,

pa ≥ Pr(Ba ∪Gia) = 1− (1− Pr(Ba))(1− Pr(Gia))

≥ 1− e−0.6(1− 0.2016) = 0.5618 = 0.8427fa.

2). If a has two neighbors i1 and i2,
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2a. If neither of i1 or i2 is in case α2,

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−0.3(1− 0.1748)2 = 0.4955 = 0.7433fa.

2b. If at least one of i1 or i2 is in case α2,

pa ≥ Pr(Ba ∪Gi1a ∪Gi2a ) = 1− (1− Pr(Ba))(1− Pr(Gi1a ))(1− Pr(Gi2a ))

≥ 1− e−0.15−1/3(1− 0.1443)2 = 0.5484 = 0.8226fa.

In conclusion, combining the results of Claims 5, 6, and 7, we obtain the proof of Lemma 7.

Summing these inequalities up, we have:

Theorem 28. E[ALG] =
∑
a∈A

wap̃a ≥ 0.725
∑
a∈A

wafa ≥ 0.725E[OPT ].

4.5 Unweighted Stochastic Matching Problems Revisit

In this section, we use a new approach to analyze the algorithm proposed in Section 4.3.

Let A′ be the set of all nodes that are contained in cycles of length 4 in Gf . As argued

in Section 4.3.1, every cycle of length 4 in Gf is a connected component; and according to

case 1 in the proof of Lemma 32,

∑
a∈A′

pa ≥
∑
a∈A′

(1− 2e−2)fa.

Thus, we only need to consider bins in A\A′. For simplicity, in the remaining part of the

section, we remove all cycles of length 4 in Gf .

We then divide all nodes and edges into different subgroups as follows: all ball type

nodes are divided into the following 11 subgroups, according to their adjacent nodes in Gf :

• I1 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 1/3, fa2,i = 2/3, and

fa2 = 1}.
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• I2 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 2/3, fa2,i = 2/3, and

fa2 = 1}.

• I3 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 1, fa2,i = 2/3, and

fa2 = 1}.

• I4 = {i|i has exactly one neighbor a1, fa1,i = 2/3 and fa1 = 1}.

• I5 = {i|i has exactly three neighbors a1, a2, a3, fa1,i = fa2,i = fa3,i = 1/3 and

fa1 = fa2 = fa3 = 1}.

• I6 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 1, fa2,i = 1/3, and

fa2 = 1}.

• I7 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 1, fa2,i = 2/3, and

fa2 = 2/3}.

• I8 = {i|i has exactly one neighbor a1, fa1,i = 1/3 and fa1 = 1}.

• I9 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 1/3, fa2,i = 2/3, and

fa2 = 2/3}.

• I10 = {i|i has exactly two neighbors a1, a2, fa1,i = 1/3, fa1 = 2/3, fa2,i = 2/3, and

fa2 = 2/3}.

• I11 = {i|i has exactly one neighbor a1, fa1,i = 2/3 and fa1 = 2/3}.

and let yk be the number of bins in subgroup Ik.

All bin nodes are divided into the following subgroups, according to their adjacent nodes

in Gf :

• A1
k = {a|a has exactly one neighbor i, fa,i = 1/3 and i ∈ Ik}, (k ∈ {1, 9}).

• A2
k = {a|a has exactly one neighbor i, fa,i = 2/3 and i ∈ Ik}, (k ∈ {7, 9, 10, 11}).

• A3
k1,k2

= {a|a has exactly two neighbors i1 and i2, fa,i1 = fa,i2 = 1/3, i1 ∈ Ik1 , and

i2 ∈ Ik2}, (k1 ≤ k2 ∈ {2, 10}).

• A4
k1,k2

= {a|a has exactly two neighbors i1 and i2, fa,i1 = 1/3, fa,i2 = 2/3, i1 ∈ Ik1 ,

and i2 ∈ Ik2}, (k1 ∈ {3, 5, 6, 7, 8}, k2 ∈ {1, 2, 3, 4}).
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• A5
k1,k2,k3

= {a|a has exactly three neighbors i1, i2 and i3, fa,i1 = fa,i2 = fa,i3 = 1/3,

i1 ∈ Ik1 , i2 ∈ Ik2 , and i3 ∈ Ik3}, (k1 ≤ k2 ≤ k3 ∈ {3, 5, 6, 7, 8}).

and let x1
k, x

2
k, x

3
k1,k2

, x4
k1,k2

, and x5
k1,k2,k3

be the number of balls in the respective groups.

All edges in Gf are divided into the following 17 subgroups, according to their endpoints:

• E1 = {a = (a, i)|fa,i = 1/3, fa = 1/3 and i ∈ I1}.

• E2 = {a = (a, i)|fa,i = 2/3, fa = 1 and i ∈ I1}.

• E3 = {a = (a, i)|fa,i = 1/3, fa = 2/3 and i ∈ I2}.

• E4 = {a = (a, i)|fa,i = 2/3, fa = 1 and i ∈ I2}.

• E5 = {a = (a, i)|fa,i = 1/3, fa = 1 and i ∈ I3}.

• E6 = {a = (a, i)|fa,i = 2/3, fa = 1 and i ∈ I3}.

• E7 = {a = (a, i)|fa,i = 2/3, fa = 1 and i ∈ I4}.

• E8 = {a = (a, i)|fa,i = 1/3, fa = 1 and i ∈ I5}.

• E9 = {a = (a, i)|fa,i = 1/3, fa = 1 and i ∈ I6}.

• E10 = {a = (a, i)|fa,i = 1/3, fa = 1 and i ∈ I7}.

• E11 = {a = (a, i)|fa,i = 2/3, fa = 2/3 and i ∈ I7}.

• E12 = {a = (a, i)|fa,i = 1/3, fa = 1 and i ∈ I8}.

• E13 = {a = (a, i)|fa,i = 1/3, fa = 1/3 and i ∈ I9}.

• E14 = {a = (a, i)|fa,i = 2/3, fa = 2/3 and i ∈ I9}.

• E15 = {a = (a, i)|fa,i = 1/3, fa = 2/3 and i ∈ I10}.

• E16 = {a = (a, i)|fa,i = 2/3, fa = 2/3 and i ∈ I10}.

• E17 = {a = (a, i)|fa,i = 2/3, fa = 2/3 and i ∈ I11}.

It is easy to see, the number of edges in any edge subgroup can be counted in two ways,

using bin nodes or using ball type nodes:

• |E1| = y1 = x1
1.
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• |E2| = y1 =
∑

k1
x4
k1,1

.

• |E3| = y2 =
∑

k2
x3

2,k2
+
∑

k1
x3
k1,2.

• |E4| = y2 =
∑

k1
x4
k1,2

.

• |E5| = y3 =
∑

k2
x4

3,k2
+
∑

k2,k3
x5

3,k2,k3
+
∑

k1,k3
x5
k1,3,k3

+
∑

k1,k2
x5
k1,k2,3

.

• |E6| = y3 =
∑

k1
x4
k1,3

.

• |E7| = y4 =
∑

k1
x4
k1,4

.

• |E8| = 3y5 =
∑

k2
x4

5,k2
+
∑

k2,k3
x5

5,k2,k3
+
∑

k1,k3
x5
k1,5,k3

+
∑

k1,k2
x5
k1,k2,5

.

• |E9| = 2y6 =
∑

k2
x4

6,k2
+
∑

k2,k3
x5

6,k2,k3
+
∑

k1,k3
x5
k1,6,k3

+
∑

k1,k2
x5
k1,k2,6

.

• |E10| = y7 =
∑

k2
x4

7,k2
+
∑

k2,k3
x5

7,k2,k3
+
∑

k1,k3
x5
k1,7,k3

+
∑

k1,k2
x5
k1,k2,7

.

• |E11| = y7 = x2
11.

• |E12| = y8 =
∑

k2
x4

8,k2
+
∑

k2,k3
x5

8,k2,k3
+
∑

k1,k3
x5
k1,8,k3

+
∑

k1,k2
x5
k1,k2,8

.

• |E13| = y9 = x1
9.

• |E14| = y9 = x2
9.

• |E15| = y10 =
∑

k2
x3

10,k2
+
∑

k1
x3
k1,10.

• |E16| = y10 = x2
10.

• |E17| = y11 = x2
11.

Similar to the approach in Section 4.3, we can derive lower bounds p1
k, p

2
k, p

3
k1,k2

, p4
k1,k2

,

and p5
k1,k2,k3

on the probability that bins in respective bin subgroups are filled:

• p1
k = 1− e−

1
3 (1− q1

k), where q1
1 = 1− 3e−

2
3 + 2e−1 and q1

9 = 1− 5
3e
− 2

3 .

• p2
k = 1−e−

2
3 (1−q2

k), where q2
7 = 1− 3

2e
− 1

3 + 1
2e
−1, q2

9 = 1− 4
3e
− 1

3 , q2
10 = 1−2e−

1
3 +e−

2
3 ,

and q2
11 = 1− e−

1
3 .

• p3
k1,k2

= 1− e−
2
3 (1− q3

k1
)(1− q3

k2
), where q3

2 = 1− 3e−
2
3 + 2e−1 and q3

10 = 1− 5
3e
− 2

3 .
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• p4
k1,k2

= 1 − e−1(1 − p5
k1

)(1 − p4
k2

), where p4
1 = 1 − 4

3e
− 1

3 , p4
2 = 1 − 2e−

1
3 + e−

2
3 ,

p4
3 = 1 − 3

2e
− 1

3 + 1
2e
−1, p4

4 = 1 − e−
1
3 , q5

3 = 1 − 3e−
2
3 + 2e−1, q5

6 = 1 − 7
4e
− 2

3 + 3
4e
− 4

3 ,

q5
5 = 1− 21

8 e
− 2

3 + 9
4e
− 4

3 − 5
8e
−2, q5

7 = 1− 5
3e
− 2

3 , and q5
8 = 1− e−

2
3 .

• p5
k1,k2,k3

= 1 − e−1(1 − q5
k1

)(1 − q5
k2

)(1 − q5
k3

) where q5
3 = 1 − 3e−

2
3 + 2e−1, q5

6 =

1− 7
4e
− 2

3 + 3
4e
− 4

3 , q5
5 = 1− 21

8 e
− 2

3 + 9
4e
− 4

3 − 5
8e
−2, q5

7 = 1− 5
3e
− 2

3 , and q5
8 = 1− e−

2
3 .

Then, p′x is a lower bound on the online objective value
∑

a∈A\A′ pa. On the other hand,

it is easy to see that

∑
a∈A\A′

fa =
1

3

∑
k

x1
k +

2

3

∑
k

x2
k +

2

3

∑
k1,k2

x3
k1,k2

+
∑
k1,k2

x4
k1,k2

+
∑

k1,k2,k3

x5
k1,k2,k3

.

For simplicity, let us scale both x and y such that
∑

a∈A\A′ fa = 1. Note that the equalities

due to counting edges in edge subgroups are not affected by scaling.

Since the optimal solution to LP

max p′x

s.t. equalities constraints due to counting edges in each edge subgroup

1
3

∑
k

x1
k + 2

3

∑
k

x2
k + 2

3

∑
k1,k2

x3
k1,k2

+
∑
k1,k2

x4
k1,k2

+
∑

k1,k2,k3

x5
k1,k2,k3

= 1

x ≥ 0,y ≥ 0

is 0.7363, we can show that

∑
a∈A\A′

pa ≥ 0.7363
∑

a∈A\A′
fa.

Combined with ∑
a∈A′

pa ≥ (1− 2e−2)
∑
a∈A′

fa,

we get our result ∑
a∈A

pa ≥ (1− 2e−2)
∑
a∈A

fa.

4.6 Stochastic Matching with General Arrival Rates

In this section, we assume that ri ≤ 1 for all i. The algorithm and basic ideas here are very

similar to [57]: in the offline stage, we approximate the expected offline optimal solution;
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then, in the online stage, use the approximation solution to generate lists of length two.

However, our algorithm is different in two aspects. First, we use a max flow problem

instead of Monte Carlo methods to approximate the offline solution; second, the way lists

are generated is different. The first difference leads to much less computation in the offline

stage, while the second difference results in a slightly better competitive ratio.

4.6.1 Offline solution

One possible approach to find useful offline information in the general case is to use sampling

methods to estimate the optimal offline solution, as described in Manshadi et al. [57].

However, some properties that hold for the optimal offline solution may not hold for the

estimated one. Furthermore, a large number of samples may be needed in order to estimate

the offline optimal solution within a desirable accuracy, which takes a long time. Therefore,

we consider the following LP instead:

max
∑
a,i
fa,i

s.t.
∑
i∼a

fa,i ≤ 1 ∀a ∈ A∑
a∼i

fa,i ≤ ri ∀i ∈ I∑
i∼a

(2fa,i − ri)+ ≤ 1− ln 2 + 1
n ∀a ∈ A

fe ≥ 0 ∀e ∈ E

(4.4)

Note that that LP(4.4) is equivalent to a single-source s single-destination t maximum flow

problem on a directed network Ĝ = {V̂ , Ê} with |A|+ 2|I|+ 2 vertices and 2|E|+ |A|+ 2|I|

arcs. The vertex set V̂ = {s, t} ∪ A ∪ I ∪ I ′, where I ′ is a duplicate of I, and the arc set

Ê = {(s, a), (a, i), (i′, i), (a, i′), (i, t)|a ∈ A, i ∈ I, i is a duplicate copy of i}. The capacity of

(s, a) is 1; the capacity of (a, i) is ri/2; the capacity of (i′, i) is 1− ln 2 + 1/n; the capacity

of (i, t) is ri; (a, i′) have infinite capacities.

4.6.2 Upper bound on the optimal offline solution

Let f∗ be an optimal offline solution. All but the third constraints in (4.4) are trivially valid

for f∗. The third constraint has been proven in [57]:

Lemma 35. [[57], Lemma 5]
∑
i∼a

(2f∗a,i − ri)+ ≤ 1− ln 2 + 1
n , ∀a ∈ A.
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4.6.3 Randomized algorithm

For simplicity, let us again first add a dummy advertiser ad with fad , 1, and dummy

edges (ad, i) for all i with fad,i , ri −
∑

a∈A fa,i. The dummy advertiser is full at the

very beginning. Every time an impression of type i arrives, a random list consisting of two

advertisers will be generated as follows. Assume a1, ..., ak are the advertisers interested in

i. Choose a random number x uniformly over [0, ri]. If x ∈ [
∑j−1

l=1 fal,i,
∑j

l=1 fal,i], then aj

is the first advertiser in the list to be considered; if x ± ri/2 ∈ [
∑k−1

l=1 fal,i,
∑k

l=1 fal,i] then

ak is the second in the list to be considered. Worth noting is the possibility that aj and ak

correspond to the same advertiser; in that case, the list degenerates to a singleton.

Let mi
aj ,ak

be the expected number of requests for impressions of type i and correspond-

ing lists given by 〈aj , ak〉. Since all lists are i.i.d., the probability that an impression is of

type i and its corresponding list is 〈aj , ak〉 is mi
aj ,ak

/n. From the construction of the lists,

we have mi
aj ,ak

= mi
ak,aj

. As we mentioned in Section 4.2, from a given realization of the

sequence of random lists, we can find the cardinality of the corresponding online matching.

Since the random list associated with the jth request only depends on the impression type

of that request, and not on types and assignments of earlier requests, these random lists

are all i.i.d.. Thus, we can focus on the lists themselves, rather than on the impression

types that they are associated with. Then, maj ,ak ,
∑

i∈I m
i
aj ,ak

is the expected number of

lists that are 〈aj , ak〉, irrespective of the impression types which they are associated with.

Furthermore, because mi
aj ,ak

= mi
ak,aj

, we have maj ,ak = mak,aj . Since all lists are i.i.d.,

the probability that a list is 〈aj , ak〉 is maj ,ak/n.

4.6.4 Lower bound on the online algorithm

The analysis here is almost the same as in [57] except for some minor changes due to the

different ways we generate random lists, e.g. maj ,ak = mak,aj . To help better understand

the arguments, we present the full proof in this section. The following main result is proved

by way of successive claims.

Theorem 29.
∑
a∈A

pa ≥ 0.706
∑
a∈A

fa.

Let Aa = A\{a}, A∗ = A ∪ {ad}, and A∗a = A∗\{a}. ∀a ∈ A∗, a1 ∈ A∗a, define events

Ba = {∃j, such that Lj = 〈a, .〉}, Ea1,a2 = {∃j < k such that Lj = 〈a1, .〉, Lk = 〈a1, a2〉},

and Ead,a = {∃j, such that Lj = 〈ad, a〉}. If any of Ba, Ea1,a, and Ead,a happens, then

117



advertiser a is matched. Thus, the probability pa that advertiser a is matched is at least:

pa ≥ Pr(Ba) + Pr(B̄a) Pr(
⋃

a1∈A∗a
Ea1,a|B̄a)

≥ 1− e−fa + e−1
( ∑
a1∈A∗a

Pr(Ea1,a)− 1
2

∑
a1 6=a2∈A∗a

Pr(Ea1,a, Ea2,a)
)

≥ 1− e−fa + e−1
( ∑
a1∈A∗a

Pr(Ea1,a)− 1
2

∑
a1 6=a2∈A∗a

Pr(Ea1,a) Pr(Ea2,a)
)
,

where the last two inequalities are due to asymptotic independence. The proof of asymptotic

independence is similar to the proof of Lemma 31, and is omitted in the thesis.

Let us now provide a way to compute Pr(Ea1,a).

Claim 12. We have Pr(Ea1,a) = g(fa1 ,ma1,a) for all a1 ∈ A and a ∈ A∗a1
, and Pr(Ead,a) ≥

g(fad ,mad,a) for all a ∈ A, where:

g(y, x) = h(y, 0)− h(y, x), and h(y, x) =


y

y − x
(e−x − e−y), if x 6= y

ye−y, if x = y

Proof. Define F ja1 = {the jth list is 〈a1, .〉} and Gja1,a = {there exists k ≥ j such that the

kth list is 〈aj , a〉}. Then,

Pr(Ea1,a) =
∑
j

Pr(F ja1) Pr(Gj+1
a1,a)

=
∑
j

(
1− fa1

n

)j−1 fa1

n

(
1−

(
1− ma1,a

n

)n−j)
≈

∑
j

fa1

n
e−

j
n
fa1
(
1− e−

n−j
n
ma1,a

)
.

If ma1,a 6= fa1 ,

Pr(Ea1,a|B̄a) =
∑
j

fa1

n

(
e−

j
n
fa1 − e−ma1,ae−

j
n

(fa1−ma1,a)
)

= 1− e−fa1 − fa1

fa1 − fa1,a
e−fa1,a

(
1− e−(fa1−fa1,a)

)
= g(fa1 , fa1,a).

If ma1,a = fa1 ,

Pr(Ea1,a|B̄a) =
∑
j

fa1

n

(
e−

j
n
fa1 − e−fa1

)
= 1− e−fa1 − fa1e

−fa1 = g(fa1 , fa1).
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We have transformed a probabilistic problem into an algebraic problem. In the remaining

part of the section, we only use algebraic manipulations and the following properties of

functions g and h to find a lower bound of the competitive ratio.

Claim 13. For y ∈ [0, 1], h(y, x) is convex and decreasing in x ∈ [0, y]; g(y, x) is concave

and increasing in x ∈ [0, y]; g(y, x) is increasing in y ∈ [x,∞).

Proof. The claim can be easily verified by taking first and second order partial derivatives.

Because of the convexity of h in the second argument, we have

Pr(Ea1,a) = h(fa1 , 0)− h(fa1 ,ma1,a) ≤ −ma1,a ·
∂h

∂y
(fa1 , 0) ≤ e−1ma1,a, (4.5)

implying that
∑

a1∈Aa Pr(Ea1,a|B̄a) ≤ e−1. Combined with Pr(Ea1,a|B̄a) ≥ g(fa1 ,ma1,a) for

all a1 ∈ A∗a, we have

pa ≥ 1− e−fa + e−1
( ∑
a1∈A∗a

g(fa1 ,ma1,a)−
1

2

( ∑
a1∈A∗a

g(fa1 ,ma1,a)
)2

+
1

2

∑
a1∈A∗a

g(fa1 ,ma1,a)
2
)
.

Since g is increasing in the first argument, we have g(fad ,mad,a) = g(fad ,ma,ad) ≥ g(fa,ma,ad)

for all a ∈ A. Thus,

∑
a∈A

∑
a1∈A∗a

g(fa1 ,ma1,a) ≥
∑
a∈A

∑
a1∈A∗a

g(fa,ma,a1)

and ∑
a∈A

∑
a1∈A∗a

g(fa1 ,ma1,a)
2 ≥

∑
a∈A

∑
a1∈A∗a

g(fa,ma,a1)2
.
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Therefore, by switching the order of summation, we have

∑
a∈A

pa∑
a∈A

fa
≥

∑
a∈A

(
1− e−fa + 1

e

∑
a1∈A∗

a

g(fa1
,ma1,a)− 1

2e

( ∑
a1∈A∗

a

g(fa1
,ma1,a)

)2
+ 1

2e

∑
a1∈A∗

a

g(fa1
,ma1,a)2

)
∑
a∈A

fa

≥

∑
a∈A

(
1− e−fa + 1

e

∑
a1∈A∗

a

g(fa,ma,a1
)− 1

2e

( ∑
a1∈A∗

a

g(fa1
,ma1,a)

)2
+ 1

2e

∑
a1∈A∗

a

g(fa,ma,a1
)2
)

∑
a∈A

fa

≥ min
a∈A

1− e−fa + 1
e

∑
a1∈A∗

a

g(fa,ma,a1)− 1
2e

( ∑
a1∈A∗

a

g(fa1 ,ma1,a)
)2

+ 1
2e

∑
a1∈A∗

a

g(fa,ma,a1)2

fa

Let βa = max
a1∈A∗a

ma,a1 , ma,a∗1
, sa =

∑
a1∈A∗a

ma,a1 . Then, we have
∑

a1∈A∗a
g(fa,ma,a1)2 ≥

g(fa, βa)
2. Furthermore, because g is concave in the second argument and g(fa, 0) = 0,

∑
a1∈A∗a

g(fa,ma,a1) ≥
∑
a1∈A∗a

ma,a1

βa
g(fa, βa) =

sa
βa
g(fa, βa).

On the other hand, from inequality (4.5),

∑
a1∈A∗a

g(fa1 ,ma1,a) =
∑

a1∈A∗a\{a∗1}
g(fa1 ,ma1,a) + g(fa1 , βa) ≤ e−1(sa − βa) + g(1, βa).

Therefore,

1
fa

(
1− e−fa + 1

e

∑
a1∈A∗a

g(fa,ma,a1)− 1
2e

( ∑
a1∈A∗a

g(fa1 ,ma1,a)
)2

+ 1
2e

∑
a1∈A∗a

g(fa,ma,a1)2
)

≥ 1
fa

(
1− e−fa + 1

e
sa
βa
g(fa, βa)− 1

2e

(
e−1(sa − βa) + g(1, βa)

)2
+ 1

2eg(fa, βa)
2
)
, R(fa, βa, sa).

From the definitions of fa, βa, and sa, we have fa ≥ sa ≥ βa, and fa − sa is the expected

number of lists that are singletons 〈a〉. From the construction of lists, the expected number

of singletons 〈a〉 associated with impressions of types i is (2fa,i − ri)+. Thus, fa − sa =∑
i∼a(2fa,i − ri)+ ≤ (1− ln 2) + 1/n. We can numerically show that, for n ≥ 100:

Claim 14. Subject to 1 ≥ fa ≥ sa ≥ βa ≥ 0 and fa − sa ≤ (1− ln 2) + 1/n, R(fa, βa, sa) ≥

0.706.

Proof. We divide the feasible region into cubes of side length 0.001. In each small region S,

define fmax
a , sup fa and fmin

a , inf fa. Define smax
a , smin

a , βmax
a , and βmin

a similarly. Then,
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from Claim 13, we can show that ∀(fa, sa, βa) ∈ S, R(fa, sa, βa) is bounded from below by

1

fmax
a

(
1−e−fmin

a +
1

e

smin
a

βmax
a

g(fmin
a , βmin

a )− 1

2e

(
e−1(smax

a −βmin
a )+g(1, βmax

a )
)2

+
1

2e
g(fmin

a , βmin
a )2

)
.

We can numerically verify R(fa, sa, βa) ≥ 0.706 in each region. The lower bound is achieved

when fa ∈ [0.999, 1], sa ∈ [0.692, 0.693], and βa ∈ [0.564, 0.565]. Hence, R(fa, sa, βa) ≥

0.706 is a valid inequality for the whole feasible region.

Theorem 29 follows from Claim 14.

4.7 Poisson Arrivals

In the preceding sections, the number of arriving requests is assumed to be fixed and known

in advance. However, in most applications, such an assumption is too strong. Thus, in this

section, we attempt to relax this assumption.

In this section, we consider the following scenario. A set of advertisers express their

interests in impressions of different types. Advertisers are fixed and known ahead of time

while requests for impressions come online. Impression types are i.i.d., and the distribution

may be known or unknown. The arrival of impressions is a Poisson Process with arrival

rate λ = n. The task is to maximize the cardinality of matching by the end of a given fixed

period T = 1.

4.7.1 Algorithms

The expected number of arrivals is λT = n. We show that, greedy algorithms designed

for stochastic matching with given number of arrivals works well for the one with Poisson

arrivals (e.g. the ranking algorithm for problems with unknown distribution, our proposed

algorithms in the previous sections for problems with known distribution). More specifi-

cally, we will show that a c-competitive “greedy-type” algorithm (where c is the ratio of

expectation) for fixed arrivals is c− ε competitive for Poisson arrivals.

Because the number of Poisson arrivals concentrates around its mean, we expect both

online and offline objective to concentrate around their means.

Lemma 36. Let N be the number of arrivals within [0, T ]. Then, Pr((1 − ε)λT < N <

(1 + ε)λT )→ 1 as λT →∞ for any ε > 0.
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Let OPTm be the expected offline optimal solution given N = m and OPT be the expected

offline optimal solution.

Lemma 37. ∀(1 − ε)n < m ≤ n, OPTm ≤ OPTn; ∀n ≤ m < (1 + ε)n, OPTm ≤

(1 + ε)OPTn.

Proof. ∀(1 − ε)n < m ≤ n, an instance τm of m arrivals can be generated in the following

way: generate an instance τn of n arrivals first, and then remove n−m arrivals uniformly

at random. Since τm is a subset of τn, OPT (τm) ≤ OPT (τn). By taking expectation, we

have OPTm ≤ OPTn.

∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following

way: generate an instance τm of m arrivals first, and then remove m− n arrivals uniformly

at random. A feasible solution of τn can be induced by the optimal solution of τm, by

removing pairs corresponding to removed arrivals and not adding any other pairs. The

feasible solution of τn has expected value of n
mOPT (τm). Thus, OPT (τm) ≤ m

nOPT (τn) ≤

(1 + ε)OPT (τn).

As a consequence we have:

Corollary 2. OPT ≤ (1 + ε)OPTn.

The unweighted case

Let ALGm be the expected online solution given N = m and ALG be the expected online

solution.

Lemma 38. ∀(1−ε)n < m ≤ n,ALGm ≥ (1−ε)ALGn; ∀n ≤ m < (1+ε)n,ALGm ≥ ALGn.

Proof. ∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following

way: generate an instance τm of m arrivals first, and then remove the last m − n arrivals.

Because of the greediness of the algorithm, ALGm ≥ ALGn.

∀(1− ε)n < m ≤ n, let ri be the probability that the ith arrival is matched. Because of

the greediness of the algorithm and the fact that less and less bins are unmatched, ri is non-

increasing. Since ALGm =
∑m

i=1 ri and ALGn =
∑n

i=1 ri, we have ALGm ≥ m
nALGn ≥

(1− ε)ALGn.

As a consequence we have:
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Corollary 3. ALG ≥ (1− 2ε)ALGn.

Because of the assumption of c-competitiveness, ALGn ≥ c ·OPTn. Therefore Corollaries 2

and 3 imply that ALG ≥ (1− 2ε)c ·OPT .

The weighted case

Let ALGm be the expected online solution given N = m and ALG be the expected online

solution. Let Ri be the marginal revenue in the ith step. For the algorithm proposed in

Section 4.4.1 and 4.4.2, we can show that although E[Ri] is not non-increasing as in the

unweighted case, Rj cannot be too large compared to E[Ri] for i < j. Specifically:

Lemma 39. E[Rj ] ≤ 9E[Ri], ∀i < j.

Proof. Let I be the indicator vector of availability of advertisers right after step i − 1.

Given I, if an advertiser has zero probability to be matched to a query at step i, he has

zero probability to be matched to a query at step j. Given I, if he has non-zero probability

to be matched at step i, then the probability is at least 1/3n; on the other hand, with

probability at most 3/n, he is matched at step j. From the discussion above, we have

E[Rj |I] ≤ 9E[Rj |I]. By taking expectation over I, we have our lemma.

Lemma 40. ∀(1 − ε)n < m ≤ n,ALGm ≥ (1 − 9ε)ALGn; ∀n ≤ m < (1 + ε)n,ALGm ≥

ALGn.

Proof. ∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following

way: generate an instance τm of m arrivals first, and then remove the last m − n arrivals.

Because of the greediness of the algorithm, ALGm ≥ ALGn.

∀(1 − ε)n < m ≤ n, ALGm =
∑m

i=1 E[Ri] and ALGn =
∑n

i=1 E[Ri]. From the above

lema, ALGm ≥ m
m+9(n−m)ALGn ≥ (1− 9ε)ALGn.

As a consequence:

Corollary 4. ALG ≥ (1− 9ε)ALGn.

Because of the assumption of c-competitiveness, ALGn ≥ c ·OPTn. Therefore Corollaries 2

and 4 imply that ALG ≥ (1− 10ε)c ·OPT .
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Remarks

As we can see, the only property of the Poisson distributed random variables we use is that

they concentrate around their means. Hence, if the number of arriving queries is a random

variable concentrating around its means, the results in this section still apply.
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Chapter 5

Online Resource Allocation

Problems

5.1 Introduction

As discussed in Chapter 1, online optimization is attracting wide attention from computer

science and operations research communities. It has many applications, including those

dealing with dynamic resource allocation problems. In many real-world problems, informa-

tion about the instance to optimize is not completely known ahead of time, but revealed in

an online fashion. For example, in typical revenue management problems, customers arrive

sequentially offering a price for a subset of commodities, e.g. multi-leg flights. The seller

must make irrevocable decisions to accept or reject customers at their arrivals, and try to

maximize long-term overall revenue while respecting various resource constraints. Another

example is the so-called AdWords problem, also known as the display ads problem. From

keyword search queries arriving online, the problem is to sequentially allocate ad slots to

budget-constrained bidders/advertisers. Similar problems appear in online routing prob-

lems, online packing problems, online auctions, and various internet advertising display

applications.

In this chapter, we consider a general online linear programming that covers many of

the examples mentioned above. To be precise about the problem, we need to introduce

some notations. Let I be a set of m resources; associated with each resource i ∈ I is a

capacity bi. The set of resources and their capacities are known ahead of time. Let J be a
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set of n customers; each customer has a set of options Oj and arrival time tj . We assume

that every customer has a bounded number of options, i.e. there exists a constant q such

that |Oj | ≤ q for all j. Each option o ∈ Oj has a value πjo and requires aijo units of

resources i for each i ∈ I, also written ajo as a vector of dimension m. The set of options

Oj and associated (πjo,ajo) are revealed at time tj when customer j arrives. Upon arrival,

the online algorithm must decide immediately and irrevocably whether or not to satisfy the

customer, and, if yes, which option to choose. The goal is to find a solution that maximizes

the overall revenue from customers while respecting resource constraints. More precisely,

we consider the following linear program:

max
∑

j

∑
o∈Oj πjoxjo

s.t.
∑

j,o aijoxjo ≤ bi, ∀i∑
o∈Oj xjo ≤ 1, ∀j

xjo ≥ 0, ∀j, o

(5.1)

where ∀j,πj ∈ (0, 1]|Oj |,aj ∈ [0, 1]m×|Oj |, and b ∈ Rm+ . In the online version of this

problem, (πj ,aj) is revealed only when customer j arrives at time tj . Upon that arrival,

and constrained by irrevocable decisions xj′o made for customers arriving earlier, the online

algorithm must then make decisions xjo, such that

∑
j′:tj′≤tj

∑
o∈Oj′

aij′oxj′o ≤ bi, ∀i∑
o∈Oj xjo ≤ 1

xjo ≥ 0, ∀o ∈ Oj

(5.2)

The goal is to choose the variables x such that the objective function
∑

j

∑
o∈Oj πjoxjo is

maximized.

Several models (on how online instances are chosen) can be used to evaluate online

algorithms, including the adversarial model, the i.i.d. model with or without knowledge of

distributions, and the random permutation model. In the adversarial setting, no further

assumption is made on the model. In that case, no online algorithm can achieve better than

O(1/n) fraction of the optimal offline solution [14]. However, as the adversarial setting is

too conservative, it is natural to consider stochastic models. In the i.i.d. model with

known distribution about future customers, positive results have been obtained for various
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problems. For many practical problems, such an assumption may be too strong, and the

i.i.d. model without knowledge of the distribution would be more suitable. A weaker

model, but easier to analyze, the random permutation model, has been considered more

frequently. In that model, the order of customers is a uniform random permutation, and

many near-optimal results have been obtained for it.

In this chapter, we propose a new model, closer to the random permutation model, but

removing a fundamental, yet practically questionable, assumption behind it. In all results

using the random permutation model, the exact knowledge about the total number of cus-

tomers to come is a key assumption, essential for ensuring near-optimality results. Without

such information, no non-trivial result can be achieved. In many practical settings, includ-

ing all the applications discussed above, this assumption is however far from being realistic.

We consider instead a more realistic and natural setting, initially using the following two

assumptions (the consequences of the relaxations of these two initial assumptions will also

be considered in this chapter):

Assumption 1. Customers have i.i.d. random arrival times.

The assumption is reasonable in many practical problems where customers’ arrival rates are

homogeneous throughout time. Ignoring the specific arrival times, the order of customers

is essentially equivalent to the random permutation model. Later in the chapter, we will

relax the assumption and take heterogeneity of arrival rates into account.

Assumption 2. The distribution governing random arrival times is known to the online

algorithm.

The assumption is necessary to estimate the total number of customers in case no past

data is available. However, as discussed in Section 5.4, if a limited amount of past data is

available, this assumption is not needed anymore.

For simplicity in the presentation of the results, we make two additional technical as-

sumptions, which can be removed without compromising the validity of our results, as we

explain below.

Assumption 3. The arrival time is modeled as a continuous random variable.

No matter what the nature of the original random variable is, we can add an auxiliary

random variable taj , uniformly distributed between [0, 1] for every customer j upon his
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arrival. We define a total ordering on pairs (tj , t
a
j ) based on lexical order. Note that the

order of customers is preserved except for those who arrive exactly at the same time. The

artificial ordering imposed on these customers does not help an online algorithm.

Assumption 4. There are no degeneracies among all points {(πjo,ajo)}j,o and (0,0), i.e.

no m+ 2 points share the same m-dimensional hyperplane.

If this is not the case, we can introduce a random perturbation on πjo: every πjo is multiplied

by an i.i.d. random variable uniformly distributed between [1, 1+ε]. After the perturbation,

there are no degeneracies almost surely. On the other hand, because the perturbation is

small enough, the optimal value of the solution is affected by no more than a multiple factor

of 1 + ε.

5.1.1 Our techniques and contributions

The online algorithms proposed in the chapter share similar ideas with some other pa-

pers [26][4][33]: the algorithms first observe (without making any allocation) customers

arriving early over a given period of time, and solve an offline LP problem over those cus-

tomers. The corresponding optimal dual solution then works as a pricing mechanism for

making online allocations on the following set of customers. The dual prices are updated

from time to time to depict customers’ preference more accurately as time moves along. We

prove that such algorithms are 1−ε competitive under several different scenarios if resource

capacities are large enough.

Our results significantly improves previous results by removing the need to know a priori

the number of customers n, a critical assumption in [26][4][33]. To the best of our knowledge,

this is the first attempt to do so. As pointed out in several papers, knowing n is so essential

that no near-optimal online algorithms can be obtained even under a probabilistic version

of that assumption. So a new model, with near-optimal online algorithm aspiration, would

need to introduce alternative assumptions.

We believe our model with arrival time fits reality better: In practice, the setting that

an online problem is more likely to face typically involves a known fixed period of time over

which the customers are considered, rather than a known fixed number of customers to

come. The question that a company usually asks is how to maximize revenue over a given

period of time instead of how to maximize revenue over a given fixed number of future
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customers. The arrival time of a customer is also more natural and informative than his

rank order. Furthermore, our model is more flexible as it allows, depending on specific

applications, various extensions which can better fit real-world scenarios. For example,

in airline revenue management problems, business customers and casual customers have

different price-sensitivity and arrival time. The random permutation model cannot capture

the heterogeneity among customers well. In contrast, our model can easily be extended to

such scenarios, as demonstrated in Section 5.5.

We first consider problems where the distribution of arrival time is known in advance.

Although similar in form, the previous approaches with fixed number of customers do not

address our model well. One could first estimate the number of total arrivals in the early

stage, and then use the estimation for the fixed-number algorithm as in [4]. However,

the performance of this approach depends on the quality of the estimation. In order to

keep the loss due to the estimation below ε-fraction, the estimation error must be within

ε-fraction. According to concentration laws, it requires the total number of customers be

at least O(1/ε3). Noting that bi’s are only required to be O(1/ε2), this new requirement on

the total number of customers is quite restrictive. On the other hand, our approach works

for any number of customers, even if the number is smaller than O(1/ε2).

We then consider two scenarios for which our initial assumptions are relaxed. In the

first scenario, we do not assume the knowledge of the exact distribution, but some past

observations instead. Instead of estimating the cumulative distribution function (CDF) on

every point, we only make estimation on only a few critical points. This approach requires

much less data points than the naive one. In the second scenario, we consider heterogeneous

customers.

5.2 One-Time Learning

Let F (·) be the cumulative distribution function of the random arrival time of customers.

Assumption 3 ensures that its inverse F−1(·) is well defined. Consider Sε = {j : tj ≤

F−1(ε)}, the set of customers arriving earlier than F−1(ε). From Assumption 1, every

customer belongs to Sε with probability ε.

The online algorithm observes customers in Sε, rejects them all, and then computes dual
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prices by solving the following primal dual LPs:

max
∑

j∈Sε,o∈Oj πjoxjo

s.t.
∑

j∈Sε,o∈Oj aijoxjo ≤ (1− ε)εbi, ∀i∑
o∈Oj xjo ≤ 1,∀j ∈ Sε

xjo ≥ 0,∀j ∈ Sε, o ∈ Oj

min
∑

i(1− ε)εbipi +
∑

j∈Sε qj

s.t.
∑

i aijopi + qj ≥ πjo, ∀j ∈ Sε, o ∈ Oj

pi ≥ 0, ∀i

qj ≥ 0,∀j ∈ Sε
(5.3)

Let x̂ and p̂ be the optimal primal and dual solutions for these problems.

For customers arriving later, they are accepted if payments exceed the threshold set by

p̂:

xjo(p̂) =


1, if πjo −

∑
i

aijop̂i > max
o′ 6=o
{πjo′ −

∑
i

aijo′ p̂i, 0}

0, otherwise

(5.4)

The proposed online algorithm is then as follows:

Algorithm 7 (Online Learning Algorithm(OLA)).

1. Reject all customers arriving earlier than F−1(ε).

2. Let xj = xj(p̂) for customers arriving after F−1(ε).

We call a customer j degenerate if the maximizer for maxo{πjo −
∑

i aijop̂i} is not unique

or πjo −
∑

i aijop̂i = 0. Degeneracies may lead to undesired results. Fortunately, due to

Assumption 4, there are at most m + 1 degenerate customers, and all of them, if any,

are in Sε. For degenerate j, the decision rule xj(p̂) = 0. For non-degenerate j, using

complementary slackness, xj(p̂) equals the optimal solution x̂j to LP (5.3), as stated in the

following lemma:

Lemma 41. For non-degenerate j ∈ Sε, x̂jo = xjo(p̂) for all o ∈ Oj.

Proof. If there exists o ∈ Oj such that x̂jo > 0. From complementary slackness, we have∑
i aijop̂i + q̂j = πjo. Since ∀o′ ∈ Oj ,

πjo′ −
∑
i

aijo′ p̂i < q̂j = πjo −
∑
i

aijop̂i,

we have xjo(p̂) = 1 and q̂j > 0. Since j is non-degenerate, then q̂j > 0. Combined with

complementary slackness, we have
∑

o′∈Oj x̂jo′ = 1. Note that ∀o′ 6= o, x̂jo′ = 0 because

πjo′ −
∑

i aijo′ p̂i < q̂j . Hence, x̂jo = 1 = xjo(p̂).
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If x̂jo = 0 for all o ∈ Oj , then q̂j = 0. Since πjo−
∑

i aijop̂i ≤ q̂j and j is non-degenerate,

πjo −
∑

i aijop̂i < 0. Therefore, xjo(p̂) = 0 for all o ∈ Oj .

In this chapter, we repeatedly use concentration laws to show that some undesired events

rarely happen. In particular, we use Bernstein inequalities:

Bernstein Inequalities [19]: Let X1, ..., Xn be independent zero-mean random vari-

ables. Suppose there exists M > 0 such that |Xi| ≤ M almost surely for all i. Then,

∀t,

Pr(
n∑
i=1

Xi > t) ≤ exp
(
− t2/2∑

i E[X2
i ] +Mt/3

)
.

Toward the analysis of our online algorithms, we first show that the resulting solution is

feasible with high probability:

Lemma 42. If mini bi ≥ 5m ln(nq/ε)/ε3, then w.p. 1− ε,
∑

j,o aijoxjo(p̂) ≤ bi for all i.

Proof. From Lemma 41, we have

∑
j∈Sε,o

aijoxjo(p̂) ≤
∑
j∈Sε,o

aijox̂jo ≤ ε(1− ε)bi.

We would like to apply Bernstein inequalities to show that
∑

j,o aijoxjo(p̂) ≥ bi rarely hap-

pens. The difficulty is that the random variables {aijoxjo(p̂)}j,o depend on the realization

of S via p̂. To get around the issue, let us first fix p and i, and consider the event

{
∑
j,o

aijoxjo(p) ≥ bi,
∑
j∈Sε,o

aijoxjo(p) ≤ (1− ε)εbi} (5.5)

For every customer j, because the arrival time is uniformly distributed between [0, T ], j ∈ Sε

with probability ε. Hence,

E[
∑
j∈Sε,o

aijoxjo(p)] = ε · E[
∑
j,o

aijoxjo(p)]

Using Bernstein’s inequalities, we have

Pr(
∑

j,o aijoxjo(p) ≥ bi,
∑

j∈Sε,o aijoxjo(p) ≤ (1− ε)εbi)

≤ Pr(
∑

j,o aijoxjo(p) ≥ bi,
∑

j∈Sε,o aijoxjo(p)− E[
∑

j∈Sε,o aijoxjo(p)] ≤ −ε2bi)

≤ exp(−ε3bi/4) ≤ ε/mnm.
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According to [62], R|I| can be divided into no more than (nq)m regions such that all p in a

region lead to the same x(p). By taking union bounds over all possible p and i, we have

with probability ε, there exist i and p such that (5.5) is true. So:

Pr(∃i,
∑
j,o
aijoxjo(p̂) ≥ bi)

= Pr(∃i,
∑
j,o
aijoxjo(p̂) ≥ bi,

∑
j∈Sε,o

aijoxjo(p̂) ≤ (1− ε)εbi)

≤ Pr(∃i,p,
∑
j,o
aijoxjo(p) ≥ bi,

∑
j∈Sε,o

aijoxjo(p) ≤ (1− ε)εbi) ≤ ε.

By taking the complement, we conclude the lemma.

After obtaining feasibility, we now compare the online solution with the offline optimal

solution OPT . Note that OPT is the optimal solution to LPs:

max
∑

j,o πjoxjo

s.t.
∑

j,o aijoxjo ≤ bi,∀i∑
o∈Oj xjo ≤ 1, ∀j

xjo ≥ 0, ∀j, o

min
∑

i bipi +
∑

j qj

s.t.
∑

i aijopi + qj ≥ πjo, ∀j, o

pi ≥ 0, ∀i

qj ≥ 0,∀j

(5.6)

We now show that the objective value of online solution x(p̂) is close to OPT :

Lemma 43. If mini bi ≥ 5m ln(nq/ε)/ε3, then w.p. 1− ε,

∑
j,o

πjoxjo(p̂) ≥ (1− 3ε)OPT (5.7)

Proof. Let us consider the following LP:

max
∑

j,o πjoxjo

s.t.
∑

j,o aijoxjo ≤ b̂i, ∀i∑
o∈Oj xjo ≤ 1, ∀j

xjo ≥ 0, ∀j, o

(5.8)

where b̂i =
∑

j,o aijoxjo(p̂), if p̂i > 0 and b̂i = max{
∑

j,o aijoxjo(p̂), bi}, if p̂i = 0. By

complementary slackness, x(p̂) is the optimal solution to this LP.

We then show that with probability 1 − ε, b̂i ≥ (1 − 3ε)bi,∀i. For i such that p̂i = 0,

it is trivially true from the definition of b̂i. For i such that p̂i > 0, by complementary
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slackness, we have
∑

j∈Sε,o πjox̂jo = (1 − ε)εbi. Furthermore, according to Assumption 4

and Lemma 41, at most m + 1 different j make xjo(p̂) 6= x̂jo. Noting that πjo ∈ (0, 1], we

have

∑
j∈Sε,o

πjoxjo(p̂) ≥
∑
j∈Sε,o

πjox̂jo − (m+ 1) = (1− ε)εbi − (m+ 1) ≥ (1− 2ε)εbi

Using the same technique as in the proof of Lemma 42, we can show that

Pr
(
∃i, s.t.

∑
j∈Sε,o

πjoxjo(p̂) ≥ (1− 2ε)εbi,
∑
j∈S,o

πjoxjo(p̂) ≤ (1− 3ε)bi
)
≤ ε.

Hence, with probability 1− ε, b̂i ≥ (1− 3ε)bi, ∀i.

In that case, we argue that
∑

j,o πjoxjo(p̂) ≥ (1− 3ε)OPT . In fact, assuming x∗ is the

optimal solution to LP (5.6), then (1−3ε)x∗ is feasible to LP (5.8). As the optimal solution

to LP (5.8), x̂(p̂) is no worse than (1− 3ε)x∗, which concludes the lemma.

Note that the left hand side of (5.7) includes revenue from customers in Sε, which should

be excluded. It is upper bounded by OPTε, the optimal solution to LP (5.3).

Lemma 44. E[OPTε] ≤ ε ·OPT .

Proof. Note that the optimal dual solution (p∗,q∗) to (5.6) is also feasible to the partial

dual problem (5.3). Hence, the optimal solution to (5.3): OPTε ≤ (1−ε)ε
∑

i bip
∗
i +
∑

j∈S q
∗
j .

By taking expectation on both sides, we can conclude our lemma.

We are now ready to prove the main theorem.

Theorem 30. If mini bi ≥ 5m ln(nq/ε)/ε3, OLA is 1−O(ε) competitive.

Proof. From the lemmas above, with probability 1− 2ε (denoted by E1), the solution x(p̂)

is feasible and
∑

j,o πjoxjo(p̂) ≥ (1− 3ε)OPT . Then,

E[
∑

j /∈Sε,o∈Oj πjoxjo(p̂)] ≥ E[
∑

j /∈Sε,o∈Oj πjoxjo(p̂)|E1] · Pr(E1)

≥ (E[
∑

j,o πjoxjo(p̂)|E1]− E[OPTε|E1]) Pr(E1)

≥ (1− 3ε)(1− 2ε)OPT − εOPT ≥ (1− 6ε)OPT
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5.3 Dynamic Pricing

The basic idea of OLA is to compute dual prices for resources, based on customers who

arrive early. However, because of the limited number of customers, mini bi is required to

be as large as O(1/ε3) to have a small error probability. A natural question is if sampling

more customers can help. The answer is affirmative as showed in this section.

Let ε = 2−E , where E ∈ N. Let Sl = {j : tj < F−1(l)} be the set of customers arriving

no later than F−1(l)(l ∈ L = {ε, 2ε, 4ε, ...}). Let p̂l denote the optimal dual solution to the

following partial LPs:

max
∑

j∈Sl,o∈Oj πjoxjo

s.t.
∑

j∈Sl,o∈Oj aijoxjo ≤ (1− hl)lbi, ∀i∑
o∈Oj xjo ≤ 1, ∀j ∈ Sl

xjo ≥ 0, ∀j ∈ Sl, o ∈ Oj

(5.9)

where hl = ε
√

1/l.

Unlike OLA, DPA updates dual prices multiple times to have better performance:

Algorithm 8 (Dynamic Pricing Algorithm(DPA)).

1. Reject all customers arriving earlier than εT .

2. Update dual prices p̂l at time εT, 2εT, 4εT, ...

3. Let xj = xj(p̂l) for customers arriving between lT and 2lT .

The analysis of DPA is very similar to the one of OLA. We show that with high probability,

the resulting solution is feasible, the resulting solution is near optimal, and the loss caused

by observation process is small.

Lemma 45. If mini bi ≥ 10m ln(nq/ε)/ε2, then w.p. 1 − ε,
∑

j∈S2l\Sl,o∈Oj aijoxjo(p̂l) ≤

lbi,∀i, l

Proof. The proof is very similar to the one of Lemma 42. Let us first consider the probability

of event

{
o∈Oj∑
j∈Sl

aijoxjo(pl) ≤ (1− hl)lbi,
o∈Oj∑

j∈S2l\Sl

aijoxjo(pl) ≥ lbi} (5.10)
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for all fixed l, pl, and i:

Pr(
∑

j∈Sl,o∈Oj aijoxjo(pl) ≤ (1− hl)lbi,
∑

j∈S2l\Sl,o∈Oj aijoxjo(pl) ≥ lbi)

≤ Pr(
∑

j∈Sl,o∈Oj aijoxjo(pl) ≤ (1− hl)lbi,
∑

j∈S2l,o∈Oj aijoxjo(pl) ≥ (2− hl)lbi)

+ Pr(
∑

j∈S2l\Sl,o∈Oj aijoxjo(pl) ≥ lbi,
∑

j∈S2l,o∈Oj aijoxjo(pl) ≤ (2− hl)lbi).

Note that Pr(j ∈ Sl|j ∈ S2l) = 1/2. From Bernstein inequalities, the first term is up-

per bounded by exp(−ε2bi/10). Similarly, the second term is also upper bounded by

exp(−ε2bi/10). Thus,

Pr(

o∈Oj∑
j∈Sl

aijoxjo(pl) ≤ (1− hl)lbi,
o∈Oj∑

j∈S2l\Sl

aijoxjo(pl) ≥ lbi) ≤ 2 exp(−ε2bi/10).

Note that for each l, there are at most (nq)m distinct pl regions. By union bounds, we have

that with probability ε, there exist i, l, and pl, such that (5.10) is true. On the other hand,

from Lemma 41, we have
∑

j∈Sl,o∈Oj aijoxjo(p̂l) ≤
∑o∈Oj

j∈Sl aijox̂jo ≤ (1 − hl)lbi. By letting

pl = p̂l, we can conclude our lemma.

Lemma 46. If mini bi ≥ 10m ln(nq/ε)/ε2, then w.p. 1 − ε,
∑

j∈S2l,o∈Oj πjoxjo(p̂l) ≥ (1 −

2hl − ε)OPT2l, ∀l.

Proof. Let us consider the following LP:

max
∑

j∈S2l,o
πjoxjo

s.t.
∑

j∈S2l,o
aijoxjo ≤ b̂i, ∀i∑

o∈Oj xjo ≤ 1, ∀j ∈ S2l

xjo ≥ 0, ∀j ∈ S2l, o

, (5.11)

where b̂i =
∑

j∈S2l
aijoxjo(p̂l), if p̂l,i > 0 and b̂i = max{

∑
j∈2l aijoxjo(p̂l), bi}, if p̂l,i = 0. By

complementary slackness, x(p̂l) is the optimal solution to this LP.

On the other hand, using the same argument as in the proof of Lemma 43, we can

show that with probability 1 − ε, b̂i ≥ 2l · (1 − 2hl − ε)bi for all i and l. In that case,∑
j∈S2l,o

πjoxjo(p̂l) ≥ (1− 2hl − ε)OPT2l.

Lemma 47. Let OPTl be the optimal value to (5.9), then E[OPTl] ≤ l ·OPT .
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Proof. Consider the optimal dual solution (p∗,q∗) to LP (5.1). We can easily check that it

is feasible to the dual problem of LP (5.9):

min
∑

i(1− hl)lεbipi +
∑

j∈Sl qj

s.t.
∑

i aijopi + qj ≥ πjo,∀j ∈ Sl, o ∈ Oj

pi ≥ 0, ∀i

qj ≥ 0, ∀j ∈ Sl

.

Thus, OPTl ≤ (1−hl)l
∑

i bip
∗
i +
∑

j∈Sl q
∗
j . Note that for every j, Pr(j ∈ Sl) = l. By taking

expectation on both sides, we can conclude the lemma.

Combining Lemma 45, 46, and 47, we conclude the main result:

Theorem 31. If mini bi ≥ 10m ln(nq/ε)/ε2, then DPA is 1−O(ε) competitive.

Proof. Let E2 denote the event that both inequalities in Lemma 45 and 46 are true, then

Pr(E2) ≥ 1− 2ε.

E[
∑
l∈L

∑
j∈S2l\Sl

πjxj(p̂l)|E2]

≥
∑
l∈L

E[
∑
j∈S2l

πjxj(p̂l)|E2]−
∑
l∈L

E[
∑
j∈Sl

πjxj(p̂l)|E2]

≥
∑
l∈L

(1− 2hl − ε)E[OPT2l|E2]−
∑
l∈L

E[OPTl|E2]

≥ OPT −
∑
l∈L

2hlE[OPT2l|E2]− ε
∑
l∈L

E[OPT2l|E2]− E[OPTε|E2]

≥ OPT − 4
∑
l∈L

hll ·OPT − 2ε
∑
l∈L

l ·OPT − εOPT

≥ OPT − 13εOPT

.

Therefore, E[
∑

l∈L
∑

j∈S2l\Sl πjxj(p̂l)] ≥ (1− 15ε)OPT .

5.4 Learning From the Past

The previous two sections discuss problems where the distribution of customers’ arrival

time is known to the online algorithm ahead of time. However, the assumption may not

be true in many applications. Instead, the online algorithm is more likely to have access

to past data rather than the exact distribution. For example, from observation on previous

days, a retail store owner may expect that roughly two-thirds of the customers arrive in the
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afternoon. Specifically, in this section, we assume customers have i.i.d. arrival time with

unknown distribution. Furthermore, information about the k past customers {t′k,a′k,π′k}

is given to the online algorithm. The algorithm proposed in this section only uses arrival

times of past customers.

Intuitively, by concentration laws, the distribution f(·) can be estimated arbitrarily well

point-wise as k grows. However, point-wise accuracy is unnecessary for our algorithm, and

requires a huge amount of data. Note that, only at time F−1(ε), F−1(2ε), F−1(4ε), ... does

DPA update its pricing policy. Thus, if we could estimate those quantile points well, we

would expect the resulting algorithm has similar performance as DPA.

First, let us show that t′lk is a good estimate of F−1(l). To be more precise,

Lemma 48. If k ≥ 5 ln(1/ε)/ε2, w.p. 1− ε, F−1((1−hl)l) ≤ t′lk ≤ F−1((1 +hl)l), ∀l ∈ L =

{ε, 2ε, 4ε, ...}. Here hl = ε
√

1/l.

Proof. Let N1
l be the number of customers arriving between [0, F−1((1− hl)l)]. Then,

Pr(N1
l ≥ lk) = Pr(N1

l − E[N1
l ] ≥ hllk) ≤ exp(−ε2k/2).

Let N2
l be the number of customers arriving between [0, F−1((1 + hl)l)]. Then,

Pr(N2
l ≤ lk) = Pr(N2

l − E[N1
l ] ≤ −hllk) ≤ exp(−ε2k/4).

Noting that N1
l ≥ lk is equivalent to t′lk ≥ F−1((1 − hl)l) and N2

l ≤ lk is equivalent to

t′lk ≤ F−1((1+hl)l). Therefore, by union bound, F−1((1−hl)l) ≤ t′lk ≤ F−1((1+hl)l),∀l =

ε, 2ε, 4ε, ... w.p. 1− 2 ln(1/ε) exp(−ε2k/4) ≥ 1− ε.

After obtaining estimates of F−1(l), let us present the online algorithm DPAD. The only

difference from DPA is that instead of updating at F−1(l), DPAD updates its pricing policy

at t′lk.

Algorithm 9 (Dynamic Pricing Algorithm with Data(DPAD)).

1. Reject all customers arriving earlier than t′εk.

2. Update dual prices p̂l at time t′εk, t
′
2εk, t

′
4εk, ... according to LP (5.12) given below.

3. Let xj = xj(p̂l) for customers arriving between t′lk and t′2lk.
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max
∑

j∈Sl,o∈Oj πjoxjo

s.t.
∑

j∈Sl,o∈Oj aijoxjo ≤ (1− 6hl)lbi, ∀i∑
o∈Oj xjo ≤ 1, ∀j ∈ Sl

xjo ≥ 0, ∀j ∈ Sl, o ∈ Oj

(5.12)

where hl = ε
√

1/l and Sl = {j : tj ≤ t′lk}.

Let event Eest denote the event where F−1(ε), F−1(2ε), F−1(4ε), ... are well-estimated as in

Lemma 48. Given Eest, we would expect DPAD has many similar properties as DPA. Indeed,

it is the case, and the analysis is almost identical. We show that with high probability, the

resulting solution is feasible, the resulting solution is near optimal, and the loss due to

observation is small.

Lemma 49. Given Eest, if mini bi ≥ 3m ln(nq/ε)/ε2, then with probability 1− ε,

∑
j∈S2l\Sl,o∈Oj

aijoxjo(p̂l) ≤ lbi,∀i, l.

Proof. Fix p̂, i, and l. Let Xj =
∑

o∈Oj aijoxjo(p̂). Then,

Pr(
∑

j∈S2l\Sl
Xj > lbi,

∑
j∈Sl

Xj ≤ (1− 6hl)lbi)

≤ Pr(
∑
j∈Sl

Xj ≤ (1− 6hl)lbi,
∑
j∈S2l

Xj ≥ 2(1− 3hl)lbi)

+ Pr(
∑

j∈S2l\Sl
Xj ≥ lbi,

∑
j∈S2l

Xj ≤ 2(1− 3hl)lbi)

.

Since Pr(j ∈ Sl|j ∈ S2l) = F (t′lk)/F (t′2lk) ≤ (1 + 2hl)/2, the first term

Pr(
∑
j∈Sl

Xj ≤ (1− 6hl)lbi,
∑
j∈S2l

Xj ≥ 2(1− 3hl)lbi)

≤ Pr(
∑
j∈Sl

Xj − E[
∑
j∈Sl

Xj ] ≤ min{−hl
∑
j∈S2l

Xj/2,−hllbi},
∑
j∈S2l

Xj ≥ 2(1− 3hl)lbi)

≤ exp(−ε2bi/3)

.
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Since Pr(j ∈ S2l\Sl|j ∈ S2l) = 1− Pr(j ∈ Sl|j ∈ S2l) ≥ (1− 2hl)/2, the second term

Pr(
∑

j∈S2l\Sl
Xj ≥ lbi,

∑
j∈S2l

Xj ≤ 2(1− 3hl)lbi)

≤ Pr(
∑

j∈S2l\Sl
Xj − E[

∑
j∈S2l\Sl

Xj ] ≥ hllbi,
∑
j∈S2l

Xj ≤ 2(1− 3hl)lbi)

≤ exp(−ε2bi/3)

.

Therefore, Pr(
∑

j∈S2l\Sl Xj > lbi,
∑

j∈Sl Xj ≤ (1 − 6hl)lbi) ≤ 2 exp(−ε2bi/3). By taking

union bounds over all possible pl, i, and l, we can conclude the lemma.

Lemma 50. Given Eest, if mini bi ≥ 3m ln(nq/ε)/ε2, then with probability 1− ε,

∑
j∈S2l,o∈Oj

πjoxjo(p̂l) ≥ (1− 9hl − ε)OPT2l, ∀l.

Proof. Let us consider the following LP:

max
∑

j∈S2l,o
πjoxjo

s.t.
∑

j∈S2l,o
aijoxjo ≤ b̂i, ∀i∑

o∈Oj xjo ≤ 1, ∀j ∈ S2l

xjo ≥ 0, ∀j ∈ S2l, o

, (5.13)

where b̂i =
∑

j∈S2l
aijoxjo(p̂l), if p̂l,i > 0 and b̂i = max{

∑
j∈2l aijoxjo(p̂l), bi}, if p̂l,i = 0. By

complementary slackness, x(p̂l) is the optimal solution to this LP.

On the other hand, using the same argument as in the proof of Lemma 43, we can show

that with probability 1 − ε, b̂i ≥ 2l · (1 − 9hl − ε)bi for all i and l. In that case, then∑
j∈S2l,o

πjoxjo(p̂l) ≥ (1− 9hl − ε)OPT2l.

Lemma 51. Given Eest, E[OPTl] ≤ (1 + hl)l ·OPT .

Proof. Consider the optimal dual solution (p∗,q∗) to LP (5.1). We can easily check that it

is feasible to the partial dual problem (5.9)

min
∑

i(1− 6hl)lεbipi +
∑

j∈Sl qj

s.t.
∑

i aijopi + qj ≥ πjo, ∀j ∈ Sl, o ∈ Oj

pi ≥ 0, ∀i

qj ≥ 0, ∀j ∈ Sl

.
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Thus, OPTl ≤ (1− 6hl)l
∑

i bip
∗
i +
∑

j∈Sl q
∗
j . Note that given Eest, for every j, Pr(j ∈ Sl) ≤

(1 + hl)l. By taking expectation on both sides, we can conclude the lemma.

From lemmas above, we can conclude:

Theorem 32. If mini bi ≥ 3m ln(nq/ε)/ε2 and k ≥ 5 ln ε/ε2, the algorithm is 1 − O(ε)

competitive.

Proof. Let E3 denote the event that both inequalities in Lemma 49 and 50 are true, then

Pr(E3 ∩ Eest) ≥ 1− 3ε.

E[
∑
l∈L

∑
j∈S2l\Sl

πjxj(p̂l)|E3 ∩ Eest]

≥
∑
l∈L

E[
∑
j∈S2l

πjxj(p̂l)|E3 ∩ Eest]−
∑
l∈L

E[
∑
j∈Sl

πjxj(p̂l)|E3 ∩ Eest]

≥
∑
l∈L

(1− 9hl − ε)E[OPT2l|E3 ∩ Eest]−
∑
l∈L

E[OPTl|E3 ∩ Eest]

≥ OPT −
∑
l∈L

9hlE[OPT2l|E3 ∩ Eest]− ε
∑
l∈L

E[OPT2l|E3 ∩ Eest]− E[OPTε|E3 ∩ Eest]

≥ OPT − 9
∑
l∈L

(2hll + hlh2ll) ·OPT − ε
∑
l∈L

4l ·OPT − 2εOPT

≥ OPT − 42εOPT

.

Therefore, E[
∑

l∈L
∑

j∈S2l\Sl πjxj(p̂l)] ≥ (1− 45ε)OPT .

The assumptions made in the theorem are reasonable. On the one hand, the lower bound on

mini bi is the same as in DPA, which has been showed to be best possible in many occasions.

On the other hand, the lower bound on k is even lower than the one on mini bi, which means

only a limited amount of past observations are required to obtained the near-optimal result.

DPAD does not take advantage of demands and prices information from past customers.

In the random permutation model, such information is unlikely to improve the online al-

gorithm. But for practical problems where demands and payments come from unknown

i.i.d. distributions, these data may provide good estimation on the distributions, and lead

to better results.

5.5 Heterogeneous Customers

As we may see in many applications, customers are not all homogeneous. Customers with

different preference may have different arrival time. For instance, in the airline revenue
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management problems, casual travelers, whose reserve prices are probably lower, usually

arrive long before their scheduled departure time; while business travelers, who tend to be

price-insensitive, are more likely to appear shortly before intended trips. In this section, we

take this heterogeneity into account.

Assume all customers are categorized into K groups: N =
⋂K
k=1Nk. Furthermore, we

assume there exists a constant c such that ∀k, k′, t, Fk(t) ≤ cFk′(t). Let t0 be the ε-quantile

point, i.e. F1(t0) = ε. Assume Fk(t0) = rkε. From the assumption on the CDFs, we have

rk ∈ [1/c, c].

Let Sk be the set of customers from group k that arrive before t0. The online algorithm

observes customers arriving before t0 and solves the following LPs:

max
∑

k(rkε)
−1
∑o∈Oj

j∈Sk π
k
jox

k
jo

s.t.
∑

k(rkε)
−1
∑o∈Oj

j∈Sk a
k
ijox

k
jo ≤ ε(1− ε)bi, ∀i∑

o∈Oj x
k
jo ≤ 1, ∀j, k

x ≥ 0

min ε(1− ε)
∑

i bipi +
∑

j,k q
k
j

s.t. rkεq
k
j +

∑
i a
k
ijopi ≥ πkj ,∀j, o, k

p,q ≥ 0

(5.14)

Similar to arguments in the previous sections, We show that with high probability, the

resulting solution is feasible, the resulting solution is near optimal, and the loss due to

observation is small:

Lemma 52. If mini bi ≥ 3cm ln(nq/ε)/ε3, then w.p. 1− ε,∀i,
∑

k

∑o∈Oj
j∈Nk a

k
ijox

k
jo(p̂) ≤ bi.

Proof. The proof is very similar to the one of Lemma 42. Let us first consider the probability

of the event

{
∑
k

(rkε)
−1

o∈Oj∑
j∈Sk

akijox
k
jo(p) ≤ ε(1− ε)bi,

∑
k

o∈Oj∑
j∈Nk

akijox
k
jo(p) ≥ bi} (5.15)

for all fixed p and i. Since Pr(j ∈ Sk|j ∈ Nk) = rkε, we expect
∑

k(rkε)
−1
∑o∈Oj

j∈Sk a
k
ijox

k
jo

close to its mean
∑

k

∑o∈Oj
j∈Nk a

k
ijox

k
jo. Therefore, event (5.15) should be a rare event. More

precisely,

Pr(
∑
k

(rkε)
−1

o∈Oj∑
j∈Sk

akijox
k
jo(p) ≤ ε(1− ε)bi,

∑
k

o∈Oj∑
j∈Nk

akijox
k
jo(p) ≥ bi) ≤ exp(−ε3bi/3c).

Note that there are at most (nq)m distinct p. By taking union bounds over all distinct p
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and i, we can conclude the lemma.

Lemma 53. If mini bi ≥ 3cm ln(nq/ε)/ε3, then w.p. 1 − ε,
∑

k

∑o∈Oj
j∈Nk π

k
jox

k
jo(p̂) ≥ (1 −

3ε)OPT .

Proof. Let us consider the following LP:

max
∑

k

∑o∈Oj
j∈Nk π

k
jox

k
jo

s.t.
∑

k

∑o∈Oj
j∈Nk a

k
ijox

k
jo ≤ b̂i, ∀i∑

o∈Oj x
k
jo ≤ 1, ∀j, k

xkjo ≥ 0, ∀j, k, o

, (5.16)

where b̂i =
∑

k

∑o∈Oj
j∈Nk a

k
ijox

k
jo(p̂), if p̂i > 0 and b̂i = max{

∑
k

∑o∈Oj
j∈Nk a

k
ijox

k
jo(p̂), bi}, if

p̂i = 0. By complementary slackness, x(p̂) is the optimal solution to this LP.

On the other hand, using the same argument as in the proof of Lemma 42, we can show

that with probability 1 − ε, b̂i ≥ (1 − 3ε)bi for all i and l. If such an event happens, then∑
k

∑o∈Oj
j∈Nk π

k
jox

k
jo(p̂) ≥ (1− 3ε)OPT .

Lemma 54. E[
∑

k

∑o∈Oj
j∈Sk π

k
jox

k
jo] ≤ maxk rkεOPT ≤ cεOPT .

Proof. Let OPTε be the optimal value to the partial LP (5.14). Let (p∗,q∗) be the optimal

dual solution to the complete LP (5.16). It is easy to check that (p∗,q∗) is a dual feasible

solution to (5.14). Therefore, E[OPTε] ≤ OPT .

On the other hand, for any realization, the lost revenue resulting from the first ε fraction

customers is no more than OPT1. Hence,

E[
∑
k

o∈Oj∑
j∈Sk

πkjox
k
jo] ≤ E[max

k
rkε ·OPTε] ≤ max

k
rkε ·OPT.

Combining the three lemmas above, we can conclude that:

Theorem 33. If mini bi ≥ 3cm ln(nq/ε)/ε3, the algorithm is 1−O(ε) competitive.

Proof. Let E4 denote the event that for all i

∑
k

o∈Oj∑
j∈Nk

akijox
k
jo(p̂) ≤ bi
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and ∑
k

o∈Oj∑
j∈Nk

πkjox
k
jo(p̂) ≥ (1− 3ε)OPT.

Then, from Lemma 52 and 53, we have Pr(E4) ≤ 1− 2ε. Given E , the online solution x(p̂)

is feasible. Therefore,

E[
∑

k

∑o∈Oj
j /∈Sk a

k
ijox

k
jo(p̂)] ≥ E[

∑
k

∑o∈Oj
j /∈Sk a

k
ijox

k
jo(p̂)|E4]·Pr(E4)

≥ (E[
∑

k

∑o∈Oj
j∈Nka

k
ijox

k
jo(p̂)|E4]−E[

∑
k

∑o∈Oj
j∈Sk π

k
jox

k
jo|E4])·Pr(E4)

≥ (1− 3ε)(1− 2ε)OPT − cεOPT

≥ (1−O(ε))OPT

Unfortunately, dynamic pricing techniques used in DPA and DPAD do not apply for this

problem, because the arrival process is not homogeneous here. Without dynamic pricing

mechanism, in order to have near optimality result, the lower bound imposed on the model

is much higher than the one we obtained in the previous sections. Worth noting that, this

approach can only deal with problems where customers of each type are well represented in

the early stages. Otherwise, we may need additional assumptions of information to obtain

good results. For example, consider airline tickets sales, if all casual travelers arrive at least

one week before departure and all business travelers only appear one week within departure.

If the numbers of travelers of the two types are unrelated, then past information alone is

unlikely to help us decide how many seats to reserve for business customers. To find a

proper reserve level, we need good estimates on the numbers of travelers of the two types,

which probably requires more assumptions.

5.6 Flexible Inventory

In this section, we consider resource allocation problems with flexible inventory. Instead of

having exactly bi units of resource i ∈ I as described in Section 5.1, resources can be bought

at non-decreasing rates: dik units of resource i ∈ I are available at price cik (1 ≤ k ≤ K,

and ci1 < ci2 < · · · < ciK). Those resources can be replenished at any time at any amount

as long as they are still available. For the simplicity of the section, we assume that every

customer comes with only one option, and the system either accepts and rejects his option.
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It is easy to see that the offline problem can be formulated as the following pair of primal

dual LPs:

max
∑

j πjxj −
∑

i,k cikyik

s.t.
∑

j aijxj −
∑

k yik = 0, ∀i

xj ≤ 1, ∀j

yik ≤ dik,∀i, k

x,y ≥ 0

min
∑

j qj +
∑

i,k dikrik

s.t.
∑

i aijpi + qj ≥ πj , ∀j

−pi + rik ≥ −cik
q, r ≥ 0

(5.17)

Like in Section 5.2, the online algorithm observes customers in Sε, rejects them all, and

computes dual prices by solving the following pair of primal dual LPs:

max
∑

j∈Sε πjxj −
∑

i,k cikyik

s.t.
∑

j∈Sε aijxj −
∑

k yik = 0,∀i

xj ≤ 1,∀j ∈ ε

yik ≤ ε(1− ε)dik, ∀i, k

x,y ≥ 0

min
∑

j∈Sε qj + ε(1− ε)
∑

i,k dikrik

s.t.
∑

i aijpi + qj ≥ πj ,∀j

−pi + rik ≥ −cik
q, r ≥ 0

(5.18)

Let (x̂, ŷ, p̂, q̂, r̂) be the optimal solution.

For customers arriving later, they are accepted if their payments exceed the threshold

set by p̂:

xj(p̂) =


1, if πj −

∑
i

aij p̂i > 0

0, otherwise

(5.19)

The proposed online algorithm is then as follows:

Algorithm 10 (Flexible Inventory Algorithm(FIA)).

1. Reject all customers arriving earlier than F−1(ε).

2. Let xj = xj(p̂) for customers arriving after F−1(ε).
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To analyze the algorithm, let us first construct a pair of primal dual LPs similar to 5.17:

max
∑

j πjxj −
∑

i,k cikyik

s.t.
∑

j aijxj −
∑

k yik = 0, ∀i

xj ≤ 1, ∀j

yik ≤ d̂ik,∀i, k

x,y ≥ 0

min
∑

j qj +
∑

i,k d̂ikrik

s.t.
∑

i aijpi + qj ≥ πj , ∀j

−pi + rik ≥ −cik
q, r ≥ 0

(5.20)

where

d̂ik =


max{

∑
j

aijxj(p̂)−
k−1∑
k′=1

dik′ , dik}, if r̂ik = 0

min{
∑
j

aijxj(p̂)−
k−1∑
k′=1

dik′ , dik}, otherwise

(5.21)

and its solution (x(p̂),y∗, p̂,q∗, r̂) where y∗ik = min{(
∑

j aijxj(p̂)−
∑k−1

k′=1 y
∗
ik′)

+, dik}, and

q̂∗j = max{0, πj −
∑

i aij p̂i}.

Due to the choice of the solution, we can prove that

Lemma 55. If mini di1 ≥ m ln(n/ε)/ε3, with probability 1 − ε, (x(p̂),y∗, p̂,q∗, r̂) is the

optimal solution to LPs (5.20).

Proof. The feasibility is obvious from our choice of x(p̂),y∗, p̂,q∗, r̂ and d̂. We then check

the optimality by verifying complementary slackness:

• (xj(p̂) − 1)q∗j . If q∗j > 0, then from the definition of q∗j , we have πj −
∑

i aij p̂i > 0.

Hence xj(p̂) = 1.

• (y∗ik − d̂ik)r̂ik. If r̂ik > 0, then y∗ik = min{(
∑

j aijxj(p̂)−
∑k−1

k′=1 y
∗
ik′)

+, dik} = d̂ik.

• xj(p̂)(
∑

i aij p̂j+q
∗
j−πj). If xj(p̂) > 0, then πj >

∑
i aijp̂j , therefore, q∗j = πj−

∑
i aijp̂j .

• y∗ik(−p̂i + r̂ik + cik). If −p̂i + r̂ik > −cik, then because of the complementary slackness

of (5.18), ŷik = 0. Since ∀k′ > k, cik′ > cik, we have ŷik′ = 0. Hence,
∑

j∈Sε xj(p̂) =∑
k ŷk =

∑
k′<k ŷik′ ≤ ε(1−ε)

∑
k′<k dik′ . By arguments similar to those in Section 5.2,

with probability 1− ε,
∑

j xj(p̂) ≤
∑

k′<k dik′ . Hence, y∗ik = 0.
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Lemma 56. If mini di1 ≥ m ln(n/ε)/ε3, with probability 1− ε,
∑

j πjxj(p̂)−
∑

i,k cikŷik ≥

(1− 2ε)OPT .

Proof. Let us first show that with probability 1−ε, ∀k,
∑

k′≤k d̂ik ∈ [(1−2ε)
∑

k′≤k dik,
∑

k′≤k dik].

We again use the argument that fixes p̂ as in Section (5.2):

• If r̂ik = 0, then ∀k′ > k, cik′ > cik ≥ p̂i. By complementary slackness of LP (5.18),

ŷik′ = 0. Therefore,
∑

j∈Sε aijxj(p̂) ≤
∑

k′≤k ε(1− ε)dik. By concentration laws, with

high probability,
∑

j aijxj(p̂) ≤
∑

k′≤k dik. In such cases, d̂ik = max{
∑

j aijxj(p̂) −∑
k′<k dik′ , dik} = dik.

• If r̂ik > 0, then because of complementary slackness of LP (5.18), ŷik = ε(1 − ε)dik,

and ∀k′ ≤ k, ŷik′ = ε(1 − ε)dik. Therefore,
∑

j∈Sε aijxj(p̂) ≥
∑

k′≤k ε(1 − ε)dik. By

concentration laws, with high probability,
∑

j aijxj(p̂) ≥ (1 − 2ε)
∑

k′≤k dik. Hence,∑
k′≤k d̂ik ≥ (1− 2ε)

∑
k′≤k dik.

Note that r̂ik is non-increasing in k, and (p̂,q∗, r̂) is also a feasible solution to the dual

problem of LP (5.17). We can conclude that the optimal solution of LP (5.20) is at least

(1− 2ε)OPT.

Lemma 57. E[OPTε] ≤ εOPT .

Proof. Note that the dual optimal solution to LP (5.17) is also feasible to LP (5.18). Thus,

E[OPTε] ≤ εOPT .

Theorem 34. If mini di1 ≥ m ln(n/ε)/ε3, then FIA is 1−O(ε) competitive.

Proof. Due to Lemma 55 and 56, E[
∑

j πjxj(p̂) −
∑

i,k cikŷik] ≥ (1 − 4ε)OPT . Then, we

need to remove customers in Sε as they are all rejected. The revenue collected from those

customers is exactly
∑

j∈Sε πjxj(p̂). On the other hand, cost for those resources is at most∑
i,k cikŷik. Therefore, the lost net revenue is at most OPTε. Hence, the online revenue

should be at least (1− 5ε)OPT .
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Chapter 6

Conclusion and Future Work

In this chapter, we first summarize the thesis and then briefly discuss some open problems

and possible directions for future research.

6.1 Summary of Thesis

In Chapter 1, we began with examples and applications to justify the purpose of the thesis.

Then, we provided an overview on online optimization and methods of analyzing online

algorithms. Finally, we gave a literature review on work related to this thesis, and presented

our results and contributions.

In Chapter 2, we considered online TSP with rejection options. We first presented a

best optimal online algorithm for the basic version, and showed its optimality for several

generalization of the problem. We then designed online algorithms for the real time version

of the problem on different metric spaces, including non-negative real line, real line, and

arbitrary metric space.

In Chapter 3, we introduced generalized online assignment problems. We first showed

that no algorithm has a positive competitive ratio for such problems in general. We then

imposed two constraints on the model. We presented and numerically compared two best

possible online algorithms for the restricted model. Finally, we showed how to modified

algorithms for less restricted models.

In Chapter 4, we studied online stochastic matching problems. We began with a general

class of algorithms. We then presented and analyzed an online algorithm for unweighted

problems. The algorithm and analysis were then modified for vertex-weighted problems.
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We finished the chapter with problems with Poisson arrivals.

In Chapter 5, we first considered online resource allocation problems with fixed inven-

tory levels. A one-time learning algorithm was presented, followed by a dynamic pricing

algorithm, which is better but more complicated. We then relaxed the constraints imposed

on the model, and gave near optimal online algorithms. Finally, we considered problems

with flexible inventory levels.

6.2 Future Research

The following are several directions that the research in this thesis can be extended to.

• For online TSP with rejection options, online algorithms proposed in the thesis are

designed for worst case scenarios. However, in many applications, average case per-

formance is of more interest. It would be great to propose realistic probability distri-

butions of interest, and design online algorithms for such cases.

• Primal-dual based online algorithms could be very powerful for online optimization

problems, as showed in Chapter 3 of this thesis and in [23]. It would be interesting

to find the class of online problems for which primal-dual based algorithms perform

well.

• Our algorithm for online stochastic matching problems is based on a discretization

idea, i.e. flows on all edges are 0, 1/3, or 2/3. We conjecture that if an optimal

solution to

max
∑
a,i
wafa,i

s.t.
∑
i∼a

fa,i ≤ 1 ∀a ∈ A∑
a∼i

fa,i ≤ 1 ∀i ∈ I

fa1,i + fa2,i ≤ 9/10 (a1, i) ∈ E, (a2, i) ∈ E

fe ∈ [0, 7/10] ∀e ∈ E

is used as the offline flow in the Random Lists Algorithm, the resulting online algo-

rithm is 0.751-competitive .
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