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Abstract

The long chain has been an important concept in the design of flexible processes.
This design concept, as well as other sparse flexibility structures, have been applied
by the automotive and other industries as a way to increase flexibility in order to
better match available capacities with variable demands. Numerous empirical studies
have validated the effectiveness of these structures. However, there is little theory
that explains the effectiveness of the long chain, except when the system size is large,
i.e., by applying an asymptotic analysis.

Our attempt in this thesis is to develop a theory that explains the effectiveness of
long chain and other sparse flexibility structures for finite size systems. We study the
sales of sparse flexibility structures under both stochastic and worst-case demands.
From our analysis, we not only provide rigorous explanation to the effectiveness of the
long chain, but also refine guidelines in designing other sparse flexibility structures.

Under stochastic demand, we first develop two deterministic properties, supermod-
ularity and decomposition of the long chain, that serve as important building blocks
in our analysis. Applying the supermodularity property, we show that the marginal
benefit, i.e., the increase in expected sales, increases as the long chain is constructed,
and the largest benefit is always achieved when the chain is closed by adding the
last arc to the system. Then, applying the decomposition property, we develop four
important results for the long chain under IID demands: (i) an effective algorithm to
compute the performance of long chain using only matrix multiplications; (ii) a proof
on the optimality of the long chain among all 2-flexibility structures; (iii) a result
that the gap between the fill rate of full flexibility and that of the long chain increases
with system size, thus implying that the effectiveness of the long chain relative to
full flexibility increases as the number of products decreases; (iv) a risk-pooling result
implying that the fill rate of a long chain increases with the number of products, but
this increase converges to zero exponentially fast.

Under worst-case demand, we propose the plant cover index, an index defined
by a constrained bipartite vertex cover problem associated with a given flexibility
structure. We show that the plant cover index allows for a comparison between the
worst-case performances of two flexibility structures based only on their structures
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and is independent of the choice of the uncertainty set or the choice of the performance
measure. More precisely, we show that if all of the plant cover indices of one structure
are greater than or equal to the plant cover indices of the other structure, then the
first structure is more robust than the second one, i.e. performs better in worst-
case under any symmetric uncertainty set and a large class of performance measures.
Applying this relation, we demonstrate the effectiveness of the long chain in worst-case
performances, and derive a general heuristic that generates sparse flexibility structures
which are tested to be effective under both stochastic and worst-case demands.

Finally, to understand the effect of process flexibility in reducing logistics cost, we
study a model where the manufacturer is required to satisfy deterministic product
demand at different distribution centers. Under this model, we prove that if the cost
of satisfying product demands at distribution centers is independent of production
plants or distribution centers, then there always exists a long chain that is optimal
among 2-flexibility structures. Moreover, when all plants and distribution centers
are located on a line, we provide a characterization for the optimal long chain that
minimizes the total transportation cost. The characterization gives rise to a heuristic
that finds effective sparse flexibility structures when plants and distribution centers
are located on a 2-dimensional plane.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems Division and the Department of Civil and
Environmental Engineering
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Chapter 1

Introduction

1.1 Objective

For many manufacturing firms, the ability to match demand and supply is key to their

success. Failure to do so could lead to loss of revenue, reduced service levels, impact

on reputation, and decline in the companys market share. Unfortunately, recent

developments such as intense market competition, product proliferation and reduction

in product life cycles have created an environment where customer demand is volatile

and unpredictable. In such an environment, traditional operations strategies such as

building inventory, investing in capacity buffers, or increasing committed response

time to consumers do not offer manufacturers a competitive advantage. Therefore,

many manufacturers have started to adopt an operations strategy known as process

flexibility to better respond to market changes without significantly increasing cost,

inventory, or response time (see [Simchi-Levi, 2010]).

Process flexibility is defined as the ability to “build different types of products

in the same manufacturing plant or on the same production line at the same time”

( [Jordan and Graves, 1995]). For example, in full process flexibility structure, each

plant is capable of producing all products. In this case, when the demand for one

product is higher than expected while the demand for a different product is lower than

expected, a flexible manufacturing system can quickly make adjustments by shifting

production capacities appropriately. By contrast, in a dedicated structure (sometimes
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called “no flexibility”), each plant is responsible for a single product and hence does

not have the same ability to match supply with demand.

Because of its effectiveness in responding to uncertainties, process flexibility has

gained significant attention various industries, from the automotive to the consumer

packaged goods industry. Indeed, the plants for most of the automobile giants are

much more flexible (in terms of process flexibility) today compared to twenty years

ago ( [Boudette, 2006]). Evidently, it is often too expensive to achieve a high degree

of flexibility, for example full flexibility, and as a result, sparse or partial flexibility,

is implemented instead.

Of course, there are many ways to implement sparse designs and the challenge is

to identify an effective one. An important sparse flexibility structure analyzed in the

literature and applied in practice by various companies is the long chain structure.

The first to observe the power of the long chain were Jordan and Graves (see [Jordan

and Graves, 1995]) who, through empirical analysis, showed that the long chain can

provide almost as much benefit as full flexibility. In particular, [Jordan and Graves,

1995] found that for randomly generated demand, the expected amount of demand

that can be satisfied by the long chain is very close to that of a full flexibility structure.

Unfortunately, with a few exceptions, there is very little theory to explain why

long chain works so well. One objective of this thesis is to provide an answer to this

question. We will develop results to rigorously explain the effectiveness of the long

chain, and from those results, derive new insights and guidelines for designing sparse

flexibility structures. First, we present a review of the existing literature for process

flexibility structures.

1.2 Literature Review

The study of process flexibility, also known as “mix flexibility” or “short-term flexibil-

ity,” began in the 1980s. Prior to the 1990s, research typically focused on the benefits,

challenges and trade-offs between full flexibility and no flexibility (dedicated) systems

(see the survey of [Sethi and Sethi, 1990]). Unfortunately, most companies are not
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interested in full flexibility because of its enormous implementation cost.

The seminal paper of [Jordan and Graves, 1995] is the first to consider the design

and effectiveness of sparse process flexibility. Applying numerical analysis (simula-

tion) to a stochastic demand model, Jordan and Graves demonstrate two important

insights in process flexibility. First, they show that a sparse flexibility structure,

known as the long chain, can provide almost as much benefit as full flexibility. Sec-

ond, based on a planning model, they demonstrate that the concept of the long chain

can be generalized to produce sparse flexibility structures that perform extremely well

with realistic assumptions on demand uncertainties,.

Following the work of Jordan and Graves, researchers have attempted to explain

analytically the observed effectiveness of the long chain and sparse flexibility struc-

tures. [Aksin and Karaesmen, 2007] shows that there is a decrease in marginal benefit

associated with the increase in either the degree of flexibility or the capacities of the

manufacturing plants. [Chou et al., 2010c] develops a method to compute the average

demand satisfied by the long chain in asymptotic regime. Using this method, they

show that for a certain class of demand distributions, the average sales associated

with the long chain is very close to that of full flexibility when the system size goes to

infinity. [Chou et al., 2010b] studies the effectiveness of sparse flexibility structures un-

der the condition that secondary production is more expensive, and proves that long

chain accrues at least 29.29 % of the benefit of full flexibility, when demand is nor-

mally distributed. Like [Jordan and Graves, 1995], all of these papers study flexibility

structures under stochastic demand and focus on flexibility structures’ average-case

performances.

For worst analysis analysis, [Chou et al., 2011] uses graph expander to show that

there exists sparse flexibility structures that can be arbitrarily close to the perfor-

mance of full flexibility. In particular, [Chou et al., 2011] proves that when the sys-

tem has n homogenous products, n homogenous plants and demand for each prod-

uct is bounded by λ times the capacity of each plant, then an (α, λ,∆)-expander

performs within (1 − αλ)-optimality of the full flexibility structure for any demand

instance. [Chou et al., 2011] also generalizes the result to unbalanced systems, where

15



the number of products is not equal to the number of plants.

Other than theoretical analysis, motivated from the chaining strategy in [Jordan

and Graves, 1995], researchers have proposed various heuristics for generating effec-

tive sparse flexibility structures in the literature. [Mak and Shen, 2009] proposes a

heuristic to find effective flexibility structures based on a relaxed stochastic program-

ming problem. [Chou et al., 2010c] presents a constraint sampling method to find

effective sparse flexibility structures while [Chou et al., 2011] presents an expansion

heuristic that adds arc incident to the nodes with the lowest expansion ratio. In addi-

tion, [Deng and Shen, 2013] presents guidelines for creating flexibility structures under

unbalanced networks, where the numbers of plants does not equal to the number of

products.

Another line of research in process flexibility is to propose easy to compute mea-

surements to rank the effectiveness of different flexibility structures. In the literature,

these measurements are known as flexibility indices. The seminal paper of Jordan

and Graves proposes an index that takes into account of both the structure of the

flexibility network and the demand distribution. It is defined as the probability that

the sales of a given structure is lower than that of full flexibility. Indices proposed

by other researchers are only based on the flexibility structure. For example, [Iravani

et al., 2005] introduces the structural flexibility matrix, where its (i, j)th entry is

equal to the number of paths from the ith plant node to the jth product node in

the flexibility structure. Using the structure flexibility matrix, the authors propose

to use the mean and the largest eigenvalue of the matrix as flexibility indices. Fi-

nally, [Chou et al., 2008] proposes the expansion index, which is equal to the second

smallest eigenvalue of the Laplacian of the given flexibility structure.

There has also been extensive research that has applied the concept of the long

chain and limited flexibility in a variety of applications. For instance, flexibility

structures was studied empirically by [Graves and Tomlin, 2003] in multistage supply

chains; [Sheikhzadeh et al., 1998] and [Gurumurthi and Benjaafar, 2004] in queueing

systems; [Hopp et al., 2004] in serial production lines, [Iravani et al., 2005] in queueing

networks and [Wallace and Whitt, 2005] in call centers. In particular, [Iravani et al.,
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2005] suggests that the strength of a specific flexibility structure relative to other

structures is mostly independent of the system specifications.

Moreover, the design and benefit of process flexibility has been studied under dif-

ferent objective and resource constraints. [Bassamboo et al., 2010] and [Bassamboo

et al., 2012] study the optimal level of investment in (partially) flexible resources,

when the cost of any flexible resource is linear. [Chou et al., 2013] studies the ben-

efit of flexibility under a postponement model, and determines the optimal level of

postponement with different flexibility structures. [Simchi-Levi et al., 2013] studies

the increase in the resiliency of a supply chain when process flexibility and inventory

is added into the system. Moreover, [Bish et al., 2005] studies the production swing

of a make-to-order environment when flexibility is incorporated. For a more detailed

review on the study of flexibilities, we refer the readers to the surveys of [Sethi and

Sethi, 1990], [Buzacott and Mandelbaum, 2008] and [Chou et al., 2008].

1.3 Contributions

In this section, we outline the contributions of this thesis to the existing literature.

Deterministic Properties. This thesis establishes two important deterministic

properties for the sales of the long chain process flexibility structures. First, the

thesis identifies a supermodularity condition on a set of flexibility arcs in the long

chain. Second, the thesis proves a decomposition property of the long chain, which

decomposes the sales of the long chain into the differences between the sales of simpler

flexibility structures. The decomposition allows us to characterize the sales of the long

chain using a greedy algorithm, and therefore gives rise to a matrix multiplication

method for computing the expected sales of the long chain when product demands

are stochastic and independent. Both properties, supermodularity and decomposition

are shown to hold under a fairly general setting, thus providing building blocks for

studying more general models than the ones studied in the existing literature.

Average-Case Analysis. In our analysis of the expected sales of the long chain, we

provide the first theoretical justifications to several empirically observed properties
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of the long chain under IID demand. First, we establish that if one starts with

a dedicated structure and adds flexibilities to create a long chain, the incremental

benefits, or the increase in expected sales, is always increasing. Second, we prove

that the long chain is optimal among all 2-flexibility structures, structures that have

degree two at each of the plant and product node. Third, we demonstrate that the

difference between the fill rate of full flexibility structure and the fill rate of the long

chain is increasing with the number of products. By combining our third result and

a result from [Chou et al., 2010c], we can effectively demonstrate that a little bit of

flexibility can go a long way. That is, under a large class of IID demand distributions,

the expected sales of the long chain is almost as large as the expected sales of full

flexibility under any finite size system.

Our analysis also identifies new insights in creating sparse flexibility structures.

We prove that under IID demand, while the fill rate of a long chain increases with sys-

tem size, the increase in fill rate, however, converges to zero exponentially fast. Thus,

our result suggests that although the long chain is always the optimal 2-flexibility

structure under IID demand, a structure that consists of several closed chains, where

each chain connects a large number of plants and products, can perform just as well

as the long chain.

Worst-Case Analysis. To analyze flexibility structures from a worst-case point of

view, we study the worst-case performances of a flexibility structure over all demands

that lie in a given uncertainty set. We introduce the “plant cover index”, an index

based only on the flexibility structure. The plant cover index allows for a comparison

between the worst-case performances of two flexibility structures based only on their

structures and independent of the choice of the uncertainty set or the worst-case

performance measure. More specifically, we prove that if the plant cover indices for

flexibility structure A is greater than or equal to the plant cover indices for flexibility

structure B, the worst-case performance of A is always better than that of B, for all

symmetric uncertainty sets, and a large class of worst-case performance measures.

The plant cover index is next applied as a tool in both theoretical analysis and

empirical studies. In theoretical analysis, we prove that the long chain flexibility
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structure is most robust among all flexibility structures that have degree two at each

of its product node, and all connected flexibility structures with 2n arcs. From nu-

merical simulations, we find that the plant cover index is a useful index in determining

the strength of flexibility structures in both average and worst-case. Moreover, we

apply plant cover index to propose a data-independent heuristic that generates sparse

flexibility structures effective from both average-case and worst-case point of views.

Distribution Systems. Finally, we propose a distribution systems model that ex-

tends the traditional plant/product model by introducing distribution centers. We

prove that under deterministic demand, there exists a long chain structure that is

optimal among all 2-flexibility structures if the supply chain costs are independent

of either the plants or the distribution centers. When those conditions do not hold,

we provide a counter example where there does not exist a long chain that is optimal

among all 2-flexibility structures.

We also study the distribution systems model with only transportation cost, and

the transportation cost is linear with the distance between plants and distribution cen-

ters. Our result identifies the long chain that minimizes transportation cost among

2-flexibility structures when all plants and distribution centers lie on a line. The

analysis thus provides a simple guideline for designing flexibility structures in a man-

ufacturing system that also takes transportation cost into consideration.

1.4 Basic Notations

Let R and R+ be the set of real and nonnegative real numbers respectively. Bold

letters are reserved for vectors and matrices. For example, x ∈ Rn is a vector with

entries x1, x2, ..., xn, and A ∈ Rmn is a matrix with Aij being the entry on its i-th

row and j-th column.

We let m and n be the number of plants and products in the system. For arbitrary

positive integersm and n, we use A := {a1, a2, ..., am} to denote the set of plant nodes,
and B := {b1, b2, ..., bn} to denote the set of product nodes. We assume that plant i

has a fixed capacity of ci for 1 ≤ i ≤ m. A flexibility structure (aka flexibility design)
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A is represented by a set of arcs connecting nodes in A to nodes in B. An arc

(ai, bj) ∈ A , represents that plant i is capable of producing project j under flexibility

structure A . When no ambiguity arise, we will sometimes use (i, j) interchangeably

with (ai, bj) to simply the notation.

We note that A can be viewed as a bipartite graph whose partition has parts A

and B. For any u ∈ A∪B, define N(u,A ) := {v|(u, v) or (v, u) ∈ A }, i.e., N(u,A )

is the set of neighbors of u in the bipartite graph defined by (A,B,A ). Moreover,

for set S ⊆ A or S ⊆ B, we let N(S,A ) := ∪u∈SN(u,A ). We define I(·) as an

index function which maps nodes in A∪B to its indices, i.e. I(ai) = i, I(bj) = j and

I((ai, bj)) = (i, j). Throughout the thesis, we will always assume that |N(u,A )| ≥ 1

for all u ∈ A ∪B, that is, we assume no flexibility structure A has isolated plant or

product nodes.

Because A can be viewed as a bipartite graph, we define an undirected cycle in

A to be a set of arcs which forms a cycle when the arc orientations are ignored. A

flexibility structure A is a long chain if its arcs form exactly one undirected cycle

containing all plant and product nodes (see Figure 1-1 for an example). A closed

chain is defined as an induced subgraph in A which forms an undirected cycle, while

an open chain is an induced subgraph in A which forms an undirected line (one arc

less than an undirected cycle). In Figure 1-1, an example of an open and a closed

chain is presented.

Given an instance of the demand vector, d, the total demand satisfied by a flex-

ibility structure A , denoted by P (d,A ), is defined as the objective value of the
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Figure 1-1: Configurations for Flexibility Designs

following linear program (LP):

P (d,A ) := max
∑

(i,j)∈I(A )

fij

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj, ∀j ∈ I(B)

∑

bj∈N(ai,A )

fij ≤ ci, ∀i ∈ I(A)

fij ≥ 0, ∀(i, j) ∈ I(A )

f ∈ R|A |.

We will refer to P (d,A ) as the sales of A given d.

When product demands are stochastic, D is used to denote the random vector of

demands. P[.] and E[.] are used to denote the probability and expectation function

of a random variable. In particular, E[P (D,A )] is used to represent the expected

sales of A given stochastic demand D (with plant capacity c fixed). The fill rate

of a flexibility structure is defined as the ratio between the performance of a given
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flexibility structure and the total expected demand. When each product’s expected

demand is equal to one, the fill rate of a flexibility structure equals the per product

expected sales.

We say that D is exchangeable if [D1, ..., Dn] equals to [Dσ(1), .., Dσ(n)] in distri-

bution for any σ that is a permutation of {1, 2, ..., n}. We note that any independent

and identically distributed (IID) demand is exchangeable but not all exchangeable

demand are IID. For example, consider a random vector D = [D1, ..., Dn] that is

uniformly distributed on the linear polyhedron

{(x1, .., xn)|
n

∑

i=1

xi = n, xi ≥ 0, ∀i = 1, .., n}.

Clearly D is exchangeable, but the random variables in D are not independent, since

they always sum up to n.

A system is defined to be balanced if m = n. In a balanced system with n

plants and n products, we use Fn to denote the full flexibility structure, where

Fn := {(ai, bj)|∀1 ≤ i, j ≤ n}; Dn to denote the dedicated structure, where Dn :=

{(ai, bi)|∀1 ≤ i ≤ n}; and Cn to denote the long chain structure, where Cn :=

Dn ∪ {(a1, b2), (a2, b3), ..., (an−1, bn), (an, b1)}. We note that while our previous defini-

tion of the long chain is different from Cn, any long chain that satisfies our previous

definition can be represented by Cn under a specific relabeling of plants and products.

Finally, we use Ln to denote the open chain structure, where Ln := Cn \ {(a1, bn)}.
In a balanced system, an arc (ai, bj) ∈ A is defined to be a flexible arc if i 6= j,

and a dedicated arc if i = j. We say A is a 2-flexibility structure in a balanced system

if any plant node and any product node is incident to exactly two arcs in A . It can

be seen that any 2-flexibility structure is the union of a number of closed chains.

1.5 Organization

The rest of the thesis is organized as follows.

In Chapter 2, we present two deterministic properties for the sales of the long
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chain. First, we prove that all flexible arcs in the long chain are supermodular with

each other. Then, applying the supermodularity property, we derive a decomposition

that proves the sales of Cn can be decomposed as a sum of n quantities, where each

quantity is the difference of the sales associated with two open chains in Cn. We

show that the decomposition gives rise to an efficient method for computing the

expected sales of the long chain under independent demand. Finally, we extend the

supermodularity and the decomposition results to a more general model with different

plant capacities, flexibility capacities and linear profits.

In Chapter 3, we apply the deterministic properties of the long chain developed

in Chapter 2 to study the effectiveness of the long chain under stochastic demand.

Our analysis gives rise to four important developments: (i) when a long chain is

constructed from a dedicated structure, the incremental benefits of adding flexibilities

are increasing and the largest benefit is always achieved when the chain is closed by

adding the last arc to the system; (ii) the long chain is optimal among all 2-flexibility

structures; (iii) the gap between the fill rate of full flexibility and that of the long

chain increases with system size; and (iv) the fill rate of a long chain increases with

the number of products, but this increase converges to zero exponentially fast.

In Chapter 4, we study the worst-case performances of the process flexibility struc-

tures under a demand uncertainty set. We first introduce the plant cover index, an

index defined by a constrained bipartite vertex cover on the corresponding flexibility

structures. Applying the plant cover index, we provide conditions under which one

flexible structure is more robust than another under any symmetric uncertainty sets.

Then, the condition is used to prove that the long chain compares favorably to other

sparse flexibility structures with 2n flexibility arcs. Finally, we use simulation to

show that the plant cover index can be used as a guideline to design sparse flexibility

structures that works well under both worst-case and average-case performances.

In Chapter 5, we study sparse flexibility structures under an extended model with

plants, products and distribution centers. We first prove that if the supply chain

costs are independent of either plants or distribution centers, then there exist a long

chain that is optimal among all 2-flexibility structures. Then, we restrict our model
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in the special case with transportation cost, and identify a long chain that minimizes

the transportation cost among all 2-flexibility structures when plants and distribution

centers are located on a line.

Finally, in Chapter 6, we conclude with a summary of the thesis and discuss several

future directions.

The results from Chapter 2 and 3 have first appeared in [Simchi-Levi and Wei,

2012], while the results from Chapter 4 have first appeared in [Simchi-Levi and Wei,

2013].
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Chapter 2

Supermodularity and

Decomposition of Long Chain

This chapter establishes several building blocks to analyze and compute the effective-

ness of the long chain. In Section 2.1 and 2.2, we study the sales of long chain facing

an arbitrarily fixed demand instance d. First, Section 2.1 establishes a result that

shows that any pair of flexible arcs in a long chain are supermodular with each other;

and in Section 2.2, using the supermodularity property as a key lemma, we derive a

decomposition of the sales of the long chain for system size n, Cn, as a sum of n quan-

tities, where each quantity is the difference of the sales of two open chains. Then, in

Section 2.3, applying the decomposition result, we develop a direct and efficient way

to compute the expected sales of the long chain (E[P (D,Cn)]) under IID demand.

Finally, in Section 2.4, we establish several generalizations of the results in Sections

2.1-2.3.

Throughout this chapter, we assume the system is balanced (m = n) and consider

a balanced system of size n. In Sections 2.1-2.3, we assume ci = 1 for 1 ≤ i ≤ n. This

assumption is later relaxed in Section 2.4, where a more general model is considered.

25



2.1 Supermodularity

To establish the supermodularity property in the long chain, we start by formally

defining the notion of supermodularity.

Definition 2.1. A function f(x, y) is said to be supermodular in x and y if for any

real numbers x′, x′′, y′, y′′,

f(max{x′, x′′},max{y′, y′′}) + f(min{x′, x′′},min{y′, y′′}) ≥ f(x′, y′) + f(x′′, y′′).

Next, consider a flexibility structure A , a demand instance d and two arcs, α, β ∈
A with given non-negative capacities uα and uβ. Define

Pα,β(uα, uβ,d,A ) := max
∑

(i,j)∈I(A )

fij

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj, ∀j ∈ I(B)

∑

bj∈N(ai,A )

fij ≤ 1, ∀i ∈ I(A)

fα ≤ uα, fβ ≤ uβ,

fij ≥ 0, ∀(i, j) ∈ I(A )

f ∈ R|A |.

We prove that if A ⊂ Cn, then for any two flexible arcs α and β in A , Pα,β(uα, uβ,d,A )

is supermodular in uα and uβ. Note that if α and β are not in A , then Pα,β(uα, uβ,d,A )

is equal to P (d,A ) regardless of uα and uβ and the supermodularity property holds.

The interesting case arises when α and β are in A .

For this purpose, we show that Pα,β(uα, uβ,d,A ) is equivalent to a max-weight

circulation problem, which allows us to apply a classical result from [Gale and Politof,

1981]. Define G(A ) to be the underlying graph for the max-weight circulation prob-

lem, which contains A , an additional node s, an arc from s to each of the plant

nodes, and an arc from each of the product nodes to s. The underlying graph of the
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max-weight circulation problem, G(A ), is illustrated in Figure 2-1 for A = C5, of

long chain for a balanced system of size five.

55

33

44

11

22

s

Plants Products

Figure 2-1: G(C5) for the Max-weight Circulation associated to Pα,β(uα, uβ,d,Cn)

To complete the description of the max-weight circulation problem, we set the

weight of each plant to product arc (that is, the arcs in A ) to 1 and the weight of

every other arc to zero. The upper-bound (capacity) on the flow on an arc from s

to plant i is set to be 1 for all i = 1, 2, ..., n; the upper-bound for the flow on an arc

connecting product j to s is set to be dj for all j = 1, 2, ..., n; the upper-bound for

the flow on α (and β) to be uα (and uβ), and the upper-bound for the flow on every

other arc in A is set to be 1. Finally, we set the lower-bound for the flow on every

arc in G(A ) to be 0.

In [Gale and Politof, 1981], Gale and Politof present the following definition.

Definition 2.2. In a directed graph G, two arcs α, β are said to be in series, if for

any cycle C containing both α and β, α and β have the same direction when we fix

an orientation of C.

Next, we show that any two flexible arcs from the set Cn are in series in graph

G(Cn).

27



Lemma 2.1. Let α and β be two flexible arcs in Cn. Then α and β are in series in

G(Cn), where G(Cn) is the underlying graph of the max-weight circulation problem

for Pα,β(uα, uβ,d,Cn).

Proof. Let C be an arbitrary undirected cycle in G(Cn). If C does not contain node

s, then C must be the undirected cycle which contains every plant to product arcs

in Cn. In that case, it is easy to verify that α and β have the same direction in C.

Otherwise, suppose C contains s. In such a case, C can be decomposed into four

pieces, X1, X2, α and β, where X1, X2 are the two paths between α and β. Without

loss of generality, we assume X1 contains s. Since α and β cannot be incident to the

same node, bothX1 andX2 are nonempty. AsX2 does not contain s, all arcs inX2 are

plant to product arcs (i.e. X2 ⊂ Cn ). Because of the structure of Cn, X2 contains an

odd number of arcs. Moreover, the path in X2 ∪{α}∪ {β} has alternating directions

for every two consecutive arcs and therefore, α and β have the same direction in C.

This is illustrated by Figure 2-2. Since this is true for any arbitrary undirected cycle

C, α and β are in series in G(Cn).

Figure 2-2: Illustration for the proof of Lemma 2.1

Lemma 2.1 allows us to apply the following important result of [Gale and Politof,

1981]. They show that if two arcs, α and β, in the underlying graph are in series,

then the optimal flow of the max-weight circulation is supermodular with respect to

the capacities of both arcs.
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Theorem 2.1. Let A be a flexibility structure for a balanced system of size n, and

A ⊂ Cn. For any flexible arcs α, β in A , Pα,β(uα, uβ,d,A ) is supermodular in uα

and uβ. Hence,

P (d,A ) + P (d,A \ {α, β}) ≥ P (d,A \ {α}) + P (d,A \ {β}).

Proof. By construction, Pα,β(uα, uβ,d,A ) can be computed by solving the max-

weight circulation problem. Since A ⊂ Cn, the set arcs in G(A ) is a subset of

the set of arcs in G(Cn). By Lemma 2.1, α and β are in series in G(Cn). Thus, α and

β are in series in G(A ). Applying the main theorem in [Gale and Politof, 1981], we

have that Pα,β(uα, uβ,d,A ) is supermodular in uα and uβ. Hence

P (1, 1,d,A ) + P (0, 0,d,A ) ≥ P (0, 1,d,A ) + P (1, 0,d,A )

=⇒ P (d,A ) + P (d,A \ {α, β}) ≥ P (d,A \ {α}) + P (d,A \ {β}).

Theorem 2.1 thus suggests that any two flexible arcs in the long chain complement

each other. That is, the existence of one flexible arc increases the marginal benefit

that can be gained when the other flexible arc is added.

Furthermore, the supermodular result of [Gale and Politof, 1981] can be extended

for two sets of arcs X and Y , where any pair of arcs in X ∪ Y are in series with

each other. While that was not stated in the paper of [Gale and Politof, 1981], it was

proven in [Granot and Veinott Jr., 1985] under more general settings. Here, we state

Corollary 2.1 which is a special case of Theorem 17 from [Granot and Veinott Jr.,

1985].

Corollary 2.1. Let A be a flexibility structure for a balanced system of size n, and

A ⊂ Cn. For any X, Y ⊆ S, where S is the set of all flexible arcs in A , and demand

instance d,

P (d,A \ (X ∩ Y )) + P (d,A \ (X ∪ Y )) ≥ P (d,A \X) + P (d,A \ Y ).
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2.2 Decomposition

In this section, we show that in a balanced system of size n, the sales of the long chain

can be decomposed into the sum of n quantities, where each quantity is equal to the

difference of sales of two open chains. Throughout the section, when some integer k

appears in a statement, we are in fact referring to some i ∈ {1, ..n} congruent to k

modulo n. For example, if plant n + 3 appears in a statement, then we are referring

to plant 3; and if fn+1,n+2, the flow from plant n + 1 to product n + 2 appears in a

statement, then we are referring to f1,2, the flow from plant 1 to product 2. Also, we

define αi = (ai, bi+1) and βi = (ai, bi) for i = 1, 2, ..., n (note that αn = (an, b1) as

n+ 1 is congruent with 1 modulo n).

We first start the section with two lemmas. The first lemma states that if a

flexible arc α is not required to achieve the optimal sale in Cn, then α is not required

to achieve the optimal sale in Cn \X , for any X that is a set of flexible arcs.

Lemma 2.2. Suppose P (d,Cn \ {α}) = P (d,Cn), where α is a flexible arc in Cn.

Then, for any set X ⊆ S, where S is the set of all flexible arcs in Cn, we have that

P (d,Cn \ (X ∪ {α})) = P (d,Cn \X)

Proof. If α ∈ X , the result is trivial as X ∪ {α} = X . Otherwise, By Corollary 2.1,

P (d,Cn \ (X ∪ {α})) + P (d,Cn) ≥ P (d,Cn \X) + P (d,Cn \ {α})

=⇒ P (d,Cn \ (X ∪ {α})) ≥ P (d,Cn \X), since P (d,Cn) = P (d,Cn \ {α}).

But by definition of P (.), P (d,Cn \ (X ∪ {α})) ≤ P (d,Cn \X), hence

P (d,Cn \ (X ∪ {α})) = P (d,Cn \X).

The next lemma states that there always exists a flexible arc α where P (d,Cn) =

P (d,Cn \ {α}).
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Lemma 2.3. There exists some 1 ≤ i∗ ≤ n such that P (d,Cn \ {αi∗}) = P (d,Cn),

for any demand instance d.

Proof. Recall that

P (d,Cn) = max
∑

(i,j)∈I(Cn)

fij

s.t.
∑

ai∈N(bj ,Cn)

fij ≤ dj, ∀j ∈ I(B)

∑

bj∈N(ai,Cn)

fij ≤ ci, ∀i ∈ I(A)

fij ≥ 0, ∀(i, j) ∈ I(Cn)

f ∈ R|Cn|.

The optimization problem associated with P (d,Cn) clearly has an optimal solution

because it is bounded. Let f∗ be an optimal solution of P (d,Cn). If f
∗
ij = 0 for some

(i, j) ∈ {α1, ..., αn}, then there is some i∗ such that f ∗
αi∗

= 0 and this implies that

P (d,Cn \ {αi∗}) = P (d,Cn).

Otherwise, f ∗
ij > 0 for all (i, j) ∈ I({α1, ..., αn}). Let g be the vector that

gij =



























−1 if (i, j) ∈ I({α1, ..., αn})

1 if (i, j) ∈ I({β1, β2, ..., βn})

0 otherwise.

In network flow theory, g is known as an augmenting cycle for f∗. Let δ∗ = min{fij , (i, j) ∈
I({α1, ..., αn})}. Note that f∗ + δ∗g is a feasible and optimal solution of P (d,Cn).

Moreover, f ∗
ij + δ∗gij = 0 for some (i, j) ∈ I({α1, ..., αn}). Thus, there is some i∗ such

that f ∗
αi∗

+ δ∗gαi∗
= 0 and this implies that P (d,Cn \ {αi∗}) = P (d,Cn).

Next, we show that the sales associated with Cn can be decomposed as a sum of

n quantities, where each quantity is the difference of the sales associated with two

open chains in Cn.
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Theorem 2.2. For any fixed demand instance d on balanced system of size n, we

have

P (d,Cn) =
n

∑

i=1

(P (d,Cn \ {(ai, bi+1)})− P (d,Cn \ {(ai−1, ai), (ai, bi), (ai, bi+1)})).

Proof. For each 1 ≤ k1 ≤ k2 ≤ n, define Lk1→k2 = {(ai, bi)|i = k1, k1 + 1, ..., k2} ∪
{(ai, bi+1)|i = k1, k1 + 1, ..., k2 − 1}, and for each 1 ≤ k2 < k1 ≤ n, define Lk1→k2 =

{(ai, bi)|i = k1, k1 + 1..., n, 1, 2, ..., k2} ∪ {(ai, bi+1)|i = k1, ..., n, ..., k2 − 1}. One can

think of Lk1→k2 as the open chain connecting plant k1 to product k2 in the balanced

system of size n. Also, since demand instance d is fixed, for the sake of succinctness,

we use P (A ) to denote P (d,A ).

By definitions of αi and βi, we can rewrite Cn \ {(ai, bi+1)} and Cn \ {(i −
1, i), (ai, bi), (ai, bi+1)} as Cn \ {αi} and Cn \ {αi−1, αi, βi}. For any 1 ≤ i ≤ n,

because Cn \ {αi−1, αi} = {βi} ⊎Cn \ {αi−1, αi, βi}, where ⊎ represent the symbol for

disjoint union,

P (Cn \ {αi})− P (Cn \ {αi−1, αi, βi}) = P (Cn \ {αi})− P (Cn \ {αi−1, αi}) + min{1, di}.
(2.1)

Lemma 2.3 shows that there is some i∗ such that P (Cn) = P (Cn\{αi∗}). Without

loss of generality, we assume that i∗ = n, as we can always relabel each plant (and

product) i by i− i∗. Now, we have that for i = 2, ..., n− 1,

P (Cn \ {αi})− P (Cn \ {αi−1, αi, βi})

= P (Cn \ {αi})− P (Cn \ {αi−1, αi}) + min{1, di} (by Equation (2.1))

= P (Cn \ {αi, αn})− P (Cn \ {αi−1, αi, αn}) + min{1, di} (by Lemma 2.2).

Since Cn \ {αi, αn} = L1→i ⊎ L(i+1)→n, and Cn \ {αi−1, αi, αn} = L1→(i−1) ⊎
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L(i+1)→n ⊎ {βi}, we have for i = 2, ..., n− 1,

P (Cn \ {αi})− P (Cn \ {αi−1, αi, βi})

= P (Cn \ {αi, αn})− P (Cn \ {αi−1, αi, αn}) + min{1, di}

= P (L1→i) + P (L(i+1)→n)−
(

P (L1→(i−1)) + P (L(i+1)→n) + min{1, di}
)

+min{1, di}

= P (L1→i)− P (L1→(i−1)). (2.2)

Also,

P (Cn \ {α1})− P (Cn \ {αn, α1, β1})

= P (Cn \ {α1})− P (Cn \ {αn, α1}) + min{1, d1} (by Equation (2.1))

= P (Cn \ {α1, αn})− P (Cn \ {α1, αn}) + min{1, d1} (by Lemma 2.2)

= min{1, d1}, (2.3)

and

P (Cn \ {αn})− P (Cn \ {αn−1, αn, βn}) = P (L1→n)− P (L1→(n−1)). (2.4)

Now, applying Equations (2.2-2.4), we obtain that

n
∑

i=1

(P (Cn \ {αi})− P (Cn \ {αi−1, αi, βi}))

= min{1, d1}+
n

∑

i=2

(P (L1→i)− P (L1→(i−1)))

= min{1, d1}+ P (L1→n)− P (L1→1)

= P (L1→n)

= P (Cn \ {αn})

= P (Cn).
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Recall that an open chain is an subgraph in A which has one arc less than a closed

chain, thus, we have that Cn \{αi} is an open chain connecting plant i+1 to product

i, while Cn \ {αi−1, αi, βi} is an open chain connecting plant i + 1 to product i − 1

(see Figure 2-3). It turned out that the sales of open chains is much easier to analyze

and compute. Indeed, in the next section, we will apply Theorem 2.2 to obtain an

efficient method to compute E[P (D,Cn)] under IID demand.

Plants Products

(a) C8 \ {α4}

Plants Products

(b) C8 \ {α3, α4, β4}

Figure 2-3: Flexibility Structures in the Decomposition

2.3 Computing Expected Sales

In this section, we present an algorithm to compute expected sales of the long chain,

E[P (D,Cn)], under any IID demand D. To derive the algorithm for computing

E[P (D,Cn)], we first apply Theorem 2.2 to characterize the expected sales of the

long chain using the difference between the expected sales of two open chains. Next,

we introduce Algorithm 1, a greedy algorithm that computes the difference between

the sales of two open chains under any deterministic demand instance. Finally, we

apply Algorithm 1 to develop an efficient procedure to compute the difference be-
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tween the expected sales of two open chains and therefore the expected sales of the

long chain.

As defined in Section 1.4, D is exchangeable if [D1, ..., Dn] equals to [Dσ(1), .., Dσ(n)]

in distribution for any σ that is a permutation of {1, 2, ..., n}. First, we state a

characterization of E[P (D,Cn)] when D is exchangeable. Recall that we defined Ln =

Cn \ {(an, b1)}.

Theorem 2.3. For any balanced system of size n with exchangeable demand D, we

have

E[P (D,Cn)] = n(E[P (D,Ln)]− E[P (D,Ln−1)]).

Proof. Theorem 2.2 states that for any d which is an instance of D,

P (d,Cn) =

n
∑

i=1

(P (d,Cn\{(ai, bi+1)})−P (d,Cn\{(i−1, i), (ai, bi), (ai, bi+1)})). (2.5)

Since D is exchangeable, for any 1 ≤ i ≤ n,

E[P (D,Cn \ {(ai, bi+1)})] = E[P (D,Ln)],

E[P (D,Cn \ {(ai−1, bi), (ai, bi), (ai, bi+1)})] = E[P (D,Ln−1)].

Thus, integrating over all random instances of D on Equation (2.5), we have

E[P (D,Cn)] = n(E[P (D,Ln)]− E[P (D,Ln−1)]).

Recall that any IID demand is exchangeable, hence, by Theorem 2.3, we can also

characterize the expected sales of a long chain by the expected sales of open chains

under IID demand.

For the rest of this section, we will fix the demand vector, D, to be a vector of

IID entries, where each entry Di has distribution D. For the sake of simplicity, we

use [A ] in place of E[P (D,A )], as D is fixed.
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Next, we start with a greedy algorithm that determines the optimal solution of

P (d,Ln).

Algorithm 1 Finding optimal solution f∗ for P (d,Ln)

1: procedure Solve (P (d,Ln))

2: f ∗
1,1 ← min(1, d1)

3: for k = 2, ..., n do

4: f ∗
k−1,k ← min{1− f ∗

k−1,k−1, dk}
5: f ∗

k,k ← min{1, dk − f ∗
k−1,k}

6: end for

7: return f∗

8: end procedure

We note that a similar greedy style algorithm for computing the maximum sales

of an open chain was mentioned in [Chou et al., 2010c]. We omit the proof for the

correctness of Algorithm 1, since P (d,Lk) is simply a max-flow problem on a path

and it is well known that this problem can be solved using a greedy algorithm.

Given a random demand vector D, let Fij be the random flow on arc (i, j) returned

by Algorithm 1, for 1 ≤ i, j ≤ n. For each integer 1 ≤ k ≤ n−1, define Wk = 1−Fkk

and W0 = 0. Wk can be thought of as the remaining capacity in plant k after the

production of product k at plant k is determined.

To develop a method to compute the expected sales of the long chain, assume

that the support of D lies in { i
N
|i = 0, 1, 2, ..., } for some integer N ≥ 1. Under this

assumption, we let pi = P[D = i
N
], for any i = 0, 1, ..., 2N − 1, and p2N = P[D ≥ 2],

where P[.] denotes the probability mass function.

Since the support of D lies in { i
N
|i = 0, 1, 2, ...}, it is easy to see that the support

of Fkk lies in { i
N
|i = 0, 1, 2, ..., N}, as 0 ≤ Fkk ≤

∑

i Fik ≤ 1. But Wk = 1 − Fkk, so

Wk also has a support set of { i
N
|i = 0, 1, 2, ..., N}. As a result, the distribution of Wk

can be described by a row vector qk with N + 1 elements, where qki = P[Wk = i
N
],

for i = 0, 1, ..., N . Then, we have

Lemma 2.4. qk+1 = qkA = q0Ak+1 for 0 ≤ k ≤ n− 1, where
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A =















































∑2N
i=N pi pN−1 pN−2 · · · p1 p0

∑2N
i=N+1 pi pN pN−1 · · · p2 p0 + p1

...
...

...
...

...
...

p2N−1 + p2N p2N−2 p2N−3 · · · pN+1

∑N−1
i=0 pi

p2N p2N−1 p2N−2 · · · pN+1

∑N
i=0 pi















































and q0 =

[

1 0 0 · · · 0
]

.

Proof. Since W0 is 0 with probability 1, q0 = [1 0 0 ... 0]. Because the demand is

independent and Wk only depends on D1, ...Dk, Wk is independent of Dk+1. Hence

we have,

qk+1
i = P[Wk+1 = i] =

N
∑

j=0

P[Wk = j]P[Dk+1 = N − i+ j] =

N
∑

j=0

qkj pN−i+j,∀1 ≤ i ≤ N − 1,

qk+1
0 = P[Wk+1 = 0] =

N
∑

j=0

P[Wk = j]P[Dk+1 ≥ N + j] =

N
∑

j=0

qkj

2N
∑

l=N+j

pN+l,

qk+1
N = P[Wk+1 = N ] =

N
∑

j=0

P[Wk = j]P[Dk+1 ≤ j] =

N
∑

j=0

qkj

j
∑

l=0

pl.

This implies that qk+1 = qkA.

A direct consequence of Lemma 2.4 is that the following matrix multiplications

can be used to determine the expected sales of the long chain, when demands are IID

and the support of a product demand is a subset of { i
N
|i = 0, 1, 2, ..., }.

Theorem 2.4.
[Cn]
n

= [Ln] − [Ln−1] = qn−1
π = q0An−1

π, where π is a vector of

size N + 1 and

πi =
N+i
∑

j=1

jpj + (N + i)
2N
∑

j=N+i+1

pj, ∀1 ≤ i ≤ N
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Proof. By Algorithm 1, [Ln]−[Ln−1] can be written as the expectation of Fn−1n+Fnn,

which is equal to E[min{1 +Wn−1, Dn}], thus

E[min{1+Wn−1, Dn}] =
N
∑

i=0

P[Wn−1 = i]E[min{Dn,
N + i

N
}] =

N
∑

i=0

qn−1

i (

N+i
∑

j=1

jpj+(N+i)

2N
∑

j=N+i+1

pj).

Hence, we have that [Ln]−[Ln−1] = qn−1
π. Apply Theorem 2.3, and we are done.

The matrix multiplication method developed here to compute the expected sales

of the long chain is polynomial in N and n. Indeed, computing q0An−1
π requires

O(nN2) operations if one sequentially evaluates q0Ai for i = 1, ..., k, orO(N2.807 log n)

operations if one starts by determining An−1 using the classical algorithm from

[Strassen, 1969]. To the best of our knowledge, this is the first pseudo-polynomial time

algorithm that computes the expected sales of a finite size long chain exactly when

demand is discrete and IID. The other known algorithm to compute the expected

sales of the long chain exactly is to solve the max-flow problem for all demand in-

stances and sum them to determine the expected sales. This algorithm is exponential

in n.

The matrix multiplication method can be applied to general IID demands as

an approximation algorithm to compute the expected sales of long chains. In this

case, one can approximate the expected sales of the long chain by discretizing the

demand distribution on the set of { i
N
|i = 0, 1, 2, ..., } for some integer N . Clearly,

as N increases, the error of the approximation decreases while the running time

grows. Specifically, it is straightforward to show that the error of the approximation

is bounded by n
2N

. However, our computational experience suggests that the error is

much smaller than this bound.

Moreover, the matrix multiplication method is fairly fast even for large N . For

example, when N = 1000 and n = 100, q0An−1
π can be computed within 2 seconds

using Matlab on a standard 2.1 GHz laptop. Hence, even for general IID demands,

the matrix multiplication method can quickly approximate the expected sales of a

large size long chain very accurately.

Figure 2-4 presents computational results obtained using the matrix multiplication
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method for three different IID demand distributions:

• Normal: Demand for a product is a discretized normal random variable with

mean 1 and standard deviation of 0.33 on the support set of { i
14
|i = 0, 1, ..., 28};

this distribution was originally applied in [Chou et al., 2010c] for their analysis

of asymptotic behavior of long chains;

• Uniform: Demand for a product is uniformly distributed on the set { i
10
|i =

0, 1, 2, ..., 9, 11, 12, ..., 20};

• Asymmetric: Demand for a product is equal to 4
5
with probability 0.4, 1 with

probability 0.5 and 2 with probability 0.1.

For each distribution, Figure 2-4 depicts [Fn]
n

(the per product expected sales of full

flexibility), [Cn]
n

(the per product expected sales of the long chain), and [Cn]
[Fn]

(the ratio

between the expected sales of the long chain and the expected sales of full flexibility

structure) for n = 1, ..., 30. Because demand is IID, [Cn]
n

(and [Fn]
n

) is proportional to

the fill rate of long chain (and full flexibility).

Figure 2-4 reveals several interesting observations. First, [Fn]
n
− [Cn]

n
, i.e., the gap

between the fill rates of full flexibility and the long chain, is increasing, while the

ratio, [Cn]
[Fn]

, is decreasing. A similar observation on the ratio, using simulation results,

is reported in [Chou et al., 2008]. In addition, Figure 2-4 suggests that the quantity

[Cn]
n
, the fill rate of the long chain, is increasing but converges to a constant very

quickly. These observations are discussed in detail Chapter 3.

The matrix multiplication method can be also used to compute the per product

expected sales of the long chain for infinite size system. Observe that the matrix A

is the transition matrix of a Markov chain with states i
N

for each i = 0, 1, ..., N . It

can be shown that in the matrix A, the communication class that contains state 0

is irreducible and aperiodic. Then, by the Perron-Frobenius theorem, see [Grimmett

and Stirzaker, 1992], we have that limn→∞ q0An−1 = q∗, where q∗A = q∗ and q∗0 > 0.

Thus, to compute limn→∞
[Cn]
n
, one can solve for q∗ by finding the eigenvectors of A,

and then compute q∗
π, which equals to limn→∞

[Cn]
n
. This provides another method
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Figure 2-4: The Performance of Long Chains vs. The Performance of Full Flexibility

40



for computing limn→∞
[Cn]
n

in addition to the result of Chou et al. [Chou et al., 2010c].

Interestingly, their procedure also involves discretizing demand and solving a system

of linear equations.

2.4 Generalizations

In this section, we present a generalization of the results derived in Sections 2.1-2.3.

In the generalization, we study a model where the firm maximizes its profit under a

flexibility structure A , instead maximizing its sales. We use P̃ (d,A ) to denote the

profit under a flexibility structure A and demand instance d. In particular,

P̃ (d,A ) = max
∑

(i,j)∈I(A )

pijfij

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj, ∀j ∈ I(B)

∑

bj∈N(ai,A )

fij ≤ ci, ∀i ∈ I(A)

0 ≤ fij ≤ uij, ∀(i, j) ∈ I(A )

f ∈ R|A |.

P̃ (d,A ) can be interpreted as the maximum profit achieved by flexibility structure

A given demand d ∈ Rn
+, with fixed plant capacity vector c ∈ Rn

+, linear profit vector

p ∈ R
|A |
+ and a flexibility capacity vector u ∈ R

|A |
+ (that is, the production for each

arc (i, j) in A is bounded by uij).
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2.4.1 Generalized Supermodularity

For any flexibility structure A , and any arcs α, β ∈ A , define

P̃α,β(uα, uβ,d,A ) = max
∑

(i,j)∈I(A )

pijfij

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj , ∀j ∈ I(B)

∑

bj∈N(ai,A )

fij ≤ ci, ∀i ∈ I(A)

fα ≤ uα, fβ ≤ uβ,

0 ≤ fij ≤ uij, ∀(i, j) ∈ I(A )

f ∈ R|A |.

Similarly to our analysis in Section 2.1, we can show that the optimization problem

corresponding to P̃α,β(uα, uβ,d,A ) is equivalent to a max-weight circulation problem

with underlying graph G(A ). Indeed, it is easy to check that the equivalence hold,

if we set the weight of each arc (ai, bj) in A to pij; the weight of every other arc to

zero; the upper-bound (capacity) on the flow of each arc from s to plant i to ci; the

upper-bound on the flow of each arc connecting product j to s to dj; the upper-bound

on the flow of each arc (ai, bj) in A to uij; and the lower-bound on the flow of each

arc in G(A ) to 0.

Because P̃α,β(uα, uβ,d,A ) is equivalent to a max-weight circulation problem with

underlying graph G(A ), and any pair of flexible arcs α and β in Cn are in series with

each other, we have that α and β are supermodular with each other. Formally, we

have the following statement.

Corollary 2.2. Let A be a flexibility structure for a balanced system of size n, and

A ⊂ Cn. For any flexible arcs α, β in A , P̃α,β(uα, uβ,d,A ) is supermodular in uα

and uβ. Hence,

P̃ (d,A ) + P̃ (d,A \ {α, β}) ≥ P̃ (d,A \ {α}) + P̃ (d,A \ {β}).
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Corollary 2.2 states that under the more general profit model, the supermodularity

of flexible arcs in the long chain still holds. Furthermore, we would like to note that

the supermodularity of flexible arcs in Cn can be extended to even more general

settings where the parameter on each arc in Cn lies in a lattice. For these extensions,

we refer the readers to the work of Granot and Veinott [Granot and Veinott Jr., 1985].

2.4.2 Generalized Decomposition

In this subsection, we assume that for each 1 ≤ i ≤ n, pii ≥ pji for all j, and

uii = ci. Intuitively, one can think of this assumption as having plant i to be the

primary production plant for product i, where pii ≥ pji implies that it is cheaper to

produce product i from plant i, and uii = ci implies that there is no real constraint

on producing product i from plant i. Under this assumption, we present a corollary

that decomposes P̃ (d,Cn), i.e. the profit of Cn under d. For the sake of simplicity,

in this subsection, we will use (i, j) in place of (ai, bj), for each (ai, bj) ∈ Cn.

Corollary 2.3. Suppose pii ≥ pii+1 and uii = ci ∀1 ≤ i ≤ n, we have

P̃ (d,Cn) =

n
∑

i=1

(

P̃ (d,Cn \ {αi})− P̃ (d,Cn \ {αi−1, βi, αi})
)

.

Proof. The strategy of the proof is very similar to the proof of Theorem 2.2. First,

we use an augmenting cycle argument similarly to the one applied in Lemma 2.3 in

Section 2.2 to show that P̃ (d,Cn) = P̃ (d,Cn \ αi∗), for some 1 ≤ i∗ ≤ n.

Let f∗ be an optimal solution of P̃ (d,Cn). If f
∗
αi∗

= 0 for some i∗, then P̃ (d,Cn \
{αi∗}) = P̃ (d,Cn). Otherwise, f ∗

ij > 0 for all (i, j) ∈ {α1, ..., αn}, and let g be the

vector that

gij =



























−1 if (i, j) ∈ {α1, ..., αn}

1 if (i, j) ∈ {β1, β2, ..., βn}

0 otherwise.

Since pβk
≥ pαk

,
∑

(i,j)∈Cn
gijpij ≥ 0 and thus g is an augmenting cycle for f∗. Let δ∗ =

min{fij, (i, j) ∈ {α1, ..., αn}}. Note that f∗ + δ∗g is a feasible and optimal solution of
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P̃ (d,Cn). Moreover, f ∗
ij + δ∗gij = 0 for some (i, j) ∈ {α1, ..., αn}. Thus, there is some

i∗ such that f ∗
αi∗

+ δ∗gαi∗
= 0 and this implies that P̃ (d,Cn \ {αi∗}) = P̃ (d,Cn).

Applying Corollary 2.2, we have

P̃ (d,Cn \ (X ∪ {αi∗})) + P̃ (d,Cn) ≥ P̃ (d,Cn \X) + P̃ (d,Cn \ {αi∗})

=⇒ P̃ (d,Cn \ (X ∪ {αi∗})) ≥ P̃ (d,Cn \X), since P̃ (d,Cn) = P̃ (d,Cn \ {αi∗}).

But by definition P̃ (d,Cn \ (X ∪ {αi∗})) ≤ P̃ (d,Cn \X), hence

P̃ (d,Cn \ (X ∪ {αi∗})) = P̃ (d,Cn \X).

Now that we have established the generalized version of Lemma 2.2 and 2.3, the

rest of the proof can then be completed following the same procedure as the proof of

Theorem 2.2. Like Theorem 2.2, for each 1 ≤ k1 ≤ k2 ≤ n, define Lk1→k2 = {βi|i =
k1, k1 + 1, ..., k2} ∪ {αi|i = k1, k1 + 1, ..., k2− 1}, and for each 1 ≤ k2 < k1 ≤ n, define

Lk1→k2 = {βi|i = k1, k1 + 1..., n, 1, 2, ..., k2} ∪ {αi|i = k1, ..., n, ..., k2 − 1}. Also, use

P̃ (A ) to denote P̃ (d,A ).

For any 1 ≤ i ≤ n, because Cn \ {αi−1, αi} = {βi} ⊎ Cn \ {αi−1, αi, βi}, where ⊎
represent the symbol for disjoint union,

P̃ (Cn \ {αi})− P̃ (Cn \ {αi−1, αi, βi})

=P̃ (Cn \ {αi})− P̃ (Cn \ {αi−1, αi}) + piimin{ci, di}.
(2.6)

We have already shown that there is some i∗ such that P̃ (Cn) = P̃ (Cn \ {αi∗}).

44



Without loss of generality, we assume that i∗ = n, and we have that for i = 2, ..., n−1,

P̃ (Cn \ {αi})− P̃ (Cn \ {αi−1, αi, βi})

= P̃ (Cn \ {αi})− P̃ (Cn \ {αi−1, αi}) + pii min{ci, di}

= P̃ (Cn \ {αi, αn})− P̃ (Cn \ {αi−1, αi, αn}) + pii min{ci, di} (by Lemma 2.2)

= P̃ (L1→i) + P̃ (L(i+1)→n)−
(

P̃ (L1→(i−1)) + P̃ (L(i+1)→n) + pii min{ci, di}
)

+ pii min{ci, di}

= P̃ (L1→i)− P̃ (L1→(i−1)). (2.7)

Also,

P̃ (Cn \ {α1})− P̃ (Cn \ {αn, α1, β1})

= P̃ (Cn \ {α1})− P̃ (Cn \ {αn, α1}) + p11min{c1, d1} (by Equation (2.6))

= P̃ (Cn \ {α1, αn})− P̃ (Cn \ {α1, αn}) + p11 min{c1, d1} (by Lemma 2.2)

= p11 min{c1, d1}, (2.8)

and

P̃ (Cn \ {αn})− P̃ (Cn \ {αn−1, αn, βn}) = P̃ (L1→n)− P̃ (L1→(n−1)). (2.9)

Now, applying Equations (2.7-2.9), we obtain that

n
∑

i=1

(P̃ (Cn \ {αi})− P̃ (Cn \ {αi−1, αi, βi}))

= p11min{c1, d1}+
n

∑

i=2

(P̃ (L1→i)− P̃ (L1→(i−1)))

= p11min{c1, d1}+ P̃ (L1→n)− P̃ (L1→1)

= P̃ (L1→n)

= P̃ (Cn).
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2.4.3 Generalized Computation Method Under Independent

Demand

Given any random demand distribution D, we can integrate the equation presented

in Corollary 2.3 over all instances of D. This allows us to obtain a characterization

for the expected profit of a long chain, which we present next.

Corollary 2.4. Suppose pii ≥ pii+1 and uii = ci ∀1 ≤ i ≤ n, we have

E[P̃ (D,Cn)] =
n

∑

i=1

(

E[P̃ (D,Cn \ {αi})]− E[P̃ (D,Cn \ {αi−1, βi, αi})]
)

.

Unfortunately, the greedy algorithm presented in Section 2.3 cannot be modified

to compute the optimal solution of P̃ (d,Ln) in general. Thus we cannot formulate a

similar algorithm to compute the expected profit for the general case. Nevertheless,

the greedy algorithm does find the optimal solution of P̃ (d,Ln) successfully when its

underlying optimization problem is unweighted, i.e. pij = 1, ∀i, j. That is, a greedy

algorithm, similar Algorithm 1, can determine the optimal solution to the sales of an

open chain, with plant capacity vector c and flexibility capacity vector u.

The modified algorithm allows the same matrix multiplication method from Sec-

tion 2.3 to be applied for computing the expected sales of long chain with inde-

pendent but non-identical product demands, plant capacity c and flexibility capac-

ity u. In this case, similar to the multiplication procedures from Section 2.3, for

each 1 ≤ i ≤ n, E[P̃ (D,Cn \ {αi})] − E[P̃ (D,Cn \ {αi−1, βi, αi})] can be evaluated

by computing q0
∏n−1

k=1 A(k) for n − 1 different matrices A(1),A(2), ...,A(n− 1).

Suppose we scale c, u and D such that all entries of c, u and the support of

D are all integers, and let N denote the largest entry of c. Then, we have that

computing q0
∏n−1

k=1 A(k) requires O(nN2) operations, while computing the sum of

E[P̃ (D,Cn \ {αi})] − E[P̃ (D,Cn \ {αi−1, βi, αi})], for 1 ≤ i ≤ n requires O(n2N2)

operations.
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Finally, we note that given an optimization problem P̃ (d,A ), the optimal flow

on arc (ai, bj), f
∗
ij , can be determined by greedy algorithm, for any (ai, bj) that is

a leaf arc, where either ai or bj is incident to only one arc. Therefore, for any

flexibility structure A such that any component in A contains only one cycle, we

can sequentially allocate the production on the leaf arcs until all remaining arcs form

several disjoint cycles, and then apply Algorithm 1 on each of those cycles. This

implies that for any A where components in A contains only one cycle, we can

compute E[P̃ (D,A )].

2.5 Conclusion

In this chapter, we develop two deterministic results that contribute to the existing

literature on process flexibility. First, in Section 2.1, we derive the supermodularity of

flexible arcs, which states that any two flexible arcs in a long chain are supermodular

with each other. Then, in Section 2.2, using the supermodularity result as a key

lemma, we derive a decomposition for the sales of the Cn as a sum of n quantities,

where each quantity is equal to the difference between the sales of two open chains.

Interestingly, while the decomposition is a deterministic result itself, in Section 2.3,

we use it to establish to an efficient algorithm for computing the expected sales of

the long chain, when demand is stochastic.

Most of the results developed in the chapter can be used to study process flex-

ibility under more general settings. For example, in Section 2.4, we show that the

supermodularity and decomposition of a long chain can be extended to a more general

setting where (i) plants have different capacities; (ii) sales is replaced by linear profit

which depends on a plant-product combination; (iii) each plant-product combination

has a given capacity limit.

Finally, it turns out that the supermodularity and decomposition results not only

lead to an efficient algorithm for computing the expected sales of the long chain, but

also allows us to analyze the long chain rigorously, and thus derive useful qualitative

insights. This is discussed in the next chapter.
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Chapter 3

Effectiveness of Long Chain under

Stochastic Demand

In this chapter, we focus on developing new theory to explains the effectiveness of the

long chain. Utilizing the the two main results from Chapter 2, supermodularity and

decomposition, we derive several theoretical properties to understand the strength

and limitations of the long chain. In Section 3.1, we illustrate the importance of

“closing the chain”, by proving that as a long chain is constructed, the incremental

benefits of adding flexibilities are increasing and the largest benefit is always achieved

when the chain is closed by adding the last arc to the system. In Section 3.2, we prove

that the gap between the fill rate of full flexibility and that of the long chain increases

with system size, thus implying that the effectiveness of the long chain relative to full

flexibility increases as the number of products decreases. Finally, in Section 3.3, we

derive a risk-pooling result implying that the fill rate of a long chain increases with

the number of products, but this increase converges to zero exponentially fast.

Throughout the chapter, we assume the system is balanced, that is, the number of

plants is equal to the number of products and ci = 1 for 1 ≤ i ≤ n. In Section 3.1, we

assume the stochastic demand vector, D, to be exchangeable. In Sections 3.2-3.3, we

further restrict D to be a vector of IID entries, where each entry Di has distribution

D. For the sake of simplicity, we will sometimes use [A ] in place of E[P (D,A )],

when there is no ambiguity on the distribution of D.
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3.1 Incremental Benefits of Constructing Long Chain

This section is motivated by an observation that has been made in the literature

( [Graves, 2008] and [Hopp et al., 2004]) regarding the expected sales of the long

chain for a balanced system when products demands are IID. The observation states

that if one starts with a dedicated structure and adds arcs to create the long chain,

the incremental benefits, or the change in expected sales, associated with each added

arc is increasing.

To illustrate this observation, consider an example with 6 plants and 6 products,

where the demand for each product is equal to either 0.8, 1 or 1.2 with equal proba-

bilities, and the capacity of each plant is 1. Then, we start with a dedicated flexibility

structure (the dashed arcs in Figure 3-1(a)), and add arcs (1, 2), (2, 3), ..., (5, 6) and

(6, 1) one at a time, until we complete the long chain. Each time we add such an

arc, we determine the expected sales associated with the resulting structure at that

time. Figure 3-1(b) displays the expected sales of the flexibility structures at dif-

ferent stages, as well as the incremental benefits when a new arc is added. As you

can see, the incremental benefits increase as we add more arcs. The biggest impact,

surprisingly, occurs when we add the last arc and close the long chain.

66

55

33

44

11

22

Plants Products

(a) Flexibility Structure (b) Incremental Benefits of Creating Long-Chain

Figure 3-1: The increase in Incremental Benefit

To formally prove this observation, we apply the supermodularity result we derived

from Section 2.1. First, integrating over every demand instances over both side of the
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equation in Theorem 2.1, we get,

Corollary 3.1. For any flexible arcs α, β in A ⊂ Cn, E[Pα,β(uα, uβ,D,A )] is

supermodular in uα and uβ for any random demand D.

Next we apply Corollary 3.1 to formally prove the observation that the incremental

benefits associated with adding arcs to the long chain is increasing. Consider the

following sequence of flexibility structures: L n
1 ,L

n
2 ,L

n
3 , ...,L

n
n ,Cn, where we define

L n
1 = Dn and L n

k = Lk ∪ {(i, i)|i = k + 1, ..., n}. In words, L n
k is simply the

open chain from plant 1 to product k plus the dedicated arcs connecting plants i to

products i for all k < i ≤ n. Finally, recall that Cn is the long chain of size n.

In the example of [Graves, 2008] and the table in Figure 3-1 of this chapter, one

starts at L n
1 and add arcs sequentially to create L n

2 , ..,L
n
n ,Cn. Now, we apply

the supermodularity result to show that the incremental benefit, [L n
k ] − [L n

k−1], is

nondecreasing with k.

Theorem 3.1. For any balanced system of size n under exchangeable demand, we

have

[L n
2 ]− [L n

1 ] ≤ [L n
3 ]− [L n

2 ] ≤ ... ≤ [L n
n ]− [L n

n−1] ≤ [Cn]− [L n
n ].

Proof. Proof of Theorem 3.1 Fix any 1 ≤ k ≤ n − 1. Let α = (1, 2), β = (k, k + 1).

By Corollary 3.1, we have

E[Pα,β(1, 1,D,L n
k+1)] + E[Pα,β(0, 0,D,L n

k+1)]

≥E[Pα,β(1, 0,D,L n
k+1)] + E[Pα,β(0, 1,D,L n

k+1)]
(3.1)

Setting uα = 0 is equivalent to deleting arc α in the optimization problem asso-

ciated with Pα,β(uα, uβ,d,A ) while setting uα = 1 implies that this arc exists in the

same model and its capacity is redundant. As a result, we have that,

E[Pα,β(1, 1,D,L n
k+1)] = E[P (D,L n

k+1)] = [L n
k+1], (3.2)

and E[Pα,β(1, 0,D,L n
k+1)] = E[P (D,L n

k )] = [L n
k ]. (3.3)
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Let Dσ = [D2, D3, ..., Dn, D1], then

E[Pα,β(0, 0,D,L n
k+1)] = E[P (Dσ,L

n
k−1)] = E[P (D,L n

k−1)] = [L n
k−1], (3.4)

and E[Pα,β(0, 1,D,L n
k+1)] = E[P (Dσ,L

n
k )] = E[P (D,L n

k )] = [L n
k ], (3.5)

where the second to last equality in (3.4) and (3.5) holds since the random vector

D is exchangeable. Substituting Equations (3.2-3.5) into Inequality (3.1), we obtain

that [L n
k+1]− [L n

k ] ≥ [L n
k ]− [L n

k−1], for k = 2, .., n− 1.

Finally, to show [L n
n ] − [L n

n−1] ≤ [Cn] − [L n
n ], let α = (1, 2), β = (n, 1) and let

Dσ = [D2, D3, ..., Dn, D1]. Then

E[Pα,β(1, 1,D,Cn)] = [Cn],

E[Pα,β(1, 0,D,Cn)] = [L n
n ],

E[Pα,β(0, 0,D,Cn)] = E[P (Dσ,L
n
n−1)] = [L n

n−1],

and E[Pα,β(0, 1,D,Cn)] = E[P (Dσ,L
n
n )] = [L n

n ].

Since by Corollary 3.1,

E[Pα,β(1, 1,D,Cn)] + E[Pα,β(0, 0,D,Cn)] ≥ E[Pα,β(1, 0,D,Cn)] + E[Pα,β(0, 1,D,Cn)],

we have that [Cn]− [L n
n ] ≥ [L n

n ]− [L n
n−1]. This completes the proof.

Note that any IID demand D must also be exchangeable, but not all exchangeable

demands are IID. Thus, the statement of Theorem 3.1 is in fact more general than

the observation we mentioned at the beginning of he section.

Interestingly, observe that the proof of Theorem 3.1 requires the application of

the supermodularity result (Theorem 2.1), which holds deterministically for any fixed

demand instance. By contrast, Theorem 3.1 holds only stochastically under exchange-

able demand but does not hold for any fixed demand instance.
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3.1.1 Optimality

While the optimality of the long chain among all 2-flexibility structures has been long

observed (see [Jordan and Graves, 1995]), the observation has not been theoretically

justified. With Theorem 2.3 and 3.1, we can now prove the optimality of the long

chain under exchangeable demand.

Corollary 3.2. Consider a balanced system of size n under some exchangeable de-

mand D. Let F2 be the set of all 2-flexibility structures of the system. That is, F2 is

the set of all flexibility structures where each plant node and each product node are

incident to exactly two arcs. Then, we have

[Cn] = arg max
A ∈F2

[A ].

In words, the long chain maximizes expected sales among all 2-flexibility structures in

the system.

Proof. Consider a 2-flexibility structure A ∈ F2. A must consists of several closed

chains (i.e. induced subgraphs in A which form undirected cycles) denoted by

SC1, SC2, .., SCk. Let ni be the number of products and plants in the closed chain

SCi. Since the system size is n,
∑k

i=1 ni = n. Now, by Theorem 2.3, we have

[A ] =

k
∑

i=1

ni([Lni
]− [Lni−1])

=

k
∑

i=1

ni([L
n
ni
]− [L n

ni−1] + E[min{1, D1}]) (By definition of L n
k )

≤
k

∑

i=1

ni([L
n
n ]− [L n

n−1] + E[min{1, D1}]) (by Theorem 3.1)

=
k

∑

i=1

ni([Ln]− [Ln−1])

= n([Ln]− [Ln−1]) = [Cn].
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3.2 Long Chain vs. Full Flexibility

In Figure 2-4, it was observed that the gap between the fill rates of full flexibility and

that of the long chain, [Fn]
n
− [Cn]

n
, is increasing, while the ratio, [Cn]

[Fn]
is decreasing. In

this section, we will formally prove the first part of the observation, and discuss some

partial results related to the second part. We start by defining two random walks in

Section 3.2.1. These random walks are applied to analyze the difference between the

fill rates of the long chain and full flexibility in Section 3.2.2, as well as the ratio of

the fill rate of long chain to that of full flexibility in Section 3.2.3.

3.2.1 Random Walks

We define two random walks, Wi and W̃i, as follows:

Definition 3.1. Let W0 = W̃0 = 0. For i ≥ 1, define

Wi =



















0 if Wi−1 + 1−Di < 0

1 if Wi−1 + 1−Di > 1

Wi−1 + 1−Di otherwise

W̃i =







0 if W̃i−1 + 1−Di < 0

W̃i−1 + 1−Di otherwise

Wi and W̃i are generalized random walks with random steps 1−D1, .., 1−Di and

different sets of reflecting boundaries. Wi has reflecting boundaries of 0 and 1, while

W̃i has a reflecting boundary only at 0. For any fixed vector d that is an instance

of D, define Wi(d) (and W̃i(d)) to be the instance of Wi (and W̃i) corresponding

to d. Figure 3-2 illustrate an example of Wi(d) and W̃i(d), with i = 6 and d =

[0.6, 0.2, 1.2, 1.9, 1.4, 0.5].

The next lemma states several simple observations regarding Wi(d) and W̃i(d) for

any fixed vector d.
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Figure 3-2: Illustration of Wi(d) and W̃i(d)

Lemma 3.1. For any fixed vector d and i ≥ j ≥ 1,

Wi(d) ≤ W̃i(d), (3.6)

Wi−j(d
j) ≤Wi(d), (3.7)

and W̃i−j(d
j) ≤ W̃i(d), (3.8)

where dj = [dj , dj+1, ...].

Proof. Since W̃i has no reflecting boundary at 1, Wi(d) ≤ W̃i(d). For Equation (3.7),

observe that Wi−j(d
j) has the same step lengths as the last i−j steps of Wi(d). Since

Wj(d), the position of the random walkWi(d) after j steps, is greater or equal to 0, we

have that Wi−j(d
j) ≤Wi(d). Similarly, we can also show that W̃i−j(d

j) ≤ W̃i(d).

The rest of this subsection establishes the connections between these random walks

and sales (and expected sales) of the long chain and full flexibility. These connections

would be used for the comparisons between the long chain and full flexibility in Section

3.2.2.

Similar to Section 2.2, in the rest of this subsection, when some integer k appears

in a statement, we will in fact be referring to some i ∈ {1, ..n} congruent to k modulo

n. First, we show the relationship between P (d,Cn) and random walks on d.
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Lemma 3.2. Let di|n = [di, di+1, ..., dn, d1, ..., di−1], then

P (d,Cn) =
n

∑

i=1

min{1 +Wn−1(d
i|n), di−1}

Proof. For each 1 ≤ i ≤ n, it is not difficult to check that min{1 +Wn−1(d
i|n), di−1}

is equal to the quantity f ∗
n,n + f ∗

n−1,n returned by Algorithm 1 on P (di|n,Ln). By

Algorithm 1’s greedy property, f ∗
n,n+f ∗

n−1,n = P (di|n,Ln)−P (di|n,Ln−1), which im-

plies min{1+Wn−1(d
i|n), di−1} = P (di|n,Ln)−P (di|n,Ln−1). Finally, by definition,

P (di|n,Ln) = P (d,Cn \ {(i−1, i)}) and P (di|n,Ln−1) = P (d,Cn \ {(i−2, i−1), (i−
1, i− 1), (i− 1, i)})) and hence

min{1+Wn−1(d
i|n), di−1} = P (d,Cn\{(i−1, i)})−P (d,Cn\{(i−2, i−1), (i−1, i−1), (i−1, i)}).

(3.9)

Substitute Equation (3.9) to Theorem 2.2, and we have

P (d,Cn) =
n

∑

i=1

min{1 +Wn−1(d
i|n), di−1}.

We note that a similar observation to Lemma 3.2 was stated in [Chou et al.,

2010c]. In particular, Chou et.al observed that min{1 +Wn−1(d), dn} = P (d,Ln)−
P (d,Ln−1). Our Lemma 3.2 goes a step further by applying Theorem 2.2.

Establishing the relationships between P (d,Fn) and the random walks on d is

more difficult. We do this by proving a lemma which shows that the sales associated

with Fn is equal to the sales of Cn under a new demand τ(d), which is a linear

transformation of d. Specifically, we define τ(di) =
di+(n−1)

n
, for i = 1, 2, ..., n.

Lemma 3.3. For any demand instance d,

P (τ(d),Cn) = P (τ(d),Fn),

where τ(di) =
di+(n−1)

n
, for i = 1, 2, ..., n.
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Proof. By duality of linear programs,

P (τ(d),Cn) = min
∑

1≤i≤n

pi +
∑

1≤j≤n

qjτ(dj) (VC)

s.t. pi + qj ≥ 1, ∀(i, j) ∈ Cn

pi ≥ 0, qj ≥ 0, ∀1 ≤ i ≤ n, 1 ≤ j ≤ n

p,q ∈ Rn.

The linear program denoted by (VC) is an LP-relaxation of a min-weight bipartite

vertex cover problem. Since the LP-relaxation of min-weight bipartite vertex cover is

tight, it has an optimal solution (p∗,q∗) where entries in p∗ and q∗ are either 0 or 1.

Let S = {i|p∗i = 0} and S ′ = {j|q∗j = 1}. Note that N(S) ⊆ S ′ where N(S) is the set

of neighbors of S in Cn. First, suppose S 6= ∅, and S ′ 6= {1, 2, ..., n}. Then, we must

have |S ′| − 1 ≥ |N(S)| − 1 ≥ |S|. Let p0i = 1, q0j = 0 for all 1 ≤ i, j ≤ n. Clearly

(p0,q0) is a feasible solution of (VC). Also as |S ′| − 1 ≥ |S|,

n ≤ (n− |S|) + (|S ′| − 1)

< (n− |S|) +
∑

j∈S′

(n− 1)

n
(since |S ′| < n)

≤
∑

1≤i≤n

p∗i +
∑

j∈S′

dj + (n− 1)

n
(since dj ≥ 0)

=
∑

1≤i≤n

p∗i +
∑

1≤j≤n

τ(dj)q
∗
j .

But
∑

1≤i≤n p
0
i +

∑

1≤j≤n τ(dj)q
0
j = n, and this contradicts the optimality of (p∗,q∗).

Thus, one must have that either S = ∅ or S ′ = {1, 2, ..., n}. Therefore, P (τ(d),Cn) =

min{n,∑1≤j≤n τ(dj)} = P (τ(d),Fn).

Now, we can prove the lemma which establishes the relations between P (d,Fn)

and W̃ .
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Lemma 3.4. Let di|n = [di, di+1, ..., dn, d1, ..., di−1], then

P (d,Fn) =
n

∑

i=1

min{1 + W̃n−1(d
i|n), di−1}

Proof. By Lemma 3.2 and 3.3, P (τ(d),Fn) =
∑n

i=1min{1+Wn−1(τ(d
i|n)), τ(di−1)}.

Note that for any 1 ≤ j ≤ n− 1, and 1 ≤ i ≤ n,

Wj(τ(d
i|n)) ≤

∑

i≤k≤i+j

max{0, 1− dk + (n− 1)

n
} ≤ (n− 1) · 1

n
< 1

This implies that Wj(τ(d
i|n)) never touches the reflecting boundary at 1. Hence,

Wn−1(τ(d
i|n)) = W̃n−1(τ(d

i|n)) ∀1 ≤ i ≤ n. (3.10)

Since 1− τ(dk) =
1
n
(1− dk), for any 1 ≤ k ≤ n, we have

W̃j(τ(d
i|n)) =

1

n
W̃j(d

i|n) ∀1 ≤ j ≤ n− 1. (3.11)

Thus,

P (τ(d),Fn) =
n

∑

i=1

min{1 +Wn−1(τ(d
i|n)), τ(di−1)}

=

n
∑

i=1

min{1 + W̃n−1(τ(d
i|n)), τ(di−1)} (By Equation (3.10))

=

n
∑

i=1

min{1 + W̃n−1(d
i|n)

n
,
di−1 + n− 1

n
} (By Equation (3.11))

=
n

∑

i=1

(
n− 1

n
+min{1 + W̃n−1(d

i|n)

n
,
di−1

n
})

= n− 1 +
1

n

n
∑

i=1

min{1 + W̃n−1(d
i|n), di−1}.
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On the other hand,

P (τ(d),Fn) = min{n,
∑

1≤i≤n

di + n− 1

n
}

= n− 1 +
1

n
min{n,

∑

1≤i≤n

di}

= n− 1 +
1

n
P (d,Fn)

Therefore, we have that

n− 1 +
1

n

n
∑

i=1

min{1 + W̃n−1(d
i|n), di−1}) = n− 1 +

1

n
P (d,Fn)

which implies P (d,Fn) =
∑n

i=1min{1 + W̃n−1(d
i|n), di−1}).

Integrating the equations in Lemma 3.2 and Lemma 3.4 over all instances in D,

we obtain the lemma below, which relates the expectation of the two random walks

with the expected sales of the long chain and that of full flexibility.

Lemma 3.5. Under IID demand, we have

[Cn]

n
= E[min{1 +Wn−1(D), D}]

[Fn]

n
= E[min{1 + W̃n−1(D), D}].

Proof. Since D is IID, we have that for any 1 ≤ i ≤ n,

E[min{1 +Wn−1(D
i|n), Di−1}] = E[min{1 +Wn−1(D), D}]

E[min{1 + W̃n−1(D
i|n), Di−1}] = E[min{1 + W̃n−1(D), D}].

After integrating the equations in Lemma 3.2 and Lemma 3.4 over D, we get

[Cn] = nE[min{1 +Wn−1(D), D}]

[Fn] = nE[min{1 + W̃n−1(D), D}].
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3.2.2 Difference in Fill Rates

With Lemma 3.5 at hand, we now prove that the quantity [Fn]
n
− [Cn]

n
is nondecreasing

with n.

Theorem 3.2. For any integer n ≥ 2 and IID demand,

[Fn]

n
− [Cn]

n
≤ [Fn+1]

n+ 1
− [Cn+1]

n + 1
≤ min{1,E[D]} − γ,

where γ = limk→∞
[Ck]
k
.

Proof. First, we show that for any demand instance d of D, we have,

min{1 + W̃n−1(d
2), dn+1} −min{1 +Wn−1(d

2), dn+1}

≤min{1 + W̃n(d), dn+1} −min{1 +Wn(d), dn+1},
(3.12)

where d2 = [d2, d3, ...]. One can think of Wn−1(d
2) (and W̃n−1(d

2)) as the walk which

started one time unit later than Wn(d) (and W̃n(d)). To prove Inequality (3.12),

consider the following two cases.

Case 1: Wi(d
2) = 1 for some 1 ≤ i ≤ n − 1. Then Wi(d

2) = Wi+1(d) = 1,

and by the definition of W , we must have that Wn−1(d
2) = Wn(d). By Lemma 3.1,

W̃n−1(d
2) ≤ W̃n(d), and therefore we have

min{1 +Wn−1(d
2), dn+1} = min{1 +Wn(d), dn+1}

min{1 + W̃n−1(d
2), dn+1} ≤ min{1 + W̃n(d), dn+1},

which implies that Inequality (3.12) holds.

Case 2: Wi(d
2) < 1 for all 1 ≤ i ≤ n − 1. By definition of W and W̃ , we have
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that Wn−1(d
2) = W̃n−1(d

2). By Lemma 3.1, Wn(d) ≤ W̃n(d), and therefore we have

min{1 +Wn−1(d
2), dn+1} = min{1 + W̃n−1(d), dn+1}

min{1 +Wn(d), dn+1} ≤ min{1 + W̃n(d), dn+1},

which again implies that Inequality (3.12) holds.

Since demand is IID, after integrating over D for both sides of Inequality (3.12),

we get

E[min{1 + W̃n−1(D), Dn}]− E[min{1 +Wn−1(D), Dn}]

≤ E[min{1 + W̃n(D), Dn+1}]− E[min{1 +Wn(D), Dn+1}].

Applying Lemma 3.5, we have that

[Fn]

n
− [Cn]

n
≤ [Fn+1]

n + 1
− [Cn+1]

n+ 1
, for all n ≥ 2. (3.13)

Finally, Equation (3.13) implies that

[Fn]

n
− [Cn]

n
≤ lim

k→∞
(
[Fk]

k
− [Ck]

k
)

= lim
k→∞

(E[min{
∑k

i=1Di

k
, 1}])− γ

= min{E[D], 1} − γ,

where the last equality holds because of the weak law of large numbers.

Note that the fill rate of Cn (and Fn) is equal to
[Cn]
nE[D]

(and [Fn]
nE[D]

). Thus, Theorem

3.2 implies that the smaller the system size, the smaller the gap between the fill rate

of full flexibility and that of the long chain. This suggests that the long chain is more

effective relative to full flexibility for smaller size systems. Moreover, Theorem 3.2

can be used to bound the gap between the fill rate of full flexibility and that of the

long chain for systems of any size. For this purpose, we point out that [Chou et al.,

2010c] shows that for many IID demand with E[D] = 1, γ is close to one, implying
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that for any size system, the expected sales of the long chain is close to that of full

flexibility.

For example, when D is normal with mean 1 and standard deviation of 0.33.

Chou et al. [Chou et al., 2010c] showed that in this case γ = 0.96. Therefore, for this

demand distribution, we have that the gap between the fill rate of full flexibility and

that of the long chain for systems of any size is at most 4%.

3.2.3 Performance Ratio

The difference between the fill rate of the long chain and that of full flexibility is

only one metric to evaluate the effectiveness of the long chain. A different metric,

discussed in [Chou et al., 2008] and [Chou et al., 2010c], is to consider the ratio of

the expected sales of long chain to that of full flexibility. Partial results related to

the ratio are discussed next.

Applying the same argument as in the proof of Theorem 3.2, one can show that

min{1 +Wn−1(d
2), dn+1}

min{1 + W̃n−1(d2), dn+1}
≥ min{1 +Wn(d), dn+1}

min{1 + W̃n(d), dn+1}
.

Unfortunately, one cannot integrate this inequality over D to obtain [Cn]
[Fn]
≥ [Cn+1]

[Fn+1]
, as

expectation does not preserve over multiplication and division. Indeed, it is not known

whether [Cn]
[Fn]
≥ [Cn+1]

[Fn+1]
holds, although this inequality has been observed empirically

in [Chou et al., 2008] and in this chapter, see Figure 2-4. Note that [Cn]
[Fn]
≥ [Cn+1]

[Fn+1]
for

all n ≥ 2 implies Theorem 3.2 and hence is a stronger statement.

Of course, if [Cn]
[Fn]
≥ [Cn+1]

[Fn+1]
holds, then it follows that

[Cn]

[Fn]
≥ lim

k→∞

[Ck]/k

[Fk]/k
= lim

k→∞

γ

min{E[D], 1} , ∀n ≥ 2. (3.14)

where as before γ = limk→∞
[Ck]
k
, and limk→∞

[Fk ]
k

= min{E[D], 1} by the weak law of

large numbers. This would provide a lower-bound on the ratio of the expected sales

of the long chain to that of full flexibility for any system size.

Again, using the example from [Chou et al., 2010c], γ = 0.96 when D is normal
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with mean 1 and standard deviation of 0.33. Thus, if Inequality (3.14) holds, it

would indicate that the expected sales of the long chain is at least 96% of that of full

flexibility for any size system.

While we do not have a proof for [Cn]
[Fn]
≥ γ when E[D] = 1, we provide a lower-

bound for [Cn]
[Fn]

that is almost equal to γ.

Corollary 3.3. Suppose demand is IID and E[D] = 1, then

[Cn]

[Fn]
≥ 1− (1− γ)n

[Fn]

where γ = limk→∞
[Ck]
k
.

To explain the power of the lower-bound in Corollary 3.3, let δn = n
[Fn]
− 1 which

implies that 1 − (1−γ)n
[Fn]

= γ − δn(1 − γ). It can be shown that n
[Fn]

is non-increasing

with n (by applying for example Lemma 3.5), and hence, δn is non-increasing. Thus,

if δk ≈ 0 for some small integer k, then Corollary 3.3 provides a lower-bound for [Cn]
[Fn]

that is close to γ for all n ≥ k. Indeed, for many distributions with E[D] = 1, δk ≈ 0

for small k. For example, suppose the distribution of D is normal with mean 1 and

standard deviation 0.33, then 3
[F3]

= 1.08 which implies δ3 = 0.08 and [Chou et al.,

2010c] shows that γ = 0.96. Applying Corollary 3.3, we have that

[Cn]

[Fn]
≥ γ − δ3(1− γ) = 0.96− 0.04× 0.08 = 0.9568, ∀n ≥ 3.

That is, when demand is normal with mean 1 and standard deviation 0.33, the

long chain of any size greater than 2 achieves at least 95.68% of the expected sales of

full flexibility. Next, we provide a proof for Corollary 3.3.

Proof of Corollary 3.3. By Theorem 3.2,

[Fi]

i
− [Ci]

i
≤ [Fi+1]

i+ 1
− [Ci+1]

i+ 1
∀i ≥ 1 (3.15)

=⇒ [Fi]

i
− [Fi+1]

i+ 1
≤ [Ci]

i
− [Ci+1]

i+ 1
∀i ≥ 1 (3.16)
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Now, add Inequality (3.16) for all i ≥ n, we have that

[Fn]

n
− lim

k→∞

[Fk]

k
≤ [Cn]

n
− lim

k→∞

[Ck]

k
. (3.17)

But

lim
k→∞

[Fk]

k
= 1, lim

k→∞

[Ck]

k
= γ,

and substituting those into Inequality (3.17), we have

[Fn]

n
− 1 ≤ [Cn]

n
− γ

=⇒ [Cn]

[Fn]
≥ 1− (1− γ)n

[Fn]
.

3.3 Risk Pooling of Long Chain

In this section we focus on the per product expected sales (and fill rate, which is

linearly proportion to the per product expected sales) of the long chain as a function

of system size. We start by showing that [Cn]
n

is nondecreasing with n under IID

demand.

Theorem 3.3. Under IID demand D, we have [Cn]
n
≤ [Cn+1]

n+1
, for any integer n ≥ 2.

Proof. Since D is IID, the first n (and n+1) entries in D is exchangeable for balanced

system of size n (and n + 1). Thus, by Theorem 3.1, we have that [L n
n ]− [L n

n−1] ≤
[L n+1

n+1 ] − [L n+1
n ] which is equivalent to [Ln] − [Ln−1] − E[min{D, 1}] ≤ [Ln+1] −

[Ln] − E[min{D, 1}] and hence implies [Ln] − [Ln−1] ≤ [Ln+1] − [Ln]. Applying

Theorem 2.3 completes the proof.

The theorem thus states that [Cn]
n
, as well as the fill rate associated with a long

chain, increases with the number of products, n. This phenomenon is analogous to

the classical “risk-pooling” effect associated with demand aggregation, except that

here we aggregate across capacities.
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3.3.1 Exponential Convergence

Interestingly, Figure 2-4 not only suggests that [Cn]
n

is nondecreasing with n, but

also converges to a constant very quickly. This is shown in the next theorem, where

we prove that the convergence rate is exponential for arbitrary IID, non-degenerate

demands.

Theorem 3.4. When demands are IID and non-degenerate, there exist constants

c < 0 and K > 0 such that

[Cn+1]

n + 1
− [Cn]

n
≤ Kecn,

for any n ≥ 2.

Proof. From Lemma 3.5 we have, [Cn]
n

= E[min{1 + Wn−1(D), Dn}]. Recall that

D2 = [D2, D3, ...]. We have,

[Cn+1]

n+ 1
− [Cn]

n
= E[min{1 +Wn(D), Dn+1}]− E[min{1 +Wn−1(D

2), Dn+1}]

= E[min{1 +Wn(D), Dn+1} −min{1 +Wn−1(D
2), Dn+1}]

≤ P[Wn(D) 6= Wn−1(D
2)],

where the last inequality is true because min{1+Wn(D), Dn+1}−min{1+Wn−1(D
2), Dn+1}

never exceeds 1. Note that for any particular random instance d, Wn(d) = Wn−1(d
2)

if Wi(d) = 0 for some 1 ≤ i ≤ n or Wi(d
2) = 1 for some 1 ≤ i ≤ n− 1. Thus,

P[Wn(D) 6= Wn−1(D
2)] ≤ P[Wi(D) > 0,Wi(D

2) < 1, ∀1 ≤ i ≤ n].

Therefore, we have

[Cn+1]

n + 1
− [Cn]

n
≤ P[Wi(D) > 0,Wi(D

2) < 1, ∀1 ≤ i ≤ n].

Now, sinceD is non-degenerate and IID, there exists some t such that p = P[
∑t

j=1(Dj−
1) ≥ 1] > 0. If some instance d satisfies the condition Wi(d) > 0,Wi(d

2) < 1, ∀1 ≤
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i ≤ n, then we must have that
∑kt+1

j=2+(k−1)t(dj−1) < 1 for any 1 ≤ k ≤ ⌊n−1
t
⌋. Hence,

[Cn+1]

n + 1
− [Cn]

n

≤ P[Wi(D) > 0,Wi(D
2) < 1, ∀1 ≤ i ≤ n]

≤ P[

kt+1
∑

j=2+(k−1)t

(Dj − 1) < 1, ∀1 ≤ k ≤ ⌊n− 1

t
⌋]

= (1− p)⌊
n−1

t
⌋

≤ Kecn,

for some constants K > 0 and c < 0.

Figure 2-4 and Theorem 3.4 show that [Cn]
n
≈ [Cn+t]

n+t
for any t provided that n is

large. Hence, it implies that in a system with a large number of plants and products,

it is not necessary to have a long chain that connects all the plants and products. A

collection of several chains, each of which with a large number of plants and products

can be as effective.

Finally, we note that Theorem 3.4 can be applied to show that [Cn]
[Fn]
≥ [Cn+1]

[Fn+1]
when

n is large and D has mean 1 and finite variance. To see this, one needs to apply the

central limit theorem to show that [Fn+1)]
n+1

− [Fn]
n
≥ K1(

1√
n
− 1√

n+1
) for some constant

K1 > 0. Then, we have that

[Cn+1]

[Fn+1]
=

[Cn+1]

n+ 1
/
[Fn+1]

n+ 1

≤ (
[Cn]

n
+Kecn)/(

[Fn]

n
+K1(

1√
n
− 1√

n+ 1
))

since Kecn ≪ K1(
1√
n
− 1√

n+1
) for large n, ≤ (

[Cn]

n
)/(

[Fn]

n
) for large n,

=
[Cn]

[Fn]
for large n.
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3.4 Conclusion

This chapter provides several theoretical explanations on the effectiveness of the long

chain, and through the theoretical justifications, refines some of the insights for de-

signing sparse flexibility structures. Applying the supermodularity and the decom-

position of the long chain, we derive four important results: First, we prove that

under exchangeable demand, the incremental benefit, i.e. the increase in expected

sales, is always increasing as the long chain is constructed, thus providing theoret-

ical justification to the idea of “closing the chain”, a concept that was empirically

observed by authors such as [Hopp et al., 2004] and [Graves, 2008]. Second, we show

that under exchangeable demand, the long chain is optimal among all 2-flexibility

systems, a property of the long chain that has been widely assumed but, to the best

of our knowledge, never rigorously proven before. Third, we prove that the difference

between the fill rate of full flexibility design and the fill rate of the long chain is

increasing with the number of products. This suggests that, relative to full flexibility

design, the long chain is more effective for smaller size systems. Finally, we identify a

risk pooling result where the fill rate of a long chain increases with system size. This

increase in fill rate, however, is proved to converge to zero exponentially quickly. The

last part of our analysis suggests that while the long chain is the optimal 2-flexibility

design, a design with several closed chains, where each chain connects a substantial

number of plants and products, performs just as well as the long chain.

It is appropriate to point out an important limitation of our model–we focus on a

balanced system where the number of plants equals the number of products. Many

real world systems do not satisfy this assumption, and typically, the number of prod-

ucts is much larger than the number of plants. One way to address this limitation

is to apply the clustering method from [Jordan and Graves, 1995] to create an ap-

proximately balanced system and then follow the insights and guidelines developed

here. Thus, the design principles emphasized in this chapter are also important for

unbalanced systems as well. This includes the importance of “closing the chain”,

and that a design with several closed chains, where each chain connects a substantial
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number of plants and products, performs well for large size systems.

An alternative method for studying flexibility structures under an unbalanced

system is to apply a worst-case analysis. That is, instead of assuming demand to be

stochastic, we assume all demand instances lie in an uncertainty set, and study the

sales of the worst-case demand within the uncertainty set. This method is discussed

in the next chapter.
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Chapter 4

Worst-case Analysis of Process

Flexibility

In this chapter, we take a different approach by studying process flexibility structures

from a worst-case, also referred to as robust, point of view. That is, we assume that

any demand instance must belong to some uncertainty set, and study the worst-case

performance of a given structure among all the demand instances in this uncertainty

set. We will show that by analyzing flexibility structures from a worst-case point of

view, we can gain additional insights on the effectiveness of sparse structures. This

motivates a new method for generating flexibility structures that are effective from

both worst-case and average-case performance measures.

To start the worst-case analysis, we first introduce a class of worst-case perfor-

mance measures for flexibility structures which we call Γ. This class includes the

minimum demand satisfied by the structure; the minimum ratio of the demand satis-

fied by the structure and that of full flexibility; and, the largest absolute gap between

the demand satisfied by full flexibility and that of the specific structure under consid-

eration. In what follows, we refer to these measures as the robust measures associated

with a given structure. In Section 4.2, we introduce the plant cover index, an index

defined by a corresponding constrained bipartite vertex cover problem. In the same

section, we then apply the plant cover index to provide conditions under which one

flexible structure is more robust than another among all uncertainty sets and for all
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measures in Γ. In Section 4.3, we show that an important flexibility structure called

the long chain compares favorably in the robust measures to a class of sparse flexibil-

ity structures. In Section 4.4, we apply the theory developed in this chapter to design

sparse flexibility structures which work well under both, worst-case and average-case

performance measures. A numerical study underscores the power of our heuristic. In

Section 4.5, we extend the results in Section 4.2.

4.1 Worst-case Performance Measures

We define a performance measure function f(·) to be a function that maps a demand

vector d ∈ Rn and a flexibility structure A to a real number. For example, the

function P (·), defined as the sales of a flexibility structure given a demand instance d

in Section 1.4, is a performance measure function. A robust measure (or worst-case

measure), R(·), is a function which maps a given flexibility structure A and a set

S ⊆ R+n

to a real number. We refer to S as the uncertainty set and throughout this

chapter, we assume S is always non-negative and compact. Each robust measure R

has a corresponding performance measure function, fR. Finally, for a given structure

A and a uncertainty set S, define

R(A , S) := min
d∈S

fR(d,A ).

We assume that fR(d,A ) is always continuous in d. This assumption guarantees

that R(·) is well-defined. Next, we define three different robust measures, Rs, Rr and

Rd with the following performance measure functions:

fRs

(d,A ) := P (d,A ), ∀d ∈ Rn

fRr

(d,A ) :=
P (d,A )

P (d,F )
, ∀d ∈ Rn \ {0}

fRd

(d,A ) := P (d,A )− P (d,F ), ∀d ∈ Rn

Given an uncertainty set S, observe that Rs is the smallest possible sales of structure
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A ; Rr is the smallest possible ratio of the demand satisfied by A to that of demand

satisfied by full flexibility; and finally, Rd is the most negative gap between demand

satisfied by full flexibility and demand satisfied by A . To ensure that fRr

(d,A ) is

continuous in d, we define fRr

(0,A ) := 1.

For any vector d ∈ Rn, define dσ := [dσ(1), ..., dσ(n)]
T where σ is a permutation of

integers 1 to n. Moreover, define Perm(d) := {dσ|for all σ that permutes 1 to n}.

We say that a performance measure function f(·) is permutation consistent with

P (·) if the following holds: fix any d ∈ Rn, then for any d1,d2 ∈ Perm(d), and for

any structures A1, A2,

f(d1,A1) > f(d2,A2) ⇐⇒ P (d1,A1) > P (d2,A2).

We claim that fRs

(·), fRr

(·) and fRd

(·) are all permutation consistent with P (·).
By definition, this is true for fRs

. It is also true for fRr

and fRd

by observing that

P (d1,F ) = P (d2,F ), for any d1,d2 ∈ Perm(d).

Define Γ to be the set of all robust measures with performance measure functions

that are permutation consistent with P (·). Note that Γ contains a large number of

interesting robust measures. In particular, the three robust measures we introduced,

Rs, Rr and Rd are all in Γ.

Let mini(d) to be the i-th smallest element in the set {d1, d2, ..., dn}. For any

uncertainty set S, we say that S is symmetric if for any d ∈ S, dσ ∈ S for any

permutation σ. Throughout the chapter, we will assume that all the uncertainty sets

are symmetric unless stated otherwise. This assumption implies that the products

are homogenous and the worst-case performance will not change if the products are

relabeled. In particular, if demands of products is an exchangeable random vector,

i.e., the random demand vector D has the same distribution as Dσ, then the support

of D is a symmetric set.

For flexibility structures A1 and A2, we say that A1 is more robust than A2 if for

any R ∈ Γ and any symmetric set S, we have R(A1, S) ≥ R(A2, S). Moreover,

we say A1 is strictly more robust than A2 if A1 is more robust than A2, and there
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exists some symmetric set S and R ∈ Γ that R(A1, S) > R(A2, S).

4.2 Plant Cover Index

First, we start the section by defining the plant cover index at k for flexibility structure

A . This index is defined by the minimum plant capacities required to create a vertex

cover on A , given that vertex cover contains exactly k product vertices. This index,

denoted by δk(A ), is the objective value of the following integer program.

δk(A ) := min

m
∑

i=1

cipi

s.t.

n
∑

j=1

qj = k,

pi + qj ≥ 1, ∀(i, j) ∈ I(A )

p ∈ {0, 1}m,q ∈ {0, 1}n.

Note that it is straightforward to check that δ0(A ) =
∑m

i=1 ci and δn(A ) = 0.

Observe also that the following holds.

Remark 4.1.

δk(A ) = min
S⊆B,|S|=n−k

∑

ai∈N(S,A )

ci.

4.2.1 Plant cover indices and Robust Measure

We start with a lemma that shows that Rs(A , S) can be upper-bounded by the

sum of δk(A ) and mini(d), i = 1, ..., k, for any d ∈ S. Recall that Rs(A , S) =

mind∈S P (d,A ).

Lemma 4.1. For any fixed d ∈ S and any integer 0 ≤ k ≤ n,

Rs(A , S) ≤ δk(A ) +

k
∑

i=1

mini(d).
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Proof. By definition

P (d,A ) = max
∑

(i,j)∈I(A )

fij

s.t.
∑

i∈I(N(j,A ))

fij ≤ dj, ∀j ∈ I(B)

∑

j∈I(N(i,A ))

fij ≤ ci, ∀i ∈ I(A)

fij ≥ 0, ∀(i, j) ∈ I(A )

f ∈ R|A |,

and by the classical max-flow min-cut theorem, we have

P (d,A ) = min

m
∑

i=1

cipi +

n
∑

j=1

qjdj

s.t. pi + qj ≥ 1, ∀(i, j) ∈ I(A )

p ∈ {0, 1}m,q ∈ {0, 1}n.

By definition of δk(A ), we can find vectors p′ ∈ {0, 1}m, q′ ∈ {0, 1}n such that
∑m

i=1 cip
′
i = δk(A ),

∑n
j=1 q

′
j = k and p′, q′ are feasible for the optimization problem

associated with P (d,A ). Define σ to be a permutation of 1 through n such that

q′j = 1 if and only if dσ(j) ∈ {mini(d)|1 ≤ i ≤ k}. Then, we have that

m
∑

i=1

cip
′
i +

n
∑

j=1

q′jdσ(j) = δk(A ) +
k

∑

i=1

mini(d)

Therefore, P (dσ,A ) ≤ δk(A ) +
∑k

i=1mini(d). Since dσ ∈ S as S is symmetric,

Rs(A , S) ≤ P (dσ,A ) and we are done.

Next, we show that the inequality in Lemma 4.1 can be achieved as an equality

for some integer k and some vector d.
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Proposition 4.1. Let τ = argmind∈S P (d,A ). Then

Rs(A , S) = δk(A ) +

k
∑

i=1

mini(τ )

for some nonnegative integer k ≤ n.

Proof. By definition of Rs(A , S), P (τ ,A ) = Rs(A , S). Since

P (τ ,A ) = max
∑

(i,j)∈I(A )

fij

s.t.
∑

i∈I(N(j,A ))

fij ≤ τj , ∀j ∈ I(B)

∑

j∈I(N(i,A ))

fij ≤ ci, ∀i ∈ I(A)

fij ≥ 0, ∀(i, j) ∈ I(A )

f ∈ R|A |,

we can apply the max-flow min-cut theorem, to obtain

P (τ ,A ) = min

m
∑

i=1

cipi +

n
∑

j=1

qjτj

s.t. pi + qj ≥ 1, ∀(i, j) ∈ I(A )

p ∈ {0, 1}m,q ∈ {0, 1}n.

Let p∗, q∗ be the optimal solution to the optimization problem above, and define

k :=
∑n

j=1 q
∗
j . Then, we must have

∑n
j=1 q

∗
j τj ≥

∑k
j=1minj(τ ) and

∑m
i=1 cip

∗
i ≥

δk(A ). Hence, we have that

Rs(A , S) = P (τ ,A ) =

m
∑

i=1

cip
∗
i +

n
∑

j=1

q∗j τj ≥ δk(A ) +

k
∑

i=1

mini(τ )

But by Lemma 4.1, Rs(A , S) ≤ δk(A )+
∑k

i=1mini(τ ) and hence we have Rs(A , S) =

δk(A ) +
∑k

i=1mini(τ ).
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Proposition 4.1 demonstrates that there is a strong connection between δk(A )

and Rs(A , S) for any S. Using this connection, we next show that for any two

flexibility structures A1, A2, if the plant cover indices of A1 are always greater than

or equal to the plant cover indices of A2, then for any robust measure R ∈ Γ and any

symmetric uncertainty set S, A1’s worst-case performance is greater than or equal to

the worst-case performance of A2.

Theorem 4.1. Suppose A1 and A2 are two flexibility structures with δk(A1) ≥ δk(A2)

for all 1 ≤ k ≤ n. Then A1 is more robust than A2. That is, for any symmetric set

S and any R ∈ Γ,

R(A1, S) ≥ R(A2, S).

Proof. Let τ = argmind∈S f
R(d,A1), and let S ′ := Perm(τ ). Then, since fR is per-

mutation consistent with P (·), P (τ ,A1) = mind∈S′ P (d,A1). Applying Proposition

4.1, we have P (τ ,A1) = δk(A1) +
∑k

j=1minj(τ ) for some k.

By the condition in the theorem, δk(A1)+
∑k

j=1minj(τ ) ≥ δk(A2)+
∑k

j=1minj(τ ).

By Lemma 4.1, δk(A2) +
∑k

j=1minj(τ ) ≥ mind∈S′ P (d,A2). Hence, P (τ ,A1) ≥
mind∈S′ P (d,A2). Since fR is permutation consistent with P (·),

R(A1, S) = fR(τ ,A1) ≥ min
d∈S′

fR(d,A2) ≥ min
d∈S

fR(d,A2) = R(A2, S).

Theorem 4.1 shows that if δk(A1) ≥ δk(A2) for all 1 ≤ k ≤ n, then A1 is more

robust than A2. The next result implies that if δk(A1) > δk(A2) for some k, then A1

is strictly more robust than A2.

Proposition 4.2. Suppose there exists 1 ≤ k ≤ n, with δk(A1) < δk(A2). Then, for

any R ∈ Γ, there exists a symmetric set S such that

R(A1, S) < R(A2, S).

Proof. Let τ be the vector with first k entries equal to 0 and each of the next n− k
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entries equal to
∑m

i=1 ci. Let S = Perm(τ ). By Lemma 4.1 and Proposition 4.1, we

have that

min
d∈S

P (d,A1) = δk(A1)

min
d∈S

P (d,A2) = δk(A2).

δk(A1) < δk(A2) implies that mind∈S P (d,A1) < mind∈S P (d,A2). Because fR is

permutation consistent with P (·), we have

R(A1, S) < R(A2, S).

Observe that Proposition 4.2 also implies that the converse of Theorem 4.1 is true.

That is, if the statement δk(A1) ≥ δk(A2) is not true for some 1 ≤ k ≤ n, then for

any R ∈ Γ, there exists some symmetric set S such that R(A1, S) < R(A2, S). Thus,

we have our next corollary, which states that δk(A1) ≥ δk(A2) for 1 ≤ k ≤ n is

equivalent with A1 being more robust than A2.

Corollary 4.1. A1 is more robust than A2 if and only if δk(A1) ≥ δk(A2) for 1 ≤
k ≤ n.

An interesting question is whether better worst-case performance implies better

average-case performance. Specifically, when A1 is strictly more robust than A2, we

know that the worst-case performance of A1 is always better (and sometimes strictly

better) than the worst-case performance of A2. The question is whether this implies

that the expected sales of A1 is greater than or equal to the expected sales of A2

for any IID demand distribution. We answer the question in the negative through

a counterexample. Consider, n = m = 4, ci = 1 for i = 1, 2, 3, 4 and flexibility

structures A1 and A2 in Figure 4-1. It is easy to check that δk(A1) = δk(A2) for

k = 0, 1, 3, 4 and δ2(A1) > δ2(A2). However, we find that the expected sales of A1

(equal to 3) which is less than the expected sales of A2 (equal to 3.125) when demand
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for each products is IID and equal to 0 or 2 with equal probability.

Plants Products

(a) A1

Plants Products

(b) A2

Figure 4-1: Designs A1 and A2

4.2.2 Hardness Result

In the previous subsection, we have established a connection between δk(A ) and

R(A , S), for any flexibility structure A and any symmetric uncertainty set S. Here,

we will establish that computing R(A , S) is an NP-hard problem for any R ∈ Γ.

To establish the hardness result, we begin with a lemma, which is an immediate

consequence of the work of Kuo and Fuchs [Kuo and Fuchs, 1987].

Lemma 4.2. Given non-negative integers k, t and some flexibility structure A , de-

termining whether δk(A ) ≤ t is NP-hard.

Proof. Consider the case ci = 1 for all 1 ≤ i ≤ m. In this case, note that δk(A ) ≤ t

if and only if there is a vertex cover VA ∪ VB, where VA ⊆ A, |VA| ≤ t and VB ⊆ B,

|VB| ≤ k. By [Kuo and Fuchs, 1987], it is NP-hard to determine if there exists such

a vertex cover. Thus, we have that determining whether δk(A ) ≤ t is NP-hard.

Having established Lemma 4.2, we now prove that computing R(A , S) for any

R ∈ Γ is NP-hard.

Corollary 4.2. For any robust measure R ∈ Γ, determining whether R(A , S) ≤ t is

NP-hard.
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Proof. We prove this result by showing that for ci = 1 for all 1 ≤ i ≤ m, the problem

of determining if δk(A ) ≤ t for some integer t can be reduced to the problem of

determining if R(A , S) ≤ t′ for some t′ ∈ R and S ⊆ Rn.

We can assume t < m, since δk(A ) ≤ m. Let e be the vector such that ej = 0

for 1 ≤ j ≤ k and ej = m for k + 1 ≤ j ≤ n. Let S := Perm(e), where Perm(e) =

{eσ|for all permutation σ}. Also, let

A
′ := {(ai, bj)|1 ≤ i ≤ m, 1 ≤ j ≤ k} ∪ {(ai, bj)|1 ≤ i ≤ t, k + 1 ≤ j ≤ n}.

It is easy to check that e ∈ argmind∈S P (d,A ′) and P (e,A ′) = t. Since fR is

permutation consistent, mind∈S f
R(d,A ′) = fR(e,A ′).

Now, let t′ := fR(e,A ′). Since fR is permutation consistent with P (·), we have

that for any d ∈ S, fR(d,A ) ≤ t′ if and only if P (d,A ) ≤ t. Thus, determin-

ing whether mind∈S f
R(d,A ) = R(A , S) ≤ t′ is equivalent to determining whether

mind∈S P (d,A ) ≤ t.

By construction of S, Lemma 4.1, and Proposition 4.1, we have that mind∈S P (d,A ) =

δk(A ). Therefore, we have that determining whether R(A , S) ≤ t′ is at least as hard

as determining whether δk(A ) ≤ t, which is NP-hard.

We would like to point out that while Lemma 4.2 shows that computing δk(A ) is

NP-hard, off-the-shelf solvers can compute these quantities fairly quickly. The reason

for this is probably because the optimization problem that defines δk(A ) reduces to a

bipartite vertex cover problem (which has a tight integrality gap) when we relax the

constraint
∑n

j=1 qj = k with a Lagrangian multiplier. Indeed, in our computational

tests, the binary program solver in cplex has consistently solved δk(A ) for systems

with around 20 plant nodes and 20 product nodes within 1 second. Finally, researchers

in computer science have developed algorithms to compute δi(A ) that work quite

efficiently in practice (see [Fernau and Niedermeier, 2001], [Bai and Fernau, 2008]).
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4.3 Sparse Flexibility Structures and Long Chain

In this section, we apply the results of the previous section to analyze the worst-case

effectiveness of sparse flexibility structures. In particular, we are interested in the

long chain flexibility structure, which has been studied extensively in the literature

from the average-case point-of-view. As is typical in the analysis of the long chain, see

for example [Jordan and Graves, 1995], we consider in this section balanced systems

(i.e. m = n) and assume ci = 1 for all 1 ≤ i ≤ n. Recall that Cn is used to denote

the long chain in a system of size n.

Consider the class of all flexibility structures in which the degree of each product

node is exactly two. The theorem below shows that the long chain is most robust

among this class of structures.

Theorem 4.2. The long chain flexibility structure, Cn, is more robust than A if for

any u ∈ B, |N(u,A )| = 2.

Proof. It’s easy to check that δk(Cn) = n − k + 1 for 1 ≤ k ≤ n − 1, and δn(Cn) =

0 = δn(A ). To prove Theorem 4.2, it is sufficient to show that for all 1 ≤ k < n, we

can find some S ⊂ B, |S| = k, such that |N(B \ S,A )| ≤ n − k + 1, as δk(A ) ≤
|N(B \ S,A )|.

Suppose the graph formed by A consists of c connected bipartite components.

For 1 ≤ i ≤ c, let Ai ⊂ A, Bi ⊂ B be the set of vertices of the i-th component.

Without loss of generality, we also assume that |Ai| − |Bi| is non-decreasing with i.

Because
∑c

i=1(|Ai| − |Bi|) = 0, this assumption implies that
∑t

i=1 |Ai| ≤
∑t

i=1 |Bi|
for any t ≤ c.

We now show that for any i, and any 1 ≤ l ≤ |Bi|, there exists some T ⊆ Bi,

|T | = l such that |N(T,A )| ≤ l + 1. This is done by induction on l. For l = 1, take

any u ∈ Bi and let T := {u} and |N(T,A )| = 2. Suppose the statement is true for

some l < |Bi|, then we can find set T l ⊂ Bi, |T l| = l and |N(T l,A )| ≤ l + 1. Since

the vertices in Ai ∪ Bi form a connected component, and T l ( Bi, there exists some

u ∈ N(T l,A ) such that (u, v) is an arc for some v /∈ T l. Since |N(v,A )| = 2 and

u ∈ N(T l,A ), we must have that |N(Sl ∪ {v},A )| ≤ l + 2. Thus, by induction,
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we have that for any 1 ≤ l ≤ |Bi|, there exists some T ⊆ Bi, |T | = l such that

|N(T,A )| ≤ l + 1.

For any 1 ≤ k < n, find the largest t such that
∑t

i=1 |Bi| < n− k. By the choice

of t, we have t < c and n − k −∑t

i=1 |Bi| ≤ |Bt+1|. Thus, we can find some set T

where |T | = n − k −∑t
i=1 |Bi|, T ⊆ Bt+1 and |N(T,A )| ≤ n − k −∑t

i=1 |Bi| + 1.

Finally, let S := (Bt+1 ∪Bt+2 ∪ ... ∪ Bc) \ T , and we have that

|N(B \ S,A )| = |N(T,A )|+
t

∑

i=1

|Ai| ≤ n− k −
t

∑

i=1

|Bi|+ 1 +

t
∑

i=1

|Bi| ≤ n− k + 1.

Since S ⊂ B and |S| = n−∑t
i=1 |Bi| − (n− k −∑t

i=1 |Bi|) = k, we are done.

Interestingly, Theorem 3.2 suggests that long chain is at least as good as any

2-flexibility structures from average-case point-of-view for any exchangeable demand

distribution. Theorem 4.2 complements this result by noting that any 2-flexibility

structure satisfies the condition |N(u,A )| = 2, ∀u ∈ B. Hence, Theorem 4.2 implies

that the long chain is also the most robust 2-flexibility structure.

A natural generalization of Theorem 4.2 is to consider the class of flexibility struc-

tures with 2n arcs, rather than the class of all flexibility structures in which the degree

of each product node is exactly two. To our surprise, this generalization does not hold.

Indeed, in Figure 4-2, we provide flexibility structure A with n = 9 nodes and 18

arcs, where δ4(A ) > δ4(Cn). Note that by Corollary 4.1, we immediately have that

the long chain is not more robust than A .

The example shown by Figure 4-2 may motivate a claim that there exists a struc-

ture with 2n arcs which is strictly more robust than the long chain. This is also not

true, and it is a simple consequence of Theorem 4.2. By Theorem 4.2, if a structure

A with 2n arcs has that δk(A ) > δk(Cn) for some k, then there is some node u ∈ B

where |N(u,A )| = 1. But this implies that δn−1(A ) = 1 < 2 = δn−1(Cn). Hence,

there is no structure with 2n arcs that is strictly more robust than Cn. That is, Cn

is in some sense a “Pareto optimal” structure among all flexibility structures with 2n
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Plants Products

Figure 4-2: A flexibility structure A with 9 plants/products and 18 arcs

arcs when considering worst-case performance analysis.

While the long chain does not always achieve the best worst-case performance

among all structures with 2n arcs, the next result shows that the long chain is the

optimal structure among all connected structures with 2n arcs.

Corollary 4.3. The long chain flexibility structure, Cn, is more robust than A , if

|A | = 2n, and the bipartite graph with vertex sets A, B and arc set A is connected.

Proof. For n = 1, it is simple to check that Corollary 4.3 holds. Suppose A ∗ is a

counterexample to Corollary 4.3 in the smallest system (the smallest n∗ where there

is a counterexample). Clearly, n∗ > 1. Since A ∗ is a counterexample, there exists

some 1 ≤ k∗ < n∗ such that δk
∗

(A ∗) > n∗ − k∗ + 1. By Theorem 4.2, we know there

must exists some u ∈ B, with |N(u,A ∗)| = 1. Let v = N(u,A ∗), and let G be the

bipartite graph with vertex sets A, B, and arc set A ∗. Because G is connected, we

must have |N(v,A ∗)| ≥ 2.

Let A ′ := {(v′, u′)|(v′, u′) ∈ A ∗, u′ 6= u, v′ 6= v}. Consider the bipartite graph G′

with vertex sets A \ v, B \ u, and arc set A ′. Suppose G′ has z components, then we

must have |N(v,A ∗)| ≥ z + 1. In this case, we can add z− 1 arcs to G′ so that G′ is

a connected bipartite graph. Let A ′′ be the arc set that contains A ′ and the z − 1

added arcs. Note that |A ′′| ≤ 2(n∗ − 1).
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By construction, the bipartite graph with vertex sets A\u, B \v and arc set A ′′ is

connected. Because 1 ≤ k∗ < n∗, the minimality assumption on A ∗ and Observation

4.1, there exists some S ⊆ B\v, with |S| = n∗−k∗−1 and |N(S,A ′′)| ≤ n∗−k∗. But

this implies that S∪{v} ⊆ B, |S∪{u}| = n∗−k∗ and |N(S∪{u},A ′′)| ≤ n∗−k∗+1.

By Observation 4.1, |N(S∪{u},A ′′)| ≤ n∗−k∗+1 implies that δk
∗

(A ∗) ≤ n∗−k∗+1.

This contradicts our assumption that δk
∗

(A ∗) > n∗ − k∗ + 1 and therefore, we have

that Corollary 4.3 must be true.

While the long chain does not always achieve the best worst-case performance

among all (non-connected) structures with 2n arcs, computational experiments sug-

gest that it is very effective. The next proposition provides one way to explain this

observation by showing that the plant cover indices of the long chain are greater than

or equal to that of any other structure with 2n arcs for the last
√
n of plant cover

indices.

Proposition 4.3. In a balanced system with n > 1 plants and products, for any

integer 0 ≤ k ≤ √n we have,

δn−k(Cn) ≥ δn−k(A ),

for any A such that |A | = 2n.

Proof. It’s easy to check that δn−k(Cn) = k + 1 for any k < n. We will prove that

for any |A | ≤ 2n, and for any integer 1 ≤ k ≤ √n, we can always find some S ⊆ B,

with |S| = k and |N(S,A )| ≤ k+1. Note that by Observation 4.1, this immediately

implies that δn−k(A ) ≤ |N(S,A )| ≤ k + 1 ≤ δn−k(Cn).

Suppose there exists a counterexample A ∗ in a balanced system of size n. That

is, there exists some k, 1 ≤ k ≤ √n, for which we cannot find S ⊆ B with |S| = k

and |N(S,A ∗)| ≤ k + 1. Without loss of generality, assume A ∗ is such a structure

in the smallest balanced system. Let k∗, 1 ≤ k∗ ≤ √n be the integer for which

we cannot find any S ⊆ B with |S| = k∗ and |N(S,A ∗)| ≤ k∗ + 1. Also, let

B1 := {u|u ∈ B, |N(u,A ∗)| = 1}, B2 := {u|u ∈ B, |N(u,A ∗)| = 2} and B3 :=
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{u|u ∈ B, |N(u,A ∗)| ≥ 3}.

Suppose we have some u, u ∈ B1 with (v, u) ∈ A ∗ and |N(v,A ∗)| ≥ 2. Let

A ′ = {(v′, u′)|(v′, u′) ∈ A ∗, u′ 6= u, v′ 6= v}. Then A ′ is a structure in a balanced

system of size n− 1, and |A ′| ≤ 2n− 2. By our assumption on the minimality of n,

we can find some S ⊆ B \ u, |S| = k∗− 1 and |N(S,A ′)| ≤ k∗. But this implies that

|N(S ∪ {u},A ∗)| ≤ k∗ + 1, and we have a contradiction. Thus, for any u ∈ B1 with

(v, u) ∈ A ∗ we have N(v,A ∗) = 1. That is, any plant v that is a neighbor of some

u ∈ B1in A ∗ has a degree one.

Suppose there exists BC ⊂ B2 such that all arcs incident to BC form a single cycle.

Then clearly, |N(BC ,A
∗)| = |BC |. If |BC | ≥ k∗, then it is easy to check that we can

find S ⊆ BC with |S| = k∗ and |N(S,A ∗)| ≤ k∗ + 1, which leads to a contradiction.

If |BC | < k∗, then let A ′ := {(v′, u′)|(v′, u′) ∈ A ∗, u′ /∈ BC , v
′ /∈ N(BC ,A

∗)}. In this

case, |A ′| = |A ∗| − 2|BC | ≤ 2(n− |BC |), and A ′ is a flexibility structure defined on

a system with n − |BC | plants and n − |BC | products. By the minimality of n, we

can find some S ⊆ B \ |BC | such |S| = k∗−|BC | and N(S,A ′) ≤ k∗−|BC |+1. This

implies that N(S ∪BC ,A
′) ≤ k∗ + 1, which is again a contradiction. Hence, there is

no BC ⊂ B2 such that all arcs incident to nodes BC form a cycle.

Let G2 be the bipartite graph with node sets A2 = N(B2,A
∗), B2 and arc set

A2 = {(v′, u′)|(v′, u′) ∈ A ∗, u′ ∈ B2}. Because there does not exist any BC ⊂ B2 such

that all arcs incident to nodes BC forms one cycle, G2 contains no cycles. This implies

that G2 contains a number of components, T1, T2, ..., Tz, with each component Ti, we

have that |Ti ∩ B2|, i.e., the number of product nodes in Ti, is exactly one less than

|Ti ∩A2|, i.e., the number of plant nodes in Ti. Note that any v that is a neighbor of

u ∈ B1 is not in Ti for all 1 ≤ i ≤ z, this implies that z =
∑z

i=1 |A ∩ Ti| − |B ∪ Ti| ≤
(n− |B1|)− |B2| ≤ |B3|. Because |A ∗| = 2n, the average degree of nodes in B is 2.

This implies that |B3| ≤ |B1|, and therefore z ≤ |B1|. Because |B1| ≤ k∗ ≤ √n, it is
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easy to check that |B1|(k∗ − |B1|+ 2) ≤ n. Therefore, we have

|B1|(k∗ − |B1|+ 2) ≤ n,

=⇒ |B1|(k∗ − |B1|) ≤ n− 2|B1|,

=⇒ k∗ − |B1| ≤
n− 2|B1|
|B1|

,

=⇒ k∗ − |B1| ≤
n− |B1| − |B3|

|B1|
, since |B3| ≤ |B1|,

=⇒ k∗ − |B1| ≤
|B2|
z

.

This implies that
∑z

i=1 |Ti∩A2|/z is at least k∗−|B1| and hence there exists 1 ≤ i∗ ≤ z

such that Ti∗ has k∗ − |B1| plant nodes. Therefore, we can find a set S ⊂ Ti∗ ∩ B

such that |N(S,A ∗)| ≤ k∗− |B1|+ 1, which implies that |N(S ∩B1)| ≤ k∗ + 1. This

leads to a contradiction. Hence, we must have that for any 0 ≤ k ≤ √n, we can find

some S ⊆ B, |S| = k with δn−k(A ∗) ≤ |N(S,A ∗)| ≤ k + 1.

Finally, we show that when the performance function is the ratio of sales of a

specific structure to that of full flexibility, the long chain has a better worst-case

performance compared to any structure with 2n arcs, independent of whether the

structure forms a connected bipartite graph.

Proposition 4.4. Consider a symmetric set S satisfying the additional requirement

that any d ∈ S, d′ ∈ S for all d′ ≤ d. For such S, we have

Rr(Cn, S) ≥ Rr(A , S),

for any A with |A | = 2n.

Proof. By Theorem 4.2, we know Rr(Cn, S) ≥ Rr(A , S), if for any u ∈ B, |N(u,A )| =
2. Thus, we only need to consider the case where there exists some u ∈ B such that

|N(u,A )| = 1. In that case, since S is symmetric, without loss of generality, let u be

product node b1. Also, define dmax := max{d1|d ∈ S}.
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If dmax ≤ 1, then for any d ∈ S, d ≤ [1, 1, ..., 1]T and thus

P (d,Cn)

P (d,F )
≥ P (d,D)

P (d,F )
=

∑n

i=1min{di, 1}
min{∑n

i=1 di, n}
=

∑n

i=1 di
∑n

i=1 di
= 1 ≥ P (d,A )

P (d,F )
,

which implies Rr(A , S) ≤ Rr(Cn, S).

Otherwise, dmax > 1, let d∗ := [dmax, 0, 0, ..., 0]
T . By the assumption on S, d∗ ∈ S.

Hence,

Rr(A , S) ≤ P (d∗,A )

P (d∗,F )
≤ min{1, dmax}

min{n, dmax}
=

1

min{n, dmax}
.

However, for any d ∈ S, let X := {i|di < 1}, Y := {i|di > 1}, then

P (d,Cn)

P (d,F )
≥ P (d,D)

P (d,F )
=

∑n
i=1min{di, 1}

min{∑n
i=1 di, n}

≥
∑

i∈X di + |Y |
∑n

i=1 di
=

∑

i∈X di + |Y |
∑

i∈X di +
∑

i∈Y di
.

But
∑

i∈X di∑
i∈X di

= 1 > 1
dmax

, and |Y |∑
i∈Y di

≥ |Y |
|Y |dmax

≥ 1
dmax

, hence,

P (d,Cn)

P (d,F )
≥

∑

i∈X di + |Y |
∑

i∈X di +
∑

i∈Y di
≥ 1

dmax
.

Thus, we also have that Rr(Cn, S) ≥ Rr(A , S).

4.4 Numerical Experiments

In this section, we present computational experiments to show that the plant cover

indices not only reveal the strength of a structure from the worst-case point-of-view,

but also from the average-case point-of-view. Motivated by this finding, we present

a heuristic that applies the plant cover indices to generate flexibility structures that

are effective in both worst-case and average-case performance measures.

4.4.1 Plant Cover Indices and Expected Sales

Our objective in this section is to test the following hypothesis: Given a pair of flexi-

bility structures A1 and A2, if A1 is strictly more robust than A2, then the expected

sales of A1, E[P (D,A1)], is greater than the expected sales of A2, E[P (D,A2)], for
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some IID demand distribution D.

To test this hypothesis, we randomly generated 50 flexibility structures as follows.

We start with a structure that is analogous to the dedicated structure, where each

product node bj is neighbor to only one plant node, and each plant node ai is connected

to exactly ci product nodes. Then, we select the next K arcs uniformly at random

and add them to the system. In our first test, we have m = n = 10, K = 18 and

ci = 1 for i = 1, 2, ..., 10. Hence, we test a balanced system with homogenous plants.

In our second test, we have m = 7, n = 14, K = 10 and c1 = c2 = 3, c3 = c4 = c5 = 2

and c6 = c7 = 1. In this case, we test an unbalanced system with varying capacities.

The test is designed as follows. For the 50 randomly generate flexibility struc-

tures we identify every pair of structures, A1 and A2 where δk(A1) ≥ δk(A2) for all

1 ≤ k ≤ n, and for some k∗, 1 ≤ k∗ ≤ n, δk
∗

(A1) > δk
∗

(A2). For each pair, we com-

pute the difference between sales of A1 and A2 with 500n demand instances, where

the demand of each product is generated IID at random with random distribution

N(1, 0.5) truncated at 0. If our test suggests (with 95% confidence) that the expected

sales of A1 is higher than the expected sales of A2 given that the demand for each

product is IID, we then say that the plant cover indices are consistent with the ex-

pected sales in the stochastic setting; if our test suggests (again, with 95% confidence)

that expected sales of A1 is lower than the expected sales of A2, we then say that the

plant cover indices are inconsistent with the expected sales in the stochastic setting;

otherwise, we say the test is inconclusive. The results of these tests are presented in

Table 4.1 under the row “Coordinates”.

In addition, we perform a similar test for every pair of structures, A1 and A2, where

we compare every pair of structures A1 and A2 where
∑n

k=1 δ
k(A1) >

∑n
k=1 δ

k(A2)

instead of comparing each δk. The results of these tests are presented in Table 4.1

under the row “Sum”.

As you can see, the numerical results suggest that the plant cover index is not

only powerful from worst-case performance point-of-view (Theorem 4.1), but also

from average-case point-of-view.
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System Testing Metric Consistent Inconsistent Inconclusive

m=10, n=10, K=18
Coordinates 685 19 13

Sum 998 48 25

m=7, n=14, K=10
Coordinates 220 0 0

Sum 1067 46 1

Table 4.1: Consistency between average sales and plant cover indices

4.4.2 Generating Effective Flexibility Structure

Section 4.4.1 demonstrates that plant cover indices can be a strong indicator of the

effectiveness of a flexility structure. In this section, we propose a heuristic that applies

the plant cover indices to generate an effective flexibility structure.

Consider an initial structure and a budget of K additional arcs. The plant cover

heuristic adds K arcs sequentially through K steps. At each step, for the current

flexibility structure A , the heuristic computes δk(A ) for all 1 ≤ k ≤ n. Then, the

heuristic finds the arc that is estimated to have the biggest impact on
∑n

k=1 δ
k(A )

and adds this arc to A . The heuristic is formally described as Algorithm 2.

Algorithm 2 Finding Effective Flexibility Design using Plant Cover Indices

1: Given: flexibility structure A in a m plants n products system and integer K.

2: for t = 1, 2, . . . , K do

3: Find δ1(A ), δ2(A ), ..., δn(A ), and their corresponding optimal solutions

(p1,q1), (p2,q2), ..., (pn,qn).

4: Let Ψ(x, y) = 1 if x = y = 0 and Ψ(x, y) = 0 otherwise. For each 1 ≤ i ≤ m,

1 ≤ j ≤ n, compute W (i, j) =
∑n

k=1Ψ(pki , q
k
j ).

5: Find an arc set S which for any arc (ai∗ , bj∗) ∈ S,

6: p(i∗, j∗) = max{W (i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}.
7: Randomly select an arc from S, add this arc to A .

8: end for

9: Return A .

There are other variants of Algorithm 2 which one may consider. In particular, one

can compute W (i, j) =
∑k

k=1 f(Ψ(pki , q
k
j ), k) for some function f(., .). In Algorithm

2, we used function f(Ψ(pki , q
k
j ), k) = Ψ(pki , q

k
j ). Another natural candidate for f is
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f(Ψ(pki , q
k
j ), k) = Ψ(pki , q

k
j )ci. Indeed, finding the f(Ψ(pki , q

k
j ), k) that optimize the

performance of our heuristic is an interesting open question.

Table 4.2 presents some numerical results with the plant cover heuristic by com-

paring its performance to that of other structures. These structures include: (i)

The structure with the highest expected sales among 50 randomly generated struc-

tures; (ii) Incomplete 3-chain, which is our attempt to construct a 3-chain structure

described in [Chou et al., 2011] using K available arcs (see Figure 4-3); (iii) The struc-

ture generated by the expander heuristic in [Chou et al., 2011]; (iv) Full flexibility

structure.

Like our tests in Section 4.4.1, we consider two set of tests, where the first set has

m = n = 10, K = 18, ci = 1 for 1 ≤ i ≤ 10 and the second set has m = 7, n = 14,

K = 10, c1 = c2 = 3, c3 = c4 = c5 = 2 and c6 = c7 = 1. In Table 4.2, we present the

average sales of each structure and the worst ratio of the sales of the structure under

consideration to that of full flexibility among all 500n demand instances.

System Design Average Sales Worst Ratio to Full Flex.

m=10, n=10, K=18

Plant Cover 9.3940 89.77%
Random 9.3499 82.82%
3-Chain 9.3548 82.58%
Expander 8.9629 74.08%

Full Flexibility 9.4088 100%

m=7, n=14, K=10

Plant Cover 13.2436 88.21%
Random 13.089 79.82%
3-Chain 13.1675 81.85%
Expander 13.067 75.97%

Full Flexibility 13.2864 100%

Table 4.2: Comparison between the Plant Cover Heuristics and others heuristics

Finally, we analyze the performance of the plant cover heuristic with different

number of arcs added to the system and compare its performance to that of the

expander heuristic of [Chou et al., 2011]. Figure 4-4 plots the ratio between the

expected sales of the structure generated by the plant cover heuristic to that of full

flexibility for K = 1 : 20 in the m = 7, n = 14, c1 = c2 = 3, c3 = c4 = c5 = 2 and

c6 = c7 = 1 system. One can see that the ratio between the expected sales of the

plant cover heuristic structure to that of full flexibility exceeds 99% when more than
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9 arcs are added to the system. Figure 4-4 also plots the ratio between the expected

sales of the structure generated by the expander heuristic to that of full flexibility

for K = 1 : 20. As you can see, in this test setting, the performance of a structure

generated by the plant cover heuristic using K arcs is comparable to the performance

of a structure generated by the expander heuristic using K + 2 arcs.

Plants Products

(a) m = n = 10

Plants Products

(b) m = 7, n = 14

Figure 4-3: Incomplete 3-Chains

As Table 4.2 and Figure 4-4 show, when demand is IID, the plant cover heuristic

can find effective flexibility structures that perform well in average-case and worst-

case. In general, we expect this heuristic to work well when the products’ expected

demands do not vary significantly. However, when expected demand varies, the plant

cover heuristic does not necessarily perform well since it ignores demand information.

By contrast, the expander heuristics is shown to work well when different products

have varying expected demand.
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Figure 4-4: Designs Generated by Plant Cover and Expander Heuristics

4.5 Extensions

In this section, we presents two extensions of Theorem 4.1.

4.5.1 Additional Production Constraints

First, we consider a model where the sales of A not only depends on demands and

plants capacities, but also on another class of linear constraints. In this case, P (d,A )

is defined as the objective value of the following LP.
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P (d,A ) = max
∑

(i,j)∈I(A )

fij

s.t.
∑

i∈I(N(j,A ))

fij ≤ dj, ∀j ∈ I(B)

∑

j∈I(N(i,A ))

fij ≤ ci, ∀i ∈ I(A)

∑

(i,j)∈I(A )

Φhijfij ≤ φh, ∀h = 1, 2, ..., H

0 ≤ fij, ∀(i, j) ∈ I(A )

f ∈ R|A |.

For example, in some applications, an added flexibility arc (ai, bj) can only be

utilized for p (p < 1) fraction of the capacity at plant i. In that case, we would have

the additional constraint fij ≤ pci.

Under this setting, we define the plant cover index, δk(A ), for 0 ≤ k ≤ n, as

follows.

δk(A ) := min
m
∑

i=1

cipi +
H
∑

h=1

φhzh

s.t.

n
∑

j=1

qj = k,

pi + qj +
H
∑

h=1

Φhijzh ≥ 1, ∀(i, j) ∈ I(A )

zh ≥ 0, ∀ 1 ≤ h ≤ H,

p ∈ [0, 1]m,q ∈ {0, 1}n, z ∈ Rh.
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Next, note that the dual of the LP of P (d,A ) can be written as follows:

P (d,A ) = max
m
∑

i=1

cipi +
n

∑

j=1

djqj +
H
∑

h=1

φhzh

s.t. pi + qj +
H
∑

h=1

Φhijzh ≥ 1, ∀(i, j) ∈ I(A )

zh ≥ 0, ∀ 1 ≤ h ≤ H,

p ∈ [0, 1]m,q ∈ [0, 1]n, z ∈ Rh.

Consider the case where the dual problem has no integrality gap with respect to q,

that is, the objective value is unchanged when we relax the integrality constraint on

q and use q ∈ [0, 1]n instead. In this case, we can apply the same proof techniques

as in Section 4.2, and develop the same result as Theorem 4.1 for this more general

settings.

The dual problem has a tight integrality gap with respect to q, when the system

of inequalities,

∑

i∈I(N(j,A ))

fij ≤ dj, ∀j ∈ I(B) (4.1)

∑

j∈I(N(i,A ))

fij ≤ ci, ∀i ∈ I(A) (4.2)

∑

i,j∈I(A )

Φhijfij ≤ φh, ∀h = 1, 2, ..., H, (4.3)

is totally dual integral (see Section 8.6 of [Bertsimas and Weismantel, 2008] for a more

detailed discussion of this topic). In particular, if all inequalities in (4.3) are of the

form fij ≤ rij , then we have that the system of inequalities in (4.1-4.3) is totally dual

integral. Observe that the constraint fij ≤ rij is equivalent in our model to requiring

that for some h, 1 ≤ h ≤ H , Φhij = 1 and Φhi′j′ = 0 for all other (i′, j′) ∈ I(A ).

Using the plant cover indices defined under this more general setting, we can

define a similar plant cover heuristic like the one proposed in Section 4.4.2. When

the dual of the LP defining P (d,A ) has a tight integrality gap with respect to q, we
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expect the effectiveness of the plant cover heuristics in this more general setting to

be comparable with the effectiveness of the plant cover heuristics in Section 4.4.2.

Finally, we note that when the dual of the LP defining P (d,A ) does have a duality

gap with respect to q, then the theoretical results from Section 4.2 no longer hold.

In this case, we expect the plant cover heuristic to work reasonably well when the

integrality gap is reasonably small.

4.5.2 General Uncertainty Sets

All the results we established so far assumed that the uncertainty set S is symmetric.

Can we say anything if S is not symmetric? Clearly, if we do not impose any constraint

on S, there isn’t much we can do. Next, consider the following definition.

Definition 4.1. We say S is min-consistent with µ ∈ Rn, if for any X1, X2 ⊂
{1, 2, ..., n}, we have

∑

i∈X1

µi ≤
∑

i∈X2

µi ⇐⇒ min{
∑

i∈X1

di|d ∈ S} ≤ min{
∑

i∈X2

di|d ∈ S}.

Note that if S is symmetric, then S is min-consistent with e where e1 = e2 = ... =

en = 1.

In this case, we define the vertex cover index, δk(A ,µ), as

δk(A ,µ) := min

m
∑

i=1

cipi

s.t.

n
∑

j=1

qjµj ≤ k,

pi + qj ≥ 1, ∀(i, j) ∈ I(A )

p ∈ {0, 1}m,q ∈ {0, 1}n.

Next, we state a worst-case analysis result that is analogous to Theorem 4.1, in the

setting where the uncertainty set is min-consistent with µ. The proof of Corollary

4.4 is left in Appendix A.

93



Corollary 4.4. Let µ be an arbitrary non-negative vector in Rn. Suppose δk(A1,µ) ≥
δk(A2,µ) for all k ∈ {∑j∈X µj|X ⊆ {1, 2, ..., n}}. Then for any uncertainty set S

that is min-consistent with µ, we have Rs(A1, S) ≥ Rs(A2, S).

We would like to point out that the extension results in this subsection are weaker

than Theorem 4.1. By allowing the demand set to be non-symmetric, it is no longer

true that if δk(A1,µ) ≥ δk(A2,µ), then R(A1, S) ≥ R(A2, S) for any robust measure

R ∈ Γ.

While we would like to use Corollary 4.4 as a guideline to develop practical heuris-

tics for generating process flexibility designs, several key difficulties arise. First, it

is unclear how to come up with the vector µ. Second, it may take a long time to

compute all k ∈ {∑j∈X µj|X ⊆ {1, 2, ..., n}}, as the set {∑j∈X µj|X ⊆ {1, 2, ..., n}}
can contain up to 2n values. Thus, at this moment, while Corollary 4.4 is an interest-

ing theoretical property it does not provide useful guidelines for generating effective

process flexibility designs when product demands are not homogenous.

4.6 Discussion and Conclusion

This chapter studies the worst-case performance of process flexibility when demand

can take values in an uncertainty set. We prove that the worst-case performance,

i.e., the robustness, of a flexibility structure relative to that of other structures is

largely independent of the choice of uncertainty sets, or the performance measures. To

establish this result, we introduce the plant cover index, an index that only depends

on the flexibility structure. We prove that if all of the plant cover indices of one

flexibility structure, A1, are greater than or equal to the plant cover indices of another

structure, A2, then the worst-case performance of A1 is greater than or equal to the

worst-case performance of A2, for all symmetric uncertainty sets and a large class of

performance functions.

Using the condition established with plant cover index, we prove that the long

chain flexibility structure is more robust than any structure that has degree two on all

of its product nodes, or forms a connected bipartite graph with 2n arcs. Because long
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chain flexibility structure has an attractive average-case performance, see [Simchi-Levi

and Wei, 2012], we investigate whether in general a structure with high plant cover

indices performs well not only in worst-case but also in average-case. We answer this

question in the affirmative using a numerical study, and propose a plant cover heuris-

tics that generates flexibility structures. In our computational results, the plant cover

heuristic is shown to be effective from both average-case and worst-case performances

measures. Finally, we present two simple extensions to our chapter, illustrating that

our analysis can be applied to more general settings.

Finally, we would like to point out the connection between the plant cover index,

and the graph expanders studied in [Chou et al., 2011]. In [Chou et al., 2011], A is

(α, λ,∆)-expander if

min
1≤k≤αn

δn−k(A )

k
≥ λ

and |N(u,A )| ≤ ∆ for any u ∈ A ∪ B. In some sense, the plant cover index can be

seen as a more precise indicator of the robustness of A , compared with the expander

parameters α and λ. Thus, this chapter complements the study of [Chou et al.,

2011] by showing that in the case which the expander parameters α and λ are not

enough to identify the effective sparse flexibility structures, plant cover index can

be used as a suitable alternative. Moreover, the plant cover heuristics proposed in

this chapter complements nicely the expander heuristic [Chou et al., 2011], as the

plant cover heuristics works nicely in the setting when the product demands are

IID or homogenous, where the expander heuristics works well when there exist large

differences between the expected demands for different products demand.

95



96



Chapter 5

Process Flexibility under

Distribution Systems

The previous chapters studied the effectiveness of process flexibility and long chain

in matching available capacity with uncertain demands. As observed in [Simchi-Levi,

2010], process flexibility has other benefits, such as reducing production and trans-

portation costs. Motivated by this observation, in this chapter, we study the design

and effectiveness of process flexibility in reducing the firm’s total logistics/supply

chain costs.

This chapter is organized as follows. In Section 5.1, we begin with a motivating

example to illustrate how process flexibility can reduce supply chain/transportation

costs, and formally define our model. In Section 5.2, we study the model under general

linear supply chain costs, and prove that if the supply chain costs are independent

of either plants or distribution centers, then there exist a long chain that is optimal

among all 2-flexibility structures. In Section 5.3, we study our model in the special

case where the transportation cost is directly proportional to the geometric distance

between plants and distribution centers. We then prove that if all of the plants and

distributions centers lie on a line, then there exists a long chain that is optimal among

all 2-flexibility structures. Moreover, our proof provides guidelines on how to find a

effective long chains (in reducing transportation cost) under the general case where

plants and distributions centers lie on a plane.

97



5.1 Motivating Example and Model

We first start with a simple example to illustrate the reduction in supply chain cost

under deterministic demand. In the example, a firm has two plants, and two distribu-

tions centers, as shown on Figure 5-1. The firm also produces two types of products,

and at each distribution center, the demand of each type of product is one. We

suppose that one pair of plant and distribution center is on the east coast of United

States, and another pair is on the west coast (see Figure 5-1).

If each plant is dedicated to producing just one type of product, the firm would

then have to ship one unit of product from each plant to each distribution center.

As illustrated on the left hand side of Figure 5-1, the firm have to ship one product

from its east coast plant to its west coast distribution center, and from its west coast

plant to its east coast distribution center. However, if each plant has the flexibility of

producing both products, then the firm can supply its distribution centers on the east

and west coasts with their nearby plants, and thus achieve a significant reduction in

transportation cost.

(a) System without Flexibility (b) System with Flexibility

Figure 5-1: Reducing Transportation Cost with Flexibility 1

The transportation example shows that having flexibility can greatly reduce trans-

portation and thus supply chain cost under deterministic demand. Next, we will

formally introduce the distribution system model for this chapter. Like the previous

chapters, we will consider a balanced system of size n, that is, a system with n plants
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and n products. In this chapter, in addition to plants and products, distribution cen-

ters are also included. We use n′ to denote the number of distribution centers, and

B′ = {b′1, b′2, ..., b′n′} to denote the set of distribution centers. Our model assumes that

products are first produced at plants, and then transported to distribution centers to

satisfy demand. The demand is deterministic and djk is used to denote the demand

of product j at distribution center k. Also, we use pijk to denote the total cost for

producing one unit of product j from plant i, and then shipping to distribution center

k. The total supply chain cost under flexibility design A is defined as

PD(A ) = min
∑

i,j,k

pijkfijk (P )

s.t.
∑

i

fijk = djk, ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′,

∑

j,k

fijk ≤ ci, ∀1 ≤ i ≤ n,

fijk ≥ 0, ∀1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n′,

fijk = 0, ∀(ai, bj) /∈ A ,

f ∈ Rn2n′

We will refer to PD(A ) as the total supply chain cost with flexibility structure

A under our distribution system model. In the linear program defining PD(A ), fijk

can be thought of the amount of product j produced from plant i and and shipped

to distribution center k.

Because we do not impose symmetry in vector p, we will consider any long chain

of size n, that is, any structure A where all of its arcs form one undirected cycle

containing all plants and all products. Note that for any A that is a long chain,

then there exists permutations σ, σ′ that {(aσ(i), bσ′(j))|(ai, bj) ∈ A } = Cn. Finally,

recall that a flexibility structure is a 2-flexibility structure if each plant node and each

product node are incident to exactly two arcs, and the set of all 2-flexibility structures

is denoted by F2.
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5.2 Long Chain under General Costs

In this section, we focus on the design of sparse flexibility structures under general

supply chain cost vector p.

First, we prove that if the supply chain cost is independent with the production

plants, i.e., pijk = pijk′ for all 1 ≤ i, j ≤ n, and 1 ≤ k, k′ ≤ n′, then there always

exists a long chain that is optimal among 2-flexibility structures. We note that a

preliminary version of this proof was discovered by [Chou et al., 2010a].

Proposition 5.1. If pijk = pijk′, ∀k, k′ = 1, .., n′, and ∀i, j. Then there always

exists some 2-flexibility structure A o where A o is a long chain, and PD(A o) =

minA ∈F2
PD(A ).

Proof. Let pij = pij1, for any i, j. It is easy to check that PD(A ) is equal to

PD(A ) = min
∑

i,j,k

pijfij

s.t.
∑

i

fij =
∑

k

djk, ∀1 ≤ j ≤ n,

∑

j

fij ≤ ci, ∀1 ≤ i ≤ n,

fij ≥ 0, ∀1 ≤ i, j ≤ n,

fij = 0, ∀(ai, bj) /∈ A ,

f ∈ Rn2

.

Suppose A ∗ is an optimal structure among all 2-flexibility structures. Wlog, we may

assume Dn ⊂ A ∗, since we can always relabel the plants to satisfy this condition.

Let A 1,A 2, ...,A t be disjoint components of A ∗ such that A 1 ∪ A 2 ∪ ... ∪ A t =

A ∗. Because A ∗ is a 2-flexibility structure, each component A i must form a single

undirected cycle. In particular, if t = 1, then A ∗ = A 1 must be a long chain.

If t ≥ 2, wlog, assume {(ai, bi)|1 ≤ i ≤ t1} = A 1 ∩Dn, {(ai, bi)|t1 + 1 ≤ i ≤ t2} =
A 2 ∩ Dn. Let S1 = A 1 \ {(ai, bi)|1 ≤ i ≤ t1}, S2 = A 2 \ {(ai, bi)|t1 + 1 ≤ i ≤ t2}.
Next, we prove that there always exist α1 ∈ A 1, α2 ∈ A 2 such that PD(A 1) =
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PD(A 1 \ {α1}) and PD(A 2) = PD(A 2 \ {α2}).
Let f1 be an optimal solution of PD(A 1). If f ∗

α1 = 0 for some α1 ∈ A 1, then

PD(A 1) = PD(A 1 \ {α1}). Otherwise, f 1
ij > 0 for all (ai, bj) ∈ A 1, and let g be the

vector that

gij =



























−1 if (ai, bj) ∈ S1

1 if (ai, bj) ∈ A 1 \ S1

0 otherwise.

If
∑

i,j gijpij ≤ 0, let δ1 := min{f 1
ij, (ai, bj) ∈ S1}. Then, f1 + δ1g is feasible for

PD(A 1), and because
∑

i,j gijpij ≤ 0, f1 + δ1g must also be optimal solution of

PD(A 1). Because f 1
ij + δ1gij = 0 for some (ai, bj) ∈ S1, therefore, there always exists

some α1 ∈ S1 such that PD(A 1) = PD(A 1 \ {α1}). Likewise, if −∑

i,j gijpij ≤ 0,

we can show that there always exists some α1 ∈ A 1 \ S1 such that PD(A 1) =

PD(A 1 \ {α1}). Therefore, we proved that there always exists some α1 ∈ A 1 such

that PD(A 1) = PD(A 1 \ {α1}).
Similarly, we can also prove that there exists some α2 ∈ A 2 such that PD(A 2) =

PD(A 2 \ {α2}). Suppose α1 = (ai1 , bj1) ∈ S1, α2 = (ai2 , bj2) ∈ S2, with PD(A 1) =

PD(A 1 \{α1}) and PD(A 2) = PD(A 2 \{α2}). Let α3 = (ai1 , bj2) and α4 = (ai2 , bj1),

and let A 1′ := (A 1 \ {α1}) ∪ (A 2 \ {α2}) ∪ {α3, α4}. Then observe that A 1′ forms

exactly one undirected cycle (see Figure 5-2), and PD(A 1′) ≥ PD((A 1 \ {α1}) ∪
(A 2 \ {α2})) = PD(A 1 \ {α1}) + PD(A 2 \ {α2}) = PD(A 1) + PD(A 2). Therefore,

we have A ∗∗ = A 1′ ∪A 3∪ ...∪A t is also an optimal structure among all 2-flexibility

structures. Because A ∗∗ has one less disjoint components than A ∗, by induction, we

can show that there exist some A o where A o is connected and is an optimal structure

among all 2-flexibility structures. Finally, if A o is a connected 2-flexibility structure,

then it must be a long chain, and therefore, the proof is complete.

Next, we prove that if the supply chain cost is independent with the production

plants, i.e., pijk = pi′jk for any 1 ≤ i, i′, j ≤ n and 1 ≤ k ≤ n′, then there also exists

a long chain that is optimal among all 2-flexible structures.

Proposition 5.2. Suppose pijk = pi′jk, ∀i, i′ = 1, .., n, and ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′.
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Figure 5-2: Illustration of A 1, A 2 and A 1′

Then there always exists some 2-flexibility structure A o where A o is a long chain,

and PD(A o) = minA ∈F2
PD(A ).

Proof. Because pijk = pi′jk, let pjk := p1jk. We claim that PD(A ) is equal to the

objective of the following linear program:

PD(A ) = min
∑

j,k

pjkyjk (P ′)

s.t.
∑

k

yjk =
∑

i

xij , ∀1 ≤ j ≤ n,

yjk = djk, ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′,
∑

j

xij ≤ ci, ∀1 ≤ i ≤ n,

xij ≥ 0, ∀1 ≤ i, j ≤ n,

xij = 0, ∀(i, j) /∈ A ,

yjk ≥ 0, ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′,

x ∈ Rn2

, y ∈ Rnn′

.
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To prove our claim, we need to show that the above linear program, (P ′), has the

same optimal value as (P ), original linear program defining PD(A ). For this, we note

that for any f that is feasible to (P ), if we define xij =
∑

k fijk for all 1 ≤ i, j ≤ n

and yjk =
∑

i fijk, for all 1 ≤ j ≤ n, 1 ≤ k ≤ n′, then (x,y) is a feasible solution for

(P ′), with objective value
∑

j,k

pjkyjk =
∑

i,j,k

pijfijk.

Also for any (x,y) that is feasible for f , we can always find a nonnegative f with

fijk = xij
yjk∑
t yjt

, with objective value

∑

i,j,k

pijfijk =
∑

j,k

pjk(
∑

i

xij)
yjk

∑

t yjt
=

∑

j,k

pjkyjk.

Thus, we have that (P ′) and (P ) have the same optimal values.

Let A ∗ be a 2-flexibility structure where PD(A ∗) = minA ∈F2
PD(A ). Then, let

(x∗,y∗) be a pair of optimal solution for the linear program (P ′) defining PD(A ∗).

Now, define EQ(A ) to be the following set of equations:

EQ(A ) =































∑

i

xij =
∑

k

y∗jk, ∀j,

∑

j

xij ≤ ci, ∀i,

xij ≥ 0, ∀i, j,

xij = 0, ∀(i, j) /∈ A ,

x ∈ Rn2

.































Note that equations in EQ(A ) is simply a flow feasibility problem. Thus, by a

similar augmenting flow argument used in the proof of Proposition 5.1, we can prove

that if A ∗ has multiple disjoint components, then there exists A o where A o is a

connected 2-flexibility structure, and EQ(A o) has at least one feasible solution x. In

that case (x,y∗) is feasible for the linear program (P ′) defining PD(A o), and thus,

we have PD(A o) ≥ PD(A ∗). And because A o is a connected 2-flexibility structure,

it must be a long chain and the proof is complete.
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Finally, from Proposition 5.1 and Proposition 5.2, one may believe that when the

supply chain cost is independent of the products, i.e., pijk = pij′k for any i, k and any

j, j′, then there exists a long chain that is optimal among all 2-flexibility structures.

Interestingly, this is not always true. For this purpose, we provide a counter-example

with n = n′ = 4,

pijk :=











































1 if i = 1 or k = 1, 2

1 if i = 2 or k = 2, 3

1 if i = 3 or k = 3, 4

1 if i = 4 or k = 4, 1

2 otherwise,

d1k = d2k = d3k = d4k := 1 for 1 ≤ k ≤ 4, and ci := 2 for all i = 1, 2, 3, 4. Then, let

A ∗ = D4 ∪ {(a1, b3), (a3, b1), (a2, b4), (a4, b2)} be the graph where both plants 1 and 3

have arcs to products 1 and 3, and both plants 2 and 4 have arcs to products 2 and 4.

Then, A ∗ is a 2-flexible structure, and it is not difficult to check that no long chain

achieves the same or lower cost than A ∗. Therefore, we have that when pijk = pij′k

for any i, k and any j, j′, it is not always the case that there exists a long chain that

generates the lowest costs among all 2-flexible structures.

When pijk = pij′k for any i, k and any j, j′, one can interpret pijk as the cost of

shipping a unit of product from plant i to distribution center k. Thus, the assumption

of pijk = pij′k can be interpreted as having a model that attempts to minimize the

firm’s transportation costs. In the next section, we will perform a more detailed

analysis for this particular case.

5.3 Transportation Costs

In this section, we restrict our attention to study the case where the transportation

costs is proportional to the distances between plants and distribution centers. To

gain insight on the flexibility structure that minimizes transportation cost, we study a

stylized model where the demands of different products are equal at any distribution

center (i.e. djk = dj′k for any j, j′.), plant i can always produce product i, (i.e.
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Dn ⊂ A , for any A under consideration), and the capacity for each plant i is equal

to the total demand for product i (i.e. ci =
∑n′

k=1 dik).

Note that in this case, ci = ci′ for any 1 ≤ i, i′ ≤ n and
∑n

i=1 ci =
∑

j,k djk.

Without loss of generality, we will assume ci = 1 for all 1 ≤ i ≤ n. We define

dk :=
∑

j djk, then, djk = 1
n
dk for any 1 ≤ j ≤ n. Finally, we assume that the unit

transportation cost of shipping any product from plant i to distribution center k is

equal to the Euclidean distance between plant i and distribution k.

5.3.1 1-Dimensional Case

First, in this subsection, we assume that the locations of all plants and all distribution

centers lies on a 1-dimensional line. For each 1 ≤ i ≤ n, 1 ≤ k ≤ n′, we use L(ai) ∈ R

to denote the location of plant i, L(b′k) ∈ R to denote the location of distribution

center k. Without loss of generality, we assume that L(a1) = 0, L(a1) ≤ L(a2) ≤
L(a3) ≤ ... ≤ L(an), and L(b′1) ≤ L(b′2) ≤ ... ≤ L(b′n′). Note that the distance between

plant i and distribution center k is simply |L(ai)−L(b′k)|. Thus, for a flexibility design

A , its transportation cost is represented by the following linear program.

PD(A ) = min
∑

i,j,k

|L(ai)− L(b′k)|fijk

s.t.
∑

i

fijk =
dk
n
, ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′,

∑

j,k

fijk ≤ 1, ∀1 ≤ i ≤ n,

fijk ≥ 0, ∀1 ≤ i, j ≤ n, 1 ≤ k ≤ n′,

fijk = 0, ∀(ai, bj) /∈ A ,

f ∈ Rn2n′

,
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Next, we propose a linear program that is a relaxation of PD(A ) for any flexibility

structure A ∈ F2.

min
∑

i,k

|L(ai)− L(b′k)|gik (RLP )

s.t.

n
∑

i=1

gik = dk, ∀1 ≤ k ≤ n′,

n′

∑

k=1

gik = 1, ∀1 ≤ i ≤ n,

0 ≤ gik ≤
2dk
n

, ∀1 ≤ i ≤ n, 1 ≤ k ≤ n′,

g ∈ Rnn′

.

In the linear program defined by (RLP ), gik can be interpreted as the volume of

products transported from plant i to distribution center k. Note that for any A ∈ F2,
∑

j:(ai,bj)∈A
djk =

2dk
n
. Therefore, if we let gik :=

∑

j fijk, then g is a feasible solution

of (RLP ), which implies that (RLP ) is a relaxation of PD(A ). In the rest of this

section, we will characterize an optimal solution of (RLP ), and the optimal solution

will then be used to identify a long chain that has the same transportation cost as

the objective value of (RLP ).

Because we can always split a distribution center into two distribution centers

without changing the structure of the optimization problem defining PD(A ) and the

optimization problem (RLP ), we will assume without loss of generality, that there

exist some tl such that
∑tl

k=1 dk = n
2
. The next proposition characterizes g∗1k, where

g∗ is an optimal solution of (RLP ).

Proposition 5.3. Let tl be the integer such that
∑tl

k=1 dk = n
2
. Then, there exist an

optimal solution g∗ for (RLP ) where

g∗1k =







2dk
n

if 1 ≤ k ≤ tl

0 otherwise.
(5.1)

Proof. We will use an algorithmic proof by constructing g∗ starting from an optimal
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solution of (RLP ), say, g. Suppose that there exists some 1 ≤ l ≤ tl such that

g1l <
2dl
n
. Because

∑n′

k=1 g1k = 1 there must exist some h > tl and g1h > 0. Let

S = {i | gil > 0, i 6= 1} and T = {i | gih < 2dh
n
, i 6= 1}. Because ∑n

i=1 gik = dk for all k

and gik ≤ 2dk
n

for all i, k, we have that both |S| ≥ n
2
and |T | ≥ n

2
. By the pigeonhole

principle, we have that there exist some i∗ ∈ S ∩ T . Let τ be the vector such that

τik :=



















1 if (i, k) = (1, l) or (i∗, h)

−1 if (i, k) = (1, h) or (i∗, l)

0 otherwise.

Note that τ is a characteristic vector of an augmenting cycle of g. Also, because

L(a1) ≤ L(ai∗) and L(b′l) ≤ L(b′
tl
) ≤ L(b′h), we have

|L(a1)− L(b′l)|+ |L(ai∗)− L(b′h)|

≤ |L(a1)− L(b′h)|+ |L(ai∗)− L(b′l)|

Hence, τ represents an augmenting cycle with non-positive cost. Let ǫ be the max-

imum value such that g + ǫτ is feasible and we have that g + ǫτ is also an optimal

solution of (RLP ). Thus, we can reassign g to be g + ǫτ , i.e., let g := g + ǫτ , and

have g still be an optimal solution of the linear program (RLP ).

We can continue to perform the pervious operation as long as there exist some

1 ≤ l ≤ tl with g1l <
2dl
n
. Eventually, our procedure will terminate because each

operations must find a unique augmenting vector τ . Hence, we eventually obtain an

optimal solution g such that g1k = 2dk
n

for any 1 ≤ k ≤ tl.

Finally, because
∑n′

k=1 g
∗
1k = 1, we have g∗1k = 0 for all tl + 1 ≤ k ≤ n. Thus, g∗ is

an optimal solution of (RLP ) satisfying Equation (5.1).

With Proposition 5.3, we can now characterize an optimal solution of (RLP ).

Theorem 5.1. Let tl be the integer such that
∑tl

k=1 dk = n
2
. Then there exists an

optimal solution g∗ for (RLP ) such that
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g∗ik =































2dk
n

if 1 ≤ i ≤ ⌊n
2
⌋, 1 ≤ k ≤ tl

2dk
n

if ⌈n
2
⌉ + 1 ≤ i ≤ n, tl + 1 ≤ k ≤ n′

dk
n

if n is odd, i = n+1
2
, 1 ≤ k ≤ n′

0 otherwise.

(5.2)

Proof. Similarly to Proposition 5.3, we start from a vector g′ that is an optimal

solution of (RLP ) and provide an algorithm to construct g∗ from g′.

First, applying the algorithm from Proposition 5.3, we can construct an optimal

solution g′ such that g′1k satisfies Equation (5.2) for every 1 ≤ k ≤ n′. When we apply

the algorithm symmetrically on g′nk, it is easy to check that algorithm will not change

g′1k for any 1 ≤ k ≤ n′. Therefore, after applying the algorithm from Proposition 5.3

on g′1k and g′nk, we end up with an optimal solution g′ such that g′1k and g′nk satisfy

Equation (5.2) for every 1 ≤ k ≤ n′.

Let gs ∈ Rn′(n−2) be the subvector of g′ where gsik = g′ik for 2 ≤ i ≤ n − 1,

1 ≤ k ≤ n′. By optimality of g′, gs is the optimal solution for the optimization

problem

min
∑

i,k

tikgik

s.t.

n−1
∑

i=2

gik = dk − g′1k − g′nk, ∀ 1 ≤ k ≤ n′,

n′

∑

k=1

gik = 1, ∀ 2 ≤ i ≤ n− 1,

0 ≤ gik ≤
2dk
n

, ∀, 2 ≤ i ≤ n− 2, 1 ≤ k ≤ n′,

g ∈ Rn′(n−2)

Note that for any 1 ≤ k ≤ n′, dk−g′1k−g′nk = dk− 2dk
n

= (n−2)dk
n

. Let dsk =
(n−2)dk

n
for
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1 ≤ k ≤ n′, and we have that gs is the optimal solution for the optimization problem

min
∑

i,k

tikgik

s.t.

n−1
∑

i=2

gik = dsk, ∀ 1 ≤ k ≤ n′,

n′

∑

k=1

gik = 1, ∀ 2 ≤ i ≤ n− 1,

0 ≤ gik ≤
2dsk
n− 2

, ∀ 2 ≤ i ≤ n− 1, 1 ≤ k ≤ n′,

g ∈ Rn′(n−2)

But the optimization problem above has the exactly same structure as linear

program (RLP ) of a system with n − 2 plants and products. Therefore, we can

continuously apply the algorithm from Proposition 5.3 again, and construct g′ such

that g′1k, g
′
2k, g

′
n−1k, and g′nk all satisfy Equation (5.2) for every 1 ≤ k ≤ n′. And

by induction, we can eventually construct g′ik that satisfy Equation (5.2), for all,

1 ≤ i ≤ n and for all 1 ≤ k ≤ n′. Therefore, we have g′ = g∗ and by construction, g∗

is an optimal solution of (RLP ).

Having characterized g∗ as an optimal solution of (RLP ), we can now identify

a flexibility structure A ∗ that is a long chain that is optimal among all 2-flexibility

structures. Moreover, we will show that there exists an optimal solution f∗ of the

linear program defining PD(A ), such that g∗ik =
∑

j f
∗
ijk.

Theorem 5.2. If n is even, define

A
∗ := Dn∪{(ai, bn−i+1), ∀1 ≤ i ≤ n

2
}∪{(an−i+1, bi+1), ∀1 ≤ i ≤ n− 2

2
}∪{(n+ 2

2
, 1)},

and if n is odd, define

A
∗ := Dn∪{(ai, bn−i+1), ∀1 ≤ i ≤ n− 1

2
}∪{(an−i+1, bi+1), ∀1 ≤ i ≤ n− 1

2
}∪{(n+ 1

2
, 1)},
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then PD(A ∗) = minA ∈F2
PD(A ).

Proof. Let tl be the integer such that t =
∑tl

k=1 dk = n/2. If n is even, let

f ∗
ijk :=



















dk
n

if (ai, bj) ∈ A ∗, 1 ≤ i ≤ n
2
, 1 ≤ k ≤ tl

dk
n

if (ai, bj) ∈ A ∗, n+2
2
≤ i ≤ n, tl + 1 ≤ k ≤ n′

0 otherwise.

and if n is odd, let

f ∗
ijk :=











































dk
n

if (ai, bj) ∈ A ∗, 1 ≤ i ≤ n−1
2
, 1 ≤ k ≤ tl

dk
n

if (ai, bj) ∈ A ∗, n+3
2
≤ i ≤ n, tl + 1 ≤ k ≤ n′

dk
n

if i = n+1
2
, j = n+1

2
, 1 ≤ k ≤ tl

dk
n

if i = n+1
2
, j = 1, tl + 1 ≤ k ≤ n′

0 otherwise.

Then, it is straight forward to check that f∗ is feasible for PD(A ∗). Moreover, if

g∗ satisfies Equation (5.2), then
∑

j f
∗
ijk = g∗ik for any i, k. Because PD(A ∗) ≤

∑

i,j,k |L(ai) − L(b′k)|f ∗
ijk =

∑

i,k |L(ai) − L(b′k)|g∗ik ≤ minA ∈F2
PD(A ), we have that

PD(A ∗) = minA ∈F2
PD(A ).

It is simple to check that A ∗ is connected and indeed a long chain. Thus, Theorem

5.2 proves that there exist a long chain that is minimizes transportation cost among

2-flexibility structures when all plants and distribution centers lie on a line.

Note that when plants and distribution centers are located at different regions,

different long chains can have different transportation costs. As a result, even after

a firm has has decided to implement a sparse flexibility structure like the long chain

to better match demand and supply, the firm may want to implement a long chain

that minimizes its transportation costs. Therefore, Theorem 5.2 provides a simple

guideline on designing the long chain structure that minimizes the transportation

costs.

Admittedly, placing all plants and distribution centers on a 1-dimensional line is

a restrictive assumption, since the surface of earth is 2-dimensional. Next, we discuss
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the case where transportation costs is minimized when plants and distribution centers

lie on a 2-D plane.

5.3.2 2-Dimensional Case

For this subsection, we assume that the locations of all plants and all distribution

centers lies on a 2-dimensional plane. For each 1 ≤ i ≤ n, 1 ≤ k ≤ n′, we use

L(ai) ∈ R2 to denote the location of plant i, L(b′k) ∈ R2 to denote the location

of distribution center k. We use ‖L(ai) − L(b′k)‖ to denote the Euclidean distance

between plant i and distribution center k. For a flexibility design A , its transportation

cost is represented by the following linear program.

PD(A ) = min
∑

i,j,k

‖L(ai)− L(b′k)‖fijk

s.t.
∑

i

fijk =
dk
n
, ∀1 ≤ j ≤ n, 1 ≤ k ≤ n′,

∑

j,k

fijk ≤ 1, ∀1 ≤ i ≤ n,

fijk ≥ 0, ∀1 ≤ i, j ≤ n, 1 ≤ k ≤ n′,

fijk = 0, ∀(ai, bj) /∈ A ,

f ∈ Rn2n′

,

Interestingly, on a 2-D plane, the long chain is not necessarily optimal. Con-

sider an example with 4 plants and 4 products and 4 distribution centers. As

shown in Figure 5-3, The 4 plants are located on each of the four corners of an

unit square, while the 4 distributions are located on the midpoint of each edge of

the square. In this case, it is easy to check that a short chains structure, e.g.

A ∗ = {(a1, b2), (a2, b1), (a3, b4), (a4, b3)}, achieves a transportation cost of 2, (i.e.

PD(A ∗) = 2), while any long chain structure has a transportation cost of at least

2 +
√
5−1
4

.

Despite the fact that long chain does not necessarily optimize the transportation
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Figure 5-3: Counter Example

cost when plants and distribution centers lie on a 2-D plane, discussions in previous

chapters of this thesis indicate that it is often in the firm’s best interest to implement

a long chain structure. Next, we state Algorithm 3, a heuristic that uses Theorem

5.2 to identify a long chain structure with low transportation costs on a 2-D plane.

Algorithm 3 Designing a near-optimal 2-flexibility structure A ∗ for PD(A ∗)

1: procedure Find (A ∗)

2: Project all the plant/distribution center locations onto a line, such that

L(ai) ∈ R for 1 ≤ i ≤ n, and L(b′k) ∈ R for 1 ≤ i ≤ n′.

3: Relabel the plants and the distribution centers so that L(a1) ≤ L(a2) ≤ L(an)

and L(b′1) ≤ L(b′2) ≤ L(b′n′).

4: Define A ∗ as in the statement of Theorem 5.2.

5: Return A ∗.

6: end procedure

In Algorithm 3, note that we did not specify to which line would we project the

locations of all of our distribution centers and plants. Indeed, there are several options

available. One option is to project the locations onto a line that minimizes the total

distance between the line and all the plants and distribution centers. Another option

is to randomly a line (i.e. x-axis) and its orthogonal (i.e. y-axis), and select the line

that yields the best performance.
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5.4 Conclusion

This chapter studies the effect and design of process flexibility with plants being

required to satisfying deterministic demands at different distribution centers. We

prove that when supply chain cost is either: (i) independent of distribution center,

or (ii) independent of production plant, then there exists a long chain that minimizes

the supply chain cost among all 2-flexibility structures. Interestingly, for the case

when supply chain cost is independent of product, but not necessarily independent

of plant or distribution center, we identify an example where there does not exist a

long chain that minimizes the supply chain cost among all 2-flexibility structures.

Motivated by the counter example, we proceed to study process flexibility struc-

tures with only transportation cost. We prove that when there is only transportation

cost, with all plants and all distribution centers lie on a line, there exists a long chain

that is optimal among all 2-flexibility structures. Moreover, we propose Theorem 5.1,

which identifies the structure of an optimal long chain. We note that while Theorem

5.1 does not extend to the case when plants and distribution centers lie 2-dimensional

plane, it can be applied as a heuristic in identifying long chain that is effective for

the purpose of reducing transportation costs.
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Chapter 6

Conclusion

In this thesis, we have developed various theoretical results on the effectiveness of

sparse process flexibility structures under different settings. Our analysis provides

new theoretical support for implementing sparse process flexibility, as well as rigorous

techniques for developing practical flexibility design guidelines. Moreover, our study

has led to several exciting new research directions, which are discussed next.

The decomposition of the sales of the long chain, stated as Theorem 2.2 in Section

2.2, is a novel technique in studying the expected sales of process flexibility structures.

In our analysis, the decomposition is applied to long chain and 2-flexibility structures.

An interesting question is whether there exists a similar decomposition for general

flexibility structures. A positive answer to this question may lead to breakthroughs in

understanding more general flexibility structures, and in particular, structures with

more than 2 degrees of flexibility. Another potential direction is to generalize the

decomposition result to other problems with underlying network structure. Many

network problems are known to be more difficult with the existence of cycles, e.g.

Bayesian networks [Weiss and Freeman, 2001], and the decomposition technique may

prove to be a useful tool for understanding those network problems with cycles.

Our thesis has also developed tools to study the long chain and 2-flexibility struc-

tures under nonhomogeneous systems, that is, systems with unequal plant capacities

and non-IID product demands. For example, if ci = E[Di], but ci 6= cj for any

i, j, then it is not known how to find the optimal long chain, or whether there ex-
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ists a long chain that is optimal among all 2-flexibility structures. To study the

nonhomogeneous systems, one can start from the generalized version of the super-

modularity/decomposition results derived in Section 2.4. However, we note that the

decomposition in nonhomogeneous systems can be much more complicated than the

analysis of homogenous systems, as the homogenous assumption ensures that the ex-

pected sales of the long chain can be characterized by a simple and succinct formula.

Our investigation of the transportation model in Section 5.3 has also raised inter-

esting open problems. One particular problem is to derive a performance guarantee

for Algorithm 3 when plants and products lie on a 2-dimensional plane. Another

problem is whether we can identify better heuristics than Algorithm 3. Moreover,

when demands is uncertain, it is intuitive that process flexibility would improve the

match between available capacity and uncertain demand, and reduce the transporta-

tion cost under deterministic demand. Therefore, analysis of an extended distribution

system model with stochastic demand would improve our understanding of the ability

of flexibility structures to achieve both benefits at the same time, and determine the

flexibility structure that achieves the optimal balance between both benefits.
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Appendix A

Proof for Corollary 4.4

First, we prove a lemma which is analogous to Lemma 4.1.

Lemma A.1. For any for any flexibility structure A , and any X ⊆ {1, 2, ..., n}. We

have that

Rs(A , S) ≤ δT (A ,µ) + min{
∑

j∈X
dj|d ∈ S},where T =

∑

j∈X
µj.

Proof. Like the proof of Lemma 4.1, we can apply the max-flow min-cut theorem to

show that for any flexibility structure A , any d ∈ S, we have

P (d,A ) = min

m
∑

i=1

cipi +

n
∑

j=1

qjdj

s.t. pi + qj ≥ 1, ∀(i, j) ∈ I(A )

p ∈ {0, 1}m,q ∈ {0, 1}n.

Let p′, q′ be the optimal solution of the binary program defining δT (A ,µ). Let

X ′ = {j|q′j = 1}. Because S is min-consistent with µ and
∑

j∈X′ µj ≤ T =
∑

j∈X µj,

we can find d′ such that
∑

j∈X′ d′j ≤ min{∑j∈X dj|d ∈ S}. Thus,

P (d′,A ) ≤ δT (A ,µ) +
∑

j∈X′

d′j ≤ δT (A ,µ) + min{
∑

j∈X
dj|d ∈ S}.

117



Now, we present the proof of Corollary 4.4.

Proof of Corollary 4.4. Let τ = argmind∈S P (A ,d), apply max-flow min-cut theo-

rem, we can find X ⊂ {1, 2, ..., n} such that

Rs(A1, S) = δT (A1) +
∑

i∈X
τi,where T =

∑

i∈X
µi.

Moreover, by minimality of τ , we have that
∑

i∈X τi = min{∑j∈X dj|d ∈ S}. Apply
Lemma A.1, we have

Rs(A1, S) = δT (A1)+min{
∑

j∈X
dj|d ∈ S} ≥ δT (A2)+min{

∑

j∈X
dj|d ∈ S} ≥ Rs(A2, S).
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