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ABSTRACT
An empirical tight-binding approximation used by Wang, Chan, and Ho
(Phys. Rev. B, 39:8586,1988) to calculate interatomic forces in a molec-
ular dynamics (MD) simulation code proved to be very fruitful in predicting
certain physical properties of Si. In this thesis, this approach has been red-
erived and implemented in a set of codes to investigate materials properties
of Si.
The electronic wavefunction of the system was constructed as a linear coi-
bination of s and p type atomic orbitals and the Hamiltonian matrix was
constructed by using Harrison's 1/r 2 law. The Hellman-Feynman forces were
calculated by diagonalization of the Hamiltonian matrix. The repulsive short
range pair potential was constructed by subtracting the band-structure en-
ergy per atom from the total energy of Si per atom which was obtained from
literature.
The electronic degrees of freedom were explicitly used in the calculations of
interatomic forces, so that our method is superior to those methods in which
interatomic forces are calculated by using empirical potential functions.
Even though ab-initio methods permit more realistic descriptions of the
atomic systems, the heavy computational cost of calculations severely re-
stricts the number of particles contained in the system of MD simulation,
so that only those materials phenomena which require involvement of small
numbers of atoms can be investigated by MD simulation. But the computa-
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tional requirements of empirical tight-binding method are moderate enough
to permit simulation of systems containing particles up to 1000, so that many
interesting materials phenomena can be investigated with a reasonably real-
istic description of the system.
The present set of codes has been validated by calculating the band-structure
energy, the specific heat, and the radial distribution function of the system
and by comparing our results with the ones obtained from the literature.
Good agreement was obtained between our results and the ones in the liter-
ature. The total energy was conserved to the fifth digit.

Thesis Supervisor: Sidney Yip
Title: Professor of Nuclear Engineering
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1.1 Introduction

Molecular dynamics (MD) simulation by using appropriate interatomic po-

tentials provides us with unprecedented opportunities to understand mate-

rials behavior.[1] Not only can many materials properties be obtained by

using the MD data, but also experiments which cannot be performed in the

laboratory environment can be carried out easily on the model system. MD

simulation also serves as a testing ground for the solid state theories and

statistical mechanics.

What is essentially done is to find the phase trajectory of a given system of

particles (atoms,molecules,ions..) and to calculate various expectation values
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of the materials properties by using the principles of statistical mechanics.

To find the phase trajectory of the system (coordinates and velocities of each

paticle at each time step), we need to integrate the equations of motion of

the particles. The solution of the equations of motion requires us to find

the net forces acting on particles. Calculation of the forces is the most vital

part of the MD simulation. The results of the simulation can be expected

to represent the actual system only if the interactions between the particles

represent the interactions in the real system.

The interactions among particles have to be known explicitly to carry

out the MD simulation. The forces in the MD simulation are of quantum

mechanical character. By using the rules of quantum mechanics, except for

nuclear and gravitational forces, we can calculate all forces in the nature. For

MD simulation we need to solve the Schr6dinger equation for a many body

system. The exact solution of the Schr6dinger equation is possible only for

a few extremely simple cases, like the harmonic oscillator or the hydrogen

atom. For a system as simple as the helium atom, we do not have an exact

solution of the Schr6dinger equation, though by using numerical methods, a

solution close to the exact solution can be obtained.

This thesis is concerned with the MD simulation of silicon in the diamond
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structure by using the empirical tight-binding approximation[2] to the solu-

tion of the Schr6dinger equation. In this approximation, we are in effect solv-

ing the many-body interaction problem among silicon nuclei and electrons,

so that the method is superior to the ones which represent the interatomic

interactions as a sum of few body terms, like the Stillinger-Weber potential

[3, 4, 5] constructed to represent the interactions among silicon atoms. In

the present work, we will show that the tight binding approximation is able

to describe silicon in the diamond structure at high temperatures. We will

show that silicon in diamond structure is indeed stable at high temperatures.

This result is significant, because we know that no pair-potential can stabilize

silicon in the diamond structure. To test the empirical tight-binding method

further, we also calculated the specific heat of silicon in diamond structure

at constant volume which agreed very well with the calculations previously

reported. [6].
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Chapter 2

Interatomic Interactions

2.1 The Many-Body Problem

The ideal problem we need to solve in order to represent the many-body

interactions perfectly is the time-dependent Schr6dinger equation for the

system of the silicon nuclei plus the electrons. The interactions among these

particles are Coulombic and the potential energy of two charged particles

depends on the inverse of the distance between the two particles. We can

write the Hamiltonian of the system which corresponds to the total energy

of the system in the classical approximation.

Because the solution of the full Schr6dinger equation for a system of many
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particles is out of the question with today's computers, some approximations

must be made to the Schr6dinger equation. The Schr6dinger equation cannot

be solved exactly even for a single Si atom. The Hartree-Fock approximation

which is derived below assumes that an electron is moving in the average

field created by all the other electrons and the ionic cores and tries to find

the best one-electron wave functions as the solution to the self-consistent

Hartree-Fock equation. But the determination of the self-consistent solutions

is computationally very demanding, and the application of this method to

the MD simulation of atomic systems is for now out of the question.

2.2 Density Functional Approach

The density functional theory[7, 8] simplifies the Hartree-Fock equation and

enables us to solve the Schr5dinger equation for larger systems. In this ap-

proximation, instead of looking for the functions which solves the HF equa-

tion self consistently, we just need to find the eigenvalues of the Hamiltonian

matrix. Because finding numbers is much easier than finding functions, the

density functional approximation is computationally less expensive to deal

with than the HF equation.

11



2.3 The Car-Parrinello Method

The Car-Parrinello method[9, 10, 11, 12] is an ab-initio method which was

used successfully in the MD simulation of small atomic systems. By using the

adiabatic approximation which is described below and and the local density

approximation, 13] they were able to solve the equations of motion of both

electrons and the cores simultaneously.[14]. But this method is computation-

ally too expensive and the number of particles which can be simulated is on

the order of one hundred or fewer. Unfortunately, many important materials

phenomena, like the dislocation formation, requires simulation of many more

atoms, so the Car-Parrinello method is unsuitable for the investigation of

those phenomena with today's computing capabilities. But the development

of new computers can expand the applications of the ab-initio methods to

larger systems as well.

2.4 Empirical Potential Functions

The first potential functions which were used in the MD simulation of ma-

terials were empirical ones which mimiced the quantum mechanical effects.

Those potentials are still of importance because they enable us to simulate
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large systems (tens of thousands of atoms) compared to the quantum mechan-

ical approaches. For example,the Lennard-Jones 6-12 potential function[15]

gives good results in the simulation of inert gases, although the discrepancy

between the simulation data and the experimental data increases with the

atomic number of the ideal gas.

We can trace the origin of this potential to the interaction of induced

dipoles created by the fluctation of electron density in the neutral atoms.

Another popular method which is used in the MD simulations of metals

is the Embedded Atom Method(EAM)[16, 17]. The reason for the success

of this method is its ability to include the effects of the electron density

around cores in the calculation of the interatomic forces. For metals, these

environmental effects are important contributors to the interatomic potential.

The electron density around an ion must be calculated and included in the

calculation of forces.

The forces among atoms in covalent systems are strongly direction-dependent

and cannot be calculated with pair potentials. It is known that no pair

potential can stabilize the tetrahedral structure we observe in silicon, di-

amond and many other technologically important materials. At least the

three-body effects must be taken into account. The "Stillinger-Weber" (SW)
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potential[3, 4, 5] stabilizes the tetrahedral structure by including angular

terms besides two-body terms. The origin of this potential can be again

traced to the quantum-mechanical structure of the system.[18]

The advantage of the empirical potential functions is that they can be

used easily in the MD simulations with considerable savings in computation.

For example, the hard-sphere potential which is one of the simplest poten-

tial functions enables us to simulate literally millions of particles. No real

atomic systems obey such a simple potential function, but the hard-spheres

potential function is a testing ground for statistical mechanics, for some of

the properties of such a system can be obtained analytically by using the

theorems of statistical mechanics.

2.5 The Empirical Tight-Binding

Approximation

The subject of this thesis is the tight-binding approximation applied to MD

simulation in line with [19, 20, 21, 6, 22]. In one sense, this method is in the

middle of the two methods for calculating the interatomic forces: ab-initio
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calculations and empirical potentials. The empirical tight binding method

includes the electronic degrees of freedom, so the quantum mechanical nature

of the interatomic interactions are taken into account, so in this respect it is

superior to empirical potentials. On the other hand, it is not as rigorous as

the ab-initio methods.

The empirical tight-binding method is easy to implement in an MD sim-

ulation and the computational cost of calculating the interatomic forces is

modest compared to the ab-initio methods, thus the size of the system which

can be simulated in a reasonable computer time is much larger.

The tight-binding method can be used as an ab-inito method as well[23],

but to permit to the simulation of large systems, we prefer to use the empir-

ical method. Our purpose is to use a scheme which permits the simulation

of many particles so that a wide variety of materials phenomena can be in-

vestigated with a realistic description of the interatomic interactions, which

requires that quantum mechanical effects must be included explicitly.

We develop an MD code which uses the empirical tight binding method

to calculate interatomic forces. The results obtained by running this code is

in good agreement with the results obtained in [6], which assures us that this

formulation is a realistic one. Another advantage of the code is the ease to

15
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modify it in order to simulate systems of different atoms. I will use a similar

code to simulate silicon carbide by changing the tight-binding parameters for

my Ph.D. thesis.
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Chapter 3

Derivation of Empirical

Tight-Binding Approximation

3.1 The System

The system I simulated consists of silicon nuclei and electrons. The inter-

actions among these charged particles are, of course, Coulomb interactions.

The constituents of nuclei (protons and neutrons) are tightly confined and

can be treated as moving as a unit for all practical purposes. The four va-

lence electrons of the silicon atom largely determine the chemical properties

of Si.
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The Coulomb force acting on a particle with charge qi due to another

particle located on the origin with charge q2 can be given as

-= 1 q1  (3.1)
47rEo r 3

where r is the distance between the two particles and Fis the radial vector di-

rected towards particle 1, and Eo is a constant whose value is Eo = 1/(367r 109).

The core electrons constitute a spherical charge cloud between the valence

electrons and the Si nucleus. They shield the charge of the nucleus, so the

core electrons can be taken into account by assigning a reduced charge to the

nucleus.

The two basic types of the particles we are simulating are the cores which

consist of the nuclei plus the core electrons and the valence electrons. So we

treat the nucleus plus the core electrons as a single unit. This division is our

first important approximation.

The electrons have spins of 1/2 so that they are Fermiions.[24]The fact

that electrons are Fermions has important implications. The Pauli exclusion

principle tells us that no two electrons can have exactly the same quantum

state in a given system. The statistics of the electrons is of course the Fermi-
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Dirac statistics. When two atoms gets close to each other, the electron

wavefunctions begin to overlap. Because no two electrons can be in the same

quantum state, electrons must rearrange themselves and the energy levels

of the electrons will shift. If the rearrangement reduces the total energy of

the system, we expect that a bond is formed between the two atoms[25]. If

the atoms are forced towards each other, more and more electrons jump to

higher energy levels, rapidly increasing the potential energy of the system.

The Pauli exclusion principle is responsible for the repulsive force.

3.2 Schrodinger Equation

When we solve the Schr6dinger equation, we obtain the total wavefunction

of the electron-nuclei system. We know from quantum mechanics that this

function contains the maximum amount of the information one can get from

a given system.[24] For a many-body system which contains N particles, like

ours, the total wavefunction can be written as

IF = I'(X1,y 1, z1, ... , , yXk z7, ... , XN, yN, ZNt) (3.2)
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The volume element of the system is

dV = dVidV 2...dV...dVN (3-3)

= dxldyldzl...dxkdykdzk...dxNdyNdzN (3.4)

Then we can interpret the total wavefunction of the system by writing down

the quantity w

w(xlylz...xkykz...xNyNZN) = F*x9dV (3.5)

where w is the probability of finding the system in the volume element dV.

In quantum mechanics, the physical variables are represented as operators.

When we want to know a property of the system, like its momentum, we need

to find the expectation value of the relevant operator. The expectation value

of an operator is calculated from an inner product which is an integral over

the whole space. If we denote the expectation value of an operator by <>

and an operator with a^, we can write the expectation value of an operator

20



f as

< f >= I*F fxdV (3.6)

The time-independent Schr6dinger equation can be written as

H I' = E . (3.7)

Clearly, if we substitute 3.7 into 3.6, we obtain the total energy (kinetic+potential)

of the system. Here H is the Hamiltonian operator of the system which cor-

responds to the total energy of a classical system. The Hamiltonian of our

system can be written as the sum of the kinetic energies of the electrons and

the nuclei plus their Coulomb interaction energy. We can write H as

H = Hei + Hion + Hei-ion + Hex (3.8)
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We do not have the last term in our calculations which represents an external

potential (like an applied electric field). For the electron part we can write

2 1 2

Hel = Helkin + Hele = PK + 1 e
2m 8ireo , k- r,|

The interaction is naturally the Coulomb interaction. The sums are over all

electron indices except k = k' for the interaction term. P, k, and m are the

momentum, position and mass of an electron of index k. For the ion part of

the Hamiltonian we can write

Hion = Hion,kin + Hion-ion 2I + - Ri,) (3.10)

Ion parameters are shown with capital letters. For the electron-ion interac-

tion we put

Heliion = E Viion(4k - Ri). (3.11)
k,i

The solution of 3.7 is extremely difficult except for very simple systems, like

the H atom. Even for the He atom,[24] we need to make approximations in

order to solve 3.7.
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3.3 Adiabatic Approximation

Now I will make an approximation to the total wavefunction in order to

greatly simplify the solution to the 3.7. The basis of this approximation

is that because electrons have a much smaller mass than the nuclei, they

move much faster than the nuclei, so electronic system adjusts itself almost

instanteneously to the changes in the configuration of the nuclei. This fact

enables us to decouple the electronic and the ionic motion. I will desribe this

approximation briefly, a more rigorous discussion can be found in [26].

Let us assume that we can write a Schr6dinger equation for the electrons

as

(Hel + Helion)/ =Eeil (3.12)

and that 3.2 can be approximated as

qf ='O$(l1... rNi 1--...vRN')(R .--- N') (3.13)

where the 0 are solutions of 3.12 and N, N' denote the number of electrons

and ions, respectively. By substituting 3.13 into 3.7 and remembering that
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Vfbq = #bVf$ 4+ OVb + Vib.Viq, we obtain the following equation:

HTI = (Hei + Hion + He1-ijon)/q (3.14)

= 0(Hion + Eei) - h (kV2V + 2ViO.Vif ). (3.15)

The last term prevents us from decoupling the electronic and ionic motion,

because it depends on the both electronic and ionic coordinates in an insep-

arable way. If we neglect this term, for the ionic motion we would have

(Hion + E!i)0 = E (3.16)

We can make this approximation because of the large difference between elec-

tronic and ionic velocities. So what we need to do is to solve 3.12 by assuming

that the cores are fixed and then substitute the electronic energy into 3.16

and solve it for the ionic motion. In the application of the empirical tight

binding method in the MD simulation, the electronic energy is calculated

first and the ionic trajectory is calculated by using this ionic energy.
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3.4 One-Electron Approximation

The basis of the tight-binding method is the one-electron approximation,

which decouples the motion of each electron from the rest of electrons in a

way which includes the many-body effects of the rest of particles. I again

give only a brief description of this approximation. A precise argument of

this approximation can be found in [27].

As a first approximation, let us assume that the electronic wavefunction

of 3.12 can be written as

- -- ') l(' )( 2 (' ).S'N('N) (3.17)

What we need to find is a set of o's which minimize the ground state energy

of 3.12. The variational approach is the key to the solution of this problem.

The result is that

[-- V2+V(r') + E ''f r) dr']-p(1)
2m 40r) r-(11

E oj(v r). (3.18)

It turns out that in order to be more precise, we need to use a linear corn-
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bination of multiplications of trial wavefunctions like 3.17, because electrons

obey the Pauli exclusion principle, so that the electronic wavefunction must

be zero if the two electron coordinates equal to each other( for example,

(7 1, _2 = +1 , , -- ,'N) = 0. Also the electronic wavefunction must be an-

tisymmetric under the exchange of two electronic coordinates. These two

conditions are satisfied by the Slater determinant

q) - N(1)

= )--1/2(3.19)

1('N) ... (PN(qN)

where the factor in front of the determinant is added for normalization pur-

poses. This form satisfies the Pauli principle. If two electrons are inter-

changed, two columns of the determinant are interchanged and 0 changes

sign. Again, if the two electrons have the same coordinates, two columns are

identical and 0 vanishes.

Now again we need substitute 3.19 into 3.12 and apply the variational

principle to find the best trial functions which minimize the ground state

energy of the electronic system. Again, I will only give the result. The
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derivation of the result can be found in [27].

[--V2h +V( ]p(f)+ e2 zJ2dr'<pd( (3.20)
2m 41rEo r

spinl!

where

.- H F ___________ k____pF = -ej ()(3.21)

and

p(r') = E -e I p(f)| 2 . (3.22)

Even though we have simplified 3.12 greatly by the one-electron approxi-

mation, the solution of 3.20 is still extremely difficult and must be done

self-consitently. We need to make further assumptions to solve 3.20.
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3.5 The Linear Combination of

Atomic Orbitals

The basis of the one-electron approximation was discussed above. Now I will

make further approximations to reach a simpler equation which is used in

the code I wrote. Our ionic Hamiltonian 3.10 contains contributions from

the electronic energy and also from core-core interactions. I will assume that

the electronic wavefunction can be approximated as a linear combination of

atomic orbitals. I used only four atomic orbitals, one s and three p functions.

The form of these functions can be found in [2].

0 S= E Amnfm(r - r,,) (3.23)
m,n

Now let us try to find the forces acting on ion cores due to the electronic

structure. To find the electronic force acting on core n, we need to use the

Hellman-Feynman theorem[28]:

in = -5< $4|f | >= < Hk/ > (3.24)
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where the sum is over the occupied states. By substituting 3.23 into 3.24,

we obtain that

*= - S A,,nAjmfnOHm n'mn/a9n (3.25)
j,m,m' ,nl

where

Hmn'mn =< fm(r -n)|Ieifm(- - > ( 3.26 )

The calculation of these matrix elements is beyond the scope of my masters

thesis. A good description of the calculation of these matrix elements can be

found in [23]. If the explicit calculation of these matrix elements is used to

calculate the electronic forces acting on cores, this method would be an ab-

initio method. Instead, I will use these matrix elements in parametrized form.

Let us use the nearest-neighbor approximation. In the case of the diamond

cubic Si, we have a total of four nearest neighbors per Si atom. Harrison

showed that[25] the matrix elements for the nearest-neighbor approximation

29
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has - dependence. The matrix elements can be written as[2]

- H ., = cos9,V 5

Cos 29, , + sin 29,V

Hu y= cosoxcosy(VP, - Vppr)

where 0, is the angle between the vector connecting the two nearest neighbor

and the x axis. From Harrison's work [25] we know that

d 2
Vae = -Va 0

r2
(3.28)

where Vabc is a constant and do is the equilibrium nearest-neighbor distance

of Si. The Vacb's are tabulated for several covalent materials[25], so they can

be inserted into our equations directly.

30
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3.6 Construction of

Repulsive Pair Potential

As we know, the ionic Hamiltonian 3.10 contains a repulsive term which is

represented as a pair potential function. We can think the origin of this po-

tential as the coulomb repulsion of the positive-charged cores. But the shield-

ing by electrons changes the shape of this potential from a purely coulombic

potential. A good way to obtain this potential is to subtract the attrac-

tive potential due to electronic system from the total potential energy of the

system per silicon atom. The total energy of the silicon per atom can be

obtained from the ab-initio calculations of silicon. Such a calculation was

carried out by Yin and Cohen [29] and I fit the total energy per silicon to a

curve

Ett(r).-= Eo[1 + (r - ro)/A]exp[-(r - ro)/A] (3.29)

Then the repulsive pair potential can be written as

1
<(riI) = -[Etot(rij) - EBs(rij)] (3.30)

2
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where EBS is the sum of the eigenvalues of the Hamiltonian matrix for the

occupied part of the band structure divided by the number of atoms. The

occupied part of the band structure consists of lowest 2N eigenvalues of the

Hamiltonian matrix.

3.7 Tight-Binding Parameters

I obtained the tight-binding parameters from Chadi's work on Si surfaces[19].

They are given as

V,,(do) = -1.94e

Vo,(do) -= 1.75eV

Vp,,(do) = 3.05eV

Vp,,(do) = -1.08e

Ep = 1.2eV

V

V; E, = -5.20eV

(3.31)

The fit to the total potential function produced the following parameters:

Eo = -4.8060eV
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ro = 2.3627A

A = 0.5076A (3.32)
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Chapter 4

Molecular Dynamics

Simulation

4.1 The Code

I wrote code QUNTUM to simulate silicon atoms by using the empirical

tight-binding method I have described. The flowchart of the program is

shown in fig.4.1.

I used a total of 8 atoms in my simulations. The total energy of silicon

per atom in diamond structure as a function of the nearest-neighbor distance

is taken from [29]. The curve fit to the data is shown in Fig.4.2.
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INITIAL ATOMIC
CONFIGURATION

CALCULATE INTERATOMIC
DISTANCES

CALCULATE CALCULATE TB MATRIX
TWO-BODY FORCES ELEMENTS

CALCULATE TB EIGENVALUES
AND EIGENFUNCTIONS

CALCULATE
HELLMANN-FEYNMAN FORCES
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Figure 4.1: Flowchart of code QUANTUM.
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Figure 4.2: Total potential energy of Si in diamond structure as a function

of the nearest-neighbor distance.
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Clearly, the equilibrium nearest neighbor distance is the distance where

the derivative of the total energy with respect to the nearest neighbor is zero.

From fig.4.2 we see that the equilibrium nearest-neighbor distance for silicon

in the diamond structure is ro = 2.37A.

To obtain the band-structure energy of silicon per atom, I ran my code

for T = OK for various nearest-neighbor distances and calculated the band-

structure energy. Then I plotted the band structure energy as a function of

the nearest-neighbor distance (Fig.4.3)and fit a polynomial to this curve.

The band structure energy calculated by code QUANTUM is in the prox-

imity of a couple of percent to the calculations carried out in [6] and shown

in Fig. 4.4.

Then we found the repulsive pair-potential by subtracting the band-

structure energy from the total energy and plotted it (Fig.4.5) and fit it

to a third-order polynomial.

After finding the repulsive potential, I plugged it in the MD code and run

it for 6 different temperatures from 100K to 600K for 2000 time-steps after

500 equilibration steps and then stored the coordinates of each atom. The

time step for my simulation was 5.472x10' 6 s. I found the various physical

properties by using the phase trajectories produced by code QUANTUM and
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Figure 4.3: Band-structure energy per atom of silicon in diamond structure
calculated by code QUANTUM.
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Figure 4.4: The band-structure energy per silicon atom in the diamond-cubic
structure taken from literature.
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constant volume case.

then stored in a file.

4.2 Results and Discussions

I obtained the total energy of the system as a function of temperature under

constant volume(Fig.4.6). The result is very close to the one in [6] as shown

in Fig 4.7. I am adding a copy of their results at the end of my thesis.
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Figure 4.8: g(r) for T=100K

Afterwards, I obtained the radial distribution function of the system for

each temperature. Because of the small system size, only the peak cor-

responding to the first nearest neighbor can be plotted. but these plots

show that the diamond structure is stabilized by the empirical tight-binding

method. Also by viewing the evolution of the system in time by using the

graphics computer SiliconGraphics Personal Iris, the stability of the system

was confirmed.
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4.3 Conclusions

Clearly, the empirical tight-binding approximation provides us with a practi-

cal and powerful method for MD simulation of atomic systems. The method

is practical, because the Hellman-Feynman forces are easy to calculate, and

the computational cost of the simulation is moderate compared to the ab-

initio methods, so that we are able to simulate up to 1000 atoms in a given

system. Also by changing only a couple of tight-binding parameters which

can be obtained from literature easily, we are able to simulate a large variety

of systems containing different kinds of atoms like carbon, silcon, nitrogen...

The empirical tight-binding method is also powerful, because we include

the electronic degrees of freedom explicitly in the calcualtions, so the quan-

tum mechanical nature of forces is taken into account as well. Even though

the calculation of interatomic forces is not as rigorous as it is in the case of

ab-initio methods, the reduced computational load enables us to simulate up

to 1000 particles compared to up to 100 in case of ab-initio methods.

I am planning to use the set of codes I developed for silicon to simu-

late SiC and possibly carbon by using appropriate tight-binding parameters

for each system. Even though there are empirical potential functions devel-
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oped for these materials, they are unable to describe the physical properties

of those systems as accurately as we want. I predict that the empirical

tight-binding approximation will provide us with a deeper understanding of

materials phenmena in those materials than it was previously possible.
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CODE QUANTUM

I *

This program carries out the molecular dynamics simulation of silicon

in the diamond-cubic structure by using the empirical tight-binding

approximation to calculate interatomic forces. Number of

particles, system dimensions, number of time steps

and the length of each time-step are given in the input file.

Written by:

Ahmet Isik, Massachusetts Institute of Technology,

Cambridge, MA 1991.

float Vssm=(-1.94),Vspm=1.75, Vppm=3.05, Vppi=(-1.08);
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float Es=(-5.20), Ep=1.2;

float A,AO=(-23.37), A1=17.32, A2=(-12.42),A3=5.25, AA=0.5076;

float d02=5.5823,EO=(-4.806), rb=2.2, rO=2.3627,SN;

float side[3];

float inter5[4];

int N,nn[3],nu[3]; 20

#define NA 9

#define NB 33

#include<stdio.h>

#include<math.h>

#deflne euler(a, b, c, d, e, f) (pow(a-b, 2.)+pow(c-d, 2.)

+pow(e-f, 2.))

#define judy(a, b) euler(y[O][0][a],y[O][0][b],y[O][1][a],

y[O][1][b],y[O][2][a],y[0][2][b])

float exto,y[2 ][3][NA],dy[2][3][NA],side[3];

float mat[4],h[NB][NB],ter[4]; 30

main()

{

FILE *fpi,*fpo;

int ni;

float TEMP;

float EPS, DT,hmin,xl=O,x2=100.;
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fpi=fopen("input", "r");

fpo=fopen("output" ,"W);

mat[0]=Vssm*d02;

mat[1]=Vspm*d02; 40

mat[2]=Vppm*d02;

mat[3]=Vppi*d02;

inter5[0]=21.565502;

inter5[1]=(-219.828989);

inter5[2]=746.270717;

inter5[3] =(-843.663299);

ter[0]=363.638069;

ter[1]=(-370.624998); 50

ter[2]=132.386506;

ter[3]=(-16.026109);

srandom(0.8);

fscanf(fpi, "%f %f %f %f %f %d %d %d %d",

&TEMP,&DT,&hmin,&A,&EPS,nu,nu+1, nu+2, &ni);

TEMP=100.;

DT=0.005;
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A=2.3627;

nu[0]=1;nu[1]=1 ;nu[2]=1; 60

N=8*nu[0] *nu[1]*nu[2];

printf("\n\n\n\nnumber of atoms ............... :%d\n\n", N);

printf("neare st -neighbor distance ..... : %f \n\n", A);

printf("temperature (K) ................ : %f \n\n", TEMP);

printf("time step for integration ..... : %f \n\n", DT);

printf("maximum permissible error ..... : %f \n\n", EPS);

elmaso;

maxwell(TEMP);

sinulate(DT,fpo);

} 70

/ *This function produces the diamond structure. */

elmas()

{

int a=0,i,j,k,1,p,z,x,yy,ffl;

float add,c[3],AU=8,d,d2,d4,cy,cz,cu[3][10];

d=2.3094*A;

for(i=0;i<=2;i++){

side [i] =d*nu[i];

}

d2=d/2.; 80
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d4=d/4.;

/ *Calculation of the unit cube*/

cu[2][1]=cu[2][2]=O.; cu[2][3]=cu[2][4]=d4;

cu[2][5]=cu[2][6]=d2; cu[2][7]=cu[2][8]=d2+d4;

cu[1][1]=cu[1][5]=O.; cu[1][2]=cu[1][6]=d2;

cu[1][3]=cu[1][7]=d4; cu[1][4]=cu[1][8]=d2+d4;

cu[O][1]=cu[0][6]=O.; cu[O][2]=cu[O][5]=d2;

cu[O][3]=cu[O][8]=d4; cu[O][4]=cu[O][7]=d2+d4;

for(i=1; i<=nu[2]; i++){

c[2]=(i-1)*d; 90

for(j=1; j<=nu[1]; j++){

c[1]=(j-1)*d;

for(k=1; k<=nu[O]; k++){

c[O]=(k-1)*d;

for(p=1; p<=AU; p++){

a++;

for(1=0; 1<=2; 1++){

y[O][1][a]=cu[1][p]+c[];

}

} 100

}

}
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}

}

maxwell(TEMP)

float TEMP;

{

int i,j,si,n;

float r1,r2,vel(),sum[3];

for(i=O; i<=2; i++){ 110

sum[i]=O.;

srandom(O.5);

for(j=1; j<=N; j++){

r1 =random()/(pow(2.,3 1.) -1.);

r2=randomo/(pow(2.,31.)- 1.);

if(r2<.5)

si=(-)

else

si=1;

y[1][i][j]=si*ve(TEMP, ri); 120

sum[i]+=y[1] [i] [];

}

}

for(i=O; i<=2; i++){
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sum[i]/=N;

for(j=1; j<=N; j++){

y[l][i][]-=sum[i];

}

}

rl=. 130

sum[O]=sum[1]=sum[2]=O.;

for(i=1;i<=N;i++){

for(j=O;j<=2;j++){

rl+=y[l]j] [i]*y[l] U][i];

}

}

rl=rl*.5/N;

rl=sqrt(1.5*8.614e-5*TEMP/rl);

for(i=1;i<=N;i++){

for(j=O;j<=2;j++){ 140

}

}

}

float vel(TEMP,r)

float TEMP, r;
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{

int i=0;

float g,gl,u=1.e-5, p, K=8.614e-5,erfO;

150

p=sqrt(2.*K*TEMP);

do{

g=r-0.5*(1+erf(u));

g1=0.56419*exp(-u*u);

u+=g/gl;

i++;

}

while(i<20);

return(p*u);

} 160

#define MAXSTP 1000

#define TINY 1.0e-30

simulate(DT,fpo)

float DT;

char *fpo;

{

int i,ii,inj,k,n,nstp;

float dumy,dxsav,h,hdid, hnext,side [3],x=0. ,xsav;
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float en[3], es[3],yst[2][3][NA],yn[2][3][NA];

float ystart[2][3][NA]; 170

h=DT;

for(in=O; in<=1; in++){

for(n=1;n<=N;n++){

for(j=O;j<=2;j++){

ystart[in][j][n]=y[in][j][n];

}

}

}

printl(fpo,x); 1s0

for(nstp=1; nstp<=MAXSTP;nstp++){

for(i=O;i<=2;i++){

es[i]=en[i];

}

x+=h;

turev(dy,y);

for(n=1;n<=N;n++){

for(in=;in<=1;in++){

for(j=O;j<=2;j++){

yn[in][j][n]=y[in][j][n]; 190
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y[in] [j][n]+=1./6.*h*dy[in] [j][n];

yst[in] [] [n]=yn[in] U] [n]+0.5*h*dy[in] [][n];

}

}

}

turev(dy,yst);

for(n=1;n<=N;n++){

for(in=O;in<=1 ;in++){

for(j=O;j<=2;j++){

y[in] [] [n]+=1./3.*h*dy[in][j][n]; 200

yst[in][j][n]=yn[in][j][n]+0.5*h*dy[in][][n];

}

}

}

turev(dy,yst);

for(n=1;n<=N;n++){

for(in=O;in<=1 ;in++){

for(j=O;j<=2;j++){

y[in] [] [n]+=1./3.*h*dy[in] [][n];

yst[in]U]j[n]=yn[in][j][n]+h*dy[in][j][n]; 210

}

}
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}

turev(dy,yst);

for(n=1;n<=N;n++){

for(in=O;in<=1;in++){

for(j=O;j<=2;j++){

y[in] [j] [n]+=1./6.*h*dy[in][[n];

}
} 220

fprintf(fpo,l"\n");

}

print2(fpo,x);

for(n=1;n<=N;n++){

for(j=O;j<=2;j++){

fprintf(fpo,"%5.3f ",y[O][j][n]);

}

fprintf(fpo,"\n");

}

periodic(; 230

}

}

periodic()

{
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int i,j,k,n;

for(j=O;j<=2;j++){

for(n=1;n<=N;n++){

if(y[0][j][n]< -0.05*sideUj]){

printf("kucuk\n");

k=abs(y[O] [] [n]/sidetj]); 240

y[O][j] [n]+=sidej] *(k+1);

}

if(y[O] [j][n]>1.05*side[j]){

printf("buyuk\n");

k=y[O][j][n]/sideUjl;

y[O] [j] [n]-=sideU]j*k;

}

}

}

} 250

turev(dy,y)

float dy[][3][NA],y[][3][NA];

{

int n,ij,k;

for(n=1;n<=N;n++){

for(j=O;j<=2;j++){
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dy[O] j] [n]=y[]j] [n];

}

}

forceso; 260

}

forces()

{

int dc[NB],i,k,nl, n2;

float 43],m[3],sum=O.,f,f2,a,Etoto,Ebso;

float ds[NB],dumy=O, hue[4],r, x[3][27];

matrix(ds);

sort(dc, ds,4*N);

for(nl=1; nl<=N; nl++){

for(k=O; k<=2; k++){ 270

dy[1][k][nl]=O.;

}

}

for(nl=1; nl<=N-1; nl++){

for(n2=nl+1; n2<=N; n2++){

hiroko(nl,n2,x);

indivf(dc,ds,m,nl,n2,x);

for(i=O;i<=26;i++){
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r=sqrt(x[O] [i] *x[O] [i] +x[1] [i] *x[1] [i] +x[2] [i] *x[2] [i]);

if(r<3.3 && r>.1){ 280

dumry=O.5*(ter[1] +2.*ter[2]*r+3. *ter[3] *r*r);

for(k=o;k<=2;k++){

dy[1] [k] [n1]+=dumy*x[k][i]/r;

dy[1] [k] [n2] -=dumy*x[k][i]/r;

}

}

}

}

for(k=O;k<=2;k++){

dy[1][k][nl]-=m[k]; 290

dy[1][k][n2]+=m[k];

}

if(r<3.5 && r>3.3){

dumy=3.*1196.300446*r*r+2.*(-12194.395773)*r+41396.729024;

for(k=O;k<=2;k++){

dy[1][k][nl]+=dumy*x[k][i]/r;

dy[1][k][n2]-=dumy*x[k][i]/r;

dy[1][k][nl]-=m[k];

dy[1][k][n2]+=m[k];

} 300
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}

}

}

}

}

indivf(dc,ds,m,nl,n2,x)

float ds[],m[,x[27];

int dc[],nl,n2;

{

int e,fp,sp,ij,k; 310

float a,dm[3][4][4],r;

fp=4*(nl-l)+l;

sp=4*(n2-1)+1;

for(k=O;k<=2;k++){

m[k]=O.;

}

if(r>3.5){

for(k=O;k<=2;k++){

for(i=O;i<=3;i++){

for(j=O;j<=3;j++){ 320

dm[k][i][j]=O.;

}
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}

}

return;

}

calsum(dm,m,x);

if(r>3.3 && r<3.5)calcf2(dm,m,nl,n2);

for(e=1;e<=2*N;e++){

for(i=;i<=3;i++){ 330

for(j=O;j<=3;j++){

for(k=O;k<=2;k++){

m[k]+=h[i+fp] [dc[e]]*hUj+sp] [dc[e]]*dm[k][i] [j];

}

}

}

}

}

calsum(dm,m,x)

float dm[][4][4],m[],x[27]; 340

{

int i,j,k,ml,m2;

float dmt[3][4][4],p[3],r2;
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for(i=O;i<=26;i++){

for(k=O;k<=2;k++){

p[k]=x[k][i];

r2+=p[k]*p[k];

}

calcf(dmt,m,r2,p); 3sO

for(ml=O;j<=3;j++){

for(m2=0;m2<=3;m2++){

for(k=O;k<=2;k++){

dm[k] [ml] [m2]+=dmt[k] [ml] [m2];

}

}

}

}

}

360

calcf(dm,m,r2,x)

float dm[][4][4],m[],r2,x[];

{

int ij,k,1,m;

float r,r4,r5,r6;
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r=sqrt(r2);

r4=r2*r2;

r5-r*r4;

r6=r*r5; 370

if(r2<6){

for(k=O; k<=2; k++){

dm[k][0][0]=2.*mat[f]*x[k]/r4;

for(1=1; 1<=3; 1++){

if(k==1-1){

dm[k][0][I]=(3.*pow(x[I-1],2.)-r2)/r5*mnat[1];

}
if(k!=1-1){

dm[k] [0] []=(3.*x[l- 1]*x[k])/r5*mat[1];

dm[k] [1] [0]=(-dm[k] [0][1]); 380

}

if(l==k+1){

dm[k][1][1]=(4.*pow(x[k, 3.)-2.*x[k]*r2)/r6*((mat[2]-mat[3])+2.*x[kl/r4*nat[3];

}

if(l!=k+1){

dm[k][1][1]=4.*pow(x[I-1], 2.)*x[k]/r6*(rnat[2] -mat[3])+2.*x[k]/r4*mat[3];

}

}
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}

dm[0] [1] [2]=(4.*x[0] *x[O]*x[1) -x[1]*r2)/r6*(mnat[2] -mat[3]); 390

dm[1] [1] [2]=(4.*x[O]*x[1]*x[1] -x[0]*r2)/r6*(mat[2] -mat[3]);

dm[2] [1] [2]=(4.*x[0]*x[1]*x[2])/r6*(mat[2] -mat[3]);

dm[0] [1] [3]=(4.*x[O]*x[0]*x[2] -x[2] *r2)/r6*(mat[2] -mat [3]);

dm[1][1][3]=(4.*x[0]*x[1*x[2)/r6*(mat[2]-mat[3]);

dm[2] [1] [3]=(4.*x[0] *x[2]*x[2] -x[]*r2)/r6*(iat [2] -mat[ [3]);

dm[1] [2] [3]=(4.*x[1] *x[1]*x[2])/r6*/(ma[(mat [2] -mat[3]);

dm[2] [2] [3]=(4.*x[1] *x[2]*x[2] -x[2]*r2)/r6*(mat[2] -mat[3]);

dm[2] [2] [3]=(4.*x[1] *x[2]*x[2] -x[1] *r2)/r6*(mat [2] -miat[3]);

}

for(k=O; k<=2; k++){ 400

dm[k][2][1]=dm[k][1][2];

dm[k][3][2]=dm[k][2][3];

dm[k] [3] [1] =dm[k] [1] [3];

}

}

calcf2(dm,m,nl,n2)

float dm[][4][4];

int nl,n2;

{

int ij,k,1,ml,m2; 410
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float a,b,c,elem(),hue[4,r,x[3],side[3];

float judyl,judy2;

r=sqrt(hiroko(nl,n2,x));

judyl=inter5[0]*r*r*r*r*r+inter5[1]*r*r*r*r+inter5[2]*r*r*r+inter5[3]*r*r;

judy2=5.*inter5[0]+4.*inter5[1]/r+3.*inter5[2]/(r*r)+2.*inter5[3]/(r*r*r);

calcf(dm,m,nl,n2);

for(ml=0;ml<=3;ml++){

for(m2=0;m2<=3;m2++){

for(k=0;k<=2;k++){

dmn[k][ml][m2]=judyl*dm[k][ml][mn2]+elem(m,m2,11,n2)*x[k]/r*judy2; 420

}

}

}

}

matrix(ds)

float ds[];

{

int i,j,k,nln2,ml,m2;

float dir[3],elemo,d02=5.5815,dss[NB],r2,dumy;

float x[3][27],telen(); 430

i=O;

for(nl=1; nl<=N; nl++){
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for(n2=1; n2<=N; n2++){

hiroko(nl,n2,x);

for(ml=O; ml<=3; ml++){

for(m2=0; m2<=3; m2++){

h[(nl-1)*4+ml+1][(n2-1)*4+m2+1]=telem(ml,m2,x);

printf("%4. if ",h[i][j]);

i++;

} 440

}

printf( "\n");

}

}

dia(ds);

}

float telem(ml,m2,x)

int ml,m2;

float x[][27];

{ 450

int ij,k;

float dummy=O,p[3];

for(i=O;i<=26;i++){

for(j=O;j<=2;j++){
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pWj=x'j][i];

}

dummy+=elem(m 1,m2,p);

}

return dummy;

} 460

float elem(ml,m2,p)

int ml,m2;

float p[];

int i,j,k,kk,,m,n,ni=1;

float c[3], r2, r,r2i;

float hue[4],x[3];

r2=p[o]*p[o]+p[l]*p[1]+p[2]*p[2];

r=sqrt(r2);

if(r2==O. && ml==m2 && m1==O) return Es; 470

if(r2==O. && ml==m2 && ml!=O) return Ep;

if(r2==O. && ml!=m2) return 0.;

if(r>3.5) return 0.;

c[0]=p[0]/r;

c[1]=p[1]/r;
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c[2]=p[2]/r;

if(r<3.3){

if(ml==m2 && ml==O) return mat[O]/r2;

if(ml==O && m2!=O) return c[m2-1]*mat[1]/r2; 480

if(ml!=O && m2==O) return -c[m1-1]*nat[1]/r2;

if(ml==m2 && m2!=O) return c[ml -1] *c[ml - 1]/r2*(mat[2]-mat[3])+mat[3]/r2;

if(ml!=m2 && m1!-=O && m2!=O) return c[m1-1]*c[m2-1]/r2*(mat[2]-mat[3]);

}

r2i=inter5[0]*r*r2+inter5[1]*r2+inter5[2]*r+inter5[3];

if(ml==m2 && ml==0) return mat[0]*r2i;

if(mnl==0 && m2!=0) return c[m2-1]*mat[1]*r2i;

if(ml!=0 && m2==0) return -c[ml-1]*mnat[1]*r2i;

if(ml==m2 && m2!=0) return c[mn1-1]*c[m1-1]*r2i*(mat[2]-nat[3])+mat[3]*r2i;

if(ml!=m2 && ml!=O && m2!=0) return c[m1-1]*c[m2-1]*r2i*(mat[2]-mat[3]); 490

}

hiroko(nl,n2,x)

int ni, n2;

float x[][27];

{

int i=0,k,1,m,n;

float c[3],r;
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printf("nl=%d n2=%d \n",nl,n2);

for(l=(-1);1<=1;1++){ 500

c[O]=side[0]*1;

for(n=(-1);n<=1;n++){

c[1]=side[1]*n;

for(m=(-1);m<=1;m++){

c[2]=side[2]*m;

for(k=0;k<=2;k++){

x[k][i]=y[O][k][n2]+c[k]-y[][k][nl];

}

r=x[0][i]*x[0)]i]+x[1][i]*x[1][i]+x[2][i]*x[2][i];

if(r<6 && r>5)printf("%d %d %d 6.3f\n",nl,n2,i,r); so

i++;

}

}

}

}

dia(ds)

float ds[];

{

int i, j, n=4*N,np=50; 520
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float d[NB], e[NB],ve,sum=O.;

tred2(h,n,d,e);

tqli(d,e,n,h);

for(i=1; i<=n; i++){

ds(i]=d[i];

}

}

tred2(a,n,d,e)

float a[][NB] ,d[],e[o;

int n; s30

{
int l,k,j,i;

float scale,hh,h,g,f;

for (i=n;i>=2;i--) {

l=i-1;

h=scale=0.0;

if (I > 1) {

for (k=1;k<=l;k++)

scale += fabs(a[i][k]);

if (scale == 0.0) 540

e[i]=a[i][];

else {
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for (k=1;k<=1;k++) {

a[i][k] /= scale;

h += a[i][k]*a[i][k];

}

f=a[i] [1];

g = f>O ? -sqrt(h) sqrt(h);

e[i]=scale*g;

h -= f*g; 550

a[i][]=f-g;

f=0.0;

for (j=1;j<=l;j++) {

alj][i]=a[i][j]/h;

g=0.0;

for (k=1;k<=j;k++)

g += a[j][k]*a[i][k];

for (k=j+1;k<=1;k++)

g += a[k][j]*a[i][k];

e[j]=g/h; 560

f += eUj]*a[i][j];

}

hh=f/(h+h);

for (j=1;j<=;j++) {
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f=a[i] [];

e[j]=g=e[j]-hh*f;

for (k=1;k<=j;k++)

a[j][k] -= (f*e[k]+g*a[i][k]);

}

} 570

} else

e [i] =a [i][;

d[i]=h;

}

d[1]=O.O;

e[1]=0.0;

for (i=1;i<=n;i++) {

1=i-1;

if (d[i]) {

for (j=1;j<=1;j++) { 580

g=0.0;

for (k=1;k<=1;k++)

g += a[i][k]*a[k][j];

for (k=1;k<=1;k++)

a[k][j] -= g*a[k][i];

}

79



}

d[i]=a[i][i];

a[i][i]=1.0;

for (j=1;j<=1;j++) al][i]=a[i][j]=O.O; 590

}

}

#define SIGN(a,b) ((b)<0 ? -fabs(a) fabs(a))

tqli(d,e,n,z)

float d[],e[],z[][NB];

int n;

{

int m,,iter,i,k; 600

float s,r,p,g,fdd,c,b;

for (i=2;i<=n;i++) e[i-1]=e[i];

e[n]=0.0;

for (1=1;1<=n;l++) {

iter=0;

do {

for (m=;m<=n-1;m++) {
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dd=fabs(d[ml)+fabs(d[m+1);

if ((float)(fabs(e[m])+dd) == dd) break; 610

}

if (m != 1) {

if (iter++ == 30);

g=(d[1+1]-d[I])/(2.0*e[I]);

r=sqrt((g*g)+1.0);

g=d[m]-d[1]+e[]/(g+SIGN(r,g));

s=c=1.0;

p=0.0;

for (i=m-1;i>=;i--) {

f=s*e[i]; 820

b=c*e[i];

if (fabs(f) >= fabs(g)) {

c=g/f;

r=sqrt((c*c)+1.0);

e[i+1]=f*r;

c *= (s=1.0/r);

} else {

s=f/g;

r=sqrt((s*s)+1.0);

e[i+1]=g*r; 630
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s = (c=1.0/r);

}

g=d[i+1]-p;

r=(d[i] -g)*s+2.o*c*b;

p=s*r;

d[i+1]=g+p;

g=c*p;

for (k=1;k<=n;k++) {

f=z[k][i+1];

z[k][i+1]=s*z[k][i]+c*f; 640

z[k][i]=c*z[k][i]-s*f;,

}

}

d[l]=d[1]-p;

e[l]=g;

e[m]=0.0;

}

} while (m != 1);

}
} 650

sort(dc,ds,n)

int dc[], n;
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float ds[];

{

int i, inter2, j;

float inter;

for(i=1; i<=n; i++){

dc[i]=i;

}

for(i=2; i<=n; i++){ 660

for(j=1; j<i; j++){

if(ds[i]<dsU]){

inter=ds[i];

ds[i]=dsUj];

dsj]=inter;

inter2=dc[i];

dc[i]=dcUj];

dc[j]=inter2;

}

} 670

}

}

energy(e)

float e[n;
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{

int dc[NB],ij,k,m,am=1,nl,n2,1;

float BS,ds[NB],fl,f2,h[NB][NB],hue[4],r=0., ri, r2, sum=O.,c[3], x[3](27];

float Etoto,Ebso,de=O.;

e[O]=e[1]=e2]=0.;

matrix(ds); 680

sort(dc,ds,4*N);

for(i=1; i<=2.*N;i++){

sum+=ds[i];

}

BS=2.*sum/N;

e[]+=BS;

for(i=1;i<=N-1;i++){

for(j=i+1j<=N;j++){

hiroko(ij,x);

for(k=O;k<=26;k++){ 690

r=sgrt(x[][k]*x[][k]+x[1][k]*x[1][k]+x[2][k]*x[2][k]);

if(r<3.5){

if(r<3.3){

de+=0.5*(ter[0] +ter[1] *r+ter[2] *r*r+ter[3] *r*r*r);

}

if(r<3.5 && r>3.3){
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/* de+=1196.300446*r*r*r+(-12194.395773)*r*r+41396.729024*r-46798.584,980;*/

}

}
} 700

}

}

e[]+=de/N;

for(i=1; i<=N; i++){

e[l]+=0.5*(y[1][1][i]*y[1][1][i]+y[1][2][i]*y[1][2][i]+y[1][0][i]*y[1][0][i]); }

e[1]/=N;

e[2]=e[O]+e[1];

}

float es[3];

print1(fpo,t) 710

float t;

char *fpo;

{

int i,in,j,k,n;

float en[3];

energy(en);

for(i=O;i<=2;i++){

es[i]=en[i];
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}

printf(" TIME P.E K.E T.E K.D P

printf("\n %8.5f %8.5f %8.6f %8.5f %8.5f %8.5f %8.5f\n",

t,en(O],en[1],en[2],(en[1]-en[1]),(en[0]-en[0]),

(en[2]-en[2])/fabs(en[2])*100);

/ *fprintf(fpo," TIME P.E K.E T.E K.D P.D

fprintf(fpo,"\n %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5An",

t, en[O], en[], en[2], (en[1]- en[l]), (en[0]- en[0]),

(en[2]- en[2])/fabs(en[2]) *100); */

print2(fpo,t)

float t;

char *fpo;

.D 720 T.D \n");

T.D \n");

730

int i,inj,k,n;

float en[3];

energy(en);

printf("\n%8. 6f %8.5f %8.5f %8.5f %8.5f .8.Sf %8.5f\n",t,en[],en[1],en[2],

(en[1]-es[]),(en[0]-es[0]),(en[2]-es[2])/fabs(es[2])*100);

/*fprintf(fpo,"\n%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\n",ten[O],en[1],en[2],

(en[1]- esf[]),(en[0]- esf[]),(en[2]-es[2])/fabs(es [2])*100);*/

740
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float ext(fl,f2,hue,r)

float fl,f2,hue[],r;

{

float ex[4],k=3.3,1=3.5;

exco(ex,fl,f2,hue,k,1);

return ex[O]*r*r*r+ex[1]*r*r+ex[2]*r+ex[3];

}

exco(ex,f1,f2,hue,k,1)

float ex[],fl,f2,hue[],k,1;

{ 750

float p;

p=k*k*k-1*1*1+3.*k*l*(-k);

hue[]=ex[]=(-2.*fl+f2*(k-1))/p;

hue[1]=ex[1]=(-1)*(f1*(-3.*k-3.*)+f2*(k*k+k*-2*1*1))/p;

hue[2]=ex[2]=*(-fi*6.*k+f2*(2.*k*k-k*1-1*1))/p;

ex[3]=(-1)**/p*(f1*(1-3.*k)+f2*(-k*1+k*k));

}

float Etot(r) 760

float r;

{
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return EO*(1+(r-r)/AA)*exp(-(r-rO)/AA);

} '

float Ebs(r)

float r;

{
return AO+Al*(r-rb)+A2*(r-rb)*(r-rb)+A3*pow((r-rb),3.);

}

770
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