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Abstract

Octylcyanobiphenyl (8CB) embedded in silica aerosil gels have been studied by means
of high resolution X-ray scattering experiments. The silica particles form a hydrogen-
bonded fractal gel network that introduces quenched disorder. As a result, the ne-
matic to smectic-A transition is replaced by the growth of static short range smectic
correlations. The X-ray scattering profile has fwo contributions: a thermal fluctua-
tion term which resembles that of the pure liquid crystal and a static fluctuation term
due to the random field that becomes important at low temperatures. The decrease
of the smectic correlations with increasing silica density is consistent with theory and
other experiments. '
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Chaptier 1
Introduction

One of the most dramatic observations in macroscopic systems is the behavior as-
sociated with phase transitions. Although the fundamental physical laws governing
.'the Behavior of individual molecules are quite well known, it is almost impossible to
understand the collective phenomena through the application of those laws alone. It
is only through statistical mechanics which often deals with Avogadro’s number of
molecules that physicists have achieved an understanding of phase transitions.
Liquid crystals have very rich and interesting phase transitional behavior. Since
many of the liquid crystalline phases possess positional order, X-ray scattering tech-
niques that probe the instantaneous positional correlations have been an effective
tool to investigate liquid crystal phase transitions. Although it is far from complete,
the understanding of these transitions has been greatly improved through a series of
high-resolution experiments performed since the early 1980’s. |
Unlike ideal systems, the real world is full of imperfections, and phase transitions
can be influenced by random disorder. Studying the effect of such randomness on
various phase transitions has been a very challenging task both theoretically and
experimentally. The investigation of random field magnets, following Fishman and
Aharony’s discovery of the generation of random ﬁelds in 1979 that random fields
can be generated by applying a unform external field to diluted antiferromagnets [1],
provided a very good test case for random field theories and was a great boost for

‘the under‘stan,ding of such systems. Because liquid crystals have many interesting
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phase transitions, some. of which differ in character from those in magnets, applying
random disorder to liquid crystals has been given much attention. For example, liquid
crystalline molecules within random aerogel networks have been studied with several
different methqu including calorimetry, light scattering, and X-ray scattering [2-7).
More recently, LC + aerosil systems have attracted much attention [8-15] , and this

work has stimulated the present thesis research.

Unlike the LC + aerogel systems, where the aerogel network is rigid and elastically
quite stiff, LC + aerosil systems created by dispersing small silica aerosil particles in
a liquid crystal possess a soft weakly hydrogen-bonded gel structure. Two advantages
can be achieved - elastic smearing of the phase transitions (which occurs for aerogels)
is gréatly reduced, and very high porosities (very low gel densities) can be realized.
The ability to achieve very low levels of disorder is especially important since a differ-
ent phase transitional behavior may be observed compared with that seen in higher
density aerosil samples and rigid aerogels. Therefore, it is attractive to study LC +
aerosil systems carefully with X-rays, and the results of such a study are presented

in this thesis.

The thesis is divided into six chapters. It is the author’s intention to make the
thesis as self-contained as possible; To that end, this chapter introduces such basic
building blocks of the system, specifically, liquid crystals and aerosils as well as the
basics of X-ray scattering. Chapter 2 presents a theorbetical overview lof the phase
transitions involved in this study with or without random disorder. Chapter 3 reviews
previous experimental results from a number of different random field systems. The
experimental X-ray procedures used in the present work are presented in chapter 4.
In chapter 5, the experimental reéults, the method of data analysis, and the results
of this analysis are discussed. Results of the analysis are discussed in chapter 6. In

‘the final chapter the most important results of this study are summarized.
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1.1 Liquid Crystals

Contrary to the traditional belief that there are only three states of matter, namely
gases, liquids, and solids, there exist a number of phases with properties intermediate
between those of an isotropic liquid and a crystalline solid phase. The term liquid
crystal was coined to signify systems with such states. Liquid crystalline phases are
also called mesomorphic phases, which is often considered as a more appropriate term,

and the molecules that show mesomorphic phases are referred to as mesogens.

Several tens of thousands of mesogens are now known to show one or more than
one of these mesomorphic phases. Although there are many different mesomorphic
phases corresponding to different degrees of order, most materials exhibit only a few
such phases. 'Interestingly, many liquid cryétal molecules have several featu_res in
common. One of the most important of these features is the fact that all mesogens
possess an anisotropic molecular geometry. They are usually either rod-shaped or
disk-like. The rod shaped molecules have a rigid central core with extended aliphatic
(hydrocarbon) tails, while disk-like molecules have a rigid planar core at the center.
The liquid crystal material studied in this thesis is octylcyanobiphenyl (8CB), and

its molecular structure is shown in Figure 1-1(a).

Liquid crystals are usually classified as either thermotropic or lyotropic. Ther-
motropic liquid crystals show different phases as the temperature is changed. Ly-
otropic liquid crystals, which are usually a mixture of different materials, e.g., liquid ‘
‘crystal molecules and solvent, exhibit phase transitions as the density of the compo-
nents as well as the temperature is changed. 8CB is a fhermotropic liquid crystal,

~and its phase sequence is shown in Figure 1.1.

There are many mesomorphic phases with various degrees of order. Discussioﬁ
in this thesis is, however, confined to the two most common mesomorphic phases
— nematic and smectic-A, which lie between the isotropic (I) liquid and crystalline
solid (K) phases. Since 8CB exhibits both nematic (N) and smectic-A (SmA) phases
before it crystallizes upon decreasing temperature from the isotropic phase, a brief

introduction to nematics and smectics is given below.
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(a) Octylcyanobiphenyl (8CB)

K— SmAd — N —— |
293 K 307.01 K 314.01K

(b) 8CB Phase Sequence

Figure 1-1: Molecular Structure of Octylcyanobiphenyl (8CB) and Its Phase Sequence
(a) 8CB has a rigid core and a hydrocarbon tail at one end. (b) With decreasing
temperature, 8CB goes through a first order transition from isotropic (I) to nematic
(N) phase, a second order phase transition from nematic to smectic-Ay phase, and a
first order phase transition to a solid crystalline (K) phase.

1.1.1 Nematics

The name nematic was invented by G. Friedel from the Greek vnua meaning thread
because certain thread-like defects (disclination lines) are often observed in these
materials [16]. Figure 1-2(b) shows a schematic arrangement of the molecules in the
nematic phase made up of rod-like molecules. |

What distinguishes the nematic phase from the isotropic liquid phase is the ori-
entational order, that is, the direction - the long axis - of the molecules tend to align
along some common axis, which is represented by the unit vector n and denoted as
the ‘director’. Note that the —n state is indistinguishable from the +n state.

Except for the orientational order described above, many other aspects of the
nematic phase are similar to those of the isotropic liquid phase. The centers of mass
of the molecules are random, and nematics flow like liquids.

A scalar order parameter for the nematic phase can be written as

1 3
Q=—§+§<c0529>. = (1.1)
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(c) smectic A (d) smectic C

Figure 1-2: Schematic Diagram of The Structure For Isotropic And Several Liquid
Crystal Phases




It is interesting to note that @ varies from -1/2 to 1 where -1/2 corresponds to a
state in which all the molecules are aligned perpendicular to the director. This is not
a stable state. When the molecules are randomly oriented, @ becomes 0, and when

the molecules are perfectly aligned parallel to the director, @ becomes 1.

The nematic states involves a free energy of deformation that can be expressed as

Fy =22 0+ 2 v x4 B v sy, (12)

where K, K;, and K, are respectively the splay, twist, and bend elastic constants

corresponding to the elastic deformations of the same name.

1.1.2  Smectics

The name smecf,ic was coined by G. Friedel from the Greek word ounyua meaning
soap because the mechanical properties are reminiscent of soaps[16]. Smectics in
general have layered structures with a well-defined interlayer spacing, which can be
probed by X-ray diffraction.

The simplest smectic phase, the smectic-A phase, is illustrated in Figure 1-2(c). A
smectic-A phase corresponds to a one-dimensional density wave in a three-dimensional
fluid with the density wave along the nematic director. In fact, the density modulation
is almost perfectly sinusoidal so that the density of the system in the smectic-A phase

can be written as

2Qmz
ma=pvuwmm(7r+w), (1.3)

where pg is the average density, |¥| is the amplitude of the modulation, and d is the
layer spacing. In the above density equation for the smectic-A phase, the higher order
terms, which are typically several orders of magnitude smaller than the first order
term, can be safely ignored. The 8CB layer spacing is d = 31.73 A.

Strictly speaking, the smectic-A phase of 8CB is a smectic-Aq phase, which is a
partial bilayer smectic since d has a value between L and 2L where L is the extended

length of a single 8CB molecule.
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1.2 Aerogels and Aerosils

Since they were first invented in 1931 [17], aerogels have been proved to be very useful
in various applications as well as scientific research. The term “aerogel” was coined
by its inventor Samuel S. Kistler. Though there are many different materials that
can make aerogels, for example, alumina, tungsten oxide, ferric oxide, tin oxide, etc.,
silica aerogels are a focus of discussion in this thesis, thus silica aerogels are implied
by aerogels unless stated otherwise. For an excellent review of silica aerogels, refer to
the,sﬂiéa aerogels web site at Lawrence Berkeley National Laboratory[18].

Aerogeis were invented in an effort fo demonstrate that a wet gel contained a
solid network of the same size and shape as the gel itself. Removing the liquid from
the gel Without damaging the solid network was achieved by drying at supercritical
temperatures and pressures to avoid the formation of a solvent liquid-vapor interface
with attendant surface tension forces that can severely distort the gel. The fabri-
cation process has improved greatly since the days of Kistler, and now it typically
utilizes silicon alkoxide precursors to produce aerogels. Tetramethyl orthosilicate
(TMOS, Si(OCHs)y) and tetraethyl orthosilicate (TEOS, Si(OCH;CHs)y) are the
popular r‘eagents these days. When TEOS is used, the balanced chemical equation

for the formation of a silica gel is:

Si(OCH,CHs)q + 2H,0 = SiO; + 4HOCH,CH, (1.4)

The reaction occurs in a solvent, e.g., alcohol, and the final density of the aerogel
depends on the concentration of silicon alkoxide monomers in the solution. The
remaining water is removed by soaking the gel in the solvent several times, and
finally the solvent is dried at supercritical temperature and pressure in an autoclave.

The final product, silica aerogel, thus obtained is semi-transparent, low density,
and highly porous. It is believed that silica aerogels consist of a random network
of silica backbones in an openly connected void space. Small-angle X-ray scattering

(SAXS) results show that aerogels are fractal over a limited range in length scales[19-

23].
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Table 1.1: Symbols common to aerogels and aerosils

Symbol Meaning Definition
mLc total mass of the LC

mMgio, total mass of the silica

Mtotal | total mass of the sample mLc + Msio,
Vic total volume occupied by the LC

Vsio, total volume occupied by the silica

Viotal total volume of the sample Vic + Vsio,
Protal the total density of the LC+aerosil sample Miotal/ Viotal
o . the silica mass density of the LC+aerosil sample | ms;o,/Viotal
PSi0, the pure silica density (~ 2.2g/ cm3) msio, /Vsio,
Ps silica mass density per unit LC volume msio,/Vic
®rc = ¢p | pore volume fraction Vic/Viotal
Dgsio, silica volume fraction Vsi0, / Viotal

Aithough the preparation method is greatly different, the aerosils form gels that
are chemically identical and structurally similar to the aerogels. A detailed description
of making LC + aerosil samples is located in the sample preparation section in this
thesis. Unlike the aerogels where silica particles are fused together, the aerosil gels are
made of silica spheres attached to each other through rather weak hydrogen bonds.
The presence of hydroxyl groups on the surface of the silica is what causes the aerosils
to form a thixotropic gel when dispersed in an organic medium. The aerosil gels are
believed to have a fractal network of silica backbones aé do the aerogels. One of the
important differences between the aerosil gels and the rigid aerogels is, however, that
the aerosﬂs cannot maintain their structure by themselves. Thus the preparation of
aerosil gels always involve mixing the silica particles and the dispersing agent, e.g.,
the liquid crystal. _

For both aerogels and aerosils there are quite a few frequently used common
symbols. They are listed in table 1.1 for convenience.

Because the sum of the silica and the LC volume fraction must be 1, we can easily

deduce the following equations from the definitions given in the table:

1 1 1
=4
P Ps  PSio,

(1.5)
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oo =2 (1.6)

Ps

Psi0, = (1.7)

PSi0,

Equation 1.5 is handy when it is needed to convert one type of density into another.

Finally it should be noted that liquid crystal orientational and positional or-
der is modified through surface anchoring in the presence of a silica surface. A
' cyahobiphenyl liquid crystal like 8CB, due to its polar nature, is expected to have
homeotropic anchoring (alignment of the liquid crystal molecules with their long axes
perpendicular to the boundary surface) at a SiO, surface covered with ~OH surface

groups ! [24].

1.3 X-ray Scattering

X-ray vscattering is a very useful tool for probing the structures of matter because
the wavelengths associated with the photons are of the order of Angstroms, matching
typical lattice spacings of many condensed matter systems. Since smectic phases of
liquid crystals are fundamentally density waves and have “layer spacing” of the order
of tens of Angstroms, X-ray scattering has been widely used to probe such smectic
phases. A good review of X-ray scattering can be found in Ref.[25].

For any scattering experiment, momentum and energy transfefs between an in-
coming and an outgoing channel must be considered. If the incident photon has
- momentum k; and energy E; = hk;c and the scattered photon has momentum k; and
energy E; = hks¢, the momentum absorbed by the sample is q = k; — ky and the
energy transferred is E; — Ey.

- For the experiments of concern here, the energy change of thé photons is a very
small fraction of the original energy (about or less th;m 107%). Therefore, we are

dealing with quasi-elastic approximation where Ef ~ E; kf ~ k;, and the Bragg

IWhether the anchoring is homeotropic or planar (alignment of the liquid crystal molecules
parallel to the boundary surface) is not agreed upon and is a subject of dispute. It may dependent
on the characteristic of individual molecules. We adopted a view that hydrophobic disposition of
aliphatic tails cause homeotropic anchoring on a —OH rich surface. o
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reflection law ¢ = 2k, sin@ can be used as a very good approximation. That is, X-
ray scattering can be thought as the radiation from an accelerated charge due to an
oscillating electric field, which is the classical Thomson scattering[26].

Quantum mechanical treatment of the scattering process is well described in
Ref.[27], and the calculation of the scattering cross-section and the dynamic structure

factor can be done with the standard interaction Hamiltonian

A2 p.A
R i
2me? = me2

(1.8)

The transition probability between the initial and final states can be calculated

through the Born approximation.

2m ikysr ik;-r
Pisp = 5= [(gre™ ™ | H| ypie™7)| 5 (5, — Ef = h(wi —wy)), (1.9)
where the initial plane Wave state is represented by exp(ik; - r) and the final state by
exp(iks - r).
The resulting dynamic structure factor is

1 . ,
S(q,w) = 57 | WA TETTTE (o(r 1500, 0)) (1.10)

which clearly shows that X-ray directly probes the density-density correlations,
Unfortunately, it is not possible to observe perfect delta—function—shaped Bragg
peaks from X-ray scattering. Instead, t_he line shapes are obscured by many factors
and always have non-zero widths, which hinders the analysis, e.g., the extraction
of correlation lengths. Among the contributors to the non-zero widths, the finite
resolution from the instrument is of central importance.
A perfectly ordered sample of an infinite size would yield a delta function peak

with fictitious infinite instrumental resolution.

Sz'deal(q) X 5(Q) (111)

In reality, even with a perfect sample, the line shape is broadened due to the effects
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of finite resolution.

Sreat(q) < Res(q) (1.12)

where Res(q) is the resolution function.
The intrinsic line shape Sintrinsic(q) broadens due to the same finite resolution

effect. Note first that the line shape is a sum (or integral if you er) of delta functions
Sintrinsic(q) = / dq’ Sintrinsic(4')8(d — o). (1.13)

The observed line shape is obviously
Sursed) = [ Al Suirinic(@)Res(a ) (1.14)

or equivalently

Sobserfuecl(CI) = 'Sintrinsic(Q) ® RGS(Q) (115)

which is a convolution of the intrinsic line shape and the resolution function.
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| Chapt'er 2

Theoretical Approaches to Liquid
Crystals Embedded in Silica Gels

2.1 Nematic to Smectic A Transition

As Aaron Rappaport said in his pioneering X-ray ‘scattering work on 8CB + aerogels
[28], an understanding of the bulk nematic to smectic-A transition is vital for the
analysis of experiments on aerogel- or aerosil-confined systems. Thus it is appropriate
to discuss the nature of the transition at this point.

Although the nematic to smectic-A transition can be identified as a simple one-
dimensional freezing, it is not yet completely understood. A good description of the
transition can be found in chapter 10 of de Gennes’ book [16] and the most up-to-date
review of the transition is presented by Garland and Nounesis [29]. In this section,
those aspects of the transition relevant to the topic of this thesis will be discussed.

As discussed in Chapter 1, the N to SmA phase transition can be understood as
the onset of one dimensional density wave in a three dimensional fluid, as shown in
Eq. 1.3. The two parameters of the equation, the amplitude of the density modu-
lation [¥| and the phase ¢, are the two components of the smectic-A order param-
eter U = |W¥le". The dimensionality of the order parameter suggests the N-SmA
transition should technically belong to the same universality class as the normal—

'superconducting transition; 3D-XY. This is one reason why the transition has at-
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tracted both theoretical and experimental interest.

The de Gennes Hamiltonian that describes the transition in a pure bulk liqﬁid

\

crystal is given by

Hasl,m] = / dr [cu (Vs iaodm) i+ Cy [V + ol + 30 ld)l“] + Hrln],

‘ (2.1)
where to = (T — T%4*) /T84, T8 is the NA transition temperature of the bulk
system, dn(r) = n(r — np) is the fluctuation of the local nematic director n(r) away
from its average value ng, which we take to be Z, subscripts || and L denote the
directions parallel and transverse to ng, and Hp[n] is the Frank effective Hamiltonian
that describes the elasticity of the nematic order director as shown in equation 1.2
[30].

However, the critical exponents for the N-SmA transition of real liquid crystals are
not the same as 3D-XY values. For example, while the 3D-XY heat capacity critical
exponent is asp_xy = —0.007, 8CB has a noticeably different value of o =~ 0.31.
More importantly, the 3D-XY model does not account for the anisotropic nature of
the correlation length. Specifically, the 3D-XY correlation length éritical exponent
3D_XY is a single value of 0.699, but 8CB has v ~ 0.67 and V_]; ~ 0.51. Many
other liquid crystals that exhibit N-SmA transitions also have anisotropic correlation

length exponents.

In fact, a very thorough compilation of experimentally determined effective crit-
ical exponents of various liquid crystals shows quite interesting behavior [29]. The
exponents mostly lie between 3D-XY and tricritical values, and the general trend is
that the bigger the McMillan ratio (Ry = Tna/Tn1), the more tricritical-like the
exponents, which is in qualitative agreement with what McMillan suggested in his

mean-field theory [31].

A crossover from 3D-XY to tricritical nature comes from the coupling between
the smectic order parameter ¥ and the nematic orientational order parameter Q.
When the nematic range is narrow (large McMillan ratio), the coupling is strong and

this drives the b¥* term of the free-energy negative, leading to a first order N-SmA
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transition via a Gaussian tricritical point.

Patton and Andereck suggest that the deviation from isotropic XY behavior is due
to the coupling between director fluctuations én and the smectic order parameter 0,
which is intrinsically anisotropic [32, 33]. According to their model, there is a very
gradual crossover from isotropic to a broad weakly anisotropic correlation regime

followed by strongly anisotropic (v = 2v,) behavior in the strong-coupling limit.

Patton and Andereck’s model suggests explanations of the experimental corre-
lation length results for N-SmA transitions at least qualitatively. However, many
aspects of the theory, including especially the prediction of very strong anisotropy
(v = 2v1) at extremely small reduced temperatures, is beyond the reach of current
experimental techniques, and a true test of the Patton-Andereck theory is yet to

come.

Véry recently, Paul Keyes [34] has developed a rotationally invariant model for
the N-SmA transition. This uses the full tensor nematic order parameter, which is
coupled to the smectic density gradients. Thus director fluctuations and fluctuations
in the magnitude of the nematic ordering are treated on an equal footing. The
important predictions of the de Gennes model are preserved, but there are several
new results that seem to resolve many of the long-standing puzzles associated with
the transition. For example, the model predicts a ¢* term in the transverse part of
the X-ray structure factor with a temperature dependence that agrees reasonably well

with expériments. Further detailed testing of this model will be of great interest.

2.2 Random Field Models

2.2.1 Random Field Ising Model

The Ising model is one of the simplest order-disorder model systems, and it has been a
popular starting point of many theoretical considerations. The Hamiltonian is simply

the sum of dot ‘productsyolf nearest-neighbor one-component spins:
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H=J) S8S;-H> S, (2.2)

<ij> i
where J denotes the strength of exchange interaction between spins and H is a uniform
external field applied to the system. The system becomes anti-ferromagnetic at low

temperatures when J > 0 or ferromagnetic when J < 0.

The above Hamiltonian can be easily expanded to that of the Random Field Ising
Model (RFIM) to include disorder.

H=JY SS;-> hSi—HY S, (2.3)

<ij>

where h; is the site random field that satisfies the following condition:
< h; >=0,< h? >=hl. (2.4)

For our purpose, we will only deal with the case in which the uniform external field

is set to zero, H = 0.

If the random field is too strong, i.e., when hq > |J|, the low temperature state is
a trivial one. Every spin simply follows the respective site random field. Therefore,
the interesting case is the limit when hy < |J|, the weak random field limit. The
presence of a random field dramatically changes the nature of the transition even in |
this limit. For example, ordering of the 2-dimensional Ising model, which was solved

exactly by Onsager [35], is destroyed by the introduction of any non-zero random

field.

Although many theoretical works have centered around the RFIM [36, 37], exper-
imental realization of random field magnetic systems had to wait until Fishmann and
Aharony [1] observed that the physics of the RFIM was closely related to the behavior
of a random Ising antiferromagnet in a uniform field. Since then, many experimental
techniques have been employed, including X-ray and neutron scattering methods, to
study the nature of RFIM. These studies revealed that non-equilibrium phenomena

played a Véry important role in 3D RFIM systems, rendering both the experimental
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and theoretical situatioﬁ quite complex but very rich in physics.

This non-equilibrium behavior is directly shown by zero field cooling (ZFC) and
field cooling (FC) studies of random magnets. In ZFC, the antiferromagnet is cooled
down Without'any applied magnetic field across the phase transition to the anti-
ferromagnetic state. The field is applied at this stage, and the system is heated
across the transition again. All measurements in ZFC indicates a sharp transition
to a long range order with distinct critical exponents. In FC, a disordering field is
applied to the system first, followed by a cooling process within the field. Instead of a
sharp transition, the FC procedure yields a metastable frozen domain state, a result
dramatically different from that of ZFC procedure.

It is now believed that this disparity of ZFC and FC results is caused by the
complex free energy landscape which has numerous local minima. Depending on the
initial state, the system can be easily trapped in one of the local energy minima,
and the evolution to the true ground state is expected to be extremely slow, perhaps
beyond the reach of experimentzﬂly observation.

Meanwhile, Imbrie [38] proved that the lower critical dimension of RFIM is two,

thus 3D RFIM exhibits long-range order.

2.2.2 Random Field XY Model

A model that is more relevant to the current study is the Random Field XY Model
(RFXYM) which is designed to study the role of quenched randomness in systems
with a planar (XY) symmetry. It is also useful in undefstanding the vortex lattice
structure observed in type II superconductivity including high-T¢ superconductors.
| The RFXYM Hamiltonian is identical to that of RFIM except that two component

spins, S, are used. Thus the Hamiltonian is written as

H=J) Si-8;-) h-S;—H.-> 8, (2.5)

<ij> i

Again we will only deal with systems without any applied uniform field, i.e., H=0.

It is now believed that there is no long range order in random field XY magnets
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with quenched disorderi in less than four dimensions [36]. The nature of the ground
state, however, is not well understood yet. We will deal with those theoretical aspects
of RFXYM in the next section. |

It must be noted that the LC + aerosil systems differ from the simple RFXYM
in a subtle way. In the LC + aerosil systems, the randomness enters through random
pinning of molecules and positional disorder due to silica strands. Thus, the disorder-
ing field is not randomly distributed in space (as in random magnetic systems) but
is distributed along the silica strands. At long length scales, however, the random
pinning and positional disorder introduced by the ﬁactal network of silica strands

can be considered as a random field like that in the simple model.

2.3_ Random Field Theories

The dimensionality of a system is very important in determining whether there is
a phase transition and, if so, its critical properties. When the spatial dimension
is low, the role of fluctuation becomes important, eventually driving the transition
temperature to zero at the lower critical dimension. When the spatial dimension is
high, the opposite happens. The high connectivity of a system makes fluctuation less
important and eventually mean field theory becomes exact above the upper critical
dimension.

For non-random systems, the canonical method for determining the lower criti-
cal dimension has been to test the stability of the ordered phase to the creation of
differently oriented domains due to fluctuations. This method yields a lower critical

dimension of 1 for the Ising model [39].

2.3.1 Imry-Ma Domain-Wall Argument

Imry and Ma [36] used the classical domain wall argument frequently used for de-
termining the stability of an ordered state. With the presence of random field, it
~ is possible to estimate the energy cost of having a domain of spins flipped from a

'ferroma_gn.etic ground state. If the size of the domain (let us say the radius as shown
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in figure 2-1) is R, the énergy cost comes from the broken bonds on the surface of the
domain wall. If it is an Ising system with discrete symmetry, this is simply propor-
tional to the surface area. If it is a continuous symmetry system, the energy cost is
optimized by a continuous rotation of the order parameter over a distance comparable

to R.

Eost ~ JRY1 if Ising (2.6)
~ JR*¥? if XY. (2.7)

This argument immediately shows there is no long range order for d < 2 for continuous
Symmetry systems.

The energy cost must be balanced against the energy gain from the random field
for the domain to be stable. Simple statistics show that the sum of the random field
in a domain fluctuates from one domain to another with typical values being given

by ~ R%2. Thus the energy gain is
E,4in ~ —hoR¥2. (2.8)
The net energy gain/loss due to the domain formation can be now written as

E(R) ~ JR*'—hoR¥? if Ising (2.9)
~ JR¥™2 — hyR¥? if XY. (2.10)

Therefore, whenever

> d—1 if Ising (2.11)

e N| ey

> d—2 if XY (2.12)

there will be some sufficiently large R for which it will become energetically favorable
- to have domains of size R even with an arbitrarily small random field, i.e., the lower

‘critical dimensions of RFIM and RFXYM are 2 and 4 respectively. Thus no phase
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Figure 2-1: Imry-Ma Domain Wall Argument

Imry and Ma [36] assumes smooth domain walls that enclose regions of size (radius)
R.
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transition to long range order is expected for continuous symmetry systems in 3
dimensions.

The above domain wall argument should not be considered exact due to the fol-
lowing points. Firstly, it is a zero temperature argument without any consideration
given to therrﬁal fluctuation or entropic effects. Secondly, only smooth domain walls
é.re considered. Thirdly, domains within domains are not considered.

Aizenman and Wher [40] provided an exact theoretical treatment to prove the
non-existence of long range order for continuous symmetry systems in dimensions

less than four.

2.3.2 Radzihovsky-Toner Theory

Inspired by “Bragg glass” systems [41], in which an elastically disordered glass is
topologically ordered, Radzihovsky and Toner [42, 43, 30] made a major theoretical
effort to understand the low température behavior of LC + aerogel systems.

In addition to the de Gennes Hamiltonian, the disorder was introduced through

the following terms added to the Hamiltonian:

Fo [t | 36100~ oo + U)o + ) nP]. (2.13)

where 0t(r) represents the effect of randomness on the shift of Té, U(r) is a quenched
random potential, and g(r) is a quenched random field. All of the randomness terms
introduced above are proportional to the local aerogel density pa(r). The first two
terms contribute to the random positional disorder (Ay) and the last term, which
reflects the proclivity of aerogels' for particular orientations of the nematogens, con-
stitutes the random orientational disorder (A, “tilt” field).

The major findings of the theory are
e the tilt disorder dominates the total disorder in the system,

e a three-dimensional smectic phase is unstable to arbitrarily weak quenched dis-

order, and
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® a new orientationally ordered low-temperature “smectic Bragg glass” (SBG)
phase replaces the smectic phase under certain conditions, but e-expansion re-

sults suggest that the SBG does not exist in three dimensions.

According to the theory, the elastic properties of liquid crystals are significantly
modified due to the presence of quenched disordér, which affects both the X-ray
scattering line shape and the growth of the correlation length, £, as a function of
temperature. The elastic constants B and K are found to be functions of wavevector

q, B(q) ~ ¢"® and K(q) ~ ¢ "%, where np and ng are positive definite universal
exponents. Theory predicts the nematic to SBG (N-SBG) transition survives if and
only if the exponents 7p and 7k satisfy the bounds

nk +np < 2, (2.14)
nk < 1, (2.15)
nB + 9 > 4. (2.16)

A d = 5 — € expansion result indicate that in d = 3,mp = 12/5 and ng = 2/5, thus
the N-SBG transition should not occur.
The theoretical result that is most relevant to the actual X-ray measurements is

a correlation length that satisfies the following relation:
&(pa, T) ~ AT B(T)? (217)

where I' = (2/(np +nx) — 1/2)! is a universal constant, B(T) is effective layer com-
pressional modulus of the pure liquid crystal, and p4 enters the right hand side of the
above equation through the random tilt field A,. Thus the X-ray correlation length
is expected to be approximately inversely proportional to the silica density. Since
B(T) is a measurable quantity, see Benzekri et al. [44], X-ray scattering techniques
can be used to find the exponent 1 /T, hence ng + np. In addition, X-ray scatter-
ing line shape is also expected to be affected by this “anomalous elasticity” from

the Lorentzian form, a powder average of the Lorentzian squared, into a generalized
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Lorentzian, I(q) ~ 1/(1 + (£6g)HD).

A detailed study of the 8CB + aerogel system [7] seems to find I' ~ 1, indicating
that the smectic Bragg glass phase should be possible in that system. However, for
the 8CB + aerosil system, we observe a different behavior for the correlation lengths,
which is not well described by equation 2.17. See chapter 6 for a discussion of the
dependence of 8CB + aerosil correlation lengths on the density and the temperature.

Thus, a comparison of the 8CB + aerosil data with RT theory was not attempted.
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Chapt'er 3
Prior Experimental Results

To understand a complex system such as 8CB + aerosils while the phase behavior
of bulk SCB 1s itself not yet completely understood is a difficult task. Therefore,
it is desirable to use a wide variety of experimental techniques to collect as much
" information as possible in order to discover the fundamental nature of the system.
There have been extensive studies of liquid crystals in various confined media by
researchers around the globe over the past few decades. Studies of LC + aerogel
systems, due to their similarity to LC + aerosils, are especially able to shed light
on the transitions we are interested in. In this chapter the most notable previous

experiméntal results on LC 4 aerogels and LC + aerosils are reviewed.

3.1 LC 4 Aerogels

3.1.1 Calorimetry

Detailed ac calorimetry was performed by Wu, Zhou, Garland, Bellini, and Schaefer
on p = 0.08,0.17,0.36, and 0.60 g/cm3 8CB + aerogel samples [4]. Small angle
X-ray scattering showed that these rigid aerogels had average pore chords of L =
700, 430,180, and 120 A, respectively, corresponding to pore volume fractions of
¢p = 0.945,0.90,0.79 and 0.73. To sum up the important results: (i) for the nematic

to isotropic transition, as the aerogel density p increased, there is a dramatic reduction
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in the magnitude of thé excess N-I heat capacity peak and a systematic shift in the
peak position relative to the bulk peak, (ii) the N-I transition was weakly first order
for p = 0.08 and 0.17, but there was no evidence for a first order transition for p = 0.36
and 0.60, (iii) the N-SmA transition is modified severely (broad and very rounded Cp
peaks) due to the presence of the aerogel network, and (iv) the transition temperature
and the magnitude of the excess heat capacity AC,(NA) vary systematically with
the density p or average pore chord L. '

3.1.2 Light Scattering

Bellihi, Clark, and Schaefer performed dynamic light Scattering experiments on p =
0.08, 0.36, and 0.60 g/cm® 8CB + aerogel samples [5]. They observed (i) a relatively
fast (102 ps) relaxation near Ty indicative of nematic intrapore orientational fluctu-
ations, (ii) a slow relaxation reminiscent of a glassy behavior in the nematic range,

and (iii) a dramatic slowing down for temperatures where the bulk smectic occurs.

3.1.3 X-ray Scattering

Because X-rays directly probe the density-density correlation function, smectic den-
sity waves can be easily studied with X-ray diffraction methods. For the LC + aerogel
systems, a remnant of smectic ordering was observed with synchrotron X-ray diffrac-
tion [3, 28, 7].

The 8CB + aerogel samples used for the X-ray study were prepared in exactly
same manner as those used for the calorimetry measurements described in section
3.1.1. Thus the densities were p = 0.08,0.17, 0.36, and 0.60 g/cm3. For all sami:)les,
a smectic peak considerably wider than the resolution-limited bulk smectic peak ap-
peared for temperatures below the bulk Ty 4 at qo = 2m/d ~ 0.2 A1, where d is the
smectic layer spacing. Surprisingly there was another very broad but much smaller
peak at almost the same gy value for tefnperatures spanning the range from above
Tna to well below Ty 4, and this sCa.ttering was attributed to local smectic ordering

on the aerogel surface.
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The scattering proﬁie was fit with a single Lorentzian above a certain “effective”
transition temperature.T*, and two Lorentzians for 7' < T*. Since a Lorentéian line
shape is the powder average of a Lorentzian squared, the effect of a quenched random
field was suggested to play a role in the scattering structure factor. Although bulk
8CB shows ani;sotropic correlation lengths, & and &, with §/£, ranging from ~ 3 to
~ 15, the 8CB + aerogel system, on the other hand, was reportedly well described
by a single correlation length.

The correlation lengths thus obtained at low temperatures were similar to the

mean void chord L except for the p = 0.08 sample, in which case a monotonically
| increasing £ was observed on cooling with a value at the loWest accessible temperature

about twice as big as L.

3.1.4 NMR

Nuclear magnetic resonance (NMR) is a powerful tool for liquid-crystal research be-
cause of its capability to probe directly the orientational order @, director configura-
tions n(r), and molecular dynamics. Deuteron NMR (DNMR) has been successfully
applied to liquid crystals in confined media as well as bulk studies [6].

In a nematic phases, the DNMR spectrum consists of two sharp absorption lines

separated in frequency by

5v = ééqu(Scosz 65 — 1), (3.1)

where dvp is the maximum frequency splitting observable in a fully aligned bulk
nefnatic sample, Q is the scalar order parameter, and 6p is the angle between the
static magnetic field of the NMR and the nematic director n. 65 is 0 for bulk due to
the magnetic-field-induced uniform alignment. For confined liquid crystals, however,
0B as well as other parameters in the above equation have positional dependence, i.e.,
v = 6v(r), @ = Q(r), and Op = Op(r).

An excellent DNMR experiment on 8CB + aerogel was performed by Zeng, Zalar,

Iannacchione, and Finotello [6]. Their samples ranged from p = 0.068 g/cm? to
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p = 0.600 g/cm®, which correspond to the void volume fractions (¢p) ranging from

0.95 to 0.73.

In the isotropic phase, they observed for aerogel samples a broader absorption peak
than that of the bulk, which is typical of confined liquid crystals regardless of the
randomness of the host media. This is attributed to the remnant, nematic-like ofder
in the isotropic phase, sometimes referred to as paranematic order. This broad peak’s
width increased rapidly as the temperature decreased near Ty, which is suggestive
of quasi-complete wetting of the aerogel surface from homeotropic anchoring of the

8CB molecules on aerogel strands.

Below Ty;, all aerogel samples except the one with the highest density showed
powder-pattern DNMR spectra indicative of randomly oriented nematic domains with
a single value of (). Nematic ordering was suppressed as density increased, eventu-
ally \}anishing at the highest density. Interestingly there was no enhancement of
orientational order as the temperature dropped further down below bulk T4 even
though X-ray studies found smectic scattering. It was suggested that the confinement

decoupled the smectic and nematic order parameters.

Before we finish the discussion of the NMR results, it should be mentioned that
NMR employs a static magnetic field which could cause the systems to behave differ-
ently than when there was no applied field at all. The criteria on the field strength is
that the external magnetic field does not affect the aerogel — or aerosil — samples’ in-
duced director structure of the nematic liquid crystal once the confining length L (the

aerogel void size) is smaller than the magnetic coherence length £s. The magnetic

| K

where K is the average Frank elastic constant (single elastic constant approximation),

coherence length is given by

By is the applied static magnetic field strength, and Ay is a measure of the anisotropy
of the magnetic susceptibility. For the experiment discussed above, a 4.7 T magnet

was utilized and it was reported that & = 1 pm, which is well above the confining
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length L for all aerogel samples ( which varied from 12 nm to 91 nm ). Thus with the
weak applied magnetic field there should not be any noticeable effect on the director

structure. This argument is further strengthened by the observed powder patterns.

3.2 LC + Aerosils

3.2.1 Calorimetry

As discussed in chapter 1, there has recently been interest in the effect of aerosil
gels on liquid crystal phase transitions due to the fact that random disorder could
be introduced in a more controlled manner than with rigid aerogels. This work
began with precise calorimetry studies which produced impqrtant results in the early
stagel of LC + aerosil research. Zhou, [annacchione, Garlané, and Bellini successfully
demonstrated that aerosils affect the liquid crystal transition differently than aerogels
[8]. The LC-aerosil dispersions were first prepared by direct mechanical mixing of the
7 nm aerosil powder particles with the liquid crystal (8CB or 8S5), and the resultant
changes in the character of the N-I and N-SmA transitions were studied through ac
calorimetry. In‘ contrast to LC + aerogels, very sharp Cp peaks were found for low
density aerosils (p < 0.09) at the N-SmA transition, and the excess heat capacity ACp
could be well described with a power law yielding a heat capacity critical exponent
a. For SC.B, where the pure bulk liquid crystal has an exponent value o = 0.30, this
critical exponent decreased on adding aerosﬂ until @ = —0.03 for p ~ 0.09g/cm?.
- This latter value is close to the 3D XY value of -0.007 that would be expeéted at an
ideal N-SmA transition. For 835, whose bulk value of o = —0.022 is already close to
the 3D XY value, the critical exponent did not change significantly when aerosil was
added to the system. The transition temperatures were observed generally to shift
downward as the density of silica was increased, and a complex dependence on the
aerosil density (described below) was seen in later experiments.

Further calorimetry studies on LC + aerosil systems have produced similar re-

sults. Important improvements were also made in the method of sample preparation.
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In order to improve theA homogeneity of the aerosil dispersion and increase the range
of accessible densities, a solvent method was devised. The liquid crystal was first
dissolved in a high-purity solvent (absolute ethanol or spectroscopic grade acetone). 4
The aerosil powder was then introduced, and the system sonicated to insure a uni-
form dispersion. Finally, the solvent was removed by vacuum distillation. Haga and
Garland studied the 40.8 + aerosil system using this solvent preparation method,
and the N-SmA transition showed similar crossover from positive a ~ 0.135 of the
bulk 40.8 to a negative a =~ —0.066 for ps = 0.109 g/cm?, again close to the 3D XY
value of & [9]. Also the 8CB + aerosil system was revisited in detail by Iannacchione,
Garland, Mang, and Rieker with the improved sample preparation technique, and
similar results were reproduced, i.e., a crossover from a positive & to 3D XY value
[11]. In this experiment, both the transition temperatures Ty 4 and Ty ‘Were mea-
sured as functions of the aerosil density and each one showed qualitatively the same
complex behavior. There was a rapid initial decrease in the transition temperature
as p increased up to ~ 0.05 g/bms. This was followed by a modest recovery (slight
increase in T¢) as p increased from ~ 0.05 to ~ 0.1g/cm®. A subsequent increase
in p caused a monotonic decrease in T¢. Because the low density samples showed
very sharp Cp peaks, unlike LC + aerogels, while the high density samples featured
smeared Cp peaks similar to LC + aerogels, p < 0.1 g/cm® was labelled as “soft”
gels and p > 0.1 g/cm® as “stiff” gels. Small angle X-ray scattering (SAXS) was
also performed, and this showed that the fractal aerosil network was very similar to
that of aerogels. Thus, for the low-density gels, it was suggested that the elastic
strain, which smears the transition in the case of rigid aerogels and stiff sil gels, was
annealed and the surface anchoring played the role of a quenched random field to the
system through the decoupling of nematic and smectic order parameters. However,

this interpretation is purely heuristic with little direct evidence.

An additional calorimetry study of 70.4 + aerosil conducted by Haga and Garland
showed that the first order N-SmA transition of bulk 70.4 remained first order, and
it was suggested that the aerosil randomness was too weak to change the transition

to a continuous one for ps < 0.14 g/cm3 [10].
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- 3.2.2 Other E){periments

Light scattering measurements on the 6CB + aerosil system were performed by
Bellini et al. through turbidity measurements [12]. The estimated nematic corre-
lation lengths ¢ followed the power law ¢ o @gigg , where ®g;0, was the silica volume
fraction and ¢ was of the order of ym, which far exceeds the mean void sizes of the

corresponding gels.

Mercuri, Ghosh, and Marinelli studied the specific heat and the thermal conduc-
tivity of homeotropically aligned 8CB + aerosil and 7CB + aerosil samples with sil
densities below the gelation threshold and found a history dependent behavior for the
thermal conductivity in the nematic phase [13]. This was attributed to the elastic

strain not being completely annealed at T on cooling.

A nuclear ﬂ_magnetic resonance study was carried out by Jin and Finotello 6n
~ deuterated 8CB (8CB-ad,, deuterated at the first carbon position along the hydrogen
chain) + aerosil dispersions [14]. Due to the nature of NMR, a By = 4.7 T magnetic
field was used and the effect of the magnetic field on the aerosil structure was observed.
It was suggested that the director structure induced by the surfaces is affected by the
magnetic field if the magnetic coherence length &3, = \/;m ~ lum is less
- than the mean void size lo, where K is the average Frank elastic constant and Ay
is a measure of the anisotropy of the magnetic susceptibility. Thus, those samples
with densities below the gelation threshold were aligned by the magnetic field. It
was speculated that the field also had an effect of breaking the silica strands of
the low density gels and realigning some of the nematic domains whose dimension is,
supposedly, larger than the magnetic coherence length once the field direction changes.
In the case of high density gels, the disordering effect of the silica strands domiﬁated
the molecular orientation, and the magnetic field effect was weak. The transitional
behavior of‘ these NMR aerosil samples was consistent with the calorimetry results,
ie., the IOWer—than—gelation—threshold samples were bulk-like, the soft gels had sharp

transitions, and the stiff gels were like rigid aerogels.

Most recently Hourri, Bose, and Thoen carried out dielectric measurements on
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heptylcyanobiphenyl (7CB) perturbed by the dispersion of 70—(A)-diameter hydrophilic
silica spheres in ém aligning magnetic field of 0.5 T [15]. The density dependence of the
nematic to isotropic transition temperature followed the general trend of decreasing
T¢ as ps increases. Interestingly one low density sample showed a large transition
temperature shift similar to what was seen for 8CB + aerosil measurements [11].
The dielectric behaviqr in the nematic phase gradually changed from the bulk 7CB
behavior as a function of density, and higher density samples showed a slower dielec-
tric process absent in the bulk sample, which the authors attribute to surface layers

formed by the 7CB molecules at the silica aerosil surface.
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Chaptér 4

Experimental Techniques

4.1 Sample Preparation

8CB + aerosil samples were prepared at M.I.T. in Professor Carl W. Garland’s labo-

ratory during the early stages of research and later at Worcester Polytechnic Institute

in Professor Germano Iannacchione’s laboratory using the same equipment and fol-
lowing the same preparation procedure as described in Ref. [11].

The bulk 8CB used in this experiment was obtained from Aldrich in 1 g bottles
from a single synthetic batch. The chemical had a quoted 98% purity and was used
~ without further purification.

A hydrophilic aerosil (type 300) was obtained from Degussa Corp [45]. The sil
consists of 70—A-dia_meter SiO; spheres with hydroxyl groups covering the surface and
a specific surface area of a = 300 m?g~! determined from a Brunauer-Emmett-Teller
adsorption isotherm. The aerosil was dried under vacuum at ~ 200 °C overnight,
before use.

The preparation method starts by adding the silica powder to a dilute solution
of 8CB in a solvent. Either absolute ethanol or acetone can be used as the solvent
[9, 11], but spectroscopic-grade acetone was used exclusively in this study since it
is réadﬂy available and allows comparison with previous calorimetry results. The
mixture was mechanically stirred and sonicated to achieve a. good dispersion of silica

particles before being placed on a hot plate at temperatures just above 42 °C to
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evaporate the solvent siowly. It is later placed under vacuum at 10~ Torr for about
12 hours at 50 °C to remove any remaining solvent and water vapor from the sample.

The samples prepared in this method were white (chalk-like) at room temperature:
and had a uniform appearance. When heated above the bulk Ty7, the samples turned
semi-transparent but the gel structure was maintained, i.e., they were good gels. A
few attempts to make dilute samples very near the gelation threshold (p = 0.02 g/ cm?)

resulted, however, in phase separation, and those samples were discarded.

4.2 Synchrotron X-ray Scattering

Because none of the samples including pure 8CB characterized in this study were
under any applied field, they were powders in a X-ray diffraction sense. Although
the experimental procedures are in some ways simpler when dealing with a powder
sample, which does not require a serious search for a Bragg peak, the scattered
intensity is significantly reduced compared to that of a single crystal because just a
small fraction of the domains satisfies the Bragg reflection condition. That is, for a
high resolution experiment, only a tiny section of the diffraction ring is observed at
any given time, as depicted in Fig. 4-1. This causes a significant problem when the
X-ray source is not bright enough. Indeed, initial attempts to see the scattered beam
with a rotating-anode X-ray source (see Ref. [46] for details) failed due to very poor

signal-to-noise ratio.

4.2.1 Synchrotron Radiation

A synchrotron, on the other hand, can produce an X-ray beam several orders of magni- 7
tude brighter than that of rotating-anode X-ray sources. Charged particles (typically
electrons), moving with relativistic speed in curved trajectories emit electromagnetic
radiation due to acceleration, and this is called synchrotron radiation. There are three
components of a synchrotron which produces radiation: bending magnets, wigglers,
and undulators.

Charge particles are constrained to move in arc trajectories in bending magnets,
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, Figure 4-1: Powder Ring

With a powder sample, the diffracted beam forms a powder sphere centered about
the direct beam. For high resolution measurement of S(g¢), a very narrow section of
the ring is scanned along the 26 angle. It is not possible to completely remove the
effects of the arc. A small box which represents the counted area still contains not just
the photons scattered to 26 but also 26 — 46 at both left and right ends. Therefore,
the box must be made as small as possible using slits, which inevitably reduces the
counts. Therefore, a balance must be sought between the intensity and resolution.
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and produce a continudus spectrum of electromagnetic radiation, which is often re-
ferred to as a “white beam”.

A wiggler consists of an array of magnets with alternating polarity. Due to the
alternating magnetic field, the electron itself follows a sine-like wiggling trajectory,
radiating at each wiggle.

An undulator is similar to a wiggler, but the electron path is designed so that the
radiation from each wiggle would interfere with the others. Due to the interference,

the outgoing spectrum consists of a discrete fundamental line plus many harmonics.

4.2.2 X-ray Optics

The X-ray scattering experiments described in this thesis were performed on the
X20A and X20C beam lines of National Synchrotron Light Source (NSLS). These
two éssentially identical beam lines are jointly operated by MIT and IBM. A detailed
description of these beam lines can be found in Ref. [47].

Figure 4-2 is a schematic diagram of the scattering geometry for both beam lines.
The diagram is separated into twoA parts representing outside and inside the hutch
components respectively. The setup is essentially that of triple axis spectroscopy
(TAS). TAS has been widely used for both X-ray and neutron scattering experi-
ments for its simplicity and “inefficiency” [48], and the important components are
the monochromator, the sample (26), and the analyzer axes as shown in the diagram.
In this exiﬁeriment, however, the monochromator and the analyzer angles are fixed
once the X-ray energy is selected.

Outside the hutch, the incoming white beam from the synchrotron source is re- '
flected by a focusing mirror made of platinum coated silicon which is controlled by a
piezoelectric material so that the beam can be focused at the place of choice. In this
experiment, the beam is focused at the center of the spectrometer where the sam-
ple is located. The reflected beam from the focusing mirror is Bragg scattered by a
pair of monochromator crystals (scanning double-crystal fixed-exit-beam monochro-
mator) to select a well defined energy from the white beam. Si (111) surface is used to

‘monochromatize the beam for the X20A and X20C beam lines. 8 keV X-rays, which
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Figure 4-2: Scattering Geometry
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correspond to the waveiength of 1.54 A, were used exclusively in these experiments.
Unfortunately, the third harmonic with an energy three times that of the selected
X-ray photons is also Bragg reflected from a Si (111) surface as well as the first har-
monic. The signal from the third harmonic is suppressed by the use of a pulse height
analyzer by counting the signal pulses that belong to the properly chosen energy band
only.

The two sets of slits between the monochromator and the sample serve the dual
purposes of defining the beam tightly and preventing any stray beam from reaching
the sample. A monitor is set up just after the second set of slits to provide a means to
normalize the data against the intensity of the incoming beam. The air particles in the
path of the beam scatter photons, and some of them are counted by the monitor. It is
imperative to have this monitor because typically between injections of electrons into
the synchrotron (twice a day) the number of electrons inside the synchrotron decays
to about half of its maximum and the X-ray intensity drops accordingly. After the
beam is scattered by the sample it goes through two sets of slits which serve to narrow
the instrumental resolution. An analyzer crystal is located just before the detector
to enhance the resolution even further. Si (111) or Ge (111) were typically used as
the analyzer, with Si having a slight edge over Ge with respect to resolution and Ge
over Si with respect to intensity. We typically chose Ge because the gain in intensity |

could justify a slight loss in resolution for our weak powder diffraction signals.

The monitor and the detector were identical Bicron detectors composed of a Nal
scintillation counter composed of a photomultiplier tube and a preamplifier. Each
incident X-ray photon generates a current pulse whose amplitude is roughly propor-
tional to the incident photon energy. The pulse height analyzer mentioned above
selects those pulses correspoﬂding to the first harmonic, and a timer/counter counts

number of pulses for a given amount of time.
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4.3 Sample Environment

For X-ray scattering experiments, consideration should be given to the scattering ge-
ometry according to the sample properties. One of the most important property here
is the X-ray attenuation length. The details about the attenuation length are pre-
sented later in this thesis (see section 6.3). It is sufficient to say that the attenuation
length of 8CB + aerosil samples for 8 keV X-ray is ~ 1 mm, and the sample holder
is designed to make the sample roughly 1 mm thick for scattering in a transmission

geometry.

The sample was placed between two aluminium holders with epoxy sealed Kaptoh
windbws, and the sample cell was then placed in a two-stage oven backfilled with dry
N; gas for stable temperature control. Figure 4-3 shows the location of the sample
in relation with the two-stage oven and a diagram of the sample holder. The Kapton
window is placed where the diameter of the hole in the sample holder changes. The
depth of the sample is 2 x 0.02 inches ~ 1 mm when two such holders are used. Mylar
and Aluminized Mylar were also used as windows for comparison, and thefe was no

discernible difference in the data from when Kapton was used.

The tWo-stage oven consists of an inner oven which holds the Kapton windowed
sample cell and the outer oven with a cylindrical Beryllium window which contains
the dry Ny gés. To reach temperatures below room temperature, a thermoelectric
cooler (TEC) was used. A 60 W TEC with a fan was placed on top of the two-stage
oven for constant operation during cooling runs. For stable temperature control, a
home-made P-I temperature controller was used for the inner oven, and a Lakeshore
: teniperature controller for the outer oven. For the temperature range we investigated
(15 °C ~ 45 °C), however, it was not even necessary to use the outer oven. Using
the outer oven as merely gas container, the temperature variation during a scan was

'typically +0.001 °C.
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Figure 4-3: Sample Environment

(a) The sample cell is placed in a two-stage oven which is backfilled with dry N, gas.

(b) The sample holder is made of Aluminium and has a hole at the center so that
X-rays can pass through. The sample is placed between a pair of such holders with
epoxy sealed Kapton windows.

4.4 - Measurements

Once the sample was placed in the oven, dry Ny gas was backfilled and the temper-

ature was raised to 45 °C where it remained overnight (~ 8 hrs). This protocol was

developed to remove any remaining solvent or water from the sample as well as to give

enough time for silica strands to re-arrange in case they were pressed too hard when
the sample was first placed in the cell. In fact, the above mentioned annealing process
was more important for 855 + aerosil because 8S5 crystallizes at room temperature,
thus the silica structure can be distorted during transportation. |

Measurements were made by cooling a few tenths of a degree, waiting for half an
hour or more for the temperature to reach the designated point, and taking a scan
before moving on to a new temperature. All measurements were done by scanning
20 angles instead of typical 6 — 260 scan for single crystals. In this way X-ray photons
would hit the same parts of the sample all the time, avoiding complications when the

‘#-axis is also rotated.
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Figure 4-4(a) show raw data from the 8CB + aerosil p = 0.200 g/cm® sample at
a few selected temperatures. The strong background due to aerosil scattering can be

easily identified in the figure.

Beam Damage

Although it would be ideal if we could take measurements indefinitely with one sam-
ple, this was not possible due to sample deterioration. It was observed that when the
sample was placed in a X-ray beam for a prolonged period of time the onset in the
growth of Vsmectic ordering shifted downward in temperature visibly. This phenom-
ena has been observed for 8CB + aerogel measurements [28] as well as for bulk SCB
measurements [46]. If is not yet quite clear what process is going on when X-rays hit
the 8CB and/or silica strands. Although the powerful X-ray photon is suspected to
be able to break the bonds of.liquid crystalline molecules, a vgry high energy X-ray
(~ 50 keV) is reported to have no effect on the transition temperatures of a liquid
crystal [49]. |

One way to reduce the beam damage is to count fewer photons for each data point,
thus reducing the amount of time the sample spends in the beam. We have performed
systematic reduction of statistics to the level where there was no noticeable change
of temperature dependence when measurements at a series of temperatures were re-
peated on an already exposed sample. Also measurements at high temperatures were
restricted to just a few temperatures to further cut the exposure in order to avoid a

severe transition temperature shift.

Resolution

As discussed in section 1.3, the intrinsic X-ray scattering line éhapes are broadened
by the instrumental resolution. Thus it is important to know the resolution function
with precision if accurate correlation functions are to be extracted from the scattering
data. For a powder diffraction geometry, it is easily achieved by looking at the direct |
beam itself. -

Figurei 4-5 illustrates the relation between the direct beam profile and the resolu-
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Figure 4-4: Raw Data
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(b) Bulk 8CB

The data points in this figure have been moved upward or downward for easy
viewing. For both plots, the lowest temperature points (top) were multiplied by 50,
the middle by 5, and the highest temperature points (bottom) by 0.5. (a) Raw data
of a high density sample show a very strong background due to scattering from the
gel structure. (b) Bulk 8CB at T' = 38.25 °C show a sign of smectic layering above
bulk transition temperature. The 33.36 °C data do not exhibit a sharp resolution
limited peak even though the temperature is below the literature bulk Tna~ 339
°C value. Pure 8CB is especially susceptible to beam damage compared to the 8CB
+ aerosils, and the transition temperature seems to have shifted downward in this
case. 31.66 °C data show the resolution-limited smectic peak.
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tion function for powder diffraction geometry. Simply put, the beam divergence ¢ in
the direct beam remains the same when a perfectly Bragg reflecting powder sample
is placed in the beam. The resolution function for our direct beam is shown in figure

4-6.

Bulk 8CB

The bulk 8CB was also put in the sample cell for powder diffraction measurements
fdr comparison with 8CB + aerosil samples. Figure 4-4(b) shows typical scans for the
bulk 8CB with the horizontal axis representing the scattering wave vector in reciprocal
space. Because bulk 8CB was more susceptible to beam damage than 8CB + aerosil
sdmples, no detailed systematic study of the temperature dependence was made for
the pure bulk material. However, it is expected that bulk 8CB has a resolution limited
line shape below bulk T'na, and indeed the bulk 8CB line shape closes matches that

of the direct beam as shown in figure 4-6.
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(a) Direct Beam

(b) Reflected Beam

Figure 4-5: Resolution Function For Powder Diffraction Geomefry

If a perfect powder is used, the beam divergence of the direct beam is maintained.
Therefore, the direct beam profile can be used as the resolution function in powder
diffraction geometry. However, it should be noted that this is only true if 66 from
figure 4-1 is much smaller than §. Otherwise, the observed resolution would be
wider by ~ 06 than the direct beam profile.
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Figure 4-6: Resolution Function

The open circles (o) represent the direct beam and the closed circles (o) represent
bulk 8CB data shifted and multiplied by 1.2 to match the direct beam for

comparison. The two sets of data closely agree very well with each other and have
the same width as expected.
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Chapter 5

Destruction of The Smectic

Quasi-Long Range Order

5.1 Introduction

Following the general Imry-Ma type argument in chapter 2, the smectic long range
order is not expected to survive even the weakest quenched randomness imposed
on the system. This conclusion is also supported by the Radzihovsky-Toner theory
for randomness effects on liquid crystals. Finding experimental evidence of this is
feasible since X-ray scattering techniques directly probe the density correlation of
sniectic phases.

The 8CB + aerogel system has already been studied with X-rays, and it had
the expected property of short-range correlation with no smectic quasi-long range
ordering being observed [28]. It should be noted, however, that calorimetry results
for 8CB + aerogels had already showed severe smearing of the heat capacity peak,
indicating that a rigid aerogel provides too strong quenched randomness for any long
raﬁge ordered state to survive at low temperatures.

The calorimetry results for the 8CB + aerosil system, however, showed an inter-
esting behavior. The heat capacity peak associated with the N-SmA transition for
low sil densities remained sharp enough that it was possible to fit it with a power law,

indicative of very long correlation lengths and much weaker quenched randomness
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than with aerogels. X-ray scattering techniques should be able to provide the corre-
lation lengths of this novel disordered system, and this chapter provides the result of

such an effort.

5.2 Background

One of the complications in this experiment is that the network of silica particles
interacts with the probing beam as well. There are primarily two effects that should
be considered in this experiment: scattering and absorption 6f X-ray by the silica
network. The former results in a strong background contribution to the resulting
scattering profile as can be seen in figure 4-4(a), and the later reduces the total
intensity of the scattered beam as a function of the amount of silica in the sample
(both sample thickness and sil density contribute). Th(; effect of absorption will be
discussed later in section 6.3.

The other contributions to the total scattering besides the main smectic peak
come from nitrogen gas, Kapton windows, and the diffuse scattering from the liquid
crystal itself in increasing importance. The scattering from the Iiitrogen gas and the
Kapton windows is orders of magnitude smaller than the scattering from the silica in
the samples for the range of ¢ of interest (0.1 A=' < ¢ < 0.3 A~1), and these can be
neglected safely. Kapton has a strong scattering peak at ¢ ~ 0.4 A~1, but it does not
have any noticeable effect on the smectic peak which is located .far from this wave
vector at ¢ &~ 0.2 A1,

To extract the smectic peak from the total scattering, the above mentioned con-
tributions must be eliminated carefully. Because there is no smectic peak in the
isotropic phase of 8CB, data taken above Ty effectively contain all the contributions
exéept the interesting smectic peak, and such data can be used as the background
to be subtracted from the total scattering profile. A few of such high temperature
data are shown in figure 5-1. The data sets in this figure are shifted in order to
avoid confusing overlap and permit easier comparison. At low g, it is essentially the

scattering from the silica that dominates the scattering profile, and the scattering
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Figure 5-1: High Temperature (7" > Ty) Scans
These high temperature scans of 0.25, 0.15, 0.10, 0.05, and 0.025 g/cm?® samples have
been normalized and then multiplied by 1000, 100, 10, 1, and .1 respectively to show
them individually.
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profile has essentially the same power law behavior for all densities. At high ¢, a
contribution from the liquid crystal diffuse scattering becomes important, and the
data show a bend from the steep power law region to a relatively flat region. Since
scattering from silica is more important for high density samples, this crossover of
the data curve is relatively weak at high densities, e.g., the p = 0.250 g/cm® sample
has a barely observable bend at high g.

It is known, however, that the background changes slightly as measurement takes
place at T' < Tyr. The difference in the thermal expansion coefficients of silica and
the liquid crystal, the reduction of the diffuse scattering from 8CB when T decreases
past Ty, and changes in the incoming beam profile as a function of time are the
three important reasons for this behavior. It was found empirically that changes in
the background can be modelled very well by multiplying an isotropic temperature
scan by a temperature-dependent factor denoted as b. Therefore, if we define the high
temperature scan as B(g), the background at a temperature 7' < T can be expressed
as b(T)B(q). In the X-ray scattering experiments reported on 8CB + aerogel samples,
there was an additional adjustable constant in the total background, resulting in one
more parameter in the fitting program, i.e., a(T") + b(T") B(q) was subtracted from the
total scattering profile [28]. It was not necessary to include an additional constant

a(T') in the present aerosil experiments.

5.3 Wider-Than—Resolution Widths

Before moving on to the full description of the line shape analysis, it is worth men-
tioning that one of the most important results of the experiment was obtained by
inspecting the scattering profiles directly. As stated previously, bulk 8CB had resolu-
tion limited smectic peaks below T4, proving that our bulk sample retained smectic
quasi-long range order, hence a SmA phase. Compared to the bulk result, all 8CB +
aerosil samples with densities above the gelation threshold (~ 0.02 g/ cmé‘) had wider
smectic Bragg peaks. In fact, as the silica density in the samples increased, the width

borresponding to the smectic peak of each sample progressively widened.
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Figure 5-2: Wider-Than-Resolution Widths
The filled circles (o) represent a 0.200 g/cm?® sample at 16.50 °C, the open circles (o) a
0.025 g/cm® sample at 14.62 °C, and the solid line (—) bulk 8CB at room temperature
and thus in the SmA phase. The 0.200 and bulk data were shifted horizontally and
normalized in magnitude to match the top of the 0.025 data.
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Figure 5-2 illustrateé this point very well. Even at the lowest temperature ! (16.50
°C), the lowest density sample investigated, p = 0.025 g/cm?, has a scattering peak
which is wider than the resolution-limited bulk 8CB smectic peak, although the width
is very close to'that of the resolution. For comparison, the scattering profile of a high
density sample, p = 0.200 g/cm?, is also plotted in the same figure. The width of the
peak for the high density sample is significantly larger than the resolution, indicating
a considerably smaller correlation length than for the low density sample.

- This result indicates that the smectic quasi-long range order is destroyed even
for the lowest density 8CB + aerosil sample above the gelation threshold despite
the apparently sharp heat capacity peak shown at the “N-SmA” transition. This
destruction of smectic quasi-long range order is consistent with the theories previously
described in chapter 2. Reconciliation of calorimetry and X-ray scattering results will

be discussed later in the next chapter.

5.4 Method of Analysis

To extract useful information from the scdttering data, a proper fitting function with a
plausible physical basis is required. A few intrinsic line shapes that are used frequently

for the analysis of X-ray scattering of liquid crystals are discussed in appendix B.

5.4.1 High Temperature Line Shape

The observed scattering profile was markedly different between the high temperature
regime and the low temperature regime separated by T* ~ T 4, where T* is defined
to be the “effective” transition temperature of a given 8CB + aerosil sample corre-
sponding to the sharp increase of almost resolution-limited peak at low temperatures.
Note that 7™ is not well defined for high density samples due to severe smearing of

the transition. 7™ is not an ordinary N-SmA transition temperature, Ty 4, because we

1The crystallization temperature of pure 8CB is 20 °C. However, the crystallization is suppressed
by several degrees by the aerosil, and the temperature can be reduced to a few degrees below the
bulk crystallization temperature without freezing the 8CB and breaking the silica network.
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have already shown there is 1o SmA phase for 8CB embedded in an aerosil random
structure. It is still possible that 7™ indicates the onset of a topological order.

The X-ray scatte:ing study of 8CB + aerogels revealed a similar difference between
the line shapes in these two temperature regimes, and a single Lorentzian was used
for T > T* and two Lorentzians for T < T* to analyze that data [46]. Including
the background terms, the total fitting function used by Rappaport [28] for 8CB +

aerogels was

L) = — (go‘(“q"_ 3 +bB@) e, (75T (5.1)
I _(q) = AL + As 5+ bB(g) +a, (T<T" (5.2)

14+ (6r(g—qr))® 14 (Es(g—gs))

where Ay, Ay, and Ags are amplitudes, &, £, and &g are correlation lengths, and qq, g7,
and q;g are centers of Lorentzians. Indices L and S denote large and small Lorentzians,
respectively. Note that the total number of free parameters were 5 when 7' > T™* and
8 when T' < T™. »

Although our 8CB + aerosil data could also be fit well with the above scheme,
comparison of the sil data with the bulk 8CB scattering profile as well as requirements
of the most physically plausible model for T > T* led us to adopt a different fitting
function. Figure 5-3 demonstrates the similarity of the bulk and 8CB + aerosil line
shapes at high temperatures, an indication that 8CB + aerosil data could be fit well
with the same type of fitting function that is used for the bulk material in this high
temperature regime. |

This similarity is not surprising after all, considering that the critical thermal
fluctuations have small correlation lengths largely unaffected by the aerosil network
at high temperatures. Therefore, it is natural to use a similar line shape form that
also describes the bulk behavior at least for 7' > T*.

It has been known since the pioneering work of Als-Nielsen et al. [50] that the
X-ray scattering line shape of the thermal fluctuation of liquid crystals can be de-
scribed by an anisotropic Lorentzian with higher order corrections. Traditionally,

an anisotropic Lorentzian with a fourth order correction in the transverse direction
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Figure 5-3: Comparison of Bulk 8CB and 8CB + Aerosil Line Shapes
When T" > T*, the 8CB + aerosil line shape is similar to that of the bulk material.
(a) The 8CB + aerosil sample compared to bulk 8CB is pg = 0.0776 g/cm?® at 35.13
°C. The bulk data was taken at 35.09 °C. (b) ps = 0.0314 g/cm? sample at 37.61 °C
is compared with the bulk 8CB at 37.33 °C. (a,b) All scattering data are raw data
minus background. The background data were taken from a scan at 7' > Ty; and
used without any scaling. The peak heights were normalized to unity at g for easy

comparison.
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(LFC) has been widely used by experimentalists [16, 46]:

- o
T 14+ 6g) — q0)? + €3¢3 +cigl’

S(a) (5.3)

where g and ¢, are the wave vectors parallel and perpendicular to the layer normal

respectively.

An anisotropic Lorentzian raised to the power 1 — 1, /2 along the transverse di-

rection (LPC) is an equally valid form [16]:

g

Sla) = &t an — 0)? + 1+ g3/

(5.4)

The anisotropic correlations is not unexpected. After all, liquid crystals are
anisotropic liquids because of the anisotropic molecular force. Strangely large correc-

tions to the anisotropic Lorentzian, however, is not well understood theoretically.

Although either LFC or LPC could be used in the current data analysis, LFC
was chosen due to a practical reason — it was possible to powder-average LFC exactly
while LPC required very slow numerical powder averaging. The intricacies of powder

averaging will be discussed in section 5.4.3.

5.4.2 Low Temperature Line Shape

The observed low temperature scattering profile has a shape qualitatively similar to
that seen in the case of 8CB + aerogels, i.e., on top of a broad peak that developed
~above T™, a sharp but still wider-than-resolution peak grows rapidly as temperatﬁre
decreases below T*. One of the simplest interpretations of this phenomena is grow-
ing static correlations modified by the quenched disorder which replaces the Bragg
delta-function scattering from long-range smectic ordering with a short-ranged or-

‘der scattering profile. Therefore, we model the scatterfng structure factor for low
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temperatures in the following way:

S(q) _ : o1 + . a2£||§_?_
1+ &gy — q0)> + €1 a7 +clal (1 T+ &gy — ) + B2 + gt qi)z
(5.5)

where a4 is a parameter that is approximately proportional to the ihtegrated intensity

of the second term. This second term, which is the square of the ‘t'hermal fluctua-
tion term with a separate amplitude, is a standard term that describes short—range
correlations induced by static fluctuations in random magnetic systems [51-55]. This
term has been theoretically justified for RFIM by Pelcovits et al. [56], which devel-
oped upon Grinstein et al. [57]. A Lorentzian squared structure factor corresponds
to algebraically decaying exponential correlation (e~"/¢/r(¢=3)/2) for three dimension.
When correlation lengths diverge, it becomes a Bragg delta peak, asd (g — q0)d(qy)-
( Nofe that ¢ is the amplitude of a two dimensional vector q _]_ )

The relationship between the structure factor for thermal fluctuations and static
fluctuations originating from a random field can be obtained by a simple calcula-
tion starting from the Landau-Ginzburg free energy functional [58]. This calculation
results in a static structure factor which is the square of thermal fluctuation term.
Therefore, the anisotropic correlation lengths and the higher order correction term

are retained in the second term of equation 5.5.
Thus the total fitting function used for all 8CB + aerosil samples was
(o5 ]
1+ &g — q0)? + €341 +c€igl
a28)€1
(1 +&f(a) — q0)* + € qd + C€iqi)

I(q =

+

s + bB(q), (5.6)

The I(q) equation can be written in the short-hand form I = LC + LC? + bg,
where the form of the background bg has been discussed in section 5.2. Technically
one might have used Eq. 5.6 at all temperatures. However, when allowed to be freely
adjustable as is negligibly small for high temperatures, and therefore a; was set to

zero to reduce scatter of the other parameters in this temperature range. -
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Figure 5-4: Momentum Space Representation of Mono-domain and Powder Samples

5.4.3 Powder Averaging

It must be remembered that the samples we are dealing with are powders in an
X-ray diffraction sense. Although bulk 8CB deviates from pure powder behavior
as discussed before, 8CB + aerosil data do not show any such deviations, Which is
evidence that the aerosil network is properly ra.ndomizing the orientation of smectic
domains. Therefore, the intrinsic line shape must be properly powder-averaged in
order to be compared with the experimental data.

Figure 5-4 depicts the difference between mono-domain and powder samples in
momentum space. With a hne shé,pe with finite width, the momentum transfer from
a mopo—domain sampler can be any vector from the origin to a point in the shaded
region around qg or -qo in figure 5-4(a). When it is a powder, qg can point aﬁywhere
in the solid angle. Thus the tip of the momentum transfer vector forms a Spherical

shell as shown in figure 5-4(b).

Therefore, powder averaging is simply integrating the intrinsic mono-domain line

‘shape over all solid angles for qo. Precise and approximate calculations of powder
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averaging typical line silapes are presented in Appendix B.

| Since powdef averaging involves integration, coﬁpled with the convolution with
the resolution function, which is another integration described below, numerical calcu-
lation of the line shape involves long computing times. Fortunately, for some intrinsic
line shapes including LFC, the powder average can be calculated exactly — although
it cannot be easily written in a closed form. That is one reason Why LFC was chosen

over LPC for the analysis of our 8CB + aerosil results.

5.4.4 Convolution With Resolution

As was shown in figure 5-2, the low density samples had line shapes with widths
that are slightly wider than the resolution width. As in the case of high density sil
samples and 8CB + aerogels, if the width is far greater than the resolution width, it
is not necessary to consider the effect of finite resolution on the intrinsic line shape. |
However, when the width is barely larger than the resolution width, as in the case
of the low density 8CB + aerosil samples, taking this effect into account is of high
priority in order to properly extract meaningful data.

There are a few methods that can be used to counteract the effect of the resolution
depending on the intrinsic line shape involved. Unfortunately, the powder-averaged
line shape that is of concern herev is so complex that it is required to numerically
- convolve the line shape with the resolution functién before comparison with experi-
‘mental data. One advantage of dealing with a powder in such a convolution is that
only one dimensional integration is required due to the isotropic nature of powders,
ie.,

Sobserved(Q) == /dq, Sintrinsic(q,)ReS(q - q’)7 (57)

where ¢ and ¢’ are used instead of q and q’ of equation 1.14.

5.4.5 Employing Bulk Result

If the parameters in equation 5.6 are all allowed to vary freely, nonphysical spurious

‘results can occur because of the large number of adjustable parameters involved in the
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fitting. The situation is mﬁch worse by powder averaging since all angular information
is lost. This ambiguity can be overcome through the following physically reasonable
assumption. Since the line shapes of 8CB + aerosil and the bulk 8CB are very similar
to each other at high temperatures, some of the parameters can be interrelated in
a manner simﬂar to that in the bulk material, i.e., £, and the correction coefficient
c can be tied to & precisely as they are in bulk 8CB. The relations between these

parameters may be ascertained from the bulk 8CB critical properties.

Precise measurements of bulk 8CB were done by B. M. Ocko [46], and the critical
exponents of £, £, and ¢ can be easily extracted from his tabulated results. Although
c may not have any true critical behavior associated with it, the variation of ¢ with
¢t has been found to roughly follow a power law. The parameters shown in figure
5-5 were taken from the data reported in Ref. [46]. When fit with a power law, the

results are

q@f = 0.70¢70702 (5.8)
QfL = 0.443 ¢704% (5.9)
¢ = 0.528 t%24, (5.10)

Therefore, £, and ¢ can be expressed as a function of §) simply by removing the

reduced temperature ¢ from these equations. We obtain

0.707

@€l = 0.570 (gog)) (5.11)

c = 0456 (go¢)) ">, (5.12)

and these 8CB expressions have been assumed to be valid also for all the 8CB +

aerosil samples.

Fixing £, and c through the relations 5.11 and 5.12 leaves five adjustable param-
eters: the amplitudes o1 and ay, the location of the peak g, the correlation length
along the director normal ¢, and the background parameter b. For high tempera-

‘tures, since ay is set equal to zero, there are then only four adjustable parameters.
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and v; =~ 0.50.
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Figure 5-5: Critical Behavior of Bulk Single-Domain 8CB
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The data are taken from Ocko’s thesis [46]. (a, b) Fitting the correlation lengths
with a power law reproduced the well-known effective critical exponents v ~ 0.70.
(c) This 8CB correction coefficient was also taken from Ocko’s
thesis [46]. The coefficient decreases to zero as the reduced temperature approaches

zero, and this behavior can be fit reasonably well with a power law. We obtained
> = (0.528 0249,




The validity of this ap-proa,ch‘is confirmed by comparing the line shapes of 8CB +
aerosil and 835 + aerosil.

Figure 5-6 is a simulated‘powder average of the bulk 8CB line shape. It can be
readily seen fr_om the figure that there is a slight asymmetry in the resulting line
shape: the tail on the higher ¢ side (¢ > ¢o) has slightly more intensity than the
lower g side (g < go). This is consistent with the observed behavior as shown in figure
5-3(a).

Figure 5-7 shows measurements on a 855 + aerosil sample compared with a calcu-
lated powder average of the pure 8S5 line shape. 8S5 has a different anisotropy & /&L
for the correlation lengths and a smaller 4th order correction coefficient ¢ than 8CB.
When powder averaged using the single-domain £, = f, (§)) andc = f (&) relations,
the resulting line shape has strong asymmetry: a large tail on the high g side. Actual
data‘frt')m the 835 + aerosil sample indeed have exactly such an asymmetry.

We will call the line shape obtained in this method employing the bulk measure-
ment results as LC (or LC? for the squared term) throughout the rest of this thesis.
It indicates that the pure bulk liquid crystal result was employed to constrain the
parameters of the LFC by assuming that £, and ¢ have values for a given freely ad- |
justable & that are those which a single-domain bulk sample would have for that ¢ I

value.

5.4.6 Fit Results

Fitting experimental data using the fitting function 5.6 generated through the above
method, i.e., powder averaging LC + LC? and convolution with the resolution func-
tion, resulted in excellent fits. Figures 5-8 to 5-13 show representative fits for four
samples at various temperatures and silica densities. For all samples and temperature
ranges the goodness-of-fit parameter x? remained roughly between 1 and 2.

Figures from 5-10 to 5-13 show the relative size of the LC and LC? parts of I(q)
in equation 5.6 for selected samples. When the temperature is close to T4, the
LC term is the dominant contributor to the peak, and the LC? term is just a small

‘fraction. On the other hdnd, the LC? term becomes dominant when T' < Tna, while
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Figure 5-6: Simulated Bulk 8CB Line Shape
Single-domain 8CB data from ref [46] were used to simulate the powder averaged
line shape of bulk 8CB. The corresponding correlation lengths and the correction
coefficients in order of increasing reduced temperature ¢ are (), {1, ¢) = (8150 A,
215 A, 0.0264), (1890 A, 189.5 A, 0.0714), (408 A, 67 A, 0.0875), and (72.5 A, 17.35
, 0.265). . '
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Figure 5-7: 8S5 and 8S5 + Aerosil Line Shape
Simulated powder average of 8S5 line shape has a close resemblance to the 855 +
aerosil data. (a) Powder average of bulk 8S5 line shape is simulated with the parame-
ters obtained from power law fits of single-domain 8S5 data in ref [59]. The line shape
shown in the figure corresponds to AT = T — T$$ = 2.56 °C, correlation lengths
of § = 230 and &, = 15 A and the 4th order correction coefficient ¢ = 0.04. (b)
Scattering data of 855 + aerosil p = 0.030 g/cm® at T = 65.89 °C, 2.56 °C above the
bulk 8S5 N-SmA transition temperature. The data look very similar to the simulated
powder average except a strong background due to the silica network at low g region.
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Figure 5-8: Fitting Curve for T' > T™* for p = 0.025 and 0.040 g/cm® Samples
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- Figure 5-9: Fitting Curve for T > T* for p = 0.075 and 0.200 g/cm?® Samples
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Figure 5-10: Fitting Curve for T < T* for p = 0.025 g/cm® Sample
Note: the scan shown in (b) was taken by counting ten times more than usual. Thus
the numbers shown on its vertical axis must be divided by 10 to be properly compared
Wlth those in (a)
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Figure 5-11: Fitting Curve for T' < T* for p = 0.040 g/cm® Sample
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Figure 5-12: Fitting Curve for T < T* for p = 0.075 g/cm3 Sample
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Figure 5-14: Fits of a,
The power law equation 5.13 was used to fit ay. Solid curves represent the fit curves.
In this plot, ay has been scaled for easy viewing.

the LC part is small but still important since it explains most of the tails. Figures
5-11 and 5-12 show this behavior of the LC part especially clearly.

As seen from figure 5-14, ao rapidly decreases to zero as 7T increases toward the
effective “transition” temperature T*. Since a shows order-parameter-like behavior,

it was fit with an empirical power law:
Qg = Ag IT — T*Iz . (513)

As described previously, when ay was taken as a free parameter for high temperatures,
the resulting values were extremely small. Thus a, is fixed at zero for temperatures

above T* to reduce fitting noise in other parameters 2. This is equivalent to fitting

~ 2Note that this T* is different from Tiy 4 (bulk) and is determined differently from the T* values
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the high temperature déta with the pure 8CB line shape.

It is interesting to note that the LC? contribution to the scattering peak resembles
a genuine smectic ordering peak in many ways. Figure 5-15 shows a slight increase
in go on cooling 8CB + aerosil samples at low temperatures, much like the behavior
seen below Ty ;1 in bulk 8CB.

Figure 5-16 shows the behavior of o, as a function of temperature for one typical
sample. In general o; grows on cooling at high temperatures and settles down at a
constant value at low temperatures albeit with some noise.

One of the difficulties with the fitting procedure was the insensitivity of the quality
of the fits to variations in ¢; when T is near T* for low density samples. This property
comes from the strong coupling between the o; and §; parameters. When the LC?
portion is almost resolution limited for the small p samples, unless there are very good
statistics, the uncertainty in &) is large, and this uncertainty propagates to o; as well.
Thus these two parameters can not be determined with great accuracy. Away from
T*, when the sharp static fluctuation peak grows in size, LC? has enough statistics
to overcome this difficulty. Therefore, the x? surface as a function of oy shows a very
broad minimum near 7™ and a relatively well defined minimum when 7" < 7*. In the
case of high density samples, LC? is broad, and correlation lengths and consequently
o are relatively well determined.

Figure 5-17 illustrates the evolution of the x? surface as the temperature is de-
creased when o has a fixed value that has been stepped over a wide range. The
dotted curve which corresponds to a temperature close to T* has a shallow minimum,
‘and ¢; cannot be determined with great precision. As the temperature is decreased, a
relatively well defined minimum (which corresponds to LC + LC? minimum) appears
and o; is much better determined.

To obtain better fit parameters from the low temperature (T' < T*) data, we
used the fact that oy is basically due to thermal fluctuations and its temperature
dependence can only be proportional to kgT'. In the temperature range of interest (

T* to T*— ~ 15 K ), the variation of o, is expected to be less than 5% because the

used for 8CB + aerogel X-ray scattering measurements ( see Egs. 5.1 and 5.2 in section 5.4.1 ).
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: Figure 5-15: Temperature Dependence of gg

go values for three 8CB + aerosil samples are compared with those for bulk 8CB as
a function of temperature. The temperature dependence above T* is unclear due
to broad weak peaks to result in considerable scatter. As the temperature decreases
below T™, go of all 8CB + aerosil samples follow the same pattern as bulk 8CB. As the
temperature decreased, go increases slightly as the smectic layer spacing d becomes
smaller. The bulk 8CB data was analyzed with LC + 6(q) line shape to find ¢o. g
values of 8CB + aerosil samples are reduced by 0.001, 0.002, and 0.003 A~ for 0
= 0.025, 0.075, and 0.200 g/cm?® samples, respectively, in order to avoid confusing
overlap and provide easy viewing.
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Figure 5-16: Behavior of o,
The data were taken from fits of the p = 0.150 g/cm® sample with the LC + LC? +bg
line shape with oy allowed to vary freely at all temperatures. Note that oy is roughly
constant for the low temperature region.

absolute temperature was roughly 300 K. Furthermore, when o; was taken to be a
freely adjustable parameter in the range T to ~ (7™ — 15K) the resulting o; values
were usually clustered around a common value and any “noise” in the oy values was
due to fitting problems since there was a strong correlation between odd (high or low)
oy values and odd values in the associated £ values. Thus o, was held fixed at a
constant value for fits at 7' < T™. Usually this constant o; was decided by averaging
several free low temperature o, values. In a few cases where the low temperature
data did not yield a reasonably narrow minimum in x?, o1 was determined from the
best visual estimate of the left edge of the minimum in the x? surface in plots like
figure 5-17 . It should be remembered that correlation lengths thus obtained have

much a bigger error bar because o, in fact has a large uncertainty.
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Figure 5-17: x? Surface

(a) The curves shown are x? surfaces for the p = 0.025 g/cm? sample at 7' = 29.22
and 15.26 °C. When T is close to T, this low density sample has a very shallow 2
minimum, which evolves into a narrower and well-defined minimum when 7' < T*.
(b) x? surfaces for the p = 0.150 g/cm® sample at T = 30.04 and 27.52 °C. At low
temperatures, this high density sample has a deep x? minimum that corresponds to
the LC + LC? line shape with the LC? contribution dominant. The other minimum
at high o corresponds to the LC line shape only (i.e. ag is very small). Due to
the difference in the depths of two minima, the low o; minimum is statistically sig-
nificant at this temperature. When the temperature is close to 7, the two minima
have comparable x? values but starting fits from the low temperature values of the
parameters, the least-squares program always converges on the low ¢; minimum.
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Chap‘t_er 6

Effect of Aerosil Random Disorder

6.1 Finite Correlation Lengths

Figufe 6-1 shows the evolutio;l of the parallel correlation lengths for a few of the
samples as a function of temperature. One of the most intriguing results, which
can be readily seen from this plot, is that the correlation lengths vary rapidly with |
T at high temperatures and then plateau at a constant value for low temperatures

This behavior is dramatically different from that of 8CB + aerogels where the
correlation length grows monotonically as the temperature decreases. However, the
results are very similar to that of LC + millipore samples in which liquid crystals
are confined in randomly interconneéted voids. However, the plateau values of the
parallel correlation length (§)) for 8CB + aerosils far exceed the corresponding mean
void size (lo) of each sample, while in the case of millipore the correlation lengths are
restricted by the average pore size [60].

Very high density 8CB + aerosil samples exhibit a somewhat different behavior.
The increase on cooling in the correlation length near 7* is more gradual than that for
low density samples, and this increase happens over an extended region of temperature
as shown for the p = 0.295 g/cm?® sample in figure 6-2. This clearly shows the severe
smearing of the “transition” for high density samples. Indeed, it is difficult to choose
good T™ values for the highest density aerosil samples.

The behavior of the correlation lengths will be discussed in three sepafate tem-
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Figure 6-1: Development of &,
Shown in the figure are the parallel correlation lengths for p = 0.025, 0.040, 0.075,
and 0.200 g/cm? samples. € increases rapidly above T™ on cooling and saturates at
an effectively constant value below 7.
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Figure 6-2: Development of Correlation Length
&(T) va,lues for two high density samples with p = 0.250 and 0.295 g/cm? are com-
pared with the p = 0.025 g/cm3 sample and bulk 8CB in this figure. Compared
with the rapid rise of correlation length of the low density sample and the bulk at
high temperatures, high density samples (especially p = 0.295 g/cm? ) show a slower
increase of £ over more extended temperature region.
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Figure 6-3: High Temperature (7" > T*) Correlation Length
Bulk 8CB data (—) taken from ref [46] is compared to 8CB + aerosil samples. Plotted
are parallel correlation lengths of various samples: p = 0.025 (o), 0.040 (O), 0.050
(e), 0.075 (A), 0.100 (M), 0.150 (a), 0.200 (V), and 0.250 g/cm® (¥). No adjustment
has been made for possible shifts in T* as a function of p [11].

perature regimes, i.e., T'>T*, T ~T* and T < T*.

When the temperature is far above T, the correlation lengths are expected to be
smaller than the mean void size, lo. Thus it is natural that they should behave just
like the correlation lengths of bulk 8CB as a function of temperature. The observed
high temperature behavior is consistent with this interpretation. Figure 6-3 illustrates
this point by comparing correlation lengths for many 8CB + aerosil samples at high

temperatures .

The correlation lengths increase markedly as the temperature is decreased toward

94




T* (which is near the bulk 8CB transition temperature). The rate of increase on
cooling just above T™* is, as can be seen from this figure, faster for the low density
samples and slower for the high density samples. This result is consistent with sharp
and smeared heat capacity peaks for low and high density samples obtained from the
calorimetry experiment [11].
When the temperature was brought below 7™, the correlation lengths saturate,
although it should be noted that the parallel correlation length at low temperatures,
ﬁ‘T, is-much longer than the mean void size ;. This low temperature saturation
plateau behavior indicates that there is no development into long range order even if

the temperature is lowered appreciably below 7.

Figure 6-4 summarizes the low-temperature plateau values of the correlation lengths,

Eﬁ:T and €47, as a function of silica density.

‘e

The nematic correlation length of the homolog 6CB with dispersed aerosi.l mea-
sured with static light scattering demonstrates the formation of very large but finite
nematic domains [12]. Because the smectic ordering is expected to be bounded by
the nematic domain size, a EﬁT which is much smaller relative to this domain size
indicates that the aerosil network not only restricts the nematic domains but also
disrupts the smectic ordering within such domains, consistent with theory. Note that
the aerogel and aerosil systems with equivalent densities of silica have different £
values. Thus, the partial annealing of the aerosil disorder is a significant feature in
contrast to the strongly quenched aerogel disorder.

Nevertheless, &7 values are about four times larger than Iy independent of the
density as shown in figure 6-5. This is in contrast to 8CB + aerogels, where the
correlation lengths were comparable to the void sizes: &7/L =~ 2 for the p = 0.08
aerogel and L7 /L ~ 1 for the other three aerogel samples [28]. This indicates that
aerosil systems have much weaker disordering fields than aerogel systems.

The large magnitude of §|I|‘T for the low density samples also provides an explana-
tion for the sharp heat capacity peak. Although there is no transition to true long
range order (i.e., no resolution limited SmA peak), such long-correlation-length fluc-

‘tuations to all intents and purposes mimic the true singular behavior for calorimetry
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Figure 6-4: Low Temperature Correlation Lengths vs Silica Density
Low temperature correlation lengths (§f” and £{T) are compared with 6CB + aerosil
nematic correlation lengths (¢) taken from Bellini et al. [12] and the mean void size
lo = 2/aps as defined in reference [11].

96




o 8CB + aerosil
e 8CB + aerogel
5 L
| 5
4+ )
T 717 l
-
~s3| S : ]
w
[ ]
2 =
[ ]
Tt . .
0 L 1 " — 1
0.02 0.05 0.1 0.2 0.5 1

ps [9/cm’]

Figure 6-5: fﬁT/lo
The ratio of the low temperature correlation length (£{7) to the mean void size
lo = 2/aps is considerably higher for 8CB + aerosil gels (open circles, o) than for
8CB + aerogels (filled circles, ®). The aerogel data were taken from Clark et al. [3],
and the filled circles represent £/L, where L is an experimental pore chord length.
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- measurements with finite temperature resolution except for finite size effects at very

small reduced temperatures where AC}, is truncated when & = l,. [61].

Below the lower critical dimension, ¢ is expected to have a simple algebraic depen-
dence on the random field. In figure 6-4, the low temperature correlation lengths are
fit with simple power laws (dotted lines): fﬁ‘T ~ pgt?02 and ¢1T ~ p08*02 Gin-
gras and Huse [62] estimated the correlation length of the RFXYM at the transition
temperature of the XY model to be £ ~ HE?,—/ @1 where Hpp is the random field
strength and 7 is the usual critical exponent for the spatial decay of the correlations
of the pure XY model. Since 2 —7n =v/v, —=2/(2 —7n) = —1.02 and -1.0 for 3D-XY
and tricritical, respectively. The empirical power laws are also compatible with one
of the predictions of the Radzihovsky-Toner theory: & ~ A;l. However, it should be
noted that our ¢ valﬁes do nof exhibit the temperature dependence expected from

RT theory, where ¢ is expected to vary as B(T)'T.

6.2 Crossover From Tricritical To 3D-XY Behav-
ior |

The integrated intensities of the static fluctuations, a, of the LC? term, exhibits order
parameter-like growth, as shown in section 5.4.6. Power-law fitting of ay with Eq.
5.13 was restricted to the effective reduced temperature range of t* = 11— (T/T)| <
2.8 x 1072, Figure 5-14 shows a, fits for three different samples with densities p =
0.025,0.150, and 0.295 g/cm?, respectively, and figure 6-6 summarizes the exponents
z obtained from such fits on all samples.

Since az becomes the intensity of the smectic Bragg peak in the limit of pg — 0, the
exponent z is equivalent to the critical exponent, 23, for the smectic order para,rnetver
squared, (|¥|*) in this limit. Integrated X-ray scattering intensity measurements
on a series of pure liquid crystals by Chan et al. show that the effective power-law
exponent z* in the expression Intensity ~ [t|*" for T < Ty and T > T does nbt

follow the simple behavior, z* = 1 — «, which is expected as a consequence of the
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Figure 6-6: Effective Critical Exponent,

The open circles (o) are the effective critical exponent x obtained from fitting ay with
the power law 5.13 for each 8CB + aerosil sample. The filled circles (o) represent
20 values for bulk liquid crystals calculated using the Rushbrooke equality with the
o and vy values taken from reference [29] with the McMillan ratio Ry = Tiva/Tn:
as the horizontal axis. This horizontal axis was scaled so that the 8CB McMillan
ratio of 0.977 corresponds to ps = 0. The filled circle located at (ps = 0,28 = 0.43)
corresponds to the pure 8CB value.

The exponent x shows a crossover like that seen for 2/3 in pure liquid crystals from an
8CB 2 value (0.43) or tricritical 28 value (0.5) to the 23 = 0.694 value of 3D-XY.
For 8CB + aerosils, this crossover occurs as the silica density of the sample increases;
pure liquid crystals show the same type of crossover in 23 as the McMillan ratio
decreases.
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Landau-de Gennes free.energy, but rather an empirical rule, z* ~ (v + v)/2 [63].

Since in our samples the transition is destroyed by the aerosil, leading to finite € and |
&, values, and because of the significant scatter in our results for high temperatures,
it was not possible to obtain effective exponents v and v, for the 8CB + aerosil
samples. Thus it is not possible to test whether z is related to (v + v, )/2 for aerosil
samples. However, if we associate z with 23, the canonical critical exponent for
the order parameter squared, its trend fits very well with that of 23 for pure liquid
crystals as a function of nematic range. (The 23 values for pure liquid crystals are
calculated using the Rushbrooke equality, 20 = 2 — a — vy, with « and ~ values taken
from reference [29]). The filled circles (o) in figure 6-6 represent 23 values for pure
liquid crystals as a function of the McMillan ratio (Ry = Tna/Tnr) given by the
upper horizontal axis. Since pure bulk 8CB has Rj; = 0.977, the R, scale starts
from 0.977 where ps = 0 g/cm® and decreases as pg increases. The open circles are
the results for 8CB + aerosil samples. Both the pure liquid crystals as a function of
nematic range and the 8CB + aerosil samples as a function of disorder strength pg

show a trend from near-tricritical to 3D-XY.

This crossover from 8CB-like (or roughly tricritical) behavior to 3D-XY criticality
also manifests itself in the calorimetry measurements of 8CB + aerosil samples, where
the effective heat capacity critical exponent o decreased from the bulk 8CB value of
0.31 to -0.02, a value close to that of 3D-XY «, -0.007, as silica density increased [11].

The observed crossover from tricritical to 3D-XY may be explained by the re-
duction of nematic director fluctuations by giving away fluctuation energy to aerosil
strands. The coupling between the nematic director fluctuations and the smectic
order parameter, which is one of the reasons why there is a crossover from 3D-XY
to tricritical behavior for pure liquid crystals, is affected by reduced director fluctu-
ations. The enhancement of orientational order at just below 7™ is reduced for high
density aerosil samples in this scenario, and the NMR results of Jin and Finotello [14]

‘confirms this.
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6.3 X-ray Absorption and Normalization of Fit Pa-

rameters

As previously stated, although the different aerosil samples were placed in identical
| sample environments, the samples had different thicknesses due to their differences
in rigidity. Comparing absolute séattering intensities thus becomes difficult. It is,
therefore, important to devise a method to work around this problem in order to put

the different samples on the same arbitrary intensity scale for appropriate comparison.

The major impact of different sample thickness to the scattered intensity is through
the X-ray absorption. For an ideal homogeneous slab of sample, the scattered inten-

sity is dependent on the thickness as
I~ de= 4/, (6.1)

where 7 is the scattered intensity, d is the thickness of the sample, and ) is the X-
ray attenuation length. Note that ) is a function of the silica density because silica
and the liquid crystal have different absorption coefficients. At 8 keV, the X-ray
~attenuation length of silica is Asio, = 130 um and that of 8CB is Ascg = 2400 pm.
The X-ray attenuation length of each 8CB+-aerosil sample can be calculated from the

following formula using the two attenuation lengths:

1 P D

Z - Si0q + 8CB, (62)
A Xsio,  Ascm

where ®g;0, and ®Psop are the silica and the 8CB volume fraction respectively. In

Table A.1, X for each sample calculated using the formula given above is listed.

Fortunately, the background scans made at a high temperature give us a valuable
clue as to how normalize the scattering intensity from different samples. Background
Scans are composed primarily from the scattering from the silica, with non-negligible
amounts of scattering from the liQuid 8CB at high ¢ as well. Therefore, the back-

| ground scattering intensity can be written as
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B(q) = asSs(q) + arcSre(q) (6.3)

where as and arc are sample density and thickness dependent coefficients and Ss(q)

and Src(g) are the scattering profiles of the silica and the liquid crystal respectively.

Stc is measured by the bulk 8CB scans at temperatures above Ty; and Sg(q) can
be obtained by power law fits of small-g scattering data for aerosil samples. It was
found that Ss(q) oc ¢=35% when 0.05 A~ < ¢ < 0.10 A~!. Thus ag and arc values

can be obtained by fitting high temperature background scans as described below.

Because ag is proportional to the amount of silica present in the sample while a;¢
is proportional to the amount of the liquid crystal and both are affected by absorption

through the same attenuation coefficient, they can be written as

as X (I)5102 d e_% (6.4)
arc x P1c d 6_§, (65)

- where d is the sample thickness. Therefore, we obtain the following simple relation
between the two coefficients:

Os;
25 o S50z (6.6)

arc  Prc

The validity of equation 6.6 can be verified through a log-log plot of the ratio

as/arc vs. Pgio,/Prc, as shown in figure 6-7. As expected, the data points nicely
follow a line of slope one in this figure.

Note that Spc contains contributions from the smectic fluctuations below TnT.
Thus the scattering profile we observe can be normalized by dividing by a;c.

One such attempt is shown in figures 6-8 and 6-9. When normalized properly, the
low-temperature “plateau” o, values are approximately constant for ps < 0.1 g/cm?®
and decrease as the density increases for pg > 0.1 g/cm®. Due to some ambiguity
involved in determining the low temperature o, values as diséussed in section 5.4.6,

the behavior in this figure is not completely certain.

Since dg shows order-parameter-like growth as a function of |T" — T*| below T*
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Figure 6-7: CLS/(ZLC VS. ¢’S102/¢LC

The open circles corresponds to p = 0.025,0.040, 0.050, 0.075, 0.100, 0. 150, 0.200, and
0.250 g/cm?® samples from left (small ®g;0,/®rc) to right (large @gi0,/Prc). If the
assumptions about the high temperature background scan (it consists of separable
the silica and the LC part) is correct and if adequate scattering profiles, Sg(¢) and
Src(q), are used, the points in this plot must lie on a line with unit slope. The solid
line (—) shown is a guide line with a slope of unity to demonstrate the validity of our
analysis.
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Figure 6-8: ol vs. T
o) = 01/arc designates properly normalized values of o, in terms of which compari-

son between samples is possible. o¥¥ is temperature independent for low temperatures
except perhaps for the highest density sample shown in this figure.
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Figure 6-9: Normalized oy
When normalized by dividing the low temperature o; values by arc, ol (= oy /arc)
‘shows an interesting trend. For low density samples with pg < 0.1 g/cm?, o does

not show any significant dependence on ps. As the silica density increases above

ps ~ 0.1 g/cm?®, there is a noticeable decrease in ol

with different p-dependent exponents, a direct comparison of as for different samples
is not simple. It was attempted, however, to compare a norﬁalized as value at the
same effective reduced temperature, t* ~ 1.0 X 1072, The obtained normalized values
were noisy and did not show any systematic trend with p, with the values fluctuating
within a factor of three. It must be noted that a, values were incréasing on cooling to
the lowest. accessible temperature, which is set by crystallization of the samples. This
.042 result may indicate the following. While most of the liquid crystal in the samples
contributes to the static ﬂuctua,tions_at low temperatures regardless of silica density
(the same normalized a, for different samples), there are weaker thermal fluctuations

for the high density samples.
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Chapt'er 7
Concluding Remarks

We have investigated the 8CB + aerosil system using X-ray diffraction methods to
study the effect of quenched randomness on the nematic to smectic-A transition.
There are several important points we have uncovered from the scattering measure-

ments.

e The high temperafure scattering was very similar to that from the thermal
fluctuations of bulk 8CB, a fact indicative of weak quenched randomness. The
measured scattering profile could be fit with the powder average of the bulk
8CB critical scattering line shape, i.e., LFC with £, and c determined from the

& values using the bulk relations between them (LC line shape):

1+ &) — 90)° +€3q3 + 2¢tqt

S(a) (7.1)

Therefore, the above line shape has only 3 adjustable parameters: go, o7, and

§) (plus of course the background coefficient b).

e The low temperature scattering required the use of an additional term. We
added the square of the thermal fluctuation term with an independent amplitude

to describe the static fluctuations originating from quenched randomness. Thus
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the low temperature line shape was taken to be LC + LC?:

S(q) = + N
1+ E2(qn — an)2 + £2 02 &+ o274 4 2
+ &g — ) + €14t + c2lql (1 + & (g — 0)?+ 143 + c2§jq1)
(7.2)
as is the only additional adjustable parameter, thus there are only 4 adjustable

parameters in the above line shape (plus the background b coefficient).

e No line shape was resolution limited at any temperature or density of aerosil,
unlike the bulk 8CB peak, indicating the destruction of the quasi-long range

order of the smectic-A phase as predicted by various theories.

e The anisotropic correlation lengths grew as T decreased toward T* from above.
They stopped growing below T* and were almost constant over a wide temper-

ature region with density dependent values of £ and ¢}T.

e The longitudinal correlation lengths at low temperatures, §ﬁ‘T, are believed to
- be long enough to account for the observed sharp heat capacity peak (pseudo

N-SmA transition) for low density samples [61].

e Integrated intensity of the static fluctuation term, as, behaves like a smectic

order parameter squared, (I‘I’!2>, and could be fit with a power law:

ay o |T" = T|". (7.3)

Equating z with 20, it exhibits crossover from 8CB or near-tricritical values
to 3D-XY values as the silica density increased, a behavior consistent with the
calorimetry results which showed similar crossover for the effective heat capacity

critical exponent a.

Preliminary X-ray scattering experiments on 855 + aerosil system showed quite
interesting behavior in contrast to the 8CB + aerosil system. 8S5 + aerosil had
almost resolution limited line shapes if not completely resolution limited. This is not

surprising considering the fact that 855 is non-polar (hydrocarbon tails at both ends)
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and interacts with sﬂicé network differently. Most likely the anchoring force is much
weaker for 835. This indicates that the strength of disorder in L.C + aerosil systems is
dependent on the individual liquid crystalline molecules as well as the silica density.
Hence, with a variety of liquid crystals available, LC + aerosil systems, can be studied
over a wide raﬁge of disorder.

In conclusion, this thesis has shown that 8CB with disbersed silica particles pro-
vides a model random field system for studying a transition that breaks a contin-
uous symmetry. These findings have already stimulated other experimental efforts
on different LC + aerosil systems including but not limited to liquid crystals with
a smectic-A to smectic-C transitions or a re-entrant nematic phase (i.e., N-SmA-N

sequence on cooling).
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Appehdix A
Tables of Results

The fit results are tabulated in this section. The units of temperature (T'), correlation
lengths (£),£1), and center of the peak (go) are °C, A, and A~! respectively. The
correéponding error of the parameters uses the same unit. The o, values in tables
A.3-A.11 are in arbitrary units, and since absolute o; values are dependent upon
individual experimental setup details, o; values for different samples should not be
compared directly with each other. Though the intensity of the LC? term ay has the
dimension of A=3, like o4, its values for different samples should not be compared.
Normalized values of o; and a; can be obtained using the factor azc given in table
A.1, and low-temperature plateau values of of' (= 01 /arc) are given in table A.2.

In tables A.3 - A.11, £, is not a freely adjustable parameter as explained in section

5.4.5.
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Table A.1: Table of p, ps, Psio,, and the X-ray attenuation length .

p is in g of SiOy /em?, and pg is grams of SiO; per cm?® of LC. The volume fraction
of silica ®g;0, is dimensionless. The last column is arc, the normalization coefficient
discussed in section 6.3.

p ps ®gi0, A (pm) arc
0.025 0.0253 0.0114 2020 0.675
0.040 0.0407 0.0182 1830 0.759
0.050 0.0512 0.0227 1730 0.231
0.075 0.0776 0.0341 1510 0.106
0.100 0.105 0.0455 1340 0.167
0.150 0.161 0.0682 1100 1.42
0.200 0.220 0.0909 930 0.0270
0.250 0.282 0.114 806 0.881
0.295 0.341 0.134 720

Table A.2: Best Choices for the Constant Low-Temperature Amplitudes of the LC
Terms

The values in parenthesis indicate average values for o; at low enough temperatures.
Rather than fixing o, at a constant, it was allowed to vary freely because its scatter
was not severe. The quantity U{V is the normalized value oy /azc.

Sample (p in g/cm3) oy ol

0.025 1.0 x 10° | 1.5 x 10°
0.040 6.9 x 10° | 9.1 x 10°
0.050 3.2x10° | 1.4 x 10°
0.075 1.4 x 10° | 1.3 x 108
0.100 1.0 x 10° { 6.0 x 10
0.150 (83000) | 6.1 x 10*
0.200 1600 7.7 x 10
0.250 (14200) | 3.5 x 10°
0.295 7500
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Table A.3: p = 0.025 g/cm?

g1 Olerr Q2 a2.err £|| Ej[,er‘r f.L é‘_l_,err q0 q0,err
14.618 1le4+06 O 0.03416 0.00026 8420 110 545.625 4.81239 0.20019  5.8e-06
15.258 1le+406 0 0.03362 0.00049 8260 200 538.284 8.95524 0.200326 1.1e-05
16.459 1le+06 0 0.03263 0.00041 8660 200 556.277 9.13532 0.200249 9.7e-06
17.559 1le4+06 O 0.03136 0.00041 7980 - 150 524.929 7.12732 0.200186 9.9e-06
18.880 1le406 O 0.03155 0.00052 8200 210 535.209 9.7411  0.200115 1.3e-05
20.296 1le+06 O 0.03022 0.00048 8060 190 528.772 8.8259 0.200092 1.2e-05
21.857 1le+06 O 0.03034 0.00046 , 8400 210 544.469 9.61403 0.199983 1.1e-05
23.564 1le+06 O 0.0284 0.00042 7930 160 522.807 7.39682 0.199832 1.1e-05
25.448 le+06 O 0.0268 0.00043 8000 170 525.807 8.09916 0.199669 1.2e-05
27.603 1le+06 0 0.02183 0.00046 8260 210 538.062 9.63459 0.199444 1.4e-05
29.215 1le+06 O 0.01558 0.00035 8150 160 532.971 7.38883 0.199271 1.4e-05
29.746 1le+06 0 - 0.01655 0.00037 7900 150 521.34  7.00863 0.199284 1.4e-05
30.272 1le+06 O 0.01575 0.00041 8040 170 528.024 7.72935 0.19914 1.6e-05
30.813 1le+06 O 0.01467 0.00041 8060 180 528.977 8.16001 0.199046 1.7e-05
31.370 1le+06 O 0.01237 0.00036 7970 160 524.767 7.28932 0.198977 1.7e-05
32530 1le+06 O 0.00563 0.00037 7370 130 496.36  6.19807 0.198642 2.5e-05
33.140 18900 2700 O 0 935 79 115.232 6.84852 0.198097 9.9e-05
33.772° 2180 440 0 0 315 37 53.4559 4.31498 0.19725" 0.00044
34.426 1220 250 0 0 243 29 44.3995 3.74264 0.19613  0.00054
35.103 680 180 0 0 183 30 36.3681 4.12979 0.19742  0.00093
38.914 141 56 0 0 99 27 23.5004 4.43746 0.1967  0.0024
Table A.4: p = 0.040 g/cm?
T g1 . Olerr Q2 ag.err €|| &" err €1 é_L,err do q0,err
15.406 690001 O 0.03331 0.00048 6310 130 444.851 6.37026 0.200348 1.2e-05
16.392 690000 O 0.03315 0.00047 6380 130 448.068 6.61609 0.200274 1.2¢-05
18.972 690000 0O 0.03144 0.00049 6460 150 452.384 7.22815 0.200193 1.2e-05
21.986 690000 O 0.02908 0.0005 6460 150 451.973 7.63915 0.20005 1.3e-05
25.574 690000 O 0.02527 0.00039 6680 130 462.938 6.46533 0.199789 1.1e-05
27.248 690000 0O 0.02112 0.00044 7320 200 494.11 9.3954  0.199556 1.5e-05
27.215 690000 O 0.01933 0.00051 7220 230 489.382 10.8045 0.199541 1.9e-05
29.215 690000 O 0.01636 0.00038 7130 170 484.746 8.29757 0.199423 1.6e-05
29.746 690000 O 0.01586 0.00039 7070 160 481.799 7.89653 0.199352 1.6e-05
30.271 690000 O 0.0139  0.00042 6660 150 462.043 7.36033 0.19926 1.9e-05
30.812 690000 O 0.0135 0.00038 6920 150 474.752 7.25497 0.199205 1.8e-05
31.368 690000 O 0.0117  0.00037 6960 150 476.497 7.43684 0.199091 1.9e-05
31.944 690000 O 0.00947 0.00041 6680 160 463.045 7.8197 0.19896  2.4e-05
32.530 690000 O 0.00703 0.00039 7010 180 479.066 8.7121 0.198993 2.8¢-05
33.139 218000 71000 O 0 3234.86 569.873 278 33 0.1985 0.00011
33.770 3720 860 0 0 421.222 60.2992 65.9 6.2 0.19713  0.0004
34.422 2310 660 0 0 361.587 62.4413 59 6.9 0.19857  0.00056
35.094 880 230 0 0 216.98 35.7146 41.2 4.5 0.19737  0.00075
. 38.901 134 57 0 0 08.4087 30.5483 23.7 4.7 0.1939 0.0024
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Table A.5: p = 0.050 g/cm?

T g1 Tlerr Q2 a2 err §|| 5" erT §1 €1 err do q0,err
26.957 320000 O 0.013 0.00029 5570 110 407.162 5.71691 0.199507 1.4e-05
27.191 320000 O 0.01236 0.00029 5530 110 405.223 5.59765 0.19949 1.4e-05
28.330 320000 O 0.01136 0.00029 5510 110 404.219 5.57091 0.19935 1.5e-05
29.390 320000 O 0.00984 0.00023 5454 93 - 401.207 4.81156 0.199229 1.3e-05
29.958 320000 O 0.00919 0.0002 5535 85 405.413 4.37691 0.199138 1.2e-05
30.463 320000 O 0.00857 0.00019 5715 90 414.689 4.59485 0.199053 1.3e-05
30.973 320000 O 0.00796 0.000‘26 5830 130 420.625 6.54517 0.198989 1.8e-05
31.505 320000 O 0.00643 0.00022 5670 100 412.489 5.00557 0.198898 1.7e-05
32.060 320000 O 0.00533 0.00021 5770 110 417.288 5.81941 0.198821 1.9e-05
32.636 320000 O 0.00327 0.00021 5800 120 419.198 5.9428 0.198642 2.5e-05
33.237 44000 10000 O 0 2070 270 202.24 18.2921 0.198005 8.3e-05
33.863 1940 480 0 0 405 56 63.7425 6.17063 0.19883 0.00044
34.515 1220 360 0 0 335 58 55.8112 6.64083 0.19796 0.00062
35.193 281 77 0 0 156 27 32.511 3.86461 0.196 0.0011
36.260 390 150 0 0 216 49 40.852 6.41066 0.1943 0.0012
37.025 116 42 0 0 105 25 24.4932 4.06898 0.1972 0.002
37.818 175 71 -0 0 163 41 33.5395 5.74069 0.1968. 0.0016
Table A.6: p = 0.075 g/cm? ‘
T a1 Olerr Q2 a2 err g“ £|| erT £ €1 err 9o q0,err
17.595 140000 O 0.01495 0.0002 3751 58 307.886 3.35998 0.200234 1.2e-05
17.721 140000 O 0.01499 0.00022 3801 66 310.806 3.78406 0.200189 1.3e-05
18.119 140000 O 0.01529 0.00024 3991 82 321.716 4.63473 0.200146 1.4e-05
18.815 140000 O 0.01466 0.00026 3836 79 312.794 4.55247 0.20014 1.6e-05
20.254 140000 O 0.01322 0.00021 3865 70 314.487 4.00506 0.200156 1.4e-05
21.811 140000 O 0.01239 0.00024 3863 79 314.385 4.50761 0.200047 1.6e-05
23.520 140000 0 0.01218 0.00022 3750 68 307.823 3.94286 0.199945 1.5e-05
25.396 140000 O 0.01112 0.0002 3789 63 310.106 3.62063 0.199806 1.4e-05
27.071 140000 O 0.0104 0.00021 3844 70 313.294 3.99515 0.199607 1.6e-05
29.235 140000 O 0.00863 0.00021 3917 78 317.48 4.43862 0.199362 1.9e-05
29.765 140000 O 0.00721 0.0002 3816 69 311.662 3.96288 0.199269 2e-05
30.292 140000 O 0.00696 0.00023 3777 77 309.411 4.43081 0.199216 2.3e-05
30.833 140000 O 0.00662 0.0002 3974 7 320.735 4.36818 0.199111 2.1e-05
31.394 140000 O 0.00512 0.00018 3895 69 316.193 3.95713 0.198999 2.2¢-05
31.965 140000 O 0.00395 0.00017 3840 63 313.055 3.6033 0.198971 2.4e-05
32.557 140000 O 0.00221 0.00017 3788 62 310.008 3.60343 0.198872 3.1e-05
33.169 35500 6100 O 0 1806.43 174.14 184 12 0.198471 6.9e-05
33.801 2160 460 0 0 435.295 55.6974 67.3 5.8 0.19787 0.00036
34.456 950 260 0 0 294.933 49.5859 51.2 5.7 0.19643 0.00062
35.130 510 110 0 0 205.213 28.1574 39.6 3.6 0.19689 0.00066
-38.949 130 56 0 0 138.04 38.7615 29.8 5.7 0.2005 0.0019
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Table A.7: p = 0.100 g/cm?® data from two runs

g1 Olerr G2 a2 err E" gll,err £_L €L,err do qo,err
32.384 100000 O 0.00327 0.00017 3397 64 287.059 3.79779 0.198686 2.6e-05
32.528 100000 O 0.00249 0.00016 3296 58 281.009 3.45974 0.198613 2.8e-05
32.678 100000 O 0.00194 0.00016 3313 62 282.024 3.70312 0.198557 3.3e-05
32.826 100000 O 0.00146 0.00015 3323 59 282.627 3.51907 0.198509 3.4e-05
32.977 100000 O 0.00112 0.00015 3401 66 287.31 3.90327 0.198428 4e-05
33.130 55000 11000 O 0 2400 260 224.662 16.7932 0.198289 6.3e-05
33.284 12500 2300 O 0 1180 130 136.3 10.0209 0.19799  0.0001
33.438 3220 620 0 0 556 67 79.848 6.65803 0.19791 0.00021
33.596 2190 520 0 0 493 75 73.3368 7.69605 0.19706  0.00034
33.754 1370 280 0 0 358 48 58.4503 5.45564 0.19766  0.00037
33.916 . 1540 300 0 0. 398 51 63.0511 5.57013 0.19764  0.00031
39.643 320 450 0 0 370 310 59.8522 32.1786 0.1973 0.0051
27.207 100000 O 0.00973 0.00023 3085 54 268.156  3.29302 0.199369 1.7e-05
27.141 100000 O 0.01027 0.00025 3198 62 275.058 3.74941 0.199366 1.7e-05
27.124 100000 O 0.01009 0.00032 3191 81 274.598 4.93477 0.199366 2.3e-05
27.326 100000 O 0.01003 0.00021 3149 51 272.075 3.09381 0.199338 1.5e-05
28.428 100000 O 0.00887 0.00022 3165 56 273.058 3.38657 0.199232 1.7e-05
29.532 100000 O 0.00776 0.0002 3223 54 276.539 3.29577 0.199106 1.7e-05
30.122 100000 O 0.00764 0.00018 3344 55 283.857 3.30547 0.19904 1.6e-05
30.692 100000 O 0.00648 0.0002 3280 62 280.015 3.73363 0.198962 2e-05
31.228 100000 O 0.00534 0.0002 3189 59 274.52 3.56127 0.198876 2.2e-05
31,785 100000 O 0.00436 0.00018 3277 60 279.818 3.63036 0.19874  2.3e-05
32.363 100000 O 0.00317 0.00016 3342 59 283.719 3.56294 0.198635 2.5e-05
32.962 100000 O 0.00073 0.00016 3221 60 276.446 3.63028 0.198425 4.5e-05
33.587 1980 420 0 0 428 59 66.3251 6.35392 0.19765  0.00031
34.237 860 290 0 0 207 60 51.23 7.11998 0.19645  0.00081
34916 330 100 0 0 179 35 35.8628 4.76945 0.1981 0.0011
35.616 380 150 0 0 221 53 41.5015 6.8907  0.1947 0.0012
36.353 320 130 0 0 207 51 39.6899 6.68646 0.1958 0.0013
37.118 222 81 0 0 180 40 35.9727 5.4619  0.1962 0.0013
37.919 113 49 0 0 125 35 27.8107 5.26894 0.1924 0.0022
38.756 82 44 0 0 122 42 27.2681 6.39424 0.196 0.0028
39.639 42 33 0 0 97 49 23.1822 7.82332 0.1981 0.0048
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Table A.8: p = 0.150 g/cm3

T g1 Tlerr G2 Az err g[] €||,err £ EJ.,err go q0,err
27.525 87000 18000 0.0423 0.0021 1620 110 170.343 7.77738 0.198729 1.6e-05
27.929 82000 . 17000 0.0405 0.0022 1570 110 166.248 8.21632 0.198716 1.7e-05
27.858 80000 15000 0.041 0.002 1562 95 165.693 7.07886 0.198747 1.5e-05
28.327 83000 18000 0.0378 0.0022 1590 110 167.556 8.37451 0.198668 1.8e-05
29.440 83000 16000 0.032 0.0017 1610 110 168.926 8.46567 0.198518 1.5e-05
30.039 113000 29000 0.0267 0.0021 1800 170 183.187 12.0723 0.198414 1.8e-05
30.576 80000 21000 0.0249 0.0021 1580 150 166.719 11.4014 0.198376 2.1e-05
31.166 124000 39000 0.0169 0.0021 1860 240 187.543 16.7426 0.198279 2e-05
31.775 -93000 40000 0.0121 0.0025 1630 290 170.594 21.1476 0.198091 2.7e-05
32.368 58000 85000 0.004 0.0073 1190 800 137.046 59.6131 0.19794 5.3e-05
32.964 6710 690 0 0 371 25 59.9175 2.87128 0.197 0.00019
33.592 3050 400 0 0 263 23 46.967 2.9145 0.19733 0.00034
34.244 1800 320 0 0 204 22 39.2616 2.96896 0.1976 0.00058
34.925 1560 320 0 0 196 25 38.1902 3.3775 0.19756 0.00069
35.632 940 220 0 0 159 23 32.8923 3.34263 0.19594 0.00094
36.374 770 200 0 0 153 24 32.0388 3.48931 0.1969 0.0011
37.143. 820 470 0 . 0 205 72 39.3945 9.37178 0.1994 0.0019
37.943 321 67 0 0 92 13 22.3071 2.25125 0.1979 0.0013
38.780 130 50 0 0 65 17 17.5143 3.10469 0.1956 0.0035
1 39.657 52 22 0 0 43 13 12.9557 2.78932 0.1775 0.0083
Table A.9: p = 0.200 g/cm?®
T g1 Olerr G2 ag,err Qj v E||,err €L £.L,e1'r do q0,err
16.502 1600 O 0.004239 8.1e-05 959 29 117.369 2.48951 0.200124 3.6e-05
16.617 1600 O 0.004183 8e-05 1015 33 122,191 2.77022 0.200016 3.5e¢-05
18.830 1600 O 0.004 8.4e-05 949 31 116.49 2.68138 0.199987 3.9e-05
21.820 1600 O 0.003429 6.9e-05 938 28 115.58 2.38494 0.199777 3.5e-05
25.400 1600 O 0.0029 6.7e-05 909 27 112.988 2.37431 0.19948 4e-05
26.877 1600 O 0.002712 6.4e-05 944 29 116.049 2.5198 0.19931 4e-05
29.245 1600 0 0.002186 6.7e-05 968 35 118.129 3.0135 0.199059 5e-05
29.774 1600 O 0.001981 5.8e-05 953 31 116.846 2.66915 0.198989 4.6e-05
30.298 1600 0O 0.001652 6.9e-05 895 33 111.767 2.89717 0.198948 6.3e-05
30.838 1600 O 0.001559 6.6e-05 912 34 113.268 2.96453 0.19885 6.2e-05
31.396 1600 O 0.001026 5.8e-05 964 37 117773 3.19862 0.198767 7.1e-05
31.967 1600 O 0.000845 5.5e-05 876 28 110.07 2.48908 0.198759 7.de-05
32,557 1600 O 0.000442 T.4e-05 914 44 113.431 3.84225 0.19859 0.00014
33.170¢ 110 170 0.0006 0.0014 180 130 36.2152 16.5913 0.19806 0.00063
33.803 115 56 0 0 220.839 70.1877 41.8 8.7 0.1965 0.0015
34.457 172 87 0 0 292.682 96.3004 51 11 0.2011 0.0012
35.131 68 34 0 0 158.945 51.8422 33.1 7.1 0.1966 0.002
38.940 14 1.6 0 0 19.0621 18.6288 7.3 4.6 0.203 0.033
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Table A.10: p = 0.250 g/cm?

g1 Tlerr Q2 ag,err 6[] ‘s”,er'r g.L EJ.,e'rr (] 90,err
27.199 12600 3100 0.035 0.0026 694 41 03.4103 3.82414 0.199138 3.1e-05
27.241 12500 2800 0.0348 0.0024 691 38 93.1028 3.56965 0.199129 2.9e-05
27.302 16300 3800 0.0315 0.0026 734 47 97.1009 4.3985  0.199112 3e-05
27.394 16500 3900 0.0311 0.0026 744 48 98.0957 4.41257 0.19906 3e-05
28.265 16000 3500 0.0284 0.0023 733 46 97.0806 4.23493 0.198901 2.9¢-05
29.264 14200 3000 0.0251 0.0021 708 44 94.6652 4.15428 0.198725 2.9e¢-05
29.800 11100 2300 0.0254 0.0019 674 38 91.4698 3.60295 0.198619 2.9e-05
30.318 18700 5400 0.0163 0.0027 730 77 96.7959 7.08151 0.198681 3.9e-05
30.791 19500 7000 0.0131 0.0029 760 100 99.4213 9.23537 0.198615 4.5e-05
31.281 11600 3300 0.014 0.0024 624 64 86.556 6.23916 0.198437 4.4e-05
31.792 12400 4700 0.0082 0.0026 624 96 86.5608 9.26613 0.198216 5e-05
32.326 10000 18000 0.002 0.01 510 460 75.59 42.7202 0.19784 0.00012
32.887 4000 5800 0 0.0077 330 230 54.9751 25.249 0.1977 0.00034
33.471 3440 620 0 0 300.779 34.3594 51.9 3.9 0.19682 0.00042
34.084 1570 330 0 0 206.111 28.0237 39.8 3.5 0.19676 0.00067
34.724 920 230 0 0 158.007 26.5908 33.1 3.5 0.19447 0.001
35.396 A590 130 0 0 136.538 20.1908 29.6 3 0.1986 0.001
36.099 308 ‘100 0 0 92.1367 21.684 22.6 3.4 0.194 0.0021
36.832 249 100 0 0 93.387 254175 22.6 4.2 0.1993 0.0026
37.599 69 34 0 0 45.4897 15.8888 13.5 3.3 0.2041 0.0064
38.398 43 47 0 0 59.0831 48.5967 16.3 8.7 0.201 0.011
Table A.11: p = 0.295 g/cm?
T a1 Ol,err Q2 a2 err €|| £||,er'r [ gJ.,err do q0,err
24.968 7500 0 0.0812 0.0019 430 12 66.5975 1.26546 0.198426 6.3e-05
25.898 7500 O 0.0752 0.0017 421 11 65.5953 1.17828 0.198386 6.2¢-05
26.409 7500 O 0.0752 0.0018 396 11 62.7484 1.26881 0.198259 6.8e-05
26.930 7500 O 0.0696 0.0018 409 12 64.2314 1.33529 0.198201 7.5e-05
26.924 7500 O 0.0682 0.0015 425 11 66.0387 1.17151 0.198268 5.9e-05
27.433 7500 O 0.0641 0.0015 401 10 63.2944 1.16709 0.198121 6.8e-05
27.879 7500 O 0.0584 0.0016 415 12 64.9256 1.30053 0.198178 7.5e-05
28.361 7500 O 0.0551 0.0015 401 11 63.37 1.20236 0.19806 7.6e-05
28.827 7500 O 0.049 0.0013 373.2 9.6 60.2135 1.08789 0.197979 8e-05
29.204 7500 O 0.0449 0.0014 397 12 62.9398 1.29971 0.197885 8.6e-05
29.634 7500 O 0.0373 0.0012 375 9.6 60.416 1.08909 0.19781 8.6e-05
29.986 7500 O 0.0331 0.0011 379 9.9 60.8728 1.11778 0.197827 9e-05
30.568 7500 O 0.0255 0.0014 347 10 57.2361 1.11388 0.19766  0.00013
30.918 7500 O 0.0174 0.0012 346 9.3 57.0706 1.08275 0.19766 0.00014
31.433 7500 O 0.0106 0.0015 336.5 9.9 55.9546 1.16481 0.19711 0.00023
31.971 7500 O 0 0.0017 331 11 55.2087 1.30668 0.19631 0.00038
32.523 5240 740 0 0 270 24 47.8926 2.9716 0.19687 0.00038
33.965 1890 560 0 0 169 31 34.3803 4.34465 0.1927 0.0013
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Appehdix B

Powder Averaging

B.1 Powder Average

B.1.1 Intrinsic Line Shapes

There are several possibilities for the intrinsic X-ray line shape arising from the density
modulation of a smectic phase. For single-Lorentzian-like line shapes, we will consider
here four distinct line shapes which frequently appear in the literature. Note that

they all tend to behave like a single Lorentzian in certain limits.

(i) The simplest is the isotropic Lorentzian line shape:

S(q) o

’ B.1
1+£%(q - qo)? (B1)
(i) When anisotropic correlation lengths, & and £, are involved, an anisotropic

Lorentzian is used:
x 1 »
1+&Hg — q)* +€1qd

S(q) (B.2)

(iii) In reality, X-ray smectic fluctuation peaks are better described by an anisotropic

Lorentzian with a 4th order correction in the transverse direction (LFC) [46]:

1
08
1+&j(a) — q0)? + €1¢3 + clql

S(a) (B.3)
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(iv) Finally an anisotropic Lorentzian raised to the power 1 — 7, /2 along the
transverse direction (LPC) has been equally useful to describe X-ray smectic peaks

[46]:
1
) = ao + (L L .

When random fields affect the scattering structure factor, the square of the above

line shapes must be considered.

B.1.2 Exact Calculation

Powder averaging is equivalent to having qo rotate freely and equivalently to all

directions. Therefore,

Spouder(1) o Zs<q> (B.5)

or

Spoder (1) % / 40 S(q), (B.6)

where S(q) is one of those intrinsic line shapes previously given.

Powder averaging the isotropic Lorentzian is, therefore,

1
Spowder a2
pouder (q) - ¢ / 1+ £&%(q — qo)?

1 2
= / dcosé il
. 1+ €2¢% + £2g2 — 2€%goq cos §

1 2 2
S ®7
£q0q  [1+&%(q — o)
In the limit of g — 0, the above result becomes
4T
Spowzi&r (q - 0) - rgz—q—g (BS)

~ as expected. Also note that for this isotropic Lorentzian, Spowder (4 — 00) = 0.

TSR WRE WS W

- Powder averaging the anisotropic Lorentzian requires a little more calculation.
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Starting from the powder averaging equation (Eqn. B.6),

1
Soowder x /dQ
pouier(9) 14+ &g — q0)® + €144

1 2
= / dcosé il
1 14 §|2|(q cosf — go)? + &2 ¢ sin® 0

- /ld 2m (B.9)
~ L MAT BT o '

where
A = 1+&@+6¢
B = —{iqq (B.10)
C = (§ -6

Let us define

D = B?—- AC

= ¢ -+ g+ & - ¢ (B.11)

and we know the following indefinite integral

| zam;
T 2Bu + Cp?
1 -1 Cp+B :
_\/ﬁ tan /D) ifD<0 |

1 Cu+B—vVD| :
sl | 2422 D >0

Therefore, when D < 0,

: 1
2w .Cu+B
Sowde‘r(q) X [ ta 1
AR D] Dl |,
- {tan_l B+C_ tan™ B-¢ . (B.13)
| D| VID| D]




When D =0,

27 ! 4
Spowder () {_C’M+B] . =1-C (B.14)
and when D >0,
1
s Cu+B-+D
Spowder In
pouier (1) ¢ [\/5 C’,u—|-B+_\/5}_l
o nA—C’+2\/5 (B.15)
VD |A-C-2VD| '

Note that limp_o4 S(q) = limp_o— S(q) = S(q)|p_o- Also it is important to note

that as {1 — §|, the above result becomes that of the isotropic Lorentzian.

C - 0
D — B>>0
v |A+2B| |
Somaa@) = 7in| 520, (B.16)

~which is the same as Eqn. B.7. Its behavior is similar to that of the powder average

of the isotropic Lorentzian, i.e., as ¢ — 0, B,C, D — 0, and we have

47

Sawr 0 = T o

(B.17)

and as q — 00, D — —00 and Spowder(q) — 0, just the same as before.

Though it is possible to calculate the powder average of the LFC line shape ana-
lytically, the solution is prohibitively complex to present here in a closed form. For
the LPC liné shape, it appears to be impossible to deduce an analytic form for the
powder average. For such complex line shapes, certain approximations are necessary
unless we are seeking a numerical solution.

A Lorentzian-squared line shape is, however, still manageable analytically.

1
(1+&*q—qo)?)?
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1 2
T
= / dp 2.2 1 2.2 2 2
| S1 0 (14 €%¢% + €22 — 2€2g0qu)
1

. 2n [ 1
28%qq0 |1+ &2¢% + €293 — 2€2%qqop ] _, |
4 .
= - i B.18
0+ 8- 1+ 2a+ o) 5:29)
Even the anisotropic-Lorentzian-squared is solvable analytically.
1
Spowder (q) & / /9] 3
{1 + &g — q0)? + Eitﬁ}
1
2
= / dcosf il 5
-1 {1 +£ﬁ(q cos — qo)? + €2 g2 sin? 9}
1 27
= dp 22
1 (A4+2Bu+Cu?)
Cu+B C 1"
G220 fu1) @9
where R = A+ 2Bu+ Cp? and A, B,C, and D are defined previously.
When it comes to the LFC, the integration becomes a little more complex:
1
Sdee-r(q) x /dQ 2 2 2,2 4.4
{1 +§||((I|| - qo) +&iq + _]_qJ_}
1 :
= / dcos@ 2n
-1 {1 +&f(gcosd — go)? + €1 g2 sin® 0 + € ¢ sin40}
1 27
= d B.
[1 K (A’+2.B[J+CI,U,2+DI'LL4)7 ( 20)
where
A = A+ ki =1+63+E¢* +ctigt
C' = C-2€iq" = (§ - €1)¢" — 2ctlq*

D = ctligh o (B.21)
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The above integration on the right hand side can be also written as

1 2m
d , B.22
/—1 * D= ) (b — ) (4 — ) (1 — o) (B.22)
where a; are the roots for the following quartic equation:
A +2Bu+C'u*+ D'yt =0. (B.23)

By expanding the integrand, it becomes

/ dp D,qu e az)] (B.24)

where coeflicients Cj; can be obtained through expansion process. The integration
can be performed analytically at this stage. We have calculated the powder average

of the LFC using this method.

B.1.3 Approximate Calculation

One very popular' approximation method is to treat the spherical surface generated by
freely rotating qo as an infinite plane. This is a good approximation when lg—aq0| < qo

and the intrinsic line shape falls very fast at large |q — qo|. In that case, we can write

Sponier(@) [ a9 5()
dA o sphere
- [Pt

a5

| Fee2sia) (B.25)

q5

&

Obviously this approximation does not work for the isotropic or the anisotropic
Lorentzian because the line shapes decay too slowly as g increases, i.e, the integration
diverges. ,

As an example, we will provide an approximate powder average of an anisotropic

Lorentzian squared.
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dq.
S(q) o
/ (1 +&i(a — 90)? + Eiqi)z

_ / dqu,dq1
(

2
1+ & (a — o) + &t + &2, )

= / ” 9Lz / = dq.
= _ 2
° (1 + &t (a) — 90)* + fiqiz) o (14 G
(16 @-a0)2+611 . )
_ / * g1z
4
§rJo (1 + gﬁ(q” —q)?+ §iqi,z)

™ ' dQJ_,z
3
46, (1+ € - a0)?)" 7 (1 L _dd. )

1+§,2| (g)—90)?

ol

3
2

T

4€% (1 + & (q) ~ QO)z)

(B.26)

It is obvious that in this approximate scheme (integration over cartesian coordi-
nates) powder averaging over one dimension reduces the exponent of a Lorentzian by
a factor of two, thus a Lorentzian squared line shape becomes a Lorentzian under

powder averaging over a plane.
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