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Chapter 1

Introduction

Condensed Matter Physics is a rich source of theoretical as well as computational

problems each of them frequently requiring an individual approach and method of

solution. This thesis is based on a set of research projects conducted by the au-

thor at MIT and addresses the computational methods for solving a set of problems

in Condensed Matter Physics involving non-linear coupled Partial Differential Equa-

tions (PDE's). First, finite difference numerical schemes for solving coupled nonlinear

PDE's with non-trivial boundary conditions are discussed for the example of folding

of viscous filaments in two dimensions. This problem is relevant to Soft Condensed

Matter Physics. Second, computational methods explicitly employing some func-

tional basis into which trial solutions are expended are considered for the example

of a structure of the electro-magnetic modes in a material with a spatially periodic

dielectric constant (a so called photonic crystal). Finally, electro-magnetic modes in a

photonic crystal undergoing rigid vibrations are investigated leading to a formulation

and solution of a generalized eigen value problem. The last problem is relevant to the

field of Photonic Band Gap materials and Optical Devices.

This thesis is organized as follows:

Chapter one covers the ideas and methods of implementation behind the two com-

mon approaches for solving systems of PDE's. The first approach described is a finite

difference method (method without an explicit functional basis). Finite difference ap-

proximation of spatial and temporal derivatives, stability analysis and simple bound-
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ary conditions implementation is considered. Finally, imposing non-trivial boundary

conditions such as linear and nonlinear constraints is discussed by employing a non-

linear Newton relaxation algorithm. The described methods are demonstrated for the

example of a heat transfer problem in a low-temperature experimental setup. The

second approach covered in the chapter is a method of solving PDE's explicitly using

some functional basis into which a trial solution is expanded. It is shown how this

method reduces a set of PDE's to a set of non-linear multidimensional algebraic equa-

tions. Frequently, however a transformed problem is easier to solve than an original

one. For example, in the case of wave propagation equations a transformed prob-

lem constitutes a standard eigen value problem which allows many effective solution

techniques. This method of solving PDE's is demonstrated on the example of finding

electro-magnetic modes of a stationary photonic crystal.

Chapter two of the thesis is entitled "Folding of Viscous Filaments in Two Di-

mensions". This problem involves solving a set of hydrodynamical nonlinear coupled

PDE's with non-trivial boundary conditions in space and time. Done under the su-

pervision of Prof. L. Mahadevan (Dept. of Mechanical Engineering) this part employs

a finite difference scheme with a Newton relaxation method to impose the non-trivial

boundary conditions.

Chapter three of the thesis is entitled "Photonic Crystals Undergoing Rigid Vi-

brations". Numerical methods explicitly employing some functional basis set are

demonstrated in this chapter by expanding a trial solution for the electro-magnetic

modes of a photonic crystal into the planewave basis functions. Finding of the en-

ergy bands of a stationary photonic crystal, thus, involves a determination of the

eigenvectors and eigenvalues of some Hermitian matrix. This problem is standard

and allows many efficient solutions. When a photonic crystal is put in rigid vibration

determining the energy bands becomes a generalized problem of finding eigenvec-

tors and eigenmatrices of some algebraic relation. If the perturbation of a photonic

crystal from its stationary state is small, the eigenmatrices can be found using a

multidimensional Newton algorithm with stationary eigenvectors and eigenvalues as

initial guesses. This part of a thesis was done under the supervision of Prof. J.D.
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Joannopoulos (Dept. of Physics).

Now we proceed with describing the ideas behind the two popular approaches in

solving PDE's for the example of the problem of heat conduction in slender rods and

the problem of wave propagation in periodic dielectrics. These problems involve two

very different classes of PDE's frequently encountered in physical and engineering

problems. We discuss in details the methodology as well as the applicability of each

of the method in revealing the spatial and temporal structure of the solutions of

these equations. An excellent introduction into the numerical methods for solving

PDE's as well as into the numerical methods in general can be found in [1, 2]. We

start with describing a finite difference approach for solving PDE's (also known as

a method without an explicit functional basis). This method will be demonstrated

on the example of a problem of heat conduction in a slender rod. After that, we

are going to demonstrate another method of solving PDE's that explicitly assumes

some functional basis into which trial solutions are expanded. This method will be

demonstrated on the example of the electro-magnetic states in the periodic dielectric

materials.

1.1 Finite difference methods for solving PDE's

Many physical problems involve a time evolution as well as a spatial distribution of a

particular quantity such as temperature, current, etc. One common problem of this

type involves a study of the temperature equilibration and temperature profiles in a

block of some material. This problem is of a wide applicability ranging from the design

of the experimental setups in low temperature physics to the study of the heat shields

in avionics. In this section we discuss a simple version of this problem in detail. First,

we discuss the form of the equations involved. Next we show how these equations

can be solved on a real space grid, particularly, we pay special attention to the choice

of the finite difference operators, implementation of the boundary conditions and

conditions of stability of a particular finite difference scheme. Finally, the way of

imposing non-trivial constraints using a multidimensional nonlinear Newton method
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is discussed.

Consider a one dimensional model in which a rod of a thermally conducting ma-

terial with thermal conductivity n and a heat capacitance per unit length C has one

end suspended in a thermostat at temperature To while the other end is protruding

freely in a media of low thermal conductivity such as air (see figure 1-1 b)). This

model can be used to simulate a heat flow in a low temperature experimental setup

where a hollow rod (containing wiring) with a metal container at the end (hosting

different samples) is placed with its one end into a liquid nitrogen To = 77K or a

liquid helium To = 4K, while the other end of the rod is sticking out into the air

at room temperature TR = 277K (see figure 1-1 a)). A question of interest here is

about the magnitude of a heat flux from the air into the open end of the rod. We will

describe the finite difference method of solving PDE's on the example of the equations

governing the heat flow in this particular system.

An equation governing the heat flow in a rod-like one dimensional geometry de-

scribed above can be derived from thermodynamics and has a form

o 2T(x, t) T(xt)

j9X2 &t

where T(x, t) is a temperature profile inside a rod at time t and such a profile is defined

on a spatial interval x E [0, L]. First we note that PDE 1.1 is second order in space and

first order in time. Thus, to solve this equation, an initial temperature profile T(x, 0)

at time t = 0 should be specified, as well as the two spatial boundary conditions

should be specified at each point of time. At the lower end x = L the boundary

condition imposes the temperature of the end to be the one of the thermostat

T(x, t)I2=L = TO. (1.2)

At the end sticking into the air, one can use a so called Newton boundary condition

stating that the heat flow from the air into the rod is linearly proportional to the

temperature difference between the temperature of the air and the temperature of

12



Air Heat flow from the air

-\ I 0

TR
Heat conducting

rod

To

, Liuid He or N

Dewar flask

Metal container TO L

a) b)

Figure 1-1: a) A sketch of a common experimental low temperature setup used in

many variations to study physical phenomena at low temperatures. A long hollow rod

containing wiring has a metal container at one of its ends. This container serves as a

holder for the samples under study. Container is submerged into a coolant which is

usually either a liquid helium or a liquid nitrogen. The other end of the rod is sticking

out into the air ; b) To model a heat flow from the air into the coolant through the

center rod we consider a one dimensional abstraction to the experimental setup in

which the rod is considered to be a uniform cylinder with one of its ends sticking out

in the air while the other end is kept at a constant temperature To.
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the end of the rod. Thus, the second boundary condition at the other end is given by

o'T(x, t) =0 = -j(TR - T(0, t)). (1.3)
&x

To proceed further, we rescale different parameters of the problem making them

dimensionless. We define q = = j, - = iL. Substituting thus defined

dimensionless variables into equations 1.1, 1.2, 1.3 and dropping the bars we have the

following rescaled equations and boundary conditions

0 2 T(x,t) OT(x,t)
8x2  at 7

T(x,t)|2=i = T0 , (1.4)

I1 = -7(T-- T(0,t)).

where now T(x, t) is a temperature profile defined on an interval x E [0,1] at time t.

The fist problem which one faces trying to solve equation 1.4 numerically is dealing

with a continuous two dimensional variable T(x, t). As computers operate only with

discrete variables we either have to approximate T(x, t) on some spatial-temporal

grid or introduce a suitable set of continuous basis functions into which T(x, t) can

be decomposed with a discrete set of coefficients. In practice, both methods are

used. In the following section we will describe methods that approximate T(x, t) on a

spatial-temporal grid and in the section after that we will address methods explicitly

employing some functional basis set in which trial solutions are expanded.

1.1.1 Defining the finite difference operators

We define T(i, j) to be a discrete function specified on a uniformly spaced grid

i E [1, ..., N], j > 0 covering a spatial dimension with the intervals of dx = N1-,

and covering a temporal dimension with the intervals of dt. To solve equation 1.4

numerically we want to reformulate a problem in terms of finding a discrete function

T(i, j) as an approximation to a continuous function T(x, t). To proceed further we

have to make sense of the spatial derivatives 02T(x,t) '(xt) as well as a temporal

derivative OT(x,t) of equation 1.4 in terms of the values of a grid function T(i, j). Asat

14



soon as such a correspondence is established we can solve thus discretized equations

to find T(i, j). One expects for a discretized version of equation 1.4 to have a form

02 T(i,j) - T(ij)
i
2  

- 9j

T(ij)li=N T0 (1.5)

8|i) 1  = -rl(TR - T(0, j)).

where 2  ) ' ,j), and f'f("j) are the discretized analogs of the derivatives 0 2 ,)

Ox, and 'T(xt) chosen in such a way that a solution of equation 1.5 matches

exactly a solution of equation 1.4 at the grid points. Values at the non-grid points

can be interpolated using T(i, j) to retrieve a continuous solution T(x, t).

As the spatial and temporal discretization intervals dx, dt become smaller and

smaller (the number of grid points in each dimension becomes larger and larger) one

can hope intuitively that if the finite difference scheme is chosen correctly the repre-

sentation of T(x, t) in terms of T(i, j) and interpolation into the non-grid intervals

should become increasingly more accurate. In practice, however, any finite difference

scheme 1.5 gives a solution matching an exact solution of equation 1.4 at the grid

points only approximately, which leads to a necessity of a strict control over the errors

of discretization (see a section on stability).

In the following, to approximate derivatives of the field T(x, t) we use the values

of T(i, j) at the grid points (i, j) as if T(i, j) were exactly equal to the T(x, t) at such

points x = idx, t = jdt. In other words, we can intuitively assume that in the limit

of dx -+ 0, dt -+ 0 a solution T(i, j) of a discretized equation 1.5 does equal exactly

to an exact solution T(x, t) of equation 1.4 at x = idx, t = jdt. If this assumption

is correct (which can be proved to be correct for most of the ordinary PDE's) then

we can use grid values of T(i, j) to define the discretized derivatives of T(x, t) in

equation 1.5.

To do that we first use a Taylor series to express derivatives of T(x, t) at any (x, t)

15



in terms of the T(x, t) grid values. For example, for a second order spatial derivative

9 2 T(x,t) _ T(x+dx,t) - 2T(x,t) +T(x - dx,t) +O(dX2 ). (1.6)
&x2  dx2

If one desires to use a more accurate approximation to the second order spatial deriva-

tive of T(x, t) one can use more grid points thus, for example, up to the forth order

in dx

a 2 T(x, t) - -- §T(x + 2dx, t) + :T(x + dx,t) - 5T(x, t) + !T(x - dx, t) - -T(x - 2dx, t) \O dx)
9X2 - 2 32dx 2  (

(1.7)

In principle, one can design the grid point derivative approximations of any order

of accuracy, such approximations are well known and tabulated in different sources [2].

A word of caution here is that using very accurate approximations of the derivatives

will pay off only if all the derivative approximations in equation 1.5 are carefully

balanced to the same order of accuracy with all the other terms in a PDE itself as

well as in the boundary conditions.

Next, we define the discretized derivatives in equation 1.5 by substituting the grid

values of T(x, t) in equations 1.6,1.7 by the grid values T(i, j) of the finite difference

solution of equation 1.5. So, for example, to the second and forth order in dx

92 T(i,j) T(i+1,j)-2T(ij)+T(i-1,j) + O(dx 2 )'

82T(i,j) - T(i+2,j)+!T(i+1,j)- AT(i,j)+T(i-1,j)- -(i-2,j) + O(dx4).
aj i3 2  dx 2  12 + dX.

By analogy, to the first and second order in dt

OT(ij) _ T(ij+1)-T(i,j) + 0(dt),8j di + O.dt)
ff(ij) _ T(i,j+1)-T(i,j-1) +O(dt 2 )(a0 2dt

Finally, choosing say a second order in accuracy operator a0,j) and a first order in

accuracy temporal operator Or ,j) and disregarding the O(dx 2 ) and O(dt) discretiza-aj
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tion errors we arrive to the following form of the discretized heat flow equation 1.5

T(i + 1, j) - 2T(i, j)+ T(i - 1, j) _ T(i, j + 1) - T(ij)
dx 2  dt

1.1.2 Boundary conditions

As was mentioned previously, equation 1.4 is second order in space and first order in

time PDE which requires a specification of the two spatial and one temporal bound-

ary conditions. In fact, the boundary conditions are intimately interlaced with a

choice of the finite difference operators. To appreciate this fact we try to rewrite

equation 1.10 in a matrix form (which has to be done when solving it numerically).

Notice, that for all the "true inside" points i E [2, N - 1] and for any j ; 0 all the

finite difference operators in equation 1.10 are well defined. However, for the points

close to the spatial boundaries i = 1 and i = N spatial second order finite difference

operator T(i+1,j)-2T(i j)+T(i-1,j) is not defined as its values become T(2,j)-2T1,j)+T(Oj)

and T(N+1,j)-2T(Nj)+T(N-1,j) for i = 1 and i = N correspondingly. These operators

are not defined as they contain values T(0, j) and T(N + 1, j) that are not defined

on the considered domain i E [1, N]. However, "luckily" we need these two "out-

side" points anyway to specify the two spatial boundary conditions. As far as the

temporal boundary condition is concerned it is trivially specified by fixing initial tem-

perature distribution T(i, 0) at time t = 0. Thus, keeping the two "outside" points

we can rewrite equation 1.10 in a matrix form where N equation for the "inside"

points i E [1, N] are written in terms of N "inside" and 2 "outside" values of T(i, j).

Particularly,

T(1, j + 1) T(1, j) 1 / -2 1 \ T(1, j) 0

T(2, j +1) T(2, j) 0 1 -2 1 T(2, j) 0

T(3,j+1) T(3,j) 0 1 -2 1 T(3,j) 0

. = *.. + -j(T(0,j) ... + .... +T(N+1,j) ...

T(N-2,j+1) T(N- 2,j) 0 1 -2 1 T(N- 2,j) 0

T(N -1,j+1) T(N -1,j) 0 1 -2 1 T(N -1,j) 0

T(N, j + 1) T(N, j) 0 1 -2 / T(N, j)

(1.11)

One of the boundary conditions T(N, j) = To, j > 0 can be implemented by

noticing that solution of equation 1.11 satisfy this condition only if T(N, j + 1) =
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T(N, j) for all j 0. This leads to T(N - 1, j) - 2T(N, j) + T(N + 1, j) = 0 for all

j > 0. This last equations means that

T(N + 1,j) = 2To - T(N - 1,j) (1.12)

for all j > 0.

As far as the second boundary condition &'Txt)I= 0 = -(TR - T(0, t)) is con-

cerned, we first rewrite it in a discretized form a'" ij = -(TR - T(1, j)) and

then approximate a discretized first order derivative by the methods described above.

As the discretized second order derivative is approximated to the O(dx 2 ) one has to

approximate the first order discretized spatial derivative to the 0(dx3 ) to achieve an

overall accuracy of the finite difference scheme of 0(dx2 ). One such representation of

9' :i=1 can be chosen as

'IT (i, - !T(3, j) + T(2, j) - !T(1, j) - }T(0, j) + O(dx3). (1.13)(92 dx

Consequently, to the O(dX3 ) the second boundary condition can be written as

-!T(3, j) + T(2, j) - !T(l , j) - }IT(0, j)T ) ( ( )= -2(TR - T(1,j)). (1.14)
dx

From the last equation T(0, j) can be expressed via T(1, j), T(2, j), T(3, j) as

1 3
T(0, j) = 2-T(3, j) + 3T(2, j) - (3 + 3dxi7)T(1, j) + 3dx7TR (1.15)

2 2

for all j > 0.

Finally, substitution of the values 1.12, 1.15 at the "outside" points T(0, j), T(N+

1, j) as defined by the discretized boundary conditions into equation 1.11 leads to

the following matrix equations for the heat flow problem in a slender rod subjected

to the boundary conditions 1.2, 1.3
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T(1, j + 1) T(1, j) T..(1, j)

T(2, j + 1) T(2, j) T..(2, j)

T(3,j + 1) T(3, j) T. (3, j)
- ..- + *..- (1.16)

T(N - 2,j + 1) T(N - 2,j) T.. (N - 2, j)

T(N - 1,j + 1) T(N - 1,j) T.. (N - 1, j)

T(N, j + 1) T(N, j) T.. (N, j)

where a discretized second order spatial operator satisfying required boundary con-

ditions is given as

T..(1,j) / -7-3d= 4 -i \ T(1, j) 3dxt7TR

T..(2,j) 1 -2 1 T(2, j) 0

T.. (3,j) dt 1 -2 1 T(3, j) 0

TZ.(N - 2, j) 1 -2 1 T(N - 2, j) 0

T..(N - 1, j) 1 -2 1 T(N - 1, j) 0

T.. (N, j) 0 -2 T(N,j) 2TO

Starting from an initial temperature distribution in the rod T(idx, t) It=o one has to

iterate relation 1.17 to find a discretized temperature profile T(i, j) at the following

time moments jdt.

1.1.3 Stability analysis

As we have seen in the previous section there are many ways of defining a particular

approximations to the true finite difference operators. Thus, some criterion is nec-

essary that would help us to decide whether a particular form of an approximation

to the finite different operators would result in overall stable or unstable iteration

scheme. For a wide variety of PDE's such a criterion does exist and is known as

von Neumann stability analysis method. In the case of the heat transfer equation

the normal modes of equation 1.5 have the form (I is defined to be a unitary pure

complex)

Tk(x, t) - exp(Ikx - A(k)t) (1.18)

where, normally, A(k) > 0 and real for any extended mode with a real value of k.

Normal modes with real A(k) > 0 correspond to the stable solutions that are finite

with time. However, if an approximation to the finite difference operators is not

chosen carefully it can allow for the real k's for which the normal modes possess

19



Re(A(k)) < 0. These modes correspond to the unstable solutions that grow in time.

Due to the numerical noise these unstable modes of equation 1.5 will be inevitably

excited during iterations thus making an overall scheme unstable.

To demonstrate this point consider a finite difference approximation to the heat

transfer equations 1.10 used in the previous section

T(i + 1, j) - 2T(i, j)+ T(i - 1, j) T(i, j + 1) - T(i, j)
dx 2  dt (1.19

Let us look for the normal modes in a form (1.18)

Tk(i, j) - exp(Ikidx - A(k)jdt). (1.20)

Substitution of the above normal modes into (1.10) leads to the following relation

between A(k) and k
1 1

A(k) = -log( 1 - (1.21)
dt 1 - Ldsin2(

A simple analysis of the above equation shows that in order for the A(k) to be real

and greater than zero for all real k it is necessary that L < 1.

Thus, for a discretized approximation 1.10 of the heat flow equations 1.4 to provide

a stable iteration scheme the time step dt has to be chosen to be less then d.

1.1.4 Implementation of linear constraints

Consider now a slightly more complicated experimental setup in which one end of the

rod is submerged into a thermostat at To as previously, while the other end instead of

been sticking out into the air, is placed into another thermostat which temperature

can be controlled at will by an operator (see figure 1-2).

Suppose now that we would like to control an average temperature over the rod

to be some specific function of time T(t). As an average temperature over the

rod is defined as T(t) = f T(x, t)dx, in discretized form it can be expressed as

T(jdt) ~ 1j E 1 T(i, j) which is a linear function of the temperature values at

different spatial points. The linear constraint T(jdt) 1 g-- E 1 T(i, j) can be easily
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Operator controlled
thermostat

T(t) 0

To L

"X

Figure 1-2: Model of an experimental setup where the temperature at the upper end
can be controlled by the operator. Given such freedom one can manually control a
heat flow into a system.

implemented in the framework of the finite difference scheme described above. Ex-

perimentally, to impose such a constraint an operator has to vary the temperature of

the thermostat at the upper end of the rod in some specific fashion. To formulate this

we now want to model how the temperature of the upper thermostat should be varied

so that the average temperature of the rod follows a predesigned time dependence

T(t).

Equations and boundary conditions governing the heat flow in the problem can

be written as
&2T(x,t) _ OT(x,t)

Ox 2  at

T(x, t)I= 1 = To, (1.22)

Ojj T(x, t) = T(t).

As before, we incorporate one of the boundary conditions into the form of a discretized

second order spatial operator using an "outside" variable T(N + 1, j) which leaves

the other "outside" variable T(O, j) undefined. A discretized version of the above
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equations to the O(dx2 ) and O(dt) can be written as

T(1, j)

T(2, j)

T(3, j)

T(N - 2,j)

T(N - 1,j)

T(N, j)

dt
+ (T(0, j)

1

0

0

0

0

0

+

-2 1

-2

1

1

-2 1

1 -2

1

The constraint condition on average temperature at t = (j

O(dt) can be written as

11T(1,j + 1) +

T(1, j) 0

T(2, j) 0

T(3, j) 0

--- + .- -

1 T(N - 2,j) 0

-2 1 T(N - 1,j) 0
0 -2 T(N, j) 2TO

(1.23)

+ 1)dt to the O(dx 2 ) and

N-1

E T(ij + 1) + 2T(N, j + 1) = (N - 1)T(j + 1).
i=2

(1.24)

Equations 1.23, 1.24

{T(0, j), T(l, j + 1), .

0t

-do

1

0

1

1

constitute an overall N + 1 equations with

- -, T(N, j + 1)}. Combining equations 1.23,

- 1 1 2 \

- 1

- 1

- 1

T(0, j)

T(1,j + 1)

T(2,j + 1)

T(3,j + 1)

T(N - 2,j + 1)

T(N - 1, j+ 1)

T(N, j + 1)

II
0
0
0

0

0

0

+

0

T(1, j)

T(2, j)

T(3, j)

T(N - 2,j)

T(N - 1,j)

T(N, j)

+

N + 1 unknowns

1.24 gives

0

TW (1,j)
T. (2, j)

T. (3, j)

TOO (N - 2,j)

T.x(N - 1,j)

To.(N, j)

, (1.25)

where a modified second order operator T is defined as

0 0 0 0
T.-(1,j) -2 1 T(1,j) 0

T.. (2, j) 1 -2 1 T(2, j) 0

T.. (3, j) dt 1 -2 1 T(3, j) 0
X2+ . ). (1.26)

T..(N - 2, j) 1 -2 1 T(N - 2, j) 0

Tom(N - 1, j) 1 -2 1 T(N - 1, j) 0

T.a(N,j) 0 -2 T(N,j) 2To

Consequently, given a temperature profile at time jdt one can iterate equation 1.25

to find a temperature profile at (j + 1)dt that would automatically satisfy required

boundary conditions and constraints. Knowing a solution of equation 1.25, time

evolution of the temperature of the operator controlled thermostat is given by T(1, j).
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1.1.5 Implementation of the non-linear constraints

In a previous section we saw that the linear constraints can be readily implemented

by including an extra linear equation into the matrix formulation of a finite difference

method. We now address the question of imposing a constraint of a general form

such that at any moment of time t the temperature profile T(x, t) is constrained to

satisfy Cr(T(x, t)) = 0 for some arbitrary functional Cr(.). To tackle this problem

we first describe a more general approach for solving a system of algebraic non-linear

equations.

Consider a general nonlinear algebraic equation of the form

F(Ti) = 0 (1.27)

where i E [0, N] and F is an N + 1 dimensional function vector of variables T. In

general, there are no exact methods of finding a solution of such an equation. In

the following, we present an iterative method of solving equation 1.27 also known as

nonlinear Newton method. Let Tj', i E [0, N] be an exact solution of equation 1.27.

Consider any T close to TI*. Using a multidimensional Taylor series expansion around

Tie we can evaluate a value of f(T ) as following

F(T) F((Te - T) + T) = 0, (1.28)

and turning to a matrix notation

Fo(Ti) / i)-) TO - To
F1 (Ti) UT, TIC - T,

+ + O((Tic - Ti)
2

) =0.

FN-.1(T) 8FN(T) 8FN 1(Ti) OFN-(T) OFN.(TI) - TN1
FN(TO $(T) U -LN -j( ) T - TN

(1.29)

Thus, starting with some approximation T to the exact solution Tie we can use

relation 1.29 to find a supposedly better estimate Tb to Ti by disregarding Q((Tie -

T )2 ) and rewriting relation 1.29 as
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OPO(TO OF(TO OF (T OFO(T) -1
Tb TT 57 O4N-1.T Fo(Tj)OF(o TF T-)OF T i) j Ti)
Tb T, _"N 1  tP 3FN)F 1 (Ti)

. = -- - - - (1.30)
Tb OFN-1(Ti) 8FN- 1 (Ti) 8NFN-(TO OFN..(Ti)

N-i TN-i -77r -i 1 ~ FN - 1 (Ti)

TN TN N OT ) O;i O ) FN(Ti)

Now using a better approximation Tb to the exact solution from relation 1.30 we

substitute it back into the same relation 1.30 instead of the old T. Implementing such

substitutions again and again a self-consistent loop is formed, which in most cases

systematically moves T closer and closer to the exact solution Tf. Self-consistent

loop can be terminated when norm(F(T)) becomes smaller than a certain error value.

Now we go back to the original problem of imposing the nonlinear constraints in a

framework of the finite difference scheme of solving PDE's. As shown in the previous

section, finite difference representation of the heat flow equations in matrix notation

takes the following general form

AT(i, j + 1) + BT(i, j) + C = 0 (1.31)

where i E [0, ..., N], A and B are the (N x (N + 1)) matrices and C is an N dimen-

sional vector. Thus, finite difference operators involve N +1 unknowns T(i, j + 1),i E

[0, ..., N] and N equations. An extra equation required to find a solution to equa-

tion 1.31 is given by a discretized constraint Cr(T(i, j + 1)) = 0.

Next, we construct an N + 1 dimensional vector F(T(i, j)) of the following form

Fo(T(i, j + 1)) Cr(T(ij + 1)) 132)

Fl..N(T(i + 1)) AT(..N j + 1) + BT(..N j) + C)

The problem of solving equation 1.31 with a constraint Cr(T(x, t)) = 0 can now be

reformulated in terms of solving a nonlinear algebraic equation F(T(i, j)) = 0 with

a functional vector F(T(i, j)) defined by relation 1.32. Using a nonlinear Newton

method described above for solving such a multidimensional nonlinear set of equations

one can find a solution which would automatically satisfy all the necessary boundary
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conditions and nonlinear constraints.

We would like to conclude this section by summarizing that final difference meth-

ods are based on the intuitive idea of representing the continuous functions and their

operators in a discretized form. These methods are especially convenient in the fi-

nite domain where the spatial dimensions are bounded so that the problem of having

an infinite number of discretization points to represent functions on such a domain

wouldn't arise. The finite difference methods gained a wide popularity because of a

clear intuition behind them and they are used in many practical applications.

1.2 Solution of PDE's using an expansion of a trial

solution into a functional basis set.

In this section we are going to discuss a different class of PDE's describing wave

propagation phenomenon. A large set of problems in engineering and physics involves

wave propagation in some media. These waves can have electro-magnetic, mechanical

or even quantum nature. Functions that describe waves are typically extended over an

entire infinite spatial domain and simulation of such waves in a framework of the finite

difference methods becomes computationally inconvenient. Another, more important

reason for finite difference methods to become inefficient in dealing with waves is in the

wave's inherent time dependent oscillatory nature. Ordinary, waves are characterized

by their periodicity in a spatial domain determined by the wavelength A, and their

temporal periodicity determined by the frequency w of wave oscillations in time. If

one were to simulate the behavior of the waves over the time of many periods finite

difference methods may become very computationally inefficient. Particularly, as we

have seen before, the condition of stability of a finite difference method frequently

imposes a limitation on a discretization time step. If a period of the wave under study

is much greater than an allowed discretization time step sampling over many time

periods can become very computationally time consuming.

To circumvent these problems one can try the following approach. Suppose
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qk,w(x, t), is a set of functions possessing wave-like properties and each character-

ized by numbers k and w. By that we mean that for each k, w function 0k,,w(x, t)

is defined over an infinite spatial domain and it is periodic in space and time. In

calculus it is proved that under some general conditions any well-behaved function

E(x, t) can be expanded in terms of a complete set of qk,w(x, t) so that

E(x, t) = J dk J dwCk,Wbk,w(x, t). (1.33)

A collection of such kk,W(x, t) is called a basis set. As an example, a frequently used

basis set particularly useful to simulate infinite periodic systems is a planewave basis

set where the basis functions are as following

1
q,w(x, t) = -exp(ixk - iwt). (1.34)

21r

Thus, for a particular wave equation finding a solution is equivalent to finding an

infinite set of basis coefficients Ck,, in equation 1.33 where w is commonly a function

of k. An apparent advantage of using a basis set in a form of relation 1.33 is that

a multi-dimensional (in this case variables x and t) oscillatory problem is frequently

reduced to a lover dimensional problem of finding Ck,w(k) in "k" space. Another

advantage is that Ck,w(k) is usually not zero only on some finite number of spatially

confined intervals. Finally, one doesn't have to approximate the derivatives of the

PDE's as soon the basis function used are sufficiently well behaved. In spite of all the

advantages of this method for finding an oscillatory waveforms one have to be careful

to include a sufficiently large number of the basis functions to achieve any meaningful

solution. Also, for some problems, one has to use very special basis sets if a truthful

description of sharp spatial variations of the waveforms is necessary [3].

In the following, we consider an application of the method using a planewave

expansion of a trial solution to a problem of finding a form of the electro-magnetic

states in a media characterized by a periodic dielectric constant (a so called photonic

crystal). On figure 1-3, a one dimensional photonic crystal is sketched.

There, R is a periodicity of a photonic crystal and R 1, R 2 are the widths of the
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E(k,w)

F~I

X

Figure 1-3: A sketch of a one dimensional photonic crystal made of the periodically
repeated slabs of two different dielectrics. Here, R is the periodicity of a photonic
crystal and R 1, R 2 are the widths of the slabs with dielectric constants E and 62

respectively. Also shown the directions of the electric and magnetic fields as well as a
direction of a wave propagation for the photonic crystal modes studied in this section.

slabs with dielectric constants c1 and C2 respectively. We start analyzing this system

by writing Maxwell's equations for the electro-magnetic fields in a non magnetic

material with a position dependent periodic dielectric constant E(x + R) = E(x)

x H(x, t) = 8(c(x)E(x,t))
act (1.35)

V x E(x, t) = OH(xt)

where E(x, t) and H(x, t) are the electric and magnetic fields at the moment of time

t. Because of the spatial periodicity of a dielectric constant it can be decomposed in

terms of a countable set of planewave basis functions as

E(x) = Z EGexp(iGx) (1.36)
G

where reciprocal vectors G are defined as G = nl, n E {-oo, ..., -1 0,1, ..., +00}.

It is known from a theory of photonic crystals (Bloch theorem) that electro-magnetic
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modes in such a system can be characterized by a wavevector q and a countable set

of band frequencies {wi(q), w2(q),.. .}. A general form of a solution of equation 1.35

in a planewave basis set can be written as following

Hq,w(q)(X, t) _HG(q)

= exp(iqx - iw(q)t) E exp(iGx) (1.37)
E,,(,)(x,t) G EG(q)

where HG(q) are the expansion coefficients of the electro-magnetic modes in a
EG(q)

planewave basis set. Substituting relations 1.37, 1.36 into equation 1.35 and using

the orthogonality of the planewave basis functions one can rewrite equation 1.35 in

terms of the expansion coefficients HG(a) as
EG(q)

(G+q)HG(q) = ~~ G E(G-G)EG(q)
C. (1.38)

(G + q)EG(q) = -1HG(q)

Finally, substitution of the equations (1.38) into each other gives

(G + q) 2 EG(q) -- Z2 E(GI-G)EG(q) (1.39)

Rewriting the above equation in a matrix form and redefining G = we rewrite

equation 1.39 in a matrix form as

(9 +2G)2 E2a(9) ( to eG E2G e3G f4G E 20 (q)
(q + G)

2  
EG(q) 2 -W- 6W CG 2G f3G - EG(q)

9 Eo(9) - 2 e-G e0 e G 2G - E 0 (q)

(q - G)2 E G (q) C2 e-.3 e-2G C-G to CG EG(q)
(q - 2G)2 E-2G(q) -- 4G C-3G e-2G e-G to E-2G (

(1.40)

Equation 1.40 represent an eigen value problem where w2 is an eigen value and a

set of the expansion coefficients {EnG} corresponds to an eigen-vector. Solving for

these quantities and substituting them back into relation 1.37 gives a solution for the

electro-magnetic fields in a system with a periodic dielectric constant.
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In general, using the methods with a functional basis transforms the problem of

solving a system of the multidimensional PDE's to a (supposedly simpler) problem

of finding a solution (in terms of the expansion coefficients) of some highly dimen-

sional nonlinear algebraic equation. For some PDE's (particularly, for a wave-type

PDE's) using such methods frequently transforms the problem into an eigen value

problem which can be readily solved by standard methods, while for a general PDE

a transformed problem can be as complex as an original one.

In the following, we apply the methods described in this chapter to the research

problems the author was involved in at the Department of Physics (under the guidance

of Prof. J.D. Joannopoulos) and the Department of Mechanical Engineering (under

the guidance of Prof. L. Mahadevan) at MIT.
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Chapter 2

Folding of Viscous Sheets and

Filaments

We consider the nonlinear folding behavior of a viscous filament or a sheet under the

influence of an external force such as gravity. An example is provided by pouring a

sheet of honey onto a table from a sufficient height. Near the table, the sheet forms a

series of periodic folds much as an elastic sheet fed towards a horizontal surface would.

Another example is a folding of a soap filament confined to a soap film stretched on

a frame (this was discovered by the author while refilling a soup bottle). When the

filament reaches the bottom of the frame it forms a series of folds. Using an analogy

to the elastic case, we derive a set of equations for the planar dynamics of viscous

sheets and filaments, and solve them numerically to follow the evolution of a fold

under the influence of gravity. We also give scaling laws for the size of the folds and

the frequency with which they are laid out.

The buckling of solids is a well established subject whose origins date back to the

work of L. Euler and Joh. Bernoulli. This instability which arises as a result of the

competition between axial compression and bending in slender objects is not restricted

to solids; it can also occur in creeping flows of fluids in slender geometries [4]. As in

the case of solids, the buckling, folding, and coiling of thin sheets and filaments of

fluids occurs on length scales spanning several orders of magnitude, from geophysics

[5] figure 2-1 a) to soft-matter physics [6] figures 2-1 b),c). A simple demonstration
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Figure 2-1: Photographs of some instances of viscous folding. (a) folds in rock forma-
tions have typical wavelengths of the order of a few m. (b) A viscous sheet of honey
falling vertically on a substrate forms a set of periodic folds with a typical wavelength
of a few cm. (c) A viscous soap filament falling vertically in a thin soap film folds
periodically with a wavelength of the order of a few mm.

of this latter instability is a daily occurrence at the breakfast table. When honey is

poured onto toast from a sufficient height, near the surface the thin filament whirls

steadily about the vertical laying out a regular helical coil [7]. A two-dimensional

analog of this process, viz. the folding of a viscous sheet is also easy to observe when

a sheet of honey is poured onto a surface.

In fact, the flow patterns that one observes on the horizontal surface are directly

correlated with the cross-section of the impinging liquid; viscous fluids flowing from

a small height always spread out axisymmetrically, round filaments form coils, while

sheets fold. In the last case, as the height of fall is increased, the edges of the sheet

come together under the influence of surface tension changing the sheet width, until

it eventually becomes an axisymmetric filament that in turn coils. To observe folding

patterns over a range of falling heights we must confine the flow to two dimensions.

This can be achieved in a number of ways, such as pinning the lateral edges of a

flowing viscous sheet using threads, using a vertical Hele-Shaw cell, or by using a thin
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viscous soap film flowing vertically, and then allowing a large drop of soap to fall in it

(see figure 2-1 c)). As the drop falls, it is stretched out under the influence of gravity

while speeding up. When the filament reaches the bottom of the frame, it forms a

series of folds, exactly like a thin sheet of paper that is fed towards the floor [8]. In

this letter we will consider the folding of a filament confined to lie in the plane, as in

a soap film, and later discuss variants of this phenomenon.

2.1 Formation of a fold

The physical parameters governing the phenomena include the fluid viscosity A (kine-

matic viscosity v = p/p), the flow rate Q, gravity g, a characteristic filament radius r

and the height h over which the filament falls. As h is gradually increased, the axial

stagnation flow becomes unstable to bending disturbances and the filament is laid out

in a series of periodic folds of length L at a frequency Q. The onset of the instabil-

ity [9] is determined by the relative magnitude of a gravitational time scale (h/g)1/ 2

and a viscous time scale r 2pl characterized by a Reynolds number Re = gr /2 .

A similar parameter pgh 3 /B, where B is the bending stiffness occurs in the elastic

analogue [8]. Only below a critical value of the aspect ratio of the filament r/h or Re

is the axisymmetric stagnation flow unstable. When aspect ratio becomes sufficiently

small (but still is far from the onset), the flow is still mainly an axial stretching flow

corresponding to the "outer" region. However in a small neighborhood of the flat sur-

face that constitutes a "bending boundary layer", there is a highly nonlinear folding

region, as seen in figure 2-1 b),c).

For low folding frequencies, the filament inertia is unimportant when Q < (L)12.

We will assume that this inequality is valid: then the dynamics of folding are deter-

mined by the balance between the forces due to gravity and viscosity. Observations

of a filament that is fed from far above a horizontal plane reveal various stages in the

folding process, as shown in figure 2-2.

Close to the bottom of the frame where the folding occurs, the filament diameter is

essentially unchanged, although its center line is highly curved. During the formation
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Figure 2-2: 1) Beginning of folding, filament touches the bottom and buckles on
contact. 2) Further flow causes the filament to become tangential to the horizontal
surface at the point of contact. 3) Contact point starts moving from the origin. 4)
Further flow causes the central line to move downwards. 5) Moving of the central line
downwards proceeds until the central line touches itself.

of a single fold, the filament buckles on contact; further flow causes the filament to

become tangential to the horizontal surface at the point of contact. Still further flow

causes the contact point to move, as an incipient fold is laid out. This continues

until the point of inflection in the center line begins to move downwards instead of

outwards; eventually the filament touches itself forming a second contact point. The

filament rolls briefly about this new contact point until the curvature at this contact

point vanishes; then a third contact point is born at this location and moves until it is

directly below the feeding point,leading to the formation of a half-fold. An identical

scenario on the opposite side leads to the formation of the second half of the periodic

fold. The next fold is laid out on the previous one; if the height from which the

filament is fed is large compared to the height of the fold we only need to consider

the formation of a single fold owing to the periodicity of the phenomenon.
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2.2 Scaling laws

To investigate the role of the various physical parameters in the problem, we start

with dimensional analysis. The six parameters of importance in this problem are

the viscosity of a fluid p, the density of a fluid p, the moment of inertia I = !' of2

the crossection of the filament where r is a radius of a filament, the height h from

which the filament is fed, the feeding velocity v and the acceleration of gravity g.

As their dimensions are expressible in terms of mass, length and time, according to

the Buckingham Pi theorem, the number of independent dimensionless parameters is

three, say

_ = 2 (2.1)

Thus the fold period and length, is a function of these three parameters

Tf =V 0fr7 7, ()Tf (2.2)
Lf = hg(, y).

If the filament is fed slowly so that the inertial forces are negligible, then y < 1. For

typical viscous materials q > C and C < 1 so that

Tf = hf (r7, y, j) t(r7 0,0) (2.3)
Lf = hg(r, y, ) g g(, 0, 0).

As the drop height h is increased indefinitely we expect a finite limit for Tf and L1

thus, functions t(7, 0,0) and g(r, 0,0) must be proportional to r74 so that

V 1
4 (2.4)

For q << 1, a simple argument that balances viscous and gravitational forces reveals

the nature of this dependence. In the neighborhood of a fold of length L, the filament

turns around a bend of radius L at velocity v without a change in its diameter;
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therefore the axial viscous stress is linear in the depth and scales as prv/L2 . The

depth-integrated stress resultant vanishes as a consequence, but the depth integrated

torque scales as pur4v/L 2 . This is balanced by a gravitational torque of magnitude

pgr2 L2 . This leads to the following scaling laws for the fold length L and the folding

frequency Q - v/L

L ~ (vvr 2 /g)1/ 4  71/h

Q (vr 2 I-s) - 1/4 ~ ;1/4 v/h.

2.3 Theoretical formulation

In the region where the filament is being stretched axisymmetrically, a depth-integrated

version of the Stokes' equations yields p(r2uZ)z = pgr 2, where r = r(z, t) is the radius

of the filament at a vertical location z below the feeding point, and u(z, t) is the

axial velocity. This leading order asymptotic equation ignores the effects of inertia

and surface tension, assumes that the axial velocity profile is plug-like, and that the

effect of the surrounding fluid is negligible. A solution of the axially stretching flow

provides the outer solution for the flow velocity v and the filament diameter 2r that

must be matched to the solution in the folding regime near the bottom boundary.

Since the height of this last regime is so small compared to the total fall height, we

can neglect it and solve the outer problem over the entire height of fall h in principle.

In the folding regime, the filament is assumed to have a circular cross-section and

is confined to two dimensions. Therefore, we can characterize the filament by its

center line in terms of the arc-length s and the angle 0(s, t) between the tangent to

the center line and the x axis. Letting ni (s, t) and n2 (s, t) be the integrated stress

resultants in the x and y directions and m(s, t) be the bending moment in the z

direction (see figure 2-3), we can write the following equations for the balance of
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n12(s4)

n1(s,t)

m(s't)

(x(s,t),y(st)) 4(s,t)

X

Figure 2-3: A schematic of a viscous filament of constant diameter flowing around a
bend under the influence of gravity. If the filament is not being stretched or com-
pressed, its center line can be parameterized in terms of its arc-length s. The filament
can then be described by the location of its center line x(s, t), y(s, t), and the orienta-
tion of its cross-section, O(s, t) being the angle between the tangent to the center line
and the horizontal. The components of the depth-integrated stress in the horizontal
and vertical directions are ni (s, t) and n 2 (s, t) respectively.

horizontal and vertical forces, and moments

ni, = 0,

n2, = pg, 0 s <vt, (2.6)

m, = n 1sin#(s) - n 2cosO(s)

where (-- )I, = .(- -)/9s, and vt is the total length of the filament being at velocity

V.

These equations are 1-dimensional approximations to the 3-dimensional equations

of equilibrium and are valid for a slender filament in the long-wavelength limit. For
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completeness, they must be supplemented by a fourth equation relating the variables

ni, n2, m, #. Since the dominant deformation of the filament during folding is due

to bending, a natural candidate is a relation between the curvature , (s, t) and the

torque. For a slender elastic filament, the axial strain E due to bending varies linearly

with the diameter and inversely with the radius of curvature [10], so that the stress o- =

Er#8 . Integrating the stress through the cross-section leads to a vanishing resultant;

however the moment m = f ardA does not vanish, and yields m ~Er- E0, For a

viscous filament, the stress is proportional to the strain rate, so that the viscous stress

o- = pt(rq$,)t = pr,,t, if the filament diameter is unchanged, as in our case. Therefore,

for a viscous filament, m ~-.r 4#,q. This heuristic argument can be formalized as a

leading order asymptotic theory derived from Stokes' equation for a slender filament

of small aspect ratio, with the center line capable of having large curvatures [11], and

leads to

m = 3pr 4 0 8t. (2.7)

Equations (1-2) are sufficient to determine #, ni, n2 ; we note that the stress resultants

ni, n2 are determined by the boundary conditions and in fact are Lagrange multipli-

ers that enforce the constraints of inextensibility and vanishing transverse velocity

gradients. Upon defining the dimensionless variables 9 = , f = L, f1,2 = n, with

h being the height from which the filament is being fed by the axial flow. Then the

equations 2.6, 2.7 can be rewritten, on dropping the bars, as

ni, = 0,

n2s = 1, 0 < s < 1+t, (2.8)

r7osst(s, t) = nisin(s) - n 2cos#(s)

where q; = 3pr2v/pgh4 is a scaled viscous bending resistance, and we start the

clock when the filament first touches the bottom plate. In a typical experiment,

p -' 1OPa.s, r = 10- 3 m, V = 0.1m/s, p = 10 3 kg/m 3 , h = 0.1m so that rq ~- 106.

Therefore, we expect the filament to be straight and vertical over most of its length,

with the fold limited to a very small region near the floor. Once we have solved
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equation 2.8, the shape of the filament at any instant is determined by integrating

the two kinematic relations x, = cos 4, y, = sin q. During the evolution of a fold, the

boundary conditions must be specified at the unknown contact points, and must be

changed at certain critical points. To facilitate the numerical solution of this problem,

we keep the domain of the problem fixed to s E [0, 1], rescaling all lengths by defining

+ - where (6 E [0, 1]), s(t) is the location of the it" contact point,

1i is the length of the filament between the feeding point and the last contact point at

the time t1 when the ith contact point have emerged. Then equations 2.8 transform

into

n i g = 0,

n2 = (1i + (t - ti) - (si(t) - si(ti))

I ( , t) = _ (-4t(,(t)) q( t) + (nisino( , t) - n 2 cosO(6, t))(1i + (t - ti) - (s2 (t) -

(2.9)

The boundary conditions at the feeding point are

X(1) t) = (t) )) + f cos( , t)d = 0, (2.10)

y(1, t) = fo sino( , t)d =- _____________________

The first condition is due to the vertical feeding of the filament, while the second

and third characterize the location of the feeding point as measured from the latest

contact point si(t), with so(t) = 0, 1, = 1, to = 0. The boundary conditions at the

contact point which always lies on the same horizontal plane vary. Once the filament

has contacted the horizontal surface (at t = 0), the filament buckles, and pivots about

the point of contact assumed to be at the origin so that

s2 (t)
M(1,t) = 0, x(0,t) = , (t) - y(0, t) = 0. (2.11)

ii + (t - ti) - (si M) - si (4))

Here so (t) = 0 is the location of the contact point initially.

We consider the formation of a fold as composed of two parts:
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(I) the filament becomes tangential to the surface at t = ti at x = y = 0. Further

feeding causes the filament to be laid out as the contact point moves to s = s1 (t).

The location of the contact point x(O, t) = si (t) is then determined by the condition

of tangency

4(s1(t), t) = 0. (2.12)

(II) As the feeding continues past t = ti, the filament begins to dip downwards

under its own weight until it touches itself on the horizontal frame for the first time at

t = t2 , when a second contact point s2 (t) is born. If the filament is being fed slowly,

surface tension causes the filament to sinter with the rest of the liquid at this location,

i.e. the small rolling motion of the filament can be effectively neglected. Then the

part of the fold between S2(t) and s1(t) will not move at all and a new contact point

moves away from x = s2(t), with the condition of tangency 2.12 replaced by the new

one

0(s 2 (t), t) = ir. (2.13)

After some time the contact line lies directly below the feeding point, thus completing

the laying out of half a period of the fold.

2.4 Numerical solution

In the following, we are going to address each of the folding regimes and the compu-

tational methods used to simulate them in details.

2.4.1 Regime I

At t = 0, the filament touches the horizontal plane and further feeding causes it to

buckle, figure 2-4 a). In the presence of friction the point of contact remains fixed,

acting as a pivot about which the filament bends.

To proceed with a numerical solution we reformulate the problem in terms of a

new variable = ' so an effective length of a curve between the feeding point and

the last contact point remains fixed at all times and 0 < < 1. Then equations 2.8
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Figure 2-4: a) Regime I of filament folding, t < t1 . Inflection line pivots around
the contact point at (0,0) until 0(0, ti) = 0. b) At t = ti, inflection line touches
the horizontal plane. c) Regime II of filament folding, t1 < t ; t2 . Contact point
s1 (t) moves along x axis away from (0, 0). d) As folding in the Regime II proceeds
inflection line starts to dip under its own weight toward itself and at t = t2 touches
itself for the first time. e) At t = t2 , inflection line touches itself for the first time
leading to the appearance of the second cjtact point s2 (t). f) Regime III of filament
folding, t2 < t < t3 . Contact point s2(t) is tracing back along x and crossing (0, 0)
then it reaches its new extremum at t = t 3.
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transform into

n[ = 0,

n2= (1+ t), (2.14)

r/w((, t) = 7j.-q#( , t)t + (nisin#( , t) - n2cos4( , t))(1 + t) 2 .

The boundary conditions are then

OJ0o t) =0, (2.15)
0(1, t) =

and
x(0, t) = 0,

x(1, t) = fJol coso( , t)d< = 0, (2.16)

y(0, t) = 0,

y(1, t) = fo' sin#( , t)d =

For the numerical solution of equations 2.14 we use a finite difference method which

exhibits O(dt2) accuracy in time and O(d 4 ) in space. Boundary conditions 2.16

are implemented via a relaxation step using a nonlinear damped Newton method,

while boundary conditions 2.15 are implemented by choosing a proper form of a finite

difference operator #! . Thus, given a solution at time t, a new solution at time t + dt

is calculated by using Newton relaxation step subjected to constraints 2.16.

We start time propagation of a solution with a curve close to the #( , 0) = 1. First

3 time steps are implemented with an explicit O(dt), 0(d 4) algorithm. Particularly,

on a time mesh the finite difference operator is

2dt dt
((, ~dt)#ge(, t)= #C(C, t)+-(ni (t)sino( , t)-(n2(t)+6(1+t))COSO( , )(+)

1 + t 77
(2.17)

All the following steps until #( , t1) IC=O = 0 are made with an implicit 0(dt2 ) algo-

rithm where the finite difference operator is

41



t + dt) - Ott( , t - dt) = -#dtj, t) + (1 + t)2 [

d (n1(t - dt)sink( , t - dt) - (n2 (t - dt) + (1 + t - dt))cos#(, t - dt))+ (2.18)

(n,(t + dt)sin#(6, t + dt) - (n2 (t + dt) + (1 + t + dt))cosk( , t + dt))].

To calculate a second order space derivative Ott a spatial mesh of N +2 point was

used. Equations 2.17, 2.18 were solved on N "inside" points, while the two "outside"

points on the edges were used to incorporate the required boundary conditions. Using

an equidistant space mesh, points E (0, 1) were represented as a collection of =

(i - 1)d, i E 1, ... , N, d = N-1 Several O(d<4 ) finite difference operators were

used to define #tt( , t) for the N inside points. At the points i, i E {2, ..., N - 1} a

symmetric operator was used

= - 10(i - 2, t) + 4 0(i - 1, t) - q(i, t) + 10(i + 1, t) - 1q0(i + 2, t)o(d4)

(2.19)

while for the points i E {1, N} the assymetric operators were used

#54(1, t) = [ (O, t) - q5(1, t) - }10(2, t) + ZO(3, t) - }10(4, t) + -LO(5, t) + O(d 4),

(2.20)

and

( ) (N + 1, t) - 5#(N, t) - 10(N - 1, t) + #O(N - 2, t) - }0(N - 3, t) + A#(N - 4, t)

(2.21)

To incorporate a boundary condition #C( , t) | =o ~ q (i, t) i1 = 0 we employ an

O(d 5 ) assymetrical approximation to the derivative at point i = 1 so that the overall

finite difference operator remains O(d 4)

#5 (1, t) = -}0(0, t) - }30(1, t) + 20(2, t) - 0(3, t) + 10(4, t) - -LO(5, t) + O(d(5 )

(2.22)
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As the boundary condition forces c(, t)Ic=o ~ #C(i, t)jj=1 = 0 we can eliminate a

variable 0(0, t) from equation 2.20 by expressing it through 0(i, t), i E {1, 2, 3, 4, 5}

using equation 2.22. Also, from the second boundary condition we have #( , t)I= 1 ~

q(i,t)ji=N = E. Combining all of the above we now wright the form of the finite

difference operator satisfying required boundary conditions 2.15 in a matrix form as

following

+C(1,t) -4 -4 4 -0 +(1,) 0

4t(2,t) -1 ( -j j -0 4(2,t) 0

Oft(3,t) 0 - -j j - 4(3,t) 0

4tt(4,t) 0 -n j -j j -h 4(4,) 0

4f(5,t) =4(0,) 0 + -T -0 -- 4(5,) +- 0

Oee(N-2,t) 0 - 4(N-2,t)
1t N - ,t 4 5 1
12 (N -1, ) -7- -N -(1- t)

Ott (N, t) 0 - (N + 1, t) -
(2.23)

where 0(0, t) is expressed via #(1, t), 0(2, t), 0(3, t), 0(4, t), 0(5, t) by equating 2.22

to zero.

2.4.2 Regime II

At t = ti, the filament becomes tangential to the horizontal plane (see figure 2-4 b))

and the point of contact starts moving away from x = 0, figure. 2-4 c). We define s1(t)

to be a position of the first contact point with respect to time. The total length of a

filament not touching the horizontal plain will be (1+ t - s,(t)). We now reformulate

the problem in terms of a new variable = + 1t so the length of a curve remains

fixed at all times and 0 < < 1. Equations 2.8 then transform into

ni= 0,

n2e = (1 + t - si(t)),I 0 t( t) = r2_ ( , t)g + (risi((, t) - n2COS((, t))(1 + t - s1(t))2
(2.24)
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The boundary conditions are then

OC(O, t) = 0,

(0, t) = 0, (2.2-5)

0(1,t) = 2,

and
x(O, t) = 1(t),

x(1, t) = "') + fl coso(q, t)d< = 0, (2.26)

y(0, t) = 0,

y(1, t) = fJ sino( , t)d (

For numerical solution of equations 2.24 we use a finite difference method which

exhibits O(dt2) accuracy in time and O(d<4 ) in space. Boundary conditions 2.26 as

previously are implemented via a relaxation step using a nonlinear damped Newton

method. Thus, given a solution at time t, a new solution at time t + dt is calculated

by using Newton relaxation step subjected to constraints 2.26.

Starting with a curve at t = t1, we first make 3 time steps with an explicit O(dt),

O(d 4) algorithm. Particularly, on a time mesh the finite difference operator is

(ni(t)sino( , t) - (n2 (t) + (1 + t - s1(t)))cos#( , t)) (1 + t - s 1(t))2.

All the following steps until the inflection line touches itself at t = t2 are made with

an implicit 0(dt2) algorithm where the finite difference operator is

OCJ({,t + dt) - OCJ(jt - dt) = 4dtS_-,"tt $gt) + (1 + t -s(t)) 2

(n1(t - dt)sino( , t - dt) - (n2 (t - dt) + (1 + t - dt - (s1 (t) - sit(t)dt)))cos#( , t - dt))+

d (n1 (t + dt)sino( , t + dt) - (n2 (t + dt) + 6(1 + t + dt - (s1 (t) + sit(t)dt)))cosO(6, t + dt))].

(2.28)

A time derivative su(t) of the contact point position s1 (t) is considered explicitly

as an unknown variable and s1 (t + dt) is calculated to preserve O(dt2) accuracy of

the method as si(t + dt) = si(t - dt) + 2dtsit(t) + O(dt2 ).
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2.4.3 Regime III

As the feeding continues past t = t1 the filament begins to dip downwards under its

own weight (see figure 2-4 d)). Finally, the inflection curve touches itself for the first

time at t = t2 , figure. 2-4 e). The second contact point s2(t) appears. In practice,

because of the surface tension the rest of the curve between s2(t) and s1 (t) will not

move at all and the new boundary conditions at s2(t) will be the same as in Regime

II except for the q(s 2 (t), t) = 7r rather then 0(s,(t), t) = 0 as in the Regime II. The

same equations as for the Regime II will have to be solved to find a time propagation

of a 0(s, t) field in Regime III where s1 (t) should be substituted by s2 (t). At time

t = t3 the filament touches itself for a second time and t3 - t2 gives half a period of

the folding, figure 2-4 f).

2.5 Numerical results

To follow the observed evolution of the viscous fold numerically, we start with an

initial condition that is not necessarily consistent with the maximally unstable wave-

length of a bending filament. Therefore, we have to wait for several (usually 1-2)

complete folds until the influence of the initial conditions disappears and constant

periodicity folding is established. To illustrate this point on figure 2-5 we show the

evolution of the fold for 77 = 10-.

In figure 2-6 we show the evolution of the contact lines that are formed during

each period of the fold for the same value of 77. We see that the folding is indeed

periodic after a short initial transient associated with the initial conditions.

To check for the predicted scaling laws 2.4 we numerically evaluated the horizontal

extent of the fold Lf (7) as well as the time period of a stationary fold T (,q) for

the various values of q. Calculations were done for a set of q E {7 - 10~, 10-4, 5 -

10-4, io-3,5- 10-3}. In figure 2-7, we show a log-log plot of Lf(,R) and T1 (77)) vs.

77, and see that log(Lf (,q)) = BLlog(77) + CL and log(Tf (,q)) = BTlog(y) + CT, with

BL = 0.24 ± 0.04, and BT = 0.25 t 0.04, which compares very well with the predicted

scaling law 2.4.
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Figure 2-5: Evolution of the fold for q = 10'.
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Figure 2-6: The formation and evolution of the contact lines (points) during the
folding of the filament. Here, we have assumed that the folds merge with each other
over the time scale of the laying of a single fold so that the total fall height remains
the same over many periods. si(t) denotes the location of the ith contact line; we
observe that periodicity is achieved following an initial transient.
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time period Tf and r is fitted well by the predicted power law Tf r- o 7.25*0.04 for
7« << 1.

47

*-- 0-

~0~~~~

le-02

le-02
.



2.6 Discussion

We conclude with a brief discussion of our results, which have focused on the simplest

folding problem for a two-dimensional viscous filament. Using an analogy to the

planar bending of elastic sheets, we were able to formulate and solve a free-boundary

problem for the periodic folding of viscous filaments. We neglected the effect of the

external fluid, and considered only the bending of the filament; stretching playing a

role only far from the folding region. The folding of a sheet of constant width and

thickness r can be similarly treated by replacing the viscous bending rigidity 3pr4 of

the filament by pr'/3 which is the viscous bending rigidity of a sheet per unit width.

However, in such cases (see figure 2-1 b)), surface tension causes the lateral edges to

come together and necessitates a modification of our theory. For very viscous slow

moving sheets, when uv/u >> 1, such as in geophysical and some materials processing

flows, our theory provides a very good starting point in this direction. We have also

neglected the effect of the external fluid; this can be remedied by including tangential

and normal drag forces that are proportional to the velocity of the filament in the

two directions in equation 2.6, while noting the anisotropy of the drag coefficients

for slender bodies in a fluid. We are currently addressing this issue in the context of

buckling experiments in soap films. On a more general note, just as lubrication-type

theories in hydrodynamics assume that the center-line is straight, and look at various

modes of the free surface, bending theories assume that the center-line is curved, and

look at sinuous modes of the free surface. We believe that there are scores of problems

in the hydrodynamics of thin films in this latter regime that can be addressed using

these ideas.
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Chapter 3

Photon Modes in Photonic

Crystals Undergoing Rigid

Vibrations

At the end of chapter 1 we have demonstrated how the nature of the electro-magnetic

modes in a stationary photonic crystal can be successfully investigated in a planewave

basis set, where the problem reduces to a standard eigen value problem. In this chap-

ter we explore the nature of photon modes associated with photonic crystals under-

going rigid time-dependent spatial displacements in a non-inertial frame of reference.

We first prove that under certain conditions these modes retain many of the spatial

symmetries allowed in a static photonic crystal. Moreover, it is shown quite generally

that such non-inertial modes possess a temporal Bloch-like symmetry. Conserved

"quantum numbers" are identified and a convenient scheme for labeling non-inertial

modes is presented. Computationally, such modes are investigated in a plane-wave

basis set. It is shown that finding the spatial and temporal characteristics of such

modes is equivalent to solving a generalized eigen value problem of the form

(A2 + Bw + C)E = 0 (3.1)
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where w is an eigen value and E is an eigen vector. Finally, a method of solution of

a generalized eigen value problem based on nonlinear Newton iterations is proposed.

The idea of using periodic dielectric materials (photonic crystals) to alter the dis-

persion relation of photons [12, 13, 14] has received widespread interest and consider-

ation because of numerous potential applications [15]. It has been shown by several

authors [15, 16, 17, 18] that passive elements such as waveguide bends, channel drop

filters, mirror surfaces, etc. can be substantially improved if constructed on the basis

of photonic crystals. Recently, a strong interest has developed for the incorpora-

tion of non-linear materials into photonic crystals. Investigations in the framework

of field-dependent dielectric media have led to several suggestions [19, 20, 21] on the

possibility of constructing active elements such as optical switches, and on the realiza-

tion of dynamical effects such as second-harmonic generation and induced inter-band

transitions in photonic crystals. In all of these studies, the photonic crystals are

constrained to be in a static, or inertial, frame of reference. Nevertheless, it should

be possible to develop active photonic crystal elements even with linear materials by

working with non-stationary photonic crystals. Before one can begin to explore this

possibility it is necessary to have a fundamental framework of understanding of the

nature of the photonic states in such non-inertial systems.

In the following we explore the properties of photon modes associated with pho-

tonic crystals undergoing rigid time-dependent spatial vibrations in the non-relativistic

limit. A fundamental theorem about the form of the resulting electro-magnetic modes

in a non-inertial frame is presented. Specifically, we prove that photonic crystals

undergoing such rigid displacements can exhibit solutions that, under certain cir-

cumstances, exhibit Bloch-like spatial and temporal translational symmetries. To

our knowledge, this is the first time photonic crystals have been investigated in a

non-inertial frame of reference.
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Figure 3-1: ID photonic crystal with periodicity R rigidly translated with a displace-
ment A(t).

3.1 Theoretical formulation

Let us now consider a photonic crystal rigidly vibrating with an amplitude A and

a driving frequency Q as illustrated in figure 3-1, where R is the periodicity of a

photonic crystal and R 1, R 2 are the widths of the slabs with dielectric constants 6i

and f2 consequently.

In this case Maxwell's equations take the form

{ x H(ft)

V x E(?, t)

= e(f?- 4(t))E(Ft)) +E(f-z(t))E(i? t)
= - a Hntt

COt

where c(f, t) is a spatially periodic time dependent function such that there exists R

so that for all ': E(r+ $ - z(t)) = e(r- A(t)) and A(t) = S(t + 2). We now prove

that a Bloch-like symmetry of non-stationary modes still holds in the non-inertial

case.

To prove this statement we search for a solution to the non-inertial problem in a
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complete plain wave basis

H(F, t) (H(k,w)= dkdw _ I jEw>, (3.3)

where we define |,w >= T exp(if--it) and < ko, wo|k, >= 6(ko-k)6(wo -w).

Substituting equation 3.3 into Maxwell's equations 3.2 and multiplying both sides

by < ko, wol we obtain

0 = H(ko, wo) x ko - f dkdw E(k, w) < ko,woIE(i?- S(t))Ik,w > -

if dkdwE(k, w) < ko, wof- ), W > (3.4)

0 = E(ko, wo) x o + -Q H(ko, wo).

We now proceed to evaluate the integrals over the wavevector space in equa-

tion 3.4. Since E(F+ R) = E(f) we can represent a dielectric function in the reciprocal

vector space as c(r) = cd exp(i- r). Substituting this representation of E(r) into

equation 3.4 the first integral can be written

dkdw -E(k, w) < ko, wojE(r'- A(t))|k, w >=
c

dkdw -E(k, w) Ed < ko, wo Iexp(iG -r' - iG - (t)) Ik, W > .(3.5)
C

Now the spatial part of the matrix element can be trivially calculated to give

<ko, wolexp(iG -r-iG.-A(t))|k, o>= 6(k+G -ko)- dt exp(i(wo -w)t -iG -A(t)).

(3.6)

Since A(t) is a periodic function of time with period 2, the integral over time can

be rewritten in the following way

lr= +00 27r 1 r #-
dtexp (i(wo - w)t - iG - A(t)) =( exp (i(wo - w) ))-] dt exp (i(wo - w)t - iG -A(t)).

()=-0
(3.7)
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Using the identity E+' exp (i(wo - w)+1) = Q E+. 6(w-(wo+2)) one finally

arrives at

dkdA-E(k,w) < ko,wojE(i?- A(t))J, w >=

1 E(ko - G, wo + 1Q)(wo + lQ) d exp (-iG -(t) - ilt). (3.8)

Proceeding in exactly the same fashion, the second integral in equation 3.4 can be

manipulated to give

if dkdwE(k,w) < ko,W ( Eo r cat)1k,w >=

- Z E(ko - G, wo + IQ)1 W dt exp (-iO - A(t) - ilt). (3.9)
G *~' ~I

Combining the results above, we arrive at the following form of Maxwell's equations

in the wavevector representation.

S= H(ko, wo) x ko - Z, Ed 'E Et .E(o - G, w0 + 1) f0f dt exp (-iG - A(t) - iI~t)

0 = E(ko, wo) x ko + C H(ko, wo).

(3.10)

There are three immediate conclusions that can be drawn from the form of equa-

tion 3.10. First, modes with different k0 within the conventional Brillouin zone do

not mix so that it is still possible to define a "good" quantum number ko for a vi-

brating photonic crystal, regardless of the direction of vibration. In passing we note

that for a ID or 2D periodic photonic crystal, if one chooses a vector of vibration

A perpendicular to the reciprocal vector space of the structure, only the 1 = 0 term

survives in equation 3.10 and the problem reduces (in non-relativistic limit) to that

of the static case.

Secondly, for a given mode with a native band frequency wo and amplitude

(H(ko, wo)
,the harmonics with the satellite frequencies wo + lQ and amplitudes

E(ko, wo)
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H(ko, wo + IQ)
are also present. And finally, for a given ko there will be a discrete

E(ko, wo + lQ) )
set of wo,,'s which satisfy equation 3.10. These wo,a's are analogous to the photon

bands of the static photonic crystal.

In general therefore, any time dependent solution ( (r-, t) of equation 3.2
\ En(f, t)

can be expressed in a basis set of non-inertial modes each satisfying equation 3.2 and

characterized by a set of "good" quantum numbers k and w, so that

H-- (n, t) +00 H(k - G, wn + IQ)~~~_ t)+0(E -C f exp(i(k - G~) - r - i(Wn + IQ)t).

E ,n(V, t) i=-oo E(k - G, Wn + IQ)
(3.11)

It is straightforward to see that such modes possess a spatial and temporal Bloch

symmetry

Hk,aF R, t + )-.- . 21r Hk,a (r
= exp(ik -R- ) . (3.12)

Ek,,(r-+ R, t + 17r) r ga (, t)

3.2 General form of the electro-magnetic modes of

a vibrating photonic crystal

For the vibration scenario the Wn() spectrum will generally be rather complex. To

illustrate what this spectrum will typically consists of consider the following argument.

Since changing Wn() to Wn(Q) + IQ for any integer 1 leads to the same state (see

equation 3.11), all the labels Wo(Q) can be mapped trivially to the interval [-A, 2].

For any proper choice of wavevector, each corresponding Wn(Q) will be a band of

modes as sketched in figure 3-2.

Since plotting a complete band structure is very involved, it is instructive to

illustrate a simple case where we only have two bands and where coupling between

the modes is very weak (that corresponds to 2 -+ 0 for vibrations and ; -+ 0C C

for rotations). Under these conditions the frequencies of the bands folded into the
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(02)2

Figure 3-2: Non-inertial band structure as a function of driving frequency Q is pre-
sented for a case of two non-stationary modes. For each value of Q the frequencies of
the bands w1,2 (Q) ' w1 ,2 (0) + 11,2 Q are mapped into the interval [-a, 9]. For a set
of driving frequencies Q = -2--1 bands will exhibit a near crossing as shown in the
insert.

interval [-i, , w,(Q), will correspond approximately to w,(Q) ~ w7.(O) + lM over

the whole range of a driving frequency Q. For a special set of driving frequencies

Q W27W1, bands of the same symmetry will exhibit a near crossing (insert on figure 3-

2). The amplitude of this splitting will be proportional to the coupling parameter and

will become vanishingly small as the value of 1 increases. In practice, therefore the

major splitting will occur at the primary inter-band resonant frequency Q ~ W2 - wi-

The approach described above can, of course, be readily generalized to include more

bands. Finally, we conclude with the observation that in the weak coupling limit

it can be shown that a possibility exists of using vibrations and rotations to induce

inter-band transitions between the photon crystal modes in a novel and controlled

fashion without the necessity of employing non-linear materials.
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3.3 Numerical computation of the electro-magnetic

modes of a vibrating photonic crystal

In this section we outline a method for a computational evaluation of the electro-

magnetic modes of a vibrating photonic crystal. As it was shown above, such modes

are characterized by a wavevector k and a set of frequencies wo(Q) and in a planewave

basis set they can be written as

H t) +00 H(k , + l) expk - ) + )t)

E , t) I=- 0 E(k - G, n + lQ)

(3.13)

(H(k - G, w,. + lQ)
where a set of coefficients -) is determined by the equations

E(k - G7 W, + IQ)

(-% o 27r

0 = H(,w) x -- E Et=_. E(k - G, w + lQ) fof dt exp (-iG. A(t) - ilQt)

0 = E(k, w)x k + H(k, w).
(3.14)

As we have seen in chapter one an analogous set of equations for a stationary pho-

tonic crystal constitutes an eigen value problem with respect to the frequencies of the

electro-magnetic modes. In the following we show that equation 3.14 can be thought

of as a generalized eigen value problem that can be solved numerically by nonlin-

ear Newton method starting with the solutions for the electro-magnetic modes of a

stationary photonic crystal.

In all that follows we deal with a one dimensional photonic crystal (see figure 3-1).

First, let us substitute the second of the equations 3.14 into the first one which leads

to an equivalent set of equations

E(kwn)k2  G EG +0oo A(G, l)E(k - GWf+ l)(
4~ =G & E 1 1 = 0+ )(3 .1 5 )

H (k, Wn) = E (k, Wn)
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where A(G, 1) is defined as

A(G, 1) = 2 dt exp (-iGA(t) - ilWt) = d exp (-iGA( ) - i27rl ). (3.16)

Computationally, we restrict the choices of G vectors and the higher harmonics I

used in equation 3.15 to be such that IGI <; 2N and Il| < L. Clearly, solution for

the electric field will provide all the necessary information for finding a magnetic field

using the second of the equations 3.15. Redefining G = 2, a vector of unknowns to

be solved for is then

E(k + NG, + LO)

E(k + NG, Wn + (L - 1)0)

E(k + NG,w)

E(k + NG, Wn - (L - 1)0)

E(k + NG, wn - Lf)

E(k,wn + LO)

E(k, Wn + (L - 1)f)

E(k, Wn ) .(.

E(k, Wn - (L - 1)0)
E(k,wn - LO)

E(k - NG, Wn + LO)

E(k - NG, wa + (L - 1)0)

E(k - NG, Wn)

E(k - NG, w, - (L - 1)f)

E(k - NG,wn - L)
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To simplify notation we define

E(k) =

E(kw n + LQ)

E(kw n + (L - 1)Q)

E(k, wn)

E(k, on - (L - 1)Q)

E(k, Wn - LQ)

then vector 3.17 can be written as

We also define matrixes A(iG) and D(k, w, iG) as

A(iG, 0) A(iG, 1) A(iG, L)

A(iG, -1) A(iG, 0) A(iG, L -

A(iG, -L)

1)

A(iG, -1) A(iG, 0)

A(iG, L)

A(iG, 1) A(iG, L) 1,

A(iG, -1) A(iG, 0) A(iG,1)

A(iG, -1) A(iG,0) )
(3.20)

(3.18)

E(k + NG)

E(k + (N - 1)G)

E(k)

E(k - (N -1)G)

E(k - NG)

(3.19)

A(iG) =

A(iG, L)

A(iG, L)
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D(k, w, iG) =

rwL)(k+iG) 2

(w+(L-1)Q) 2

(k+iG)2

(k+iG) 2

(w-(L-)f) 2

(k+iG)2
(-LG)2
(k+iG)T ;

S(3.21)

Finally, after a number of simple manipulations equation 3.15 can be written in a

matrix form as

9(k + NG)

E(k) = 2

-(k NG)

D(k,w, NG) e ( A(0)
e-G A(-G)

ENGA(NG)
eoA(O) CNGA(NG)

DJ.Vk, W, U) -I CoA(U)
- e-NGA(-NG) e0A(0) EGA(G)

D(k,w,-NG) e-NGA(-NG) eoA(0)
(3.22)

If an amplitude of the vibrations A goes to 0 then it can be seen from the form

of the matrices D(k, w, iG) and A(iG) that equation 3.22 reduces to an eigen value

problem where a set of the eigen frequencies w, and a set of the eigenvectors 3.17

become the same as in chapter one equation 1.40. For A # 0 the matrix form of the

equations 3.15 represents a generalized eigen value problem where eigenvalues do not

enter the equations in a usual linear way but rather through a matrix D(k, w, iG).

To solve a generalized eigen value problem 3.22 we first notice that in a case

of a vibrating photonic crystal the perturbation parameter scales as A-. Defining
CC

77= and for the realistic velocities of vibration AQ <; 100 , turns out to

be very small and is on the order of 10-7. Thus, one would expect that a solution

to a problem of a vibrating photonic crystal in terms of the band structure w,' and

components of the electric field 3.17 should be close to a solution for a stationary

photonic crystal. Particularly, the splitting between the bands with frequencies w1 ,

w2 while in resonance at driving frequency Q = (w2 - w) is also expected to be

small and scale as qQ. From these considerations we can employ a nonlinear Newton
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method to solve (3.22) with a starting point at frequencies and field components that

of a non-stationary photonic crystal.

To proceed with nonlinear Newton method we need to introduce one extra equa-

tion. System 3.22 provides (2N + 1)(2L + 1) equations for (2N + 1)(2L + 1) + 1

unknowns ((2N +1) (2L +1) components of an electric field and 1 unknown frequency

w). To compliment equation 3.22 we consider a constraint on the form of the modes

such that for any eigenvector 3.17 its norm is constant and equal to 1. This constraint

is somewhat arbitrary but it is convenient as a renormalization of the eigenvectors

does not change the corresponding eigenvalues.

Finally, we present a solution of equation 3.22 for a one dimensional photonic

crystal (see figure 3-1) where R = 1, e(x) = 1.5+0.5cos(-x), A(t) = O.OOlRsin(Qt)

and the maximum numbers of the G vectors and higher harmonics 1 used are N = 5,

L = 5. Coupling constant for this system is, therefore, on the order of 10'. Driving

frequency Q is taken to be a resonant frequency between the first and the second

stationary bands Q = (w2 - w1). We concentrate on the behavior of the bands near

the crossover regime as sketched on the insert of figure 3-2. Computed frequencies of

the non-stationary bands in the resonance region are shown on figure 3-3. Solid lines

on that figure correspond to the band frequencies of the non-interacting bands (in a

folded representation). These lines cross at the resonance frequency Q = (w2 - W1 ).

Circles on figure 3-3 correspond to the frequencies of the non-stationary bands. It is

clearly seen that non-stationary bands in a resonance regime exhibit avoiding crossing

with the band frequency splitting, as expected, on the order of a coupling constant.
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Figure 3-3: Frequencies of the stationary modes are plotted as solid lines while fre-
quencies of the non-stationary modes are plotted in circles. As seen from the plot,
non-stationary bands in a resonance regime exhibit avoiding crossing with the band
splitting on the order of a coupling constant 'r = 10-3.
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