Optical Excitations in Cold Gases
by
Mehmet Ozgiir Oktel

B.S. in Physics. Middle East Technical University. 1996,
B.S. in Electrical Engineering. Middle East Technical University. 1996

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2001
(© Massachusetts Institute of Technology 2001. All rights reserved.

Author .. ...

Department of Physics
November 2, 2000

Certiiedby .
Leonid S. Levitov

Professor

Thesis Supervisor

Accepted by .............

7

/ omas J. Greytak

e Professor, Associate Department”Head for Education
WASSACHUSETTS INSTITUTE

OF TECHNOLOGY

MAR 0 4 2002

LIBRARIES JARCHIVES




Optical Excitations in Cold Gases
by
Mehmet Ozgiir Oktel

Submitted to the Department of Physics
on November 2, 2000, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Physics

Abstract

In this thesis, we study the effects of interparticle interactions on the optical spectrum
of cold gases. We first consider homogenous gas in the weak excitation regime and find
that the optical spectrum of a system of Bosons is highly sensitive to interactions. We
find that optical excitations, at temperatures low enough for the thermal de Broglie
wavelength to be larger than the scattering length, become collective modes. We
study collective affects in the optical spectrum both above and below Bose-Einstein
condensation, and show that the spectrum acquires a doublet structure when the
condensate forms. We present a detailed theory of spectral shift and an estimate of
some of the broadening effects.

We derive a sum rule for the average frequency shift of an optical spectrum and
investigate the basic conservation laws and symmetries of the system lying at the
basis of this sum rule. We also compare the sum rule for the optical spectrum with
the f-sum rule for the density-density correlation function.

Finally we derive a transport equation for the optical modes in a dilute Bose
system, which allows us to study the non-linear response to the excitation field. We
map the problem onto the dynamics of two interacting anisotropic spins, and calculate
the precession frequencies exactly both below and above Bose condensation. We
demonstrate a relation between Rabi oscillations and internal Josephson oscillations,
and find that an analogue of the internal Josephson effect exists in a non-condensed
system. We also derive the transport equation for a dilute Fermi system and find
that the dependence of the precession frequencies on interparticle interactions is very
weak for fermions.
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Chapter 1

Introduction

1.1 Motivation

This thesis is written at a time when the recent experimental demonstration of Bose—
Einstein condensation in dilute gases has caused great excitement in both the ex-
perimental and theoretical communities. Two branches of physics, condensed matter
physics and atomic physics which developed mostly independently over the last four
or five decades, have joined together in an attempt to understand this new state of
matter. Although Bose-Einstein condensation (BEC) of atoms has previously been
observed in superfluid “He, the new experiments have led to a wide variety of new
inquiries into the nature of BEC in dilute systems.

The first experiments that realized BEC in dilute atomic gases were carried out
with alkali gases, Rb, Na and Li [4, 12, 9, 10]. A common feature of all these experi-
ments was that they used one form of real space imaging, either reconstruction from
time of flight data, or imaging by light scattering, to observe the formation of the
condensate. Following these experiments, in 1998, the MIT spin polarized hydrogen
group succeeded in getting Hydrogen atoms to form a BEC [14]. Apart from fulfill-
ing the twenty year goal of getting a Hydrogen condensate, this was the first case
in which the condensate was probed by optical spectroscopy [24]. This experiment
posed a number of interesting questions about the optical properties of a dilute gas

at very low temperatures.



The spectrum obtained in the MIT Hydrogen BEC experiment was the starting
point for this thesis. However, the reader should realize that, although at times we
will make connection to this experiment and point out the consequences of some of
our results regarding other experiments, the main set of issues that we address is more
along the basic theory lines. In particular, we are concerned with the following general
questions: In a dilute system, how are the optical excitations, excitations involving
the change of the internal state of constituent particles, affected by interparticle
interactions? And what is the manifestation of exchange and quantum statistics
effects?

In trying to answer these questions, we will consider systems both above and
below BEC transition. As well as investigating the weak excitation limit, in which
the number of particles changing their internal state is negligible compared to the
total number of particles, we will also consider systems in which a large fraction of the
atoms undergo the internal state transition. One reason for the latter consideration is
that, unlike in conventional condensed matter systems, such experiments are routinely
performed on dilute gases in studying BEC [19, 18]. Another reason is that the novel
exchange effects that we describe below become quite interesting in this non-linear

regime.

1.2 Length Scales

We shall see that understanding the effects of interparticle interactions on the optical
spectrum of a cold gas constitutes a quantum many body problem. However, before
using tools of quantum theory to attack the problem, one has to justify that this
sophisticated approach is indeed needed. After all, we are concerned with the proper-
ties of a dilute gas: the experiments we are interested in are actually done on systems
which are five orders of magnitude less dense than air [23]. The study of weakly
interacting dilute gases at high temperatures has been completed by the successful
use of classical mechanics a long time ago. Such systems have even taken their place

as examples in statistical mechanics textbooks [28]. Why would then anyone want to
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use anything more complicated than classical mechanics to understand a dilute gas.

The answer to this question can be seen from analyzing the length scales in an
interacting dilute system. The density of the system, n, gives us the first length
scale, n~1/3, which is the mean interparticle distance. The interparticle interactions
are characterized by the scattering cross section, o, which defines an interaction length
scale via the effective scattering length, a ~ m. The system is considered dilute

when the interaction range is much smaller than the average interparticle separation
n %> a. (1.1)

Another length scale to be taken into account characterizes the extent of quantum
mechanical behavior shown by the constituent particles. This length scale is the extent
of the wavepacket of a particle moving with average thermal velocity, vr = \/%.

Comparing the thermal de Broglie wavelength

h

murt

(1.2)

AT ~

with other length scales allows one to evaluate the importance of quantum mechanics
in the problem. As long as the temperature is high enough so that the thermal de
Broglie wavelength is much less than the two other length scales, n™%/3 3> a >> Ar, we
can ignore quantum mechanics and use classical statistical mechanics to understand
the effects of interactions. However, there are two other less trivial regimes.

The first possibility is that the temperature is low enough, so that the thermal de
Broglie wavelength is larger than the scattering length, but but high enough for the

interparticle separation to remain as the largest length scale:
n3 > A > a. (1.3)

In this case the statistical properties of the atoms can still be thought as classical, how-
ever, the collisions have already become quantum mechanical. The first consequence

of this is that we only need to consider the s-wave scattering between the particles
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[27, 49]. Thus, the interactions are now characterized by the s-wave scattering length,
as, while scattering in all higher angular momentum channels are suppressed.

Another more subtle consequence is that the effects of interparticle interactions
on the quantum mechanical phase of the particle’s wavefunction become important in
the regime given in (1.3) [43, 44, 7]. To explain that we note that the phase coherence
is destroyed every time the particle undergoes a collision. During the time interval
between the collisions,

Tfree ™~ (47Ta2an)_1a (14)

the particles move in the interaction potential of all the other particles. After averag-
ing the interparticle interaction over the path of a single particle, we get the effective
potential energy due to interactions

. drhla,

V= ——n. (1.5)

Thus, compared to a free particle, during the time 74 the particle accumulates an

extra quantum phase of
_ V Tiree

?= %

= /\T/as- (16)

When the phase ¢ is much larger than 27, quantum mechanical effects are quite
important. In particular in the regime (1.3) certain collective effects can exist in a
dilute gas. Another way to picture it would be to say that in collisions the scattering
length ay, is replaced by Ar, increasing the effective cross sections, and thus the
importance of interactions in the system. The gas in this regime has been named
a quantum gas, and some of the properties, especially the physics of spin waves in
these systems, have been investigated by Bashkin, Lhuiller and Laloe, and Levy and
Ruckenstein [7, 32, 33, 31]. We will use methods of quantum many-body theory to
investigate the optical excitations of a quantum gas.

The second regime we will consider is that of very low temperatures, such that
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the thermal de Broglie wavelength, Ar, is the largest length scale at hand,
A > > a (1.7)

When At becomes larger than the interparticle separation, wavefunctions of particles
in the gas start to overlap. This overlap, combined with the Bosonic tendency to
be in the same quantum state, leads to Bose-Einstein condensation [29]. In a Bose
condensed system, a finite fraction of the particles share the same wavefunction,
forming the condensate, while the rest of the particles are distributed over the energies
above the condensate.

To summarize the discussion, in both regimes of (1.3) and (1.7), physical prop-
erties of interest are essentially quantum mechanical. Therefore in order to address
interactions in these regimes we shall employ the methods of quantum many body

theory.

1.3 Overview

This thesis is organized as follows: in Chapter 2 we introduce the Hamiltonian and
derive an expression for the lineshape of optical excitations in a uniform system. In
chapter 3 we use diagrammatic perturbation theory to evaluate the lineshape above
and below BEC. After that we discuss predictions for line shifts, broadening, and the
overall structure of the spectrum. In chapter 4 a transport equation is derived for
the collective optical excitations, which, together with the results of chapter 3, will
be used to discuss the physics underlying the collective effects seen in the lineshape.

In chapter 5 we derive a general sum rule for the mean frequency shift in the
optical spectrum resulting from interactions. We discuss the conservation rules and
symmetries that form the physical basis for the sum rule. Finally we compare this
sum rule to the f-sum rule for density excitations.

Chapter 6 is devoted to the study of strong optical excitations, in which a sig-

nificant fraction of particles change their internal state. We make predictions for
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experiments using atomic clocks, and also compare the nature of optical excitations
in Fermi and Bose gases. Finally in chapter 7 we summarize our results and their

connection to experiments.
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Chapter 2

Optical Excitations in a Non-Ideal

Bose Gas

2.1 The Hamiltonian

We start our study of optical excitations by defining a model that incorporates the
basic physics of a dilute gas with two internal states. Throughout this chapter, we
are going to consider a dilute gas of uniform density. Each of the particles in the gas
can be in one of the two internal states, state 1 or state 2, the energy separation of
these two states being Awg, and we further assume that the dispersion relation for
free particles does not depend on the internal state they are in.

In general, two atoms in the gas will interact via some potential V(r), which
depends on the internal states of the atoms. Analysis of the scattering problem is
simplified by realizing that at low temperatures such that the wavelength At is greater
than the interaction radius, only s-wave scattering is important [20]. In this regime

the potential V'(r) can be replaced by a pseudopotential:

V(r) = As(r). (2.1)
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The interaction parameter ) is related to the s-wave scattering length as:

Amh2a;

m

A=

(2.2)

The scattering length as depends on the internal states of the scattering particles.
In a problem with two internal states, we have three different scattering lengths,
and thus three interaction parameters. We will call the s-wave scattering length for
scattering of two particles in state 1 (state 2), a1y (as). Scattering length for a
collision involving one particle in state 1 and one in state 2 will be aiy, which can
also be written as as;. The interaction parameters, A;1, A2 and Ay, are related to the
corresponding scattering lengths as in Eq.(2.2).

Within these approximations, the system is described by second quantized Hamil-

tonian ‘H = Hy + H1, where

p?
P
HO = om ;ap—l-z (—+WO) bt bp, (23)
Hi = 5 Z ()‘11%1 pzapz—qap1+q+’\22bp1bp2bpz qbp1+q) (2.4)
p17p27q
+ A2 Z a;-lapﬁqb bpy—q-
P1,p2,9

Here the annihilation operator a, (b,) annihilates a particle in internal state 1 (2),
occupying the translational state with momentum p. The operators a,, b, satisfy the

canonical Bosonic commutation relations,

[ap, a p]—épp’ [ap,ap]—O [;: ;ﬂ 0, (2.5)
[bp,b;’, = o5 [bp, bp] = 0; [b;-ab;] =0. (2.6)

Also, any operator of type a commutes with any operator of type b.
The Hamiltonian in this form conserves the number of particles in internal states
1 and 2 separately. We will assume that optical excitations, which involve transitions

from state 1 to state 2, are stimulated by an external classical field. This assumption
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gives one more term to be added to the Hamiltonian, H = Hy + H1 + Heze, with
Here = ZAke_i“’tb;_kap + h.c. (2.7)
Pk
where A; are the external field harmonics
Ay = / Bre®TA(r). (2.8)

In this chapter we will consider the case of weak external field, so that the total
number of particles that are optically excited is negligible compared to the total
number of particles. This assumption will be relaxed in chapter 6 where we study the

problem of strong excitation.

2.2 Kubo formula for Optical Excitations

The Hamiltonian introduced in the previous section in Eq.(2.4,2.5,2.7) describes the
dilute system in the presence of an external field which causes internal state tran-
sitions. The aim of this section will be to get a general expression for the optical
spectrum starting from the Hamiltonian.

The optical spectrum of the sample is measured by exposing it to a weak external
field, as in Eq.(2.7), and then counting the number of particles changing their internal
states, per unit time at steady state. Equivalently, this is also the number of field
quanta absorbed per unit time, i.e., the optical response of the medium. The optical
spectrum is obtained by measuring how this response varies as a function of the
frequency w of the external field.

We are thus interested in caléulating the transition rate,

<d]\22t(t) > , N, = ; b by, (2.9)

as a function of k£ and w of the field A(k,w). The average is calculated in the grand
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canonical ensemble,

<@> - {d%t(t)ﬁ} = z<m|d%t(t)ﬁlm>, (2.10)

m

where the trace is carried out over all the many-particle eigenstates, indexed by m.

The density matrix p is defined as usual,

po= 27 Y e imiim], (2.11)

m
zZ = > e~em/T,
m

where €,, are the energies of the many particle eigenstates |m).

We begin the calculation by writing the Heisenberg equation of motion for N,

dN, . N
@ = ) (2.12)

= i[Hezca z b;;_bp]
P
= €Y Aebl a, —ieT Y Aratbyg
Dk

p.k
= e“'C — je”WiICT.

Here we defined

C =3 Apips, fipk = G by-pi- (2.13)
p,k

We can now rewrite H,.,. as
Heoze = €4°C + 1C, (2.14)

and obtain

< d]\gt(t)> = Tr {(ie™'C — ie™“'C*)p(t)} . (2.15)

Here the time evolution of the density matrix is
[ de = i [far
a(t) = [Te‘z Jg a7 >] 5(0) [Te’fo ( >] , (2.16)

18



with 7" and T being the time ordering and reverse time ordering operators.

The next stop is to make use of the assumption small of excitation field, by
expanding the time evolution of the density matrix of Eq.(2.16) in powers of H,..
We will consider only the first order terms.

This is justified because in the zeroth order in the excitation field, we only have
the sum of Hg and #; as our Hamiltonian. Both of them conserve the number of
particles in each internal state, hence to zeroth order we have no contribution to
d.lvg/dt. We calculate the first order contribution to time evolution of p by first
going to an interaction representation with respect to H.;. and then expanding the

exponent. This gives
po (t) = —i / ! dt’e-—i('H0+'H1)(t—t')['Hemc(t'), ﬁ(o)] gi(Ho+H1)(t—t') (2.17)
—0o0

Finally, we have

<d1\zizt(t)> Ty { /_too dat % e ot HNE=) gy 41y 5(O)) o)1) |

(2.18)
By using the cyclic property of the trace and the expressions Eq.(2.13),(2.14) we
obtain the response function of dNy/dt to the excitation field A(k,w). The imaginary
part of this response function gives the optical spectrum of the system [1],

oo . ~ . ~
T(w) = Im{ [ e Tr(etormig o, o)} (2.19)
0

= tm{["e(Cw, o).

This general formula allows one to calculate the optical spectrum starting from the
microscopic Hamiltonian. As might have been expected, Eq.(2.20) has the familiar

Kubo form [35, 26], encountered for all linear response calculations.
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Chapter 3

Calculation of the Optical

Spectrum

3.1 Optical Spectrum Above Bose-Einstein Con-
densation

In this section we evaluate the expression (2.20) for the absorption spectrum. The
particle density in our system is low, and thus, it is natural to employ perturba-
tion theory in the interparticle interaction (2.5), since this expression is quadratic
in density. However, as we shall see, the calculation does not reduce to evaluating
the lowest order contribution in the interaction. Instead, it is necessary to perform
a resummation of the perturbation series to account for the interaction in the fina]
state of the excitation.

We carry out the perturbation expansion using finite temperature Green’s func-

tions [1]. Consider the finite temperature response function:

Tk, 7) = —~(To {3 T 4 (1) X B (1) 1), (3.1)
with
0<my<1/T, T=T — Ty, (3.2)

20



and T is the “time ordering” operator in imaginary time 7. The finite temperature

operators are linked to the operators in the Shréodinger representation as follows

Tpi(T) = eHTﬁp,ke"HT, (3.3)
ﬁp,k(T) = eHTﬁ;:ke_HT)
0<7<1/T,

where H is the full Hamiltonian of Eq.(2.4,2.5,2.7).
The optical spectrum Eq.(2.20) is related to the response function IT by analytic

continuation from the upper complex plane as [35],

T(w) = Im{; | Ax|? Ny _1>ir£1+wn(k, iw)}. (3.4)

We construct a perturbation theory, where our response function will be expressed
in terms of the non-interacting temperature Green’s functions for the particles in

states 1 and 2,

Gi(k,7) = (Trak(n)ax(r)), (3.5)
Gk, 7) = (Trbe(m)be(72)),
0<71<1/T,

where the operators a(7), b(7) are related to the corresponding Shrodinger operators:
a(t) = e¥'Tae ', a(t) = el Tqte 1T, 0<71<1/T, (3.6)

where H' is the Hamiltonian without the interaction term. The diagrammatic repre-
sentation of these functions is given in Fig.(3-1 a,b).

The Green’s functions (3.5) in diagrammatic perturbation theory will be joined
together by interaction and external field vertices. As discussed above, there are
three different interactions Ai1, A12, Az, which, for convenience, will be represented

graphically by the same symbol (See Fig.(3-1 ¢,d,e). In the calculation of the response
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function, we also have two vertices for the external field (See Fig.(3-1f). The response
function TI(k,w) is given by the sum of all possible connected diagrams that can be
constructed between two external field vertices using the free Green’s functions and
the interaction vertices [36].

As a first step, we calculate the lineshape for the ideal non-interacting gas. We call

the response function in this limit IIy(k,w). There is only one diagram to calculate

(see Fig.(3-2) a). We have

HO (ka wn)

w,)G11 (k + p,wn + wy) (3.7)

/ d3p nB( "(p+%)) —ng( (p)
(27rh)3 iwn, — (el(p+ k) — €'1(p))
/ ng(p*/2m)
27rh (iw, —wo) — ((p+ k)2 — p?)/2m’

Here €/, €I are the dispersion relations for particles in states 1 and 2,

! (p) = p?/2m, ! (p) = p*/2m + huwy, (3.8)

and np is the Bose distribution.
The optical spectrum obtained from this result using Eq.(3.4) is a Doppler broad-
ened peak centered at w = wp + k%/2m. For a spatially uniform excitation field one

has to set k = 0. In this case there is no Doppler broadening:

o(k = 0,w,) = —ﬁ = T(w) o 8(w — w). (3.9)

As a next step, we introduce the interactions. In the presence of the interactions,
one has to sum an infinite number of diagrams to calculate the optical spectrum ex-
actly. All these diagrams can be schematically summarized in the “skeleton diagram”
of Fig.(3-2 b). Here the thick lines correspond to the full Green’s functions for par-
ticles in state 1 and state 2. The triangle is the vertex part, which is the sum of all
possible connected graphs linking an external field vertex to two Green’s functions,

one for state 1 particles, the other for state 2. We calculate both the full Green’s
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functions and the vertex part in a self-consistent approximation.

As the first step of our approximation, we start with the non—interacting Green’s
functions G°, and dress them with the self-energy parts. At low density it is suitable
to use the self-energy parts which are first order in the interaction (see Fig.(3-1 g,h,i).

The two diagrams forming the self-energy for the first Green’s function are called
the direct (Hartree) Fig.(3-1 h) and exchange (Fock) Fig.(3-1 i) contributions. For
a system of bosons with contact interaction, these contributions are equal and not
dependent on energy or wavevector. For the Green’s function of particles in state 1,
the self-energy is

X1 = Ydirect + Dezchange = 2A117, (3.10)

Whereas for the particles in state 2 there is only direct (Hartree) contribution Fig.(3-1
i):
E}[ = )\1277,. (311)

Thus the full greens functions take the form

Grlk,wn) = iwn—pQ/?z(:z)—Q/\nn (3.12)
1

z'wn — Wy — pz/(Zm) - /\mnl

gII(k: wn) =

We now consider the vertex part . The zeroth order term in the interaction is
simply I' = 1. Similar to the approximation for the Green’s functions, we define a
“two particle self-energy” block, and add up an infinite series of blocks corresponding
to the ladder series in Fig.(3-2 b). Due to the contact nature of the interaction, each

of the blocks can be calculated independently, and will give the same result. We

define
Mok, wn) =TS [ 22 G,k ; ' 3.13
0( 7wn)— < /(27rh)3 I( +p’wn+wn)gll(p7wn)' ( )

Then the vertex part will be given by the ladder diagrams, which are summed up as
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a geometric series

D(k,wn) = 14 Aplly+ A3(I1)% + - (3.14)
1
1-— )\121-[6(145, wn) ’

In the ladder approximation, our response function is

I = I, (3.15)
Iy (k, w)
1= Aplly(k,w)’

To understand this result (3.15) We first set ¥ = 0 to see how the interactions
effect the response to a uniform external field. The calculation of ITj(k = 0, w) is the

same as IIy(k = 0,w), resulting in

/ n
= n = " . 3.].
HO (k 07 W ) Wy — Wy — )\1277/ + 2)\117?, ( 6)

Substituting (3.16) into Eq.(3.15), we obtain

n
M(k =0,w,) = —%n=%o— &1122’;‘;‘ 22 (3.17)
1 —
iwn — Wy — /\1271 + 2)\117’7,
n

’I;(.z)n — (UJQ + 2(/\12 — )\11)71) ’

The lineshape at £ = 0 is a d—function just like for the non-interacting system,

however, now the d—function is shifted to the frequency

w = wq + 2()\12 - )\11)77,. (318)

Before proceeding further with the calculation of the lineshape for non-zero k,
we would like to comment on why this particular set of diagrams, the ladder series,
was chosen from all other possible sets. There are two justifications. First one is that

any diagram that has two interaction lines crossing gives a much smaller contribution.
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Such crossing diagrams represent processes in which more than two quasiparticles take
part. These processes are at least of the same order as processes including ordinary
elastic scattering, which we have neglected in this calculation so far.

The second justification is more subtle, yet important. The exact vertex part and
the exact self-energy are not independent, and for an approximation scheme, it is
desirable to have them consistent with each other [37]. This would make sure that
all the results found for physical quantities in perturbation theory are obtained from
the same free energy functional.

The approximation used here is known as the Random Phase Approximation
[38, 46], and its self-consistent nature will be more transparent when we derive the
transport equation in the next chapter.

We now turn to the evaluation of II(k,w) when k is non—zero. As II(k,w) for any
k is algebraically related to IIj(k,w), we just need to evaluate ITj(k,w) for arbitrary

k. According to (3.7), one has

d’p _np(p?/(2m))
21h)® Aw — 7 k/m’

I, (k, wn) = — / ( (3.19)

where

Aw = iwy, — wp + 2111 — Agn — k2 /2m, (3.20)

and npg is the Bose distribution.
To evaluate the integral in Eq.(3.19) we separate the integration over dp into
a one-dimensional integral over the component of p parallel to k, p,. and a two-

dimensional integral over the perpendicular components, p;:

, __ ( (dp)(dpy)p. 1 !
Iy (k, wn) = _/ (zﬂ)zhfi oPL/@mT)+p/(2mT) _ 1 Aw — pk/m

(3.21)

The integral over the perpendicular components can be evaluated exactly, which gives

m?T o  In(l —e??)
ol I e (3.22)
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1) i)

Figure 3-1: Various diagrams used in the calculation of the normal gas response.
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b)

C)

Figure 3-2: Diagrammatic representation of the ladder series approximation.
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with

mAw
A= , | = 2m7T. 3.23
=7 p =p/V2m (3.23)

The integral in (3.22) cannot be evaluated exactly. Thus in order to calculate
the lineshape, we convert the integral into a quickly converging series, and then
numerically sum the series using the following procedure.

For an integral of the form

In(1 —e*")
I(4) = — / dp-=—¢ ) 24
()= - [ a5 (324
which is a convolution of In(1 — 6_12) and z7!, we employ Fourier transformation to

write it in the form

~ [ 25w 5, (3.25)
where _
—1ipT .
fa(p) = / da:;_ 4= e 9 (p). (3.26)
For f;, we have
fi(p) = / dze~ " In(1 — e=%"). (3.27)

After integrating by parts one has

—z2

(3.28)

2 .
= = [ dzzere .

To facilitate an expansion, we introduce two parameters a and b and replace the

fraction in Eq.(3.28) by
1—e®b 1-e%a

1+e b 1+e2°q’ (3:29)
which gives us the desired result in the limit, a — 1, 6 — 0. We then have
2a :
7) = 2o / dz (tanh(2%/2 — ¢1/2) — tanh(s3/2 — ¢2/2)) e #%a,  (3.30)
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with
c1 =In(a) <0, c2 =In(b) < 0. (3.31)

Expanding the result in the poles of hyperbolic tangents and integrating we get

. .
e S L R (3.32)
Ve + 2min — 1A

The expansion is such that the discrete nature of the sum matters only for the small

values of n (comparable to |cz|/27), thus we carry out the sum over the first n* terms,
and convert the rest of the sum to an integral which can be evaluated exactly. This
approximation works very well even if n* is a reasonably small number, which we
have verified by comparing numerical results for various values of n*.

The resulting lineshape (3.15) is displayed in figure Fig.(3-3) for different values
of k and density n. In the next section we will analyze the features of the lineshape,

and discuss some of the underlying physics of the presented calculation.

3.2 Predictions for the Spectrum

3.2.1 The dispersion relation

From the result plotted in Fig.(3-3). we see that the lineshape consists of a peak,
embedded in a broad, incoherent background. Here, we will be interested in two
features of this lineshape, the position of the peak, and the mean frequency or the
average density shift, defined as the center of mass of the spectrum, including both
the peak and the background.

We start by investigating the latter feature. We define the average density shift

as
_ JdwwI(k,w)
kT T dwZ(h,w)

(3.33)

We have seen that for k£ = 0, the lineshape is a d-function at w = wy + 2(A12 — A\j1)n.
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Figure 3-3: Absorption spectrum above BEC at fixed temperature and varying den-
sity: n = fnpgc, 0.5 < f < 1. The frequency shift Aw is defined relative to the
that of a free atom at rest: Aw = w — wy — k?/2m. Spectral power 7 is normalized
by particle density n. The excitation wavevector k is 0.5 in the units of Ajsnpgc/vr.

The interaction constant A;; is chosen to be 0. Note that the peak position follows
the relation (3.40).
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Thus, the mean frequency is
Wr=0 = wp + 2( Ay — Au)n. (3.34)
To extend this calculation to finite values of %, we reca]] the expansion
Ik, w) = G + Ap(IT)2 4. . . (3.35)

Upon making analytic continuation to get the retarded Green’s functions [36], we
obtain

/ dwIm{TI®(k,w)} = Iy / dw [TIR + Ay (IR)2 4 . Ir. (3.36)

we obtain,

Similarly the numerator of (3.34) can be evaluated with the same method of

expanding in powers of ITy(w). Putting these results into Eq.(3.34) we have

R2k2
Wr = wy + 2()\12 - /\11)71 + % (338)

Our next goal in this section in this section in this section is to study the peak in
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the absorption spectrum given by the pole of II(k,w). As one can see from the result
at k = 0, for spatially uniform excitation the peak position is given by Eq.(3.34) with
k = 0. However as we now show, at finite k there is no direct relation between the
average frequency shift @, and the peak position. This is not surprising because at
finite k the spectrum contains a smooth background as see in in Fig.(3-3).

The peak is well defined only when the density shift A;s7, is much larger than the

Doppler broadening vrk. Then in this limit we expand IIj(k,w) in powers of ,\llTﬁ,

Mhw) = — [ d%ﬁ% (3.39)
~ _/dspnB(PA?f’m) + (A}d)z /dapnB(p2/2m)(E-ﬁ/m)2
1 ’UT]C 2
= —n/(8w) + 3Ry

The factor 1/3 arises from the angular integration.

Putting this result back to the expression (3.15) for II, we get the pole of the
response function at

2.2 1 43,
w=wg+ 2(A12 — Ai1)n + A%k*/2m + gmk‘ ) (3.40)

Note that since %’Zf; > 1/m, the dispersion that is caused by the exchange in-
teraction A;p is much stronger than the dispersion caused by the free movement of
the particles. This dispersion is a collective effect, which gives the optical mode an
effective mass much lighter than the free particle mass.

For all values of k, such that the peak is narrow enough to permit the definition of
a peak position, this peak is at w given by Eq.(3.40). Thus this expression is justified
by the calculated lineshape.

3.2.2 Broadening

Broadening of the optical spectrum is due to two major mechanisms: Elastic scat-

tering and Landau damping. The relative importance of these effects depends on the
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relation between the density n, temperature T, and interaction \.

Whenever two particles in the gas go through a collision in which both of them
change their momenta to new values (all the collision events except forward and
backward scatterings), any correlation between the internal states and the momentum
states is lost. It was argued in the introduction that the rare occurrence of these events
at low temperatures, with a mean frequency of

7o' = 8ma’urn, (3.41)

made the coherence of the wavefunctions important in the calculation of the optical
spectrum.

This effect can be properly taken into account by adding a new class of diagrams
to both the self-energy parts ¥(k,w) and the vertex part I'(k,w). However, as these
effects are small, we estimate this broadening by adding a the self-energy part shown
in Fig.(3-1 j). As a result, even when the external field is uniform, the spectrum,

instead of a §—function will be a Lorentzian, with a width,
v~ 75t (3.42)

Another broadening effect appears even when one neglects elastic collisions. This
mechanism is the transfer of energy from the collective mode to single particles and
is called Landau damping [38]. This effect was considered in the calculation shown in
this chapter, and is the reason why the lineshapes shown in the figure Fig.(3-3) are
not infinitely sharp.

We can calculate the width of the optical resonance due to Landau damping as

follows. Recalling

H/
Mk,w)=—-9__ 3.
( ,UJ) 1 _ /\]_21-.[/07 (3 43)
we can write
I 7
ImIl(k,w) = mlly (3.44)

(]. — }\12R6H6)2 + A%z(ImH6)2
We know that for small &, the peak will be centered near wy, given by Eq.(3.40). Thus
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we can approximate,

RGHB(U}) ~ E, Aw=w — wo + 2/\11n — /\1277,. (345)

The imaginary part of ITj(w) can be calculated by expanding in the same parameter

127 ’
A1on
ImITj =~ ‘/i:e“‘LLka ’, (3.46)

vt
Substituting these expressions into the formula for the imaginary part of II, we get
an approximate lineshape which is correct in the vicinity of wy. Calculating the full

width at half maximum of this lineshape gives us a broadening of

A

A1om
¥ = Vn( ,UlTQ: Y urke e ) (3.47)

The characteristic feature of this result is that there is an exponential narrowing
of the line width relative to the usual Doppler broadening of vrk. The narrowing of
the line with decreasing temperature is not surprising, however, narrowing of the line
caused by increasing density deserves more explanation.

It was first pointed out by Dicke [13], that when collisions in a system do not
disturb the optical coherence, increasing the density of the system results in the nar-
rowing of the lines. A similar mechanism is responsible for the narrowing in our case.
However, the functional form of the linewidth on wavevector is different. We can
explain the difference in technical terms by noting that in our theory of the optical
spectrum, we consider ladder diagrams in which each block is independent. Physically
this means that the velocity of the excited particle is randomized every time it inter-
acts with the surrounding particles through an exchange process. Such randomization
of the velocity results in a shorter travel distance throughout the excitation, and thus
a narrowing of the line. We will discuss the physics of the narrowing phenomenon
with more care in the next chapter. In the rest of this chapter we concentrate on the

case of Bose condensation.
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3.3 Optical Spectrum Below Bose-Einstein Con-
densation

‘When the temperature is low enough, a system of bosons goes through a phase tran-
sition. The physical reason for this transition is large overlap of the de Broglie
wavefunctions of the particles, and their tendency to be in the same state. For a
homogeneous, non-interacting Bose gas, a finite fraction of the particles occupies the

ground state, when the temperature is reduced below a critical value,
T. = ¢(3/2)R*n?/ Im. (3.48)

These particles form the Bose-Einstein condensate, and the appearance of a conden-
sate qualitatively modifies many physical properties. It is our aim in this section to
understand how the optical spectrum of a dilute system is modified by Bose Einstein
condensation [29].

Before entering the discussion we recall that an important change takes place in
the low energy part of the quasi-particle dispersion relation. The dispersion relation
which is quadratic above Bose condensation, becomes linear at low energies [34].
Switching from linear to quadratic behavior takes place at a length scale determined

by the condensate density and interactions,

¢=y h2/(2m)\11n). (3.49)

If one is not interested in very low temperatures, of the order of
T* ~ h?/(¢*2m) = \in, (3.50)

the deviation from the quadratic behavior in the quasiparticle spectrum can be safely
neglected. Therefore we assume that the free Green’s function for particles in state 1

or state 2 are not changed. Thus our theory will be valid for all temperatures between

T* and T,.
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Our task will be to add the presence of the condensate to the perturbation theory
developed in the previous sections. We accomplish this by using the diagrammatic
approach once again, this time including the number operators of the condensate in
our diagrams by the Beliaev method [2, 8].

The calculation will go along the lines of the calculation done for T' > T,. However,
with the new diagrammatic possibility of introducing two condensate lines to replace
a Green’s function for state 1, one has to sum a larger set of diagrams.

First, there is a new self-energy part involving forward scattering process from the
condensate density, which gives a contribution of A;;n. (A2n.) to the denominator of
the state 1 (state 2) Green’s function (see Fig.(3-4 b,c). This however is not the only
place where the condensate operators come into calculation.

Similar to the non-condensed case, we first start by considering a non-interacting

system. Then, only two diagrams contribute to the response function,
IT =11y + I1.. (3.51)

The expression for Il is not different from what was obtained in the previous calcu-

lation. The condensate contribution I, (see Fig.(3-4 a), is given by
Hc(k, LL)) = ncgn(k, w). (352)

When the interaction is turned on, one has to sum a ladder series similar to
Eq.(3.14). Here the difference is that each link of the ladder can be either II; or II.
(see Fig.(3-4 €) as one example). Furthermore two diagrams where two II. are adjacent
should be excluded from the sum. These diagrams have already been counted by the
introduction of the self-energy part due to direct processes with the condensate.

We perform this summation by summing two geometric series in succession. Let

us define
Iy

I, =11 A2+ = ——2
0 + A12(Ilp)* + 1= o,

(3.53)
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Figure 3-4: Various diagrams used in the calculation of the condensate response.
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Then the total response function can be resummed in terms of II, as follows:

II e + (1 4+ ) (1 + IL) + (1 + I )T ILIT, (1 + IT,) (3.54)

+ (1 L)L ILILIL I, (1 + IL,) + - - -
(1 + TT)IL(1 +11,)
1-I.0,

I, +

which is the desired result for the optical response.
As in the non condensed case, we first look at the response for a uniform excitation,
k = 0. We see that the spectrum in this case consists of two d-functions. The

frequencies of the location of the §-functions are given by
wi2 = wo + (A2 — 2A11)n + Awy 2. (3.55)
Here Aw; 5 are the roots of the quadratic equation,
(Awi 2 — Mine) (Awy o — Arant) = Adn.nr. (3.56)

The strengths of the two peaks depend on the temperature and generally are not
equal. The fraction of the spectral weight in the stronger peak can be expressed in
terms of the condensate fraction f = n./n as

[Fe dwT(w)

I — w2 —€
! JdwI(w)

(1=HA/2+ ) +5/0+ )1 -3f)
VA + )1 -3f)

(3.57)

Let us qualitatively describe the evolution of £ = 0 spectrum, as the temperature

is lowered from 7;. At T,, we have only one peak at the frequency

Wy = Wo + 2()\12 — /\11)71,. (358)

Thus the optical spectrum evolves continuously through the transition. This means
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that the peak at w = wy is associated with the atoms above the condensate, and
henceforth we will refer to it as the normal peak. The second peak appears as soon

as the temperature is lowered below T, at the frequency
w1 = Wy + (/\12 - 2)\11)77,. (359)

However, this peak is much weaker than the normal peak. Close to the transition,
this strength is linear in the condensate density, which shows that this resonance
measures the response of the atoms in the condensate. We will refer to the peak at
w = w; as the condensate peak. The absence of the exchange contribution for the
condensate peak is discernible in the Ajsn difference between the frequencies of the
two peaks.

As the temperature is lowered further below T, the strength of the condensate
peak grows, however, it always remains weaker than the normal peak. The frequencies
of the two peaks first repel each other, which is a clear indication that the condensate
response is coupled to the normal response. This mixing eventually causes the peaks

to converge, and at 7' = 0, both peaks are at the frequency
W1 = Wy + (/\12 — 2A11)7’L, (360)

and have equal strength. This is not surprising, since at zero temperature there are
no atoms left in the normal part, and all the response is due to the condensate.

Another quantity of interest is the average frequency shift, defined in Eq.(3.34).
We find that it is given by

(Dk:O = Wy + (A12 et 2A11)n =+ /\1271(1 — f2) (361)

By using arguments similar to those given for the normal gas one can generalize this

result to non-zero k:

h2k2
W = wy + ()\12 — 2/\11)77, —+ /\1271(1 — fz) —+ % (362)
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Figure 3-5: Absorption spectrum in the BEC regime, shown for temperature varying
between 0 and T; density n fixed. The excitation wavevector k is 2/3 in the units of
A12n/vr. Lines in the base plane indicate the peak positions for k¥ = 0 (3.56). Note
narrowing of the spectral line with decreasing T', and strengthening of the condensate
peak due to increasing condensate fraction. (The frequency shift Aw is defined in
Fig.3-3; A\;1 = 0.)
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Figure 3-6: Absorption spectrum in the BEC regime at fixed temperature and density
varying from nggc and up. Excitation wavevector & = 2.5 in the units of Ajanpgc/vr.
Increasing condensate density leads to narrowing of the peaks and to strengthening
of the condensate peak, as in Fig.3-3. (Aw and Z are defined in Fig.3-3; A\;; = 0.)
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These result (3.62) is special cases of a more general sum rule given in Chapter 5.

The calculation of the full response function II(k,w) for finite k is carried out
using the same procedure as that described for the normal gas. The results are
given in figures Fig.(3-5,3-6) . The two important features we found for the normal
gas spectrum can also be observed here. First, the dispersion of the peaks with
k, is present again for the condensed case. However, this dispersion is due to the
atoms above the condensate, and it is more prominent for the normal peak than the
condensate peak. Also, the narrowing of both peaks takes place as the gas density is
increased, as Fig.(3-6) clearly shows.

Another important effect is the change in the elastic lifetime below condensation.
In the normal gas, the elastic lifetime is solely due to collisions with the normal
gas atoms, while here there is another possibility. The excitation of atoms from the
condensate to the normal gas also gives a contribution, which becomes more significant
as the temperature is lowered. This effect is represented by the self-energy part ¥,
shown in Fig.(3-4).

We find that this contribution to self-energy is imaginary and scales with (a/Ar)*/3,
which is still somewhat weaker than the (a/Ar) frequency shift effects we are con-
cerned with here. However, it is more pronounced than the (a/Ar)? ordinary elastic

lifetime. Near 7' = 0 we can estimate the broadening as,

Yer =~ 8mvUTG ML + (%)4/3Tc. (3.63)

This completes our discussion of diagrammatic calculation of the optical response.
In the next chapter, we use the transport equation to discuss some of the effects found

in this chapter, and give alternative derivations for them.
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Chapter 4

Collective Properties of Optical

Excitations

We have seen in Chapter 3 that the optical spectrum obtained for a cold gas is
qualitatively different from that of a classical dilute gas. In particular, we have
found that the lineshape is strongly affected by interparticle interactions. Also, the
dispersion relation for the optical modes arising due to interactions is a result that
can not be reconciled within the usual one particle description of an optical excitation
as a transition between two internal states of a single particle. Instead, one has to
think of excitation as of a process in which many particles participate. It will be our
aim in this chapter to clarify the nature of this participation and the origin of these
collective effects.

We shall start with a discussion of the difference between a cold gas (Ar > a) and
a classical gas. Consider what happens when a particle is taken out of a momentum
state k of a gas in thermal equilibrium, thus creating a “hole” in the equilibrium
distribution. We are interested in how long it will take for this hole to be filled. In
both the classical gas and the quantum gas, the hole will be filled by a particle that
undergoes a collision and ends up in the & state. Thus one needs to look more closely
at collision processes.

Two particles in momentum states k; and ky , after collision will end up in the

states k3 and ky, satisfying ki + k2 = k3 + k4. We can have (ki, ko) # (ks3, k4), when
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both particles scatter into momentum states different from the initial ones. We call
such collisions ordinary elastic collisions, and note that it is through these collisions
that the momentum distribution of the gas relaxes. There are, however, two other
possibilities for the outcome of a collision. First is when the momentum states of the
particles remain unchanged, k; = k3 , ko = k4. This is forward scattering, related
to the forward part of the two particle scattering amplitude. The second possibility
is that the particles exchange their momenta k; = k4, ks = k3. This is backward
scattering, its name corresponding to the picture in the center of mass frame.

In general, the rate of ordinary elastic collisions is different from the rates of
forward and backward processes. And for bosons, the rates of forward and backward
processes are equal. These rates are calculated in the chapter 3, when the interaction
potential is substituted by a dJ-function in the pseudo-potential approximation [20].

We have, for forward and backward collisions

4drh
Weoh = Ty, = e, = An, (4.1)
and for ordinary elastic collisions,
we =7, = 8ra’vrn. (4.2)

The relative importance of these processes can be estimated by comparing (4.1)

and (4.2),

welNa

Weoh - E (43)

Thus, the ratio of scattering length to the thermal de Broglie wavelength measures
the significance of ordinary collisions compared to coherent collisions.

The condition which holds for the quantum gas Ar >> a, ensures that any particle
in the quantum gas will experience many backward and forward scatterings before it
is scattered into another momentum state by an ordinary elastic collision. Therefore
interparticle interactions effect the optical spectrum mainly through the forward and

backward processes in a quantum gas, but only through ordinary elastic collisions in
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a classical gas. This is the physical reason why the results for a quantum gas are so
different from the classical case.

The expression (4.1) for forward and backward processes rates has two important
properties. Firstly, it is linear in the scattering length a;, and secondly it is inde-
pendent of temperature. Understanding these properties would clarify the nature of
these processes.

A simple physical picture for a forward collision enables us to understand both
of these properties. We have seen that the momentum state of the particle does not
Change in a forward collision, thus, the trajectory of a particle going through only
forward collisions is not different from a particle in an ideal gas. However, the particle
moving along this trajectory is still subject to the potential of all the other particles
in the gas. This potential, averaged over the trajectory, would make the phase of the
wavefunction of the particle increase at a different rate than in an ideal gas. A phase
difference of we,nt would accumulate between the two cases after a time ¢. Thus,
forward collisions effect only the phase of the wavefunction, and this phase difference
is linearly proportional to how strong the potential of the other particles is. The
strength of the potential is linearly (not quadratically) proportional to the scattering
length, which explains why w.,, depends linearly on the scattering length a and the
density, n. Also, in this picture the speed of the particles in the gas is not important,
so it is expected that the resulting phase is independent of temperature.

For such a picture to hold, we must assume that the trajectory of the particle
traversed in a single momentum state is long enough for the appropriate averaging to
take place. This is equivalent to requiring we,t > 1. Here, t should be taken as 7,
the elastic mean free time. We then see that the quantum gas condition is also the
condition for the length of the trajectory, validating our picture.

The interpretation of the backward rate weo, is more subtle. For bosons, the
quantum mechanical amplitude of backward s-wave scattering is equal to the forward
scattering amplitude. As going through a backward collision the particle changes its
momentum state, the rate w,,p, is the rate of coherent hopping of the excited particle

in momentum space.
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After realizing that it is the backward and forward scattering processes that are
dominant in a quantum gas, we now discuss how they effect the optical spectrum.

Consider a quantum gas with all particles in internal state 1. We would like to
understand evolution of a particle’s momentum state while its internal state changes
under the action of an external field. For simplicity, we assume that the external field
is uniform, so that the optical absorption changes only the internal state, leaving the
translational (momentum) state the same.

After the internal state change takes place, the excited particle will evolve co-
herently over a time on the order of 7, experiencing many backward and forward
scatterings. However, we have seen previously that at this time scale, we need to
consider not just the excited particle, but also the hole it leaves behind in the mo-
mentum distribution of state 1 particles. We must then investigate how this sate 2
particle-state 1 hole pair goes through forward and backward processes.

Evidentially, in a forward collision the momentum state of the particle in state 2
does not change, and neither does that of the state 1 hole. Thus the pair’s coherence is
not disturbed by forward collisions. What is more important is that, this coherence is
not effected by backward scattering, either. When the state 2 particle in momentum
state k; exchanges its momentum with a state 1 particle at k5, this particle fills the
initial hole at k,. However, now a hole is created at k;, accompanying the state 2
particle.

Thus, the picture we have for the optical excitation in a quantum gas is a particle-
hole pair, coherently changing momentum states. This picture shows that many
momentum states must be considered in the calculation of the optical response. It is
also crucial to account not only for the particle in the excited state, but also for the
hole left in the ground state distribution, as well as for the correlation between them.

It is useful to point out that this correlation between the excited particle and the
accompanying hole is a consequence of the dynamical equations, and not a result
of some attraction between them causing the formation of a bound state. The hole
stays in the same momentum state as the excited particle, since uniform excitation

field does not transfer momentum to the system. Thus the excited particle “inherits”
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the spatial wavefunction of the initial state 1 particle. One would then expect this
correlation to diminish when the excitation is carried out using a non-uniform field.
In Chapter 3 the quantity which signified this correlation was the fraction of the
spectral weight present in the main peak of the optical response [39]. Indeed one can
see in Fig(3-3) that upon increasing the excitation field wave vector |k|, a significant
background appears in the spectrum, reducing the spectral weight in the peak.

Thus, whenever the excited particle is allowed to make many exchange scatterings,
the optical mode becomes a collective mode. The excitation is shared by many
particles, in different momentum states.

A similar argument has been given by Bashkin, Lhullier and Laloé and [6, 32,
33, 7], in the context of spin waves in dilute gases. Specifically in [43], Pinard and
Laloe consider the scattering matrix for two particles in non-orthogonal spin states.
They find that due to the coherent processes described above, the spins of the two
atoms precess around each other during the collision. Our problem, by going to a two
state internal space Bloch spin representation [11], is mapped on an equivalent spin

problem.

4.1 Transport Equation

The concept of a collective mode is conventionally defined by specifying a quantity
that harmonically oscillates in space and time [39]. For sound waves this quantity
is particle density, for spin waves it is the density of a component of spin in some
particular direction, etc. In this section, we will describe the quantity that forms
the collective optical excitations - the off-diagonal part of the internal state density
matrix.

To obtain a clear real space picture, we now derive the transport equation. We
start by rewriting the Hamiltonian in terms of the real space field operators as

h2v2
B 2m

H= [ &rd ¢i(r) ( + hUa(r)) Yo (1) (4.4)
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The indices a, # run over the internal states 1,2. We have also allowed for an external
potential U,(r), which includes the energy of the internal state Aw,. Interaction
parameters A3 have been defined in Chapter 2. The operators 1 satisfy the bosonic

commutation relations,

[¥a(r), v (r')] = dapd(r — ') (4.5)

Transitions between the internal states will be caused by an excitation field, which

gives another term of the Hamiltonian,

Hoc = 3 [ drdoslr 01 ()0a(0) (46)

where we assume harmonic variation in space and time,

—

Aup(r,t) = AggeTemiot, (4.7)

- Here the requirement of being Hermitian A,5 = Aj,.

In our description of the system with the density matrix, we will not use the full
quantum mechanical density matrix, but treat the space and momentum degrees of
freedom semiclassically in order to understand the real space behavior better. Internal
degrees of freedom will, however, be treated quantum mechanically. We define a

semiclassical density matrix o(r,p), and an internal density matrix p(r) as,

0as(r,8) = [ @7/ + sl — e (4.5)

3
peor) = [ G553 0an(rip) = (WE (1)1,

The diagonal matrix elements of the internal density matrix p,.(r) give the density
of particles in the internal state a at point 7. The off-diagonal elements measure the

coherence between the internal states [11].
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We can derive an equation of motion for o(r, p), by starting with the Heisenberg

equations of motion for the field operator,

d :
Talr) = il (1)), (@9

and taking the expectation values to get 4 22 (r,p). The contribution of each term in the
Hamiltonian to the evolution of g(r, p) can be calculated separately. As an example,

we present the calculation of the potential energy contribution:

Bal) = 1| [ SO0l (4.10)
= i [ @ E U0 4l
= _ZUa( )7’[)0( )

Upon complex conjugation one obtains

Y3 (r) = iUa(r)ed (r). (4.11)

Now one can write the contribution of potential energy to %(r, p) as follows:

a5 rp) = [ e (W0 +'/2)%p(r — /) + WE(r + 7' /2 —1'/2)))
Uq(r) + Us(r)

(4.12)

= [aren” (U, = Upo) 47 9 (I ) s - )
(

Ua(r) + Us(r)

7)) 0as (7, p) + Vi ( 5

) Voop (7, p)-

Going through this procedure for each of the terms in the Hamiltonian (4.4), one
arrives the equation of motion. In that calculation whenever we need to find an

expectation value of a four-particle operator we use Wick’s theorem,

(Vo ¥sta) = (o Va) (Wi Ys) + (Vo vs) (V5 va). (4.13)

In the averaging (4.13), the first term represents direct(Hartree) contribution and cor-
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responds to forward scattering. The second term is the exchange (Fock) contribution
and is related to the backward scattering. Note that this term involves off-diagonal
rather than diagonal components of the density matrix.

Putting everything together we find the following equation for the space and time

variation of the density matrix:

(at + % -V, — v,.(U"(T) ; Us (T)) : Vp) 0ap(T, D) (4.14)
= 1 [Ua(r) = Up(r) + Z(/\’ya - /\7[;)/077(7")] 0a5(r, D)
+ 1 Z A’yapa'y (T) O3 (7‘, p) -1 Z /\ﬂ"/p’ﬂi (T).Qa'y (T7 p)

Ava + A
+ Z . = Vi pyy (1) - Vpoas(r, p)

p” 2
Ao A
+ Z % rPary (’I‘) ) vp@'yﬂ('r: p) - Z %Vrp'vﬂ(r) : VPQOL’Y(T: p)
Y v

+ 1) [Aya(r,1)0y8(r, p) — Apy (7, 1) 0ary (T, )]

1
+ B Z [ViAsa(r,t) - V0y8 (r,p) — VrAﬂ’r(Ta t) - Vp0ary (T, D)] -
y

Now we recall the assumptions made in chapter 3, and use them to simplify this
general equation. We assume a homogeneous system, and thus set U, (r) = fiw,. We
also assume a weak external excitation field, which implies that the components of

the density matrix involving state 2 are small:

011 =~ N >> 012, 022. (4.15)

We can then consider transport equations for g;; and g5 separately. For o1,

neglecting terms of order (12)?, (022), Eq.(4.14) gives

(6 + % - Vr)ou(r,p) = 0. (4.16)

50



This equation is equivalent to the continuity equation. For p;5 we have

(at + % - Vr)le(T: p) = 3 [(4)12 =+ ()\11 — )‘12)p11]912 (7‘, p) (417)

+ 1 /\11,011(7')912(7’,19)—i/\zlplz(T)Qn(T,P)-

Going to a Fourier transform representation by

012(r, p, t) = 012(p)e"* ™Y, (4.18)

we obtain an integral equation of the form

0= T F o+ (201 = Man| 0e) = daen®) [ A pale).  (819)
m 21 11 12 12 12¢11 (27r)3 12 . .

When this equation is solved by iteration, it gives an expression proportional to
the response function II(k,w), calculated in the Chapter 3. This after all is not too
surprising when we investigate the right hand side of the Kubo formula expression
for the response function in Eq.(2.20). The response function is proportional to the
amplitude of oscillation of the off-diagonal part of the density matrix.

We have therefore found the quantity constituting the collective mode —the coher-
ence between the states 1 and 2 that forms the “wave” we are looking for. Although it
seems to be somewhat more abstract than, for instance density waves forming sound,
we see that this collective mode is measurable. Another way to understand this mode
i1s to make an analogy with a spin problem. One can think of state 1 and state 2
as representing the spin up and spin down states of some fictitious spin, then the
collective mode would be the oscillations of the transverse (z —y) components of this
spin.

An important point to note about the transport equation (4.14) is that it does
not include a collision integral. The processes we are interested in happen at much
shorter time-scales than the ordinary elastic collisions, because the collective mode is
formed as a result of coherent evolution. Such collective modes are called collisionless

collective modes, other better known examples being the zero sound in Fermi liquids,
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or first and second sound in Bose-Einstein condensates [1, 39].

If the collision integral were included in the transport equation, its main effect
would have been a weak damping of the collective mode. This effect was accounted
for, by adding the diagram in Fig.(3-1 j) to the calculation in the previous chapter.

Here we would like to emphasize that the optical collective mode we have discussed
is similar in many ways to zero sound in Fermi liquids. Both of them are collisionless
collective modes, which arise from the evolution of a particle-hole pair. The two
important differences are the particle statistics and the difference of the internal
states of the particle and the hole for the optical collective mode. Still, the physical
pictures given for zero sound[39] are most of the time relevant for the optical modes
considered . .

We now discuss how this collective mode manifests itself in the lineshape found
as a result of the calculations in the Chapter 3. We first look at the average density
shift.

We have found that for an interacting system, the optical resonance at wy is shifted
to the frequency

w=wp+ 2(A12 — A1), (4.20)

for a spatially homogeneous excitation. The magnitude of the shift (4.20) would be
difficult to understand in terms of the individual shifts of the one particle internal
states 1 and 2. Attempting this, one would have to say that the shifted energy level
for state 1 is given by

w1 — wi — 2\n, (4.21)

where the factor of two arises from Bose statistics. For state 2, the same logic would

lead one to the mean density shift
Wy — Wy — /\12’1?,, (422)

and the difference of these two shifts is a result different from Eq(4.20) by the amount

of Ajyn. This is the effect of the collective mode, and we need a more careful analysis
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to understand it.

To this end, consider a gas of n particles, all in the 1%¢ internal state, in a box of unit
volume with periodic boundary conditions. Let |0) denote a (properly symmetrized)
state in which the momentum states &, ks, k3, - - - are filled, and there are no particles

in internal state 2

We can see that upon the action of the excitation Hamiltonian with k¥ = 0, the new
state will be in a manifold spanned by states which have one of the momentum states

k1, ko, ks, - - filled by a particle in internal state 2.

1) = ko, ks, ka,...) ® |k1) (4.24)
12) = |ki, k3, kay...) @ |ko)

The energy difference between these states and |0) is precisely the incorrect shift

obtained in the one particle picture

However, none of the states |m) are eigenstates of the interaction Hamiltonian. In

fact, for any 0 < I, m < n, we have,

When we diagonalize the Hamiltonian (4.4) in the subspace, the result is very
interesting. All but one of the eigenstates |v;) , - - -, |v,—1), have the same energy as
|m). The only state which has a different energy is the symmetric combination of |1),
oy |n)

|sym) = % (1) +12) + -+ ), (4.27)
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with the energy being,

(sym|H|sym) — (O|H|0) = wp + 2(A12 — Ay1)n. (4.28)

One may be lead to think that as only one state out of many has this energy, it
will hardly show up in the optical spectrum. However, it is exactly the opposite. The
symmetric state is the only state that contributes to the optical spectrum. The reason
is that all other eigenstates in the subspace have zero overlap with the excitation
operator:

(3] Heze|0) = 0. (4.29)

Thus, the only state that is excited is the symmetric state (4.28). This state has an
important property that not only is it invariant under the exchange of two particles
in state 1, it is also invariant under the exchange of the particle in the second internal
state with any of the particles in state 1. One can see that the excitation Hamiltonian
acts only to change the internal state wavefunction, but leaves the spatial wavefunc-
tion intact. Thus, all the spatial correlations of the initial particle are transferred to
the excited particle.

Generalizing this further, one notes that, since the spatial wavefunction of the
excited particle does not change through the excitation process, the spatial part of
the many body wavefunction must be invariant under the exchange of the particle
that goes through the excitation with any of the particles in the gas, in state 1 or
state 2. This viewpoint leads us to generalize our result to initial states with particles

in state 2 present. In this case, the optical mode resonance is at,

W = Wy + 2()\12 — /\ll)nl + 2(/\22 — )\12)77,2. (430)

We will derive this result in Chapter 6, from the transport equation.
Now we attempt to understand the other properties of the lineshape in terms of

our physical picture of the optical collective mode as oscillations of the off-diagonal
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part of the density matrix. We have derived the dispersion relation,

) SN
2m 3/\1271.

W = wo + 2(/\12 — Au)n + (431)

We explained the second term of (4.31) in terms of exchange interaction of Bosons
above, and the first and third terms do not need any explanation. Let us try to
interpret the last term.

In the transport equation, we have our optical mode at w, k represented by,

012(r, p,t) = @12(p)e’* ™Y, (4.32)

which satisfies Eq.(4.19) for each w, k. Thus the momentum distribution of the optical
mode g12(p), depends on wavevector k of the excitation field. Therefore, the interac-
tion energy of the excitation depends on how p;, is distributed over the momentum
states. Thus the source of the last term is the dependence of the interaction energy
on the momentum distribution g15(p) of the optical mode.

Since the collective mode has a non-zero frequency at & = 0, we expect the
dispersion relation to have a smooth derivative at this point. Also, the isotropy of
the space requires k and —k to have the same w value. The smallest power of k
satisfying this requirement is 2, explaining the k? dependence. The origin of the
factor of 1/3 is the angular average of the term (k - p)2, as seen in the derivation
Eq.(3.39).

Another important feature of the lineshape is the narrowing of the linewidth with
increasing gas density. One might expect increasing density to broaden the line, as
it increases the number of collisions. However, it is known that if the collisions do
not effect the coherence of the optical process, and trap the particle to less than a
wavelength of the excitation field, we expect a narrowing of the line. This effect is
the well known Dicke narrowing. We have demonstrated that the exchange collisions
which change the momentum of the state 2 particle and the state 1 hole, are fully
coherent. Let us estimate the length scale that they confine this pair. Roughly, this

length scale is of the order of the distance traversed in the time between two exchange
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collisions,
uT

lco ~ Tco = . 4.
e wes (4.33)
Thus, the criterion for narrowing is,
2
lcoh < %; (434)
which gives us,
kUT < /\1271. (435)

Eq.(4.35) shows that when & is small enough for the collective mode to be well defined,
the narrowing effect takes place.

We must, however, make it clear that the effect in our case, although analogous, is
not equivalent to Dicke narrowing. The narrowing effect is not due to the localization
of the particle in the excited state, but due to the localization of the coherence g;5(r)
in space. In other words, the density modes g;; and g2 behave diffusively with a
diffusion constant related to 7, and not 7.,. Thus, the behavior of gy and pio
are radically different, the first being a diffusive mode, while the other is a reactive
(massive) mode with an imaginary diffusion constant. If we imagine the optical
excitation to be localized initially, we would see the density mode to diffuse away
from the localization region, while the coherence mode will go through many cycles
of oscillation in the envelope provided by the density mode, expanding much more
slowly.

Now, we want to extend the picture we have given so far, to the case of a condensed
gas. When the condensate forms, a finite fraction of the particles occupy the ground
state, and the first term of the sum in the expression for the density matrix Eq.(2.12)
becomes as important as the sum of the rest. Thus, when we need to describe the
state of the gas in the semi-classical approximation, we need not only keep track
of the semiclassical density matrix g.s(r, p,t), but also of the vector of condensate

wavefunctions in each internal state 9),.
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This can be achieved in second quantization by replacing the field operators by

ba(r) = a(r) + Pa(r), (4.36)

where 1), is not an operator but a complex number representing the condensate
wavefunction [3]. Although the dynamics of the condensate can be described by
specifying a vector of complex numbers at each point, we find it useful to use a

matrix representation for this vector,

Pas(r) = V5 (r)vs(r). (4.37)

We should emphasize that this matrix is always of rank one, and so it does not contain
any more information than ,, but it is introduced only for convenience. We also

need to keep track of the condensate flows,

- h -

Jo(r) = i~ (VL) (r) = Da(r) (Vidi(r))] (4.38)

Finally, for deriving the coupled equations of motion for ¢ and p we use

d - . OH
") = o5y

(4.39)

the Heisenberg equation for the classical field t,. The equation of motion for 5 can
be obtained similar methods used in the derivation of the equation for ¢ (4.14). We

find that the coupled behavior of these two matrices are governed by the equations,

(at_,_%.vr_vr(Ua(T)‘;Uﬂ(T)) 'Vp) Qaﬂ(T,p) (4.40)

iy [Uam U + T (e — M) (r)] 0as(r, )
+ 1 Z )\’Vapg)';c (r)oys(r,p) — i z )\ﬂvpfyo; (7)0ar (7, D)

Ava + A
> "’TMVWT;’J (r) - Vp0ap(r, p)
b

o7



o A o
+ Z rpﬁ,; vp@'yﬂ("'a p) - Z _%vrpfy[;( ) vp@a'y (Ta p)

i Z [Via(r,8)045(r, 0) — Viy (1, 1) 0ay (r, )]

1
9 Z [V,V,ya(r, t) - V045 (r,p) — vrvﬂv(’"’ t) - Vp0ary (r,p)]
"

and

(0iap(r) + Vi - Jap(r)) (4.41)

= ) = Ualr) + Ta = 1)) )

P

+ [Z AvaPary (1) Pyp(T) — ; ’\ﬁ’vp“/ﬁ(r)ﬁa'y(r)]

+ ZZ [Vaalr, ) Bys (1) — Viy (1, ) Par (7)]

where p*(r) = p(r) + p(r).

We now expect, much like the quantity g;» which is related to the optical response
of the normal gas, the evolution of p1» to define the optical response of the condensate.
The physical picture we have for p;» is much simpler than that for g;,. Consider
changing the internal state of one of the atoms in the condensate from state 1 to
state 2. The excited atom in a different internal state from all the other atoms in
the condensate, will still share their spatial wavefunction. However the state 2 atom
does not go through exchange scatterings, and thus the extra Ajon frequency shift is

absent for a condensate mode,
W =wp + (/\12 - 2/\11)’(2. (442)

However, the actual answer is not as simple as two separate modes, associated with
normal gas and condensate, oscillating at different frequencies. After simplifying the

transport equations (4.40),(4.41) for uniform density, and assuming the density in
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state 1 to be much higher than in state 2,

P11 2> P12, P22; P11 > P12, P22, (4.43)

we arrive at the coupled equations.

d | p2| | wt (2M11 — A2)n + Ane A2 P12
dt P12 A2nT wo + (2A11 — A2)n — Apine D12
(4.44)

The mechanism for the coupling in (4.44) is again exchange collisions. For in-
stance, one can have a state 2 particle with momentum & making an exchange collision
with a particle in the condensate. As a result, the state 1 particle in the condensate
will go to the momentum state k, while the state 2 particle will acquire the condensate
wavefunction. The reverse process is also possible. One can have a state 2 particle in
the condensate excited to a momentum state k, through an exchange collision with
a state 1 particle in this state. The rates of such processes are clearly proportional
to the condensate density n., and the thermal density nr, respectively. Technically,
these processes are represented as the off-diagonal elements in Eq.(4.44).

The eigenvalues of the matrix in Eq.(4.44), are the resonance frequencies for the
normal peak and the condensate peak, as found in the previous chapter. Investigating
the eigenvectors of the problem (4.44) provides additional insight about the system.
First, we see that except when n, = 0, the two modes are always coupled, and thus
the eigenvectors are neither purely normal, nor purely condensed modes as discussed
earlier. Each optical eigenmode has both components.

When we are at the transition temperature 7' = T, the condensate density is very
close to zero and the modes are basically uncoupled. Then the normal gas resonance
frequency is characterized by a 2A;on shift, while the condensate resonance shift is
A12n. As the temperature is lowered, coupling becomes significant. Initially, like two
quantum states which are mixed, the frequencies of the two modes repel each other.
There is, however, another effect which becomes important at lower temperatures.

As T — 0, condensate density n, becomes much greater than normal density ny, and
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for both of the eigenmodes, condensate contribution becomes much more important
compared to that of the normal part. When T is very close to 0, both of the modes
are predominantly condensate modes, and their frequencies approach each other. At

zero temperature, there is no difference between the two modes, and they merge at,
W =wy — (2A11 - /\12)n. (445)

The observed doubling of the number of collective modes upon Bose condensa-
tion is not unexpected. Once a finite fraction of particles start to occupy the same
state, the wavefunction of this state can be treated as a classical field, with its own
excitations, and these excitations by the definition of the condensate, are collective.
The phenomenon of second sound in superfluid *He and Alkali Bose condensates is
another example which demonstrates a similar doubling of collective modes.

To conclude, in this chapter we have presented another, more intuitive approach to
the theory for collective optical excitations, both below and above Bose condensation.
We demonstrated how the coherent processes, forward and exchange scattering, effect
the internal dynamics of the gas, and how they couple the optical modes in the

condensate and the normal gas.
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Chapter 5

A Sum Rule for the Cold Collision
Frequency Shift

All the discussion that we have presented thus far about the interaction effects on
the optical spectrum has been based on a perturbative expansion in the strength of
interactions. Although this is an excellent approximation for dilute systems under
consideration, some features in the resulting lineshape follow from the basic symme-
tries of the system, and are free of any errors that are introduced by making this
approximation.

Unfortunately, it is very hard to extend the above calculation to a system which
has a spatially varying external potential. Despite that we will show that the ef-
fects of this external potential on some general properties of the lineshape are easily
calculable.

In this chapter, we will be concerned with one such property of the lineshape, the

average frequency shift of the spectrum defined as,

Jdw w I(w)
JdwI(w) ~

W =

(5.1)

We have already obtained an expression for the average frequency shift, by using the
lineshape calculated in perturbation theory in Chapter 3. We will now show that the

average frequency shift can be obtained without calculating the lineshape explicitly.
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This can be accomplished even in the presence of an external potential, which, we
will show does not affect the result directly.

We start by writing the Hamiltonian in real space,

H = Ho+ Hins, (5.2)
2v72
Ho = /d3 ZW ( hy +hU()>wa(T),
a=1,2
o = [ 5 2Ry,
,ﬂ 1,2

where, as in the previous chapter, U,(r) the external potential coupling to the atoms
in the internal state o includes the internal energies fiw,. The transitions between

the internal states are facilitated by the external field,

Here = / & Auy(r)e= iyt (r) s (r) + hec. (5.3)

Now, we return to the Kubo formula expression for the lineshape we have obtained
in Chapter 2, Eq.(2.20). By introducing a set of complete states and carrying out the

time integration explicitly, we write it in the form,

2
I(w) = = 3 8(hw + €0 — em)|(m[Hexcln) o, (5.4)

where p,, is the probability distribution for the many body state n in our ensemble.
For a system in thermal equilibrium p, is the Boltzmann factor. In this form, we
see that the Kubo formula is equivalent to the Fermi’s golden rule for transition
probabilities between many body states.

We now continue with the evaluation of the average density shift by considering
the numerator and the denominator separately. For the numerator, after carrying out

the w integration, we have

dw
o = w2 Z — wn) [(m|Hexc|n) *pn (5.5)
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= =5 S el I, Hoscl b
= <Hexc [7'[, HeXC]) ’

where the averaging in the last term is understood as an ensemble average ¥, <
Bl > py = ().

We can now consider the commutator of each term in the Hamiltonian individ-
ually. The first feature to notice is that the spatially varying part of the potential,
J&rU(r) ¥ ¥ 10, commutes with Hey., and thus does not affect the end result di-
rectly. Because this potential determines the density distribution in the first place,
its effects will be seen in the average frequency indirectly. However, once the density
distribution is known, in order to find the average frequency shift, it is not important
to know the exact form of the external potential resulting in this distribution.

For the remaining two terms in the Hamiltonian, we can calculate the contribu-

tions to the numerator separately,

d
%wI(w) — Foin + Fi, (5.6)

where the first term is the contribution of kinetic energy in the Hamiltonian, and the
second one is due to the interparticle interaction.
We first calculate the contribution of the kinetic energy. In this calculation, we

proceed by using the bosonic commutation relations,

[Va(T), wg(r')] = a0 (r — '), (5.7)

to put the expressions into normal order by placing all the annihilation operators
to the right of creation operators. Then, recalling the assumption that there are no

particles in state 2 initially, we use

ta(r)[n) =0, (5.8)
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for all n. We obtain
d3
Frin = s (A1 — /\12)|A(7’)|2<¢1+(7")¢f(7')¢1 (r)r(r)). (5.9)

The expression to be averaged is familiar as the two point correlation function at zero

separation go,

W () ()1 (r)aha () = ga(r)n?(r). (5.10)

Thus, we have the result,

Foe = [ 57 0 = 2l AC) a0 G.11)

In calculating the contribution of kinetic energy, we follow the same procedure.

The commutator gives us

2 St () A0V A ) (512)
We can now express the external field in terms of its magnitude and phase as,
A(r) = |A(r)|e?™), (5.13)
and integrate Eq.(5.12) by parts to obtain

Fin = [ d3rh—[V|A(r)| + 1A VO On(r) (5.14)

[ L amETe) - Do),

where the local density and particle flux are given by

n(r) = W), T0) =~ ) +he. (1)

We need to calculate the denominator to complete the calculation of the average
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density shift. By normal ordering the state 2 operators, we easily get

Z—:I(w) = [ i ) Pr(r). (5.16)

Finally we have

S 1 [(\2 = M) ga(r)n?(r)|A(r) 2 + 2 (VA(r))2n(r) — BIA]%] - V0]
fd37“|A(T)|2"( )

W —wy =
(5.17)
We can now analyze the terms inside the numerator. The first term, which is the
interaction contribution, is the only term which is non—zero when the excitation is
uniform, A(r) = A. We have studied this case in detail in the previous chapter, and
it is in accordance with our picture of “inherited correlation” that the interaction
shifts depend on the two point correlation function of the gas composed of only state
1 particles, not that of a gas having one state 2 particle in it.
The kinetic terms can be understood as the generalizations of the recoil shift
and Doppler shift to the non-homogeneous density and excitation. If we take the

excitation field to be A = Aoe’* ", these two terms give us,

k2 k-j
0|/ ( h#) n, (5.18)

which are the usual expressions for recoil and Doppler shifts. We see that the relative

importance of the kinetic and interaction contributions can be judged by looking at
the average wavevector of the excitation, and comparing A*k?/(2m) with (Ao — A1),
provided that there are no macroscopic flows in the gas.

We must remark here that the sum rule implies nothing about the broadenening of
the spectrum, which may result from the distribution of interactions shifts, Doppler
broadening, or the interaction broadening via ordinary elastic collisions. The expres-
sion for the average shift given here is, however, correct regardless of how broad the
spectrum is.

It is also clear that the average frequency shift does not depend on the power of
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the excitation field, as long as it is weak. We have obtained this expression in the
linear response regime, and both the numerator and the denominator are first order
in |A(r)[>. Again, this linear response approximation allows us to get two separate
contributions, one solely due to interactions, the other due to kinetic effects. Non-
linear effects will be considered in the next chapter.

The presented form of the sum rule is just an an exact identity relating the average
frequency shift to the two point correlation function g,(r), the density distribution
n(r), the current distribution j(r), and the excitation field A(r). As long as these
quantities are known, the shift is determined, regardless of whether the gas is not in
equilibrium or in an external potential. Still, in order to apply the sum rule to any
experimental situation these quantities, if not directly measured, must be calculated
within some approximation about thermal equilibrium, density distribution, etc. [41]

We can investigate the average frequency shift for a homogeneous system with no
permanent currents under a harmonic excitation field. We get

R’k?

W —wg = (A12 — )\11)9271 + om (519)

It is well known that for temperatures above Bose condensation temperature,

and for temperatures below condensation,

2
gp=2- "¢ (5.21)

n2

Thus, the sum rule results in the same expression obtained with the perturbative

treatment of the previous chapters. This shows us that the main physical principles
underlying the sum rule are preserved in our perturbation treatment.

We can list three physical principles that together form the basis for the sum rule.

The first is that the total number of particles is conserved locally. The second is

that spatial correlations before excitation takes place are transferred to the excited
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particle. And the third is the Bosonic symmetry of the many body wavefunction
under exchange.

We can say that the first principle is mainly responsible for the kinetic terms,
while the second and the third combine to give us the interaction term. We can make
an interesting connection to the well known f-sum rule [40] for the structure factor
by considering the following limit .

If we take the interactions between two particles in different states to be the same
as the interactions between two particles in the same internal state and take wp to
zero, we eliminate all the difference between the internal states. In this case, our sum
rule reduces to the f-sum rule. In the center of mass frame, for a harmonic excitation,

we get from Eq.(5.17),

2.2
Z:L /d3'rn(r), (5.22)

dw
[ 5T, k) = A

which is the f-sum rule.

Our excitation Hamiltonian works both in the Hilbert space of internal states by
changing the internal states of the particles, and also in the external (real) space
by giving an extra momentum to the particles. Due to the assumed weakness of
the excitation Hamiltonian, we can separate its action on these two spaces to find
the interaction and kinetic contributions to the average density shift. When k = 0,
we have the excitation Hamiltonian acting only in the internal space and obtain the
interaction density shift, while for A3 = Ay}, and wg = 0, we get the familiar f-sum
rule for the density response.

With the derivation of the sum rule, we conclude our exploration of the linear
response regime of the optical excitations. In the next chapter, we will consider the
effect of a strong excitation field on the optical modes, and investigate the resulting

non-linear effects using the sum rule.
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Chapter 6

Nonlinear Optical Response

Up to this point, we have only considered situations in which the excitation field
causing the optical excitations is weak. We have assumed that the number of parti-
cles going through an internal state transition is much smaller than the total density.
However, experiments have been carried out on dilute atomic gases in which an im-
portant fraction or all of the particles change their internal states [18, 19, 30, 22].
The existence of such experiments raises the need to investigate the physics of optical
excitations away from the linear response regime.

In this chapter, we will extend the theory developed so far to explain the effects of
coherent collisions on the internal state transitions, to the strong excitation regime.
Here, the internal states of the particles are coupled to the excitation field strongly,
and the dynamics is more complicated than the linear response case.

Our starting point for the investigation of this regime will be the coupled transport
equations we derived for the normal and condensate density matrices in Eq.(4.40),

which we reproduce here,

R e e RApY 61

=t [Ua(r) — Us(r) + Z()"Ya - )"rﬂ)p't;:/t(r)] 0o (T P)

+ 1) Al (1) 0y5(r,0) — i Ay 028 (r) 0ay (7, )
Y Y
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Ao + A
+ ng plot(r) - Vp0as(T, D)

> 2 P Yy
Mo A .
+ Z PP () - Vpoys(r, p) — Z—glvrp%ﬂt( r) + Vpoar (T, p)
Y
+ ZZ[VYC!(T t)045(7,P) — Vy (7, 1) 0ary (7, )]
1

+ 9 Z [V V’Ya(r t PQ'Yﬁ(T’p) - Ver,y(T, t) 'vpga'r(rap)],
¥

and

(atﬁaﬁ( + V,- Jaﬂ T ) (6.2)
. z'[U Upr) 4 3O — Ao pzf::(r)] s (1)

1 lz AyaPary (T)Pyp(T) — Z Ay Py8(T) Pary (T)J

4 z [V"/a (T’ t)ﬁ’vﬂ (T) - Vﬂ’y (T‘, t)ﬁa’y (T)] )

where p"(r) = p(r) + p(r).

Our main interest in this chapter will be the consequences of interparticle interac-
tions in the internal state dynamics, so we will simplify the above general equations
by assuming that we are in a uniform system, with no normal or condensate flows,
and further assume that the external fields are applied uniformly. With these as-
sumptions, there is no further need for the full density matrix o(r, p), as the internal
dynamics is completely described by p(r), which will be the same for all points r.

Thus, equations of motion reduce to

Pry = 1 (wy —wy + Uy = Uy)pyy +1) Xay(pra + Dra) Py (6.3)
(07

— 1 Z Aoy (Pary + Pay)pra + i Z(Vav(t)pa'y’ = Vya(t)Pya),

bw’ = i (Wy—wy + Uy —Uy)pyy +i Z AayPraPary (6.4)

Z )‘07’ Pary' Pya + i Z(Vav(t)pav’ - Vv’a(t)ﬁm)’
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where U, are defined as,

> Aap(ps + 08p)Ua = Y Aapmis. (6.5)
5 E

The dynamics described in the above equations are fairly complicated if there are
fields coupling more than two states, so we will concentrate on the simplest case,
where only two internal states are coupled, and all the populations in the other states
remain constant. Then we will be concerned with the dynamics of two, 2 x 2 matrices,
one for the normal gas, and one for the condensate. If we assume that states 1 and 2
are coupled, we can go to a Larmor basis with the frequency of the coupling field, so
that the elements of our density matrix (and similarly the condensate matrix) can be
redefined. The diagonal elements of the matrices do not change, while the off-diagonal

elements change as

Pla = pi2 exp[—iQat], Py = (Pha)*. (6.6)

In this basis we will find it useful to rewrite the equations of motion in the Bloch

representation [11]. We can expand these 2 x 2 Hermitian matrices as,

Py = PoOyy + S Gy (6.7)

Pyy = PoOyy + 5S¢ Gy,

where & are the Pauli matrices.

In this representation, gy and py will be proportional to the total number of atoms
in the condensate, and above the condensate, respectively. The z-components of
both spins are proportional to the population difference between the internal states,
belonging to the normal gas or the condensate. For the normal part, the norm of the
projection of spin onto the x — y plane represents the degree of coherence between
the two internal states. For the condensate spin, however, this norm is directly
proportional to the geometric mean of the populations of the two internal states.

Furthermore for both cases, the angle corresponding to a rotation around the z axis
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is related to the relative phase of the two internal states.

The matrix V4 has no diagonal elements, as defined in the excitation Hamiltonian.
However, we can take the detunings that come as a result of going to Larmor basis
as the diagonal elements, V;;(V52) being defined as +(—)[w, — w1 — 2;3]. We then

can again expand V,, as,
Vi = Vibyy +V -Gy (6.8)

In this representation, we can write the equations of motion for the condensate

and the normal gas spins as :

—

§ = S x By +2M8 x 5, +25 x V (6.9)
§c = §6x§c+2)\125';><§+2§cx17,

with

By = [(Air = Xa2)(200 + o) + (Arr + Aoz — 2012) (25 + S5.) - 2] (6.10)

(M1 — A22)(po + Po) + (A1 + Az — 2)\12)(5;"1' gc) - 2]z,

1

&
I

It is important to observe that the equations conserve the total densities in the
condensed and non condensed fractions of the gas. To make a better sense of the

equations, we can note that they can be derived from the XXZ self interacting Hamil-

tonian,
H= ()\11 - )\22)(,00 + ﬁo)é . (§+ §c) + (/\11 — /\22)p02 . § (611)
+JH9S1ST + %Jijsgsg + JU S5
+2(S+8,).V,
where
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2 0 O 0
0 0 (Au+An)

using the Poisson spin algebra,

{S', 87} = ¢kgk (6.13)
(5,50} = st
{s',81} = o.

6.1 The Single Spin Problem

We start the analysis of the dynamics described in Eq.(6.9) by considering the situa-
tion in which we can represent the system by a single spin. There are two such cases.
The first one is at zero temperature, when almost all the atoms are in the condensate,
while the second is above the transition temperature, when there is no condensate
present. However, our analysis is still restricted to temperatures low enough to satisfy
the quantum gas condition, At > a; of Eq.(1.3).

We first analyze equations of motion Eq.(6.9) for the case where there is no ex-
ternal field. Such an analysis is needed to understand any interaction related effects
in experiments where particles spend a substantial amount of time in a superposition
state, such as in atomic clocks [16, 30, 22, 15].

We first consider the case where there is no Bose condensation. Our equations
(6.9) will then be reduced to

S=25xB,. (6.14)

We can easily see that the z—component of spin will be conserved, and we will

only have a precession around the z axis with a precession frequency

W = (’l.U2 — wl) + 2(/\22712 — )\Hnl + )\12(711 - nz)) + Z ()\27 - )\17)717. (615)
7#1,2
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This result agrees with the theory of frequency shifts in atomic clocks [25, 48, 47].
We can now ask the same question for a sample which is fully condensed. When
all the atoms are in the condensate, they will all be sharing the same spatial wave-
function, and this will indicate that no exchange processes will be possible. That
would eliminate the factor of 2 multiplying the combination of X and n’s for states 1

and 2 in Eq.(6.15). Not surprisingly, for a fully condensed sample, we get

w = (wg —wi) + (Ao2na — Ai1ng + Apa(ng — np)) + ;Z(A27 — A1y) Ty (6.16)
V#£1,

In the presence of an external field, the populations in the internal states will
change according to Eq.(6.9). Recall that, these equations are derived in a frame
rotating at the angular frequency of the external field, and any apparent detuning
fields resulting from the difference between the external field frequency and natural
transition frequency are absorbed into the external field vector V.

In this section, we consider the response to an external field, only when the system
can be represented by a single spin, that is, the system is either fully condensed or

not condensed at all. In the latter case, we have the equation,

—

§ = §xB, +25xV (6.17)
gn = [(M1 = A22)2p0 + (A1 + Aoz — 2)\12)25 - 2)2.

The former case has similar equations with S, replacing S and B, being half of B,,.
Since the dynamics conserves the magnitude of the spin, we only have two dynam-

ical variables, which can be taken as angles (6, ¢) in the spherical polar coordinates,

representing the orientation of the spin. Another conserved quantity in this dynamics

is the Hamiltonian introduced earlier,

% = ()\11 — /\22)p02.§ + ()\11 - )\22),0072 . g (618)
+JUS1S 428 - V.

On the sphere defined by (8, ¢), contours of constant # will define the paths

73




along which the spin will precess. We can treat both the normal gas case and the

fully condensed case by writing the Hamiltonian as a function of (6, ¢) as

H = Acos®(f) + Bcos(8) + C'sin(f) cos(¢) + D, (6.19)
and identify
1
A4 = 5()\11 + A2z — 2219)|Se)?, (6.20)
B = ((Aun — A22) 0l Se| + 2VZ|S.)),
C = 2V%S,,
D = )‘12|Sc|2;

for the fully condensed case, and

A = (A + A2 —2\10)|S)% (6.21)
B = (2(A11 — Aa2)polS| + 2V*[S]),

C = 2V¥S|,

D = 2Xp|SJ

for the normal gas.

In the presence of strong external fields the paths are almost circular with centers
on the line oriented along vector V, passing through the origin, as in the usual Rabi
problem, and significant changes in the populations occur throughout the course of
a Rabi oscillation. As a function of # and ¢, the Hamiltonian has one maximum and
one minimum. All the trajectories circle these extremum points, if the external field
satisfies

2/3

Clo 1B e
{A’>(1 ‘A )32, (6.22)

When the intrinsic Rabi frequency |I7], becomes of the order of the density caused
shifts (~ An), an interesting situation occurs. Even on resonance, large population

transfers from one state to another does not take place. This can be easily seen from
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the structure of trajectories on the Bloch sphere. When the external field does not
satisfy Eq.(6.22), instead of having one minimum and one maximum, the Hamiltonian
has two maxima, one minimum and a saddle point. The two constant # trajectories
crossing at the saddle point separate the sphere into three regions, giving us three
kinds of trajectories, circling the minimum or one of the two maxima. None of these
oscillations, however, result in large population transfers, which is in contrast with
the Rabi problem. In the Rabi problem one can change internal states of all the
atoms with an arbitrarily small field on resonance. This effect can be understood
if we realize that the transition frequency for an atom depends on the populations.
So for weak fields, even a small population transfer carries the transition away from
resonance, 4.e., makes the effective detuning much larger than the Rabi frequency.
In both cases, we can calculate the oscillation frequency along each path. The

period of the precession along a path C on which H (6, ¢) = H' is given by

TH') = /C dllvl—Hl' (6.23)

By converting the integral to a surface integral over a ¢ function, and integrating over

the angle ¢, we have

1

T= %/dx\/z‘*+ng3+02x2+Clz+Co’ (6:24)
where,
Cs = 2% (6.25)
2 2
c, = (C;;B _2H;1D),
6 = BE=D)
Co = —02_%_1))2.

In the high field case, for the external field satisfying Eq.(6.22), the Hamiltonian

will take values between H,,,, and H,,;,, the values of the Hamiltonian at the max-
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imum and minimum points, respectively. Any value of H in this range will uniquely

correspond to one trajectory, and the period of motion on such a trajectory will be

given by,
4 L [(z1—122)% — (p— q)?
T = K(= , 6.26
|Al\/pg (2\/ pq ) (6.26)
PP = (m—z)%+n?
¢ = (m — )% 4+ n?,

where K is the complete elliptic integral [5], z;, z, are the real roots, m is the real
part and n is the absolute value of the imaginary part of the remaining two complex
conjugate roots of the polynomial in Eq.(6.24).

In the weak field case, there are four special values of the Hamiltonian, the min-
imum value H,n;n, the value at the saddle point H,q441e, the smaller and the larger
of the values at the two maxima Hmer< andHmu.> (See Fig.contourlines). For #
values in the range Hmaz> > H' > Hmaz< OF Hsaadie > H > Homin there is again one
to one correspondence between H values and trajectories on the sphere. For such
trajectories the frequencies are again given by (6.26). For the values of H satisfying
Hmaz< > H > Hqaaie there are two trajectories corresponding to each H, one circling

Hmaz<, and the other circling H,q.5>. However, they both have the same period given

by

4 (-732 - $1)($4 - .'1:3)
h= K , 6.27
lAl\/($4 - $2)($3 - .’171) (\] ($4 - -1'2) (.’L‘g — 3/'1)) ( )

where K is again the complete elliptic integral, and z; < z, < 3 < z4 are the four
real roots of the polynomial in Eq.(6.24).

A typical plot of frequencies for the weak field case is given in Fig.(6-2). Near
the saddle point trajectories, the logarithmic slow—down in H — Hgeqae is as expected
from the two dimensional dynamics.

When we use these equations to describe a fully condensed sample, the cases of
low field and high field behavior correspond to two well known phenomena, Rabi

oscillations [11] and internal Josephson oscillations [51]. We can also see that for a
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Contour lines for the Hamiltonian
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3n/2

/2

saddle maximums<

or maximums

-n/2

| 1 |
0 n/4 n/2 3n/4 T
)

Figure 6-1: The contour lines for the Hamiltonian Eq.(6.19), on the Bloch sphere,
defined by 6 , ¢, for weak external fields. As the field strength is increased, the
saddle point comes closer to one of the maxima and they destroy each other when the
condition in Eq.(6.22) is satisfied, leaving just one maximum and one minimum. In
the figure the trajectories encircling the maxima correspond to Josephson oscillations
with an average phase difference of 7, while those encircling the minimum are the
usual Josephson oscillations corresponding to small oscillations of phase difference.
The frequencies of motion along these trajectories are given in Fig.(6-2).
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condensate, our equations reduce to those obtained in [50, 45] by using two coupled
Gross-Pitaevskii equations. At high field, we get almost circular trajectories, and
correspondingly large oscillations between internal levels of the condensate, as in the
Rabi problem. For the low field case, we get three kinds of trajectories all of which
give little population change, corresponding to Josephson oscillations. Two of these
three kinds of trajectories complete a full cycle around the z—axis, while the third
is trapped in a region for which ¢, < ¢ < ¢maz- Recalling that ¢ represents the
relative phase of the two condensates, we see that these trajectories correspond to
Josephson oscillations between the two internal states, caused by the weak link of
the external field. The other two kinds of trajectories again correspond to Josephson
oscillations. However, in this class of Josephson oscillations there is a 27 phase slip
for every period of population change.

From the above discussion we can come to the conclusion that to observe the
internal Josephson effect, it is not required to have two Bose condensed samples,
although two words of caution should be voiced about this. First we have only
considered the coherent collisions, and the coherence of the phase of two internal
levels will be destroyed on a time scale that is set by mean free time in the gas. Any
observed internal Josephson oscillation should decay in this time scale. Second, to be
able to see this effect one has to go to very low field strengths, so that the population
oscillations should be observable in a non-condensed sample.

Still, we have shown that it is not absolutely necessary to have Bose condensation
to observe small oscillations in the relative phase of the internal states under a small
excitation field. We can imagine a non-condensed gas of atoms put into a superpo-
sition of two internal states by a 7/2 pulse. If this sample is further subjected to
weak mixing field on resonance, one would naively expect population transfer from
one internal level to the other with the Rabi frequency of the field. However, our

discussion shows that if the sample and the field satisfy

Tk = 8manur < V| < An, (6.28)
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we would have small oscillations of the phase and populations, which is exactly what

is observed in the internal Josephson effect with condensed samples.

6.2 The Two Spin Problem

After analyzing the fully condensed and non-condensed Bose gases, both of which can
be represented by only one spin in our Egs. (6.9), we turn our attention to the par-
tially condensed Bose gas. When the temperature is between zero and condensation
temperature, T,, both condensed and non-condensed densities are present. If these
densities are comparable, we have to use the full form of Eq.(6.9), with both spins
present.

We first start with the free precession problem, by setting the external field equal

to zero. In this case, we have the equations,

— —

§ = §xB.+20u5 x5, (6.29)

—

S, = § xB,+2\s5, x . (6.30)

The effective magnetic fields En and B; both point in the Z direction and are defined
in Eq.(6.10). Since their time derivatives are perpendicular to the spin vectors, norm
of both of the spins, |§ | and |S,| are conserved. This conservation simply means that
the total number of atoms in the condensate and over the condensate are conserved.
Another conserved quantity can be obtained by adding Eq.(6.29) to Eq.(6.30), and

taking the Z component. We have,

d /. 2 = d

- (2-(5+8)) = 55k = 0. (6.31)
Physically, this conservation law corresponds to the fact that in the absence of a
coupling field, the total number of atoms in internal states 1 and 2 are conserved
separately. Although these three conservation laws restrict the resulting dynamics

considerably, they still allow oscillations in which the density of condensed and non-

condensed atoms in internal state 1 change, while state 2 goes through the same
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Frequency as a function of H
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Figure 6-2: The frequency of precession on the Bloch sphere as a function of the value
the Hamiltonian Eq.(6.19) takes. Hamiltonian can take values from H,,;, to Hypezs.
Near the saddle point the precession slows down logarithmically, as expected from a
two dimensional dynamics. Between H;yqqie and H,,q.< there are two trajectories for
each value that the Hamiltonian takes. However, they both have the same frequency
Eq.(6.27).
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oscillations out of phase with state 1 keeping the total number of condensed and
non-condensed atoms constant. In our spin representation, the degree of freedom
that expresses these oscillations will be 5%, or equivalently SZ, as they add up to a
constant.

The other conserved quantity is the Hamiltonian (6.11), which we now rewrite in

terms of the conserved quantities S, , |S|, |S¢|, and the dynamical variable S* as,

1
H o= (A1 — Aa2)(po + po) Sty + 5(/\11 + daz — 2A12) (S5)° (6.32)
+ 2A12|S)? + Ai2|Sef* + (A1 — Aa2) poS®
1 — —
+ 5()\11 + Ao — 2212)(S%)% 4+ 2155 - S,

To look further into the oscillations of the degree of freedom physically described

above and represented by S? we take the equation of motion,

as®

=z § =222 (§x 8) = 22V, (6.33)

Where V is the volume of the parallelepiped formed by the vectors 2 , S and S.. We
can express the absolute value of this volume in terms of the inner products of these

three vectors as

VI = VISPISJ2 = (8- 802 = |S.[2(5%)2 — | S[2(S2)? + 252535 - .. (6.34)

Now we can solve for S-S, in terms of conserved quantities and S* from Eq. (6.32).
This will give us the equation of motion for S? expressed only in terms of conserved

quantities and 5% itself,

= /C4(5%)* + C5(5)3 + C(S%)2 + C1(S7) + Cy (6.35)

ds?
dt

The value of S* will oscillate between z; and z,, which are the two roots of the
polynomial inside the square root in Eq.(6.35). For values of S* in the interval

z1 < 5% < 3, this polynomial takes positive values. When S? reaches its maximum

81



or minimum value, the vectors S , 5_'; and Z are coplanar. This allows us to integrate
Eq.(6.35) without paying attention to the absolute value. We can express the period
of 5% as an integral of the form in Eq.(6.24),

T2 1
T,=2/ ds* .
/wl V/Ca(S2)* + C3(82)3 + C5(8)2 + C1S* + Cy

(6.36)

Due to the abundance of conserved quantities in the two spin problem, the expressions

for the coefficients are more complicated compared to the one spin case,

Ay A
G = —5(F ~4w) (6.37)
A
Cs = —[A1Bypo + 4)\12(725tzot — Aipo)],

A
Co = [Do(H — Ar(po+ Po)SEy — 72(5501;)2 — 2212|S? + Ar2|Sc[?)
A
— AAp(H — A1poSE; — Tz(sfot)z + A2l S]],

A
Ci = [(H—A(po+ po)S — 72(55002 — 2X12| S + Ai2|Sc?) (2A1p0 + 41257, + 8025|5252, ],

A
Co = —(H =D+ 20)Siy, = 5 (Si)® = 2002lS P + Mzl Sel)?
+ 2(H — Ar(po + o) S5) (2212]S|* + Ai2] Sef?) — 4A%, S|
— ALIS* — AsAwa|SP(SE)% — 2(Az + 2M12) A12|S|2(SE,)?,

with the notation

Al = (/\11 - /\22), (638)
Ay = (A1 + A2 — 2)0).

As in the one spin case, this integral can be exactly evaluated [17]. If all the roots

of the polynomial inside the square root in Eq.(6.35) are real, we have

4 1 (2 — 1) (24 — z3)
. \/(74\/(:54 — Z2)(z3 — Il)K (\‘ (24 — z2) (75 — xl)) | (639

Here z3 < x4 are the remaining real roots of the polynomial in the equation of motion
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of Eq.(6.35), which are assumed to be real. In the case of imaginary 3 and z,, an
analogue of Eq.(6.26) will give the expression for the period.

The second oscillation for free precession corresponds to the precession of total
phase about the z-axis. This precession is affected by the population oscillations
found above, and the oscillation frequency is not as easily calculated. We can gener-
ally describe its motion as a sum of two components. The first one corresponds to a
uniform precession around the z-axis with the density shift as in Eq(6.15), and the
other corresponding to the effect of an oscillating magnetic field in 2 direction, caused
by the population oscillations discussed above. The coupling between these two com-
ponents is best seen when we write the equation of motion for the spin components

in the z — y plane. Defining S* = 5% +¢5Y, and S;F = S% +4SY, we have

iS+ = (Bn(t) + 2)\128§(t))5+ — 2)\1252“)5: (640)
iST = —2028%(H)ST + (B, + 20125%(1)) S

We have seen that when S* reaches its maximum or minimum values, S and S,
are in the same vertical plane. We can calculate exactly how much the spins have
rotated around the z-axis throughout the course of one S? oscillation. The effect of

S? oscillations will present itself through the integral,
22 §% dS*
I= / dtS*(t) = 2/ ’ S (6.41)

which is again exactly calculable.
To calculate the rotation angle we integrate Eq.(6.40). After a time 7T,, St and

S will be given by

SHT) | _ m | 57O | (6.42)

SH(Tz) 55(0)

where M is a two by two matrix with elements

M = A1(2p0 + o) T + (Ag + 2X12)SEL T + (Ay — 202)1, (6.43)
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Mz = —2X5],
Mo = —2X155%,T, + 2\l
Moy = A1(po + ﬁo)Tz + AQSiotTZ + 2A12.

Instead of giving the resulting long expression for the rotation angle in one period,
we choose to describe the motion qualitatively. The precession of the two spins are
affected by the competition between two effects. The first effect is, due to the absence
of exchange scattering in the condensate, the condensate spin S, sees an effective
magnetic field B,, which is different from the effective magnetic field seen by the
normal gas spin 5. The second one, as discussed above, is the condensate population
oscillations characterized by S-.

If there is not much difference between the densities of two internal states. Both
spins lie close to the z — y plane, and their relative phase oscillates around zero,
without ever growing large. However, if there is a lot of density difference between
two internal states, the spins are close to the z—axis. Over one period of S% oscillation,
the phase difference can be a multiple of 27.

We can investigate the precession easily in the limit when both of the spins are
almost aligned with the z—axis. We can write linear equations for the perpendicular

components of the spins, and get the two precession frequencies,

W=+ (’wg - wl) + (UQ — U1 + /\22712 - Aunl) (644)
with
An(c,t) = T02(c,t) — M(cpt)s (645)
where @ satisfies,
((I) + )\12Ant) ((:) - /\uncl + /\zgncg) = )\%QATLCATLt. (646)

If the mixing angle is not small, in general one would expect to see two different

frequencies. The average of the two frequencies will be controlled by the average
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density shift seen by an atom in the sample, while the splitting will reflect the average
rate the condensate fraction of one of the internal states oscillates [42].

The appearance of a second frequency should be detectable in an experiment that
probes a partially condensed Bose gas in a superposition state. We propose using a
partially condensed gas in a Ramsey separated field arrangement, as in the fountain
atomic clocks [16, 30]. In this case the appearance of a second frequency would present
itself as a beating in the Ramsey fringes. This beating, however, will vanish both in
the limit of full condensation and in the limit of a normal gas, and should be most
prominent when the condensate fraction is close to a half. The exact values of the
frequencies can be obtained by solving the equations of motion Eq.(6.9) numerically.

Here we want to remind the reader that the equations used in this section Eq.(6.9)
were derived for a uniform system. If the particles are cold enough, and the conden-
sate is prepared in a shallow trap to make sure that the movement of each part of the
cloud is negligible in the center of mass coordinate frame during the time of measure-
ment, the equations will be locally correct and the experiment should show a density
averaged result in the precession frequencies. Otherwise the effects of inhomogeneity
must be included using the full transport equations of Eq.(6.1,6.2).

When an external field is turned on, the 2 component of total spin in not conserved
anymore, and there is a net population transfer from one internal state to the other.
Much like the single spin case, we then have two limits. When |I7| is much larger
then the density shift An, we have both spins following almost circular trajectories
around V. For the weak field case, the system can be best described as two non—-linear
oscillators going through coupled oscillations, with an occasional 27 phase slip for one
of them. In this most general case precession frequencies can be found by numerical

integration of Eq.(6.9).

6.3 Fermions

Finally, to understand the effect of statistics better, we consider the same problem

for a Fermi gas. We will have the same Hamiltonian as in Eq.(4.4), however, the
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Fermionic field operators will satisfy

{¥a(r), 5 (')} = dapd(r — 1), (6.47)

where {, } denotes the anti-commutator. The derivation will process along the same
lines with the Bose case. The effect of statistics will be seen whenever we average a

four particle operator. The exchange term in Eq.(4.13) will change sign,

(Va¥ivsva) = (Yava) (i) — (V3 ¥s) (V5 Ya)- (6.48)

As a result, we get the transport equation for the density matrix defined as in

Eq.(4.8), with sign changes in the terms corresponding to the exchange contributions,

(8 29, - v (RO 0 ) ot (6.49)

- an (r) = Us(r) + >_ (Mo — /\vﬂ)f’w(r)] 0 (T, P)

- Z AyaPory(T)0ys(T, p) + 1 Z A8vP(T) Qe (T, P)
s Y

Aya + A
+ 2TV 00 (1) Viatas(rp)
Y
= 2 MaViha (1) - Via(r,0) + 32 Ay Vepas (1) - Vitan (7, p)
Y Y

+ 1 Z Vya(r, t)oys(r,p) — Vi (7, 1) Oar (T, P)]

1
+ 9 Z [VTVW(T, t) - vp@vﬂ(n p) — ViV (r,t) - Vpga7(r, p)].
p

From the transport equation, by assuming all the interactions and the sample to
be spatially homogeneous, we can get the equation of motion for the internal state

density matrix,

Pyy = 1 (w'y —wy + Uy — U"/’)p'y'y' - iz()‘a’y - ’\Ot’Y')p’Vapa’Y’ (6'50)

+ i D (Vay(®)pay — Vya(t)pra)

04
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with U, defined as,
Ua = Z )\aﬂng. (651)
B

If we assume that only states 1 and 2 are coupled and all the off-diagonal elements
involving the other states are equal to zero, we get a very simple dynamics. The time
derivative of the diagonal elements do not depend on p, while the off-diagonal element

p12 changes according to

pra= 1 (w1 — wy + E ()\131 - /\ﬁz)nﬂ) P12 (6.52)
B#1,2

+ 0 Z(Val(t)l’az—%a(t)pla)-

23

When we go to the Bloch sphere representation in the basis rotating with the

frequency of the external field, we have
Py = POy + St Gy (6.53)
and we get the simple equation of motion
§p =25, x V. (6.54)
which can be derived from the corresponding Hamiltonian,
Hp=25;-V. (6.55)

In the mean field picture, there are no coherent effects of interactions for a transi-
tion between the two states. The exchange contributions to the precession frequency
exactly cancel the direct contributions. For short-range potentials, the exchange con-
tribution to the energy has the same absolute value as the direct contribution. For

Bosons, the two contributions add up, while for fermions they cancel.
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The precession frequency for a free Fermi gas can be read off from Eq.(6.52),

w=(ws —wi)+ Y. A2y — A1y)7,. (6.56)
7#1,2

This expression shows that the density dependent frequency shift encountered in the
fountain atomic clocks can be eliminated, if a fermionic sample is used instead of
a Bose gas. Any contributions to the frequency shift will be of higher order in the
diluteness parameter a,/(n~'/%) of the gas. Finally, we see that the behavior under
an external filed is not at all different from the usual Rabi precession. An analogue of
internal Josephson effect does not appear since the “energy” of the system Eq.(6.55)
does not depend on the density at all, that is, there are no quadratic terms in the
Hamiltonian in the spin representation.

In conclusion, in this chapter we studied the effects of external interactions on
the internal dynamics of atoms in a dilute gas, without making assumptions on the
strength of the excitation. For a Bose gas, we first considered the general case of a
partially condensed, non-uniform gas, and derived the transport equation. We then
focused on the case of a homogeneous gas and investigated the effects of interactions
on the internal degrees of freedom. As a first result, we obtained an expression for
the density induced frequency shift in atomic clocks, for a gas which is above BEC
temperature , or at zero temperature. Furthermore, we found that if a partially
condensed sample is used in an atomic clock, one would get two density dependent
frequencies instead of one, due to the exchange of atoms between the normal part
and the condensed part of the gas. We then analyzed the effect of an external field.
We showed how Rabi oscillations are replaced by internal Josephson oscillations as
the strength of the external field is reduced. We calculated the frequencies of both
oscillations exactly. We have also found that an analogue of the internal Josephson
effect should be observable for a non-condensed sample.

Finally, we considered a Fermi gas, and derived the transport equation. We have
found that it is possible to get rid of density caused frequency shifts by using a Fermi

gas in an atomic clock, and that no analogue of internal Josephson effect is possible
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for a Fermi gas.
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Chapter 7

Conclusion

In this thesis, we studied the effects of interparticle interactions on the coherent
internal state dynamics of a dilute system at low temperatures. We considered the
case of weak excitation, in which the number of particles changing their internal state
is negligible compared to the total number of particles. We derived an expression for
the optical spectrum starting from the microscopic Hamiltonian of the system, and
then used diagrammatic perturbation theory in the Random Phase Approximation
to calculate the spectrum both above and below BEC.

We found that, for temperatures low enough to make the thermal de Broglie
wavelength larger than the scattering length, exchange processes cause the optical
excitations to become collective modes. Due to exchange, many particles are involved
in the excitation process. We characterize this collective mode by the oscillation of the
off-diagonal components of the density matrix. The collective nature of the excitation
manifests itself in an interaction dependent dispersion relation for the optical mode,
an extra shift for the average frequency of the spectrum, and in a line narrowing
effect.

At lower temperatures, when BEC takes place, we found that the spectrum devel-
ops a doublet structure. One of the peaks is associated with the thermal component
of the system, while the other is due to the condensate. We have then considered pro-
cesses which mix those two modes, and calculated the resulting resonance frequencies

for all temperatures below T.
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We then derived an exact sum rule for the average frequency shift of the optical
spectrum. We showed that the sum rule follows from some basic properties and
symmetries of the system, and can be considered as an extension of the f-sum rule to
systems with more than one internal state.

Finally, we relaxed the weak excitation assumption, and considered the non-linear
optical response. We mapped the internal dynamics of the system to the evolution
of two interacting anisotropic spins, and solved for their precession frequencies in
various cases. This mapping allowed a comparison of the Rabi oscillations with the
internal Josephson oscillations. We studied how the transition between them occurs
when the external field strength is varied. Another important result obtained from
this analysis is that, an analogue of the internal Josephson effect should be present
for non-condensed cold gases. We also considered these effects for a Fermi system and
found that the precession frequencies are affected by interactions only very weakly.

The research presented in this thesis was motivated by the observation of the op-
tical spectrum of the spin polarized Hydrogen gas, above and belove BEC. Although
the presentation remained theoretical throughout, the resulting theory has some im-
plications for existing experiments, and predicts some new effects. We conclude the
thesis by giving a brief summary of these.

In the Hydrogen BEC experiments at MIT, optical spectroscopy was used as a
tool to identify the condensation, by monitoring the large increase in density at the
center of the trap. Thus, the phase transition was signaled not by the change in the
optical spectrum per se, but by density change altering the optical spectrum. For
homogeneous systems, however, condensation is not accompanied by any change in
density. Consequently, it is somewhat harder to tell whether the system has actually
undergone the phase transition. We have found that optical spectrum actually goes
through a qualitative change upon condensation, even if there is no change in the
density distribution. It has recently been suggested that this feature of our theory
can be experimentally exploited to resolve the controversy over the BEC transition
of excitons in Cu, O [21].

The sensitivity of the optical spectrum upon interactions enables one to learn
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more about how atoms interact with each other, through the measurement of optical
properties. In particular, the sum rule derived in Chapter 5 can be very useful for
measuring different scattering using the optical spectrum. If the measurement of the
optical spectrum can be combined with an independent measurement of the density
distribution, it should be possible to measure the scattering lengths very precisely.

Another class of experiments for which our results are relevant are those involving
fountain atomic clocks. It is possible to use a partially condensed cloud of gas in
a fountain atomic clock to study the properties of the condensed state. From our
analysis that there will be two precession frequencies measured in such an experiment,
which is distinctly different from what has been observed so far.

Besides that, a fountain atomic clock could be used to observe the internal Joseph-
son effect in a BEC, and its analogue in a non-condensed cold gas. It would be inter-
esting to explore experimentally the regime of switching between the Rabi oscillations
and the internal Josephson oscillations. Finally, the dependence of the precession fre-
quencies on density is a source of error in atomic clocks. It follows from our analysis
that if fermions are used in these experiments, this density related shifts would be

much smaller.
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