
Application of the Proper Orthogonal Decomposition to Slat

Cove Noise Modeling

by

Tony Lau

B.S., Aerospace Engineering
University of California, Los Angeles, 2000

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

Author............. ....................................
Tony Lau

Department of Aeronautics and Astronautics
May 23, 2003

Certified by.. ...........................
Karen Willcox

Assistant Professor
Thesis Supervisor

Accepted by ............................
Edward M. Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 1 0 2003

LIBRARIES





Application of the Proper Orthogonal Decomposition to Slat Cove Noise

Modeling

by

Tony Lau

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The Proper Orthogonal Decomposition (POD) is used to characterize the unsteady dynamic
flow field in the slat cove region of the Energy Efficient Transport (EET) airfoil. Snapshots
acquired from a computational fluid dynamics (CFD) simulation are analyzed a posteriori
using the POD to extract the dominating coherent structures in the slat cove. The simula-
tion is examined at three different angles of attack (4, 6, and 8 degrees), and the pressure
and velocity fields of each system are decomposed into optimal basis functions. These POD
modes are optimal in terms of their representation of energy present within the original data
ensemble. Furthermore, it is found that many of the modes contain structures inherent to
the actual phenomena present in the flow field.

The basis functions are then used to construct low-order approximations to the orig-
inal data in a linear superposition. The eigenvalue spectrum indicates that most of the
energy is contained in the leading POD modes, and reasonable fidelity is achieved in the
reconstructions using less than 30 percent of the POD modes available.

An acoustic study determines the noise generated by the slat cove region using the POD
reconstructions. Using an acoustic solver based on the Ffowcs Williams Hawkings equation,
the acoustic signature is calculated for the POD reconstructions as well as the original CFD
solutions based on a source line surrounding the slat region. The acoustic signal based
on the POD reconstructions does not exactly reproduce the CFD generated acoustics, but
instead tends to over-predict the resulting sound level output.

From the original CFD simulation data, it was seen that the flow field of the 8-degree
system was noticeably less dynamic than the 4- and 6-degree systems and that a lower noise
signature was computed for the 8-degree model. The nature of this change is evidenced by
a cross-projection of the modes across the three systems, yielding a comparison of the
structure and position of the initial POD modes in each basis set. Thus, a criterion for
characterizing the dynamics in the slat cove region of the airfoil is established. Finally, to
further enhance data reduction, a more compact, unified model is created using the basis
set from the decomposition of a single system.

Thesis Supervisor: Karen Willcox
Title: Assistant Professor
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Chapter 1

Introduction

Aircraft noise has always been a leading environmental issue in the air transportation in-

dustry. Increasingly stringent aircraft noise requirements, in the form of restricted takeoff

and landing slots as well as specific departure and arrival routings, have been placed on

many aircraft at airports around the world. The need to discover ways to identify and

reduce aircraft noise has come to the forefront in recent years, inspiring NASA to develop

an environmentally friendly global air transportation system[1, 2].

1.1 Background

In 1997, NASA set a major objective to reduce aircraft noise with 10-year and 25-year

goals to reduce aircraft noise by a factor of two and four, respectively, from 1997 baseline

levels. Industry, academia, and the Federal Aviation Administration have been working

with NASA to research and develop these technologies. This research supports that effort.

Inside the mission to reduce aircraft noise, three separate components are being con-

sidered by NASA: engine noise, airframe noise, and operations noise. Noise reduction in

each of these three areas will allow for greater efficiency and productivity in the aviation

industry as a whole. Operational noise has been minimized through careful airport plan-

ning, with revised departure and approach paths to lessen the impact on the environment.

Furthermore, an extensive amount of research and development has already taken place

to reduce powerplant noise. As operational control and high-bypass engines are refined to

emit less noise, the airframe consequently has become responsible for a greater share of

the total noise generated by an aircraft. This is distinctly apparent under approach and
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landing conditions when aircraft engines are brought close to idle power and can account

for nearly half of the noise produced by an aircraft[18]. It is because of this fact that there

is an immense interest in analyzing airframe noise, such as that generated by slats, flaps,

and landing gears.

1.1.1 Airframe Noise

Improved aerodynamics was the principal engineering objective when designing high-lift

surfaces for airfoils. The leading edge slat of a multi-element wing was designed to delay

the onset of main element separation by alleviating the suction side pressure peak of the

main element leading edge. This was achieved by accelerating flow through the slat gap,

which results in an increase of the wing CLma, [47]. During the critical approach and landing

phases of flight, the performance of these high-lift devices was given primary consideration,

and issues of noise generation and propagation were overlooked in the systems' designs.

Only recently have the aeroacoustic effects of the slat leading edge and cove region

become a focus of study. Due to the large computational cost required to analyze these

complex flows, most analyses have necessarily been of the experimental nature. In recent

years, however, computational modeling efforts have come to the forefront as numerical

techniques improve and computing power increases.

1.2 Recent Investigations

Several studies have been performed to both identify and model the various mechanisms as-

sociated with aircraft noise. This section documents previous analytical and computational

efforts to model the dynamics and aeroacoustics of airframe noise.

1.2.1 Experimental Work

Tests were conducted at the NASA Langley Research Center Quiet Flow Facility (QFF)

during the late 1990's to investigate aeroacoustic effects at the trailing edge flaps[47, 11, 50].

A strong understanding of the flow field and associated acoustic phenomena in this region

had been achieved in these studies using the NACA 632-215 airfoil. Attention next turned

to analysis of the leading edge slat with experiments also performed in the QFF. These

tests measured noise levels related to key slat flow features such as the blunt trailing edge
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Figure 1-1: Energy Efficient Transport Airfoil.

and the slat gap width.

More recent experimental studies acquired acoustic data using the Energy Efficient

Transport (EET) model[48], tested at the NASA Langley Low Turbulence Pressure Tunnel

(LTPT) [56, 7, 31]. The EET configuration consists of a slat, a main wing, and a partial-span

flap, as shown in Figure 1-1. The microphone array setup and subsequent data processing

were developed using techniques at Boeing Commercial Airplane Company[59]. The noise

signatures of the three-element EET airfoil were acquired at 20- and 30-degrees and are

shown in Figure 1-2. Several interesting features in the acoustic measurements, such as

the high-frequency tonal peak in Figure 1-2(b), were analyzed in subsequent computational

studies.

1.2.2 Analytical and Computational Analyses

Both analytical and computational studies were pursued in an effort to simulate the aero-

dynamic effects in the slat region and replicate acoustic results. Analytical work included

simple physics models that were created to model the fluid interactions. For example,

Guo[26] employed a discrete vortex modeling approach to model the dynamics about the

leading edge cusp. The resulting interactions in the slat cove and through the slat gap

were captured by this model and related to acoustic phenomena. Khorrami et al. [31] and

Singer et al. [56] conducted detailed computational aerodynamic and aeroacoustic studies

on a slat having a blunt trailing edge. From these studies they were able to attribute the
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Figure 1-2: Measured acoustic spectra for EET slat with Ma=O.2. Reynolds number is
based on stowed chord and frequencies are model scale frequencies

high-frequency tonal noise shown in Figure 1-2(b) to vortex shedding from the slat trailing

edge. In further research, the computational framework was extended to model the slat cove

free shear layer. Several attempts to model the dynamics in this region have been made,

the most recent being an intensive computational effort utilizing an unsteady Reynolds Av-

eraged Navier-Stokes (uRANS) solver[13, 32, 33]. It is this set of data that we revisit in

this thesis with the application of the Proper Orthogonal Decomposition.

1.3 Motivation

It is widely known that the physics behind the mechanisms that generate noise are extremely

complicated and expensive to model[39]. It is difficult to resolve the flow characteristics

and capture the inherent unsteadiness of an aerodynamic flow. The computational fluid

dynamics (CFD) code used to perform these calculations require long runtimes to reconcile

the instabilities, separation regions, and turbulent eddies that contribute to the production

of noise. The acoustic frequencies created by these instabilities are on the order of 100-

10000 Hz, which translate to periods of 0.0001-0.01 seconds. Many time steps are required

to resolve the large range of frequencies, and this can lead to extensive computational times

for a complete simulation. The uRANS simulation, from which the data for our research is

computed, required computational times on the order of months to complete.
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Another difficulty in applying a CFD code to calculate aerodynamic noise is due to the

dissipative nature of numerical schemes. Sound levels on the order of 100 dB, which is

uncomfortably loud to the human ear, has a pressure level over 3000 times less than atmo-

spheric pressure. As a result, acoustic flow phenomena are often masked by the larger-scale

hydrodynamic fluctuations in a numerical simulation. As a result, it is computationally

difficult to compute aeroacoustic effects simultaneously with fluid dynamics. An accepted

alternative to determine acoustic data is to use acoustic analogy methods to calculate aero-

dynamic noise generated from the governing equations of fluid dynamics. These codes di-

rectly calculate far-field acoustic data from near-field unsteadiness by propagating pressure

and velocity information through a medium. Using CFD combined with acoustic analogy

methods is the current procedure for solving complex aeroacoustic problems. This has

enabled fairly accurate acoustic predictions at a relatively inexpensive computational cost.

Computational analyses can be made more efficient by using a reduced order modeling

approach. This technique allows for lower order models that require less computational

power yet retain the high level of fidelity of a full-order solver. In many cases a reduced

order model may decrease the number of states in a problem by several orders of magnitude.

The Proper Orthogonal Decomposition is one technique that yields a basis suitable for model

order reduction.

1.3.1 Overview: The Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was proposed by Lumley[43] as a method

to extract organized large-scale coherent structures from turbulent flows. The mathe-

matical basis for the POD is the Karhunen-Loeve expansion[30, 41]. Its strength lies

in its capability to provide an orthonormal basis for representing any given data in an

optimal least squares sense. There have been several formulations of the POD in dif-

ferent fields and it has inherited a number of names, including Principal Components

Analysis[29], Hotelling Analysis[28], Empirical Component Analysis[42], Singular Value

Decomposition [24], and Empirical Eigenfunction Decomposition[57]. Its applications in-

clude obtaining low-dimensional descriptions of turbulent fluid flows[27], structural vibrations[17,

21], damage detection[54], and insect gait[36].

Because the classical POD method required a large number of calculations to deter-

mine the optimal basis vectors, this theory was seldom used until the advent of more
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powerful computers. With the introduction of a more efficient formulation of the POD

technique known the "method of snapshots," a number of highly complex problems became

tractable. This included applications in facial recognition[35], signal analysis[3] and data

compression[4]. In the field of fluid dynamics, the POD has been used to decompose tur-

bulent flows, including the analysis of turbulent boundary layers[5], bounded flows[6], and

shear flows[20].

For modeling efforts, the POD provides a suitable basis for building low-order dynamical

models. Projected onto the Navier-Stokes equations, a truncated set of POD modes reduces

a system of PDEs down to a low-order ODE system. Reduced order models of this kind

have been created to investigate transitional flow[58] and to incorporate feedback control of

a cylinder wake[23], for example.

1.4 Research Objectives

This research considers the application of reduced order modeling to complement existing

computational and analytical technologies to create an efficient yet accurate resource for

studying aeroacoustic phenomena. Combining the aeroacoustic calculations with the fluid

dynamic data allows both noise generation and aerodynamic performance to be studied and

quantitatively compared. The research performed in this study will concentrate on the data

reduction aspects of the POD, which serves as a precursor to building a complete reduced

order model.

The goal of this research effort is to apply the Proper Orthogonal Decomposition theory

to provide an a posteriori analysis of the high-fidelity computational fluid dynamics simula-

tions of the slat cove flow field. From the ensemble of flow field snapshots available, we are

interested in identifying dominant coherent structures inherent in the flow. Reconstruction

of the flow field data will be performed, and a correlation between the noise output and the

large-scale coherent structures will be investigated. We attempt to distinguish the dynamics

in the slat cove flow field at each angle of attack by comparing the POD modes for each

system. Finally, a further data reduction experiment will be performed to create a unified

model based on a single set of POD modes.
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1.4.1 Thesis Overview

The Proper Orthogonal Decomposition theory will be presented in Chapter 2, with an em-

phasis on the method of snapshots. Properties of this POD method will be highlighted, and

further application of the theory presented. The aeroacoustics framework will be discussed

as a tool to calculate far-field acoustic data.

The application of the POD analysis to the slat cove simulations will be presented in

Chapter 3. This chapter will discuss the different approaches used in analyzing the flow

variables. A look at the modal energies as well as an examination of the coherent structures

in the POD modes will be provided.

Chapter 4 will present the reconstructed data and its relation to the aeroacoustics frame-

work. The flow field snapshots will be reconstructed using the POD modes as an approxi-

mation to the original data, and these results will be used to provide an acoustic analysis

based on the low-order approximations. A convergence analysis will be performed on the

acoustic results to illustrate how well the POD reconstructions provide data for acoustic

analysis.

A comparison of the POD modes provided by the studies at three separate angles of

attack (4-, 6-, and 8-degrees) will be given in Chapter 5. We aim to characterize changes

in the slat flow dynamics between angle of attack by comparing the POD modes. Cross-

projections between angle of attack cases will be utilized to reconstruct any member of the

original data ensemble.

Chapter 6 summarizes the POD analyses and acoustic assessments for the slat cove

study presented here. A discussion of the results of the Proper Orthogonal Decomposition,

the acoustic implementation, and a recommended outline for future modeling studies on

the slat cove utilizing POD theory will be given.
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Chapter 2

POD and Aeroacoustics Theory

The Proper Orthogonal Decomposition will be introduced as a method of obtaining low-

dimensional subspaces from an ensemble of high-dimensional data. The goal is to describe

a given statistical ensemble with a minimum number of basis vectors. The general POD

theory will be presented here as well as its implementation as the method of snapshots. An

overview of the acoustic propagation tools used in this research will also be discussed.

2.1 General POD Theory

The Proper Orthogonal Decomposition theory in this section follows References [57, 27, 14].

Methodology

The objective of the POD is to extract coherent structures, which are defined by Lumley[43]

as the deterministic functions <> which are best correlated on average with the set of real-

izations U. Let U represent a collection of state variables in the domain Q. First we define

the L 2 inner product between two sample functions f and g as

I. N

(f,g) ]f-g dx"= j j(x)gj (x) dx, (2.1)
j=1

where the bar denotes a complex conjugate and N is the dimension of the functions, or

more specifically, the dimension of U. The index j denotes the j-th element of the function.

We extract the mean flow from the ensemble by decomposing every U into a mean and
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its fluctuating parts,

U = (U) + u, (2.2)

where (U) is an ensemble average, and thus (u) = 0. Having extracted the mean, suppose

we wish to describe the functions using a finite linear combination of basis vectors

u = an(t)4n(x). (2.3)
n

This set of basis vectors {<bn(x)} may be any complete set of orthonormal functions, for

example a Fourier series or the set of Legendre polynomials. Under a linear transformation,

this basis set can be used to generate an infinite variety of other sets {T} by

n Z anm'bm, (2.4)
m

where the a are to be determined and subject only to the constraint

-ikojk =ij. (2.5)
k

The Jij is the Kronecker delta

1 if i=j,

0 if i: fj.

We care to select a unique set of basis functions from the available functions such that it

satisfies

U = An(t)n (x), (2.6)
n

with the additional requirement that the modes are also uncorrelated and are equal to the

solution of the eigenvalue problem shown later

AjA) =: Ai J5j - (2.7)

The goal of the Proper Orthogonal Decomposition is to provide the best linear repre-

sentation of the basis vectors. That is, we wish to look for the function set * which has the

largest mean square projection on the observations, (u, ) 12. This will find the %F whose
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structure is most nearly parallel to all the members of the ensemble u. To this effect, we

must maximize the expression

(2.8)(I( ) 2)

where the (., -) is the inner product defined earlier and the I - II denotes the L 2 norm

(2.9)

The function I@ then corresponds to the particular solution of the constrained optimization

problem in <)

max (I(u, <)|2)

ID ||<b1|2
(2.10)(u, @)|12)

||g||12>

subject to (I,'I) = |II12 1.

Let us now introduce the two-point spatial correlation function K as

Kmn(x, x') = (um(x, t)uin(x', t)) (2.11)

or in vector notation,

K(x, x') = (u(x, t) 0 U(x', t)). (2.12)

The operator 0 denotes the dyadic, or outer, vector product. Substituting Equations 2.6

and 2.7 into 2.12, we get

(2.13)K(x, x') = AI,(x)T,(x'),
n

which can be rewritten as

K(x, x')%F(x') dx' = A T(x).

This is related to Equation 2.8 by the following calculation:

- (j(u(x) @9 U(x'))' I(x')

(2.14)

dx', 1 (x))

- (u(x) @ U(x')) T(x') dx' -T(x) dx

= (ju(x) -W(x) dx.

= (I(u, )|2) > 0.

jOI(x') - *(x') dx')

(2.15)
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It follows that (I, Kh) = (xF, (u, U))) = ((x, u)(u, <b)) = (K ', <b). Thus, K is a non-

negative Hermitian operator, and spectral theory[53, 16] guarantees the maximization of

Equation 2.10 and admits a solution equal to the largest eigenvalue of the problem in Equa-

tion 2.14. Spectral theory also assures us of the existence of a unique and complete set of

basis functions, whose eigenvalues may be written as

An= (KqIn,'I'n) = (f(u, W')|2) = limn (u, Jf) 2 dt. (2.16)
T--+oo T 0

The eigenvalue An represents the mean energy of the system projected onto the basis 'Wn.

The mean energy in a flow field may be thought of as

E j(uj(x)uj(x)) dx. (2.17)

Substituting Equation 2.11 and employing Equation 2.14, we may exercise the orthonor-

mality of xI to calculate the mean energy E of the system as

N

E = Kjj(x, x) dx= An. (2.18)
j=1n

Because the eigenfunctions form a complete orthogonal set, every member of the original

snapshots can be reconstructed by a modal decomposition using Equation 2.6. The coef-

ficients A in Equation 2.6 are found using orthonormality conditions of the eigenfunctions

N

A= (u, W) = ui(x)Tig (x) dx, (2.19)

where the ij index on 'I refers to the component-wise multiplication over the j-th basis

vector.

The POD modes generated by the eigenfunctions of the correlation matrix are optimal in

the sense that the mean-square error resulting from a finite representation of the functions u

is minimized. When ordered from largest to smallest, the eigenvalues determine the relative

weight each mode contributes to the system model. If the eigenvalues decay quickly, then

most of the system dynamics can be captured using a reduced number of modes. A set of

K basis vectors can be chosen from the set determined by the POD which will represent the

desired system behavior. Furthermore, the reduced set of basis vectors K can be selected
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in such a way that the desired fidelity of the system is preserved. For any K-th order

truncation of the series of Equation 2.6,

~ F K 12

||u - UK 112 = u(x) - E An, T. (x) dx (2.20)
. n=1.

is minimized if and only if the Qj (x) are eigenfunction solutions of Equation 2.14.

2.1.1 Method of Snapshots

Computational analyses and simulations deal with discretizations of continuous systems.

In the case of a CFD simulation, the Navier-Stokes equation is computed at every node

in a computational mesh, yielding a set of solutions for every timestep calculated in the

simulation. More generally, this collection of data may be any realizable quantity, whether

measured by experiment or calculated numerically from simulation. For example, the col-

lection of N state variables may consist of strain gauge readings from a structure or N

velocity probes in a fluid. More than one quantity may be measured at a location as well,

such as the four state variables (p, Pu, pv, E) in a two-dimensional inviscid fluid flow sim-

ulation. Each quantity recorded simply becomes another realization in the set u. For a

numerical simulation performed on a large number of gridpoints N, the eigenvalue problem

of Equation 2.14 becomes an N x N eigenvalue problem, and can quickly grow too large for

today's computer systems.

Suppose instead we take M "snapshots" of the data set resulting in M images of the

N simultaneously collected data points. In each snapshot, the relevant flow field quantities

are recorded at each of the nodes in the computational mesh. We then have a collection of

ensemble members which adequately describes the process, and that {u(k)}M represents

the realizations of the grid quantities at each recorded time.

Sirovich[57] determined that when the number of linearly independent snapshots, M, is

smaller than the dimension of N, it is more efficient to express the basis function as a linear

combination of the original snapshots. As a result, * takes on a special form in terms of

the original data as
M

Z=[3ku(k) (2.21)
k=1

where Ok are coefficients yet to be determined. Assuming ergodicity, the interchangeability
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of the time average with the ensemble average, we may now write the correlation function

in Equation 2.12 as

K(x, x') = u(n)(x) 0 u(n)(x').

n=1

The discretized eigenvalue problem of Equation 2.14 then becomes

(2.22)

( I mu(0) (x) 0 U (x')
(i=1

M

, k= U(k) (X)
k=1

M

= A 3ku(k) (x).
k=1

This reduces to

i=1

F M I (ufi (x), u(k)(x))3k u W (x) - AS ku(k) (X).

k=1 k=1

(2.24)

Thus, a sufficient condition for the solution of Equation 2.23 will be to find the coefficients

#k such that

I(u ()(x), u(k)(x))#3k = Ai
k=1

(2.25)

We now introduce C = @(u(0 (x), u(k)(x)) as an inner product of the snapshot quantities,

and the equation becomes

CV = AV. (2.26)

The above equation has a complete set of orthogonal eigenvectors with corresponding eigen-

values

V = [31 #2 ... #3M)

A, A 2  : .. >Am.

Equation 2.21 is used to construct the POD modes using the given eigenvector information.

By employing the method of snapshots, the N x N system reduces down to an M x M

eigenvalue problem.

Algorithm

The following algorithm is provided to guide the construction of the POD basis vectors

using the method of snapshots.

1. Attain a set of realizations at prescribed intervals in time u(k) = u(x, tk). The times
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tk are usually equally spaced in time but this is not necessary. This timestep should

be small enough to capture the important dynamics of the system.

2. Form the M x M correlation matrix C by taking the inner product of the snapshots

C (u(), u(j)),

or in component notation as
N

k=1

3. Calculate the eigenvalues and eigenvectors of Equation 2.26. The eigenvalues A,

indicate the relative importance of the POD modes.

4. The POD basis vectors, or modes, are constructed as linear combinations of the

snapshots, using the eigenvector information calculated in the previous step

M

n u(k),

k=1

where the #n corresponds to the k-th component of the n-th eigenvector.

5. The orthogonal POD modes %[ can then be normalized such that

(Xpi, Wyj) = 6ij.

2.2 Acoustics Framework

An acoustic solver based on the Ffowcks Williams and Hawkings[22] equation has been

written by Lockard at NASA Langley Research Center [38]. The solver computes the acoustic

signal at a specified far-field observer location by integrating the FWH equation along a

source line. The following methodology of the aeroacoustic solver is as given by Brentner

and Farassat[10] and is referenced from [55]. The FWH equation may be written as

02 a2
D2 p'(x, t) = [TijH(f)] - - [Lio(f)] + -[(poUn)6(f)] (2.27)axiaxi axi at
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where D = } - V 2 is the wave operator, c is the ambient speed of sound, t is observer

time, p' is the acoustic pressure, p' is the perturbation density, po is the free-stream density,

f = 0 describes the integration surface, 6(f) is the Dirac delta function, and H(f) is the

Heaviside function. The quantities Ui and Li are defined as

U= (1 - -)Vi + (2.28)
Po Po

and

Li fi Pjj+ Uj (Un - v.) (2.29)

where p is the total density, pui is the momentum in the i direction, and Pij is the compres-

sive stress tensor. For an inviscid fluid, Pig = p'6or where 6 ij is the Kronecker delta. The

subscript n indicates the projection of a vector quantitiy in the surface-normal direction. To

obtain a solution to Equation 2.27, the first term on the right-hand-side must be integrated

over the volume outside the integration surface f = 0 wherever the Lighthill stress tensor

Tij is nonzero in this region. In the work reported here, this term is neglected. However,

the main effects of nonzero Tij within the flow can be included by choosing an integration

surface that contains all of the volume with significant Tij contributions.

The other terms on the right hand side of Equation 2.27 include terms that are deter-

mined by the unsteady flow-field data on the integration surface. Provided that the unsteady

flow data on the integration surface f = 0 is correct, Singer et al. [55] demonstrated that

the FWH equation correctly propagates the acoustic radiation from several source regions,

including the complex signals associated with acoustic scattering from sharp edges.

Implementation

The fwh2d solver will be used as an acoustic analogy tool to determine far-field pressure

disturbances propagated from a source. Inputs to the solver include the source line location,

pressure and velocity information extracted from the source lines, and the locations of the

observers to which the acoustic fields are propagated. The solver computes the far-field

noise in the form of pressure perturbations in the frequency domain. An inverse Fast Fourier

Transform is applied to the solution to recover the acoustic signal in the time domain. A

schematic of the process is given in Figure 2.2.
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Figure 2-1: Schematic of fwh2d input/output.
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Chapter 3

POD Modes

The strength of the Proper Orthogonal Decomposition comes from its ability to extract

coherent structures from a seemingly random set of data. In this chapter a brief overview

will be given detailing the computational fluid dynamics studies performed by Khourrami

et al. at NASA Langley Research Center[32, 33]. The resulting solutions of the unsteady

Reynolds Averaged Navier-Stokes simulation become the data set upon which the POD is

applied. The POD is performed, and the eigenvalues and POD modes will be analyzed.

3.1 Data Setup

3.1.1 CFD Analysis

Two-dimensional unsteady computational fluid dynamics simulations were conducted on

the multi-element, high-lift configuration Energy Efficient Transport airfoil[48]. The EET

is an unswept three-element airfoil consisting of a slat, a super-critical main element, and

a flap. The stowed chord of the airfoil has length 0.55 m, and the slat and flap chords

equal 15.5% and 30% of the stowed airfoil chord, respectively. The numerical study was

performed with the slat deflected at 30 degrees with respect to the main airfoil. A close-up

view of the computational mesh in the slat vicinity is shown in Figure 3-1. There are over

200,000 nodes in the entire EET mesh, and over 50,000 nodes in the slat cove region alone.

The computational fluid dynamics solver CFL3D[37] was utilized to perform an unsteady

Reynolds Averaged Navier-Stokes simulation on this mesh, with reference conditions set at

the LTPT test section entrance. Nondimensional quantities included the reference length loo
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Figure 3-1: Computational mesh in vicinity of slat. Every other nodal point shown.
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(based on the stowed chordlength), speed of sound a,, density p,, and kinematic viscosity

v,. The numerical tests were conducted at a Reynolds number Re = 7.2 x 106, Mach

number Ma = 0.20, and a non-dimensional time step At = 4.116 x 10-4 based on the

stowed chord length and free-stream speed of sound. The complete data set is comprised

of solutions from simulations at three different angles of attack - 4, 6, and 8 degrees -

in order to emulate the conditions in which the high-lift configuration is deployed. A brief

discussion of the original flow field will be given here. For a more detailed discussion of the

vorticity evolution, the reader is encouraged to read Khorrami et al.[33]

Instantaneous vorticity snapshots are shown in Figure 3-2 for each of the angles of

attack at a time after all the initial transients have settled. The 4- and 6-degree cases

exhibit similar behavior in their respective flow dynamics, and will be discussed together.

In both of these cases, a large vortex core forms in the center of the slat cove region due

to the dynamic forces. This positive sign vorticity is fed by the shear-layer vortices that

are shed off of the leading edge of the slat. As these smaller vortices move along the cove

free-shear layer, some are entrained into the central core vortex.

There is no regularity to the manner by which these shear-layer vortices travel about

the free-shear layer. They are created at the leading edge and driven into the shear layer

by the fluid dynamics of the system. They then travel up the free-shear layer toward the

rear of the slat cove region, where most are then entrained into the backflow along the

inner surface toward the leading edge. Some vortices interact with the slat inner surface

boundary layer and force instant roll-up of negative sign vorticity along that edge. As a

consequence, opposite sign vortex pairing is induced into the shear layer as the negative-sign

vortices propagate into the free-shear layer . Furthermore, a number of vortices as well as

positive-negative vortex pairs are ejected through the gap between the slat and the main

element into the freestream flow. This again occurs at a random rate, and no periodic

pattern has been identified.

The 8-degree simulation (Figure 3-2(c)) presents a significantly different result regarding

the evolution of the slat free-shear layer. Unlike the 4- and 6-degree simulations, the 8-degree

simulation does not exhibit the highly active circulating vortex core in the center of the

slat cove region. Instead, positive sign vortices are formed at the leading-edge cusp and are

convected through the free-shear layer of the slat region. Once they reach the reattachment

point, most vortices are trapped in the circulating region and are convected back along
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(a) Instantaneous 4-degree vorticity field
snapshot

(b) Instantaneous 6-degree vorticity field
snapshot

(c) Instantaneous 8-degree vorticity field
snapshot

Figure 3-2: Instantaneous vorticity field snapshots.
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the inner surface towards the slat cusp. There is no strong core vortex into which the

smaller vortices can be ingested. The vortices simply move back along the inner surface

towards the slat cusp and are reinserted into the slat free-shear layer as they roll off the

leading edge cusp. The motion of the vortices along the slat bottom surface cause some

of the boundary layer to separate, releasing opposite-sign vorticity into the flow as well.

However, these dissipate soon after entering the free shear layer. It has also been observed

that some positive-sign vortices (but no negative-sign vortices) escape into the free-stream

flow through the slat gap. As in the 4- and 6-degree cases, there is no recognizable pattern

for which the vortices are swept away.

3.1.2 Snapshot Ensemble

Ensemble Size

The full CFD analysis resulted in a collection of over 35,000 solutions per angle of attack

simulation. After discarding the initial transient segment, 32,768 timesteps were retained

for analysis1 . By following the time evolution of a vortex in the slat cove region, it was

determined that a full vortex progression cycle required approximately 3,000 timesteps.

This effectively captured the time duration for which a vortex was shed off of the leading-

edge cusp, convected through the free-shear layer, and returned to the cusp area through

the recirculation region. For the purposes of this study, it was presumed that in order to

capture the representative flow dynamics, at least two full cycles of vortex evolution should

be employed in the POD ensemble. Doing so would ensure that the POD results would

represent a valid segment of the slat flow, and thus provide a model representative of the

total slat flow region.

Two cycles of vortex evolution were captured in 6,000 timesteps. Because the time-

domain solutions were highly resolved, and the POD identifies variations in snapshot data,

it was concluded that no significant changes in the continuous flow field data would be seen

by adding more solutions. As a result, the POD ensemble was established to contain every

16th snapshot covering 6,400 timesteps, for a total of 400 snapshots.

'For the 8-degree case, only the last 16,384 timesteps were available due to unrecoverable data corruption
during processing.
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Ensemble Norm

It should be noted that the Proper Orthogonal Decomposition is an unbiased mathematical

formulation, and therefore does not take into consideration the type or dimensions of data

it is analyzing. Certain ensemble norms will result in an energy consideration amenable

to physical quantities, such as the total kinetic energy resulting from a POD analysis of

the velocity fields. In the evaluation of other ensemble norms, the associated energy may

not represent a physical quantity, and thus should not be regarded as such. This will be

discussed further in Section 3.2.1.

Several different ensemble norms were taken into consideration when performing this

study. In the initial analysis, all four state variables of the two-dimensional CFD study were

used to create a norm containing all the information available. Because of the extensive

amount of data, however, the analysis proved computationally expensive. Furthermore,

ensemble norms based on the individual state variables were determined to provide more

efficient analyses and a more focused decomposition of that particular variable field.

For the purposes of this study, the POD will be applied to the pressure variables as

well as the velocity data in separate implementations. This not only lets us analyze the

two properties individually, but also facilitates later acoustic calculations using the acoustic

solver. The acoustic solver requires as inputs the pressure data as well as the velocities for

a specified source line. This is to be expected, since acoustic energy is primarily attributed

to pressure perturbations in a medium and velocity perturbations affect the propagation of

those pressure fields.

3.2 POD Analysis

We now apply the Proper Orthogonal Decomposition on the data ensemble containing the

400 snapshots of the flow field quantities calculated by the CFL3D fluid dynamics solver.

We wish to identify and analyze the coherent structures most relevant to all snapshots in

the ensemble. We will perform the POD on the pressure and velocity fields separately, and

discuss the results individually.
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Figure 3-3: Pressure eigenvalues - Magnitude.

3.2.1 Eigenvalue Energy

The Proper Orthogonal Decomposition was performed on the ensemble set detailed in the

previous section. A correlation was performed between the snapshots of the ensemble, and

the resulting eigenvalues and eigenvectors were calculated as solutions to Equation 2.26,

repeated here as

CV= AV

The eigenvalues represent the energy content contained within the POD modes, and are

ordered from largest to smallest by the POD. The eigenvectors will be used later to create

the basis functions, also known as the POD modes, using Equation 2.21. A sample of the

computed eigenvalue data from which these plots are generated may be found in Appendix

A.

The eigenvalues calculated from Equation 2.26 represent the amount of modal energy
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contained in the corresponding POD mode. Note that this metric of energy does not

necessarily denote a physical energy. The characterization of these quantities depends on

the types of measurements taken in the POD ensemble. For instance, in incompressible

fluid mechanics, a POD analysis on velocity will yield eigenvalue energy that is related

to the fluid kinetic energy. In a POD analysis on vorticity, the eigenvalue energies will

correspond to the system enstrophy. For analyses of other ensemble norms, or combinations

of different quantities, the eigenvalues may not correspond to any specific type of energy.'

Thus regarding the POD eigenvalues as energy in a general mechanical context is incorrect

in principle and may lead to misleading results[12].

Pressure Eigenvalues

The eigenvalue spectrums are plotted on a semi-log scale in Figure 3-3 for the POD pressure

analyses at 4-, 6-, and 8-degrees angle of attack. For all analyses performed in this study,
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the POD was applied to the set of perturbation data after having extracted the mean states.

This eliminates what would have been the most dominant mode in the spectrum, which by

construct would have contained the mean flow in an eigenvalue several orders of magnitude

larger than all other eigenvalues. We are mainly interested in the perturbations from the

mean, and this method was taken to enhance analysis of the results. For all three angles of

attack, it can be seen that the magnitudes of the eigenvalues fall off rapidly within the first

few modes, and gradually taper off as the eigenvalues get smaller. Thus it is apparent that

the structures of the first few modes contain coherent structures that dominate throughout

the snapshot ensemble.

The eigenvalue information can be seen more clearly in Figure 3-4, where the magnitudes

are shown as a percentage of the total system energy

Aj
% Energy = .

1 Ai
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This represents the percent energy contained in mode j. The first eigenvalue of the 6-degree

study corresponds to the most dominant mode in its system, with 32% of the total pressure

energy contained in the first mode. In parallel studies using the 4- and 8-degree snapshot

ensembles, the eigenvalues exhibited similar trends in magnitude. The dominant eigenvalue

in the 4-degree case contributes 23%, while the 8-degree case expressed the highest energy

in the first mode with 41%. It can be seen that the dropoff in the 8-degree case was steepest,.

due to a greater amount of energy contained in the earlier eigenvalues. The residual error

Resj, calculated as the sum of the eigenvalues contained in the remaining modes, can be

expressed as
M

Resj = E Ai.
i=j+1

Thus for approximations at the same rank, the residual energy will be lowest using the

8-degree modes, which suggests that the underlying low-dimensional manifold is easier to
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approximate.

Velocity Eigenvalues

The eigenvalues calculated from a POD analysis of the velocity data are shown in Figures 3-

5 and 3-6. A similar trend is found in the velocity eigenvalues as in the pressure eigenvalues.

The initial modes contain the most energy, with 14%, 15%, and 33% kinetic energy in the

4-, 6-, and 8-degree systems, respectively. Again, the 8-degree system contains the most

energy within the first few modes of the system compared to the other two angles of attack.

The magnitudes of the later modes drop off more quickly, and thus of the three systems, the

8-degree kinetic energy field can be best approximated for a given number of modes. Note

that the trailing end of the percentage-energy spectrums of both the pressure and velocity

eigenvalues show banding in percent magnitude values. We attribute this to numerical

rounding errors in computing the solution to the eigenvalue problem, rather than actual

eigenvalue behavior.

3.2.2 POD Pressure Modes

A discussion of the pressure mode shapes, or POD basis functions, will be given in this

section. Due to the fact that the 4- and 6-degree systems exhibit similar behavior, the

pressure POD modes for both systems will be discussed together from the 6-degree stand-

point. The reader may infer from the discussion and the figures an analysis of the 4-degree

system, whose POD modes and related modal behavior can be seen in Figures 3-7 through

3-10. For the figures in this section, the scaling of the pressure fields have been chosen

to clearly illustrate the structures in the POD modes. Scaling legends, which indicate the

perturbation pressures, are provided beside each of the figures plotted.

6-degree Modes

The POD analysis performed on the 6-degree pressure snapshots results in a number of

coherent structures in the initial modes. The first 6-degree mode, shown in Figure 3-11,

contains two large opposite sign pressure regions which dominate the cove region. The

scope of the two regions are nearly identical but opposite in sign, and are approximately

divided at the vertical midpoint of the slat surface. From the eigenvalue energy spectrum
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45



4* Pressure projection magnitudes

II I 1 1

-.. .. . .. . .. ... . .. . .. .. . . .. . .. .. .. . .. .. .. . . .. . . ..
1.. . . . . . . . . . . . . . . . . . . . .. . .

50 100 150 200 250

50 100 150 200 250

300 350 400

300 350 400

50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 40

- .. .. . .. . . .. ... . . - -.. ....................

- . .. . -.. . ... .... . . . .. . .. . .. . ... . . . .. . . .

0

50 100 150 200
Snapshot #

250 300 350

Figure 3-9: Temporal projection magnitudes of 4-degree pressure modes 1-10 onto all snap-
shots.

Odd-numbered modes - - - - - Even-numbered modes

46

2

-10

-2

0

CI!

0
20

Nt
CI)

1

0.5

0

-0.5

-1

0

- | 1....

1 91

(q
LO

_0
0

1

0.5

0

-0.5

-1

0

r. -

I; . .. . . . . . . . *'I I I 

. .... ........ .... .... .... .... .... . ... .... .... ....

-. ...-. - - - -.......

A.-
_0
0

0

C
U)
0
*0
0

1

0.5

0

-0.5

-1

05

-0.5

-1

0 400

I



4* Pressure projection magnitudes
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Figure 3-11: 6' pressure mode 1 containing 32% energy.

48



shown earlier, it can be seen that this structure contributes approximately 32% of the energy

contained throughout the snapshot ensemble.

The second mode, shown in Figure 3-12(b), also exhibits two cohesive, opposite-sign

pressure regions. This mode contains approximately 14% of the total pressure energy.

Whereas the dominant structures were vertically separated in the first mode, they are

horizontally separated in the second mode.

The third and fourth modes exhibit a distinctly different nature than the first two modes.

Mode three consists of bands of alternating positive and negative pressure perturbations,

while mode four exhibits the same structure of pressure bands, though opposite in phase.

Also note that there is very little activity in the center of the slat cove in these modes,

which suggests that the majority of the central core motion was captured in the first two

modes. Rather, the third and fourth mode contribute a disperse pressure field through the

snapshots, akin to the propagation of pressure waves from a source.

Modes five and six return to the larger coherent structures located in the center of the

slat cove region. These two modes contribute 7% and 5% of the total pressure energy,

respectively. Although they are not as dominant as the first two modes, they do contain

features that appear to contribute to the main core circulation. As we move to the higher

mode numbers in Figure 3-13, it can be seen that the coherent structures decrease in size.

There still appears to be some structure in the shapes of the pressure zones, yet they tend

to become more random with increasing mode numbers. It can also be seen that some

artifacts of the smaller-scale structures begin to appear in these modes and higher, in the

order that they are most correlated with the entire ensemble.

Figures 3-14 and 3-15 show the temporal projection magnitudes of the modes projected

onto the original snapshots. These plots depict the temporal nature of the modes, showing

the influence of the mode across the snapshot ensemble. Note that the temporal projections

show that the first two modes have approximately the same period. This suggests that the

shifting of phase dominance between these two modes may act to drive the slower, large-

scale behavior of the central vortex core. Modes 3 and 4 contain extremely fast oscillations,

corresponding to the convection of the narrow pressure bands that appear throughout the

ensemble set. Modes 5 and 6 have periods slightly shorter than modes 1 and 2 and likely

contribute to the cove circulation as well. Neglecting the extremely fast oscillatory nature

of modes 3 and 4, the frequency of the POD modes are seen to increase in their temporal
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Figure 3-12: 6-degree Pressure Modes 1-6
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Figure 3-13: 6-degree pressure modes 7-12.
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6* Pressure projection magnitudes
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projections onto the snapshots. Combined with the observation that the extent of each

structure decreases in size with increasing mode number, this suggests that content in higher

mode numbers contribute to the smaller-scale effects in the flow field. Furthermore, it should

be noted that the magnitudes of the projections decrease with higher mode numbers, which

suggests that these modes shift the system state less drastically than do the earlier modes.

Because there are very few small-scale structures in the first six modes of the 6-degree

POD basis (neglecting modes 3 and 4), it is presumed that the larger coherent structures

are what induce circulation about the center of the slat cove. These large structures act to

shift the pressure away from the mean pressure field. Since each of these modes is slightly

out of phase with one another, this suggests that the energy is transferred to each mode at

different instances in time. This contributes to the unsteady motion in the central region

of the slat cove.

An extended collection of the pressure modes is provided in Appendix B.1 for modes

13-36. In the later modes the structures in the modes appear smaller and more defined.

Because each mode is orthogonal to all the modes educed prior to it, the larger features that

have already been extracted do not appear again. The remaining features thus include the

formation of structures comprising the positive-negative vortex motion along the slat inner

surface as well as the vortices that travel through the free-shear layer. Note that because the

modes are ordered from largest to smallest, the structures that appear in the later modes

are necessarily less dominant than the earlier formations. This is expected, as from a pure

data perspective, the POD attempts to locate the flow features that are most parallel to all

the members of the ensemble. Smaller structures tend to be more dispersed and convect

at random intervals through the shear layer, thus leading to a lower correlation throughout

the ensemble set. It is also for this reason that the central core circulation appears earliest

in the POD basis.

8-degree Modes

The first twelve 8-degree modes are shown in Figures 3-16 and 3-17. Recall that the original

solution flow field for the 8-degree case was significantly less energetic in the slat cove region,

particularly in the central core (see Figure 3-3). This is made evident by the initial modes

of the POD analysis. The first two modes do not exhibit the large coherent structures that

perturb the core region as seen in the initial 6-degree modes. On the contrary, the first two
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8-degree modes show pressure bands which populate the entire flow field. The nature of

these pressure bands are strongly associated with the effects of trailing edge vortex shedding,

as evidenced by Khorrami et al. [31]

The temporal projections of the first twenty 8-degree POD modes onto the entire 8-

degree snapshot ensemble are shown in Figures 3-18 and 3-19. Here we see the fast oscilla-

tions corresponding to the pressure bands in Modes 1 and 2. The long wavelength in mode

3 corresponds to the large structure that is found in that mode, which likely contributes

to some of the general features in the cove area. Features representing the inner slat vor-

tices appear as tightly bound pressure cores in Modes 4 and 5. It can be seen that the

two modes depict roughly the same pressure cores, although they are out of phase between

mode numbers. This suggests that the vortices are convecting along this tight path along

the inner surface of the slat. The pressure banding once again reappears in modes 5 and

6. However, these bands are narrower, and appear to emanate at approximately twice the

density of the bands in modes 1 and 2. This should correspond to higher frequency pressure

waves propagating at a smaller wavelength.

Earlier, it was seen in the corresponding 8-degree eigenvalues that the first mode contains

41% of the pressure energy and the second contains 31%. Since the pressure banding in the

first two modes dominate over 70% of the flow, this suggests that the flow characteristics of

interest (e.g. convection of vortex-pressure cores, etc.) are contained in the remaining 30%.

With the smaller modes relative to the 4- and 6-degree cases, it can be concluded that the

8-degree system is less energetic. Indeed, as much of the varying flow field structures are

contained in just 30% of the pressure energy, it can be concluded that the 8-degree slat flow

is less random. Thus, when compared to the other two angle of attack studies, the 8-degree

simulation exhibits a more organized flow field overall.
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8* Pressure projection magnitudes
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Figure 3-19: Temporal projection magnitudes of 8-degree pressure modes 10-20 onto all
snapshots.
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3.2.3 POD Velocity Modes

The Proper Orthogonal Decomposition was also applied to the velocity components of the

flow, in an analysis similar to that of the pressure POD. In this study, both u-direction and

v-direction velocities were combined to create the POD ensemble. An analysis of the results

is presented here. As stated earlier, the 4-degree system exhibited many similarities to the

6-degree system. Mode shapes and temporal projections for the 4-degree velocity POD

analysis are given in Figures 3-20 through 3-23. The reader may infer a similar examination

of the 4-degree system from the following discussion of the 6-degree velocity POD modes.

An extended collection of the POD velocity modes may be found in Appendix B.2.

6-degree Modes

The eigenvalue spectrum of the POD analysis on velocity is shown in Figure 3-5. These

eigenvalues denote the amount of kinetic energy in the system. The velocity modes are

presented in Figures 3-24 and 3-25 for modes 1 through 12. The vectors represent the

direction and relative magnitude at every fifth nodal point in the mesh. These vectors

are superimposed upon a contour plot of the magnitude of the velocity fields, so as to

give a better indication of where the strongest fields occur. The brighter areas represent a

high scalar velocity while darker areas represent low scalar velocity. Scaling legends, which

indicate the magnitude of the perturbation velocities, are provided for each of the figures

plotted.

The initial two modes for the 6-degree velocity analysis show the regions of activity to

be largely contained in the vortices at the trailing edge of the slat2 . This is not unexpected

since the CFD analysis uses a highly refined mesh in that area to capture the trailing edge

effects. The strength of the velocity fields here and the fact that their behavior is highly

correlated placed this region at the most energetic end of the POD spectrum. Note that

the energies of the first two modes are very close to each other in magnitude, respectively

containing 13% and 12% kinetic energy. In the assumption that these two modes do capture

the trailing edge vortex street, it would be expected that these two modes form an eigenvalue

pair. This is similar in nature to other simple flows, such as a vortex street trailing off of

2 Velocity vectors were removed from the trailing edge region of the slat. Due to the highly refined mesh

in this area, the velocity vectors were so densely spaced that they could not be recognized. The contour plot

of velocity magnitude should suffice as an indication of the kinetic energy in this region relative to the rest

of the slat cove.
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velocity mode 2

velocity mode 4

velocity mode 6

61



(a) 4' velocity mode 7

(c) 4* velocity mode 9

0.01

0.00

0.01

0.00

0.01

0.00

(b) 40 velocity mode 8

(d) 40 velocity mode 10

(e) 40 velocity mode 11 (f) 40 velocity mode 12

Figure 3-21: 4-degree velocity modes 7-12.
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4* Velocity projection magnitudes
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4* Velocity projection magnitudes
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Figure 3-24: 6-degree velocity modes 1-6.
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Figure 3-25: 6-degree velocity modes 7-12.
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Figure 3-26: Temporal projection magnitudes of 6-degree Velocity Modes 1-10 onto all
snapshots.
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a cylinder, where this type of eigenvalue pairing is also evident[191. In those studies, it

was found that eigenvalue pairing and antisymmetric modal shapes suggest convection in

a medium. Although it cannot be seen in the figure due to lack of vector resolution, the

eigenvalue energy and highly localized velocity fields in modes 1 and 2 suggest the same

convective phenomenon of a vortex street trailing from the slat trailing edge, and this is

confirmed by analysis of the original snapshots.

0.00 0.01

Figure 3-28: 6-degree velocity mode 3.

Velocity fields corresponding to motion in the central vortex core do not appear until

modes 3 and higher. A closer view of the modal vector field in mode 3 is shown in Figure

3-28. In mode 3, it can be seen that the velocity vectors take on a circular motion about

two cores. The velocity fields rotate clockwise in the upper region and counterclockwise in

the lower region. These velocity cores are remarkably similar to the pressure cores in mode

1 of the POD pressure analysis.

In fact, a separate POD analysis on the combination of variables (pressure and u- and

v-component velocities) showed that the velocity fields do correspond to the pressure fields
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of corresponding mode numbers. In that study, the velocity fields also indicated a clockwise

circulation around the strong pressure cores, and a counter-clockwise circulation about the

opposite-sign pressure cores. This matching of velocity fields and pressure cores remained

apparent throughout the ensemble set. However, as explained earlier, it was decided to use

separate ensemble norms for pressure and velocity to provide more efficient decompositions

in each. This results in optimal velocity modes, which may not exactly match up with the

pressure cores in the optimal pressure modes.

8-degree Modes

Similar to the 4- and 6-degree velocity POD modes, the initial two modes of the 8-degree

system are dominated by the trailing edge vortices (Figure 3-29). However, unlike the

4- and 6-degree cases, these first two modes contain 33% and 30% of the kinetic energy,

roughly double the energy contained in the first two modes of the other cases. Because over

60% of the kinetic energy was captured in the trailing edge flow, this suggests that there

is less information in the remaining modes, as the trailing edge vortices take up a much

greater proportion of the kinetic energy in the overall flow field. In higher mode numbers,

the leading edge and trailing edge activity continues to dominate. The exception is found

in modes 5 and 6, where some activity in the cove center region can be detected. The set

of modes 7-12 shown in Figure 3-30 are again dominated by the leading and trailing edge

flows.

It can be seen in the temporal projections (Figures 3-31 and 3-32) that the high-

frequency oscillations are due to the activity in the leading and trailing edge regions. Very

little activity can be seen at the trailing edge in modes 3 and 4, and the corresponding

temporal data shows the longer wavelength fluctuations related to the larger features in the

cove region. In higher modes, it can be seen that much of the kinetic energy is concentrated

at the leading edge cusp. The velocity vectors here are clearly stronger in magnitude than

any activity in the slat cove center.

In the other two angle of attack systems, the kinetic energy is more evenly proportioned

throughout the modes, suggesting a greater distribution of the energy throughout the later

modes. This is perhaps more evident in the eigenvalue spectrum of Figure 3-6. Because

there is such a large percentage of kinetic energy captured in modes 1 and 2 of the 8-degree

system, there is a corresponding large dropoff in kinetic energy of successive modes. Much
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of the later modes contain smaller structures to capture the disperse small scale vortex

motion evident in the snapshots. Another indicator of the strength of the POD modes is

the magnitude of the temporal projections as seen in Figures 3-31 and 3-32. The projection

magnitudes follow a decreasing trend with increasing mode number. As the higher POD

modes are extracted from the system, they appear to have less influence on the overall

formation of the velocity fields.

3.3 Summary

We have seen the decomposition of the pressure and velocity fields into optimal modes

generated by the Proper Orthogonal Decomposition. The initial mode shapes contained

coherent structures that dominated the slat cove region. This was more apparent in the 4-

and 6-degree POD modes compared to the 8-degree modes since the former two systems had

a more dynamically active central cove region. A high level of organization was apparent

in each mode as well. Features apparent in the individual POD modes as well as certain

mode pairs could be linked to phenomena in the actual flow field. Building on this notion

we will see in the next chapter how low-order approximations to the original flow field data

can be constructed using these POD modes.
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Figure 3-29: 8-degree velocity modes 1-6.
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Figure 3-30: 8-degree velocity modes 7-12.
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8* Velocity projection magnitudes
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Figure 3-32: Temporal projection magnitudes of 8-degree Velocity Modes 10-20 onto all
snapshots.
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Chapter 4

Snapshot Reconstruction

We have seen how the dominant structures are extracted and ordered by the Proper Orthog-

onal Decomposition. A low-rank approximation of the original data set may be constructed

using these extracted modes. In this chapter, we will look at reconstructed snapshots to

see how well they represent the original data. The reconstructions will then be used as the

input to the acoustic propagation solver, and far-field acoustic spectra based on the slat

cove flow approximations will be discussed for the EET airfoil.

4.1 Low-Rank Approximations

The optimality of the POD basis functions ensures that the low-rank approximation formed

using an arbitrary number of K leading POD modes will be the optimal representation of

the set u in a least-squares sense (Equation 2.20). Among all linear decompositions, for a

given number of modes K, no other orthonormal basis set provides a better representation

of the energy on average than those provided by the Proper Orthogonal Decomposition[8].

This enables us to reconstruct low-order systems using a minimum amount of data.

4.1.1 Energy Considerations

Low-order approximations can be formulated using a reduced set of POD modes. Because

the eigenvalues drop in magnitude rapidly, adding information through the use of additional

modes has a decreased effect as the number of modes is increased. Referring to the eigenvalue

spectrum as a percentage of total energy, for example the pressure eigenvalues of Figure

3-4, the rate at which the eigenvalues decrease for each angle of attack provides a clue as
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to how dominant the POD modes are. The initial modes contain the most energy, and

subsequent modes drop off quickly. For instance, the first 8-degree mode has the highest

energy content of the three angle-of-attack studies, and the magnitudes of its later modes

drop off at a faster rate than the 4-degree and 6-degree modes. It can thus be deduced

that the 8-degree slat dynamics are better correlated across the ensemble. Furthermore,

although the higher mode numbers appear to contribute a relatively small percentage to the

total system energy, they still contain important information used to reconcile the sparse yet

locally intense vortex formations in the shear layer. The aperiodic behavior and sparseness

of the vortex evolution leads to the decomposition into a larger number of important POD

modes.

It is apparent that the approximation will become more precise as a larger number of

modes are included. Theoretically, incorporating all the modes will recover the original

data image. In order to construct a low-order approximation, however, it is necessary to

determine a measure by which we can be confident in the fidelity of our data. In other

words, the question arises as to how many modes are desired to create the reconstruction.

It is perhaps more easily understood when the eigenvalue spectrum is recalculated to show

the accumulated energy content of the POD modes. The accumulated energy content of

the POD modes may be defined by

AEC= (4.1)

where K is the arbitrarily selected cutoff point for the number of modes selected. This

criterion has been up for debate, because there is no definitive answer as to what value is

appropriate. Sirovich suggested the standard of taking the number of modes equivalent to

representing 99% of the data captured. The same standard will be used henceforth in this

study and we will also include other benchmarks for comparison. To show the quality of

the reconstructions of the slat flow analysis, the number of modes representing 70%, 90%,

99%, and 99.9% energy are provided in this study.

Figures 4-1 and 4-2 illustrate the accumulated energy content of the POD modes for the

pressure and velocity analyses, up to the first 100 modes. Here, it is clearly apparent that

the accumulated energy in the 8-degree case rises faster than the other two angle of attack

conditions. The first mode itself contains over 40% of the pressure energy, the first two
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Figure 4-1: Accumulated energy content of POD modes - Pressure energy.

modes contain over 70%, and the first 9 modes together combine to contribute over 90% of

the energy. The accumulated energy spectrum slowly asymptotes as it reaches beyond 90%

since the modal energy represented by the eigenvalues decreases rapidly. A larger number

of modes are necessary to accumulate further energy since these modes contain smaller

and/or fewer coherent structures. Still, 99% of the pressure energy in the 8-degree system

is captured in the first 50 modes and 99.9% is recovered in 130 modes.

In contrast, the 6-degree modes contain less energy in each of the leading modes, re-

quiring 17 modes to recover 90% of the energy and 84 modes to capture 99%. Again, as

in the 8-degree system, a larger number of modes are required to capture further energy

simply due to the dropoff in energy of the higher modes. For the 6-degree case, 185 modes

are required to regain 99.9% of the pressure energy. The number of modes required to

capture specified amounts of pressure and kinetic energy at specified ensemble energies at

the preselected benchmarks are given in Tables 4.1 and 4.2, respectively.
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Pressure # of Modes
Energy 4-degrees 6-degrees 8-degrees

70% 7 5 2
90% 24 17 9
99% 96 84 50

99.9% 199 185 130
99.99% 309 301 249

Table 4.1: Number of modes required to capture pressure energy.

Kinetic # of Modes
Energy 4-degrees 6-degrees 8-degrees

70% 11 9 4
90% 35 29 18
99% 124 115 84

99.9% 239 227 191
99.99% 341 333 310

Table 4.2: Number of modes required to capture kinetic energy.

4.1.2 Reconstructions

Using the accumulated energy spectrum shown previously, we can reconstruct any snapshot

in the original ensemble set to the desired accuracy. Equation 2.2 is used along with

Equation 2.6, beginning with the mean flow and linearly superposing each of the modes as

specified by the coefficients A. as determined by orthogonality conditions (Equation 2.19).

The contour scalings in the figures that follow were chosen to be the same across all three

angles of attack in order to illustrate the behavior of the systems in relation to each other.

Pressure Snapshots

To demonstrate the ability to create linear reconstructions of the original data set using

the POD basis modes, arbitrary snapshots were selected out of the ensemble set to be

reconstructed. An arbitrary snapshot was taken at each of the three angles of attack to

provide a broader analysis, as shown in Figures 4-3 through 4-5. Each of the reconstruction

diagrams shown in the figures displays the mean flow, reconstructions at 70%, 90%, 99%

and 99.9% pressure energy, and finally the original snapshot. The scaling legends indicate

the actual flow field pressures and are provided for each of the figures plotted.

The original snapshot at 4-degrees (Figure 4-3(f)) contains a the strong central core,
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Figure 4-2: Accumulated energy content of POD modes - Kinetic energy.

with three major positive-negative vortex pairings along the inner surface of the slat. There

is also a vortex pressure core toward the top of the slat free shear layer which is just

beginning to convect back toward the leading edge. The mean flow shows the main core

section that was extracted from the entire ensemble, and acts as the starting point for this

reconstruction analysis. The 70% reconstruction resolves the larger features of the flow,

using the first 7 modes from the POD basis set. The central core is stronger compared

to the mean flow, and minor details in the smaller vortices rolling up along the inner

surface toward the leading edge cusp can be seen forming. The central core begins to take

a final shape in the 90% reconstruction, along with a more refined vortex at the leading

edge cusp. The pressure cores along the inner surface are still diffuse, but the general

locality of these structures can be identified in the mode. The 99% reconstruction clearly

defines the locations of all significant pressure cores, along with the upper region vortex

that is beginning to recirculate. The 99.9% reconstruction provides a cleaner snapshot of
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the flow than the 99%, though at a high cost of an extra 103 POD modes. All pressure

regions are clearly defined using this reconstruction, with smoother variations between

neighboring contours. This snapshot reconstruction is virtually indistinguishable from the

original snapshot from a visual perspective.

Capturing 70% of the pressure energy in the 6-degree system requires the leading 5

POD modes. No major flow features are clearly defined, though note that the central core

is beginning to shift to the right of the cove center. A small pressure core is seen at the

leading-edge cusp, but there are not yet enough modes to resolve this feature clearly. 90% of

the pressure energy is recovered using the first 84 modes of the POD. This resolves the most

dominant pieces of the flow field and provides a reasonable reconstruction for visualization

purposes. The central core has shifted to its final position on the right, and appears to be on

the correct order of magnitude as the original snapshot. Regions defining the small strong

pressure cores have become apparent, however they are not yet fully defined. There is a

slight fuzziness about the edges of these zones, resulting in a diffusive appearance. At 99%

reconstructed energy, the snapshot does not differ significantly from the 90% reconstruction.

All smaller pressure cores are now clearly defined and are also more tightly rendered. 99.9%

of the energy is captured using 227 POD modes in the reconstruction. Again, there are only

slight improvements to the snapshot when analyzed visually. Contours are smoother, and

the last diffuse pressure vortex found in the free-shear layer has now become fully resolved.

The original pressure field of the 8-degree snapshot appears less dynamic when compared

to the other two angle-of-attack snapshots. The central core region is relatively calm, with

several small vortex cores developing along the inner surface. Only the first two POD

modes are required to capture 70% of the reconstructed perturbation energy in the 8-

degree snapshot. That 70% flow field, however, is masked by the mean flow, which appears

to remain dominant throughout the snapshot reconstructions. In contrast to the 4- and

6-degree reconstructions, the 8-degree case does not require a large shift in the mean flow

to match the current snapshot set. This is because the original ensemble solutions exhibited

a relatively stable cove region, and much of that energy had been extracted out to the mean

flow variable. There is very little activity in the central core that needs to be decomposed

into the leading POD modes. As with the 90% reconstruction, the general appearance of

the snapshot remains the same, with a slight variation on the inner surface near the leading

edge cusp. Fifty modes capture 99% of the pressure energy, and it is here that we begin to
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recognize small vortex-induced pressure cores along the forward edge of the inner surface.

The onset of the pressure bands becomes more apparent as well along the edges of the free

shear layer, with the variations becoming most obvious in a line leading directly down from

the trailing edge of the slat. The inner surface vortices become clearly defined in the 99.9%

reconstruction (130 modes), though no new features are found in comparison with the 99%

reconstruction. Again, this is indistinguishable from the original pressure field snapshot.

Velocity Snapshots

The same reconstruction technique was applied to the velocity snapshots, as shown in

Figures 4-6 through 4-8. Velocity vectors are only shown only in the two sub-meshes that

constitute the slat cove region. Because the velocity vectors are difficult to visualize, they

are superimposed upon a contour flood of the velocity magnitude. Again, three arbitrary

snapshots at the three angles of attack are shown. Scaling legends are included with the

figures to indicate the actual flow field velocities in the contour maps.

Similar trends may be found in the reconstructions of the velocity fields as was seen in

the pressure field reconstructions. The snapshots are primarily dominated by the mean flow,

with most visually identifiable features found in the smaller perturbations along the inner

surface towards the leading edge cusp. The 4-degree mean flow exhibits a strong central

circulation with a uniform velocity magnitude. The 90% kinetic energy reconstruction

shows a more centralized core, with the main flow still circulating around it. Smaller

velocity perturbations are now seen along the inner slat towards the leading edge. It is here

that the smaller vortices are becoming more resolved. Only slight differences can be found

in the behavior of the kinetic energy field between the 90% and 99% reconstructions. It

is surmised that very incidental changes in vector direction and magnitude are applied in

the later stages of the reconstruction to individual nodes in the mesh, but yet are not great

enough to appear in the visualization. Because the movement of the vortices along the

leading edge and through the free-shear layer were highly random in nature, the snapshots

were highly uncorrelated and the decomposition of the velocity fields required a broader

number of POD modes to characterize the system kinetic energy about the entire ensemble

set.

The 6-degree snapshot chosen in Figure 4-7 contains more of the random vortex struc-

tures convecting through the slat cove. The region of the central core circulation appears to
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take a tighter shape as the snapshot is reconstructed using the 70% and 90% kinetic energy.

Minor artifacts defining regions of vorticity begin to take shape at 90% and become more

clearly defined using 115 modes to capture 99% of the kinetic energy of the system. Again,

no significant differences in the magnitude of the velocity vectors can be seen between the

99% and 99.9% snapshot reconstructions, which suggests that minor corrections are being

applied to refine the direction and magnitude of the vectors.

The original 8-degree snapshot shown in Figure 4-8(f) illustrates the relatively more

organized structure of the slat flow compared to the previous two examples. The general

motion in the slat core is about an elongated orbit spanning the domain of the cove region.

The core region transforms from a single core of low pressure to two low-pressure regions

of roughly the same magnitude. No change is seen between the mean flow snapshot and

the 70% reconstruction. Using the first 18 POD modes in the 90% reconstruction snap-

shot, we begin to visualize a shift in the central pressure core, along with an increase in

activity along the slat inner surface towards the leading edge. At 99% the activity in the

central region is more closely correlated to that of the original snapshot. For the 8-degree

snapshot reconstructions, the 84 modes used in the 99% reconstruction provide a sufficient

visualization for the velocity fields.

4.2 Data Reduction Aspects

By optimizing the principal components of the data ensemble, the Proper Orthogonal De-

composition extracts the most dominant features of the system into orthogonal bases. One

major advantage of this process is that because the POD modes are ordered from most

energetic to least energetic, most of the energy of the system can be retained when approxi-

mating the system using a reduced number of modes. This was shown by the minimization

of Equation 2.20, which is achieved with the POD basis. Thus, a minimum number of

modes is required to describe a system for a given error.

We have seen that the POD provides low-order approximations ideal for visualization

purposes. In the reconstructions of the pressure and velocity fields, the 99.9% and even

the 99% reconstructions were virtually indistinguishable from the original flow field. To

illustrate the magnitude of data reduction, an average across the three angles of attack

was taken of the number of modes required to achieve a certain fidelity. For the pressure
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snapshots, these reconstruction states required an average of 170 and 77 leading POD modes

to attain 99.9% and 99% fidelity, respectively. The average number of modes required to

reconstruct the velocity snapshots at the same kinetic energy benchmarks were 219 and

107, respectively. Hence, such high accuracy is achieved using approximately half of the

available POD data or less. When less accurate predictions are acceptable, the system can

be reconstructed with less than a quarter of the POD modes. Therefore, a large reduction in

terms of the amount of data required is achieved. In future studies, this has the important

benefit of being able to reasonably reconstruct the data without having to retain the entire

set of POD modes.

4.3 Acoustic Predictions

Having performed the Proper Orthogonal Decomposition on the numerical solutions from

the CFD solver, we have seen that reasonable low-order approximations may be made

using a reduced set of optimal POD modes. We are interested not only in being able to

recreate the original snapshots using the optimal POD basis, but also to obtain an acoustic

signal based on this data. The ability to generate an acoustic signal based on the pressure

and velocity data gathered is provided by a Ffowcs Williams Hawkings (FWH) acoustic

propagation solver. The following study will concentrate on how well the acoustic spectra

based on POD data represents original baseline calculations. This will illustrate how well

the POD-based reconstructions perform as inputs to the acoustic solver.

4.3.1 Implementation

To perform an acoustic analysis of the computed fluid dynamics data, pressure and velocity

information is passed into fwh2d, an acoustic propagation solver written by Lockard[38]

at Nasa Langley Research Center. This solver is an acoustic propagation code based on

the FWH equation and computes the acoustic signature at a far field observer location

generated from a nearfield source.

The FWH solver accepts pressure and velocity data along prescribed source lines and

generates noise data at a fixed distance from the slat trailing edge. Prior studies extracted

data along source lines enclosing the entire airfoil for acoustic studies [56]. Because this POD

analysis concentrated solely on the slat cove region, a new source line was created enclosing
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just the slat body. Figure 4-9 displays the integration surface used for the acoustic study.

Figure 4-9: Source lines for acoustic propagation.

This source line is in essence a truncation of the source line used in the analysis by Singer

et al. This effectively captures the cove region between the slat and the main element and

includes the shed vortices in the free-shear layer. The observers are located a fixed distance

from the slat trailing edge, in a circle of radius 2.05 non-dimensional units surrounding the

slat.

The baseline acoustic study was performed using the original snapshot ensemble cor-

responding to the same 400 snapshots used in the POD analyses, taken from every 16th

solution in the CFD compilation. Pressure and velocity data were extracted along the

source line shown above and input to the FWH solver. Results for all three angles of at-
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Figure 4-10: Acoustic signatures along source lines. Inputs provided from original CFD
solutions.

tack are shown in Figure 4-10, at the observer location directly beneath the airfoil. The

acoustic pressure output was converted to 1/12th octave bands to correspond to previous

experimental measurementsi.

The EET airfoil model is scaled at approximately 10% of the mean aerodynamic chord

of a Boeing 757, so the equivalent full scale frequencies can be obtained by multiplying

by 0.1 - i.e., 10 kHz in the model scale corresponds to a 1 kHz in the full scale. We are

interested in gathering results to at least 4 kHz full scale because human hearing is most

sensitive around 3 kHz range. For the model scale and related data shown in the diagrams,

we will be looking at acoustic analyses in the range of 1 to 40 kHz which translates to 0.1

to 4 kHz in the full scale frequency range.

Th output from the FWH solver provided pressure perturbation data in the time and frequency domains,
which were transformed to a dB scale for the band SPL. This is not a true conversion to 1/12th octave scale,
but it provides a reasonable approximation nonetheless.
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4.3.2 Acoustic Observations Based on POD Reconstructions

We provide the same reconstructed data sets to the acoustic solver that was calculated in

the previous section for the snapshot reconstructions. Pressure and velocity information is

extracted along the source lines at the benchmarks of 70%, 90%, 99%, and 99.9% recon-

structed energy. Since the acoustic calculations will be based on the percent reconstructed

energy, the number of modes taken from each of the pressure and velocity studies will dif-

fer. This is preferred since this enables us to capture the information in the most efficient

manner possible. For instance, we are able to retain 99% of the pressure energy with a

fewer number modes than required in the recovering 99% of the kinetic energy.

Figure 4-11(a) presents the acoustic signature generated using the 70% and 90% re-

constructions along with the baseline acoustic spectrum. In the frequency range below 4

kHz, the acoustic information matches fairly well between the estimated and actual output.

Toward the middle of the spectrum, it can be seen that the two reconstruction sets tend

to over-predict the 4-degree baseline signature by 10-20 dB in the frequency range of 8-11

kHz. At approximately 35 kHz, the tonal peak of the original acoustic spectrum is located

well by both reconstructions.

Figure 4-11(b) shows the acoustic output for the baseline data, as well as for reconstruc-

tions using 99% and 99.9% of the pressure and velocity energies. The acoustic results from

these reconstructions show a general agreement with the baseline acoustic data. The trends

of the baseline signal are followed closely in all frequency ranges. In the 10-20 kHz range,

the 99% reconstructions tend to over-predict the acoustic noise by approximately 5 dB, but

return to a better fit as the high-frequency peak is reached between 30-40 kHz. The peak

dB level is resolved exactly by both 99% and 99.9% energy reconstructions.

The 6-degree slat aeroacoustic analysis was performed using reconstructions at the 70%

and 90% energy benchmarks, and is shown in Figure 4-12(a). While the 70% spectrum

did not accurately model the noise signature, it still was able to provide a signature in the

appropriate dB range as the original data. The high frequency peak was also resolved to

within 5 dB, although the reduced amplitude region leading up to that peak was not. In

the 70% energy reconstruction as well as the 90% energy reconstruction, the acoustic signal

over-predicts the original signal by 10-20 dB between octave bands in the 5-30 kHz range.

The 90% reconstruction is only slightly more accurate in representing the baseline data,
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Figure 4-11: Acoustic signatures at 4-degrees angle of attack.
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providing amplitude variations that are roughly half as large as in the 70% case.

The 99% and 99.9% reconstructions at 6 degrees, shown in Figure 4-12(b), demonstrate

a very good approximation to the baseline acoustic data for the lower frequencies below 10

kHz frequency. Acoustic levels based on the reconstructed data came within 3 dB of the

baseline signature. Between 10 and 30 kHz, however, increased volatility in the signal of

the reconstructed data sets appear. Oscillations of close to ±10 dB are found in the 99.9%

reconstruction near 20 kHz. In contrast, at 99% the volatility is lower, though this acoustic

signature tends to over-predict the original data by 5-7 dB. The approximation of both

systems improves leading into the high-frequency peak at 35 kHz.

Results from the third study are given in Figure 4-13(a) for the low-energy 8-degree

approximations to the baseline acoustic spectrum. At 70% energy (Figure 4-13(a)), the

acoustic signal is grossly underpredicted in the frequecies below 6 kHz. Beyond 8 kHz, both

the 70% and 90% acoustic signals show an over-prediction of between 10-25 dB. This lack

of accuracy is not unexpected, since the number of POD modes required to create the 70%

reconstruction amounted to the first 2 pressure modes and the first 4 velocity modes. With

so little information provided by the snapshot reconstruction, it would be difficult for the

acoustic solver to generate a consistent acoustic spectrum.

Figure 4-13(b) plots the acoustic signatures for the reconstructions performed using 99%

and 99.9% pressure and velocity energies. For these two studies, a favorable approximation

is provided for frequencies below 10 kHz. Beyond 10 kHz and leading up to the high-

frequency peak, the 99% reconstruction over-predicts the dB levels by 5-15 dB. The 99.9%

reconstruction also over-predicts the original signature in this range, but does provide a

slightly better approximation by approximately half of the dB magnitude compared to the

spectrum at 99% energy. The tonal peak at 35 kHz is located and predicted well by all data

sets.

We conclude this section with a look at the trends found in the acoustic analyses using

the reconstructed snapshot ensembles. While the 70% reconstructions did not provide

accurate representations of the acoustic signal, they still served to indicate the correct range

of dB amplitude across the frequency spectrum. A noticeable trend in the majority of the

reconstructions is that the acoustic signals based on those snapshots tended to over-predict

the baseline signal in the important mid-frequency range. This can be used as an important

characteristic of the acoustics based on snapshot reconstructions, as the associated acoustic
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Figure 4-12: Acoustic signatures at 6-degrees angle of attack.
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Figure 4-13: Acoustic signatures at 8-degrees angle of attack.
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signals may serve as upper bounds for the actual acoustic signature. This also suggests the

percentage energy of the pressure and velocity fields are not the only defining parameters

for resolving an acoustic signal.

It was discussed earlier that the high-frequency tonal peak was a result of the dynamics

located at the slat trailing edge. The vortices shedding off this surface were in general highly

organized in a vortex street pattern. Because of this, the POD was able to efficiently de-

compose the flow in this area into coherent structures. Therefore, when later reconstructed

using the optimal POD basis, the slat flow dynamics at this trailing edge were finely recre-

ated. This explains the ability of the acoustic solver to resolve the high-frequency peak

even at the lower reconstruction states.

Convergence of POD vs. CFD Acoustics

The rate of convergence of the reconstructed data to the original baseline data is shown in

Figure 4-14. This illustrates the L 2 norm of the difference between the acoustic pressure

perturbation data of the original data and reconstructed snapshot data. The percentage

error is calculated by

%Error = - Poll x100,
"1Poll

where the p(') represents the perturbation pressure results from the acoustic solver given at i

= 70%, 90%, 99%, and 99% energy, prior to their conversion to 1/12 octave band SPL. The

reference pressures po refer to the perturbation pressure output from the fwh2d solver when

providing the original CFD data as inputs. The abcissa in the plot represents the number of

POD modes used in the analysis, taken as an average between the number of pressure and

velocity modes used per reconstruction set. It is seen that the acoustic results provided by

the 70% and 90% reconstruction data do not predict the data well. This is not unexpected,

considering the extremely low number of POD modes used in those experiments. The trend

increases favorably, however, as more modes are included in the snapshot reconstructions.

At 6-degrees, the 99% reconstruction provides pressure results that are within 25% of the

expected value. At 99.9% reconstruction, the error drops below 20% for all three angles

of attack. The 8-degree reconstructions provide the best approximation to the baseline

acoustic signature, requiring the fewest POD modes to reconcile the acoustic spectrum to

within 20% error.
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Figure 4-14: Rate of convergence of acoustic signals using reconstructed snapshot ensem-

bles.

Even with 99.9% of the pressure and velocity energy recovered in the snapshot ensembles,

there still appear errors in the range of 10%-20%. The lines for each angle of attack in the

convergence plot appear to take on an asymptotic behavior, and thus it is unclear whether

providing more modes to the reconstruction will provide a better acoustic analysis. It should

be noted that the acoustic solver itself is very sensitive to the pressure and velocity data

inputs, due to the fact that it processes perturbation quantities. Due to the numerical

precision of the solver, which accepts single precision quantities, slight variations in the

pressure and velocity inputs can induce variations in the SPL output of about 5-15 dB or

greater. While the POD reconstructions provided decent pressure and velocity data, the

lack of precision likely contributed to the large variances in the acoustic output.
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Chapter 5

Parameterization of Slat Data

The previous two chapters presented a Proper Orthogonal Decomposition analysis of the slat

cove simulations with respect to each angle of attack scenario. We would like to characterize

the slat flow dynamics with regards to angle of attack, in an effort to identify a criterion to

identify the change in behavior between the three states. We will look at the relationship

between the POD modes at different angles of attack. We will also use this relationship to

present a unified reconstruction to further reduce the amount of data necessary to represent

the entire ensemble set used in this investigation.

5.1 Motivation

As a precursor to building a dynamic reduced-order model of the system, we must look

for ways to characterize the important features of the flow. In this context, we would like

to be able to encompass the three separate angle-of-attack scenarios with a set of POD

modes from a single study. It was shown in the previous chapters that there are similarities

between the POD mode shapes, especially in the dominant leading mode numbers. The

analysis performed in this chapter intends to seek out a relationship between the three

separate angle-of-attack studies. We will also look to linearize the mean flow in such a way

that low order approximations of any realization from the original data set may be achieved

using this reduced POD ensemble.
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5.2 POD Modes Across Angles Of Attack

The previous POD studies decomposed the perturbation snapshots into POD bases that

were specific to the angle of attack in question by extracting the mean flow pertaining to that

particular ensemble set. This led to three separate sets of POD modes that were optimal for

each of the three studies. We now return to those results to identify commonalities between

them.

5.2.1 Cross-Projections

In a visual comparison of the first six POD modes in the separate POD systems of Figures 3-

7, 3-12, and 3-16, there appear similarities in between a number of the modes across angles

of attack. To identify similarities between modes, a cross-projection may be calculated

across all the POD modes. This is done by taking the inner product of the set of POD

modes from one angle-of-attack study (ai) with those POD modes at a different angle of

attack (a 2), written as (T(al), XF(a2)), where the I have been previously normalized to

magnitude 1. The magnitudes of the projections of the first five POD modes at each angle

of attack are shown in Figures 5-1 through 5-6. These plots depict the cross-projection of

the initial five POD modes at a given angle of attack onto the first 40 POD modes from

the other angles of attack.

The cross-projection magnitudes clearly show a relation between POD modes at the

different angles of attack. The leading two 4-degree modes are correlated very well with the

initial two 6-degree modes (Figure 5-1). Mode 3 exhibits an extremely strong correlation

between 4- and 6-degrees, as does mode 4. In the projection onto the 8-degree modes

(Figure 5-2), the third and fourth modes of the 4-degree system appear to correspond to

the first and second modes of the 8-degree system. The fifth mode, on the other hand,

appears to have projections made up of a number of 8-degree modes.

Projecting the 6-degree modes onto the 4-degree modes as seen in Figure 5-3, we expect

to see the same behavior as before. It is interesting to note that the projections of the leading

modes are strongest when projected onto the leading modes of the other systems, and that

the correlation drops off as the projections are performed over higher mode numbers. The

projection of 6-degree modes onto the 8-degree modes (Figure 5-4) shows an almost exact

correlation of the 6-degree third and fourth modes with the first and second 8-degree modes.
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Figure 5-1: 4-degree pressure modes cross-projected onto 6-degree pressure modes.
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Figure 5-2: 4-degree pressure modes cross-projected onto 8-degree pressure modes.
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Figure 5-4: 6-degree pressure modes cross-projected onto 8-degree pressure modes.
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Figure 5-5: 8-degree pressure modes cross-projected onto 4-degree pressure modes.
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Figure 5-6: 8-degree pressure modes cross-projected onto 6-degree pressure modes.
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Overall, it can be seen that there is a strong correspondence between the first 5 modes of

each case with the first 10-15 modes of the other cases.

One notable difference in the 8-degree projections shown in Figures 5-5 and 5-6 is the

fact that the first two 8-degree modes do not correlate with the two dominant modes of the

other systems at 4- and 6-degrees angle of attack. While the initial two 4- and 6-degree

modal projections showed that these dominant pieces of the system had some commonality

between them, they do not correlate at all with the two initial 8-degree modes. A look at

the two leading POD modes of the 4- and 6-degree systems in Figures 3-7(a) and 3-7(b),

and 3-12(a) and 3-12(b) show that they contain structures leading to activity in the cove

center region. Due to the constantly changing nature of the central core region in the 4-

and 6-degree studies, this activity could not be extracted out to the mean flow. It was

seen in the original CFD solutions, however, that the 8-degree system does not exhibit the

same cove region dynamics. The fact that these two dominating modes are missing in the

8-degree system suggests that they can be used to characterize the shift from an active

central core to one that exhibits a relatively stable flow field. Thus, it is suggested that the

leading dominant POD modes be used to identify the strong dynamics of the central core.

5.2.2 Reconstructions Utilizing Cross-Projections

An interesting consequence of the cross-projection study is that it may be possible for any

snapshot in the entire ensemble to be reconstructed using a single set of POD modes, say

the 6-degree POD modes. We first start with a linearization of the mean flow.

Figure 5-7 displays the original mean states at the three angles of attack as extracted

from their own ensembles. It can be seen that these are very similar in structure, and

suggests that a linearization may be taken about the center system. We thus linearize

about the 6-degree mean flow with respect to angle of attack, using

Au 8 4 - U (5.1)

where U(s) and U(4) represent the mean flow state at 8- and 4-degrees angle of attack,

respectively. This was done for the pressure mean and is shown in Figure 5-7(d). We can
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Figure 5-7: Extracted mean flows and linearization results.
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then construct an approximate mean flow state at any angle of attack by

U(a) = U(6) + Au84(a - 60). (5.2)

We now return to the reconstruction utilizing cross-projections. We wish to reconstruct

snapshots from any angle-of-attack ensemble using

__- M
U(a)(X) = ua) + Z An(t) 6)(X) (5.3)

n=1

where u(a) represents the snapshot at a given angle of attack a and W n)(x) represents the

n-th basis vector from the collection of POD modes of the 6-degree analysis. The An(t)

are calculated by projecting the 6-degree POD basis vectors onto the snapshot ensemble at

a-degrees. Substituting Equation 5.2 into Equation 5.3,

M

u(a) (x, t) = u(6 ) + Au84 (a - 6') + Z A(t) n)(x) (5.4)
n=1

The linearized mean pressure states for the 4- and 8-degree systems can be seen in Figures

5-7(b) and 5-7(f), respectively.

Reconstructions

Two snapshots were selected to be reconstructed using cross-projected modes from the 6-

degree system. A snapshot selected in the 4-degree system is shown in Figure 5-8, and for

the 8-degree system in Figure 5-9. These snapshot reconstructions illustrate the capability

of representing any snapshot of the entire ensemble of solutions by using only the optimal

POD modes of the 6-degree system. The energy benchmarks on which the snaphots were

reconstructed belong to the 6-degree decomposition as seen in Table 4.1. For example, the

70% energy reconstruction was performed using cross-projections from the leading 5 POD

modes from the 6-degree basis set.

The basic structures in the snapshots are represented well by the cross-projection. In

the 4-degree snapshot, the larger pieces of the flow field were resolved using 90% and 99%

of the 6-degree POD modes. The 99.9% reconstruction introduced increased volatility in

the snapshot, especially along the inner surface where the small vortices begin to roll off
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Figure 5-9: 8-degree pressure reconstruction snapshots using 6-degree modes.
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the boundary layer. This is due to the fact that the 6-degree POD basis vectors could not

clearly define these structures at their individual locations.

The 8-degree snapshot reconstructions show that the larger features of the flow are well

represented by the 6-degree POD modes. The pressure bands outside of the cove region

appear well resolved following the 99% reconstruction. Difficulties arose once again along

the inner surface where vortex cores can be seen in the original snapshot. As was seen in

the 4-degree cross-projection reconstruction, in the effort to reproduce the vortex cores the

6-degree POD modes introduced unnecessary artifacts that have an undesirable effect on

the rest of the slat cove region. However, the 99.9% reconstruction shows that the locations

of these pressure cores could still be reasonably identified.

As higher modes are added from the 6-degree system, more unwanted artifacts begin to

appear in the reconstruction. Because the 6-degree basis is not the optimal basis outside

of its ensemble set, some coherent structures in the POD basis modes will appear in the

reconstructions that are not physically apparent in the original snapshots. The addition of

modal projections to resolve one important feature of the snapshot may bring an unwelcome

modification in a different region of the snapshot. This is an unfortunate side effect of the

cross-projection method. However, the 6-degree modes still contained enough information

to create reasonable approximations to snapshots that were not part of its ensemble.
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Chapter 6

Conclusion

6.1 Summary

The Proper Orthogonal Decomposition was applied to the computational fluid dynamics

solutions modeling the flow in the slat region of an Energy Efficient Transport airfoil. This

a posteriori analysis has shown that coherent structures may be educed from a highly

unstructured flow. Eigenmode analysis has also enabled us to characterize the energy of

the system and to identify the dominant features of the flow.

Using the optimal POD basis, low-order approximations of the original data ensemble

were created, providing reasonable representations of the data using a minimum number of

basis vectors. These reconstructions provided snapshots that were virtually indistinguish-

able from the original data from a visualization standpoint, using less than 30 percent of

the modes available.

Acoustic modeling was performed using the low-order approximations of the data under

the acoustic analogy framework. Pressure and velocity data, extracted from the snapshot

reconstructions, were used as inputs to the acoustic solver. While the results generally

indicated the correct magnitude of noise when compared with the acoustic signal generated

from the original CFD solutions, the approximations tended to over-predict the actual noise

signature when using a low number of modes in the reconstructed data set. These errors

were due in part to the slight variations in the POD data and the inherent sensitivity of the

fwh2d solver to small perturbations in the input data. With a larger number of POD modes

used in the reconstruction analysis, the acoustic signal was better represented, though small

variances were still present.
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Many similarities were found between the systems at different angles of attack. It was

seen that the slat cove activity could be linked to the two initial POD mode shapes of the 4-

and 6-degree angle-of-attack systems, which were absent from the 8-degree case. A further

attempt to reduce the necessary amount of data to be kept for reconstructing the solutions

was made by showing that the entire ensemble set at all three angles of attack could be

represented using the POD basis from just one study, in addition to a linearized mean flow.

This effectively reduced the order of this large problem to one-third its size, while providing

fairly reasonable approximations to the data.

6.2 Future Work

The results of this research can be applied to the development of a reduced-order model

representing the dynamics of the slat flow. The POD analysis provides the first step by

creating an optimal linear representation of the original data in a least-squares sense. The

POD basis vectors may be projected onto the flow equations of motion, e.g. a Galerkin

projection onto the Navier Stokes equation, to produce a finite system of ordinary differential

equations.

With this new low-order model it is possible to quickly analyze the aerodynamic effects

of different input forcing functions. Examples of forcing functions may include varying the

far-field pressure or a sinusoidal perturbation of the freestream flow velocity to induce a

change in the airfoil angle of attack. We saw the potential for a reduction in the number of

states by a large factor, and thus further studies of a particular flow solution may be done

with greater efficiency. Because the reduced order model can be made nearly as accurate as

the original flow solution, additional studies may be performed without having to employ

the flow solver again.

The reduced order model may also be used as a tool to analyze larger physical systems

more efficiently. It may be possible to evaluate entire airframe systems as a result of the

increased computational speed of the model. A detailed analysis of the entire wing system

should be investigated in order to execute a realistic study of airframe noise. Some coupling

effects may appear in the analysis of the entire slat, main wing, and flap system that affect

the flow dynamics and corresponding acoustic signal. Highly resolved multi-element studies

are still computationally expensive, but a reduced order model based on the POD basis
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may enhance these efforts.
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Appendix A

Eigenvalue Data

The following pages contain eigenvalue information from the decomposition of the pressure

and velocity fields for the 4-, 6-, and 8-degree POD analyses. The eigenvalue plots of Figures

3-3 through 3-6 were constructed from this data. Eigenvalue data is provided for the first

120 POD modes in each system.

119



Table A.1: 4' pressure eigenvalue data.

Eigenvalue
1
2

3

4

5
6
7
8
9

10
11
12

13
14

15

16
17

18
19
20
21

22
23
24
25

26
27
28
29
30

Eigenvalue
0.26488
0.20105

0.10663

0.75736
0.71929
0.62013
0.38248

0.31112
0.26822

0.21773
0.20837
0.16772

0.12088
0.10610

0.94375

0.89135
0.87997

0.83441
0.75582
0.72392
0.65477
0.58577
0.54335
0.50828
0.47686

0.46248
0.42087
0.39509
0.38439
0.37916

103

10 3

103

102

102

102

102

102

102

102

102

102

102

102

101

101
10'

101

101

101

101

101

101

101

101

101

101
101

101

% Energy% Energy
23.09264
17.52833
9.29637
6.60284
6.27088
5.40643
3.33457

2.71244
2.33842
1.89821
1.81665
1.46217
1.05387
0.92504
0.82278
0.77709
0.76718
0.72745
0.65893
0.63113
0.57084
0.51068
0.47370
0.44313
0.41574
0.40320
0.36693
0.34445
0.33512
0.33056

Total EnergyTotal Energy
23.09264
40.62098
49.91735
56.52019
62.79107
68.19750
71.53206
74.24450
76.58292
78.48113
80.29778
81.75995
82.81382
83.73886
84.56164
85.33874
86.10591
86.83336
87.49230
88.12343
88.69427
89.20496
89.67866
90. 12179
90.53753
90.94073
91.30765
91.65210
91.98723
92.31778

31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60

I~Q

0.34541
0.31231
0.30751
0.29450
0.28593
0.27044
0.26132
0.25788
0.24179
0.22547
0.21216
0.20591
0.19790
0.19287
0.18630
0.17300
0.16235
0.15897
0.15186
0.14287
0.13474
0.13133
0.12491
0.12107
0.11843
0.11284
0.11056
0.10472
0.99426
0.95772

101
101
101
101
101
101
101
101
101
101
10'
101
101
101
101
101
101
101
101
10'
101
101
101
101
101
101
101
101
100
100

0.30114
0.27227
0.26809
0.25675
0.24928
0.23577
0.22782

0.22482
0.21080
0.19657
0.18496

0.17952
0.17254

0.16814
0.16242
0.15083
0.14154

0.13859
0.13239
0.12456
0.11747
0.11450
0.10890
0.10555
0.10325
0.09838
0.09639
0.09130
0.08668
0.08350

92.61892
92.89119
93.15929
93.41603
93.66531
93.90109
94.12891
94.35373
94.56453
94.76110
94.94606
95.12557
95.29811
95.46626
95.62867
95.77950
95.92104
96.05963
96.19202
96.31658
96.43405
96.54855
96.65745
96.76300
96.86625
96.96463
97.06102
97.15231
97.23899
97.32249



Elgenvalue % Energy Total Energy Eigenvalue % Energy Total Energy
0.93734 x
0.89825 x

0.89075 x
0.84976 x
0.77207 x
0.73472 x
0.71458 x
0.69236 x
0.67763 x

0.67012 x
0.64773 x

0.61797 x
0.60013 x
0.59010 x
0.57751 x
0.53969 x
0.52266 x
0.50036 x
0.48981 x
0.47020 x
0.46272 x
0.43747 x
0.43286 x

0.42311 x
0.41206 x

0.40055 x

0.39177 x
0.38523 x
0.35481 x
0.35154 x

lou
100
100
100
100
100

100
100
100
100
100
100

100
100
100

100

100
100
100
100
100
100
100
100
100

100
100100

100
100

0.08172
0.07831
0.07766
0.07408
0.06731
0.06405
0.06230
0.06036
0.05908
0.05842
0.05647
0.05388
0.05232
0.05145
0.05035
0.04705
0.04557
0.04362
0.04270
0.04099
0.04034
0.03814
0.03774
0.03689
0.03592
0.03492
0.03416
0.03359
0.03093
0.03065

97.40421
97.48252
97.56018
97.63426
97.70157
97.76562
97.82792
97.88828
97.94736
98.00578
98.06225
98.11613
98.16845
98.21989
98.27024
98.31729
98.36286
98.40648
98.44919
98.49018
98.53052
98.56866
98.60640
98.64328
98.67921
98.71413
98.74829
98.78187
98.81280
98.84345

i i
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

0.34716 x
0.33113 x
0.31507 x
0.31433 x
0.30677 x
0.30149 x
0.29372 x
0.29278 x
0.27198 x
0.26682 x
0.25927 x
0.24985 x
0.24700 x
0.23611 x
0.22615 x
0.22408 x

0.21583 x
0.21258 x
0.21138 x
0.20212 x
0.19572 x
0.18955 x
0.18434 x
0.17732 x
0.17093 x
0.16840 x
0.15851 x
0.15490 x
0.15298 x
0.15070 x

I~1

I

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

0.03027
0.02887
0.02747
0.02740
0.02674
0.02628
0.02561
0.02553
0.02371
0.02326
0.02260
0.02178
0.02153
0.02058
0.01972
0.01954
0.01882
0.01853
0.01843
0.01762
0.01706
0.01653
0.01607
0.01546
0.01490
0.01468
0.01382
0.01350
0.01334
0.01314

98.87372
98.90259
98.93005
98.95746
98.98420
99.01049
99.03609
99.06162
99.08533
99.10859
99.13120
99.15298
99.17451
99.19510
99.21481
99.23435
99.25316
99.27170
99.29013
99.30775
99.32481
99.34134
99.35741
99.37287
99.38777
99.40245
99.41627
99.42977
99.44311
99.45625

Eigenvalue % Energy Total Energy Eigenvalue % Energy Total Energy



Table A.2: 60 pressure eigenvalue data.

Eigenvalue Eigenvalue
0.29981
0.27938
0.26652
0.25682
0.24383
0.23168
0.22642
0.20961
0.19898
0.18547
0.17916
0.16567
0.15259
0.14254
0.13967
0.13095
0.12207
0.12018

101
101
101
101
101
101
101
101
101
101
10'
101
10'
101
10'
101
101
101

0.43437
0.18694
0.13158
0.99384
0.97979
0.72097
0.50312
0.36575
0.25321
0.21941
0.18006
0.12841
0.10545
0.10037
0.98133
0.92016
0.83315
0.69885
0.65359
0.60552
0.54660
0.53685
0.48641
0.46275
0.39177
0.36900
0.34865
0.34062
0.32577
0.30757

103

103

103
102

102

102

102

102

102

102

102

102

102

102

10'

101
101

101

101

101

101

101

101

101

101

101

101

101

101

101

% Energy
31.73299
13.65689
9.61239
7.26053
7.15790
5.26707
3.67553
2.67200
1.84985
1.60288
1.31544
0.93810
0.77035
0.73328
0.71691
0.67222
0.60866
0.51055
0.47748
0.44236
0.39932
0.39220
0.35535
0.33807
0.28621
0.26958
0.25471
0.24884
0.23799
0.22469

Total Energy
31.73299
45.38989
55.00228
62.26281
69.42071
74.68778
78.36331
81.03531
82.88516
84.48804
85.80348
86.74158
87.51193
88.24521
88.96212
89.63434
90.24300
90.75355
91.23103
91.67339
92.07271
92.46491
92.82026
93.15833
93.44454
93.71411
93.96882
94.21766
94.45566
94.68035

% Energy
0.21903
0.20410
0.19471
0.18762
0.17813
0.16926
0.16541
0.15313
0.14536
0.13549
0.13088
0.12103
0.11147
0.10413
0.10204
0.09567
0.08918
0.08780
0.08394
0.08133
0.08042
0.07816
0.07143
0.06923
0.06897
0.06495
0.06212
0.05972
0.05832
0.05514

0.11490 x 10'
0.11133
0.11008
0.10699
0.97775
0.94761
0.94409
0.88909
0.85034
0.81747
0.79833
0.75482

101
101
101
100
100
100
100
100
100
100
100

Total Energy
94.89938
95.10348
95.29818
95.48581
95.66393
95.83319
95.99860
96.15174
96.29710
96.43259
96.56348
96.68451
96.79598
96.90011
97.00215
97.09781
97.18699
97.27479
97.35873
97.44006
97.52048
97.59864
97.67007
97.73930
97.80827
97.87323
97.93535
97.99507
98.05339
98.10853



Eigenvalue
0.74087
0.72362
0.67762
0.66246
0.63748
0.61439
0.59241
0.58735
0.55522
0.55184
0.54021
0.52373
0.51541
0.49009
0.48378
0.46405
0.44947
0.41629
0.40753
0.40051
0.38585
0.36439
0.35780
0.35449
0.33691
0.33187
0.32786
0.31750
0.31149
0.30089

Eigenvalue % Energy Total Energy
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

% Energy
0.05412
0.05286
0.04950
0.04840
0.04657
0.04488
0.04328
0.04291
0.04056
0.04031
0.03947
0.03826
0.03765
0.03580
0.03534
0.03390
0.03284
0.03041
0.02977
0.02926
0.02819
0.02662
0.02614
0.02590
0.02461
0.02425
0.02395
0.02320
0.02276
0.02198

Total Energy
98.16266
98.21552
98.26503
98.31342
98.35999
98.40488
98.44816
98.49107
98.53163
98.57194
98.61141
98.64967
98.68732
98.72313
98.75847
98.79237
98.82521
98.85562
98.88539
98.91465
98.94284
98.96946
98.99560
99.02149
99.04611
99.07035
99.09430
99.11750
99.14026
99.16224

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

0.29056 x
0.28689 x
0.28014 x
0.27268 x
0.26449 x
0.25553 x
0.25101 x
0.24528 x
0.23929 x
0.23489 x
0.22916 x
0.21962 x
0.21579 x
0.20927 x
0.19788 x
0.19720 x
0.18753 x
0.18453 x
0.18440 x
0.17676 x
0.16539 x
0.15987 x
0.15514 x
0.15087 x
0.14824 x
0.14515 x
0.14335 x
0.13729 x
0.13287 x
0.12573 x

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

0.02123
0.02096
0.02047
0.01992
0.01932
0.01867
0.01834
0.01792
0.01748
0.01716
0.01674
0.01604
0.01576
0.01529
0.01446
0.01441
0.01370
0.01348
0.01347
0.01291
0.01208
0.01168
0.01133
0.01102
0.01083
0.01060
0.01047
0.01003
0.00971
0.00919

99.18346
99.20442
99.22489
99.24481
99.26413
99.28280
99.30114
99.31906
99.33654
99.35370
99.37044
99.38648
99.40225
99.41754
99.43199
99.44640
99.46010
99.47358
99.48705
99.49996
99.51205
99.52373
99.53506
99.54608
99.55691
99.56752
99.57799
99.58802
99.59772
99.60691

% Energy Total EnergyEigenvalue



Table A.3: 8' pressure eigenvalue data.

Eigenvalue
0.16814E + 03
0.12795E + 03
0.17666E + 02
0.12358E + 02
0.11548E + 02
0.10776E + 02
0.87064E + 01
0.66390E + 01
0.46276E + 01
0.33190E + 01
0.29690E + 01
0.26646E + 01
0.26061E + 01
0.21208E + 01
0.16957E + 01
0.15451E + 01
0.15047E + 01
0.13627E + 01
0.12544E + 01
0.11437E + 01
0.11347E + 01
0.87630E + 00
0.83292E + 00
0.75984E + 00
0.74455E + 00
0.67247E + 00
0.62459E + 00
0.58036E + 00
0.57231E + 00
0.54829E + 00

% Energy
41.22177
31.36708

4.33093
3.02964
2.83105
2.64175
2.13442
1.62759
1.13449
0.81367
0.72787
0.65324
0.63891
0.51992
0.41572
0.37880
0.36888
0.33406
0.30753
0.28039
0.27818
0.21483
0.20420
0.18628
0.18253
0.16486
0.15312
0.14228
0.14031
0.13442

Total Energy
41.22177
72.58885
76.91978
79.94942
82.78047
85.42222
87.55664
89.18424
90.31873
91.13239
91.86026
92.51350
93.15241
93.67234
94.08806
94.46686
94.83574
95.16980
95.47733
95.75772
96.03590
96.25073
96.45493
96.64121
96.82374
96.98860
97.14172
97.28400
97.42430
97.55872

31
32
33

34
35
36
37
38

39

40
41
42
43
44
45
46
47

48

49

50

51
52

53

54
55

56

57

58

59

60

Eigenvalue
0.45604E + 00
0.44304E + 00
0.43044E + 00
0.40893E + 00
0.40042E + 00
0.35491E + 00
0.35018E + 00
0.33116E + 00
0.32346E + 00
0.29338E + 00
0.27351E + 00
0.25084E + 00
0.23669E + 00
0.22373E + 00
0.20173E + 00
0.19876E + 00
0.19115E + 00
0.17977E + 00
0.17427E + 00
0.17011E + 00
0.15149E + 00
0.14386E + 00
0.13884E + 00
0.12863E + 00
0.12656E + 00
0.11666E + 00
0.11278E + 00
0.10887E + 00
0.10493E + 00
0.97672E - 01

% Energy | Total Energy
0.11180
0.10861
0.10552
0.10025
0.09817
0.08701
0.08585
0.08119
0.07930
0.07192
0.06705
0.06149
0.05803
0.05485
0.04946
0.04873
0.04686
0.04407
0.04272
0.04170
0.03714
0.03527
0.03404
0.03154
0.03103
0.02860
0.02765
0.02669
0.02572
0.02394

97.67052
97.77914
97.88466
97.98491
98.08308
98.17009
98.25594
98.33712
98.41642
98.48835
98.55540
98.61689
98.67492
98.72977
98.77923
98.82795
98.87481
98.91889
98.96161
99.00331
99.04045
99.07572
99.10976
99.14129
99.17232
99.20092
99.22857
99.25526
99.28099
99.30493



# Eigenvalue I % Energy] Total Energy
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

80
81

82
83

84
85

86
87

88
89
90

0.93871E - 01
0.88927E - 01
0.88159E - 01
0.87140E - 01
0.84847E - 01
0.76897E - 01
0.76403E - 01
0.71156E - 01
0.68108E - 01
0.66569E - 01
0.64759E - 01
0.63385E - 01
0.61627E - 01
0.58876E - 01
0.55543E - 01
0.54281E - 01
0.51207E - 01
0.49192E - 01
0.46957E - 01
0.45271E - 01
0.44109E - 01
0.42224E - 01
0.41486E - 01

0.39805E - 01
0.37372E - 01
0.37027E - 01
0.35123E - 01
0.34106E - 01
0.33820E - 01
0.33507E - 01

0.02301
0.02180
0.02161
0.02136
0.02080
0.01885
0.01873
0.01744
0.01670
0.01632
0.01588
0.01554
0.01511
0.01443
0.01362
0.01331
0.01255
0.01206
0.01151
0.01110
0.01081
0.01035
0.01017
0.00976
0.00916
0.00908
0.00861
0.00836
0.00829
0.00821

99.32794
99.34975
99.37136
99.39272
99.41352
99.43237
99.45110
99.46855
99.48525
99.50157
99.51744
99.53298
99.54809
99.56252
99.57614
99.58945
99.60200
99.61406
99.62557
99.63667
99.64748
99.65784
99.66801
99.67777
99.68693
99.69600
99.70462
99.71298
99.72127
99.72948

91
92
93
94
95

96

97

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

0.31539E - 01
0.29815E - 01
0.29272E - 01
0.28257E - 01
0.26081E - 01
0.25279E - 01
0.25250E - 01
0.23696E - 01
0.23542E - 01
0.22918E - 01
0.21593E - 01
0.20876E - 01

0.20567E - 01
0.19953E - 01
0.19335E - 01
0.18746E - 01
0.18206E - 01
0.17766E - 01
0.17455E - 01

0.16569E - 01

0.15640E - 01
0.15241E - 01
0.15102E - 01
0.14438E - 01

0.13952E - 01
0.13375E -01
0.13272E - 01
0.12822E - 01
0.12238E - 01
0.12191E - 01

0.00773
0.00731
0.00718
0.00693
0.00639
0.00620
0.00619
0.00581
0.00577
0.00562
0.00529
0.00512
0.00504
0.00489
0.00474
0.00460
0.00446
0.00436
0.00428
0.00406
0.00383
0.00374
0.00370
0.00354
0.00342
0.00328
0.00325
0.00314
0.00300
0.00299

99.73721
99.74452
99.75170
99.75863
99.76502
99.77122
99.77741
99.78322
99.78899
99.79461
99.79990
99.80502
99.81006
99.81495
99.81969
99.82429
99.82875
99.83311
99.83739
99.84145
99.84528
99.84902
99.85272
99.85626
99.85968
99.86296
99.86621
99.86936
99.87236
99.87535

% Energy Total EnergyEigenvalue



Table A.4: 4' velocity eigenvalue data.

# Eigenvalue % Energy Total Energy # Eigenvalue % Energy Total Energy
1 0.11186E + 05 13.62264 13.62264 31 0.37539 x 103 0.45716 88.45529
2 0.10524E + 05 12.81711 26.43975 32 0.35677 x 103 0.43449 88.88978
3 0.94836E + 04 11.54950 37.98925 33 0.33066 x 103 0.40269 89.29247
4 0.64912E + 04 7.90525 45.89450 34 0.32144 x 103 0.39146 89.68393
5 0.50114E + 04 6.10307 51.99757 35 0.29244 x 103 0.35615 90.04008
6 0.39125E + 04 4.76486 56.76243 36 0.28010 x 103 0.34112 90.38120
7 0.32471E + 04 3.95449 60.71692 37 0.25782 x 103 0.31399 90.69518
8 0.27481E + 04 3.34678 64.06370 38 0.25372 x 103 0.30899 91.00418
9 0.21904E + 04 2.66755 66.73125 39 0.23679 x 103 0.28837 91.29255

10 0.18194E + 04 2.21569 68.94694 40 0.22388 x 103 0.27265 91.56520
11 0.15536E + 04 1.89208 70.83902 41 0.21959 x 103 0.26743 91.83263

12 0.14532E + 04 1.76972 72.60874 42 0.20896 x 103 0.25448 92.08711
13 0.11477E + 04 1.39767 74.00641 43 0.20159 x 103 0.24551 92.33261
14 0.10513E + 04 1.28031 75.28672 44 0.18892 x 103 0.23007 92.56269

15 0.10048E + 04 1.22366 76.51038 45 0.18677 x 103  0.22746 92.79015
16 0.90316 x 103 1.09991 77.61029 46 0.17956 x 103 0.21867 93.00882
17 0.87999 x 103 1.07169 78.68198 47 0.17226 x 103 0.20979 93.21861
18 0.80987 x 103 0.98629 79.66827 48 0.16496 x 103 0.20090 93.41951
19 0.79253 x 103 0.96518 80.63345 49 0.16253 x 103 0.19793 93.61744

20 0.69936 x 103 0.85171 81.48515 50 0.15815 x 103 0.19261 93.81004
21 0.67623 x 103 0.82354 82.30869 51 0.14903 x 103 0.18150 93.99154

22 0.59805 x 103 0.72833 83.03702 52 0.14385 x 103 0.17518 94.16672
23 0.58975 x 103 0.71823 83.75524 53 0.13593 x 103 0.16554 94.33226
24 0.57015 x 103 0.69435 84.44960 54 0.13053 x 103 0.15896 94.49122

25 0.56455 x 103 0.68754 85.13713 55 0.12797 x 103 0.15585 94.64708

26 0.52195 x 103  0.63565 85.77278 56 0.12027 x 103 0.14647 94.79355
27 0.50784 x 103 0.61847 86.39126 57 0.11933 x 103 0.14532 94.93887
28 0.45973 x 103 0.55988 86.95113 58 0.11428 x 103 0.13917 95.07804
29 0.44170 x 103 0.53792 87.48905 59 0.11180 x 103 0.13615 95.21419

30 0.41801 x 103 0.50907 87.99812 60 0.10941 x 103 0.13324 95.34743



61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90

Eigenvalue

0.10424 x 103
0.10221 x 103
0.96912E + 02
0.94554E + 02
0.89728E + 02
0.88748E + 02
0.85931E + 02
0.82723E + 02
0.79191E + 02
0.78057E + 02
0.75911E + 02
0.73732E + 02
0.72462E + 02
0.70149E + 02
0.65585E + 02
0.65175E + 02
0.62720E + 02
0.60882E + 02
0.60574E + 02
0.59350E + 02
0.56537E + 02
0.54061E + 02
0.52239E + 02
0.51425E + 02
0.49468E + 02
0.47978E + 02
0.47175E + 02
0.45761E + 02
0.43783E + 02
0.42865E + 02

% Energy
0.12695
0.12448
0.11802
0.11515
0.10927
0.10808
0.10465
0.10074
0.09644
0.09506
0.09245
0.08979
0.08825
0.08543
0.07987
0.07937
0.07638
0.07414
0.07377
0.07228
0.06885
0.06584
0.06362
0.06263
0.06024
0.05843
0.05745
0.05573
0.05332
0.05220

Total Energy
95.47438
95.59886
95.71689
95.83204
95.94131
96.04939
96.15404
96.25479
96.35123
96.44629
96.53874
96.62853
96.71678
96.80221
96.88208
96.96145
97.03784
97.11198
97.18575
97.25803
97.32688
97.39272
97.45634
97.51897
97.57921
97.63764
97.69509
97.75082
97.80414
97.85634

91

92

93

94

95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Eigenvalue

0.42197E + 02
0.41126E + 02
0.39820E + 02
0.38902E + 02
0.36610E + 02
0.34528E + 02
0.34241E + 02
0.33913E + 02
0.33582E + 02
0.32636E + 02
0.31388E + 02
0.30881E + 02
0.29807E + 02
0.28869E + 02
0.27872E + 02
0.26992E + 02
0.26239E + 02
0.26201E + 02
0.25256E + 02
0.24892E + 02
0.24537E + 02
0.24203E + 02
0.23739E + 02
0.22808E + 02
0.22295E + 02
0.21674E + 02
0.21369E + 02
0.20560E + 02
0.20131E + 02
0.19474E + 02

% Energy
0.05139
0.05008
0.04849
0.04738
0.04459
0.04205
0.04170
0.04130
0.04090
0.03975
0.03823
0.03761
0.03630
0.03516
0.03394
0.03287
0.03195
0.03191
0.03076
0.03031
0.02988
0.02948
0.02891
0.02778
0.02715
0.02640
0.02602
0.02504
0.02452
0.02372

Total Energy
97.90773
97.95782
98.00631
98.05369
98.09828
98.14033
98.18203
98.22333
98.26422
98.30397
98.34219
98.37980
98.41610
98.45126
98.48520
98.51808
98.55003
98.58194
98.61270
98.64301
98.67289
98.70237
98.73128
98.75906
98.78621
98.81260
98.83863
98.86367
98.88818
98.91190



Table A.5: 6' velocity eigenvalue data.

Eigenvalue
1
2
3
4

5

6
7
8
9

10
11
12

13
14
15
16
17

18

19
20

21

22
23

24

25

26

27

28

29

30

% Energy
0. 12208E + 05
0.11056E + 05
0.97911E + 04
0.81536E + 04
0.48120E + 04
0.41654E + 04
0.33421E + 04
0.25272E + 04
0.22468E + 04
0.17523E + 04
0.15453E + 04
0.13531E + 04
0.12410E + 04
0.10399E + 04
0.93251E + 03
0.80603E + 03
0.77429E + 03
0.74178E + 03
0.72052E + 03
0.68559E + 03
0.65060E + 03
0.62909E + 03
0.57782E + 03
0.47577E + 03
0.44543E + 03
0.42468E + 03
0.39846E + 03
0.39754E + 03
0.34887E + 03
0.30938E + 03

Total Energy
14.81105
13.41330
11.87865
9.89202
5.83801
5.05351
4.05461
3.06596
2.72586
2.12585
1.87479
1.64162

1.50554

1.26161
1.13133
0.97788
0.93938
0.89993
0.87414
0.83176
0.78931
0.76322
0.70101
0.57721
0.54039
0.51522
0.48341
0.48230
0.42325
0.37534

14.81105
28.22435
40.10300
49.99502
55.83303
60.88654
64.94114
68.00710
70.73296
72.85882
74.73361
76.37523
77.88076
79.14238
80.27370
81.25158
82.19096
83.09089
83.96504
84.79679
85.58611
86.34933
87.05034
87.62755
88.16794
88.68316
89.16657
89.64888
90.07212
90.44747

Eigenvalue
31
32
33

34
35

36
37

38
39

40
41
42
43
44
45

46
47
48
49

50

51
52

53

54
55

56

57

58
59
60

% Energy
0.29566E + 03
0.28354E + 03
0.25168E + 03
0.23831E + 03
0.23425E + 03
0.22238E + 03
0.21167E + 03
0.19516E + 03
0.18964E + 03
0.18234E + 03
0.17408E + 03
0.17284E + 03
0.16031E + 03
0.15364E + 03
0.14892E + 03
0.14452E + 03
0.13804E + 03
0.12782E + 03
0.12139E + 03
0.11958E + 03
0.11740E + 03
0.10827E + 03
0.10575E + 03
0.10294E + 03
0.99371E + 02
0.94972E + 02
0.94324E + 02
0.89626E + 02
0.87558E + 02
0.84347E + 02

Total Energy
0.35870
0.34399
0.30534
0.28911
0.28420
0.26979
0.25680
0.23677
0.23008
0.22121
0.21120
0.20969
0.19449
0.18640
0.18067
0.17534
0.16747
0.15507
0.14728
0.14507
0.14243
0.13135
0.12830
0.12489
0.12056
0.11522
0.11444
0.10874
0.10623
0.10233

00

90.80617
91.15016
91.45550
91.74462
92.02882
92.29861
92.55541
92.79219
93.02226
93.24348
93.45468
93.66437
93.85886
94.04526
94.22593
94.40127
94.56874
94.72381
94.87108
95.01615
95.15858
95.28993
95.41823
95.54312
95.66368
95.77890
95.89333
96.00207
96.10829
96.21062

, , ,



61

62
63

64

65

66

67

68
69
70
71
72
73
74
75

76
77
78

79
80

81
82
83

84
85
86
87
88

89
90

Eigenvalue
0.82962E + 02
0.78408E + 02
0.76458E + 02
0.76353E + 02
0.72677E + 02
0.71967E + 02
0.70518E + 02
0.66826E + 02
0.65113E + 02
0.63047E + 02
0.62573E + 02
0.62015E + 02
0.61575E + 02
0.58890E + 02
0.55110E + 02
0.54638E + 02
0.52840E + 02
0.50938E + 02
0.49334E + 02
0.46190E + 02
0.45267E + 02
0.43763E + 02
0.43255E + 02
0.42266E + 02
0.40617E + 02
0.39567E + 02
0.38425E + 02
0.37938E + 02
0.36118E + 02
0.35383E + 02

% Energy
0.10065
0.09513
0.09276
0.09263
0.08817
0.08731
0.08555
0.08107
0.07900
0.07649
0.07591
0.07524
0.07470
0.07145
0.06686
0.06629
0.06411
0.06180
0.05985
0.05604
0.05492
0.05309
0.05248
0.05128
0.04928
0.04800
0.04662
0.04603
0.04382
0.04293

Total Energy
96.31127
96.40640
96.49916
96.59179
96.67996
96.76727
96.85283
96.93390
97.01290
97.08938
97.16530
97.24053
97.31524
97.38668
97.45354
97.51983
97.58394
97.64573
97.70559
97.76162
97.81654
97.86964
97.92211
97.97339
98.02267
98.07067
98.11729
98.16331
98.20713
98.25006

91

92
93

94

95

96
97

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Eigenvalue
0.34149E + 02
0.32961E + 02
0.32519E + 02
0.30825E + 02
0.29987E + 02
0.29529E + 02
0.28692E + 02
0.27281E + 02
0.27109E + 02
0.25911E + 02
0.25587E + 02
0.25182E + 02
0.24438E + 02
0.24286E + 02
0.23744E + 02
0.22513E + 02
0.22057E + 02
0.21338E + 02
0.21060E + 02
0.20667E + 02
0.20376E + 02
0.19776E + 02
0.19090E + 02
0.18836E + 02
0.18526E + 02
0.17776E + 02
0.17378E + 02
0.16954E + 02
0.16727E + 02
0.16316E + 02

% Energy
0.04143
0.03999
0.03945
0.03740
0.03638
0.03582
0.03481
0.03310
0.03289
0.03144
0.03104
0.03055
0.02965
0.02946
0.02881
0.02731
0.02676
0.02589
0.02555
0.02507
0.02472
0.02399
0.02316
0.02285
0.02248
0.02157
0.02108
0.02057
0.02029
0.01979

Total Energy
98.29149
98.33148
98.37093
98.40833
98.44471
98.48053
98.51534
98.54844
98.58133
98.61277
98.64381
98.67436
98.70401
98.73347
98.76228
98.78959
98.81635
98.84224
98.86779
98.89286
98.91758
98.94157
98.96473
98.98758
99.01006
99.03163
99.05271
99.07328
99.09357
99.11337



Table A.6: 8' velocity eigenvalue data.

Eigenvalue
0.12998E + 05
0.12034E + 05
0.23062E + 04
0.15054E + 04
0.10479E + 04
0.83666E + 03
0.73678E + 03
0.73596E + 03
0.65834E + 03
0.55601E + 03
0.49897E + 03

0.41564E + 03
0.34873E + 03
0.30964E + 03
0.27889E + 03
0.25994E + 03

0.23978E + 03

0.22226E + 03
0.21695E + 03
0.19430E + 03
0.18168E + 03
0.16651E + 03
0.15619E + 03
0.14027E + 03
0.13592E + 03

0.12499E + 03
0.10602E + 03
0.10003E + 03
0.98531E + 02
0.89566E + 02

% Energy
32.57933
30.16236

5.78054
3.77323
2.62666
2.09710
1.84675
1.84471
1.65014
1.39365
1.25069
1.04181
0.87408
0.77611
0.69905
0.65155
0.60100
0.55710
0.54379
0.48702
0.45538
0.41736
0.39150
0.35160
0.34068
0.31329
0.26573
0.25074
0.24697
0.22450

Total Energy
32.57933
62.74168
68.52222

72.29546
74.92211
77.01922
78.86597

80.71067
82.36081

83.75445
85.00514
86.04695
86.92103
87.69714
88.39620
89.04775
89.64875
90.20585
90.74964
91.23666
91.69203
92.10939
92.50089
92.85249
93.19317
93.50645
93.77219
94.02292
94.26989
94.49439

31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48

49

50

51

52
53
54

55
56
57

58
59

60

Eigenvalue
0.84094E + 02
0.82114E + 02
0.81431E + 02
0.75085E + 02
0.66018E + 02
0.63694E + 02
0.63206E + 02
0.60092E + 02
0.59474E + 02
0.56966E + 02
0.53719E + 02
0.51453E + 02
0.50062E + 02
0.48964E + 02
0.47184E + 02
0.43113E + 02
0.42245E + 02
0.40341E + 02
0.37438E + 02
0.34429E + 02
0.33050E + 02
0.31591E + 02
0.31028E + 02
0.29127E + 02
0.28242E + 02
0.27699E + 02
0.27030E + 02
0.25614E + 02
0.24977E + 02
0.23440E + 02

% Energy
0.21078
0.20582
0.20411

0.18820
0.16548
0.15965
0.15843
0.15062
0.14907
0.14279
0.13465
0.12897
0.12548
0.12273
0.11827

0.10806
0.10589
0.10111
0.09384
0.08630
0.08284
0.07918
0.07777
0.07301
0.07079
0.06943
0.06775
0.06420
0.06261
0.05875

Total Energy
94.70517
94.91099
95.11510
95.30330
95.46878
95.62843
95.78686
95.93748
96.08655
96.22934
96.36399
96.49296
96.61844
96.74116
96.85943
96.96749
97.07338
97.17450
97.26833
97.35463
97.43747
97.51665
97.59443
97.66743
97.73822
97.80765
97.87540
97.93961
98.00221
98.06096



Eigenvalue % Energy Total Energy

0.22287E + 02
0.21221E + 02
0.21089E + 02
0.19846E + 02
0.18726E + 02
0.18505E + 02
0.17912E + 02
0.17124E + 02
0.17078E + 02
0.16214E + 02
0.15575E + 02
0.15294E + 02
0.14998E + 02
0.14786E + 02
0.14394E + 02
0.13629E + 02
0.13205E + 02
0.13094E + 02
0.12561E + 02
0.12176E + 02
0.11957E + 02
0.11715E + 02
0.11453E + 02
0.10959E + 02
0.10484E + 02
0.10157E + 02
0.97996E + 01
0.95690E + 01
0.93597E + 01
0.90852E + 01

0.05586
0.05319
0.05286
0.04974
0.04694
0.04638
0.04490
0.04292
0.04281
0.04064
0.03904
0.03833
0.03759
0.03706
0.03608
0.03416
0.03310
0.03282
0.03148
0.03052
0.02997
0.02936
0.02871
0.02747
0.02628
0.02546
0.02456
0.02398
0.02346
0.02277

i i

98.11683
98.17002
98.22288
98.27262
98.31956
98.36594
98.41084
98.45376
98.49657
98.53721
98.57625
98.61458
98.65217
98.68924
98.72531
98.75947
98.79257
98.82539
98.85688
98.88740
98.91737
98.94673
98.97544
99.00291
99.02919
99.05465
99.07921
99.10319
99.12665
99.14943

91

92

93

94

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Eigenvalue
0.88473E + 01
0.84176E + 01
0.78952E + 01
0.78222E + 01
0.75054E + 01
0.73398E + 01
0.71829E + 01
0.70104E + 01
0.68861E + 01
0.66123E + 01
0.64236E + 01
0.61251E + 01
0.60370E + 01
0.57354E + 01
0.56430E + 01
0.54914E + 01
0.53733E + 01
0.52623E + 01
0.50287E + 01
0.49923E + 01
0.46741E + 01
0.45714E + 01
0.43513E + 01
0.42677E + 01
0.42131E + 01
0.40505E + 01
0.39035E + 01
0.38033E + 01
0.36993E + 01
0.36889E + 01

% Energy
0.02218
0.02110
0.01979
0.01961
0.01881
0.01840
0.01800
0.01757
0.01726
0.01657
0.01610
0.01535
0.01513
0.01438
0.01414
0.01376
0.01347
0.01319
0.01260
0.01251
0.01172
0.01146
0.01091
0.01070
0.01056
0.01015
0.00978
0.00953
0.00927
0.00925

Total Energy
99.17160
99.19270
99.21249
99.23210
99.25091
99.26931
99.28731
99.30488
99.32214
99.33872
99.35482
99.37017
99.38530
99.39968
99.41382
99.42759
99.44105
99.45424
99.46685
99.47936
99.49108
99.50254
99.51344
99.52414
99.53470
99.54485
99.55464
99.56417
99.57344
99.58269
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Appendix B

POD Modes

B.1 POD Pressure Modes 13-36

The following pages contain an expanded collection of the POD pressure modes at 4-, 6-,

and 8-degrees angle of attack. Modes 1-12 may be found in Figures 3-7 and 3-8 for the

4-degree decomposition, Figures 3-12 and 3-13 for the 6-degree decomposition, and Figures

3-16 and 3-17 for the 8-degree decomposition. POD mode numbers 13-36 are provided in

the following pages for the pressure field decompositions at the three angles of attack.
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-0.005

(a) 40 pressure mode 13 (b) 40 pre
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-0.005

(c) 40 pressure mode 15 (d) 40 pr
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-0.005

(e) 40 Pressure Mode 17 (f) 40 pr

Figure B-1: 4-degree pressure modes 13-18.
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(a) 40 pressure

(c) 40 pressure

(e) 40 Pressure

0.005

-0.005

mode 19 (b) 40 pr

0.005

-0.005

mode 21 (d) 40 pr

0.005

I e~i0-0.005

Mode 23 (f) 40 pr

Figure B-2: 4-degree pressure modes 19-24.
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(a) 40 pressure

(c) 40 pressure

(e) 40 Pressure

0.005

-0.005

mode 25 (b) 40 pr

0.005

-0.005

mode 27 (d) 40 pr

0.005

i4

-0.005

Mode 29 (f) 40 pr

Figure B-3: 4-degree pressure modes 25-30.
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(a) 40 pressure

(c) 40 pressure

(e) 40 Pressure

0.005

-0.005

mode 31 (b) 40 pr

0.005

-0.005

mode 33 (d) 40 pr

0.005

-0.005

Mode 35 (f) 40 pr

Figure B-4: 4-degree pressure modes 31-36.
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(a) 60 pressure

(c) 60 pressure

(e) 60 pressure

0.005

-0.005

mode 13 (b) 6* pr

0.005

-0.005

mode 15 (d) 6' pr

0.005

-0.005

Mode 17 (f) 60 pr

Figure B-5: 6-degree pressure modes 13-18.
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(a) 60 pressure

(c) 6' pressure

(e) 60 pressure

0.005

-0.005

mode 19 (b) 60 pr

0.005

-0.005

mode 21 (d) 6* pr

0.005

-0.005

Mode 23 (f) 60 pr

Figure B-6: 6-degree pressure modes 19-24.
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(a) 60 pressure mode 25 (b) 6* pr

0.005

A

-0.005

(c) 60 pressure mode 27 (d) 60 pr
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(e) 6 pressure Mode 29  (f) 60 pr

Figure B-7: 6-degree pressure modes 25-30.
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(a) 60 pressure

(c) 60 pressure

(e) 60 pressure
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-0.005

mode 31 (b) 6* pr

0.005

-0.005

mode 33 (d) 60 pr

0.005

-0.005

Mode 35 (f) 60 pr

Figure B-8: 6-degree pressure modes 31-36.
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(a) 80 pressure

(c) 8* pressure

(e) 8* pressure

0.005

-0.005

mode 13 (b) 80 pr

0.005

-0.005

mode 15 (d) 80 pr

0.005

-0.005

Mode 17 (f) 80 pr

Figure B-9: 8-degree pressure modes 13-18.
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Figure B-10: 8-degree pressure modes 19-24.
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Figure B-11: 8-degree pressure modes 25-30.
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Figure B-12: 8-degree pressure modes 31-36.
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B.2 POD Velocity Modes 13-36

The following pages contain an expanded collection of the POD pressure modes at 4-, 6-,

and 8-degrees angle of attack. Modes 1-12 may be found in Figures 3-20 and 3-21 for the

4-degree decomposition, Figures 3-24 and 3-25 for the 6-degree decomposition, and Figures

3-29 and 3-30 for the 8-degree decomposition. POD mode numbers 13-36 are provided in

the following pages for the velocity field decompositions at the three angles of attack.
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Figure B-13: 4-degree velocity modes 13-18.
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Figure B-14: 4-degree velocity modes 19-24.
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Figure B-15: 4-degree velocity modes 25-30.
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Figure B-16: 4-degree velocity modes 31-36.
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Figure B-17: 6-degree velocity modes 13-18.
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Figure B-18: 6-degree velocity modes 19-24.
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Figure B-19: 6-degree velocity modes 25-30.

locity mode 26

locity mode 28

locity mode 30

153



(a) 60 velocity

(c) 60 velocity

(e) 60 velocity

-0.01

mode 31 (b) 60 vel

0.01

-0.01

mode 33 (d) 60 ve

0.01

-0.01

Mode 35 (f) 60 ve

Figure B-20: 6-degree velocity modes 31-36.
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Figure B-21: 8-degree velocity modes 13-18.
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Figure B-22: 8-degree velocity modes 19-24.
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Figure B-23: 8-degree velocity modes 25-30.
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Figure B-24: 8-degree velocity modes 31-36.
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