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Abstract

The development of modern spacecraft is a challenging endeavor, especially in light of
the increasing complexity of today’s technology and ambitious mission goals, despite recent
budget and personnel cutbacks. A new approach to spacecraft development that addresses many
of the current issues facing the aerospace industry is described. The technique, called
Component-Based Systems Engineering, is built upon a systems engineering development
environment known as SpecTRM. An example of Component-Based Systems Engineering as
applied to a series of autonomous spacecraft known as SPHERES is provided. Simulations of
both one- and two-Sphere configurations are performed to illustrate not only the usefulness of

the technique but also the benefits that Component-Based Systems Engineering provides.
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Chapter 1
The Problem

In today’s economy, NASA and its contractors do not have the political or economic
backing to accomplish the highly publicized and successful space missions that, 50 years ago,
received seemingly limitless funding and nationwide support. In an attempt to continue the
exploration of space on budget allocations that seem to be waning with every year, the aerospace
industry has been forced to rethink the way they engineer spacecraft. One way NASA has
attempted to compensate for diminishing funds and support has been the Faster, Better, Cheaper
approach. This chapter outlines the problems with Faster, Better, Cheaper and the inherent
difficulties faced by the aerospace industry that set the stage for the approach to spacecraft

engineering discussed in this thesis.
1.1 Faster, Better and Cheaper Spacecraft

Traditionally, spacecraft developed by NASA cost approximately $1 billion and take, on
average, a decade to complete. The failure of one of these missions is debilitating to NASA and
its contractors. In order to minimize the cost of mission failures while maximizing the amount of
science done on a limited budget, NASA proposed a “Faster, Better, Cheaper,” or FBC, approach
to develop the next generation of space missions. During the 1990s, NASA operated under
Chief Administrator Dan Goldin’s FBC approach. These missions would have a budget of $150
to $350 million and take only three or four years to complete. NASA proposed accomplishing
this goal through the use of small-scale Earth and space science missions, based upon proven
technologies, which would theoretically require fewer managers and staff. Through reuse and a
small managerial staff, NASA had hoped to launch ten or more spacecraft a year.

In 1999 alone, four missions (Mars Climate Orbiter, Mars Polar Lander, Wide Field
Infrared Explorer and the two Deep Space 2 micro-probes) failed using the FBC approach and
six of the 25 missions between 1996 and 2000 were lost [20]. Clearly, the FBC approach has not
provided NASA with a spacecraft development approach that meets the new needs of creating

spacecraft under a lower budget and in smaller time frame. There are many reasons why the



FBC approach has failed to fulfill its goals; resources were highly constrained and guidance was
lacking due to many budget and workforce cuts throughout the 90s [18]. NASA accepted
significant risk that manifested itself as a lack of attention to process [18]. One of the processes
that suffered under this approach was software reuse. Because FBC decreased cost through the
use of proven technologies, many aspects of spacecraft software were reused from one mission
to the next. The previously stated lack of attention to process caused poor implementation of
reuse. One example of the poor implementation of reuse is the loss of the Mars Climate Orbiter,

described below.

1.1.1 Mars Climate Orbiter (MCO)

The Mars Climate Orbiter, or MCO, was part of the Mars Surveyor Program (MSP),
which NASA established in 1994 to explore Mars. The first missions in MSP were the Mars
Pathfinder and the Mars Global Surveyor. These missions were highly successful. The next two
missions, Mars Polar Lander (MPL) and MCO, were scheduled to launch during the next
minimum energy Earth-Mars transfer opportunity. The development teams had only 26 months
to prepare for these two missions. In order to accomplish these demanding goals, the project
decided to rely heavily on previous designs from MGS and Pathfinder.

The objective of the MCO mission was to deliver measurement devices for the collection
of Martian climate and atmospheric data to a low, near-circular, Sun-synchronous orbit around
Mars. The Mars Orbit Insertion (MOI) occurred on September 23, 1999. During MOI, the
spacecraft signal is lost for nearly 25 minutes because of Mars occultation. The spacecraft signal
dropped out 39 seconds earlier than predicted and never appeared again. From studying the
telemetry, the investigation team was able to determine that there was an error in the spacecraft’s
navigation measurements of nearly 100 km. This resulted in a much lower altitude than expected
and eventually led to the vehicle’s break-up in the atmosphere.

An MGS-heritage Software Interface Specification indicated the exact format and units
that the Angular Momentum Desaturation (AMD) files should have. This heritage specification
indicated that Metric units should be used for the impuse-bit in the AMD files, because the
equations supplied by the MGS-heritage software used Metric units. However, the equations in

the AMD files that made the impulse-bit calculations were supplied by a vendor that used



English units. The conversion factor from English to Metric units was erroneously left out of the
AMD files. Consequently, the AMD files did not conform to the heritage specification. The
4.45 conversion factor was left out of the MCO software, which led to an error in the state at
closest approach to Mars and the break-up of MCO [5].

MCO provides a c lear example o f the difficulties with reuse. N ot only did the MCO
development team reuse software from MGS, but they also used vendor-supplied equations for in
their AMD files. Because the MGS software had worked before with the vendor-supplied
equations, there was little or no attention paid to the interface between these components. The
conversion factor was included in the MGS software, but was never documented [5]. It is
surprising that the MCO development team would not have checked that the units matched
between the two software components. As stated in a paper written by several of the people
involved in the development of the MCO and MPL, “the best chance to find and arrest this
problem existed at the early levels of development” [5]. However, many of the procedures
adopted d uring the early stages o f d evelopment, such as the reuse o f M GS-heritage s oftware,
were accepted because they were consistent with the FBC philosophy [5]. Reuse in and of itself
did not cause the M CO to fail; the improper implementation of reuse that was caused by the
shortened timeline and budgetary constraints was a major contributing cause to the loss.

Poor implementation of reuse has also occurred outside of the FBC approach. Similar
problems also surfaced in a joint project between NASA and the European Space Agency (ESA)
called SOHO and in the Ariane 5 launch vehicle. These aerospace accidents (SOHO and Ariane
5) and their relationship to reuse are described below to provide further insight into this difficult

problem.

1.2 SOlar Heliospheric Observatory (SOHO)

SOHO, or the SOlar Heliospheric Observatory, is a joint effort between NASA and ESA
to p erform h elioseismology and m onitor the s olar atmosphere, corona and wind. S OHO was
launched on December 2, 1995, was declared fully operational in April of 1996, and completed a
successful two-year primary mission in May of 1998. It then entered into its extended mission

phase. After roughly two months of nominal activity, c ontact w ith S OHO w as lost June 25,



1998. The loss was preceded by a routine calibration of the spacecraft's three roll gyroscopes
(named A, B and C) and by a momentum management maneuver [21].

In order to increase the amount of science done during the mission and to increase the
gyros’ lifespans, a decision was made to compress the timeline of the operational procedures for
momentum management, gyro calibration and science instrument calibration into one continuous
sequence. The previous process had included a d ay between c ompleting g yro c alibration and
beginning the momentum management procedures. Because the gyro calibration in the new
compressed timeline was immediately followed by a momentum management procedure,
despinning the gyros at the end of the gyro calibration and re-enabling the on-board software
gyro control function was not required. However, after the gyro calibration, Gyro A was
specifically despun in order to conserve its life, while Gyros B and C remained active. The
modified predefined command sequence in the on-board control software had an error; it did not
contain a necessary function to reactivate Gyro A, which was needed by the Emergency Sun
Reacquisition. This omission resulted in the removal of the functionality of the spacecraft’s
normal safe mode, ESR, and ultimately caused the sequence ofevents that led tothelossof
telemetry. In addition, there was another error in the software that resulted in leaving Gyro B in
its high gain setting following the momentum management maneuver. This error originally
triggered the ESR [21].

The first error was contained within a software function called A_ CONFIG_N. ESR
requires the use of Gyro A for roll control. Any procedure that spins down Gyro A must set a
flag in the computer to respin Gyro A whenever the safe mode is triggered. When
A _CONFIG_N was modified, the software enable command was omitted due to “a lack of
system knowledge of the person who modified the procedure” [21]. Because the change had not
been properly communicated, the operator procedures did not indicate that Gyro A had been
spun down. In this accident, the two software errors were due to improper software change
procedures due to lack of knowledge about the software and system design by those making the

changes.
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1.3 Ariane 5

On June 4, 1996, the maiden flight of the Ariane 5 rocket ended in disaster when, 40
seconds after launch, the launcher veered off its nominal flight path and exploded. The
preliminary accident investigation showed that the launcher performed nominally until +36
seconds, at which point both the back-up and active Inertial Reference Systems failed, the two
solid boosters swiveled to an extreme position causing the rocket to veer abruptly and finally the
launcher self-destructed. The investigation board rapidly concluded that the Inertial Reference
System (IRS) was at the heart of the accident.

Because the design of the Ariane 5 IRS was similar to the one used on the Ariane 4, a
decision was made to reuse the IRS software from the Ariane 4 on the Ariane 5. The time
sequence of the Ariane 5 lift-off is significantly different from that of the Ariane 4. An
alignment function included in earlier versions of the rocket to restart an aborted countdown
could no longer be used in Ariane 5. However, the function was left in the Ariane 5 software for
commonality reasons, “based on the view that, unless proven necessary, it was not wise to make
changes in software which worked well on Ariane 4” [15]. The alignment function had not been
shut down in the previous Ariane rockets until 50 seconds into flight mode. Therefore, the
unchanged alignment function would also remain active 50 seconds into the flight mode of the
Ariane 5. In addition, the trajectory of Ariane 5 also differs from that of Ariane 4 and results in
considerably higher horizontal velocity values. The higher horizontal velocity led to a BH
(horizontal bias variable) value that was much higher than expected. This, in turn, caused an
operand error in an alignment function. An exception was raised causing the nozzle of the solid
rocket boosters to deflect, from which the launcher experienced high aerodynamic loads that led
to its explosion 39 seconds into flight [15]. Clearly, the reused Ariane 4 software was not
suitable for the Ariane 5 without considerable changes.

In an analysis of reuse and the Ariane 5 accident, Weyuker observes that many engineers
believe if the software components are reusable, they do not have to be reevaluated for
integration into the new system [27]. The Ariane 5 and MCO accidents were examples of what
happens when software components are not reevaluated and properly integrated into the new

system. The poor implementation of reuse led to complete losses in both cases.
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The software components Weyuker refers to are the building blocks of an approach to
software development called Component-Based Software Engineering, or CBSE. Component-
Based Software Engineering is one way the software industry has incorporated reuse into its
software development practices. The next chapter defines Component-Based Software
Engineering and discusses its costs (why it is easy to poorly implement CBSE) and benefits. The
third a erospace accident e xample involved an improper implementation of software change, a
topic that will be addressed in Chapter 3. Unfortunately, poor reuse practices are not the only
problems currently facing the aerospace industry. The next section describes other factors that

are making the development of the next generation of space vehicles an even more difficult task.

1.4 Inherent Difficulties of the Aerospace Industry

Not only are aerospace companies faced with the problems caused by poor
implementation of component-based software engineering and reuse, but they are also facing
difficulties within their own industry. The following problems in the aerospace industry add to
the complexity of developing a suitable methodology for creating the next generation of

spacecraft.

1.4.1 Spacecraft Software Structure and a Lack of Autonomy

Traditionally, spacecraft software has been highly event-based: a time or an action
triggers another action in software. Consequently, the spacecraft must adhere closely to its
predefined operational model to assure that mission objectives are achieved. These sequences
are extremely specific to each spacecraft and mission. Therefore, much of the control software
cannot be reused from one spacecraft or mission to another.

In addition, the occurrence of unpredictable events outside nominal variations is dealt
with by high-level fault protection software. This software may be inadequate if time or
resources are constrained and recovery actions interfere with satisfying mission objectives [24].
In this case, the spacecraft enters a safe mode in which all systems are shut down except for
those needed to communicate with Earth. The spacecraft then waits for instructions from the

ground controller [6]. Safe mode is problematic for two reasons. First, if the spacecraft is far
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from earth, there is a large communication delay. During the cruise phase of flight, the delay
may not cause any problems; the spacecraft has time to await new instructions from Earth.
However, if the spacecraft is executing an event sequence during a safety-critical flight phase,
such as an orbit insertion, the procedure may prove to be extremely costly and possibly fatal [6].
Second, large and expensive deep-space mission such as Cassini require an enormous number of
ground controllers to support each phase of flight.

Recently, researchers at the Jet Propulsion Laboratories (JPL) have proposed a new
approach to designing spacecraft software. The Mission Data System, or MDS, is presently
under development by NASA and is based on the principles of Artificial Intelligence (AI). MDS
is a goal-based system, which is defined as a system in which all actions are directed by goals
instead of commands [24]. A goal is a constraint on a state over a time interval and elaboration
is the process by which a set of rules recursively expands a high level goal into a goal network
[6]. The new low-level goals are then merged with the previous goals, thereby providing the
spacecraft with the ability to deal with previously unknown situations. The summation of these
goals forms the knowledge base from which the agents in the AI architecture will gather
information to make decisions for the spacecraft.

The proponents of MDS suggest that the problems with traditional software (specificity
and inability to handle faults) are easily dealt with through the use of such an architecture. First,
the entire architecture is reused from one spacecraft to the next; the only aspect of MDS that
changes are the goals for a particular mission. Second, fault tolerance is no longer considered a
separate entity. Because a failure mode or other anomalous condition is treated as just another
possible set of system states, the spacecraft does not have to alter its nominal operations [6]. It
simply relegates the fault by attempting to fulfill its mission goals given its current state, a
process no different than if the spacecraft was not in a fault detected state.

Although MDS appears to be a suitable alternative to current spacecraft software
architecture, several issues have been raised that question the approach. First, some researchers
argue that AT has not matured to the point where it can be reliably used in safety-critical systems.
Second, MDS has been under development for nearly ten years, and it is still not finished.
Although JPL touts Remote Agent as a complete success for Al, Remote Agent never actually
controlled Deep Space 1. There has been no proof from either MDS or the Remote Agent

project that suggests that Al is a feasible and appropriate software architecture for a spacecraft
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controller. Finally, is there a middle ground between time-stamped commands and artificial
intelligence? These two approaches seem to lie on the opposite extremes of the software
architecture spectrum. A more moderate approach may be more suitable for the next generation

of spacecraft.

1.4.2 Loss of Domain Knowledge

As the Apollo-era spacecraft engineers retire, the wealth of knowledge that they have
acquired throughout their careers has the potential for being lost [12]. The knowledge needs to
be captured and recorded in an easily readable format so that it can be passed on to the next
generation of spacecraft engineers. One of the most important aspects of this domain knowledge
is r ationale, for example, why a certain design or implementation decision was made. In the
past, this information has not been transferred and takes years of experience to learn. This is the

type of information that needs to be recorded.

1.4.3 Miscommunication Among Multi-disciplinary Engineering Teams

Multi-disciplinary engineering teams are common in the aerospace industry. Spacecraft
need a variety of subsystems that range from attitude determination and control, to
communications and power. These subsystems are all controlled by software that allows the
spacecraft to accomplish its mission objectives. Spacecraft development requires the expertise
of engineers from fields as different as mechanical engineering and computer science. These
individuals have extremely diverse backgrounds, talents and communication skills. They use
different terminology (sometimes for the same concepts) and language specific to their field.
They are accustomed to certain tools and problem solving strategies. These differences make the
engineering effort difficult and create communication problems among team members. A
common medium is needed for cross-disciplinary communication on spacecraft engineering
teams to help facilitate understanding among team members and decrease the ambiguity caused

by their diverse backgrounds.

14



1.5 Summary

There are two main problem areas facing the aerospace industry today. First, the poor
implementation of component-based software engineering practices, wide spread code reuse and
changes to existing software are creating catastrophic failures for many companies in the
industry. These losses cannot continue to be sustained especially in light of the push to create
faster, better and cheaper spacecraft. Second, there are problems within the aerospace industry
itself. The event-based software sequences that have been used by the spacecraft industry for
years are becoming obsolete. New, more complex missions are forcing engineers to rethink the
way they design spacecraft software. The lack of spacecraft autonomy forces acrospace
companies to maintain a large number of expensive ground controllers for fault tolerance. The
attempts to alleviate these software structure problems with artificial intelligence have not yet
come to fruition. The aging of the intellectual workforce at NASA and its contractors threatens
to eliminate a large source of domain knowledge that has been acquired through years of
experience. And, finally, communication between engineers from various fields may lead to

severe misunderstandings, which can eventually lead to costly mishaps.

1.6 Thesis Outline

This thesis proposes a new approach to spacecraft development that uses the principles of
Component-Based Software Engineering and Systems Engineering to provide engineers with an
environment in which it is feasible to produce spacecraft faster under tighter budgets. Chapter 2
provides background on Component-Based Software Engineering and Systems Engineering. It
then defines the approach to spacecraft development that combines the principles of these two
techniques and which can be used to solve some of the problems outlined in this chapter. This
technique is known as Component-Based Systems Engineering.

Chapter 3 identifies and describes the systems engineering development environment
called SpecTRM, which provides a platform for Component-Based Systems Engineering.
SpecTRM is a toolkit that allows users to create intent specifications, which will serve as the

reusable components that are central to this approach.
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Chapter 4 applies Component-Based Systems Engineering to SPHERES, a group of
satellites that perform high-risk metrology, control and autonomy algorithms inside the United
States Node of the International Space Stations. Two Guest Scientist Programs are modeled to
illustrate the ease with which additional spheres can be added to the system after intent

specifications have been created. Finally, Chapter 5 contains the conclusions drawn from the

research and the test case.
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Chapter 2
Component-Based Systems Engineering

This chapter defines Component-Based Software Engineering and the current uses of the
technique in addition to some of its negative aspects. Various definitions of systems engineering
are also provided as well as identification of a few characteristics of systems engineering that are
constant throughout these definitions. A methodology for spacecraft development is then
outlined that combines the principles of both Component-Based Software Engineering as well as

systems engineering
2.1 Component-Based Software Engineering and Reuse

Component-Based Software Engineering, or CBSE, is the process by which software
code is specified, designed, implemented, tested and maintained using a collection of functional
elements that communicate through pre-specified interfaces. It has been proposed that reusing
these components can significantly lower development costs and shorten development cycles. It
can also lead to software systems that require less time to specify, d esign, test and m aintain,
while satisfying high reliability requirements [26].

Many software engineers suggest that creating the components with a d omain-specific
language can further enhance the benefits of CBSE. Domain-specific languages (DSLs) are
created to be as close as possible to the expert’s conceptual view of the application domain,
thereby allowing the user to easily describe their systems [23]. When these DSLs used in
combination with CBSE are high-level, the approach is referred to as Domain-Specific Software
Architectures (DSSAs) [1]. Many industries, including aerospace, are researching the usefulness
of DSSAs and CBSE for software development. At Honeywell, research is being conducted in
applying DSSAs to Guidance, Navigation and Control [10]. The researchers suggest that using
DSSAs helps software developers experience the benefits of CBSE and the benefits of DSLs.
Using DSSAs allows multiple phases of the lifecycle (design, implementation and testing) to be
reused. This is an improvement over CBSE, because it only reuses code, which comprises

merely 10-20% of the software development effort [10].
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However, many software professionals agree that a practical approach to performing any
of these component-based software development techniques has not yet been developed [1]. The
lack of successful implementations of these techniques is due to a variety of industrial factors as
well as some of the observed limitations of CBSE described below.

First, software components that have been successful within a different project are
assumed to be “proven” and do not need to be reevaluated for integration into the new system, as
seen in both the Ariane 5 and MCO accidents. In many cases, when the engineers do want to
properly integrate the component into their system’s software, sufficient documentation does not
accompany the code, due to proprietary reasons on the part of the vendor. Consequently,
engineers have a fairly difficult time determining how the module actually works and how it will
operate within its new environment. Third, unused portions of a reusable component are often
left in the system, because the developers do not know the effects of removing code snippets.
Finally, reusable components are difficult to change correctly because of the aforementioned
lack of documentation.

Clearly, reuse has both its benefits and its costs. However, if reuse is to really contribute
to faster, better and cheaper spacecraft, the reuse methods NASA and its contractors employ
need to be refined. The rest of this chapter defines systems engineering and describes how its
principles can be applied to CBSE to help the aerospace industry implement reuse practices more

effectively.

2.2 Systems Engineering

A system can be defined as a series of interrelated components that work together toward
a common p urpose. T he systems d eveloped today are b ecoming i ncreasingly c omplex. T his
complexity is a result of interconnections, interactions and interdependencies between the
components (which may be systems themselves) that comprise the system. Because of this
complexity, one component of the system cannot be engineered independently of the other
components. A system-wide view of the components and how they contribute to and interact
with the system-as-a-whole must be taken. The components must be engineered within the

context of their place within the system. This approach is called systems engineering.
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There are many definitions of systems engineering. The NASA Systems Engineering
Handbook defines systems engineering as “a robust approach to the design, creation and
operation of systems” [19]. This approach consists of identifying and quantifying system goals,
creating alternative design concepts, performing a trade-off analysis of these designs, selecting
and implementing the best design, verifying that the design was properly built and implemented
and finally assessing how well the system meets the goals [19].

Another definition comes from the International Council on Systems Engineering:
“Systems engineering is an interdisciplinary approach and means to enable the realization of
successful systems. It focuses on defining customer needs and required functionality early in the
development cycle, - documenting requirements, then proceeding with design synthesis and
system validation while considering the complete problem:

» Operations |

» Performance

= Test

»  Manufacturing

= Cost & Schedule

» Training & Support

= Disposal
Systems engineering integrates all the disciplines and specialty groups into a team effort forming
a structured development process that proceeds from concept to production to operation” [11].

The MIT’s Engineering Systems Division characterizes systems engineering as “a
process for designing systems that begins with requirements, that uses and/or modifies an
architecture, accomplishes function and/or physical decomposition, and accounts for the
achievement of the requirements by assigning them to entities and maintaining oversight on the
design and integration of those entities” [16]

There are many more d efinitions o f s ystems e ngineering, but these definitions and the
examples above all contain many similar ideas. First, systems engineering is multidisciplinary.
Complex systems are built up of a variety of subsystems, which include everything from human
operations to electronics. The systems engineering effort involves using the expertise of the
engineers from e ach o f the e ngineering d isciplines t hat ¢ ontribute to the system functionality.

Systems engineering is also process inclusive. It involves interdisciplinary trade-off analyses

19



and evaluation of customer need and requirements satisfaction at each stage in the development
lifecycle.

Systems Engineering is a much superior approach to the development of today’s complex
systems, because it requires that engineers have a thorough understanding of not only the
subsystem with which they are working, but also how the subsystem a ffects its e nvironment.
Caldwell and Chau note that, “Each person must be able to see a larger portion of the whole than
the traditional partitioning according to subsystems” [2]. In particular, an avionics engineer must
not only understand all of avionics but also their many interactions with other parts of the space
system [2]. In addition, systems engineering allows engineers to reduce cost and risk through the
evaluation of multiple design alternatives at each stage in the development lifecycle [19].
Clearly, systems engineering must p lay an integral role in a new approach to engineering the

next generation of spacecraft.

2.3 What is Component-Based System Engineering?

As discussed in the previous chapter, reuse is critical in decreasing the cost of spacecraft
development. However, when Component-Based Software Engineering is implemented
incorrectly, its effectiveness is decreased and in some cases catastrophic accidents occur. The
Mars Climate Orbiter and Ariane 5 accidents are examples of what happens when CBSE and
reuse are implemented improperly. Furthermore, the SOHO accident exemplifies poor
implementation of software change. Systems engineering was created to deal with these types of
problems. Systems engineering stresses that subsystems must be developed as parts of a whole
instead of independent entities. The awareness of interconnections, interactions and
interdependencies helps to prevent accidents that stem from poor reuse and change practices.
Since CBSE focuses on reusing individual software components alone without addressing its
implications on other aspects of the system, this awareness is not present and accidents like
MCO, Ariane 5 and SOHO can occur. Combining the ideas and processes of systems
engineering with CBSE may alleviate some of these problems.

In a combined technology, engineering teams would perform Component-Based Systems
Engineering instead of Component-Based Software Engineering, in which e ach c omponent or

subsystem is developed using a systems engineering development environment. As previously
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stated, systems engineering is a process-inclusive approach to designing a system, that is,
systems engineering development environments are created to foster documentation, trade-off
analysis and testing throughout every stage of the engineering development lifecycle.

A systems engineering approach is especially important for the software portions of the
system. Today’s systems are primarily software driven. Accidents involving computers are
usually the result of flaws in the software requirements, not coding errors [13]. Although the
system is developed with a component-based approach, applying systems engineering principles
to this approach helps engineers to recognize software interconnections at every stage of the
lifecycle, including requirements specification. Thorough documentation, trade-off analyses,
testing and the recognition that each software component is a part of the system-as-a-whole
increases the quality of requirements specifications by uncovering problems early in the lifecycle
and thereby decreasing the cost of correcting these mistakes. Requirements specifications are
analyzed before any code is ever written or any hardware implementation is completed.

The first step in applying the Component-Based Systems Engineering approach involves
a decomposition of the system. Depending on the properties of the system, this may be a
functional, physical or logical decomposition. Functional decomposition is a natural approach
for spacecraft, which are composed of components that are grouped into subsystems based on the
functionality they provide to the system-as-a-whole. At the highest level, software manages the
spacecraft and is called the controller. The controller integrates the various subsystems and
usually allocates resources and tasks to them. The next level of decomposition is the subsystem
level. All spacecraft have similar subsystems, which include attitude determination and control,
power, thermal, guidance and n avigation, c ommunications and propulsion. These subsystems
are directed by the spacecraft controller to accomplish mission objectives. The subsystems can
be further decomposed into their constituent components. For example, most attitude
determination and control subsystems are composed of some combination of the following
components: reaction control systems, reaction wheel assemblies, inertial measuring units, star
trackers, sun sensors and horizon sensors. The spacecraft decomposition is complete when the
individual hardware elements are reached. For the generic spacecraft, functional decomposition
yields the three levels discussed above: the spacecraft controller, the subsystems and the

individual components. Figure 1 illustrates an example decomposition of a generic spacecraft.
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Now that the spacecraft has been decomposed into a series of components, the next step
in Component-Based Systems Engineering is to develop the spacecraft from the individual
components to the spacecraft controller using a systems engineering development environment.
Because the spacecraft developed by a given company follow many common development
patterns and use similar components, spacecraft components could be built to be generic, which
makes them reusable. These components would be created with the previously described
systems engineering approach in the systems engineering development environment and
therefore the entire engineering development process can be reused instead of merely software
code. The company would create a library of these components. When a new spacecraft is
needed, components are combined to create a generic subsystem. The subsystems are refined to
reflect the specific goals and mission objectives of the project. They are then combined to form

the spacecraft controller for the particular spacecraft.

Spacecraft Controller
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Figure 1. Example Spacecraft Decomposition

This methodology decreases the time it takes to develop a new spacecraft because it does
not start from scratch, one of the main advantages of using a component-based development
approach. Because spacecraft engineers develop the components, they are specific to the domain
of spacecraft engineering, which aids engineers on other projects to easily incorporate these

components into their projects. In addition, the entire process of developing the components and
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subsystems of the spacecraft with the principles of systems engineering and the assembly of the
subsystems and controller is reused. Details specific to the spacecraft and its mission can be
easily added to the generic components, making the design suitable for the wide range of

spacecraft applications.

2.4 Summary

Combining the systems engineering and component-based approaches to project
development allows engineers to experience the benefits of Component-Based Software
Engineering without the detrimental effects of improper implementation of reuse. Instead of
performing CBSE, engineers can perform Component-Based Systems Engineering, in which the
entire process of developing a component or subsystem of a system is reused. The development
is performed in a systems engineering development environment, which supports the principles
of systems engineering such as a common means of communication between the various types of
engineers on the development team as well as placing the component or subsystem in context
within the larger system. The next chapter describes a systems engineering development
environment that provides the foundation for and implementation of Component-Based Systems

Engineering.
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Chapter 3
SpecTRM-GSC

The construction of reusable components using a systems engineering approach requires
a platform upon which these components can be built. This chapter proposes the use of intent
specifications and SpecTRM as a platform for Component-Based Systems Engineering. Each
component is an intent specification built in SpecTRM, which is a toolkit that allows users to
create intent specifications as well as perform formal analyses on the model. Finally, the
properties of the reusable components that emerge from the use of the Component-Based

Systems Engineering technique and SpecTRM are identified and described.
3.1 Intent Specifications and SpecTRM

Intent specifications are based on research in human problem solving and on basic
principles of system theory. An intent specification differs from a standard specification
primarily in its structure: the specification is structured as a set of models designed to describe
the system from different viewpoints, with complete traceability between the models. The
structure is designed (1) to facilitate the tracing of system-level requirements and design
constraints down into detailed design and implementation, (2) to assist in the assurance of
various system properties (such as safety) in the initial design and implementation, and (3) to
reduce the costs of implementing changes and reanalysis when the system is changed, as it
inevitably will be. Because of its basis in research on how to enhance human problem solving,
intent specifications should enhance human processing and use of specifications and our ability
to perform system design and evolution activities. Note that no extra specification is involved
(assuming that projects produce the usual specifications), but simply a different structuring and
linking of the information so that specifications provide more assistance in the development and
evolution process [14].

There are seven levels in an intent specification as seen in Figure 1 [14]. Levels do not
represent refinement, as in other more common hierarchical structures, but instead each level of

an intent specification represents a completely different model of the same system and supports a
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different type of reasoning about it: each model or level presents a complete view of the system,
but from a different perspective. The model at each level may be described in terms of a
different set of attributes or language. Refinement and decomposition occurs within each level
of the specification, rather than between levels [14].

The top level (Level 0) provides a project management view and insight into the
relationship between the plans and project development. Level 1 of an intent specification is the
customer view and assists system engineers and customers in agreeing on what should be built
and whether that has been accomplished. It includes system goals, high-level requirements,
design constraints, hazards, environmental assumptions, and system limitations. The second
level, System Design Principles, is the system engineering level and allows engineers to reason
about the system in terms of the physical principles and laws upon which the system design is

based.
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Figure 2. Intent Specification Hierarchy

The third, or Blackbox Behavior level, enhances reasoning about the logical design of the
system as a whole and the interactions between the components as well as the functional state
without being distracted by implementation issues. This level acts as an unambiguous interface

between systems engineering and component engineering to assist in communication and review
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of component blackbox behavioral requirements and to reason about the combined behaviour of
individual c omponents using i nformal r eview, formal analysis, and simulation. T he 1anguage
used on this level, SpecTRM-RL, has a formal foundation so it can be executed and subjected to
formal analysis while still being readable with minimal training and expertise in discrete math.

The next two levels provide the information necessary to reason about individual
component d esign and i mplementation issues. F inally, the sixth level provides a view of the
operational system. Each level is mapped to the levels above and below it. These mappings
provide the relational information that allows reasoning across the hierarchical levels and tracing
from high-level requirements down to implementation and vice versa.

Intent information represents the design rationale upon which the specification is based.
This design rationale is integrated directly into the specification. Each level also contains
information about underlying assumptions upon which the design and validation is based.
Assumptions are especially important in operational safety analyses. When conditions change
such that the assumptions are no longer true, then a new safety analysis should be triggered.
These assumptions may be included in a safety analysis document (or at least should be), but are
not usually traced to the parts of the implementation they affect. Thus even if the system safety
engineer knows that a safety analysis assumption has changed (e.g., pacemakers are now being
used on children rather than the adults for which the device was originally designed and
validated), it is a very difficult and resource-intensive process to determine which parts of the
design used that assumption [14].

The safety information system or database is often separated from the development
database and specifications. In the worst case, system and software safety engineers carefully
perform analyses that have no effect on the system design because the information is not
contained within the decision-making environment of the design engineers and they do not have
access to it during system design. By the time they get the information (usually in the form of a
critique of the design late in the development process), it is often ignored or argued away
because changing the design at that time is too costly. Intent specifications integrate the safety
database and information into the development specifications and database so that the
information neceded by engineers to make appropriate tradeoffs and design decisions is readily

available [14].
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Interface specifications and specification of important aspects of environmental
components are also integrated into the intent specification, as are human factors and human
interface design. The separation of human-automation interface design from the main system
and component design can lead to serious deficiencies in each. Finally, each level of the intent
specification includes a specification of the requirements and results of verification and
validation activities of the information at that specification level [14].

SpecTRM, which stands for Specification Toolkit and Requirements Methodology, is a
development environment that allows users to easily create, modify and analyze intent
specifications. SpecTRM includes many features important to the intent specification process.
First, an empty intent specification in SpecTRM contains headings that, when filled out, help
ensure specification completeness. By providing the user with an initial structure to their
specification, SpecTRM helps the user to think about aspects they may have otherwise left out.
Second, SpecTRM provides an easy link creator. Links between levels provide traceability
within the specification from the highest requirements all the way down to implementation. This
is especially useful for tracking c hanges and p erforming interface testing. F inally, S pecTRM

provides various analyses that can be performed on the Level 3 blackbox model [25].

3.1.1 Analyses

SpecTRM currently provides two analyses that can be performed on the individual intent
specifications: non-determinism and robustness. A model is deterministic if for any given
system state and set of inputs, there is only one transition for each state and mode [25]. A model
is robust, if for any given system state and set of inputs, a transition exists, i.e. a behavior is
defined for all possible inputs [25]. These analyses allow the system engineers to eliminate all
inconsistencies and i ncompleteness b efore the simulationisrun. T he Level 3 modelscanbe

checked automatically for these properties [7].

3.1.2 Simulations

SpecTRM models are executable. Because the Level 3 blackbox model is a formal

representation of an underlying state machine, the model can be executed given a set of inputs.
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Individual models can be executed in isolation and multiple models can be executed in an
environment in which they interact with each other. Components can be linked to their parent
subsystems and the subsystems to the controller to simulate the system-as-a-whole.

There are many benefits to running simulations in SpecTRM. First, simulations allow
system developers to observe the results of interactions between components and the
functionality of the subsystem specification and model. Testing blackbox behavior is especially
important at this stage in the development lifecycle, because errors in the requirements
specifications and/or the blackbox model can be uncovered before any code has been
implemented. After the spacecraft has been created and deployed, changes will need to be made
to the on-board software. Code maintenance comprises nearly 70% of the software lifecycle and
changes to the software can be costly [26]. An executable state machine provides the software
maintainers with the ability to incorporate changes to the code from the formal requirements
specification, and simulate the effects those changes will have on the rest of the system, again
before any code has been implemented. As evidenced by the SOHO accident described in
Chapter 1, improper software change procedures can be as detrimental to a system as poor
implementation of reuse.

Third, executable blackbox models help developers to perform trade-off analyses.
Engineers can simulate alternative design strategies and determine which approach is most
suitable given the constraints and requirements of the system. Finally, different types of
visualizations of the underlying state machine allow users to facilitate the creation of a mental
model of the system’s functioning. A high quality mental model of the system will improve the
requirements creation and reviewing process [3]. Clearly, having a formal, executable, blackbox
model of the system provides engineers with the variety of benefits that aid in the proper

implementation of a component-based development approach.

3.2 SpecTRM-GSC

Intent specifications provide the features needed to perform Component-Based Systems
Engineering. As described in Chapter 2, the construction of a system using Component-Based
Systems Engineering begins with a decomposition of the system. After the system has been

decomposed into its subsequent subsystems and individual components, the system is developed
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from the b ottom-up. I nthe example given in this thesis, the c omponent intent s pecifications
were constructed using SpecTRM. For spacecraft, the intent specifications were labeled
SpecTRM-GSCs, or SpecTRM-Generic Spacecraft Components.  There are four main
characteristics of SpecTRM-GSCs that are crucial to the success of this technique: each
component must be fully encapsulated, have well-defined interfaces, be reusable and contain

component-level fault protection.

3.2.1 Fully Encapsulated

Each SpecTRM-GSC must b e fully encapsulated, m eaning that all the functionality o f
that component should be contained within the component intent specification. Conventionally,
much of the control and software for attitude determination and control components was
traditionally d istributed b etween the controller, the subsystem and component itself. By fully
encapsulating the operations of each device within one intent s pecification, the m odularity of
design process and ease with which components are reused increases.

For example, a reaction wheel assembly will always receive torque commands as inputs.
It then spins the reaction wheels to achieve the desired torque. Instead of associating these
operations with the attitude determination and control subsystem (ADCS) from the beginning of
development, an intent specification for the reaction wheel assembly is written independently of
the ADCS, thereby disassociating the component from its possible uses. By capturing only what
and how the reaction wheel assembly provides instead of what it will be used for, the component
becomes far more modular not only between spacecraft but also within the same spacecraft. In
other words, the component can be used in the ADCS of many different spacecraft as well as
different subsystems of the same spacecraft. For example, in some extreme cases, thermal

subsystems can use the friction of the spinning reaction wheels to generate heat.

3.2.2 Well-Defined Interfaces

Like components in Component-Based Software Engineering, the SpecTRM-GSCs must
also have well-defined interfaces. All components must adhere to standard naming conventions

and input/output requirements. It is extremely important that the construction ofthe Level 3
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blackbox models of the SpecTRM-GSCs follow a consistent pattern in terms of how blackbox
elements are named in order to avoid confusion and increase the ease with which components are
combined to create subsystems. Consistency in the construction of the intent specifications is
especially important in the case of inputs and outputs, because these are the modeling elements
through which the components communicate with their parent subsystem. Therefore, a
convention for both names and the type of information that the inputs and outputs transfer must

be defined from the beginning of development and then strictly followed.

3.2.3 Generic

Because the components are fully encapsulated and have well-defined interfaces, they are
also reusable. To enhance this reusability, specific information should be left out of the
specification, making each SpecTRM-GSC highly generic. The system engineer inserts system-
specific information when the components are used for a particular spacecraft subsystem. For
example, when a digital sun sensor is used in an ADCS specification, the system engineer must
specify the particular model being used and other information specific to that model number. If
the sun sensor selected is the Adcole Digital Sun Sensor Model 18960, for example, the engineer
must specify that the sun sensor uses a 15 bit input from its sensor heads. In the SpecTRM-
GSCs, the use of both bold face and underlining highlights such information. These font
characteristics alert the system engineer that the information is specific to a particular model
number and should be changed when the generic component is instantiated in a particular

spacecraft design.

3.2.4 Component-Level Fault Protection

Component-Based Systems Engineering employs three levels of fault-protection: intra-
component fault protection, inter-component fault protection and inter-subsystem fault
protection. These three levels ensure that fault protection covers the entire system; not only must
the design account for component failures, but also for failures resulting from the interactions
between components and subsystems. At the intra-component level, the fault protection logic

assures that if the component is working in an off-nominal mode, it will alert its subsystem.
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Then, at the inter-component level, the subsystem determines how to handle that fault. T his

feature is especially important in autonomous spacecratft.

3.3 Summary

Intent specifications and SpecTRM provide a platform upon which Component-Based
System Engineering can be performed. SpecTRM-GSCs help to capture domain knowledge
through recording the rationale behind decision-making at each step in the development
lifecycle. They abstract away the details of design so that the specifications can be reusable from
one project to the next. Various analyses can be performed on SpecTRM-GSCs, which aids in
the development of autonomous systems. System performance can be tested through simulation
before any hardware is built or any code is written. During maintenance, changes to the software
can be easily documented and incorporated into the new system. Engineers can also simulate
design alternatives for trade-off analyses as well as visualize the underlying state machine to
obtain a different perspective of the system. Most important, SpecTRM-GSCs grant users the
benefits of reuse without the potential drawbacks. The next chapter provides an example of

Component-Based Systems Engineering using SpecTRM as applied to a real spacecraft.
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Chapter 4
SPHERES Example

SPHERES stands for Synchronize Position Hold Engage Reorient Experimental
Satellites. It was created by the MIT’s Space Systems Laboratory to provide NASA and the Air
Force with a reusable, space-based test-bed for high-risk metrology, control and autonomy
technologies [ 17]. T hese technologies are critical to the o peration o f distributed s atellite and
docking missions such as the Terrestrial Planet Finder and Orbital Express. In addition, guest
scientists from around the world will have access to this test-bed so they can independently
design, code and debug estimation, control and autonomy algorithms for testing in the micro-
gravity conditions of space (SPHERES will operate aboard the International Space Station) [9].
The experiments performed by NASA, the Air Force and the guest scientists are an important
step in making many future space missions possible, especially those that require the ability to
autonomously coordinate and synchronize multiple spacecraft in tightly controlled spatial
configurations.

SPHERES was chosen as the case study for testing Component-Based Systems
Engineering for many important reasons. First, SPHERES is an autonomous system. [t was
created to execute maneuvers without the guidance of a ground controller. In fact, the only
interactions the astronauts aboard the ISS have with the SPHERES system involves simply
loading programs and replenishables onto the spheres. Since Component-Based Systems
Engineering was developed to support autonomous spacecraft, it was important to test the
technique on an autonomous system. Along the same lines, it was also important that the system
be highly modular to test the component-based aspects of the technique. Third, and most
essential to the research, was the need to test the technique on a real system. In order to evaluate
the scalability and applicability of this method, it was critical to test the process on a real
spacecraft system. These three criteria made SPHERES an excellent experimental subject for
testing Component-Based Systems Engineering. This chapter describes the process of reverse-
engineering SPHERES using the Component-Based Systems Engineering approach, which
involved (1) outlining the structure of SPHERES, (2) creating SpecTRM-GSCs from the
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SPHERES project, (3) creating two example Guest Scientist Programs and (4) performing
analyses on the SpecTRM-GSCs.

4.1 SpecTRM-GSC Structure

As outlined in Chapter 2, the first step in performing Component-Based Systems
Engineering is a functional decomposition of the spacecraft. Figure 3 illustrates the SPHERES

decomposition. SPHERES can operate with one, two or three spheres.

Guest Scientist Program

Sphere Controller

Electrical Subsystem
Propulsion Subsysiem PADS Conmununication Subsystem
Firing Thrusters Beacons SPHERES Laptop

Figure 3. SPHERES Functional Decomposition

Each node in the decomposition tree represents a different SpecTRM-GSC, or intent

specification. At the highest level is the Sphere Controller. The Sphere Controller provides the
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overall framework for the Sphere, coordinating the actions of the onboard components as well as
determining the operating mode of the Sphere. Each Sphere Controller interacts with the various
subsystems onboard the Sphere including Propulsion, Position and Attitude Determination,
Communication, Guest Scientist Program, Electrical and Structure. The focus of this case study
is on the subsystems that contain both hardware and software. Therefore, the Structure and
Electrical Subsystems were not modeled, although they could easily be represented as
SpecTRM-GSCs.

Each subsystem can then be broken down into its constituent hardware components. In
the case of SPHERES, the majority of these components are too simple to model — they do not
have sensors or provide any feedback to their parent subsystem nor are the hardware components
redundant. Therefore, they are not shown in the decomposition diagram. The components that
do contain their own software are listed in the diagram and include Firing Thrusters from the
Propulsion Subsystem, Beacons from PADS and the SPHERES Laptop from the Communication
Subsystem. Because of the simplicity of these models, intent specifications were not created for
them in this case study. The SPHERES example focuses on the subsystem- and system-level
intent specifications.

Each Sphere receives attitude and position information from its PADS, or Position and
Attitude D etermination S ubsystem. PADS consists of three gyroscopes, three accelerometers,
one ultrasound transmitter, five beacons and twelve sensing boards. Each sensing board contains
two ultrasound receivers, one infrared receiver and two infrared transmitters. PADS receives
angular acceleration from the three gyroscopes, linear acceleration from the three accelerometers
and the Sphere Controller is able to calculate position and attitude information from the ranges
between the fixed beacons and the Sphere’s receivers. State estimation using the sensing boards
and beacons is beyond the scope of this thesis. Therefore, the attitude information used in the
example Guest Scientist Programs is provided entirely by the gyroscopes. Levels 1, 2 and 3 of
the complete SpecTRM-GSC created for PADS can be found in Appendix B.

The Guest Scientist Program, or GSP, is written to perform either state estimation,
control calculations or both to determine which control actions need to be performed to achieve a
new position and/or attitude. There are two GSPs used in this test case: the Rate Damper and

the Rate Matcher. These programs are described in further detail in Section 4.3.
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The Propulsion Subsystem provides management of both position and attitude for the
Sphere. The Propulsion Subsystem consists of twelve thrusters placed around the outside of
each Sphere that simply turn on and off at calculated times. The Propulsion Subsystem is
described in further detail in Section 4.2.

The individual Spheres can communicate with one another and a SPHERES Laptop
through the Communication Subsystem, which consists of radio transmitters and receivers.
There are two radios on each Sphere (providing two channels of communication) and one radio
on the SPHERES Laptop. One radio on each Sphere provides Sphere-to-Sphere communication
while the other provides Sphere-to-Laptop communication. Astronauts aboard the International
Space Station load and download programs and information to and from the Spheres through this
Laptop.

As previously stated, each node of the decomposition tree in Figure 3 represents a
different intent specification. For this case study, intent specifications were created for each of
the subsystems as well as for each Sphere Controller being used. The next section describes, in

detail, an example of how a node of the decomposition was modeled as a SpecTRM-GSC.

4.2 Subsystem Example

This section provides a detailed description of the Propulsion Subsystem and how it was
modeled as a SpecTRM-GSC. Each sphere relies on twelve on-off thrusters for position and
attitude management. The geometry of the twelve thrusters on the sphere enables the production
of force or torque using only two thrusters. The twelve thrusters are arranged in six pairs
allowing for full six-degrees-of-freedom actuation. The propellant for the thrusters is
compressed CO,, which is fed through tubing from a high-pressure storage tank [9]. Appendix
A provides complete Levels 1, 2 and 3 of the Propulsion Subsystem SpecTRM-GSC.

Level 0 of the specification was left blank in the generic sphere specifications, as it is
particular to the organization and engineering team of the project and should therefore be written
by the engineering team members. Level 1 of the specification includes the system-level goals,
requirements and constraints. An example of a high-level functional requirement can be seen in

Figure 4.
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[FG.2] The Guest Scientist shall be able to turn thrusters on and off by either
sending timed on/off commands to the Propulsion Subsystem or by sending the
Propulsion Subsystem desired force and torque vectors. [>FR.1] [{DP.1.2]
Rationale: This goal identifies the need to provide the Guest Scientist with an option
to directly control the thrusters or to stock compute thruster firing times if he/she is
not interested in performing the calculations in the Guest Scientist Program.

Figure 4. Level 1 System Goal

There are two links at the end of this requirement. In SpecTRM, these links are
implemented as hyperlinks and can be easily created and changed. The first link points to the
functional requirement, also at Level 1, which elaborates upon the system goal. Goals are too
high level to be requirements. They are not necessarily testable, and there may be many system
designs that meet the system’s goals that are unacceptable due to other constraints. High-level
requirements are generated from the goals and constraints present at this level. These are the
“shall” statements that specify what the system is to do. These are the testable requirements.

The second link points down to a design principle at Level 2 that provides information
about the design features that describe the different types of control the Guest Scientist can exert
over the thrusters. It is also important to note that the rationale behind the requirements at every
level is also recorded to ensure that future engineers working on the project understand why
decisions were made instead of merely how the system works. In the example in Figure 4, the
rationale for the system goal identifies the need to provide the Guest Scientist with options as to
how the thrusters can be controlled. Scientists not interested in direct thruster control can merely
send their desired forces and torques to the Propulsion Subsystem to have the thruster on and off
times stock computed.

Because the components are created with a systems engineering approach, a safety
analysis is also completed at each level of the system’s development. At Level 1 a preliminary
subsystem hazard analysis is completed. A hazard analysis at this level involves (1) defining an
accident, (2) defining a safety policy, (3) creating a hazard list and classifying the hazards and
(4) perform a hazard analysis using either fault trees, event trees or any other hazard analysis
technique. For the SPHERES project, an accident is defined as any injury to one of the
astronauts aboard the International Space Station or any damage to the SPHERES system that

interferes with its ability to do science. Based on this accident definition, the following
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classifications can be applied to hazards to determine their associated severity:
* Level 1: Any injury to an astronaut or any damage to the SPHERES system that
eliminates all ability to do science.
= Level 2: Damage to the SPHERES system that interferes with its ability to do science.
= Level 3: Damage to the SPHERES system that does not interfere with its ability to do
science.
In addition, under NASA safety policy, each Sphere must be doubly fault-tolerant. This means
that the Propulsion Subsystem must be able to withstand two faults [22]. Based on the accident
definition and safety policy, the hazards seen in Figure 5 were identified for the Propulsion

Subsystem [22].

[H.1] There is a pressure rise in the Propulsion Subsystem. [—5SC.3] [{DP.2.4]
Classification: Level 1

Rationale: A pressure rise in the Propulsion Subsystem may result in an explosion
that may efther injure an astronaut or damage the SPHERES system itself.

Figure 5. Level 1 Hazard Identification and Classification

Fault trees were used as the hazard analysis technique for the SPHERES project. The
fault tree created for hazard [H.1] can be found in Appendix A Page 56. As seen in Figure 5,
there are also links from the hazards down to the Level 4 Hardware Design Specifications that
show how these hazards have been mitigated through hardware. Other Level 1 information
consists of general background, historical information, environment descriptions, assumptions
and constraints, system functional goals, operator requirements, interface requirements, design
and safety constraints and information about the verification and validation requirements and
results on the information at this level.

Level 2 of the intent specification specifies the design principles used to implement the
Level 1 requirements. Figure 6 provides an example of the design principle linked to the
functional requirement from Level 1 (Figure 4). It defines the different options the Guest
Scientist has for controlling the thrusters in the Propulsion Subsystem. There are links to the
corresponding functional goal and requirement. There is also a link to an element in the detailed

logic specifications at Level 3 that models this design principle.
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[DP.1.2] The Guest Scientist will decide which Control Mode the Propulsion
Subsystem is in. If the Propulsion Subsystem is in Direct Mode, then the Guest
Scientist provides the Propulsion Subsystem with timed on/off commands. If the
Propulsion Subsystem is in Force Torque Mode, the Guest Scientist provides the
Propulsion Subsystem with desired force and torque vectors. [TFG.2] [TFR.1]

[V PropulsionSubsystemControlMode]

Rationale: The Guest Scientist may want to directly control the thrusters or to stock
compute thruster firing times if he/she is not interested in performing the
calculations in the Guest Scientist Program.

Figure 6. Level 2 Design Principle

Another feature of the SpecTRM-GSCs allows users to indicate system-specific
information that has to be changed given a component’s particular instance of use. As seen in
the design principle in Figure 7, the text “200ms™ and “5Hz” is highlighted in boldface and
underlined. This alerts the system engineer to change this portion of the requirement when this
component is reused. In this instance, the Guest Scientist changes the sampling rate of the
Propulsion Subsystem depending on the needs of his or her program. The sampling rate will
affect how long each thruster must remain open to achieve the needed force and/or torque. Level
2 of the specification also includes system interface design, control and display design, operator

task design principles and verification and validation requirements and results.

[DP.3.2.5] Once the thruster pair forces are determined, the thruster on and off
times can be calculated. The thrust time is equal to the sampling rate of the
Propulsion Subsystem divided by the ratio of the thrust provided by the thruster pair
to the force needed from the thruster pair. The sampling rate of the Propulsion
Subsystem is 200ms and the force provided by the thruster pair is 0.2N. [TEA.2]
Rationale: The operating frequency is 5Hz, which translates into a sampling rate of
200ms. Each thruster produces 0.1N of force and therefore the thruster pair
produces 0.2N.

Figure 7. Example of System Specific Information

Level 3 of the intent specifications contains a formal, blackbox model of the component’s
externally visible behavior. The formal models, which are based on state machines, are specified
using a language called SpecTRM-RL that was designed with reviewability and ease of learning

as goals. Experience in using the language on industrial projects shows that engineers can learn
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to read SpecTRM-RL models with about ten to 15 minutes of training.

Appendix A Page 64 shows the graphical overview of the blackbox model of the
Propulsion Subsystem. The graphical model depicts the control loops in which the Propulsion
Subsystem is embedded. The left side shows the interface with the controller of the Propulsion
Subsystem, which is the Sphere Controller. The right side of the diagram shows the hardware
the Propulsion Subsystem is in turn controlling. The shaded p art o f the model d escribes the
required behavior of the Propulsion Subsystem. There are three main parts of this description:
the supervisory mode specifies the current controller of the component (in case there are multiple
controllers); the current control mode for the component (Startup, ForceTorqueMode and
DirectMode); and, to the right of the solid line, the controller’s current state model of the
controlled components. At any time, a controller only has a model, inferred from inputs and
other information, about the real state of the components. In the Propulsion Subsystem example,
the inferred s tate m odel has twelve state variables, representing information about the current
desired state of the twelve thrusters. The graphical notation also shows the possible values for
these state values; for example, the “SolenoidValvelState” state variable c an have the values
“Unknown,” “Open” or “Closed.” The boxes external to the gray-shaded area are devices
external to the system that provide inputs to and take outputs from the blackbox. In this
example, the Propulsion Subsystem interacts with the Sphere controller and the twelve thrusters.

The behavior of the Propulsion Subsystem, i.e. the logic for sending output commands to
the various external devices and changing the inferred system state, is specified using a tabular
notation called AND/OR tables. The rows of the tables indicate AND relationships, while the
columns represent ORs. Figure 8 shows transition conditions required for the
“SolenoidValvel State” state value to take the values “Unknown,” “Open” and “Closed.” Using
the example AND/OR tables in Figure 8, the Propulsion Subsystem “SolenoidValvelState”
element will transition to a new state if any of the columns in the transition table evaluate to true.
In other words, if the “Thruster1” has received a direct on command from the Guest Scientist and
the  “PropulsionSubsystemControlMode” 1s in mode “DirectMode,” then the
“SolenoidValvelState” will transition to “Open.” “Thruster 1” will also transition to “Open” if
the “PropulsionSubsystemControlMode” is in mode “ForceTorqueMode” and the
“ThrusterPairl 7Calculation” returns a duration greater than zero.

As seen in the three transition tables, there are several statements with an asterisk in the
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OR column. This represents a “don’t care” condition. In the example in Figure 8, the
“SolenoidValvelState” state value will transition to “On” if the Propulsion Subsystem is in the
DirectMode of control and the valve receives a direct on command. In this case, the valve
“doesn’t care” what the thruster pair calculations output. In other words, if the system is in the
“DirectMode” of control we “don’t care” about calculations only needed in the
“ForceTorqueMode” in which the Propulsion Subsystem itself determines thruster on/off

commands.

= Unknown
System Start
PropulsionSubsystemControlMode in mode Startup

= Open
System Start =1 Fl ]
PropulsionSubsystemConirolMode in mode Directviade E E Fl
RirectConfroThruster 1nput is On T [ .
BropulsionSubsystemControlMade in mode ForceTorqueMade | |F) E i
ThrusterPair17Calrulation() » 0 nanoseconds [T [T
Time Since DesiredThruster 15tate Last Entered Open < =[] F
ThrusterPair17Calculation()
Previous Value of DesiredThruster1State in state Closed =T
DesiredThruster] State has Never Entered Open : : i

= Closed
System Start E E— E
PropulsionSubsystemControMaode in made DirectMode 7] E F
RirectCantralThruster 1input is OfF T [ F
PropulsionSubsystemConfrolMode in mode ForceTorgueMode|  [F| [T i
Thrusterfair17Calculation() = 0 nanoseconds 5 [Tl F
Time Since DesiredThruster 15tate Last Entered Open >= = F]
ThrusterPair 17Calculation()
Previous Yalue of Desired Thruster] State in state Open : : i

Figure 9. Level 3 And/Or Table

When the Propulsion Subsystem is in “ForceTorqueMode” it receives a force/torque
vector from the Sphere Controller that specifies the needed forces and torques to accomplish a

maneuver. The Propulsion Subsystem then calculates how long the thrusters need to be on to
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achieve the actuation. As defined in Figure 9, when the Propulsion Subsystem is in the
“ForceTorqueMode” of control and the time since the valve was opened is greater than or equal
to the calculated “Open” duration for the thruster, the valve will close. Figure 10 shows

“ThrusterPair1 7Calculation” that determines this duration.

Function

ThrusterPairl7Calculation

Result; thrustTime
Type: Duration
Possible Values (Expected Range): Any
Units: Milliseconds
Exception-Handling: None
Description: The duration that thrusters 1 and 7 should remain on for.
Sample Rate: 10 nanoseconds

Description: Takes the force/torgue information from the SPHERES controller and calculates the time
thrusters 1 and 7 should be on for to achieve the specified force and torgue.

Comments: 200ms value may be changed depending on the system frequency. In this case, the system
frequency is SHz.
References: EorceXinput, TarqueYinput
Appears In: SalenoidValve1State, Solenaidvalve7State
DEFINITION

Real f17 := 0.0;
Duration thrustTime := 0 milliseconds;

f17 := (FarceXInput / 2.0) + (TorqueYlnput / 2.03;
thrustTime := Number to Milliseconds{ Round{ 200/ (0.2 / f17} ) };
Return thrustTime;

Figure 10. Level 3 Function Definition

Functions in SpecTRM-RL are written in an Ada-like programming script. This script
allows users to calculate values from the inputs. In the case of the Propulsion Subsystem,
functions are used to calculate the duration that valves should be “Open” to achieve the forces
and torques needed by the Sphere Controller. Another SpecTRM element known as a macro
allows users to abstract common logic and to increase readability. A macro takes a piece of an

AND/OR table from another part of the model and gives it a name. This name can be substituted
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in for that table portion elsewhere in the model. The macro definition is a single AND/OR table.
This table will evaluate to true or to false. When the table is true, the macro as a whole evaluates
to true where it is used in other model elements. Similarly, if the table is false, then the macro
evaluates to false.

The elements of the SpecTRM blackbox include output commands, output values, modes,
states, macros, functions, command inputs and input values. Other information contained at
Level 3 includes communication channels, operational procedures, user models and the results of
performing various analyses and simulations on the blackbox model. Section 4.4 describes the

simulations run on the SpecTRM-GSCs created for the SPHERES project.
4.3 Guest Scientist Program

As previously stated, the Guest Scientist Programs (GSPs) used in this test case are the
Rate Damper and the Rate Matcher. The Rate Damper eliminates any angular rate applied to an
individual sphere by applying a series of equations to the angular rates recorded by the
gyroscopes. The GSP receives angular rates from the Sphere Controller, applies the equations to
the angular rates in a function and then outputs force and torque vectors to the Sphere Controller.

Because these components were created with reusability in mind, they are highly generic.
Therefore, different Guest Scientist Program blackbox models can be easily swapped in a new
simulation. In addition, it becomes trivial to simulate multiple Spheres because the generic
components already exist. Unlike the Rate Damper, the Rate Matcher utilizes two Spheres. The
Leader in the Rate Matcher example measures its own angﬁlar rate and sends those
measurements to the Follower Sphere through the Communication Subsystems. The Follower
Sphere then matches its own angular rate to that of the Leader Sphere. The use of two Spheres in
the Rate Matcher as opposed to just one Sphere in the Rate Damper illustrates the reuseability of
the components and the ease with w hich c omponents ¢ an be p lugged together to simulate an
entirely new spacecraft configuration. In this case, multiple Spheres interact in a more
complicated Guest Scientist Program.

As stated in Levels 1 and 2, the Sphere Controller sends force and torque vectors or direct
commands to the Propulsion Subsystem. If the Propulsion Subsystem is in “ForceTorqueMode”

it uses the force and torque vectors to calculate thruster on and off times. If it is in
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“DirectMode,” the Propulsion Subsystem receives on and off times directly from the Sphere
Controller and immediately sends on and off commands to the thrusters. In both example GSPs
used in this test case, the Propulsion Subsystem operates in “ForceTorqueMode.” The
Propulsion Subsystem will calculate thruster on and off times based on forces and torques
needed to either nullify or match the angular rate of a Sphere.

Levels 1, 2 and 3 of the Sphere Controller SpecTRM-GSC can be found in Appendix D.
The blackbox model on Page 90 illustrates the S phere C ontroller’s interface with the generic
components, including elements needed for the Rate Damper example. Each device in the
system-level s pecification r epresents another intent specification. The box labeled Propulsion
Subsystem represents the blackbox model that was created for the Propulsion Subsystem.
During a system-level simulation, these models interact. For example, the outputs from the
Sphere Controller to the Propulsion Subsystem device in the Sphere Controller model become
the inputs in the Propulsion Subsystem model from the Sphere Controller device. The outputs
from the Propulsion Subsystem to the Sphere Controller device in the Propulsion Subsystem
model become the inputs from the Propulsion Subsystem device to the Sphere Controller in the
Sphere Controller model. Blackbox models of the Propulsion Subsystem, PADS,
Communication Subsystem and the two Guest Scientist Programs can be found in Appendices A,

B, C and E respectively.

4.4 Simulation

Simulations in SpecTRM can be visualized through the animation o f the diagram t hat
represents the blackbox model of the system. As shown in the screen captures in Appendix F,
the animation includes highlighting the current values of the state and mode elements in yellow
and displaying the current values of inputs and outputs in blue text under the element names.
Obsolete data values are shown in green text under the element names. Time is shown in the
upper left hand corner of the visualization window. As the simulation time progresses, the input,
output, state and mode values update to reflect the new data. The side bar lists all the element
values of all the models in the simulation. The bar located on the bottom of the visualization

provides an event log showing detailed timing information.

43



Data was collected for these simulations on the SPHERES frictionless test-table. Each
Sphere used in the Rate Damper and Rate Matcher simulations were rotated on the test-table to
generate angular velocity. The angular rates were sent to and recorded onto the SPHERES
laptop. These measurements provide the angular rate input values to PADS models during the
simulations.

The first Guest Scientist Program tested in the SpecTRM simulator was the Rate Damper.
The Rate Damper zeroes any angular velocity experienced by the single Sphere. Appendix F
Figure 1 shows a screen capture of the Rate Damper blackbox simulation. As described above,
the figure shows the values of the input and output elements in blue text. The Rate Damper is
running on the Sphere Controller and therefore “UserControl” is highlighted under Control
Mode. Similarly, the current states of the Propulsion Subsystem and PADS (“ForceTorque” and
“AccelerometerGyro” respectively) are also highlighted in yellow. The Sphere Controller
receives the angular rate from PADS and transfers that information to the Rate Damper. The
Rate D amper then d etermines the torques needed to zero the angular rate in a function. The
resulting force and torque vectors are sent through the Sphere Controller to the Propulsion
Subsystem.

Figure 2 in Appendix F shows the entire simulation environment. I nthe side bar the
Propulsion Subsystem element list has been expanded to show the “Open” and “Close”
commands that are sent to the individual thrusters. These “Open” and “Close” commands are
determined by functions in the blackbox model. In the side bar of the screen capture, for
example, it can be seen that the function “ThrusterPairl7Calculation” returns “1 millisecond,”
which is implemented by the “DesiredSolenoidValuvelState” transitioning to “Open.” As the
thrusters open and close the angular rate decreases to zero, which is reflected in the successive
angular rates from PADS during simulation.

Now that one Sphere has been successfully simulated, another Sphere is incorporated into
a more complicated simulation to illustrate the reusability of the components. The second Guest
Scientist Program is the Rate Matcher, which allows a Follower Sphere to match its angular rate
with that of the Leader Sphere. Appendix F Figure 3 shows the Leader and Follower blackbox
models during simulation. Figure 4 is a screen capture of the entire simulation environment
during the Rate Matcher simulation. The visualizations are animated in the same manner as the

previous example.
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For the Rate Matcher example, the process of assembling another Sphere involved
copying the subsystem models, pasting them into two folders and renaming each copy to begin
with either “Leader” or “Follower.” The “Leader” and “Follower” subsystem models were then
assembled into a “LeaderSphereController” model and a “FollowerSphereController” model.
These system-level models communicate through their respective Communication Subsystems.
As seen in the simulation environment in Figure 4, the Leader Sphere sends its angular rates to
the Follower Sphere. The Follower Sphere then uses the Leader Sphere’s angular rates and its
own angular rates to determine the forces and torques needed to match the angular rates of both
Spheres. The angular rates measured by the Follower Sphere migrate toward the angular rates

measured by the Leader Sphere as the simulation progresses.

4.5 Summary

The SPHERES system provides a case study for the application of Component-Based
Systems Engineering. Because SPHERES is autonomous and highly modular, it was well suited
for testing the scalability and applicability of this method. Intent specifications were written for
each subsystem and the Sphere Controller. Rationale was captured at each level of their
development and links provide traceability throughout the entire document. The subsystem
models w ere created to b e generic and therefore ¢ learly i ndicate i nformation that needs to be
changed upon each subsystem’s use in a particular instance. By modeling a Sphere’s subsystems
and controller as SpecTRM-GSCs, simulations could be run on the blackbox b ehavior o fthe
entire system. In addition, simulating multiple Guest Scientist Programs and building multiple

Sphere models shows the reusability of SpecTRM-GSCs.
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Chapter 5
Conclusion

One of the major obstacles facing the aerospace industry today is the increasing
complexity of spacecraft. This complexity is rooted in many new technologies and industry
goals. First, software has become an integral part of spacecraft design, controlling not only the
spacecraft hardware, but also the onboard science missions. Most engineers also believed that
trading off the simplicity of hardware for the abilities of software would decrease this
complexity. While software has become pervasive throughout most industries and seems to
provide a solution to many logistical problems, it does not decrease the complexity of systems.
In fact, the exploding number of states and transitions in software makes today’s spacecraft far
more complex and error-prone then their hardware-driven predecessors.

Second, the increasingly ambitious mission goals combined with the exploration of
distant planets has uncovered the need for highly autonomous spacecraft control systems. The
current motivation at NASA and its contractors to make spacecraft autonomous through the use
of artificial intelligence merely compounds the complexity problem.

Third, the poor implementation of reuse and Component-Based Software Engineering has
also increased the complexity of today’s spacecraft. Many reusable software components
contain extra functions so that they can be reused on many different projects. In addition,
companies are often reluctant to share detailed documentation of these components for
proprietary reasons. Consequently, the software components are improperly integrated into the
rest of the project software. The complexity added by the poor implementation of reuse has led
to spacecraft and mission losses. Although these technologies hold the promise of simplifying
spacecraft development, their improper use has caused more damage than successes. One prime
example of this misuse was the Mars Climate Orbiter loss discussed in Chapter 1.

In addition to the increasing complexity, the aerospace industry faces the many
challenges inherent in spacecraft engineering. The loss of domain knowledge accompanying the
retirement of the Apollo Era spacecraft engineers is of great concern to NASA and its
contractors. Often rationale behind design decisions is not recorded or transferred to new

personnel. These organizations need to provide a means through which knowledge can be
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transferred as individuals retire or move to other industries. The aerospace industry also faces
the problems caused by miscommunication among multidisciplinary engineering teams.
Mistakes are often made because engineers with different backgrounds do not share the same
terminology, education or experience. There needs to be a common medium through which
engineers from different disciplines can communicate clearly and effectively.

The aerospace industry is endeavoring to address the difficulties caused by added
complexity and the challenging nature of spacecraft engineering itself in a culture of budget cuts
and public disinterest. The solutions attempted in the 1990s, especially Faster, Better, Cheaper,
did not provide spacecraft developers with the added productivity and success rate that was
intended. Instead many of the spacecraft developed using this strategy were lost, costing NASA
not only millions of dollars but also public trust and support. NASA is now faced with the
question of how to develop the next generation of spacecraft under tight budget constraints
without experiencing the drawbacks of the Faster, Better, Cheaper approach.

This thesis proposed a new method of spacecraft development known as Component-
Based Systems Engineering that addresses the question.  Component-Based Systems
Engineering combines aspects of both systems engineering and Component-Based Software
Engineering to reap the benefits of each technology without incurring some of the costs. Instead
of reusing code, engineers reuse the development of requirements specifications, both informal
and formal. In this approach, the reuse takes place before any detailed design is completed, any
hardware built or any software coded.

Components are created in a systems engineering d evelopment e nvironment known as
SpecTRM. SpecTRM is a toolkit that allows users to create intent specifications, which assist
engineers in managing the requirements, design and evolution process. The intent specification
suggests a structure and a set of practices that makes the information contained in the document
more easily used to support the project lifecycle. Intent specifications help engineers to (1) find
specification errors early in product development so that they can be fixed with the lowest cost
and impact to the system design, (2) increase the traceability of the requirements and design
rationale throughout the project lifecycle and (3) incorporate required system properties into the
design from the beginning rather than the end of development, which can be difficult and costly.

Component-Based Systems Engineering begins with a decomposition of the spacecraft,

followed by a construction of components, subsystems and finally the entire system. These
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individual components are called SpecTRM-GSCs, or Generic Spacecraft Components, and
provide users with a variety of benefits. The components are generic, which makes them highly
reusable. Engineers can change project specific information based on the instance of the
component’s use. They also contain component-level fault protection, laying the foundation for
a fault protection scheme that parallels the spacecraft’s development. Finally, the formal portion
of the SpecTRM-GSC can be analyzed individually or as p art o f their p arent s ubsystem- and
system-level before any implementation has taken place.

This thesis provided an example of Component-Based Systems Engineering as applied to
the SPHERES system. SPHERES was chosen as the test case for evaluating Component-Based
Systems Engineering because it consists of a series of autonomous spacecraft, forms a testbed for
evaluating multiple different control and estimation algorithms, and is a real spacecraft system
that will operate aboard the International Space Station. SpecTRM-GSCs were created for the
various subsystems, including two Guest Scientist Programs, the Rate Damper and the Rate
Matcher. Because the Rate Matcher used two Spheres while the Rate Damper used only one,
simulations of both Guest Scientist Programs clearly illustrated the reusability of the SpecTRM-
GSCs and the ease with which they can be combined to create another Sphere.

Through performing Component-Based Systems Engineering on SPHERES, it was
shown how many of the problems outlined in Chapter 1 can be solved. The use of SpecTRM
helps to solve the problems of domain knowledge capture through the recording of rationale at
every stage of development. In addition, the use of SpecTRM-RL at Level 3 of the intent
specification provides a readable and unambiguous formal specification that provides a common
language with which engineers can easily communicate their requirements specifications.

SpecTRM-GSCs provide spacecraft engineers with a library of generic components that
can be reused from one project to the next. Because the detailed design and implementation is
has not been completed, engineering teams can tailor the components to fit their needs instead of
fitting their needs to a particular piece of code. The use of component-level fault protection also
encourages engineering teams to incorporate fault protection software into their designs from the
beginning of the development process.

One area in which Component-Based Systems Engineering will be particularly beneficial
is autonomous spacecraft. Instead of attempting to take the technological leap from time-

stamped command sequences directly to artificial intelligence, Component-Based Systems
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Engineering encourages the development of autonomous spacecraft through rigorous
requirements specification development. These structured informal and formal specifications
can be thoroughly analyzed for major inconsistencies and incompleteness before any
implementation has occurred. In addition, special flight phases and faults can be easily
simulated and the results of these simulations analyzed for deficiencies in the requirements
specifications. Consequently, many errors and inadvertent omissions can be found early in the
project lifecycle when they are less costly to correct. The fault-protection scheme also aids in
the development of highly autonomous systems, because the consequences of possible faults are
addressed throughout the project lifecycle.

The research on and the test case application of Component-Based Systems Engineering
show its potential for use in developing the next generation of spacecraft. The benefits of using
the technique span not only the engineering issues faced by today’s spacecraft development
teams but also the difficulties inherent in the aerospace industry. The results of this thesis merit
further investigation into the use of Component-Based Systems Engineering for autonomous

spacecraft.
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Appendix A

Propulsion Subsystem

Level 1: System-Level Goals, Requirements,

and Constraints

Introduction

The Propulsion Subsystem aboard each Sphere in the SPHERES system (Synchronize
Position Hold Engage Reorient Experimental Satellites) provides management of both
position and attitude for the Sphere. The Propulsion Subsystem consists of a series of
thrusters that can be turned on and off depending on commands received from the
Sphere's controller.

Historical Information

This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Propulsion Subsystem.

Environment Description

There will be only two types of devices in the Propulsion Subsystem's environment with
which it must communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands to the Propulsion
Subsystem.

Firing Circuits - There are twelve firing circuits in the Propulsion Subsystem hardware
(one for each solenoid valve). These are component-level intent specifications and they
command the actual solenoid valves to open and close.

Environment Assumptions

[EA.1] This Propulsion Subsystem is operating within a Sphere.

[{System Interface Design]

Rationale: This intent specification describes a propulsion subsystem that will operate
within a Sphere. It is not meant for use outside the SPHERES project.
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[EA.2] The software used in the Propulsion Subsystem is operating at a frequency of

1kHz. [{DP.3.2.5]

Rationale: The Propulsion Subsystem software must be able to accommodate different
control frequencies and implement pulse modulation.

System Functional Goals

[FG.1] The Propulsion Subsystem shall provide forces and torques for the Sphere.
[¥DP.1] [{DP.2] [{DP.3]

Rationale: Each Sphere requires a subsystem that will actuate the maneuvers that are
determined by the Guest Scientist Program.

[FG.2] The Guest Scientist shall be able to turn thrusters on and off by either sending
timed on/off commands to the Propulsion Subsystem or by sending the Propulsion
Subsystem desired force and torque vectors. [»>FR.1] [{DP.1.2]

Rationale: This goal identifies the need to provide the Guest Scientist with an option to
directly control the thrusters or to stock compute thruster firing times if he/she is not
interested in performing the calculations in the Guest Scientist Program.

High-Level Requirements

[FR.1] The Propulsion Subsystem shall receive either timed on/off commands or
desired force and torque vectors from the Sphere Controller. [»>FG.1] [{DP.1.2]
Rationale: This goal identifies the need to provide the Guest Scientist with an option to
directly control the thrusters or to stock compute thruster firing times if he/she is not
Interested in performing the calculations in the Guest Scientist Program.

[FR.2] The Propulsion Subsystem shall send an “On” command to the firing circuits at
the requested time when it receives a direct "On Time" command from the Sphere
Controller. [{DP.3.1]

Rationale: A direct command from the Guest Scientist will be sent to the firing circuits
that actuate the solenoid valves.

[FR.3] The Propulsion Subsystem shall send an “Off” command to the firing circuits at
the requested time when it receives a direct “Off Time"” command from the Sphere
Controller._[{DP.3.1]

Rationale: A direct command from the Guest Scientist will be sent to the firing circuits
that actuate the solenoid valves.

[FR.4] If force and torque vectors are received from the Sphere Controller, the
Propulsion Subsystem shall determine on and off times for each thruster based on the
thrusters location and the force and torques needed. [{DP.3.2]

Rationale: The Propulsion Subsystem shall provide the Guest Scientist with the ability
to stock compute firing times for the thrusters based on desired force and torque
vectors.
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[FR.5] The Propulsion Subsystem shall send an “*On” command to the firing circuits at
the requested time if the calculations performed on the force and torque vectors
determine that a thruster is needed at a specific time. [{DP.3.1]

Rationale: The calculations performed by the Propulsion Subsystem on the force and
torque vectors will generate “"On Time” commands that will be sent to the firing circuits
that actuate the solenoid valves.

[FR.6] The Propulsion Subsystem shall send an “Off” command to the firing circuits at
the requested time if the calculations performed on the force and torque vectors
determine that a thruster is needed at a specific time. [{DP.3.1]

Rationale: The calculations performed by the Propulsion Subsystem on the force and
torque vector will generate "Off Time” commands that will be sent to the firing circuits
that actuate the solenoid valves.

[FR.7] The Propulsion Subsystem shall have enough thrusters to provide actuation
throughout the six-degrees-of-freedom. [{DP.1.3]

Rationale: The SPHERES system operates in space and therefore must be able to
translate in three dimensions and rotate in three directions.

Design and Safety Constraints

Non-Safety Constraints
[SC.1] The Propulsion Subsystem must operate independently of any operator action.

[VDP.3]

Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

[SC.2] The propellant tank used in the Propulsion Subsystem must not be empty.
[->0R.2] [1OT.1]
Rationale: The Propulsion Subsystem requires propéellant to perform actuation.

Safety Constraints

[SC.3] There must be a mechanical system within each Sphere that will mitigate a
pressure rise in the Propulsion Subsystem. [{DP.2.4]
Rationale: [—H.1]

Operator Requirements
[OR.1] The operator shall monitor an estimate of the level of fuel in the tank. [{CD.1]
Rationale: The propellant tanks contain a limited amount of fuel.
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[OR.2] The SHPERES operator shall be able to replace the propellant tank when the
amount of propellant drops below a pre-specified percentage. [-»SC.2] [LOT.1]
Rationale: Some maneuvers may not be able to be completed with a nearly depleted
propéllant tank.

System Interface Requirements

[IR.1] There shall be a means for an operator to estimate the level of fuel in the
propellant tank. [+CD.1]

Rationale: When the level of fuel in the propellant tank drops below a specified amount
the tank needs to be replaced.

System Limitations

[L.1] The thrusters in the Propulsion Subsystem will not provide thrust if the tank is
empty.

[L.2] There are no sensors that determine the current state of each thruster.
Rationale: The SPHERES system is too small to have sensors that monitor the
thrusters.

[L.3] There are opening and closing transients associated with the solenoid valves.

Hazard List and Hazard Log

Accident Definition

An accident is defined as any injury to one of the astronauts on the International Space
Station or any damage to any part of the SPHERES system that interferes with its ability
to do science. From this accident definition, the following accident classification is used
to determine the severity of the system hazards:

Level 1: Any injury to an astronaut or damage to the SPHERES system that completely
eliminates all ability to do science.

Level 2: Damage to the SPHERES system that interferes with its ability to do science.
Level 3: Damage to the SPHERES system that does not interfere with its ability to do
science.

Safety Policy

Under NASA requirements, the SPHERES system must be doubly fault-tolerant. This
means that at any point in the Propulsion Subsystem, the system must be able to
sustain two faults.
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Hazard List and Assessment

[H.1] There is a pressure rise in the Propulsion Subsystem. [-—SC.3] [{DP.2.4]
Classification: Level 1

Rationale: A pressure rise in the Propulsion Subsystem may result in an explosion that
may either injure an astronaut or damage the SPHERES system itself.

Hazard Analysis

Pressure Rise

Elevated Elevated
Temperature Ambient

in Sphere Temperature

Regulator
Failure

Problemin
Electrical

Electrical
System
Produces More
Heat than
Expected

Allows More
CO2 Gas
Through than
Expected

Regulator

Allows Liguid
CO2 Through

Verification and Validation

Review Procedures

A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
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SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss — SpecTRM-GSC Developer
John Enright — SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design

The external components will interface with the Propulsion Subsystem in the following

manner: [TEA.1]

Firing

Controller Propulsion Subsystem Circuits

The Propulsion Subsystem interfaces with the Sphere Controller and with the firing
circuits that provide actuation to the twelve solenoid valves. Although the firing circuits
are technically part of the Propulsion Subsystem, they are separated here because
there is a SpecTRM-GSC for the firing circuits. [VC.1]

The Sphere Controller sends the Propulsion Subsystem either timed on/off commands
for each of the twelve thrusters or force and torque vectors. The Propulsion Subsystem
does not send any information to the Sphere Controller. [{C.2] [VC.3]

The Propulsion Subsystem sends on and off commands to the firing circuits. The firing
circuits do not send any information to the Propulsion Subsystem. [C.4]

57



Controls and Displays

Displays

[CD.1] The percentage of fuel left in the propellant tank is displayed on the SPHERES
Laptop. Please see the SPHERES Laptop specification for details on how this is
implemented. [TIR.1] [TOR.1]

Rationale: The SPHERES Laptop is the interface through which the operator interacts
with the SPHERES system.

Operator Task Design Principles

[OT.1] The operator shall replace the propellant tank that is currently in the Sphere if
the tank is less than 20% full. This amount roughly translates to changing the
propellant tank 3-4 times per hour. [TOR.1] [1SC.2] [JOP.1]

Rationale: Operators should not run out of fuel in the middle of a test.

System Design Principles

[DP.1] Propulsion Subsystem Overview [TFG.1]
[DP.1.1] The Propulsion Subsystem is made up of software and hardware
components. The software components consist of thruster control and pulse
modulation. The hardware components consist of the firing circuits, solenoid
valves, regulator and capacitor, tubing and manifolds, nozzles and propellant
tank. Figure 1 provides a diagram of the Propulsion Subsystem.

Propulsion Subsystem
Software Hardware
Regulator
and
Thruster Control Capacitor
i, N Solenoid
» Firing Circuits Valves Nozzles
Pulse
» Tubing
Modulation and Tank
Manifolds

Figure 1. Propulsion Subsystem Diagram
[DP.1.2] The Guest Scientist controls the Control Mode of the Propulsion

Subsystem. If the Propulsion Subsystem is in Direct Mode, then the Guest
Scientist provides the Propulsion Subsystem with timed on/off commands. If the
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Propulsion Subsystem is in Force Torque Mode, the Guest Scientist provides the
Propulsion Subsystem with desired force and torque vectors. [TFG.2] [TFR.1]

[ PropulsionSubsystemControlMode]

Rationale: The Guest Scientist may want to directly control the thrusters or to
stock compute thruster firing times if he/she is not interested in performing the
calculations in the Guest Scientist Program.

[DP.1.3] The thrusters are arranged on the Sphere in order to provide pure
body-axis force or torque using only two thrusters, assuming uniform mass and
inertia properties. The twelve thrusters are arranged in six back-to-back pairs,
allowing for full six-degrees-of-freedom actuation. Figure 2 shows the Sphere
thruster configuration. Figure 3 shows the directions of the force and torque
that will be produced by firing each thruster based on the configuration in Figure
2. The combinations of thrusters required to produce force along or torque
about each body axis are shown in Figure 4. [TFR.7]

Rationale: It was expected that the majority of maneuvers would involve
primarily body-axis rotations, and the flight thruster geomelry is significantly
more propéellant-efficient than other geometries for these maneuvers.

3 X B

-k ~ B-
wn
L

-] Thruster, indicating 2fd +X B3
exhaust direction

Figure 2. Thruster Pair Configuration
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Thr # Thruster position [em] Resultant force direction Resultant torque direction

X y 2 X y Z X y Y4

0 -5.16 (0.0 9.63 i 0 0 0 1 0
I 516 (1.0 D.65 1 0 0 0 -] 0

2 9,65 -5.16 0.0 0 I U 0 ¥ |
3 .65 -5.16 0.0 0 I 0 0 0 -1
4 0.0 9.65 «5.16 1) 0 I I 0 0
5 0.0 -9.65 -3.16 0 0 I -1 0 0
6 3.16 0.0 9.65 -1 0 0 0 -1 ]
7 .16 0.0 -9.63 -1 0 0 0 1 {
X 9.65 5.16 0.0 N 0] -1 {) 0 0 -1

9 -9.65 s5.16 0.0 0 -1 0 1] 0 1
10 0.0 9.63 5.16 0 {) -1 -1 0 SR )
11 0.0 -9.65 516 {0 0 -1 ! 0 0

Figure 3. Thruster Force and Torque Directions

Thr # Body-axis force Body-axis torque

+X =X A0 A S A 4 +X 0 -X FY =Y +7 -7
i X B X
2 X X
3 X : X
4 X X
5 X X '
6 X X
7 X X
8 x X
9 X _ X
10 X X
1 X X
12 X X

Figure 4. Thruster Combinations

[DP.2] Propulsion Subsystem Hardware [TFG.1]
[DP.2.1] There are twelve firing circuits — one for each of the twelve thrusters.
The firing circuits generate an opening waveform and current amplification from
a digital command.

[DP.2.2] There are twelve solenoid valves - one for each of the twelve thrusters.
The solenoid valves open in response to a firing command from the firing
circuits. [{DesiredThruster1State] [{DesiredThruster2State]

[{DesiredThruster3State] [{DesiredThruster4State] [{DesiredThruster5State]
[{DesiredThruster6State] [{DesiredThruster7State] [{DesiredThruster8State]
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[{DesiredThruster9State] [{DesiredThruster10State]
[{DesiredThruster11State] [{DesiredThruster12State]
[DP.2.2.1] The solenoid valves remain open as long as the firing circuits
continue to send a firing command.

[DP.2.3] Each propellant tank contains up to 1729 of pressurized CO2 stored in
liquid form at 860 psi.

Rationale: 172g is the maximum amount of CO2 that can be stored in the
propellant tank that fits inside of each Sphere at 860 psi.

[DP.2.4] There are two pressure release mechanisms, or burst disks in the
Propulsion Subsystem. One is attached to the tank coupling and one is on the
regulator itself. These mechanisms burst if the pressure builds to greater than
4500 psi. [TSC.3] [TH.1]

Rationale: The burst disks will rupture before the tank reaches a hazardous
pressure of greater than 4500 psi thereby releasing the building pressure.

[DP.2.5] The regulator is used to expand the liquid CO2 into a gas and
simultaneously decrease the thruster feed pressure to between 0 and 35 psig.
Rationale: At 35 psig the average thruster force is approximately 0.1N, which is
the desired operating thrust for each thruster.

[DP.2.6] The capacitor stores low-pressure gas and thereby helps to maintain a
constant working pressure under different propellant flow rates (i.e. when
different numbers of thrusters are open) throughout the Propulsion Subsystem.

[DP.2.7] The nozzles provide a choked sonic flow.
Rationale: This aerodynamic effect is used to maximize thrust.

[DP.2.8] The tubing and manifolds provide transportation of propellant, CO2,
from the propellant tank to each of the twelve thrusters.

[DP.3] Propulsion Subsystem Software [TFG.1] [1SC.1]
[DP.3.1] Thruster Control [TFR.2] [TFR.3] [TFR.5] [TFR.6]
[DP.3.1.1] The Thruster Control software handles the timing of firing
commands.

[DP.3.1.2] The Thruster Control software sends “On" and “Off”
commands to the firing circuits. These commands can either come
directly from the Sphere Controller “*On Time” and “Off Time” commands
or from the Pulse Modulation portion of the Propulsion Subsystem
Software.

61



[DP.3.2] Pulse Modulation [TFR.4] [{ThrusterPairl7Calculation]

[ ThrusterPair28Calculation] [{ThrusterPair39Calculation]

[\ ThrusterPair410Calculation] [{ThrusterPair511Calculation]

[\ ThrusterPair612Calculation]
[DP.3.2.1] The Pulse Modulation software calculates the duration that
thrusters should be opened based on body-referenced force and torque
vectors from the Sphere Controller.

[DP.3.2.2] The Pulse Modulation software receives x, y and z force and
torque values from the SPHERES Controller.

[DP.3.2.3] The Propulsion Subsystem uses the following flight SPHERES
thruster combinations to produce pure body-axis force or pure body-axis
torque about a particular axis. For example, from Figure 4, net force in
the x direction results from a combination of thrusters 1 and 7, where
thruster 1 is in the positive x direction and thruster 7 is in the negative x

direction.
f1,7 =f1-f7
f2,8 =f2 -8
f3,9=f3-19

f4,10 = f4 - f10
f5,11 = f5 - f11
6,12 = f6 - f12
Rationale: Mark Hilstad's Master's Thesis

[DP.3.2.4] The Propulsion Subsystem uses the following equations that
map the force and torque commands to thruster pair forces in the flight
Sphere geometry. The moment arm r is equal to 9.7 cm.

1 1
- 4100 0 = 0] -
f 2 2 N
AR 00 0 2L o] f
28 2 . 2 : fy
t 0 =0 0 0 =
39 |_ 2 2 fz
f410 00 0 0 -= P
Py 2 21,
511 0 0 _1. _1_ 0 o\ Y
f ) t
NIV P B O
2 2 _

Rationale: Mark Hi/st:ad’s Master's Thesis

[DP.3.2.5] Once the thruster pair forces are determined, the thruster on
and off times can be calculated. The thrust time is equal to the sampling
rate of the Propulsion Subsystem divided by the ratio of the thrust
provided by the thruster pair to the force needed from the thruster pair.
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The sampling rate of the Propulsion Subsystem is 200ms and the force
provided by the thruster pair is 0.2N. [TEA.2]

Rationale: The operating frequency is 5Hz, which translates into a
sampling rate of 200ms. Each thruster produces 0.1N of force and
therefore the thruster pair proguces 0.2N.

Level 3: Blackbox Behavior
Communication

[C.1] The Sphere Controller sends the Propulsion Subsystem the control mode it should
enter, either Force Torque Mode or Direct Mode. [1System Interface Design]
[>GuestScientistModeInput]

[C.2] When the Propulsion Subsystem is in Force Torque Mode, the Sphere Controller
sends it Forces (X, y, z) and Torques (X, y, z). [1System Interface Design]
[—>ForceXInput] [—>ForceYInput] [—>ForceZInput] [—>TorgueXInput]
[>TorqueYInput] [—>TorqueZlnput]

[C.3] When the Propulsion Subsystem is in Direct Mode, the Sphere Controller sends it
On Time or Off Time commands for each of the twelve thrusters.

[TSystem Interface Design] [—»DirectControlThrusteriInput]
[—DirectControlThruster2Input] [—DirectControlThruster3Input]
[—=DirectControlThruster4Input] [—DirectControlThrusterSInput]
[—>DirectControlThruster6Input] [—DirectControlThruster7Input]
[—>DirectControlThruster8Input] [—DirectControlThruster9input]
[=>DirectControlThruster10Input] [—DirectControlThrusterl1Iinput]
[—>DirectControlThrusteri2Input]

[C.4] The Propulsion Subsystem sends the Firing Circuits On or Off commands.
[TSystem Interface Design] [{ThrusteriCommandOutput]

[V Thruster2CommandQutput] [{Thruster3CommandOutput]

[ Thruster4CommandOQutput] [{ThrusterSCommandOutput]

[V Thruster6CommandOutput] [ Thruster7CommandQutput]
[LThruster8CommandOutput] [ Thruster9CommandOutput]
[{Thruster10CommandOutput] [{Thrusterl1CommandOutput]

[{ Thruster12CommandQutput]

Operational Procedures

[OP.1] Replacing a propellant tank. [TOT.1]
[OP.1.1] Fully open regulator. [OP.1.5] Reset CO2 level.
[OP.1.2] Vent tank. [OP.1.6] Resume testing.
[OP.1.3] Change tank.
[OP.1.4] Mark old tank.
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Appendix B

PADS

Level 1: System-Level Goals, Requirements,

and Constraints

Introduction

The Position and Attitude Determination Subsystem (PADS) aboard each Sphere in the
SPHERES system (Synchronize Position Hold Engage Reorient Experimental Satellites)
provides state estimation for the Sphere. PADS provides direct measurements of linear
acceleration and angular rate. PADS also provides time-of-flight measurements to fixed
beacons to calculate position and attitude.

Historical Information

This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Position and Attitude Determination Subsystem.

Environment Description
There will be three types of devices in the PADS environment with which it must
communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands to PADS and
receives position and attitude information from PADS.

Inertial Measurement System - This system consists of accelerometers and
gyroscopes that provide the Sphere with measurements of linear acceleration and
angular velocity sampled at a user-specified rate. These are component-level devices
that do not have intent specifications because they are pure hardware.

Global Measurement System - Provides the Sphere with a measurement of time of
flight to each fixed beacon in the SPHERES operating space. The Guest Scientist can
compute any position and attitude information from these ranges. The beacons are
represented by component-level SpecTRM-GSCs.

65



Environment Assumptions

[EA.1] PADS is operating within a Sphere. [{System Interface Design]

Rationale: This intent specification describes a position and attitude determination
subsystem that will operate within a Sphere. It is not meant for use outside the
SPHERES project.

Environment Constraints

[EC.1] PADS must operate within an enclosed 1.5m x 1.5m x 2m volume. [{DP.3.2.3]
Rationale: This is the size of the enclosed volume of the United States Node on the
International Space Station. A known volume is needed so that a beacon chirp used in
the Global portion of PADS disperses before the next beacon chirps.

[EC.2] This ultrasound beacons are placed at known locations around the inside of
Node 1. [>IR.1] [->0OR.1]

Rationale: Accurate position and attitude information is contingent on receiving
accurate readings from the beacons surrounding the SPHERES operating space.

System Functional Goals

[FG.1] PADS shall provide accurate calculation of Sphere position and/or attitude
information. [{DP.1] [{DP.2] [{DP.3]

Rationale: Accurate position and/or attitude information is needed so that the Guest
Scientist Program or Sphere Controller can determine the required actuation.

[FG.2] The Guest Scientist can choose whether to use an inertial measurement system,
a global measurement system or both systems to receive needed state information.
[>FR.1] [{DP.1.2]

Rationale: The inertial measurement system provides measurements much faster than
the global measurement system. The two systems provide different rates for
processing the information.

High-Level Requirements

[FR.1] PADS receives a message from the Sphere Controller that indicates which type
of position and attitude information is needed. [—>FG.2] [{DP.1.2]

Rationale: Different Guest Scientist Programs require different position and attitude
information.

[FR.2] PADS shall provide the Sphere Controller with linear acceleration and angular
velocity with the inertial measurement system. [{DP.2.1] [VDP.3.1]
Rationale: The Guest Scientist may not want to use the global measurement system.
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[FR.3] PADS shall provide the Sphere Controller with ranges from the Sphere to each
beacon in the SPHERES operating space. [{DP.2.2] [{DP.3.2]

Rationale: Any position and/or attitude information needed by the Guest Scientist can
be calculated from these ranges. In addition, the Guest Scientist may not want to use
the inertial measurement system.

Design and Safety Constraints

Non-Safety Constraints

[SC.1] PADS must operate independently of any operator action. [{DP.3]
Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

Operator Requirements

[OR.1] The Operator shall place the beacons around the inside of Node 1 in known
locations and record these locations. [>EC.2] [{OT.1]

Rationale: The beacons are needed for the global measurement system. Because the
beacons are not fixed inside of Node 1, the operator is responsible for placing the
beacons in known locations before any SPHERES operation.

System Interface Requirements

[IR.1] There shall be a means for an operator to record the position of the beacons
inside Node 1. [>EC.2] [{OT.2]

Rationale: The beacons are needed for the global measurement system. Because the
beacons are not fixed inside of Node 1, the operator is responsible for placing the
beacons in known locations before any SPHERES operation.

System Limitations

[L.1] Accurate position information will not be reported unless the beacons are placed
at known locations around the inside of Node 1 and the locations are recorded.
Rationale: The beacons are needed for the global measurement system.

[L.2] The elements of the inertial measurement system are not redundant.
Rationale: The SPHERES system is too small to have redundant cormponents.

[L.3] The global measurement system is susceptible to interference from external

sources of infrared and ultrasound. Presence of this interference will degrade
performance.
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Verification and Validation

Review Procedures

A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss — SpecTRM-GSC Developer
John Enright — SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles

System Interface Design
The external components will interface with the PADS in the following manner: [TEA.1]

Controller PADS FPGA

PADS interfaces with the Sphere Controller and with the FPGA, which provides an
interface with the avionics hardware. Although the FPGA is technically part of the
PADS, it is separated here because the inputs to and outputs from PADS are processed
by the FPGA. There is no SpecTRM-GSC model of the FPGA because it was created by
Payload Systems, Inc. and there is insufficient information to create an intent
specification.

The Sphere Controller tells PADS which information is needed from the avionics
hardware. The Sphere Controller can either receive linear acceleration and/or angular
velocity from the inertial measurement system and/or ranges to each beacon from the
global measurement system. PADS sends the requested information to the Sphere
Controller. [{C.1] [{C.2] [{C.3] [¥C.4]
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PADS sends a flash command to the FPGA, which begins the process of global
metrology. PADS receives linear acceleration and angular velocity from the FPGA.
[¥C.5] [LC.6] [{C.7] [IC.8] [{C.9] [4C.10]

Controls and Displays

Displays

[OD.1] The SPHERES Laptop contains a display that allows the operator to enter the
locations of the five ultrasound beacons. [TIR.1]

Rationale: The Laptop is used during the experiment setup so that the beacon
locations are loaded onto the Spheres, which use these locations in position
determination.

Operator Task Design Principles

[OT.1] The Operator places the beacons at known locations, as in Figure 1, around the
inside of Node 1. The beacons are placed on opposite alternate corners and the
remaining beacon in any remaining corner. [TOR.1] [JOP.1]

Rationale: The Sphere requires the locations of the beacons in order to obtain accurate
position information. The beacons are placed so that maximum coverage is obtained,

[OT.2] The Operator enters the location of the beacons into the SPHERES Laptop.
[TIR.1] [LOP.2]

Rationale: The Sphere requires location of the beacons in order to obtain accurate
position information.

Figure 1. Example Beacon Configuration for the First Four Beacons

System Design Principles

[DP.1] Position and Attitude Determination Subsystem (PADS) Overview [TFG.1]
[DP.1.1] PADS is made up of software and hardware components. The

hardware components consist of the FPGA, gyroscopes, accelerometers, infrared

69



transmitters and receivers, ultrasound transmitters and receivers and beacons. Figure 2
provides a diagram of PADS.

Paosition and Attitude Determination Subsystem (PADS)

Hardware

Inertial Measurement System

- - Accelerometers Gyros

(3) (3)

Software FPGA
Global Measurement System

IR IR
hl Transmitters Receivers S
(24) (12)

Us
Receivers
(24) (5)

Transmitter

Beacons

Figure 2. PADS Diagram

[DP.1.2] The Guest Scientist will decide which Control Mode PADS is in. If PADS
is in Report Ranges Mode, PADS will issue a command to the FPGA to flash the infrared
transmitter, beginning the process of global metrology. Ranges to each beacon are
then sent to the Sphere Controller. If PADS is in Accelerometer and Gyro Mode it will
send the measurements taken at a pre-specified sample rate by the FPGA. If PADS is in
Send All Data mode, it will send information from both the global and inertial
measurement systems. [TFG.2] [PADSControlMode]

Rationale: Different Guest Scientists have different position and attitude information
needs, For example, some Guest Scientists Programs involve position information,
requiring them to use the global measurement system, while others need quickly
sampled angular rates, in which case they can use the inertial measurement system.

[DP.2] PADS Hardware [TFG.1]
[DP.2.1] Inertial Measurement System [TFR.2]
[DP.2.1.1] The gyroscopes are mounted in alignment with the body axes
at the positions listed in Figure 3.
Rationale: These locations provide easy and intuitive mapping of
gyroscope measurements to Sphere motion.

[DP.2.1.2] The accelerometers are aligned parallel to, but displaced from,
the body axes at the positions listed in Figure 4.
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Rationale: Ideally, the accelerometers would be mounted along the three
axes of the Sphere body frame, but this arrangement is not feasible given
the spatial requirements of other subsystems.

Sensor Location (bod;/ frame) [cm]
X-axis gyro TBD 3.10 6.39
y-axis gyro -5.49 TBD -3.24
Z-axis gyro -5.49 3.24 TBD

Figure 3. Gyroscope Locations

Sensor Location (bod;/ frame) [cm]
x-axis accelerometer | 5.19 2.17 3.27
y-axis accelerometer | -2.66 3.35 3.30
Z-axis accelerometer | 3.28 -4.37 3.35

Figure 4. Accelerometer Locations

[DP.2.1.3] The FPGA continuously samples the gyroscopes and
accelerometers at 1kHz. The FPGA converts the analog signal from the
hardware components to a digital signal. The FPGA then sends this digital
signal to PADS. If the Guest Scientist uses the accelerometer and gyro
data, he/she down-samples the information at a specified rate.

Rationale: The Guest Scientist sets how often the data needs to be
sampled.

[DP.2.2] Global Measurement System [TFR.3]

[DP.2.2.1] The Global Measurement System hardware is comprised of 24
ultrasound receivers, 1 ultrasound transmitter, 12 infrared receivers, 24
infrared transmitters and 5 beacons. The ultrasound receivers, infrared
receivers and infrared transmitters are split into 12 boards. Each board
contains 2 ultrasound receivers, 1 infrared receiver and 2 infrared
transmitters. Figure 5 illustrates the locations of the boards on the
Sphere. Figure 6 provides the numbering scheme for the ultrasound
receivers as well as their exact location in the body frame.

[DP.2.2.2] The five fixed beacons provide position and attitude relative to
the walls of the operational module. Each fixed beacon contains an
ultrasound transmitter and an infrared receiver.

Rationale: The infrared receiver begins the clock on the beacon after the
Sphere flashes and the ultrasound transmitter sends out a chirp and the
pre-specified time.
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Figure 5. Ultrasound Receiver Geometry and Numbering

Face Receiver  Location (body frame) [cm]
Label Number  Number X y z
0 0 10.23  -3.92 3.94
55 0 1 10.23 3.92 3.94
0 2 10.23 3.92 -3.94
0 3 10.23  -3.92 -3.94
1 0 3.94 10.23 -3.92
by 1 1 3.94 10.23 3.92
1 2 -3.94 10.23 3.92
1 a -3.94 10.23 -3.92
2 0 -3.92 3.94 10.26
. 2 1 3.92 3.94 10.26
2 2 3.92 -3.94 10.26
2 3 -3.92 -3.94 10.26
3 0 -10.23 392 -3.94
" 3 1 -10.23  3.92 3.94
3 2 -10.23 -3.92 3.94
3 3 -10.23  -3.92 -3.94
4 0 -3.94 -10.23 3.92
4 1 3.94 -10.23 3.92
Y 4 2 394 -1023 -3.92
4 3 -3.94 -10283  -3.92
5 0 392 -3.94  -10.23
- 5 1 3.92 3.94 -10.23
5 2 -3.92 3.94 -10.23
5 3 -3.92 -394  -10.23

Figure 6. Ultrasound Sensor Numbering Scheme and Locations
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[DP.3] PADS Software [TFG.1] [1SC.1]
[DP.3.1] Inertial Measurement System [TFR.2]
[DP.3.1.1] PADS converts the digital signal (converted by the FPGA from
the analog signal taken from the gyroscopes and accelerometers) into
angular velocity in radians per second and linear acceleration in meters
per second squared.

[DP.3.1.2] If PADS is operating in Accelerometer and Gyro Mode or in
Send All Data Mode, then PADS will report these values to the Sphere
Controller.

[DP.3.2] Global Measurement System [TFR.3]
[DP.3.2.1] The Guest Scientist begins the PADS global metrology process
by commanding PADS into Report Ranges Mode. PADS commands the
infrared transmitters to flash. The infrared receivers sense the flash and
notify PADS, which starts a clock.

[DP.3.2.2] PADS sends a message to the Sphere Controller to turn off all
thrusters.

Rationale: Thrusters produce ultrasound noise that will cause false
triggering of global measurement system events.

[DP.3.2.3] 10ms after the infrared is received, Beacon 1 sends out an
ultrasonic signal, or a chirp. 30ms after the infrared is received, Beacon 2
chirps. 50ms after the infrared is received, Beacon 3 chirps. 70ms after
the infrared is received, Beacon 4 chirps. 90ms after the infrared is
received, Beacon 5 chirps. [TEC.1]

Rationale: Given the size of US Node 1 and the positions of the beacons
around the inside of that volume, these times ensure that the beacon
chirps wiill not overiap.

[DP.3.2.4] The ultrasound receivers send a “received” message to PADS
when they receive a chirp. PADS calculates a time-of-flight between the
time the beacon chirped and when the receivers sensed the chirp. The
time since the ultrasound receiver senses the beacon transmission minus
the time since the beacon chirps is the time of flight. PADS calculates the
range between each beacon and each ultrasound receiver. Range is equal
to the time-of-flight divided by the speed of sound, which is 340m/s
(meters per second).

Rationale: 340my/s is the speed of sound at room temperature. The
SPHERES Laptop allows the Operator to record the actual ambient
temperature so that the speed of sound can be more accurately
calculated.
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[DP.3.2.5] PADS finds time-of-flight to another Sphere using the onboard
beacon (the ultrasound transmitter).

Rationale: Sphere-to-Sphere range and bearing are used for Guest
Scientist Programs that involve docking.

Level 3: Blackbox Behavior

Communication

[C.1] The Sphere Controller sends PADS what Control Mode it should enter, either
Report Ranges Mode, Accelerometer and Gyro Mode or Send All Data Mode.
[ISystem Interface Design] [—>GuestScientistModelnput]

[C.2] When PADS is in Report Ranges Mode, it sends the Sphere Controller ranges
from each of the 24 ultrasound receivers to each of the 5 beacons in meters.
[TSystem Interface Design]

[C.3] When PADS is in Accelerometer and Gyro Mode, it sends the Sphere Controller
Angular Velocity (x, y, z) in radians per second and Linear Acceleration (X, v, z) in

meters per second squared. [TSystem Interface Design] [—LinearAccelerationQutput]
[—>AngularRateQutput]

[C.4] When PADS is in Send All Data Mode, it sends the Sphere Controller both ranges
from each of the 24 ultrasound receivers to each of the 5 beacons in meters and
Angular Velocity (x, y, z) in radians per second and Linear Acceleration (X, y, z) in
meters per second squared. [TSystem Interface Design] [—»LinearAccelerationOutput]
[=>AngularRateQutput]

[C.5] PADS sends a Flash command to the Infrared Transmitters through the FPGA.
[TSystem Interface Design]

[C.6] PADS sends a Flash command to the Ultrasound Transmitter through the FPGA.
[1System Interface Design]

[C.7] The Accelerometers send Linear Acceleration (X, y, z) to PADS through an FPGA.
[TSystem Interface Design] [—AccelerometerXInput] [—AccelerometerYInput]
[>AccelerometerZInput]

[C.8] The Gyroscopes send Angular Acceleration (x, y, z) to PADS through an FPGA.
[TSystem Interface Design] [—>GyroXInput] [—GyroYInput] [->GyroZInput]

[C.9] The Infrared Receivers send Infrared Received to PADS.
[TSystem Interface Design]
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[C.10] The Ultrasound Receivers send Time Beacon Flash Received to PADS.
[TSystem Interface Design]

Operational Procedures
[OP.1] Placing the beacons. [TOT.1]
[OP.1.1] Unstow five ultrasound beacons.

[OP.1.1] Place five beacons at the pre-specified seat-tracks as seen in Figure 6.
[OP.2] Record locations of five beacons in the SPHERES Laptop setup screen. [TOT.2]
[OP.2.1] Enter beacon seat-track locations for each of the five beacons.

[OP.2.2] Save the beacons' positions.
[OP.3] Stow beacons after experiment has been completed.

System Blackbox Behavior — PADS

SUPERVISORY MODE |INFERRRED SYSTEM STATE
- — - o AccelerometerX
CONTROL MODE e : AccelerometerXinput
nknown [ o '
-AccelerometerGyroMode L .
e ——
ReporiRangesMode 3 o L
SendAllDataMode o - - AccelerometerY’
: AccelerometerYinput
— e
GuestScientistModelnput - : -
. AccelerometerZ
AccelerameterZlnput
Sphere Cantraller ]
e
-+ GyraX
GyraXinput
LinearAccelerationOutput
: :
AngularRateOutput . . ' : :  — GyroY
e - . : Gyro'lnput
—
. —] GyraZ
. GyraZinput
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Appendix C

Communication Subsystem

Level 1: System-Level Goals, Requirements,

and Constraints

Introduction

The Communication Subsystem aboard each Sphere in the SPHERES system
(Synchronize Position Hold Engage Reorient Experimental Satellites) provides
communications management. The Communication Subsystem provides wireless data
transfer between the Spheres and between the Spheres and the ground. It is used to
send user commands, coordinate actions of the Spheres and send telemetry.

Historical Information

This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Communication Subsystem.

Environment Description

There will be only four types of devices in the Communication Subsystem's environment
with which it must communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands and telemetry to
the Communication Subsystem.

Other Spheres - There can be up to two other Spheres executing a Guest Scientist
Program in the SPHERES system. These are other system-level intent specifications
that the Communications Subsystem may need to communicate with.

SPHERES Laptop - Programs are loaded onto the Spheres through the SPHERES
Laptop. The SPHERES Laptop commands the Spheres to run tests. In addition,
telemetry is sent to the SPHERES Laptop per user specification. This is component-level
intent specification.

Radios - All communications are transmitted and received through radios on board
each Sphere. These are component-level devices and do not have intent specifications
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because they are pure hardware. The radios also provide different channels for
communication.

Environment Assumptions

[EA.1] The Communication Subsystem is operating within a Sphere.

[{System Interface Design]

Rationale: This intent specification describes a communication subsystem that wifl
operate within a Sphere. It is not meant for use outside the SPHERES project.

Environment Constraints

[EC.1] The Communication Subsystem must adhere to ISS EMI standards.
Rationale: The SPHERES system will operate aboard the International Space Station
and therefore must adhere to their standards.

System Goals

[FG.1] The Communication Subsystem shall provide wireless data transfer abilities for
the Sphere. [{DP.1] [{DP.2] [{DP.3]

Rationale: Because SPHERES is a formation flying testbed, the Spheres must be able to
communicate with one another in order to execute maneuvers. In addition, each
Sphere needs to be able to download telemetry so that Guest Scientists can analyze the
data on the ground.

High-Level Requirements

[FR.1] The Communication Subsystem aboard a Sphere shall send data packets from
itself to the Communication Subsystem of another Sphere. [{DP.2.2] [{DP.3.2]

[¢DP.3.3]

Rationale: The Guest Scientist may want two or more Spheres to communicate directly.

[FR.2] The Communication Subsystem aboard a Sphere shall process incoming data
packets from the Communication Subsystem of another Sphere. [{DP.2.2] [{DP.3.3]
Rationale: The Guest Scientist may want two or more Spheres to communicate directly.

[FR.3] The Communication Subsystem aboard a Sphere shall send data packets from
itself to the SPHERES Laptop. [{DP.2.2] [{DP.3.1] [4DP.3.2]
Rationale: The Sphere must be able to downlink telemetry information to the SPHERES

Laptop.

[FR.4] The Communication Subsystem aboard a Sphere shall process incoming data
packets, commands and beacon locations from the SPHERES Laptop. [{DP.2.2]

[VDP.2.5]
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Rationale: The Sphere must be able to receive new Guest Scientist Programs and
information from the SPHERES Laptop.

[FR.5] The Guest Scientist shall be able to select what telemetry is sent from the
Sphere to the SPHERES Laptop. [{DP.1.2] [{DP.3.1]
Rationale: Different Guest Scientist may be interested in different data sets.

[FR.6] The Communication Subsystem shall provide a mechanism to share the
communication channels. [{DP.3.4]

Rationale: Each Sphere and the SPHERES Laptop should be able to transmit data
packets without interference.

Design and Safety Constraints

Non-Safety Constraints
[SC.1] The Communication Subsystem must operate independently of any operator

action. [{DP.3]

Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

[SC.2] The Communication Subsystem must not operate when it is outside the range of
the SPHERES Laptop transmitter.

Rationale: The Russians do not want SPHERES operating outside of the US Node of the
155.

System Limitations

[L.1] The Communication Subsystem transmits data at 57.6kbps.
Rationale: This is the data transfer rate of the Sphere’s radios.

Verification and Validation

Review Procedures

A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss — SpecTRM-GSC Developer
John Enright — SPHERES Team Member and Primary Reviewer
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Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design

The external components will interface with the Communication Subsystem in the
following manner: [TEA.1]

———————
SPHERES
Laptop
e
e
Controller Communication Subsystem
.
]
Other
Spheres
et

The Communication Subsystem interfaces with the Sphere Controller and with the
radios that allow the Sphere to communicate with the SPHERES Laptop as well as other
Spheres. The radios are not represented in this diagram because they are not a
SpecTRM-GSC. They are trivial hardware components and are therefore not modeled.

The Sphere Controller sends the Communication Subsystem telemetry and commands
to send to other Spheres. The Communication Subsystem sends commands from other
Spheres to the Sphere Controller. [{C.1] [LC.2] [{C.3]

The Communication Subsystem sends telemetry to the SPHERES Laptop. The SPHERES
Laptop uploads new Guest Scientist Programs onto the Spheres and also provides the
Spheres with beacon locations. [{C.7] [VC.8] [{C.9]

The Communication Subsystem also sends and receives commands from other Spheres.
[{C.4] [1C.5] [IC.6]

System Design Principles

[DP.1] Communication Subsystem Overview [TFG.1]
[DP.1.1] The Communication Subsystem is made up of software and hardware
components. The hardware components consist of the I/O Circuitry and the
Radios. Figure 1 provides a diagram of the Communication Subsystem.

79




Communication Subsystem
Hardware
> ‘ » SPHERES
> Vo
Software Circuitry Other
=
- . - Sphere
Radio
- — ™ Other
Sphere

Figure 1. Communication Subsystem Diagram

[DP.1.2] The Guest Scientist will decide whether or not to send telemetry to the
SPHERES Laptop. This information is sent through the Sphere Controller to the
Communication Subsystem. [{FR.5] [{TelemetryFlag]

Rationale: The Guest Scientist may or may not need the data generated by the
Guest Scientist Program, therefore he/she needs an option as to whether or not
to record telemetry.

[DP.2] Communication Subsystem Hardware [{FG.1]
[DP.2.1] The I/O Circuitry provides a buffer between the Communication
Subsystem and the Radios. It translates the serial data stream from the
Communication Subsystem software to the parallel data stream taken by the
radios and vice versa.
Rationale: The serial data stream travels much sfower than parallel and
therefore a buffer is needed between the two streams to accommodate the
different flow rates.

[DP.2.2] The Radios transmit and receive data packets to and from the
Communications Subsystem, SPHERES Laptop and other Spheres. [TFR.1]
[TFR.2] [TFR.3] [TFR.4]

[DP.2.3] The Radios provide the Communication Subsystem with error detection
in the form of checksums.

Rationale: Although the radios do not provide error correction, the Guest
Scientist will at least be aware If the collected telemetry has been corrupted.
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[DP.2.4] The SPHERES Laptop saves telemetry sent by the Communication
Subsystem to a hard disk.
Rationale: The ISS only downlinks data to Earth once every twelve hours.

[2.5] The SPHERES Laptop sends Start Test and Stop Test commands to the
Sphere through the Communication Subsystem. [TFR.4]

Rationale: The Laptop will not start a test until all the information necessary for
running the Guest scientist Program has been loaded onto the Spheres.

[DP.3] Communication Subsystem Software [TFG.1] [1SC.1]
[DP.3.1] The Communication Subsystem receives standard state and
engineering telemetry as well as user defined experimental data from the Sphere
Controller. If the Sphere Controller also sends a command that the telemetry is
to be recorded, the Communication Subsystem sends the telemetry to the
SPHERES Laptop. [TFR.3] [TFR.5]
Rationale: The Guest Scientist may wish to gather data outside the standard
state and engineering telemetry provided by the Sphere Controller.

[DP.3.2] The Communication Subsystem generates telemetry packets to be sent
to the Radios. [TFR.1] [TFR.3]

[DP.3.3] The Communication Subsystem sends information and/or commands
from the Sphere Controller to other Spheres. [TFR.1] [TFR.2]

Rationale: Guest Scientist Programs that require multiple Spheres may need the
Spheres to send commands to one another and to share data.

[DP.3.4] The Communication Subsystem provides Time Division Multiple Access
(TDMA) for the Sphere. [TFR.6]

Rationale: TDMA allows the SPHERES system to share the two radio channels
among the multiple stations, giving each station the opportunity to transmit.

Level 3: Blackbox Behavior
Communication

[C.1] The Sphere Controller sends the Communication Subsystem a Boolean telemetry
flag, indicating whether or not to send telemetry. [TSystem Interface Design]

[>TelemetryFlagInput]

[C.2] The Sphere Controller sends the Communication Subsystem the state vector
(Angular Rate (x, y, z), Position (X, y, z), Linear Velocity (X, y, z) and Quaternion (q1,
g2, q3, g4)) as well as any other telemetry specified by the Guest Scientist.

[TSystem Interface Design] [—VelocityXInput] [—VelocityYInput] [—VelocityZInput]
[=>AngularRateXInput] [—AngularRateYInput] [—>AngularRateZInput]
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[C.3] The Sphere Controller sends the Communication Subsystem commands for the
Other Spheres. [TSystem Interface Design]

[C.4] The Communication Subsystem sends commands to Other Spheres.
[TSystem Interface Design] [—>RateMatcherData]

[C.5] The Communication Subsystem receives commands from Other Spheres.
[TSystem Interface Design]

[C.6] The Communication Subsystem sends telemetry to the SPHERES Laptop.
[TSystem Interface Design] [—>TelemetryOutput]

[C.7] The SPHERES Laptop sends Guest Scientist Programs to the Communication
Subsystem. [TSystem Interface Design]

[C.8] The SPHERES Laptop sends Start Test and Stop Test commands to the
Communication Subsystem. [TSystem Interface Design]

[C.9] The SPHERES Laptop sends Beacon Locations to the Communication Subsystem.

[TSystem Interface Design]

System Blackbox Behavior — Communication Subsystem

Sphere Controller
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Appendix D

Sphere Controller
Level 1: System-Level Goals, Requirements,

and Constraints

Introduction

The Sphere Controller aboard each Sphere in the SPHERES system (Synchronize
Position Hold Engage Reorient Experimental Satellites) provides the overall framework
for the Sphere. The Sphere Controller coordinates the actions of the onboard
components as well as determining the operating mode of the Sphere.

Historical Information

This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Sphere Controller.

Environment Description

There are six subsystems (Propulsion Subsystem, PADS, Communication Subsystem,
Guest Scientist Program, Structure and Electrical Subsystem) in the Sphere Controller’s
environment. The Sphere Controller communicates with only four of these subsystems:

Propulsion Subsystem — The Propulsion Subsystem provides both position and
attitude management for the Sphere. It is a subsystem-level intent specification in the
SpecTRM-GSC decomposition of SPHERES.

PADS — PADS provides state estimation for the Sphere. It is a subsystem-level intent
specification in the SpecTRM-GSC decomposition of SPHERES.

Communication Subsystem — The Communication Subsystem provides wireless data
transfer for the SPHERES system. It is a subsystem-level intent specification in the
SpecTRM-GSC decomposition of SPHERES.

Guest Scientist Program - The Guest Scientist Program allows scientists outside of
MIT and NASA to test high-risk metrology, control and autonomy algorithms in the
environment of micro-gravity. Each Guest Scientist Program is a different subsystem-
level intent specification in the SpecTRM-GSC decomposition of SPHERES.
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Environment Assumptions

[EA.1] The Sphere Controller is operating within a Sphere. [{System Interface Design]
Rationale: This intent specification describes the Controller that will operate within a
Sphere. It is not meant for use outside the SPHERES project.

[EA.2] The Sphere Controller is operating within a Sphere that contains a Propulsion
Subsystem, PADS, Communication Subsystem and Guest Scientist Program designed for
the SPHERES project. [1System Interface Design]

Rationale: The Sphere Controller is not a generic controller and is meant to be used
with subsystems designed for the SPHERES project.

Environment Constraints

[EC.1] The Sphere must only operate within Node 1 of the International Space Station.
Rationale: The Russians do not want SPHERES operating outside of the US Node of the
ISS.

System Goals

[FG.1] The Sphere Controller shall coordinate the actions of the Sphere’s onboard
components. [->FR.1] [-FR.2] [-»FR.3] [{DP.1] [{DP.2] [{DP.3] [{DP.4]
Rationale: A controller is needed to coordinate the actions of the four active
subsystems onboard the Sphere.

High-Level Requirements

[FR.1] The Sphere Controller shall execute the Guest Scientist Program. [>FG.1]
[{DP.1] [{DP.4.5]

Rationale: The Guest Scientist Program contains the control laws and/or state
estimation algorithms that allow the Spheres to perform maneuvers. Running an
experiment involves the Sphere Controller executing one of these programs.

[FR.2] The Sphere Controller shall manage the interactions between subsystems.
[>FG.1] [VDP.1] [VDP.2] [{DP.3]

Rationale: All interactions between the subsystems are channeled through the Sphere
Controlfer.

[FR.3] The Sphere Controller shall provide the overall operating mode of the Sphere.
[>FG.1] [\DP.4]

Rationale: Because the Sphere Controller executes the Guest Scientist Program, it Is
aware of the status of the experiment and therefore sets the operating mode.
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Design and Safety Constraints

Non-Safety Constraints

[SC.1] The Sphere Controller must operate independently of any operator action.
[{DP.1] [{DP.2] [IDP.3]

Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

Operator Requirements

[OR.1] The Operator shall enable the Sphere Controller after the Guest Scientist
Program has been loaded and the test area prepared. [{OT.1] [1OT.2] [JVOT.3]
Rationale: The test area must be clear of astronauts and other objects foreign to the
SPHERES system before the Guest Scientist Program is executed. The Guest Scientist
Program cannot start unless the Sphere Controller has been enabled.

[OR.2] The Operator shall start the SPHERES experiment after the Sphere Controller
has been enabled and stop the experiment when the Guest Scientist Program is finished

executing. [LOT.4]

Verification and Validation

Review Procedures

A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss — SpecTRM-GSC Developer
John Enright — SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design

The four external subsystems will interface with the Sphere Controller in the following
manner: [TEA.1] [TEA.2]
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The Sphere Controller communicates with the four active subsystems: PADS,
Communication Subsystem, Propulsion Subsystem and Guest Scientist Program.

The Sphere Controller tells PADS which information is needed from the avionics
hardware. The Sphere Controller can either receive linear acceleration and/or angular
velocity from the inertial measurement system and/or ranges to each beacon from the
global measurement system. PADS sends the requested information to the Sphere
Controller. [{C.2]

The Sphere Controller sends the Communication Subsystem telemetry and commands
to send to other Spheres. The Communication Subsystem sends commands from other
Spheres to the Sphere Controller. [{C.3]

The Sphere Controller sends the Propulsion Subsystem either timed on/off commands
for each of the twelve thrusters or force and torque vectors. The Propulsion Subsystem
does not send any information to the Sphere Controller. [{C.1]

The Sphere Controller sends and receives different information from the Guest Scientist
Program depending on the needs of the Guest Scientist. The Sphere Controller will
always receive the control mode for the Propulsion Subsystem and PADS from the
Guest Scientist Program. Other information is dependent on the specific program being
executed. A detailed description of the information exchanged is found at Level 3 of
this model. [{C.4]

Operator Task Design Principles

[OT.1] The Operator loads the Guest Scientist Program onto the Sphere through the
SPHERES Laptop. [TOR.1] [{OP.4]

[OT.2] The Operator prepares the test area for running a SPHERES experiment.
[TOR.1] [LOP.1] [{OP.2] [LOP.3] [{OP.5]
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[OT.3] The Operator enables the Sphere Controller by pushing an enable button on the
Sphere. [TOR.1] [VOP.6]

[OT.4] The Operator starts and stops the SPHERES experiment through the SPHERES
Laptop. [TOR.2] [{OP.7] [VOP.8]

System Design Principles

[DP.1] The Sphere Controller provides the Guest Scientist Program with position and
attitude information from PADS. [1FG.1] [TFR.1] [TFR.2] [1SC.1]

Rationale: The Guest Scientist Program requires position and attitude information to
determine desired forces and torques to accomplish a maneuver.

[DP.2] The Sphere Controller provides the Propulsion Subsystem with either direct *On
Time” and “Off Time"” commands or force and torque vectors calculated by the Guest
Scientist Program. [TFG.1] [TFR.2] [1SC.1] [{PropulsionSubsystemState]

[DP.3] The Sphere Controller generates automatic telemetry from the position and
attitude information provided by PADS and sends it to the Communication Subsystem.
The Sphere Controller also sends information specified by the Guest Scientist Program
to the Communication Subsystem. [TFG.1] [TFR.2] [TSC.1] [{PADSState]

[DP.4] Sphere Controller Operating Modes [TFG.1] [TFR.3] [VSphereControlMode]
[DP.4.1] The Sphere Controller enters “Boot” when the Sphere is Reset or
Powered On.

[DP.4.2] The Sphere Controller enters mode “Load Program” if there is a new
Guest Scientist Program to load onto the Sphere.

[DP.4.3] The Sphere Controller enters “Idle” if the Sphere successfully loaded
the Guest Scientist Program or if there was no new Guest Scientist Program to
load onto the Sphere from mode “Boot”

[DP.4.4] The Sphere Controller enters mode “Position Hold” from “Idle” when
the Operator enables the push button on the Sphere.

[DP.4.5] When the Sphere Controller receives a “Start” command from the
SPHERES Laptop through the Communication Subsystem, the Sphere enters
mode “User Control” which signals that the Guest Scientist Program is running
and controlling the Sphere. [TFR.1]

[DP.4.6] If the Sphere Controller receives a “Stop” command from the SPHERES

Laptop through the Communication Subsystem, the Sphere goes back to “Idle”
mode.
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Level 3: Blackbox Behavior

Communication

[C.1] Propulsion Subsystem [TSystem Interface Design]
[C.1.1] The Sphere Controller sends the Propulsion Subsystem the operating
mode specified by the Guest Scientist Program.

[—>PropulsionSubsystemModeQutput]

[C.1.2] The Sphere Controller sends the Propulsion Subsystem a Forces and
Torques Vector containing the desired forces (x, y, z) and torques (X, Y, z)
required by the Guest Scientist Program. [—ForceTorqueVectorQutput]

[C.2] PADS [1TSystem Interface Design]
[C.2.1] The Sphere Controller sends PADS the operating mode specified by the
Guest Scientist Program. [—>PADSModeQutput]

[C.2.2] The Sphere Controller receives from PADS either:
[C.2.2.1] Ranges from each of the 24 ultrasound receivers to each of the
5 beacons in meters.
[C.2.2.2] Angular Velocity (x, y, z) in radians per second and Linear
Acceleration (x, y, z) in meters per second squared.
[>AngularRateXInput] [—>AngularRateYInput] [—AngularRateZInput]
[C.2.2.3] Both ranges from each of the 24 ultrasound receivers to each of
the 5 beacons in meters and Angular Velocity (X, y, z) in radians per
second and Linear Acceleration (x, y, z) in meters per second squared.

[C.3] Communication Subsystem [TSystem Interface Design]
[C.3.1] The Sphere Controller sends the Communication Subsystem a Boolean
telemetry flag, indicating whether or not to send telemetry.
[—>TelemetryFlagOutput]

[C.3.2] The Sphere Controller sends the Communication Subsystem the state
vector (Angular Rate (x, y, z), Position (x, y, z), Linear Velocity (x, y, z) and
Quaternion (q1, g2, g3, g4)) as well as any other telemetry specified by the
Guest Scientist. [—AngularRateQutput]

[C.3.3] The Sphere Controller sends the Communication Subsystem commands
and/or information for the Other Spheres.

[C.4] Guest Scientist Program [TSystem Interface Design]
[C.4.1] The Guest Scientist Program sends the desired operating mode for the
Propulsion Subsystem to the Sphere Controller.
[>PropulsionSubsystemModelnput]
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[C.4.2] The Guest Scientist Program sends the desired operating mode for PADS
to the Sphere Controller. [->PADSModelnput]

[C.4.3] Rate Damper
[C.4.3.1] The Sphere Controller sends the Guest Scientist Program
Angular Rates (X, y, z). [->AngularRateXOutput] [—>AngularRateYOutput]

[=>AngularRateZQutput]

[C.4.3.2] The Rate Damper sends the Sphere Controller desired forces (X,
y, z) and torques (X, Y, z) needed from the Propulsion Subsystem to
cancel the angular rate. [—>ForceXInput] [—ForceYInput]
[>ForceZInput] [->TorqueXInput] [—>TorqueYInput] [->TorqueZlnput]

[C.4.4] Rate Matcher
[C.4.4.1] The Sphere Controller sends the Guest Scientist Program
Angular Rates (X, y, z). [=>AngularRateXOutput] [—>AngularRateYOutput]
[—>AngularRateZOutput]

[C.4.4.2] The Sphere Controller sends the Guest Scientist Program the
Angular Rates (X, y, z) of the Leader Sphere.
[>LeaderAngularRateXOutput] [—LeaderAngularRateYOutput]

[—>LeaderAngularRateZQutput]

[C.4.4.3] The Rate Damper sends the Sphere Controller desired forces (X,
y, 2) and torques (X, Y, z) needed from the Propulsion Subsystem to
cancel the angular rate. [—>ForceXInput] [—>ForceYInput]
[>ForceZInput] [—»>TorqueXInput] [>TorqueYInput] [—>TorqueZinput]

Operational Procedures

[OP.1] Unstow Sphere(s). [TOT.2]

[OP.2] Check the amount of propellant in each Sphere tank. If the amount is below
20%, follow Operational Procedures for the Propulsion Subsystem. [TOT.2]

[OP.3] Follow the Operational Procedures [OP.1] and [OP.2] for PADS. [TOT.2]
[OP.4] Load a Guest Scientist Program on the Sphere Controller through the SPHERES
Laptop. [TOT.1]

[OP.5] Place the Sphere(s) in the middle of the test area. [T0T.2]

[OP.6] Press the enable button on the Sphere(s). [TOT.3]

[OP.7] Send “Start” command through the SPHERES Laptop. [TOT.4]

[OP.8] After the test is completed send “Stop” command through the SPHERES Laptop.
[10T.2]

[OP.9] Stow Sphere(s).

[OP.10] Follow the Operational Procedures [OP.3] for PADS.
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Appendix E

System Blackbox Behavior — Guest Scientist Programs
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Figure 4. Screen Capture of the Simulation Environment for the Rate Matcher Example




