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Abstract

The development of modem spacecraft is a challenging endeavor, especially in light of

the increasing complexity of today's technology and ambitious mission goals, despite recent

budget and personnel cutbacks. A new approach to spacecraft development that addresses many

of the current issues facing the aerospace industry is described. The technique, called

Component-Based Systems Engineering, is built upon a systems engineering development

environment known as SpecTRM. An example of Component-Based Systems Engineering as

applied to a series of autonomous spacecraft known as SPHERES is provided. Simulations of

both one- and two-Sphere configurations are performed to illustrate not only the usefulness of

the technique but also the benefits that Component-Based Systems Engineering provides.

Thesis Supervisor: Dr. Nancy G. Leveson
Professor of Aeronautics and Astronautics
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Chapter 1
The Problem

In today's economy, NASA and its contractors do not have the political or economic

backing to accomplish the highly publicized and successful space missions that, 50 years ago,

received seemingly limitless funding and nationwide support. In an attempt to continue the

exploration of space on budget allocations that seem to be waning with every year, the aerospace

industry has been forced to rethink the way they engineer spacecraft. One way NASA has

attempted to compensate for diminishing funds and support has been the Faster, Better, Cheaper

approach. This chapter outlines the problems with Faster, Better, Cheaper and the inherent

difficulties faced by the aerospace industry that set the stage for the approach to spacecraft

engineering discussed in this thesis.

1.1 Faster, Better and Cheaper Spacecraft

Traditionally, spacecraft developed by NASA cost approximately $1 billion and take, on

average, a decade to complete. The failure of one of these missions is debilitating to NASA and

its contractors. In order to minimize the cost of mission failures while maximizing the amount of

science done on a limited budget, NASA proposed a "Faster, Better, Cheaper," or FBC, approach

to develop the next generation of space missions. During the 1990s, NASA operated under

Chief Administrator Dan Goldin's FBC approach. These missions would have a budget of $150

to $350 million and take only three or four years to complete. NASA proposed accomplishing

this goal through the use of small-scale Earth and space science missions, based upon proven

technologies, which would theoretically require fewer managers and staff. Through reuse and a

small managerial staff, NASA had hoped to launch ten or more spacecraft a year.

In 1999 alone, four missions (Mars Climate Orbiter, Mars Polar Lander, Wide Field

Infrared Explorer and the two Deep Space 2 micro-probes) failed using the FBC approach and

six of the 25 missions between 1996 and 2000 were lost [20]. Clearly, the FBC approach has not

provided NASA with a spacecraft development approach that meets the new needs of creating

spacecraft under a lower budget and in smaller time frame. There are many reasons why the
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FBC approach has failed to fulfill its goals; resources were highly constrained and guidance was

lacking due to many budget and workforce cuts throughout the 90s [18]. NASA accepted

significant risk that manifested itself as a lack of attention to process [18]. One of the processes

that suffered under this approach was software reuse. Because FBC decreased cost through the

use of proven technologies, many aspects of spacecraft software were reused from one mission

to the next. The previously stated lack of attention to process caused poor implementation of

reuse. One example of the poor implementation of reuse is the loss of the Mars Climate Orbiter,

described below.

1.1.1 Mars Climate Orbiter (MCO)

The Mars Climate Orbiter, or MCO, was part of the Mars Surveyor Program (MSP),

which NASA established in 1994 to explore Mars. The first missions in MSP were the Mars

Pathfinder and the Mars Global Surveyor. These missions were highly successful. The next two

missions, Mars Polar Lander (MPL) and MCO, were scheduled to launch during the next

minimum energy Earth-Mars transfer opportunity. The development teams had only 26 months

to prepare for these two missions. In order to accomplish these demanding goals, the project

decided to rely heavily on previous designs from MGS and Pathfinder.

The objective of the MCO mission was to deliver measurement devices for the collection

of Martian climate and atmospheric data to a low, near-circular, Sun-synchronous orbit around

Mars. The Mars Orbit Insertion (MOI) occurred on September 23, 1999. During MOI, the

spacecraft signal is lost for nearly 25 minutes because of Mars occultation. The spacecraft signal

dropped out 39 seconds earlier than predicted and never appeared again. From studying the

telemetry, the investigation team was able to determine that there was an error in the spacecraft's

navigation measurements of nearly 100 km. This resulted in a much lower altitude than expected

and eventually led to the vehicle's break-up in the atmosphere.

An MGS-heritage Software Interface Specification indicated the exact format and units

that the Angular Momentum Desaturation (AMD) files should have. This heritage specification

indicated that Metric units should be used for the impuse-bit in the AMD files, because the

equations supplied by the MGS-heritage software used Metric units. However, the equations in

the AMD files that made the impulse-bit calculations were supplied by a vendor that used
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English units. The conversion factor from English to Metric units was erroneously left out of the

AMD files. Consequently, the AMD files did not conform to the heritage specification. The

4.45 conversion factor was left out of the MCO software, which led to an error in the state at

closest approach to Mars and the break-up of MCO [5].

MCO p rovides a c lear e xample o f t he d ifficulties w ith r euse. N ot o nly d id the MCO

development team reuse software from MGS, but they also used vendor-supplied equations for in

their AMD files. Because the MGS software had worked before with the vendor-supplied

equations, there was little or no attention paid to the interface between these components. The

conversion factor was included in the MGS software, but was never documented [5]. It is

surprising that the MCO development team would not have checked that the units matched

between the two software components. As stated in a paper written by several of the people

involved in the development of the MCO and MPL, "the best chance to find and arrest this

problem existed at the early levels of development" [5]. However, many of the procedures

adopted d uring t he e arly s tages o f d evelopment, s uch a s t he r euse o f M GS-heritage s oftware,

were accepted because they were consistent with the FBC philosophy [5]. Reuse in and of itself

did n ot c ause t he M CO t o f ail; the improper implementation of reuse that was caused by the

shortened timeline and budgetary constraints was a major contributing cause to the loss.

Poor implementation of reuse has also occurred outside of the FBC approach. Similar

problems also surfaced in a joint project between NASA and the European Space Agency (ESA)

called SOHO and in the Ariane 5 launch vehicle. These aerospace accidents (SOHO and Ariane

5) and their relationship to reuse are described below to provide further insight into this difficult

problem.

1.2 SOlar Heliospheric Observatory (SOHO)

SOHO, or the SOlar Heliospheric Observatory, is a joint effort between NASA and ESA

to p erform h elioseismology a nd m onitor t he s olar a tmosphere, c orona and w ind. S OHO w as

launched on December 2, 1995, was declared fully operational in April of 1996, and completed a

successful two-year primary mission in May of 1998. It then entered into its extended mission

phase. After roughly two months of n ominal a ctivity, c ontact w ith S OHO w as lost June 2 5,
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1998. The loss was preceded by a routine calibration of the spacecraft's three roll gyroscopes

(named A, B and C) and by a momentum management maneuver [21].

In order to increase the amount of science done during the mission and to increase the

gyros' lifespans, a decision was made to compress the timeline of the operational procedures for

momentum management, gyro calibration and science instrument calibration into one continuous

sequence. The previous process h ad included a d ay b etween c ompleting g yro c alibration and

beginning the momentum management procedures. Because the gyro calibration in the new

compressed timeline was immediately followed by a momentum management procedure,

despinning the gyros at the end of the gyro calibration and re-enabling the on-board software

gyro control function was not required. However, after the gyro calibration, Gyro A was

specifically despun in order to conserve its life, while Gyros B and C remained active. The

modified predefined command sequence in the on-board control software had an error; it did not

contain a necessary function to reactivate Gyro A, which was needed by the Emergency Sun

Reacquisition. This omission resulted in the removal of the functionality of the spacecraft's

normal safe mode, ESR, and ultimately caused the s equence o f e vents t hat 1 ed t o t he loss o f

telemetry. In addition, there was another error in the software that resulted in leaving Gyro B in

its high gain setting following the momentum management maneuver. This error originally

triggered the ESR [21].

The first error was contained within a software function called ACONFIGN. ESR

requires the use of Gyro A for roll control. Any procedure that spins down Gyro A must set a

flag in the computer to respin Gyro A whenever the safe mode is triggered. When

A_CONFIGN was modified, the software enable command was omitted due to "a lack of

system knowledge of the person who modified the procedure" [21]. Because the change had not

been properly communicated, the operator procedures did not indicate that Gyro A had been

spun down. In this accident, the two software errors were due to improper software change

procedures due to lack of knowledge about the software and system design by those making the

changes.
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1.3 Ariane 5

On June 4, 1996, the maiden flight of the Ariane 5 rocket ended in disaster when, 40

seconds after launch, the launcher veered off its nominal flight path and exploded. The

preliminary accident investigation showed that the launcher performed nominally until +36

seconds, at which point both the back-up and active Inertial Reference Systems failed, the two

solid boosters swiveled to an extreme position causing the rocket to veer abruptly and finally the

launcher self-destructed. The investigation board rapidly concluded that the Inertial Reference

System (IRS) was at the heart of the accident.

Because the design of the Ariane 5 IRS was similar to the one used on the Ariane 4, a

decision was made to reuse the IRS software from the Ariane 4 on the Ariane 5. The time

sequence of the Ariane 5 lift-off is significantly different from that of the Ariane 4. An

alignment function included in earlier versions of the rocket to restart an aborted countdown

could no longer be used in Ariane 5. However, the function was left in the Ariane 5 software for

commonality reasons, "based on the view that, unless proven necessary, it was not wise to make

changes in software which worked well on Ariane 4" [15]. The alignment function had not been

shut down in the previous Ariane rockets until 50 seconds into flight mode. Therefore, the

unchanged alignment function would also remain active 50 seconds into the flight mode of the

Ariane 5. In addition, the trajectory of Ariane 5 also differs from that of Ariane 4 and results in

considerably higher horizontal velocity values. The higher horizontal velocity led to a BH

(horizontal bias variable) value that was much higher than expected. This, in turn, caused an

operand error in an alignment function. An exception was raised causing the nozzle of the solid

rocket boosters to deflect, from which the launcher experienced high aerodynamic loads that led

to its explosion 39 seconds into flight [15]. Clearly, the reused Ariane 4 software was not

suitable for the Ariane 5 without considerable changes.

In an analysis of reuse and the Ariane 5 accident, Weyuker observes that many engineers

believe if the software components are reusable, they do not have to be reevaluated for

integration into the new system [27]. The Ariane 5 and MCO accidents were examples of what

happens when software components are not reevaluated and properly integrated into the new

system. The poor implementation of reuse led to complete losses in both cases.
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The software components Weyuker refers to are the building blocks of an approach to

software development called Component-Based Software Engineering, or CBSE. Component-

Based Software Engineering is one way the software industry has incorporated reuse into its

software development practices. The next chapter defines Component-Based Software

Engineering and discusses its costs (why it is easy to poorly implement CBSE) and benefits. The

third a erospace a ccident example involved an improper implementation of software change, a

topic that will be addressed in Chapter 3. Unfortunately, poor reuse practices are not the only

problems currently facing the aerospace industry. The next section describes other factors that

are making the development of the next generation of space vehicles an even more difficult task.

1.4 Inherent Difficulties of the Aerospace Industry

Not only are aerospace companies faced with the problems caused by poor

implementation of component-based software engineering and reuse, but they are also facing

difficulties within their own industry. The following problems in the aerospace industry add to

the complexity of developing a suitable methodology for creating the next generation of

spacecraft.

1.4.1 Spacecraft Software Structure and a Lack ofAutonomy

Traditionally, spacecraft software has been highly event-based: a time or an action

triggers another action in software. Consequently, the spacecraft must adhere closely to its

predefined operational model to assure that mission objectives are achieved. These sequences

are extremely specific to each spacecraft and mission. Therefore, much of the control software

cannot be reused from one spacecraft or mission to another.

In addition, the occurrence of unpredictable events outside nominal variations is dealt

with by high-level fault protection software. This software may be inadequate if time or

resources are constrained and recovery actions interfere with satisfying mission objectives [24].

In this c ase, the spacecraft enters a safe mode in which all systems are shut down except for

those needed to communicate with Earth. The spacecraft then waits for instructions from the

ground controller [6]. Safe mode is problematic for two reasons. First, if the spacecraft is far
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from earth, there is a large communication delay. During the cruise phase of flight, the delay

may not cause any problems; the spacecraft has time to await new instructions from Earth.

However, if the spacecraft is executing an event sequence during a safety-critical flight phase,

such as an orbit insertion, the procedure may prove to be extremely costly and possibly fatal [6].

Second, large and expensive deep-space mission such as Cassini require an enormous number of

ground controllers to support each phase of flight.

Recently, researchers at the Jet Propulsion Laboratories (JPL) have proposed a new

approach to designing spacecraft software. The Mission Data System, or MDS, is presently

under development by NASA and is based on the principles of Artificial Intelligence (AI). MDS

is a goal-based system, which is defined as a system in which all actions are directed by goals

instead of commands [24]. A goal is a constraint on a state over a time interval and elaboration

is the process by which a set of rules recursively expands a high level goal into a goal network

[6]. The new low-level goals are then merged with the previous goals, thereby providing the

spacecraft with the ability to deal with previously unknown situations. The summation of these

goals forms the knowledge base from which the agents in the Al architecture will gather

information to make decisions for the spacecraft.

The proponents of MDS suggest that the problems with traditional software (specificity

and inability to handle faults) are easily dealt with through the use of such an architecture. First,

the entire architecture is reused from one spacecraft to the next; the only aspect of MDS that

changes are the goals for a particular mission. Second, fault tolerance is no longer considered a

separate entity. Because a failure mode or other anomalous condition is treated as just another

possible set of system states, the spacecraft does not have to alter its nominal operations [6]. It

simply relegates the fault by attempting to fulfill its mission goals given its current state, a

process no different than if the spacecraft was not in a fault detected state.

Although MDS appears to be a suitable alternative to current spacecraft software

architecture, several issues have been raised that question the approach. First, some researchers

argue that Al has not matured to the point where it can be reliably used in safety-critical systems.

Second, MDS has been under development for nearly ten years, and it is still not finished.

Although JPL touts Remote Agent as a complete success for Al, Remote Agent never actually

controlled Deep Space 1. There has been no proof from either MDS or the Remote Agent

project that suggests that AI is a feasible and appropriate software architecture for a spacecraft
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controller. Finally, is there a middle ground between time-stamped commands and artificial

intelligence? These two approaches seem to lie on the opposite extremes of the software

architecture spectrum. A more moderate approach may be more suitable for the next generation

of spacecraft.

1.4.2 Loss of Domain Knowledge

As the Apollo-era spacecraft engineers retire, the wealth of knowledge that they have

acquired throughout their careers has the potential for being lost [12]. The knowledge needs to

be captured and recorded in an easily readable format so that it can be passed on to the next

generation of spacecraft engineers. One of the most important aspects of this domain knowledge

is r ationale, for e xample, w hy a c ertain d esign or implementation decision was made. In the

past, this information has not been transferred and takes years of experience to learn. This is the

type of information that needs to be recorded.

1.4.3 Miscommunication Among Multi-disciplinary Engineering Teams

Multi-disciplinary engineering teams are common in the aerospace industry. Spacecraft

need a variety of subsystems that range from attitude determination and control, to

communications and power. These subsystems are all controlled by software that allows the

spacecraft to accomplish its mission objectives. Spacecraft development requires the expertise

of engineers from fields as different as mechanical engineering and computer science. These

individuals have extremely diverse backgrounds, talents and communication skills. They u se

different terminology (sometimes for the same concepts) and language specific to their field.

They are accustomed to certain tools and problem solving strategies. These differences make the

engineering effort difficult and create communication problems among team members. A

common medium is needed for cross-disciplinary communication on spacecraft engineering

teams to help facilitate understanding among team members and decrease the ambiguity caused

by their diverse backgrounds.
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1.5 Summary

There are two main problem areas facing the aerospace industry today. First, the poor

implementation of component-based software engineering practices, wide spread code reuse and

changes to existing software are creating catastrophic failures for many companies in the

industry. These losses cannot continue to be sustained especially in light of the push to create

faster, better and cheaper spacecraft. Second, there are problems within the aerospace industry

itself. The event-based software sequences that have been used by the spacecraft industry for

years are becoming obsolete. New, more complex missions are forcing engineers to rethink the

way they design spacecraft software. The lack of spacecraft autonomy forces aerospace

companies to maintain a large number of expensive ground controllers for fault tolerance. The

attempts to alleviate these software structure problems with artificial intelligence have not yet

come to fruition. The aging of the intellectual workforce at NASA and its contractors threatens

to eliminate a large source of domain knowledge that has been acquired through years of

experience. And, finally, communication between engineers from various fields may lead to

severe misunderstandings, which can eventually lead to costly mishaps.

1.6 Thesis Outline

This thesis proposes a new approach to spacecraft development that uses the principles of

Component-Based Software Engineering and Systems Engineering to provide engineers with an

environment in which it is feasible to produce spacecraft faster under tighter budgets. Chapter 2

provides background on Component-Based Software Engineering and Systems Engineering. It

then defines the approach to spacecraft development that combines the principles of these two

techniques and which can be used to solve some of the problems outlined in this chapter. This

technique is known as Component-Based Systems Engineering.

Chapter 3 identifies and describes the systems engineering development environment

called SpecTRM, which provides a platform for Component-Based Systems Engineering.

SpecTRM is a toolkit that allows users to create intent specifications, which will serve as the

reusable components that are central to this approach.
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Chapter 4 applies Component-Based Systems Engineering to SPHERES, a group of

satellites that perform high-risk metrology, control and autonomy algorithms inside the United

States Node of the International Space Stations. Two Guest Scientist Programs are modeled to

illustrate the ease with which additional spheres can be added to the system after intent

specifications have been created. Finally, Chapter 5 contains the conclusions drawn from the

research and the test case.
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Chapter 2
Component-Based Systems Engineering

This chapter defines Component-Based Software Engineering and the current uses of the

technique in addition to some of its negative aspects. Various definitions of systems engineering

are also provided as well as identification of a few characteristics of systems engineering that are

constant throughout these definitions. A methodology for spacecraft development is then

outlined that combines the principles of both Component-Based Software Engineering as well as

systems engineering

2.1 Component-Based Software Engineering and Reuse

Component-Based Software Engineering, or CBSE, is the process by which software

code is specified, designed, implemented, tested and maintained using a collection of functional

elements that communicate through pre-specified interfaces. It has been proposed that reusing

these components can significantly lower development costs and shorten development cycles. It

can also lead to software systems that require less time t o specify, design, test and maintain,

while satisfying high reliability requirements [26].

Many software engineers suggest that creating the components with a d omain-specific

language can further enhance the benefits of CBSE. Domain-specific languages (DSLs) are

created to be as close as possible to the expert's conceptual view of the application domain,

thereby allowing the user to easily describe their systems [23]. When these DSLs used in

combination with CBSE are high-level, the approach is referred to as Domain-Specific Software

Architectures (DSSAs) [1]. Many industries, including aerospace, are researching the usefulness

of DSSAs and CBSE for software development. At Honeywell, research is being conducted in

applying DSSAs to Guidance, Navigation and Control [10]. The researchers suggest that using

DSSAs helps software developers experience the benefits of CBSE and the benefits of DSLs.

Using DSSAs allows multiple phases of the lifecycle (design, implementation and testing) to be

reused. This is an improvement over CBSE, because it only reuses code, which comprises

merely 10-20% of the software development effort [10].
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However, many software professionals agree that a practical approach to performing any

of these component-based software development techniques has not yet been developed [1]. The

lack of successful implementations of these techniques is due to a variety of industrial factors as

well as some of the observed limitations of CBSE described below.

First, software components that have been successful within a different project are

assumed to be "proven" and do not need to be reevaluated for integration into the new system, as

seen in both the Ariane 5 and MCO accidents. In many cases, when the engineers do want to

properly integrate the component into their system's software, sufficient documentation does not

accompany the code, due to proprietary reasons on the part of the vendor. Consequently,

engineers have a fairly difficult time determining how the module actually works and how it will

operate within its new environment. Third, unused portions of a reusable component are often

left in the system, because the developers do not know the effects of removing code snippets.

Finally, reusable components are difficult to change correctly because of the aforementioned

lack of documentation.

Clearly, reuse has both its benefits and its costs. However, if reuse is to really contribute

to faster, better and cheaper spacecraft, the reuse methods NASA and its contractors employ

need to be refined. The rest of this chapter defines systems engineering and describes how its

principles can be applied to CBSE to help the aerospace industry implement reuse practices more

effectively.

2.2 Systems Engineering

A system can be defined as a series of interrelated components that work together toward

a common p urpose. T he systems developed today are b ecoming increasingly c omplex. T his

complexity is a result of interconnections, interactions and interdependencies between the

components (which may be systems themselves) that comprise the system. Because of this

complexity, one component of the system cannot be engineered independently of the other

components. A system-wide view of the components and how they contribute to and interact

with the system-as-a-whole must be taken. The components must be engineered within the

context of their place within the system. This approach is called systems engineering.
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There are many definitions of systems engineering. The NASA Systems Engineering

Handbook defines systems engineering as "a robust approach to the design, creation and

operation of systems" [19]. This approach consists of identifying and quantifying system goals,

creating alternative design concepts, performing a trade-off analysis of these designs, selecting

and implementing the best design, verifying that the design was properly built and implemented

and finally assessing how well the system meets the goals [19].

Another definition comes from the International Council on Systems Engineering:

"Systems engineering is an interdisciplinary approach and means to enable the realization of

successful systems. It focuses on defining customer needs and required functionality early in the

development cycle, -documenting requirements, then proceeding with design synthesis and

system validation while considering the complete problem:

- Operations

- Performance

m Test

- Manufacturing

- Cost & Schedule

- Training & Support

- Disposal

Systems engineering integrates all the disciplines and specialty groups into a team effort forming

a structured development process that proceeds from concept to production to operation" [11].

The MIT's Engineering Systems Division characterizes systems engineering as "a

process for designing systems that begins with requirements, that uses and/or modifies an

architecture, accomplishes function and/or physical decomposition, and accounts for the

achievement of the requirements by assigning them to entities and maintaining oversight on the

design and integration of those entities" [16]

There are m any more d efinitions o f systems engineering, b ut these definitions and the

examples above all contain many similar ideas. First, systems engineering is multidisciplinary.

Complex systems are built up of a variety of subsystems, which include everything from human

operations to electronics. The systems engineering effort involves using the expertise of the

engineers from e ach o ft he engineering disciplines that c ontribute to the system functionality.

Systems engineering is also process inclusive. It involves interdisciplinary trade-off analyses
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and evaluation of customer need and requirements satisfaction at each stage in the development

lifecycle.

Systems Engineering is a much superior approach to the development of today's complex

systems, because it requires that engineers have a thorough understanding of not only the

subsystem with which they are working, but also how the subsystem a ffects its e nvironment.

Caldwell and Chau note that, "Each person must be able to see a larger portion of the whole than

the traditional partitioning according to subsystems" [2]. In particular, an avionics engineer must

not only understand all of avionics but also their many interactions with other parts of the space

system [2]. In addition, systems engineering allows engineers to reduce cost and risk through the

evaluation of multiple design alternatives at each stage in the development lifecycle [19].

Clearly, systems engineering must p lay an integral r ole in a n ew approach t o e ngineering t he

next generation of spacecraft.

2.3 What is Component-Based System Engineering?

As discussed in the previous chapter, reuse is critical in decreasing the cost of spacecraft

development. However, when Component-Based Software Engineering is implemented

incorrectly, its effectiveness is decreased and in some cases catastrophic accidents occur. The

Mars Climate Orbiter and Ariane 5 accidents are examples of what happens when CBSE and

reuse are implemented improperly. Furthermore, the SOHO accident exemplifies poor

implementation of software change. Systems engineering was created to deal with these types of

problems. Systems engineering stresses that subsystems must be developed as parts of a whole

instead of independent entities. The awareness of interconnections, interactions and

interdependencies helps to prevent accidents that stem from poor reuse and change practices.

Since CBSE focuses on reusing individual software components alone without addressing its

implications on other aspects of the system, this awareness is not present and accidents like

MCO, Ariane 5 and SOHO can occur. Combining the ideas and processes of systems

engineering with CBSE may alleviate some of these problems.

In a combined technology, engineering teams would perform Component-Based Systems

Engineering instead of Component-Based Software Engineering, in which e ach c omponent or

subsystem is developed using a systems engineering development environment. As previously
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stated, systems engineering is a process-inclusive approach to designing a system, that is,

systems engineering development environments are created to foster documentation, trade-off

analysis and testing throughout every stage of the engineering development lifecycle.

A systems engineering approach is especially important for the software portions of the

system. Today's systems are primarily software driven. Accidents involving computers are

usually the result of flaws in the software requirements, not coding errors [13]. Although the

system is developed with a component-based approach, applying systems engineering principles

to this approach helps engineers to recognize software interconnections at every stage of the

lifecycle, including requirements specification. Thorough documentation, trade-off analyses,

testing and the recognition that each software component is a part of the system-as-a-whole

increases the quality of requirements specifications by uncovering problems early in the lifecycle

and thereby decreasing the cost of correcting these mistakes. Requirements specifications are

analyzed before any code is ever written or any hardware implementation is completed.

The first step in applying the Component-Based Systems Engineering approach involves

a decomposition of the system. Depending on the properties of the system, this may be a

functional, physical or logical decomposition. Functional decomposition is a natural approach

for spacecraft, which are composed of components that are grouped into subsystems based on the

functionality they provide to the system-as-a-whole. At the highest level, software manages the

spacecraft and is called the controller. The controller integrates the various subsystems and

usually allocates resources and tasks to them. The next level of decomposition is the subsystem

level. All spacecraft have similar subsystems, which include attitude determination and control,

power, t hermal, g uidance a nd n avigation, c ommunications a nd p ropulsion. These subsystems

are directed by the spacecraft controller to accomplish mission objectives. The subsystems can

be further decomposed into their constituent components. For example, most attitude

determination and control subsystems are composed of some combination of the following

components: reaction control systems, reaction wheel assemblies, inertial measuring units, star

trackers, sun sensors and horizon sensors. The spacecraft decomposition is complete when the

individual hardware elements are reached. For the generic spacecraft, functional decomposition

yields the three levels discussed above: the spacecraft controller, the subsystems and the

individual components. Figure 1 illustrates an example decomposition of a generic spacecraft.
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Now that the spacecraft has been decomposed into a series of components, the next step

in Component-Based Systems Engineering is to develop the spacecraft from the individual

components to the spacecraft controller using a systems engineering development environment.

Because the spacecraft developed by a given company follow many common development

patterns and use similar components, spacecraft components could be built to be generic, which

makes them reusable. These components would be created with the previously described

systems engineering approach in the systems engineering development environment and

therefore the entire engineering development process can be reused instead of merely software

code. The company would create a library of these components. When a new spacecraft is

needed, components are combined to create a generic subsystem. The subsystems are refined to

reflect the specific goals and mission objectives of the project. They are then combined to form

the spacecraft controller for the particular spacecraft.

Spacecraft Controller

ADCS Power Thermal GNC Comm

\............

r------r------------ -------

RCS RWA Sun Sensor M

Attitude Control Attitude Determination

Figure 1. Example Spacecraft Decomposition

This methodology decreases the time it takes to develop a new spacecraft because it does

not start from scratch, one of the main advantages of using a component-based development

approach. Because spacecraft engineers develop the components, they are specific to the domain

of spacecraft engineering, which aids engineers on other projects to easily incorporate these

components into their projects. In addition, the entire process of developing the components and
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subsystems of the spacecraft with the principles of systems engineering and the assembly of the

subsystems and controller is reused. Details specific to the spacecraft and its mission can be

easily added to the generic components, making the design suitable for the wide range of

spacecraft applications.

2.4 Summary

Combining the systems engineering and component-based approaches to project

development allows engineers to experience the benefits of Component-Based Software

Engineering without the detrimental effects of improper implementation of reuse. Instead of

performing CBSE, engineers can perform Component-Based Systems Engineering, in which the

entire process of developing a component or subsystem of a system is reused. The development

is performed in a systems engineering development environment, which supports the principles

of systems engineering such as a common means of communication between the various types of

engineers on the development team as well as placing the component or subsystem in context

within the larger system. The next chapter describes a systems engineering development

environment that provides the foundation for and implementation of Component-Based Systems

Engineering.
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Chapter 3
SpecTRM-GSC

The construction of reusable components using a systems engineering approach requires

a platform upon which these components can be built. This chapter proposes the use of intent

specifications and SpecTRM as a platform for Component-Based Systems Engineering. Each

component is an intent specification built in SpecTRM, which is a toolkit that allows users to

create intent specifications as well as perform formal analyses on the model. Finally, the

properties of the reusable components that emerge from the use of the Component-Based

Systems Engineering technique and SpecTRM are identified and described.

3.1 Intent Specifications and SpecTRM

Intent specifications are based on research in human problem solving and on basic

principles of system theory. An intent specification differs from a standard specification

primarily in its structure: the specification is structured as a set of models designed to describe

the system from different viewpoints, with complete traceability between the models. The

structure is designed (1) to facilitate the tracing of system-level requirements and design

constraints down into detailed design and implementation, (2) to assist in the assurance of

various system properties (such as safety) in the initial design and implementation, and (3) to

reduce the costs of implementing changes and reanalysis when the system is changed, as it

inevitably will be. Because of its basis in research on how to enhance human problem solving,

intent specifications should enhance human processing and use of specifications and our ability

to perform system design and evolution activities. Note that no extra specification is involved

(assuming that projects produce the usual specifications), but simply a different structuring and

linking of the information so that specifications provide more assistance in the development and

evolution process [14].

There are seven levels in an intent specification as seen in Figure 1 [14]. Levels do not

represent refinement, as in other more common hierarchical structures, but instead each level of

an intent specification represents a completely different model of the same system and supports a
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different type of reasoning about it: each model or level presents a complete view of the system,

but from a different perspective. The model at each level may be described in terms of a

different set of attributes or language. Refinement and decomposition occurs within each level

of the specification, rather than between levels [14].

The top level (Level 0) provides a project management view and insight into the

relationship between the plans and project development. Level 1 of an intent specification is the

customer view and assists system engineers and customers in agreeing on what should be built

and whether that has been accomplished. It includes system goals, high-level requirements,

design constraints, hazards, environmental assumptions, and system limitations. The second

level, System Design Principles, is the system engineering level and allows engineers to reason

about the system in terms of the physical principles and laws upon which the system design is

based.

Level 0 Project manage ment plans, status information, safety plans, e te.

S ys tem Goals,
Level 1 Assumptions Res ponsibilities High-le vel Re quirements, H azard
System Cotraint, Requirements DesignConstraints, Analysis
Purpos e I/F Re quirements Lmitations

Level 2 External Task Analyses Logic Principles, Control Validation
S ystem Interfaces Task Allocation Laws, Functional Plans and

Principles Controls, displays De comp osition and Results
Allocation

Level 3 Environment Operator Task Blackbox Functional Analysis
Slackbox Models and HCI Models Models, Interface S pecs Plans and
M ode ls Results

Level 4 S D oftware and H ardware Test Plans
Design Rep. HCI Design Design Specs and Results

Physical GUI ard Physical S oftware Code, Hardware Test Plans

Rep. Controls Designs AssemblyInstmctions and Result

Level 6 Audit Operator Manals Error Reports, C hange Performance

Operations Procedures Tr nti teals Requests, etc. ari Adits

Figure 2. Intent Specification Hierarchy

The third, or Blackbox Behavior level, enhances reasoning about the logical design of the

system as a whole and the interactions between the components as well as the functional state

without being distracted by implementation issues. This level acts as an unambiguous interface

between systems engineering and component engineering to assist in communication and review
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of component blackbox behavioral requirements and to reason about the combined behaviour of

individual c omponents u sing informal r eview, formal a nalysis, and s imulation. T he 1 anguage

used on this level, SpecTRM-RL, has a formal foundation so it can be executed and subjected to

formal analysis while still being readable with minimal training and expertise in discrete math.

The next two levels provide the information necessary to reason about individual

component d esign a nd i mplementation i ssues. F inally, t he s ixth 1 evel p rovides a view of the

operational system. Each level is mapped to the levels above and below it. These mappings

provide the relational information that allows reasoning across the hierarchical levels and tracing

from high-level requirements down to implementation and vice versa.

Intent information represents the design rationale upon which the specification is based.

This design rationale is integrated directly into the specification. Each level also contains

information about underlying assumptions upon which the design and validation is based.

Assumptions are especially important in operational safety analyses. When conditions change

such that the assumptions are no longer true, then a new safety analysis should be triggered.

These assumptions may be included in a safety analysis document (or at least should be), but are

not usually traced to the parts of the implementation they affect. Thus even if the system safety

engineer knows that a safety analysis assumption has changed (e.g., pacemakers are now being

used on children rather than the adults for which the device was originally designed and

validated), it is a very difficult and resource-intensive process to determine which parts of the

design used that assumption [14].

The safety information system or database is often separated from the development

database and specifications. In the worst case, system and software safety engineers carefully

perform analyses that have no effect on the system design because the information is not

contained within the decision-making environment of the design engineers and they do not have

access to it during system design. By the time they get the information (usually in the form of a

critique of the design late in the development process), it is often ignored or argued away

because changing the design at that time is too costly. Intent specifications integrate the safety

database and information into the development specifications and database so that the

information needed by engineers to make appropriate tradeoffs and design decisions is readily

available [14].
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Interface specifications and specification of important aspects of environmental

components are also integrated into the intent specification, as are human factors and human

interface design. The separation of human-automation interface design from the main system

and component design can lead to serious deficiencies in each. Finally, each level of the intent

specification includes a specification of the requirements and results of verification and

validation activities of the information at that specification level [14].

SpecTRM, which stands for Specification Toolkit and Requirements Methodology, is a

development environment that allows users to easily create, modify and analyze intent

specifications. SpecTRM includes many features important to the intent specification process.

First, an empty intent specification in SpecTRM contains headings that, when filled out, help

ensure specification completeness. By providing the user with an initial structure to their

specification, SpecTRM helps the user to think about aspects they may have otherwise left out.

Second, SpecTRM provides an easy link creator. Links between levels provide traceability

within the specification from the highest requirements all the way down to implementation. This

is especially useful for tracking c hanges and p erforming interface t esting. F inally, S pecTRM

provides various analyses that can be performed on the Level 3 blackbox model [25].

3.1.1 Analyses

SpecTRM currently provides two analyses that can be performed on the individual intent

specifications: non-determinism and robustness. A model is deterministic if for any given

system state and set of inputs, there is only one transition for each state and mode [25]. A model

is robust, if for any given system state and set of inputs, a transition exists, i.e. a behavior is

defined for all possible inputs [25]. These analyses allow the system engineers to eliminate all

inconsistencies a nd i ncompleteness b efore t he s imulation i s r un. T he L evel 3 m odels c an b e

checked automatically for these properties [7].

3.1.2 Simulations

SpecTRM models are executable. Because the Level 3 blackbox model is a formal

representation of an underlying state machine, the model can be executed given a set of inputs.
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Individual models can be executed in isolation and multiple models can be executed in an

environment in which they interact with each other. Components can be linked to their parent

subsystems and the subsystems to the controller to simulate the system-as-a-whole.

There are many benefits to running simulations in SpecTRM. First, simulations allow

system developers to observe the results of interactions between components and the

functionality of the subsystem specification and model. Testing blackbox behavior is especially

important at this stage in the development lifecycle, because errors in the requirements

specifications and/or the blackbox model can be uncovered before any code has been

implemented. After the spacecraft has been created and deployed, changes will need to be made

to the on-board software. Code maintenance comprises nearly 70% of the software lifecycle and

changes to the software can be costly [26]. An executable state machine provides the software

maintainers with the ability to incorporate changes to the code from the formal requirements

specification, and simulate the effects those changes will have on the rest of the system, again

before any code has been implemented. As evidenced by the SOHO accident described in

Chapter 1, improper software change procedures can be as detrimental to a system as poor

implementation of reuse.

Third, executable blackbox models help developers to perform trade-off analyses.

Engineers can simulate alternative design strategies and determine which approach is most

suitable given the constraints and requirements of the system. Finally, different types of

visualizations of the underlying state machine allow users to facilitate the creation of a mental

model of the system's functioning. A high quality mental model of the system will improve the

requirements creation and reviewing process [3]. Clearly, having a formal, executable, blackbox

model of the system provides engineers with the variety of benefits that aid in the proper

implementation of a component-based development approach.

3.2 SpecTRM-GSC

Intent specifications provide the features needed to perform Component-Based Systems

Engineering. As described in Chapter 2, the construction of a system using Component-Based

Systems Engineering begins with a decomposition of the system. After the system has been

decomposed into its subsequent subsystems and individual components, the system is developed
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from t he b ottom-up. I n t he e xample g iven i n t his t hesis, t he c omponent intent s pecifications

were constructed using SpecTRM. For spacecraft, the intent specifications were labeled

SpecTRM-GSCs, or SpecTRM-Generic Spacecraft Components. There are four main

characteristics of SpecTRM-GSCs that are crucial to the success of this technique: each

component must be fully encapsulated, have well-defined interfaces, be reusable and contain

component-level fault protection.

3.2.1 Fully Encapsulated

Each SpecTRM-GSC must b e fully encapsulated, m eaning that all the functionality o f

that component should be contained within the component intent specification. Conventionally,

much of the control and software for attitude determination and control components was

traditionally distributed b etween the controller, the subsystem and component itself. By fully

encapsulating the operations of each device within one intent specification, the m odularity o f

design process and ease with which components are reused increases.

For example, a reaction wheel assembly will always receive torque commands as inputs.

It then spins the reaction wheels to achieve the desired torque. Instead of associating these

operations with the attitude determination and control subsystem (ADCS) from the beginning of

development, an intent specification for the reaction wheel assembly is written independently of

the ADCS, thereby disassociating the component from its possible uses. By capturing only what

and how the reaction wheel assembly provides instead of what it will be used for, the component

becomes far more modular not only between spacecraft but also within the same spacecraft. In

other words, the component can be used in the ADCS of many different spacecraft as well as

different subsystems of the same spacecraft. For example, in some extreme cases, thermal

subsystems can use the friction of the spinning reaction wheels to generate heat.

3.2.2 Well-Defined Interfaces

Like components in Component-Based Software Engineering, the SpecTRM-GSCs must

also have well-defined interfaces. All components must adhere to standard naming conventions

and input/output requirements. I t i s extremely important that the c onstruction o ft he Level 3
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blackbox models of the SpecTRM-GSCs follow a consistent pattern in terms of how blackbox

elements are named in order to avoid confusion and increase the ease with which components are

combined to create subsystems. Consistency in the construction of the intent specifications is

especially important in the case of inputs and outputs, because these are the modeling elements

through which the components communicate with their parent subsystem. Therefore, a

convention for both names and the type of information that the inputs and outputs transfer must

be defined from the beginning of development and then strictly followed.

3.2.3 Generic

Because the components are fully encapsulated and have well-defined interfaces, they are

also reusable. To enhance this reusability, specific information should be left out of the

specification, making each SpecTRM-GSC highly generic. The system engineer inserts system-

specific information when the components are used for a particular spacecraft subsystem. For

example, when a digital sun sensor is used in an ADCS specification, the system engineer must

specify the particular model being used and other information specific to that model number. If

the sun sensor selected is the Adcole Digital Sun Sensor Model 18960, for example, the engineer

must specify that the sun sensor uses a 15 bit input from its sensor heads. In the SpecTRM-

GSCs, the use of both bold face and underlining highlights such information. These font

characteristics alert the system engineer that the information is specific to a particular model

number and should be changed when the generic component is instantiated in a particular

spacecraft design.

3.2.4 Component-Level Fault Protection

Component-Based Systems Engineering employs three levels of fault-protection: intra-

component fault protection, inter-component fault protection and inter-subsystem fault

protection. These three levels ensure that fault protection covers the entire system; not only must

the design account for component failures, but also for failures resulting from the interactions

between components and subsystems. At the intra-component level, the fault protection logic

assures that if the component is working in an off-nominal mode, it will alert its subsystem.
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Then, at the inter-component level, the subsystem determines how to handle that fault. T his

feature is especially important in autonomous spacecraft.

3.3 Summary

Intent specifications and SpecTRM provide a platform upon which Component-Based

System Engineering can be performed. SpecTRM-GSCs help to capture domain knowledge

through recording the rationale behind decision-making at each step in the development

lifecycle. They abstract away the details of design so that the specifications can be reusable from

one project to the next. Various analyses can be performed on SpecTRM-GSCs, which aids in

the development of autonomous systems. System performance can be tested through simulation

before any hardware is built or any code is written. During maintenance, changes to the software

can be easily documented and incorporated into the new system. Engineers can also simulate

design alternatives for trade-off analyses as well as visualize the underlying state machine to

obtain a different perspective of the system. Most important, SpecTRM-GSCs grant users the

benefits of reuse without the potential drawbacks. The next chapter provides an example of

Component-Based Systems Engineering using SpecTRM as applied to a real spacecraft.
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Chapter 4
SPHERES Example

SPHERES stands for Synchronize Position Hold Engage Reorient Experimental

Satellites. It was created by the MIT's Space Systems Laboratory to provide NASA and the Air

Force with a reusable, space-based test-bed for high-risk metrology, control and autonomy

technologies [17]. T hese t echnologies are critical to the operation of distributed s atellite and

docking missions such as the Terrestrial Planet Finder and Orbital Express. In addition, guest

scientists from around the world will have access to this test-bed so they can independently

design, code and debug estimation, control and autonomy algorithms for testing in the micro-

gravity conditions of space (SPHERES will operate aboard the International Space Station) [9].

The experiments performed by NASA, the Air Force and the guest scientists are an important

step in making many future space missions possible, especially those that require the ability to

autonomously coordinate and synchronize multiple spacecraft in tightly controlled spatial

configurations.

SPHERES was chosen as the case study for testing Component-Based Systems

Engineering for many important reasons. First, S PHERES is an autonomous system. I t was

created to execute maneuvers without the guidance of a ground controller. In fact, the only

interactions the astronauts aboard the ISS have with the SPHERES system involves simply

loading programs and replenishables onto the spheres. Since Component-Based Systems

Engineering was developed to support autonomous spacecraft, it was important to test the

technique on an autonomous system. Along the same lines, it was also important that the system

be highly modular to test the component-based aspects of the technique. Third, and most

essential to the research, was the need to test the technique on a real system. In order to evaluate

the scalability and applicability of this method, it was critical to test the process on a real

spacecraft system. These three criteria made SPHERES an excellent experimental subject for

testing Component-Based Systems Engineering. This chapter describes the process of reverse-

engineering SPHERES using the Component-Based Systems Engineering approach, which

involved (1) outlining the structure of SPHERES, (2) creating SpecTRM-GSCs from the
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SPHERES project, (3) creating two example Guest Scientist Programs and (4) performing

analyses on the SpecTRM-GSCs.

4.1 SpecTRM-GSC Structure

As outlined in Chapter 2, the first step in performing Component-Based Systems

Engineering is a functional decomposition of the spacecraft. Figure 3 illustrates the SPHERES

decomposition. SPHERES can operate with one, two or three spheres.

Guest Sciendtt Program

Sphere Centroller

Structure --------

Propulsion Subsystem PADS

Firing Thrusters Beacons

Electrical Subsystem

Cemundcatiox Subsystem

SPHERES Laptp

Figure 3. SPHERES Functional Decomposition

Each node in the decomposition tree represents a different SpecTRM-GSC, or intent

specification. At the highest level is the Sphere Controller. The Sphere Controller provides the
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overall framework for the Sphere, coordinating the actions of the onboard components as well as

determining the operating mode of the Sphere. Each Sphere Controller interacts with the various

subsystems onboard the Sphere including Propulsion, Position and Attitude Determination,

Communication, Guest Scientist Program, Electrical and Structure. The focus of this case study

is on the subsystems that contain both hardware and software. Therefore, the Structure and

Electrical Subsystems were not modeled, although they could easily be represented as

SpecTRM-GSCs.

Each subsystem can then be broken down into its constituent hardware components. In

the case of SPHERES, the majority of these components are too simple to model - they do not

have sensors or provide any feedback to their parent subsystem nor are the hardware components

redundant. Therefore, they are not shown in the decomposition diagram. The components that

do contain their own software are listed in the diagram and include Firing Thrusters from the

Propulsion Subsystem, Beacons from PADS and the SPHERES Laptop from the Communication

Subsystem. Because of the simplicity of these models, intent specifications were not created for

them in this case study. The SPHERES example focuses on the subsystem- and system-level

intent specifications.

Each Sphere receives attitude and position information from its PADS, or Position and

Attitude D etermination S ubsystem. PADS consists of three gyroscopes, three accelerometers,

one ultrasound transmitter, five beacons and twelve sensing boards. Each sensing board contains

two ultrasound r eceivers, o ne infrared r eceiver and t wo i nfrared t ransmitters. PADS receives

angular acceleration from the three gyroscopes, linear acceleration from the three accelerometers

and the Sphere Controller is able to calculate position and attitude information from the ranges

between the fixed beacons and the Sphere's receivers. State estimation using the sensing boards

and beacons is beyond the scope of this thesis. Therefore, the attitude information used in the

example Guest Scientist Programs is provided entirely by the gyroscopes. Levels 1, 2 and 3 of

the complete SpecTRM-GSC created for PADS can be found in Appendix B.

The Guest Scientist Program, or GSP, is written to perform either state estimation,

control calculations or both to determine which control actions need to be performed to achieve a

new position and/or attitude. There are two GSPs used in this test case: the Rate Damper and

the Rate Matcher. These programs are described in further detail in Section 4.3.
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The Propulsion Subsystem provides management of both position and attitude for the

Sphere. The Propulsion Subsystem consists of twelve thrusters placed around the outside of

each Sphere that simply turn on and off at calculated times. The Propulsion Subsystem is

described in further detail in Section 4.2.

The individual Spheres can communicate with one another and a SPHERES Laptop

through the Communication Subsystem, which consists of radio transmitters and receivers.

There are two radios on each Sphere (providing two channels of communication) and one radio

on the SPHERES Laptop. One radio on each Sphere provides Sphere-to-Sphere communication

while the other provides Sphere-to-Laptop communication. Astronauts aboard the International

Space Station load and download programs and information to and from the Spheres through this

Laptop.

As previously stated, each node of the decomposition tree in Figure 3 represents a

different intent specification. For this case study, intent specifications were created for each of

the subsystems as well as for each Sphere Controller being used. The next section describes, in

detail, an example of how a node of the decomposition was modeled as a SpecTRM-GSC.

4.2 Subsystem Example

This section provides a detailed description of the Propulsion Subsystem and how it was

modeled as a SpecTRM-GSC. Each sphere relies on twelve on-off thrusters for position and

attitude management. The geometry of the twelve thrusters on the sphere enables the production

of force or torque using only two thrusters. The twelve thrusters are arranged in six pairs

allowing for full six-degrees-of-freedom actuation. The propellant for the thrusters is

compressed C0 2, which is fed through tubing from a high-pressure storage tank [9]. Appendix

A provides complete Levels 1, 2 and 3 of the Propulsion Subsystem SpecTRM-GSC.

Level 0 of the specification was left blank in the generic sphere specifications, as it is

particular to the organization and engineering team of the project and should therefore be written

by the engineering team members. Level 1 of the specification includes the system-level goals,

requirements and constraints. An example of a high-level functional requirement can be seen in

Figure 4.
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[FG.2] The Guest Scientist shall be able to turn thrusters on and off by either
sending timed on/off commands to the Propulsion Subsystem or by sending the
Propulsion Subsystem desired force and torque vectors. [-+FR.11 [IDP.1.21
Rationale: This goal identifies the need to provide the Guest Scientist with an option
to directly control the thrusters or to stock compute thruster firing times if he/she is
not interested in performing the calculations in the Guest Scientist Program.

Figure 4. Level 1 System Goal

There are two links at the end of this requirement. In SpecTRM, these links are

implemented as hyperlinks and can be easily created and changed. The first link points to the

functional requirement, also at Level 1, which elaborates upon the system goal. Goals are too

high level to be requirements. They are not necessarily testable, and there may be many system

designs that meet the system's goals that are unacceptable due to other constraints. High-level

requirements are generated from the goals and constraints present at this level. These are the

"shall" statements that specify what the system is to do. These are the testable requirements.

The second link points down to a design principle at Level 2 that provides information

about the design features that describe the different types of control the Guest Scientist can exert

over the thrusters. It is also important to note that the rationale behind the requirements at every

level is also recorded to ensure that future engineers working on the project understand why

decisions were made instead of merely how the system works. In the example in Figure 4, the

rationale for the system goal identifies the need to provide the Guest Scientist with options as to

how the thrusters can be controlled. Scientists not interested in direct thruster control can merely

send their desired forces and torques to the Propulsion Subsystem to have the thruster on and off

times stock computed.

Because the components are created with a systems engineering approach, a safety

analysis is also completed at each level of the system's development. At Level 1 a preliminary

subsystem hazard analysis is completed. A hazard analysis at this level involves (1) defining an

accident, (2) defining a safety policy, (3) creating a hazard list and classifying the hazards and

(4) perform a hazard analysis using either fault trees, event trees or any other hazard analysis

technique. For the SPHERES project, an accident is defined as any injury to one of the

astronauts aboard the International Space Station or any damage to the SPHERES system that

interferes with its ability to do science. Based on this accident definition, the following
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classifications can be applied to hazards to determine their associated severity:

= Level 1: Any injury to an astronaut or any damage to the SPHERES system that

eliminates all ability to do science.

- Level 2: Damage to the SPHERES system that interferes with its ability to do science.

m Level 3: Damage to the SPHERES system that does not interfere with its ability to do

science.

In addition, under NASA safety policy, each Sphere must be doubly fault-tolerant. This means

that the Propulsion Subsystem must be able to withstand two faults [22]. Based on the accident

definition and safety policy, the hazards seen in Figure 5 were identified for the Propulsion

Subsystem [22].

[H.1] There is a pressure rise in the Propulsion Subsystem. [->SC.31 [4DP.2.41
Classification: Level 1
Rationale: A pressure rise in the Propulsion Subsystem may result in an explosion
that may either injure an astronaut or damage the SPHERES system itself

Figure 5. Level 1 Hazard Identification and Classification

Fault trees were used as the hazard analysis technique for the SPHERES project. The

fault tree created for hazard [H.1] can be found in Appendix A Page 56. As seen in Figure 5,

there are also links from the hazards down to the Level 4 Hardware Design Specifications that

show how these hazards have been mitigated through hardware. Other Level 1 information

consists of general background, historical information, environment descriptions, assumptions

and constraints, system functional goals, operator requirements, interface requirements, design

and safety constraints and information about the verification and validation requirements and

results on the information at this level.

Level 2 of the intent specification specifies the design principles used to implement the

Level 1 requirements. Figure 6 provides an example of the design principle linked to the

functional requirement from Level 1 (Figure 4). It defines the different options the Guest

Scientist has for controlling the thrusters in the Propulsion Subsystem. There are links to the

corresponding functional goal and requirement. There is also a link to an element in the detailed

logic specifications at Level 3 that models this design principle.
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[DP.1.2] The Guest Scientist will decide which Control Mode the Propulsion
Subsystem is in. If the Propulsion Subsystem is in Direct Mode, then the Guest
Scientist provides the Propulsion Subsystem with timed on/off commands. If the
Propulsion Subsystem is in Force Torque Mode, the Guest Scientist provides the
Propulsion Subsystem with desired force and torque vectors. rtFG.21 [IFR.11
[PropulsionSubsystemControl Model
Rationale: The Guest Scientist may want to directly control the thrusters or to stock
compute thruster firing times if he/she is not interested in performing the
calculations in the Guest Scientist Program.

Figure 6. Level 2 Design Principle

Another feature of the SpecTRM-GSCs allows users to indicate system-specific

information that has to be changed given a component's particular instance of use. As seen in

the design principle in Figure 7, the text "200ms" and "5Hz" is highlighted in boldface and

underlined. This alerts the system engineer to change this portion of the requirement when this

component is reused. In this instance, the Guest Scientist changes the sampling rate of the

Propulsion Subsystem depending on the needs of his or her program. The sampling rate will

affect how long each thruster must remain open to achieve the needed force and/or torque. Level

2 of the specification also includes system interface design, control and display design, operator

task design principles and verification and validation requirements and results.

[DP.3.2.5] Once the thruster pair forces are determined, the thruster on and off
times can be calculated. The thrust time is equal to the sampling rate of the
Propulsion Subsystem divided by the ratio of the thrust provided by the thruster pair
to the force needed from the thruster pair. The sampling rate of the Propulsion
Subsystem is 200ms and the force provided by the thruster pair is 0.2N. [tEA.2]
Rationale: The operating frequency is _ which translates into a sampling rate of
200ms. Each thruster produces 0.1N of force and therefore the thruster pair
produces 0.2N.

Figure 7. Example of System Specific Information

Level 3 of the intent specifications contains a formal, blackbox model of the component's

externally visible behavior. The formal models, which are based on state machines, are specified

using a language called SpecTRM-RL that was designed with reviewability and ease of learning

as goals. Experience in using the language on industrial projects shows that engineers can learn
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to read SpecTRM-RL models with about ten to 15 minutes of training.

Appendix A Page 64 shows the graphical overview of the blackbox model of the

Propulsion Subsystem. The graphical model depicts the control loops in which the Propulsion

Subsystem is embedded. The left side shows the interface with the controller of the Propulsion

Subsystem, which is the Sphere Controller. The right side of the diagram shows the hardware

the Propulsion Subsystem is in turn controlling. The shaded p art o f t he m odel d escribes t he

required behavior of the Propulsion Subsystem. There are three main parts of this description:

the supervisory mode specifies the current controller of the component (in case there are multiple

controllers); the current control mode for the component (Startup, ForceTorqueMode and

DirectMode); and, to the right of the solid line, the controller's current state model of the

controlled c omponents. At any time, a controller only has a model, inferred from inputs and

other information, about the real state of the components. In the Propulsion Subsystem example,

the inferred state model has twelve state variables, representing information about the current

desired state of the twelve thrusters. The graphical notation also shows the possible values for

these state values; for example, the "SolenoidValve 1 State" state variable c an have the v alues

"Unknown," "Open" or "Closed." The boxes external to the gray-shaded area are devices

external to the system that provide inputs to and take outputs from the blackbox. In this

example, the Propulsion Subsystem interacts with the Sphere controller and the twelve thrusters.

The behavior of the Propulsion Subsystem, i.e. the logic for sending output commands to

the various external devices and changing the inferred system state, is specified using a tabular

notation called AND/OR tables. The rows of the tables indicate AND relationships, while the

columns represent ORs. Figure 8 shows transition conditions required for the

"SolenoidValve 1 State" state value to take the values "Unknown," "Open" and "Closed." Using

the example AND/OR tables in Figure 8, the Propulsion Subsystem "SolenoidValvel State"

element will transition to a new state if any of the columns in the transition table evaluate to true.

In other words, if the "Thrusterl" has received a direct on command from the Guest Scientist and

the "PropulsionSubsystemControlMode" is in mode "DirectMode," then the

"SolenoidValvel State" will transition to "Open." "Thruster 1" will also transition to "Open" if

the "PropulsionSubsystemControlMode" is in mode "ForceTorqueMode" and the

"ThrusterPair1 7Calculation" returns a duration greater than zero.

As seen in the three transition tables, there are several statements with an asterisk in the
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OR column. This represents a "don't care" condition. In the example in Figure 8, the

"SolenoidValvel State" state value will transition to "On" if the Propulsion Subsystem is in the

DirectMode of control and the valve receives a direct on command. In this case, the valve

"doesn't care" what the thruster pair calculations output. In other words, if the system is in the

"DirectMode" of control we "don't care" about calculations only needed in the

"ForceTorqueMode" in which the Propulsion Subsystem itself determines thruster on/off

commands.

Figure 9. Level 3 And/Or Table

When the Propulsion Subsystem is in "ForceTorqueMode" it receives a force/torque

vector from the Sphere Controller that specifies the needed forces and torques to accomplish a

maneuver. The Propulsion Subsystem then calculates how long the thrusters need to be on to
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achieve the actuation. As defined in Figure 9, when the Propulsion Subsystem is in the

"ForceTorqueMode" of control and the time since the valve was opened is greater than or equal

to the calculated "Open" duration for the thruster, the valve will close. Figure 10 shows

"ThrusterPair17Calculation" that determines this duration.

Fu nction

ThrusterPair17Calculation
Result: thrustTime

Type: Duration
Possible Values (Expected Range): Any

Units: Milliseconds
Exception-Handling: None

Description: The duration that thrusters 1 and 7 should remain on for.
Sample Rate: 10 nanoseconds
Description: Takes the force/torque information from the SPHERES controller and calculates the time

thrusters 1 and 7 should be on for in achieve the specified force and torque.
Comments: 200ms value may be changed depending on the system frequency. In this case, the system

frequency is 5Hz.
References: ForceXInput TorqueYlnput
Appears In: SolenoidValvelState, SolenoidValve7State

DEFINITION
Real f17 =0.0;
Duration thrustTime := 0 milliseconds;

f17 := (ForceXInput / 2.0) + (TorqueYlnput / 2.0);
thrustTime := Number t Milliseconds( Round( 200 / (0.2 / f17)));
Return thrustTime;

Figure 10. Level 3 Function Definition

Functions in SpecTRM-RL are written in an Ada-like programming script. This script

allows users to calculate values from the inputs. In the case of the Propulsion Subsystem,

functions are used to calculate the duration that valves should be "Open" to achieve the forces

and torques needed by the Sphere Controller. Another SpecTRM element known as a macro

allows users to abstract common logic and to increase readability. A macro takes a piece of an

AND/OR table from another part of the model and gives it a name. This name can be substituted
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in for that table portion elsewhere in the model. The macro definition is a single AND/OR table.

This table will evaluate to true or to false. When the table is true, the macro as a whole evaluates

to true where it is used in other model elements. Similarly, if the table is false, then the macro

evaluates to false.

The elements of the SpecTRM blackbox include output commands, output values, modes,

states, macros, functions, command inputs and input values. Other information contained at

Level 3 includes communication channels, operational procedures, user models and the results of

performing various analyses and simulations on the blackbox model. Section 4.4 describes the

simulations run on the SpecTRM-GSCs created for the SPHERES project.

4.3 Guest Scientist Program

As previously stated, the Guest Scientist Programs (GSPs) used in this test case are the

Rate Damper and the Rate Matcher. The Rate Damper eliminates any angular rate applied to an

individual sphere by applying a series of equations to the angular rates recorded by the

gyroscopes. The GSP receives angular rates from the Sphere Controller, applies the equations to

the angular rates in a function and then outputs force and torque vectors to the Sphere Controller.

Because these components were created with reusability in mind, they are highly generic.

Therefore, different Guest Scientist Program blackbox models can be easily swapped in a new

simulation. In addition, it becomes trivial to simulate multiple Spheres because the generic

components already exist. Unlike the Rate Damper, the Rate Matcher utilizes two Spheres. The

Leader in the Rate Matcher example measures its own angular rate and sends those

measurements to the Follower Sphere through the Communication Subsystems. The Follower

Sphere then matches its own angular rate to that of the Leader Sphere. The use of two Spheres in

the Rate Matcher as opposed to just one Sphere in the Rate Damper illustrates the reuseability of

the components and the ease w ith w hich c omponents c an b e p lugged t ogether t o s imulate an

entirely new spacecraft configuration. In this case, multiple Spheres interact in a more

complicated Guest Scientist Program.

As stated in Levels 1 and 2, the Sphere Controller sends force and torque vectors or direct

commands to the Propulsion Subsystem. If the Propulsion Subsystem is in "ForceTorqueMode"

it uses the force and torque vectors to calculate thruster on and off times. If it is in
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"DirectMode," the Propulsion Subsystem receives on and off times directly from the Sphere

Controller and immediately sends on and off commands to the thrusters. In both example GSPs

used in this test case, the Propulsion Subsystem operates in "ForceTorqueMode." The

Propulsion Subsystem will calculate thruster on and off times based on forces and torques

needed to either nullify or match the angular rate of a Sphere.

Levels 1, 2 and 3 of the Sphere Controller SpecTRM-GSC can be found in Appendix D.

The blackbox model on Page 9 0 illustrates t he S phere C ontroller's i nterface w ith t he g eneric

components, including elements needed for the Rate Damper example. Each device in the

system-level specification represents another intent specification. The box labeled Propulsion

Subsystem represents the blackbox model that was created for the Propulsion Subsystem.

During a system-level simulation, these models interact. For example, the outputs from the

Sphere Controller to the Propulsion Subsystem device in the Sphere Controller model become

the inputs in the Propulsion Subsystem model from the Sphere Controller device. The outputs

from the Propulsion Subsystem to the Sphere Controller device in the Propulsion Subsystem

model become the inputs from the Propulsion Subsystem device to the Sphere Controller in the

Sphere Controller model. Blackbox models of the Propulsion Subsystem, PADS,

Communication Subsystem and the two Guest Scientist Programs can be found in Appendices A,

B, C and E respectively.

4.4 Simulation

Simulations in S pecTRM c an b e v isualized t hrough t he animation o f t he d iagram t hat

represents the blackbox model of the system. As shown in the screen captures in Appendix F,

the animation includes highlighting the current values of the state and mode elements in yellow

and displaying the current values of inputs and outputs in blue text under the element names.

Obsolete data values are shown in green text under the element names. Time is shown in the

upper left hand comer of the visualization window. As the simulation time progresses, the input,

output, state and mode values update to reflect the new data. The side bar lists all the element

values of all the models in the simulation. The bar located on the bottom of the visualization

provides an event log showing detailed timing information.
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Data was collected for these simulations on the SPHERES frictionless test-table. Each

Sphere used in the Rate Damper and Rate Matcher simulations were rotated on the test-table to

generate angular velocity. The angular rates were sent to and recorded onto the SPHERES

laptop. These measurements provide the angular rate input values to PADS models during the

simulations.

The first Guest Scientist Program tested in the SpecTRM simulator was the Rate Damper.

The Rate Damper zeroes any angular velocity experienced by the single Sphere. Appendix F

Figure 1 shows a screen capture of the Rate Damper blackbox simulation. As described above,

the figure shows the values of the input and output elements in blue text. The Rate Damper is

running on the Sphere Controller and therefore "UserControl" is highlighted under Control

Mode. Similarly, the current states of the Propulsion Subsystem and PADS ("ForceTorque" and

"AccelerometerGyro" respectively) are also highlighted in yellow. The Sphere Controller

receives the angular rate from PADS and transfers that information to the Rate Damper. The

Rate D amper t hen d etermines t he t orques n eeded t o z ero t he a ngular rate in a function. The

resulting force and torque vectors are sent through the Sphere Controller to the Propulsion

Subsystem.

Figure 2 in Appendix F s hows t he e ntire s imulation e nvironment. I n t he s ide bar the

Propulsion Subsystem element list has been expanded to show the "Open" and "Close"

commands that are sent to the individual thrusters. These "Open" and "Close" commands are

determined by functions in the blackbox model. In the side bar of the screen capture, for

example, it can be seen that the function "ThrusterPair17Calculation" returns "1 millisecond,"

which is implemented by the "DesiredSolenoidValuvel State" transitioning to "Open." As the

thrusters open and close the angular rate decreases to zero, which is reflected in the successive

angular rates from PADS during simulation.

Now that one Sphere has been successfully simulated, another Sphere is incorporated into

a more complicated simulation to illustrate the reusability of the components. The second Guest

Scientist Program is the Rate Matcher, which allows a Follower Sphere to match its angular rate

with that of the Leader Sphere. Appendix F Figure 3 shows the Leader and Follower blackbox

models during simulation. Figure 4 is a screen capture of the entire simulation environment

during the Rate Matcher simulation. The visualizations are animated in the same manner as the

previous example.
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For the Rate Matcher example, the process of assembling another Sphere involved

copying the subsystem models, pasting them into two folders and renaming each copy to begin

with either "Leader" or "Follower." The "Leader" and "Follower" subsystem models were then

assembled into a "LeaderSphereController" model and a "FollowerSphereController" model.

These system-level models communicate through their respective Communication Subsystems.

As seen in the simulation environment in Figure 4, the Leader Sphere sends its angular rates to

the Follower Sphere. The Follower Sphere then uses the Leader Sphere's angular rates and its

own angular rates to determine the forces and torques needed to match the angular rates of both

Spheres. The angular rates measured by the Follower Sphere migrate toward the angular rates

measured by the Leader Sphere as the simulation progresses.

4.5 Summary

The SPHERES system provides a case study for the application of Component-Based

Systems Engineering. Because SPHERES is autonomous and highly modular, it was well suited

for testing the scalability and applicability of this method. Intent specifications were written for

each subsystem and the Sphere Controller. Rationale was captured at each level of their

development and links provide traceability throughout the entire document. The subsystem

models w ere created to b e g eneric and therefore c learly indicate i nformation that needs to be

changed upon each subsystem's use in a particular instance. By modeling a Sphere's subsystems

and controller as SpecTRM-GSCs, simulations could be run on the b lackbox b ehavior o ft he

entire system. In addition, simulating multiple Guest Scientist Programs and building multiple

Sphere models shows the reusability of SpecTRM-GSCs.
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Chapter 5
Conclusion

One of the major obstacles facing the aerospace industry today is the increasing

complexity of spacecraft. This complexity is rooted in many new technologies and industry

goals. First, software has become an integral part of spacecraft design, controlling not only the

spacecraft hardware, but also the onboard science missions. Most engineers also believed that

trading off the simplicity of hardware for the abilities of software would decrease this

complexity. While software has become pervasive throughout most industries and seems to

provide a solution to many logistical problems, it does not decrease the complexity of systems.

In fact, the exploding number of states and transitions in software makes today's spacecraft far

more complex and error-prone then their hardware-driven predecessors.

Second, the increasingly ambitious mission goals combined with the exploration of

distant planets has uncovered the need for highly autonomous spacecraft control systems. The

current motivation at NASA and its contractors to make spacecraft autonomous through the use

of artificial intelligence merely compounds the complexity problem.

Third, the poor implementation of reuse and Component-Based Software Engineering has

also increased the complexity of today's spacecraft. Many reusable software components

contain extra functions so that they can be reused on many different projects. In addition,

companies are often reluctant to share detailed documentation of these components for

proprietary reasons. Consequently, the software components are improperly integrated into the

rest of the project software. The complexity added by the poor implementation of reuse has led

to spacecraft and mission losses. Although these technologies hold the promise of simplifying

spacecraft development, their improper use has caused more damage than successes. One prime

example of this misuse was the Mars Climate Orbiter loss discussed in Chapter 1.

In addition to the increasing complexity, the aerospace industry faces the many

challenges inherent in spacecraft engineering. The loss of domain knowledge accompanying the

retirement of the Apollo Era spacecraft engineers is of great concern to NASA and its

contractors. Often rationale behind design decisions is not recorded or transferred to new

personnel. These organizations need to provide a means through which knowledge can be
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transferred as individuals retire or move to other industries. The aerospace industry also faces

the problems caused by miscommunication among multidisciplinary engineering teams.

Mistakes are often made because engineers with different backgrounds do not share the same

terminology, education or experience. There needs to be a common medium through which

engineers from different disciplines can communicate clearly and effectively.

The aerospace industry is endeavoring to address the difficulties caused by added

complexity and the challenging nature of spacecraft engineering itself in a culture of budget cuts

and public disinterest. The solutions attempted in the 1990s, especially Faster, Better, Cheaper,

did not provide spacecraft developers with the added productivity and success rate that was

intended. Instead many of the spacecraft developed using this strategy were lost, costing NASA

not only millions of dollars but also public trust and support. NASA is now faced with the

question of how to develop the next generation of spacecraft under tight budget constraints

without experiencing the drawbacks of the Faster, Better, Cheaper approach.

This thesis proposed a new method of spacecraft development known as Component-

Based Systems Engineering that addresses the question. Component-Based Systems

Engineering combines aspects of both systems engineering and Component-Based Software

Engineering to reap the benefits of each technology without incurring some of the costs. Instead

of reusing code, engineers reuse the development of requirements specifications, both informal

and formal. In this approach, the reuse takes place before any detailed design is completed, any

hardware built or any software coded.

Components are created in a systems engineering development environment known as

SpecTRM. SpecTRM is a toolkit that allows users to create intent specifications, which assist

engineers in managing the requirements, design and evolution process. The intent specification

suggests a structure and a set of practices that makes the information contained in the document

more easily used to support the project lifecycle. Intent specifications help engineers to (1) find

specification errors early in product development so that they can be fixed with the lowest cost

and impact to the system design, (2) increase the traceability of the requirements and design

rationale throughout the project lifecycle and (3) incorporate required system properties into the

design from the beginning rather than the end of development, which can be difficult and costly.

Component-Based Systems Engineering begins with a decomposition of the spacecraft,

followed by a construction of components, subsystems and finally the entire system. These
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individual components are called SpecTRM-GSCs, or Generic Spacecraft Components, and

provide users with a variety of benefits. The components are generic, which makes them highly

reusable. Engineers can change project specific information based on the instance of the

component's use. They also contain component-level fault protection, laying the foundation for

a fault protection scheme that parallels the spacecraft's development. Finally, the formal portion

of the SpecTRM-GSC can be analyzed individually o r a s p art o f t heir p arent s ubsystem- and

system-level before any implementation has taken place.

This thesis provided an example of Component-Based Systems Engineering as applied to

the SPHERES system. SPHERES was chosen as the test case for evaluating Component-Based

Systems Engineering because it consists of a series of autonomous spacecraft, forms a testbed for

evaluating multiple different control and estimation algorithms, and is a real spacecraft system

that will operate aboard the International Space Station. SpecTRM-GSCs were created for the

various subsystems, including two Guest Scientist Programs, the Rate Damper and the Rate

Matcher. Because the Rate Matcher used two Spheres while the Rate Damper used only one,

simulations of both Guest Scientist Programs clearly illustrated the reusability of the SpecTRM-

GSCs and the ease with which they can be combined to create another Sphere.

Through performing Component-Based Systems Engineering on SPHERES, it was

shown how many of the problems outlined in Chapter 1 can be solved. The use of SpecTRM

helps to solve the problems of domain knowledge capture through the recording of rationale at

every stage of development. In addition, the use of SpecTRM-RL at Level 3 of the intent

specification provides a readable and unambiguous formal specification that provides a common

language with which engineers can easily communicate their requirements specifications.

SpecTRM-GSCs provide spacecraft engineers with a library of generic components that

can be reused from one project to the next. Because the detailed design and implementation is

has not been completed, engineering teams can tailor the components to fit their needs instead of

fitting their needs to a particular piece of code. The use of component-level fault protection also

encourages engineering teams to incorporate fault protection software into their designs from the

beginning of the development process.

One area in which Component-Based Systems Engineering will be particularly beneficial

is autonomous spacecraft. Instead of attempting to take the technological leap from time-

stamped command sequences directly to artificial intelligence, Component-Based Systems
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Engineering encourages the development of autonomous spacecraft through rigorous

requirements specification development. These structured informal and formal specifications

can be thoroughly analyzed for major inconsistencies and incompleteness before any

implementation has occurred. In addition, special flight phases and faults can be easily

simulated and the results of these simulations analyzed for deficiencies in the requirements

specifications. Consequently, many errors and inadvertent omissions can be found early in the

project lifecycle when they are less costly to correct. The fault-protection scheme also aids in

the development of highly autonomous systems, because the consequences of possible faults are

addressed throughout the project lifecycle.

The research on and the test case application of Component-Based Systems Engineering

show its potential for use in developing the next generation of spacecraft. The benefits of using

the technique span not only the engineering issues faced by today's spacecraft development

teams but also the difficulties inherent in the aerospace industry. The results of this thesis merit

further investigation into the use of Component-Based Systems Engineering for autonomous

spacecraft.
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Appendix A

Propulsion Subsystem
Level 1: System-Level Goals, Requirements,

and Constraints
Introduction
The Propulsion Subsystem aboard each Sphere in the SPHERES system (Synchronize
Position Hold Engage Reorient Experimental Satellites) provides management of both
position and attitude for the Sphere. The Propulsion Subsystem consists of a series of
thrusters that can be turned on and off depending on commands received from the
Sphere's controller.

Historical Information
This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Propulsion Subsystem.

Environment Description
There will be only two types of devices in the Propulsion Subsystem's environment with
which it must communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands to the Propulsion
Subsystem.

Firing Circuits - There are twelve firing circuits in the Propulsion Subsystem hardware
(one for each solenoid valve). These are component-level intent specifications and they
command the actual solenoid valves to open and close.

Environment Assumptions
[EA.1] This Propulsion Subsystem is operating within a Sphere.
[System Interface Design]
Rationale: This intent specification describes a propulsion subsystem that will operate
within a Sphere. It is not meant for use outside the SPHERES project.
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[EA.2] The software used in the Propulsion Subsystem is operating at a frequency of
1kHz. rDP.3.2.51
Rationale: The Propulsion Subsystem software must be able to accommodate different
control frequencies and implement pulse modulation.

System Functional Goals
[FG.1] The Propulsion Subsystem shall provide forces and torques for the Sphere.
r[DP.11 [4DP.2] rDP.31
Rationale: Each Sphere requires a subsystem that will actuate the maneuvers that are
determined by the Guest Scientist Program.

[FG.2] The Guest Scientist shall be able to turn thrusters on and off by either sending
timed on/off commands to the Propulsion Subsystem or by sending the Propulsion
Subsystem desired force and torque vectors. [-fFR.11 [4DP.1.21
Rationale: This goal identifies the need to provide the Guest Scientist with an option to
drectly control the thrusters or to stock compute thruster firing times if he/she is not
interested in performing the calculations in the Guest Scientist Program.

High-Level Requirements
[FR.1] The Propulsion Subsystem shall receive either timed on/off commands or
desired force and torque vectors from the Sphere Controller. [-+FG.11 [4DP.1.21
Rationale: This goal identifies the need to provide the Guest Scientist with an option to
directly control the thrusters or to stock compute thruster firing times if he/she is not
interested in performing the calculations in the Guest Sdentist Program.

[FR.2] The Propulsion Subsystem shall send an "On" command to the firing circuits at
the requested time when it receives a direct "On Time" command from the Sphere
Controller. [4DP.3.11
Rationale: A direct command from the Guest Sdentist will be sent to the firing circuits
that actuate the solenoid valves.

[FR.3] The Propulsion Subsystem shall send an "Off" command to the firing circuits at
the requested time when it receives a direct "Off Time" command from the Sphere
Controller. [4DP.3.1]
Rationale: A direct command from the Guest Scientist will be sent to the firing circuits
that actuate the solenoid valves.

[FR.4] If force and torque vectors are received from the Sphere Controller, the
Propulsion Subsystem shall determine on and off times for each thruster based on the
thrusters location and the force and torques needed. rDP.3.2]
Rationale: The Propulsion Subsystem shall provide the Guest Scientist with the abilty
to stock compute firing times for the thrusters based on desired force and torque
vectors.
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[FR.5] The Propulsion Subsystem shall send an "On" command to the firing circuits at
the requested time if the calculations performed on the force and torque vectors
determine that a thruster is needed at a specific time. r4DP.3.11
Rationale: The calculations performed by the Propulsion Subsystem on the force and
torque vectors will generate "On Time" commands that will be sent to the firing circuits
that actuate the solenoid valves.

[FR.6] The Propulsion Subsystem shall send an "Off" command to the firing circuits at
the requested time if the calculations performed on the force and torque vectors
determine that a thruster is needed at a specific time. [DP.3.11
Rationale: The calculations performed by the Propulsion Subsystem on the force and
torque vector will generate "Off Time" commands that will be sent to the firing circuits
that actuate the solenoid valves.

[FR.7] The Propulsion Subsystem shall have enough thrusters to provide actuation
throughout the six-degrees-of-freedom. [4DP. 1.31
Rationale: The SPHERES system operates in space and therefore must be able to
translate in three dimensions and rotate in three directions.

Design and Safety Constraints
Non-Safety Constraints
[SC.1] The Propulsion Subsystem must operate independently of any operator action.
[4DP.3]
Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

[SC.2] The propellant tank used in the Propulsion Subsystem must not be empty.
r-+OR.21 [40T.11
Rationale: The Propulsion Subsystem requires propellant to perform actuation.

Safety Constraints
[SC.3] There must be a mechanical system within each Sphere that will mitigate a
pressure rise in the Propulsion Subsystem. rDP.2.41
Rationale: /->H.1]

Operator Requirements
[OR.1] The operator shall monitor an estimate of the level of fuel in the tank. [4CD.11
Rationale: The propellant tanks contain a limited amount of fuel.
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[OR.2] The SHPERES operator shall be able to replace the propellant tank when the
amount of propellant drops below a pre-specified percentage. r->SC.21 [40T.11
Rationale: Some maneuvers may not be able to be completed with a nearly depleted
propellant tank.

System Interface Requirements
[IR.1] There shall be a means for an operator to estimate the level of fuel in the
propellant tank. [4CD.11
Rationale: When the level of fuel in the propellant tank drops below a specified amount
the tank needs to be replaced.

System Limitations
[L.1] The thrusters in the Propulsion Subsystem will not provide thrust if the tank is
empty.

[L.2] There are no sensors that determine the current state of each thruster.
Rationale: The SPHERES system is too small to have sensors that monitor the
thrusters.

[L.3] There are opening and closing transients associated with the solenoid valves.

Hazard List and Hazard Log
Accident Definition
An accident is defined as any injury to one of the astronauts on the International Space
Station or any damage to any part of the SPHERES system that interferes with its ability
to do science. From this accident definition, the following accident classification is used
to determine the severity of the system hazards:

Level 1: Any injury to an astronaut or damage to the SPHERES system that completely
eliminates all ability to do science.
Level 2: Damage to the SPHERES system that interferes with its ability to do science.
Level 3: Damage to the SPHERES system that does not interfere with its ability to do
science.

Safety Policy
Under NASA requirements, the SPHERES system must be doubly fault-tolerant. This
means that at any point in the Propulsion Subsystem, the system must be able to
sustain two faults.
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Hazard List and Assessment
[H.1] There is a pressure rise in the Propulsion Subsystem. [-+SC.31 [4DP.2.41
Classification: Level 1
Rationale: A pressure rise in the Propulsion Subsystem may result in an explosion that
may either injure an astronaut or damage the SPHERES system itself

Hazard Analysis

Verification and Validation
Review Procedures
A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
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SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss - SpecTRM-GSC Developer
John Enright - SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design
The external components will interface with
manner: rfEA.1]

the Propulsion Subsystem in the following

The Propulsion Subsystem interfaces with the Sphere Controller and with the firing
circuits that provide actuation to the twelve solenoid valves. Although the firing circuits
are technically part of the Propulsion Subsystem, they are separated here because
there is a SpecTRM-GSC for the firing circuits. [4C.1]

The Sphere Controller sends the Propulsion Subsystem either timed on/off commands
for each of the twelve thrusters or force and torque vectors. The Propulsion Subsystem
does not send any information to the Sphere Controller. [kC.21 r4C.31

The Propulsion Subsystem sends on and off commands to the firing circuits. The firing
circuits do not send any information to the Propulsion Subsystem. [4C.41
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Controls and Displays
Displays
[CD.1] The percentage of fuel left in the propellant tank is displayed on the SPHERES
Laptop. Please see the SPHERES Laptop specification for details on how this is
implemented. [tIR.11 [TOR.11
Rationale: The SPHERES Laptop is the interface through which the operator interacts
with the SPHERES system.

Operator Task Design Principles
[OT.1] The operator shall replace the propellant tank that is currently in the Sphere if
the tank is less than 20% full. This amount roughly translates to changing the
propellant tank 3-4 times per hour. tOR.1] [tSC.21 [4OP.11
Rationale: Operators should not run out of fuel in the middle of a test.

System Design Principles
[DP.1] Propulsion Subsystem Overview rtFG.11

[DP.1.1] The Propulsion Subsystem is made up of software and hardware
components. The software components consist of thruster control and pulse
modulation. The hardware components consist of the firing circuits, solenoid
valves, regulator and capacitor, tubing and manifolds, nozzles and propellant
tank. Figure 1 provides a diagram of the Propulsion Subsystem.

Propulsion Subsystem

Software Hardware

Regulator
and

Thruster Control Capacitor

--- Firing Circuits --- lenoin d NozzlesVaolves

Pulse
Modulation Tng Tank

Manifolds

Figure 1. Propulsion Subsystem Diagram

[DP.1.2] The Guest Scientist controls the Control Mode of the Propulsion
Subsystem. If the Propulsion Subsystem is in Direct Mode, then the Guest
Scientist provides the Propulsion Subsystem with timed on/off commands. If the
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Propulsion Subsystem is in Force Torque Mode, the Guest Scientist provides the
Propulsion Subsystem with desired force and torque vectors. [tFG.21 [tFR.1]
[4PropulsionSubsystemControlModel
Rationale: The Guest Scientist may want to directly control the thrusters or to
stock compute thruster firing times if he/she is not interested in performing the
calculations in the Guest Scientist Program.

[DP.1.3] The thrusters are arranged on the Sphere in order to provide pure
body-axis force or torque using only two thrusters, assuming uniform mass and
inertia properties. The twelve thrusters are arranged in six back-to-back pairs,
allowing for full six-degrees-of-freedom actuation. Figure 2 shows the Sphere
thruster configuration. Figure 3 shows the directions of the force and torque
that will be produced by firing each thruster based on the configuration in Figure
2. The combinations of thrusters required to produce force along or torque
about each body axis are shown in Figure 4. [tFR.71
Rationale: It was expected that the majority of maneuvers would involve
primarily body-axis rotations, and the flight thruster geometry is significantly
more propellant-efficient than other geometries for these maneuvers.

Figure 2. Thruster Pair Configuration
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11 T 1 hruster position [cm] Resultant force direction Resultant torque direction
x y z x y z x y z

0 -5. 6 0.0 9.65 1 0 0 1 0
-5.16 0.0 -9.65 1 0 0 0 -1 0

2 9.65 -5.16 0.0 0 0 0 1
3 -9.65 -5.16 0.0 () 1 00 0 -1
4 ) 9.65 -5.10 0 1 1 0 0

0.0 -9.65 -5.16 0 0 -- 0 0
6 5.F16 0.0 9.65 - ad 0 0 -1 
7 5.164 0.0 -9.65 -1 0 001 0
8 9.65 -5.16 0.00to 0 0 -1
9 -9.65 5, 1 6 0.0 0 -1 00 01
10 0.0 9.65 5.16 0 00I- . 0
I1 0.0 -9.65 5.16 01 - 0 0

Figure 3. Thruster Force and Torque Directions

Thr # Body-axis fore Body-axis torquC
-rx -X 4 v --4-Z -Z +X -x +V -V 4-Z -Z

>1 x

Xx

4 x x
5x

6 x x
x x

10 x

xx

2 x x

Figure 4. Thruster Combinations

[DP.2] Propulsion Subsystem Hardware [tFG.1]
[DP.2.1] There are twelve firing circuits - one for each of the twelve thrusters.
The firing circuits generate an opening waveform and current amplification from
a digital command.

[DP.2.2] There are twelve solenoid valves - one for each of the twelve thrusters.
The solenoid valves open in response to a firing command from the firing
circuits. r4DesiredThrusterlStatel [4DesiredThruster2Statel
[4DesiredThruster3Statel [ZDesiredThruster4Statel [4DesiredThruster5Statel
[4DesiredThruster6Statel r4DesiredThruster7Statel [4DesiredThruster8Statel
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rDesiredThruster9Statel [4DesiredThrusterlOStatel
[iDesiredThruster11Statel resiredThrusterl2Statel

[DP.2.2.1] The solenoid valves remain open as long as the firing circuits
continue to send a firing command.

[DP.2.3] Each propellant tank contains up to 172g of pressurized CO2 stored in
liquid form at 860 psi.
Rationale: 172g is the maximum amount of C02 that can be stored in the
propellant tank that fits inside of each Sphere at 860 psi.

[DP.2.4] There are two pressure release mechanisms, or burst disks in the
Propulsion Subsystem. One is attached to the tank coupling and one is on the
regulator itself. These mechanisms burst if the pressure builds to greater than
4500 psi. [tSC.3] [tH.1]
Rationale: The burst disks will rupture before the tank reaches a hazardous
pressure of greater than 4500 psi thereby releasing the bullding pressure.

[DP.2.5] The regulator is used to expand the liquid C02 into a gas and
simultaneously decrease the thruster feed pressure to between 0 and 35 psig.
Rationale: At 35 psig the average thruster force is approximately 0. IN, which is
the desired operating thrust for each thruster.

[DP.2.6] The capacitor stores low-pressure gas and thereby helps to maintain a
constant working pressure under different propellant flow rates (i.e. when
different numbers of thrusters are open) throughout the Propulsion Subsystem.

[DP.2.7] The nozzles provide a choked sonic flow.
Rationale: This aerodynamic effect is used to maximize thrust

[DP.2.8] The tubing and manifolds provide transportation of propellant, C02,
from the propellant tank to each of the twelve thrusters.

[DP.3] Propulsion Subsystem Software [tFG.1] rtSC.11
[DP.3.1] Thruster Control [tFR.21 [tFR.31 rtFR.51 [TFR.61

[DP.3.1.1] The Thruster Control software handles the timing of firing
commands.

[DP.3.1.2] The Thruster Control software sends "On" and "Off"
commands to the firing circuits. These commands can either come
directly from the Sphere Controller "On Time" and "Off Time" commands
or from the Pulse Modulation portion of the Propulsion Subsystem
Software.
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[DP.3.2] Pulse Modulation [tFR.4] [fThrusterPairl7Calculation]
[4ThrusterPair28Calculation] [4ThrusterPair39Calculation]
[4ThrusterPair4lCalculationl [IThrusterPair511Calculation]
[IThrusterPair612Calculation]

[DP.3.2.1] The Pulse Modulation software calculates the duration that
thrusters should be opened based on body-referenced force and torque
vectors from the Sphere Controller.

[DP.3.2.2] The Pulse Modulation software receives x, y and z force and
torque values from the SPHERES Controller.

[DP.3.2.3] The Propulsion Subsystem uses the following flight SPHERES
thruster combinations to produce pure body-axis force or pure body-axis
torque about a particular axis. For example, from Figure 4, net force in
the x direction results from a combination of thrusters 1 and 7, where
thruster 1 is in the positive x direction and thruster 7 is in the negative x
direction.

fl,7 = fl -f7
f2,8 = f2 - f8
f3,9 = f3 - f9
f4,10 = f4 - f10
f5,11 = f5 - f1l
f6,12 = f6 - f12

Rationale: Mark Hllstad's Master's Thesis

[DP.3.2.4] The Propulsion Subsystem uses the following equations that
map the force and torque commands to thruster pair forces in the flight
Sphere geometry. The moment arm r is equal to 9.7 cm.

1 10 0 0 1 0
f 2 2 f

1,7 1 1 X

2,8 2 1 2 1

3,f 0 -0 0 0 - fz3,9 2 2 z
f 1 1it

4,10 0 0 0 0 -- x
2 1 5,11 0 0 10 0

f 2 2 t
6,12 0 0 1 1 0 0 - z

2 2

Rationale: Mark Hilstad's Master's Thesis

[DP.3.2.5] Once the thruster pair forces are determined, the thruster on
and off times can be calculated. The thrust time is equal to the sampling
rate of the Propulsion Subsystem divided by the ratio of the thrust
provided by the thruster pair to the force needed from the thruster pair.
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The sampling rate of the Propulsion Subsystem is 200ms and the force
provided by the thruster pair is 0.2N. [tEA.2]
Rationale: The operating frequency is _ which translates into a
sampling rate of 200ms. Each thruster produces 0. IN of force and
therefore the thruster pair produces 0.2N.

Level 3: Blackbox Behavior
Communication
[C.1] The Sphere Controller sends the Propulsion Subsystem the control mode it should
enter, either Force Torque Mode or Direct Mode. [tSystem Interface DesiQn]
r-+GuestScientistModelnput]

[C.2] When the Propulsion Subsystem is in Force Torque Mode, the Sphere Controller
sends it Forces (x, y, z) and Torques (x, y, z). [tSystem Interface Design]
[-+ForceXInputl [-+ForceYInput] r-ForceZInput [-+TorqueXInput
[-+TorqueYInput] r-TorqueZInput

[C.3] When the Propulsion Subsystem is in Direct Mode, the Sphere
On Time or Off Time commands for each of the twelve thrusters.
[tSystem Interface Design] [-+DirectControlThrusterlInput]
[-DirectControlThruster2Input1 [->DirectControlThruster3Inputl
[-+DirectControlThruster4Input) [-DirectControlThruster5Input]
[->DirectControlThruster6InputI [->DirectControlThruster7Input]
r-+DirectControlThruster81nputl [-DirectControlThruster9Input]
[->DirectControlThrusterlOInput [-DirectControlThrusterl 1Input
r->DirectControlThrusterl21nputI

[C.4] The Propulsion Subsystem sends the Firing Circuits On or
[tSystem Interface Design] [4ThrusterlCommandOutput]
[4Thruster2CommandOutput] [4Thruster3CommandOutputl
[4Thruster4CommandOutput] [4Thruster5CommandOutputl
[Thruster6CommandOutput) [4Thruster7CommandOutputl
r4Thruster8CommandOutputl [Thruster9CommandOutput)
[4ThrusterlCommandOutput rThrusterllCommandOutput)
[Thruster12CommandOutputl

Operational Procedures
[OP.1] Replacing a propellant tank. [tOT.11

[OP.1.1] Fully open regulator.
[OP.1.2] Vent tank.
[OP.1.3] Change tank.
[OP.1.4] Mark old tank.

Controller sends it

Off commands.

[OP.1.5] Reset C02 level.
[OP.1.6] Resume testing.
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Appendix B

PADS
Level 1: System-Level Goals, Requirements,

and Constraints
Introduction
The Position and Attitude Determination Subsystem (PADS) aboard each Sphere in the
SPHERES system (Synchronize Position Hold Engage Reorient Experimental Satellites)
provides state estimation for the Sphere. PADS provides direct measurements of linear
acceleration and angular rate. PADS also provides time-of-flight measurements to fixed
beacons to calculate position and attitude.

Historical Information
This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Position and Attitude Determination Subsystem.

Environment Description
There will be three types of devices in the PADS environment with which it must
communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands to PADS and
receives position and attitude information from PADS.

Inertial Measurement System - This system consists of accelerometers and
gyroscopes that provide the Sphere with measurements of linear acceleration and
angular velocity sampled at a user-specified rate. These are component-level devices
that do not have intent specifications because they are pure hardware.

Global Measurement System - Provides the Sphere with a measurement of time of
flight to each fixed beacon in the SPHERES operating space. The Guest Scientist can
compute any position and attitude information from these ranges. The beacons are
represented by component-level SpecTRM-GSCs.
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Environment Assumptions
[EA.1] PADS is operating within a Sphere. [4System Interface Design]
Rationale: This intent specification describes a position and attitude determination
subsystem that will operate within a Sphere. It is not meant for use outside the
SPHERES project.

Environment Constraints
[EC.1] PADS must operate within an enclosed 1.5m x 1.5m x 2m volume. [4DP.3.2.31
Rationale: This is the size of the enclosed volume of the United States Node on the
International Space Station. A known volume is needed so that a beacon chirp used in
the Global portion of PADS disperses before the next beacon chirps.

[EC.2] This ultrasound beacons are placed at known locations around the inside of
Node 1. [-+R.1] [-+OR.11
Rationale: Accurate position and attitude information is contingent on receiving
accurate readings from the beacons surrounding the SPHERES operating space.

System Functional Goals
[FG.1] PADS shall provide accurate calculation of Sphere position and/or attitude
information. [4DP.1] r4DP.21 [4DP.31
Rationale: Accurate position and/or attitude information is needed so that the Guest
Scientist Program or Sphere Controller can determine the required actuation.

[FG.2] The Guest Scientist can choose whether to use an inertial measurement system,
a global measurement system or both systems to receive needed state information.
[->FR.11 [4DP.1.21
Rationale: The inertial measurement system provides measurements much faster than
the global measurement system. The two systems provide different rates for
processing the information.

High-Level Requirements
[FR.1] PADS receives a message from the Sphere Controller that indicates which type
of position and attitude information is needed. r-+FG.21 [4DP.1.2]
Rationale: Different Guest Scentist Programs require different position and attitude
information.

[FR.2] PADS shall provide the Sphere Controller with linear acceleration and angular
velocity with the inertial measurement system. [4DP.2.11 [4DP.3.11
Rationale: The Guest Scientist may not want to use the global measurement system.
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[FR.3] PADS shall provide the Sphere Controller with ranges from the Sphere to each
beacon in the SPHERES operating space. rDP.2.21 [4DP.3.21
Rationale: Any position and/or attitude information needed by the Guest Scientist can
be calculated from these ranges. In addition, the Guest Sdentist may not want to use
the inertial measurement system.

Design and Safety Constraints
Non-Safety Constraints
[SC.1] PADS must operate independently of any operator action. [4DP.3]
Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

Operator Requirements
[OR.1] The Operator shall place the beacons around the inside of Node 1 in known
locations and record these locations. [-EC.21 [OT.11
Rationale: The beacons are needed for the global measurement system. Because the
beacons are not fixed inside of Node 1, the operator is responsible for placing the
beacons in known locations before any SPHERES operation.

System Interface Requirements
[IR.1] There shall be a means for an operator to record the position of the beacons
inside Node 1. [->EC.21 rOT.21
Rationale: The beacons are needed for the global measurement system. Because the
beacons are not fixed inside of Node 1, the operator is responsible for placing the
beacons in known locations before any SPHERES operation.

System Limitations
[L.1] Accurate position information will not be reported unless the beacons are placed
at known locations around the inside of Node 1 and the locations are recorded.
Rationale: The beacons are needed for the global measurement system.

[L.2] The elements of the inertial measurement system are not redundant.
Rationale: The SPHERES system is too small to have redundant components.

[L.3] The global measurement system is susceptible to interference from external
sources of infrared and ultrasound. Presence of this interference will degrade
performance.
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Verification and Validation
Review Procedures
A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss - SpecTRM-GSC Developer
John Enright - SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design
The external components will interface with the PADS in the following manner: [tEA.11

Controller PADS FPGA

PADS interfaces with the Sphere Controller and with the FPGA, which provides an
interface with the avionics hardware. Although the FPGA is technically part of the
PADS, it is separated here because the inputs to and outputs from PADS are processed
by the FPGA. There is no SpecTRM-GSC model of the FPGA because it was created by
Payload Systems, Inc. and there is insufficient information to create an intent
specification.

The Sphere Controller tells PADS which information is needed from the avionics
hardware. The Sphere Controller can either receive linear acceleration and/or angular
velocity from the inertial measurement system and/or ranges to each beacon from the
global measurement system. PADS sends the requested information to the Sphere
Controller. [4C.1] [4C.2] r4C.3] [4C.41
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PADS sends a flash command to the FPGA, which begins the process of global
metrology. PADS receives linear acceleration and angular velocity from the FPGA.
[4C.51[C.1[C7[C.1[C9[C10

Controls and Displays
Displays
[OD.1] The SPHERES Laptop contains a display that allows the operator to enter the
locations of the five ultrasound beacons. [tIR.11
Rationale: The Laptop is used during the experiment setup so that the beacon
locations are loaded onto the Spheres, which use these locations in position
determination.

Operator Task Design Principles
[OT.1] The Operator places the beacons at known locations, as in Figure 1, around the
inside of Node 1. The beacons are placed on opposite alternate corners and the
remaining beacon in any remaining corner. [tOR.1] [4OP.11
Rationale: The Sphere requires the locations of the beacons in order to obtain accurate
position information. The beacons are placed so that maximum coverage is obtained.

[OT.2] The Operator enters the location of the beacons into the SPHERES Laptop.
[TIR.11 r40P.21
Rationale: The Sphere requires location of the beacons in order to obtain accurate
position information.

Figure 1. Example Beacon Configuration for the First Four Beacons

System Design Principles
[DP.1] Position and Attitude Determination Subsystem (PADS) Overview [tFG.11

[DP.1.1] PADS is made up of software and hardware components. The
hardware components consist of the FPGA, gyroscopes, accelerometers, infrared
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transmitters and receivers, ultrasound transmitters and receivers and beacons. Figure 2
provides a diagram of PADS.

Position and Attitude Determination Subsystem (PADS)

Hardware

Inertial Measurement System

Accelerometers Gyros
(3) (3)

Software FPGA
Global Measurement System

IR IR us
Transmitters Receivers Transmitter

(24) (12) Trnmte

us Beacons
Receivers (5)

(24)

Figure 2. PADS Diagram

[DP.1.2] The Guest Scientist will decide which Control Mode PADS is in. If PADS
is in Report Ranges Mode, PADS will issue a command to the FPGA to flash the infrared
transmitter, beginning the process of global metrology. Ranges to each beacon are
then sent to the Sphere Controller. If PADS is in Accelerometer and Gyro Mode it will
send the measurements taken at a pre-specified sample rate by the FPGA. If PADS is in
Send All Data mode, it will send information from both the global and inertial
measurement systems. [tFG.21 rPADSControlModel
Rationale: Different Guest Scientists have different position and attitude information
needs. For example, some Guest Scientists Programs involve position information,
requiring them to use the global measurement system, while others need quickly
sampled angular rates, in which case they can use the inertial measurement system.

[DP.2] PADS Hardware [tFG.1]
[DP.2.1] Inertial Measurement System [tFR.2]

[DP.2.1.1] The gyroscopes are mounted in alignment with the body axes
at the positions listed in Figure 3.
Rationale: These locations provide easy and intuitive mapping of
gyroscope measurements to Sphere motion.

[DP.2.1.2] The accelerometers are aligned parallel to, but displaced from,
the body axes at the positions listed in Figure 4.
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Rationale: Ideally, the accelerometers would be mounted along the three
axes of the Sphere body frame, but this arrangement is not feasible given
the spatial requirements of other subsystems.

Sensor Location (body frame) [cm]
x y z

x-axis gyro TBD 3.10 6.39
y-axis gyro -5.49 TBD -3.24
z-axis gyro -5.49 3.24 TBD

Figure 3. Gyroscope Locations

Sensor Location (body frame) [cm]
x y z

x-axis accelerometer 5.19 2.17 3.27
y-axis accelerometer -2.66 3.35 3.30
z-axis accelerometer 3.28 -4.37 3.35

Figure 4. Accelerometer Locations

[DP.2.1.3] The FPGA continuously samples the gyroscopes and
accelerometers at 1kHz. The FPGA converts the analog signal from the
hardware components to a digital signal. The FPGA then sends this digital
signal to PADS. If the Guest Scientist uses the accelerometer and gyro
data, he/she down-samples the information at a specified rate.
Rationale: The Guest Scientist sets how often the data needs to be
sampled.

[DP.2.2] Global Measurement System [tFR.31
[DP.2.2.1] The Global Measurement System hardware is comprised of 24
ultrasound receivers, 1 ultrasound transmitter, 12 infrared receivers, 24
infrared transmitters and 5 beacons. The ultrasound receivers, infrared
receivers and infrared transmitters are split into 12 boards. Each board
contains 2 ultrasound receivers, 1 infrared receiver and 2 infrared
transmitters. Figure 5 illustrates the locations of the boards on the
Sphere. Figure 6 provides the numbering scheme for the ultrasound
receivers as well as their exact location in the body frame.

[DP.2.2.2] The five fixed beacons provide position and attitude relative to
the walls of the operational module. Each fixed beacon contains an
ultrasound transmitter and an infrared receiver.
Rationale: The infrared receiver begins the clock on the beacon after the
Sphere flashes and the ultrasound transmitter sends out a chirp and the
pre-specified time.
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Figure 5. Ultrasound Receiver Geometry and Numbering

Face Receiver Location (body frame) [cm]
Label Number Number x y z

0 0 10.23 -3.92 3.94
0 1 10.23 3.92 3.94
0 2 10.23 3.92 -3.94
0 3 10.23 -3.92 -3.94
1 0 3.94 10.23 -3.92
1 1 3.94 10.23 3.92
1 2 -3.94 10.23 3.92
1 3 -3.94 10.23 -3.92
2 0 -3.92 3.94 10.26
2 1 3.92 3.94 10.26

+z 2 2 3.92 -3.94 10.26
2 3 -3.92 -3.94 10.26
3 0 -10.23 3.92 -3.94
3 1 -10.23 3.92 3.94
3 2 -10.23 -3.92 3.94
3 3 -10.23 -3.92 -3.94
4 0 -3.94 -10.23 3.92
4 1 3.94 -10.23 3.92
4 2 3.94 -10.23 -3.92
4 3 -3.94 -10.23 -3.92
5 0 3.92 -3.94 -10.23
5 1 3.92 3.94 -10.23
5 2 -3.92 3.94 -10.23
5 3 -3.92 -3.94 -10.23

Figure 6. Ultrasound Sensor Numbering Scheme and Locations
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[DP.3] PADS Software [tFG.11 rtSC.11
[DP.3.1] Inertial Measurement System [tFR.2]

[DP.3.1.1] PADS converts the digital signal (converted by the FPGA from
the analog signal taken from the gyroscopes and accelerometers) into
angular velocity in radians per second and linear acceleration in meters
per second squared.

[DP.3.1.2] If PADS is operating in Accelerometer and Gyro Mode or in
Send All Data Mode, then PADS will report these values to the Sphere
Controller.

[DP.3.2] Global Measurement System [tFR.3]
[DP.3.2.1] The Guest Scientist begins the PADS global metrology process
by commanding PADS into Report Ranges Mode. PADS commands the
infrared transmitters to flash. The infrared receivers sense the flash and
notify PADS, which starts a clock.

[DP.3.2.2] PADS sends a message to the Sphere Controller to turn off all
thrusters.
Rationale: Thrusters produce ultrasound noise that will cause false
triggering of global measurement system events.

[DP.3.2.3] 10ms after the infrared is received, Beacon 1 sends out an
ultrasonic signal, or a chirp. 30ms after the infrared is received, Beacon 2
chirps. 50ms after the infrared is received, Beacon 3 chirps. 70ms after
the infrared is received, Beacon 4 chirps. 90ms after the infrared is
received, Beacon 5 chirps. [tEC.1]
Rationale: Given the size of US Node 1 and the positions of the beacons
around the inside of that volume, these times ensure that the beacon
chirps will not overlap.

[DP.3.2.4] The ultrasound receivers send a "received" message to PADS
when they receive a chirp. PADS calculates a time-of-flight between the
time the beacon chirped and when the receivers sensed the chirp. The
time since the ultrasound receiver senses the beacon transmission minus
the time since the beacon chirps is the time of flight. PADS calculates the
range between each beacon and each ultrasound receiver. Range is equal
to the time-of-flight divided by the speed of sound, which is 340m/s
(meters per second).
Rationale: 340m/s is the speed of sound at room temperature. The
SPHERES Laptop allows the Operator to record the actual ambient
temperature so that the speed of sound can be more accurately
calculated.
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[DP.3.2.5] PADS finds time-of-flight to another Sphere using the onboard
beacon (the ultrasound transmitter).
Rationale: Sphere-to-Sphere range and bearing are used for Guest
Scientist Programs that involve docking.

Level 3: Blackbox Behavior
Communication
[C.1] The Sphere Controller sends PADS what Control Mode it should enter, either
Report Ranges Mode, Accelerometer and Gyro Mode or Send All Data Mode.
[tSystem Interface Design] r-+GuestScientistModeInputl

[C.2] When PADS is in Report Ranges Mode, it sends the Sphere Controller ranges
from each of the 24 ultrasound receivers to each of the 5 beacons in meters.
[tSystem Interface Design]

[C.3] When PADS is in Accelerometer and Gyro Mode, it sends the Sphere Controller
Angular Velocity (x, y, z) in radians per second and Linear Acceleration (x, y, z) in
meters per second squared. [iSystem Interface Design] [-*LinearAccelerationOutput)
[-+AngularRateOutput]

[C.4] When PADS is in Send All Data Mode, it sends the Sphere Controller both ranges
from each of the 24 ultrasound receivers to each of the 5 beacons in meters and
Angular Velocity (x, y, z) in radians per second and Linear Acceleration (x, y, z) in
meters per second squared. rtSystem Interface Design] r-LinearAccelerationOutputl
r-+AngularRateOutputl

[C.5] PADS sends a Flash command to the Infrared Transmitters through the FPGA.
[tSystem Interface Design]

[C.6] PADS sends a Flash command to the Ultrasound Transmitter through the FPGA.
[tSystem Interface Design]

[C.7] The Accelerometers send Linear Acceleration (x, y, z) to PADS through an FPGA.
[MSystem Interface Design] [-+AccelerometerXInput] r-AccelerometerYInput
[->AccelerometerZInput

[C.8] The Gyroscopes send Angular Acceleration (x, y, z) to PADS through an FPGA.
[tSystem Interface Design [->GyroXInput] [->GyroYInputl [->GyroZInput

[C.9] The Infrared Receivers send Infrared Received to PADS.
rTSvstem Interface Desian1
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[C.10] The Ultrasound Receivers send Time Beacon Flash Received to PADS.
[tSystem Interface Desiqn]

Operational Procedures
[OP.1] Placing the beacons. [tOT.1]

[OP.1.1] Unstow five ultrasound beacons.
[OP.1.1] Place five beacons at the pre-specified seat-tracks as seen in Figure 6.

[OP.2] Record locations of five beacons in the SPHERES Laptop setup screen. [toT.2]
[OP.2.1] Enter beacon seat-track locations for each of the five beacons.
[OP.2.2] Save the beacons' positions.

[OP.3] Stow beacons after experiment has been completed.

System Blackbox Behavior - PADS
SUPERVISORY MODE INFERRRED SYSTEM STATE

AccelarometerX

CONTROL MODE Accelerometerxinput
-Unknown
AccelerometerGyroMode
ReportRangesMode

SendAJIDataMode 4 AccelerometerY
AccelerometerYInputL

GuestScientistModelnput
AccelerameterZ

AccelerometerZInput

Sphere Controller

GyroX
Gyroninput

LinearAccelerationOutput

AngularRateOutput 4 GyroY
GyroYInput

GyroZ
GyroZInput
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Appendix C

Communication Subsystem
Level 1: System-Level Goals, Requirements,

and Constraints
Introduction
The Communication Subsystem aboard each Sphere in the SPHERES system
(Synchronize Position Hold Engage Reorient Experimental Satellites) provides
communications management. The Communication Subsystem provides wireless data
transfer between the Spheres and between the Spheres and the ground. It is used to
send user commands, coordinate actions of the Spheres and send telemetry.

Historical Information
This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Communication Subsystem.

Environment Description
There will be only four types of devices in the Communication Subsystem's environment
with which it must communicate:

Sphere Controller - The Sphere Controller is the system-level intent specification in
the SpecTRM-GSC decomposition of SPHERES. It provides commands and telemetry to
the Communication Subsystem.

Other Spheres - There can be up to two other Spheres executing a Guest Scientist
Program in the SPHERES system. These are other system-level intent specifications
that the Communications Subsystem may need to communicate with.

SPHERES Laptop - Programs are loaded onto the Spheres through the SPHERES
Laptop. The SPHERES Laptop commands the Spheres to run tests. In addition,
telemetry is sent to the SPHERES Laptop per user specification. This is component-level
intent specification.

Radios - All communications are transmitted and received through radios on board
each Sphere. These are component-level devices and do not have intent specifications
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because they are pure hardware. The radios also provide different channels for
communication.

Environment Assumptions
[EA.1] The Communication Subsystem is operating within a Sphere.
rSystem Interface Design]
Rationale: This intent specification describes a communication subsystem that will
operate within a Sphere. It is not meant for use outside the SPHERES project

Environment Constraints
[EC.1] The Communication Subsystem must adhere to ISS EMI standards.
Rationale: The SPHERES system will operate aboard the International Space Station
and therefore must adhere to their standards.

System Goals
[FG.1] The Communication Subsystem shall provide wireless data transfer abilities for
the Sphere. [rP.11 [4-DP.21 [DP.31
Rationale: Because SPHERES is a formation flying testbed, the Spheres must be able to
communicate with one another in order to execute maneuvers. In addition, each
Sphere needs to be able to download telemetry so that Guest Scientists can analyze the
data on the ground.

High-Level Requirements
[FR.1] The Communication Subsystem aboard a Sphere shall send data packets from
itself to the Communication Subsystem of another Sphere. [4-DP.2.21 [4DP.3.21
rDP.3.31
Rationale: The Guest Scientist may want two or more Spheres to communicate directly.

[FR.2] The Communication Subsystem aboard a Sphere shall process incoming data
packets from the Communication Subsystem of another Sphere. [IDP.2.2] [4DP.3.31
Rationale: The Guest Sdentist may want two or more Spheres to communicate directly.

[FR.3] The Communication Subsystem aboard a Sphere shall send data packets from
itself to the SPHERES Laptop. r4DP.2.21 [DP.3.11 [4DP.3.21
Rationale: The Sphere must be able to downlink telemetry information to the SPHERES
Laptop.

[FR.4] The Communication Subsystem aboard a Sphere shall process incoming data
packets, commands and beacon locations from the SPHERES Laptop. [DP.2.21
[rDP.2.51

77



Rationale: The Sphere must be able to receive new Guest Scientist Programs and
information from the SPHERES Laptop.

[FR.5] The Guest Scientist shall be able to select what telemetry is sent from the
Sphere to the SPHERES Laptop. [DP.1.21 [4DP.3.11
Rationale: Different Guest Sdentist may be interested in different data sets.

[FR.6] The Communication Subsystem shall provide a mechanism to share the
communication channels. [DP.3.41
Rationale: Each Sphere and the SPHERES Laptop should be able to transmit data
packets without interference.

Design and Safety Constraints
Non-Safety Constraints
[SC.1] The Communication Subsystem must operate independently of any operator
action. [4DP.3]
Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

[SC.2] The Communication Subsystem must not operate when it is outside the range of
the SPHERES Laptop transmitter.
Rationale: The Russians do not want SPHERES operating outside of the US Node of the
'55.

System Limitations
[L.1] The Communication Subsystem transmits data at 57.6kbps.
Rationale: This is the data transfer rate of the Sphere's radios.

Verification and Validation
Review Procedures
A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss - SpecTRM-GSC Developer
John Enright - SPHERES Team Member and Primary Reviewer
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Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design
The external components will interface with
following manner: [tEA.11

the Communication Subsystem in the

The Communication Subsystem interfaces with the Sphere Controller and with the
radios that allow the Sphere to communicate with the SPHERES Laptop as well as other
Spheres. The radios are not represented in this diagram because they are not a
SpecTRM-GSC. They are trivial hardware components and are therefore not modeled.

The Sphere Controller sends the Communication Subsystem telemetry and commands
to send to other Spheres. The Communication Subsystem sends commands from other
Spheres to the Sphere Controller. [iC.11 [4C.21 F4C.31

The Communication Subsystem sends telemetry to the SPHERES Laptop.
Laptop uploads new Guest Scientist Programs onto the Spheres and also
Spheres with beacon locations. [4C.7] [4C.81 [4C.91

The SPHERES
provides the

The Communication Subsystem also sends and receives commands from other Spheres.
[4C.41[C.1[.6

System Design Principles
[DP.1] Communication Subsystem Overview [tFG.1]

[DP.1.1] The Communication Subsystem is made up of software and hardware
components. The hardware components consist of the I/O Circuitry and the
Radios. Figure 1 provides a diagram of the Communication Subsystem.
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Communication Subsystem ,

Figure 1. Communication Subsystem Diagram

[DP.1.2] The Guest Scientist will decide whether or not to send telemetry to the
SPHERES Laptop. This information is sent through the Sphere Controller to the
Communication Subsystem. [4FR. 51 [TelemetryFlagl
Rationale: The Guest Scientist may or may not need the data generated by the
Guest Scientist Program; therefore he/she needs an option as to whether or not
to record telemetry.

[DP.2] Communication Subsystem Hardware r4FG.1]
[DP.2.1] The I/O Circuitry provides a buffer between the Communication
Subsystem and the Radios. It translates the serial data stream from the
Communication Subsystem software to the parallel data stream taken by the
radios and vice versa.
Rationale: The serial data stream travels much slower than parallel and
therefore a buffer is needed between the two streams to accommodate the
different flow rates.

[DP.2.2] The Radios transmit and receive data packets to and from the
Communications Subsystem, SPHERES Laptop and other Spheres. [tFR.1]
rTFR.21 [TFR.31 [TFR.41

[DP.2.3] The Radios provide the Communication Subsystem with error detection
in the form of checksums.
Rationale: Although the radios do not provide error correction, the Guest
Scientist will at least be aware if the collected telemetry has been corrupted.
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[DP.2.4] The SPHERES Laptop saves telemetry sent by the Communication
Subsystem to a hard disk.
Rationale: The 155 only downlinks data to Earth once every twelve hours.

[2.5] The SPHERES Laptop sends Start Test and Stop Test commands to the
Sphere through the Communication Subsystem. [tFR.4]
Rationale: The Laptop will not start a test until all the information necessary for
running the Guest scientist Program has been loaded onto the Spheres.

[DP.3] Communication Subsystem Software rtFG.11 [TSC.1]
[DP.3.1] The Communication Subsystem receives standard state and
engineering telemetry as well as user defined experimental data from the Sphere
Controller. If the Sphere Controller also sends a command that the telemetry is
to be recorded, the Communication Subsystem sends the telemetry to the
SPHERES Laptop. [TFR.31 [TFR.5]
Rationale: The Guest Scientist may wish to gather data outside the standard
state and engineering telemetry provided by the Sphere Controller.

[DP.3.2] The Communication Subsystem generates telemetry packets to be sent
to the Radios. rTFR.11 [tFR.31

[DP.3.3] The Communication Subsystem sends information and/or commands
from the Sphere Controller to other Spheres. [tFR.11 [tFR.21
Rationale: Guest Scientist Programs that require multiple Spheres may need the
Spheres to send commands to one another and to share data.

[DP.3.4] The Communication Subsystem provides Time Division Multiple Access
(TDMA) for the Sphere. [tFR.61
Rationale.' TDMA allows the SPHERES system to share the two radio channels
among the multiple stations, giving each station the opportunity to transmit.

Level 3: Blackbox Behavior
Communication
[C.1] The Sphere Controller sends the Communication Subsystem a Boolean telemetry
flag, indicating whether or not to send telemetry. [TSystem Interface Design]
[-*TelemetryFlagInputl

[C.2] The Sphere Controller sends the Communication Subsystem the state vector
(Angular Rate (x, y, z), Position (x, y, z), Linear Velocity (x, y, z) and Quaternion (q1,
q2, q3, q4)) as well as any other telemetry specified by the Guest Scientist.
[System Interface Desin] [-*VelocityXInputl r-+VelocitvYInputl [-+VelocityZInput]
r->AnqularRateXInoutl r->AnaularRateYInDutl r->AnaularRateZInDut~
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[C.3] The Sphere Controller sends the Communication Subsystem commands for the
Other Spheres. [TSystem Interface Desiqnl

[C.4] The Communication Subsystem sends commands to Other Spheres.
rTSystem Interface Design] [-RateMatcherData]

[C.5] The Communication Subsystem receives commands from Other Spheres.
[tSystem Interface Desiqnl

[C.6] The Communication Subsystem sends telemetry to the SPHERES Laptop.
[TSystem Interface Design] [-+TelemetryOutput]

[C.7] The SPHERES Laptop sends Guest Scientist Programs to the Communication
Subsystem. [TSystem Interface Design]

[C.8] The SPHERES Laptop sends Start Test and Stop Test commands to the
Communication Subsystem. [TSystem Interface Design]

[C.9] The SPHERES Laptop sends Beacon Locations to the Communication Subsystem.
[tSystem Interface Design]

System Blackbox Behavior - Communication Subsystem

Sphere Cntroller ___ SUPERVISORY MODE INFERRRED SYSTEM STATE
pee otrle VelocityXInput CONTROL MODE T ty TeleearyOutput

CONTRO MODE Unknown

VelocityYlnput endTelametry
LoNotSendTelemnetrv

VelocityZInput

AngularRateXinput

AngularRateYlnput Other Sphere

AngularRateZInput

TelemetryFlaginput
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Appendix D

Sphere Controller
Level 1: System-Level Goals, Requirements,

and Constraints
Introduction
The Sphere Controller aboard each Sphere in the SPHERES system (Synchronize
Position Hold Engage Reorient Experimental Satellites) provides the overall framework
for the Sphere. The Sphere Controller coordinates the actions of the onboard
components as well as determining the operating mode of the Sphere.

Historical Information
This intent specification is a SpecTRM-GSC (Generic Spacecraft Component). It should
only be used for the SPHERES project and encompasses only information relating to the
Sphere Controller.

Environment Description
There are six subsystems (Propulsion Subsystem, PADS, Communication Subsystem,
Guest Scientist Program, Structure and Electrical Subsystem) in the Sphere Controller's
environment. The Sphere Controller communicates with only four of these subsystems:

Propulsion Subsystem - The Propulsion Subsystem provides both position and
attitude management for the Sphere. It is a subsystem-level intent specification in the
SpecTRM-GSC decomposition of SPHERES.

PADS - PADS provides state estimation for the Sphere. It is a subsystem-level intent
specification in the SpecTRM-GSC decomposition of SPHERES.

Communication Subsystem - The Communication Subsystem provides wireless data
transfer for the SPHERES system. It is a subsystem-level intent specification in the
SpecTRM-GSC decomposition of SPHERES.

Guest Scientist Program - The Guest Scientist Program allows scientists outside of
MIT and NASA to test high-risk metrology, control and autonomy algorithms in the
environment of micro-gravity. Each Guest Scientist Program is a different subsystem-
level intent specification in the SpecTRM-GSC decomposition of SPHERES.

83



Environment Assumptions
[EA.1] The Sphere Controller is operating within a Sphere. [4System Interface Design]
Rationale: This intent specification describes the Controller that will operate within a
Sphere. It is not meant for use outside the SPHERES project

[EA.2] The Sphere Controller is operating within a Sphere that contains a Propulsion
Subsystem, PADS, Communication Subsystem and Guest Scientist Program designed for
the SPHERES project. rSystem Interface Design]
Rationale: The Sphere Controller is not a generic controller and is meant to be used
with subsystems designed for the SPHERES project.

Environment Constraints
[EC.1] The Sphere must only operate within Node 1 of the International Space Station.
Rationale: The Russians do not want SPHERES operating outside of the US Node of the
'55.

System Goals
[FG.1] The Sphere Controller shall coordinate the actions of the Sphere's onboard
components. r-FR.11 r-+FR.21 r-+FR.31 r4-DP.11 [4DP.21 [4DP.31 [4DP.41
Rationale: A controller is needed to coordinate the actions of the four active
subsystems onboard the Sphere.

High-Level Requirements
[FR.1] The Sphere Controller shall execute the Guest Scientist Program. [->FG.1]
[4DP.11 [4DP.4.51
Rationale: The Guest Scientist Program contains the control laws and/or state
estimation algorithms that allow the Spheres to perform maneuvers. Running an
experiment involves the Sphere Controller executing one of these programs.

[FR.2] The Sphere Controller shall manage the interactions between subsystems.
r->FG.11 r4DP.1] [kDP.21 [4DP.31
Rationale: All interactions between the subsystems are channeled through the Sphere
Controller.

[FR.3] The Sphere Controller shall provide the overall operating mode of the Sphere.
r->FG.11 [4DP.41
Rationale: Because the Sphere Controller executes the Guest Scientist Program, it is
aware of the status of the experiment and therefore sets the operating mode.

84



Design and Safety Constraints
Non-Safety Constraints
[SC.1] The Sphere Controller must operate independently of any operator action.
r4DP.11 rrP.2] [1DP.31
Rationale: The SPHERES system is autonomous and therefore must operate without
human interference.

Operator Requirements
[OR.1] The Operator shall enable the Sphere Controller after the Guest Scientist
Program has been loaded and the test area prepared. [40T.11 [40T.21 rOT.31
Rationale: The test area must be clear of astronauts and other objects foreign to the
SPHERES system before the Guest Scientist Program is executed. The Guest Scientist
Program cannot start unless the Sphere Controller has been enabled

[OR.2] The Operator shall start the SPHERES experiment after the Sphere Controller
has been enabled and stop the experiment when the Guest Scientist Program is finished
executing. [k0T.4]

Verification and Validation
Review Procedures
A review board that is independent of the development team verifies levels 1, 2 and 3
of the SPHERES system SpecTRM-GSCs. Multiple iterations of this review process can
be performed to help ensure that the analysis reflects the actual operation of the
SPHERES system. Suggestions for improvement are added as necessary and evaluated
in the next iteration of the review process.

Participants
Kathryn Weiss - SpecTRM-GSC Developer
John Enright - SPHERES Team Member and Primary Reviewer

Results
This SpecTRM-GSC is the result of two development and review cycles.

Level 2: System Design Principles
System Interface Design
The four external subsystems will interface with the Sphere Controller in the following
manner: [tEA.11 FtEA.21
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The Sphere Controller communicates with the four active subsystems: PADS,
Communication Subsystem, Propulsion Subsystem and Guest Scientist Program.

The Sphere Controller tells PADS which information is needed from the avionics
hardware. The Sphere Controller can either receive linear acceleration and/or angular
velocity from the inertial measurement system and/or ranges to each beacon from the
global measurement system. PADS sends the requested information to the Sphere
Controller. [4C.21

The Sphere Controller sends the Communication Subsystem telemetry and commands
to send to other Spheres. The Communication Subsystem sends commands from other
Spheres to the Sphere Controller. [4C.31

The Sphere Controller sends the Propulsion Subsystem either timed on/off commands
for each of the twelve thrusters or force and torque vectors. The Propulsion Subsystem
does not send any information to the Sphere Controller. [4C.1]

The Sphere Controller sends and receives different information from the Guest Scientist
Program depending on the needs of the Guest Scientist. The Sphere Controller will
always receive the control mode for the Propulsion Subsystem and PADS from the
Guest Scientist Program. Other information is dependent on the specific program being
executed. A detailed description of the information exchanged is found at Level 3 of
this model. r4C.4]

Operator Task Design Principles
[OT.1] The Operator loads the Guest Scientist Program onto the Sphere through the
SPHERES Laptop. [tOR.11 4OP.4]

[OT.2] The Operator prepares the test area for running a SPHERES experiment.
[TOR.11 r4oP.i [4oP.21 [40P.31 [-OP.51
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[OT.3] The Operator enables the Sphere Controller by pushing an enable button on the
Sphere. [tOR.11 [4OP.61

[OT.4] The Operator starts and stops the SPHERES experiment through the SPHERES
Laptop. [tOR.21 [iOP.71 4OP.81

System Design Principles
[DP.1] The Sphere Controller provides the Guest Scientist Program with position and
attitude information from PADS. [tFG.1] [tFR.11 [tFR.21 [tSC.ii
Rationale: The Guest Scientist Program requires position and attitude information to
determine desired forces and torques to accomplish a maneuver.

[DP.2] The Sphere Controller provides the Propulsion Subsystem with either direct "On
Time" and "Off Time" commands or force and torque vectors calculated by the Guest
Scientist Program. [tFG.11 [fFR.21 rtSC.1] [4PropulsionSubsystemStatel

[DP.3] The Sphere Controller generates automatic telemetry from the position and
attitude information provided by PADS and sends it to the Communication Subsystem.
The Sphere Controller also sends information specified by the Guest Scientist Program
to the Communication Subsystem. [tFG.1] [tFR.21 rtSC.11 [PADSStatel

[DP.4] Sphere Controller Operating Modes [tFG.11 ftFR.31 [4SphereControlModel
[DP.4.1] The Sphere Controller enters "Boot" when the Sphere is Reset or
Powered On.

[DP.4.2] The Sphere Controller enters mode "Load Program" if there is a new
Guest Scientist Program to load onto the Sphere.

[DP.4.3] The Sphere Controller enters "Idle" if the Sphere successfully loaded
the Guest Scientist Program or if there was no new Guest Scientist Program to
load onto the Sphere from mode "Boot"

[DP.4.4] The Sphere Controller enters mode "Position Hold" from "Idle" when
the Operator enables the push button on the Sphere.

[DP.4.5] When the Sphere Controller receives a "Start" command from the
SPHERES Laptop through the Communication Subsystem, the Sphere enters
mode "User Control" which signals that the Guest Scientist Program is running
and controlling the Sphere. [tFR.11

[DP.4.6] If the Sphere Controller receives a "Stop" command from the SPHERES
Laptop through the Communication Subsystem, the Sphere goes back to "Idle"
mode.
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Level 3: Blackbox Behavior
Communication
[C.1] Propulsion Subsystem rTSystem Interface Design]

[C.1.1] The Sphere Controller sends the Propulsion Subsystem the operating
mode specified by the Guest Scientist Program.
[-+PropulsionSubsystemModeOutput

[C.1.2] The Sphere Controller sends the Propulsion Subsystem a Forces and
Torques Vector containing the desired forces (x, y, z) and torques (x, y, z)
required by the Guest Scientist Program. [-ForceTorqueVectorOutput]

[C.2] PADS [TSystem Interface Design]
[C.2.1] The Sphere Controller sends PADS the operating mode specified by the
Guest Scientist Program. [->PADSModeOutput]

[C.2.2] The Sphere Controller receives from PADS either:
[C.2.2.1] Ranges from each of the 24 ultrasound receivers to each of the
5 beacons in meters.
[C.2.2.2] Angular Velocity (x, y, z) in radians per second and Linear
Acceleration (x, y, z) in meters per second squared.
[->AngularRateXlnput] [-+AngularRateYlnput] [-+AngularRateZlnput]
[C.2.2.3] Both ranges from each of the 24 ultrasound receivers to each of
the 5 beacons in meters and Angular Velocity (x, y, z) in radians per
second and Linear Acceleration (x, y, z) in meters per second squared.

[C.3] Communication Subsystem [TSystem Interface Designl
[C.3.1] The Sphere Controller sends the Communication Subsystem a Boolean
telemetry flag, indicating whether or not to send telemetry.
[-*TelemetryFlagOutput]

[C.3.2] The Sphere Controller sends the Communication Subsystem the state
vector (Angular Rate (x, y, z), Position (x, y, z), Linear Velocity (x, y, z) and
Quaternion (q1, q2, q3, q4)) as well as any other telemetry specified by the
Guest Scientist. [-+AngularRateOutput]

[C.3.3] The Sphere Controller sends the Communication Subsystem commands
and/or information for the Other Spheres.

[C.4] Guest Scientist Program [TSystem Interface Design]
[C.4.1] The Guest Scientist Program sends the desired operating mode for the
Propulsion Subsystem to the Sphere Controller.
[->PropulsionSubsystemModeInputl
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[C.4.2] The Guest Scientist Program sends the desired operating mode for PADS
to the Sphere Controller. r-+PADSModeInput]

[C.4.3] Rate Damper
[C.4.3.1] The Sphere Controller sends the Guest Scientist Program
Angular Rates (x, y, z). [->AngularRateXOutput] r-+AngularRateYOutput]
[-+AngularRateZOutput]

[C.4.3.2] The Rate Damper sends the Sphere Controller desired forces (x,
y, z) and torques (x, y, z) needed from the Propulsion Subsystem to
cancel the angular rate. [-+ForceXInput] [-+ForceYInput]
[-ForceZInput] r-+TorqueXInput] [-+TorqueYInput] [-+TorqueZInput]

[C.4.4] Rate Matcher
[C.4.4.1] The Sphere Controller sends the Guest Scientist Program
Angular Rates (x, y, z). [-+AngularRateXOutputl [-AngularRateYOutput]
r->AngularRateZOutput]

[C.4.4.2] The Sphere Controller sends the Guest Scientist Program the
Angular Rates (x, y, z) of the Leader Sphere.
[-LeaderAnqularRateXOutput] [-+LeaderAnqularRateYOutput]
[->LeaderAngularRateZOutputl

[C.4.4.3] The Rate Damper sends the Sphere Controller desired forces (x,
y, z) and torques (x, y, z) needed from the Propulsion Subsystem to
cancel the angular rate. [-+ForceXInput] [-+ForceYInput
[--ForceZInputl r-+TorqueXInput] [->TorqueYInput] [-+TorqueZInputl

Operational Procedures
[OP.1] Unstow Sphere(s). [tOT.21
[OP.2] Check the amount of propellant in each Sphere tank. If the amount is below
20%, follow Operational Procedures for the Propulsion Subsystem. [tOT.21
[OP.3] Follow the Operational Procedures [OP.1] and [OP.2] for PADS. [tOT.2]
[OP.4] Load a Guest Scientist Program on the Sphere Controller through the SPHERES
Laptop. [tOT.11
[OP.5] Place the Sphere(s) in the middle of the test area. [tOT.21
[OP.6] Press the enable button on the Sphere(s). [tOT.31
[OP.7] Send "Start" command through the SPHERES Laptop. [tOT.41
[OP.8] After the test is completed send "Stop" command through the SPHERES Laptop.
[TOT.21
[OP.9] Stow Sphere(s).
[OP.10] Follow the Operational Procedures [OP.3] for PADS.
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Appendix E

System Blackbox Behavior - Guest Scientist Programs
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Figure 1. Sphere Controller Blackbox Diagram During Rate Damper Simulation
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